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1 Abstract
This guided research focuses on optimizing pre-existing python codes of GOFMM and incorporating
new functionality into the embedded balanced tree data structure by GOFMM. The original codes rely
heavily on nested loops, conditional checks and index tracking, making it difficult to apply GOFMM to
new applications. The revised version implements a set-oriented interface on setting up the GOFMM
data structure. Particularly, we formalize all sampling methods in set. As a result, the codes are much
shorter, understandable and efficient as it involves basic mathematical operations on a fundamental data
structure. Furthermore, we utilize scipy.linalg.interpolative package to simplify analysis in skeleton,
such as interpolative decomposition and QR factorization. The resultant codes run much faster and are
user-friendly in implementing related applications.

With our new GOFMM interface, we devised two examples that demonstrate high usability of
GOFMM in statistical plotting and image recognition. Our first example takes in 2D position data
and classifies points based on their density. By exploiting relative fast search and data structure in
GOFMM, this user case accelerates underlying matrix-vector multiplication. In comparison to its raw
data plot, our plot uses Gaussian kernel density estimation (Gaussian KDE) and displays a high level of
accuracy. Our second example pipes over one thousand 8× 8 images into GOFMM, utilizing its tree-like
data structure for fast search and low storage. Then, we implement Gaussian KDE to learn over training
dataset so that the updating model can accurately classify testing data. The result shows high accuracy
of our model classification. With 30 training images, the accuracy of classifying 44 images is 43

44 .

2 Introduction and Theory
In numeric linear algebra, a dense matrix, whose entries are mostly nonzero, can be represented as a
linear combination of matrices each of which keeps only one nonzero entry. Storing such a non-sparse
matrix requires O(N2) space in memory, thus causing a stroage problem when N is large. We apply an
approximation method to the dense matrix as a way to reduce the storage need by using hierarchical
matrices. Such method costs only O(Nlog(N)) units of storage. GOFMM compresses a dense symmetric
positive definite matrix (SPD) by creating a low-rank approximation [1]. Such compression requires
O(Nlog(N)) storage where N is matrix size. It also reduces the cost of N×N matrix-vector multiplication
from O(N2) to O(Nlog(N)).

2.1 Problem Statement
Dense SPD matrices appear often in scientific computing and data analysis. They are widely used
particularly in areas such as kernel methods for statistical learning and image classification [2]. Suppose
we are given a m×n dense SPD matrix K where each entry Kij represents some data point. The storage
costs as well as matrix-vector multiplication on such matrix take O(N2) where N = min (m, n). If N is
large, such costs will be too expensive. Take N-body problem for example.

Given a set of N points x1, x2, ..., xN for xi ∈ Rd. Our goal is to calculate a potential and assign
it to each point. Such potential is usually based on relation of the current point with all other points.
As an example in Coulomb’s Law, nearby particles contribute more than distant ones to the potential
of current particle. This potential depends mainly on distance and charges. If N → +∞, calculating
potential at every data point while taking all others into account is infeasible. The program needs to
perform Top = O(N2) calculations and the total computational costs would be Top × Tcomp where Tcomp

is the cost of computing potential between any two points. To tackle this issue, we introduce a statistical
tool called kernel density function to sample all data points according to some metric. Then, potential
at a point xi can be computed as [3]

ui = u(xi) =
N∑

j=1
K(xi, xj)wj (1)

where wj is the intrinsic weight of point j and K(xi, xj) is the probability density at point (xi, xj).
Although presampling in this method reduces some costs, the program still has to deal with O(N2)
multiplications. We can reduce computational complexity by forming a hierarchical data structure on
neighboring points. We rewrite Eq. (1) as [3]

ui =
∑

p∈Neari

Kipwp +
∑

p∈Fari

Kipwp (2)
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where Neari is a set of points relative to point i; and for these points their products Kipwp is calculated
one by one. On the other hand, Neari is a set of points relative to point i; and for these points their
products can be computed by low-rank approximation which reduces dimensionality and brings down
storage costs to O(N log(N)).

2.2 Hierarchical Low Rank Structure
Consider the kernel matrix K in Eq. (1). The low-rank approximation allows us to construct a hierar-
chically low-rank matrix K̃, also known as H-matrix, such that

∥∥∥K̃ −K
∥∥∥ /‖K‖ is small. Such H-matrix

K̃ of K can be decomposed into
K̃ = D + U + S (3)

where D consists of diagonal blocks representing nearby points, U a dense block matrix and S a sparse
matrix, both of which represent off diagonal entries. Notice, since U is a dense block matrix, it allows
a block-wise low rank approximation [3]. According to theory, a matrix-vector application K̃w takes
O(N log N). In the following subsections, we introduced two major instances of low-rank approximation
that we use in our codes.

2.3 Singular Value Decomposition
Consider a m×n matrix A where each row is a single sample of m-dimensional data point. Two datasets
in our experiment both have m >> n. A can be decomposed into

A = UΣV ∗ (4)

where U is a m×m unitary matrix, Σ a m×n diagonal matrix with singular values and V a n×n unitary
matrix. The columns of U and V are left-singular vectors and right-singular vectors, respectively. The
diagonal entries in Σ are monotonically decreasing, namely,

Σii ≥ Σjj for i ≤ j (5)

In practice, we set up a cutoff line, say k, such that

∀j > k, Σjj = 0 (6)

As a result, we don’t need to calculate some parts of matrix multiplication in Eq. (4). This scheme
therefore accomplishes the goal of dimension reduction. In general, singular value decomposition takes
O(mn2).

2.4 Interpolative Decomposition
An interpolative decomposition(ID) of a matrix A approximates it by using A’s own columns. For a
m× n matrix A of rank k < min (m, n),

AS = [AS1 AS2] = AS1[I T ] (7)

where S is a permutation matrix and S1, S2 are the unit vectors that select certain columns of S. We
further write Eq. (7) as [4]

A = BP for B = AS1, P = [I, T ]ST (8)
where B and P are the skeleton and interpolation matrices of A, respectively. By design, B consists of
a subset of columns of matrix A. Since we can reuse some columns of A in construction of A, ID yields
a lower storage costs. Generally, it takes O(kmn).

In the following section, we optimized sampling methods that generate matrix S in Eq. (7) and set
up for SVD.

3 Code Optimization
This section focuses on improving two class methods in the tree library, skeletonize and evaluate. tree
library contains both a BST tree data structure that effectively store all data points and class methods
that compute SVD, ID and QR factorization. skeletonize computes the skeleton, interpolation matrix
and SVD of the currently stored data points. evaluate recursively traverse the tree and conducts the
matrix-vector multiplication.
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3.1 Sampling Methods
One of the major drawbacks in the pre-existing skeletonize codes is its sampling methods. Sampling
lays foundation for calculating the nearest neighbors of a node and later computing the skeleton. The
original code used nested loops to find self.selected_rows, which is the S matrix in Eq. (8). As we
can see in the simplest sample method in the code,

1 if (type ==" uniform "):
2 if verbose :
3 print ’sampling rows uniformly ..’
4 for i in range (rows):
5 l=-1
6 while (l in self. idx_list or l in self. selected_rows or l <0):
7 l=int(np. random .rand ()*N)
8 self. selected_rows [i]=l

uniform sampling essentially selects M = len(rows) different integers among 0 to N. The problem
with this nested loop implementation is that as the iteration number i gets bigger, it takes more rounds
for the inner while loop to find a suitable l. l’s generated by the previous outer rounds populate a large
portion of random number range. Since a new l must be different from all previous l’s, generation of
l′s in the later rounds take more time. Moreover, as sampling methods get more complicated, such
as neighboring-based search methods and skeleton methods in this code, more and more nested loops
need to be used. It adds to difficulty of code readability and slows down running speed on generating S
matrices.

We formulate the sampling problem in set notation for optimization. The uniform sampling is a
selection of M = len(rows) distinct elements without replacement from the random range. We set up
sample scope, which spans from 1 to N, and complement, which is the pool from which l should not be
picked. Then, we pick M distinct numbers from (sampleScope - complement) without replacement. The
function of uniform sampling can be written as follows:

1 def uniform_sampling ( sampleScope , complement , numSamples ):
2 sampleRange = np. setdiff1d ( sampleScope , complement )
3 return np. random . choice ( sampleRange , numSamples , replace =False)
4
5 // Call on uniform sampling
6 self. selected_rows = np. append (self. selected_rows ,
7 uniform_sampling (range(N),
8 self.idx_list ,
9 rows))

It turns out that we can incorporate the uniform sampling routine further into neighboring based
sampling method. This method first samples from a pre-assigned neighboring sets. If this subsample
doesn’t fulfill the requirement, then we must uniformly sample the rest. Furthermore, we rewrite the
skeleton sampling method into a 3-stage sampling routine. The skeleton first samples the first part of its
elements from the previous skeleton, the second part from the neighboring based method and the last
part from the uniform sampling method.

1 elif (type == ’skeletons ’):
2 sampleScopeSets = (self. relevant_skeletons , self.neighbors , range(N))
3
4 complementSets = (np.empty(shape =[1, 0], dtype=int),
5 np. union1d (self.idx_list , self. relevant_skeletons ),
6 self. idx_list )
7
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8 rest = rows
9 for i in range (3):

10 sampleScope = sampleScopeSets [i]
11 complement = np. union1d (self. selected_rows , complementSets [i])
12 sampleRange = np. setdiff1d ( sampleScope , complement )
13
14 self. selected_rows = np. append (self. selected_rows ,
15 uniform_sampling ( sampleScope ,
16 complement ,
17 min(len( sampleRange ),

rest)))
18 rest -= len( sampleRange )
19
20 if (rest <= 0):
21 break

3.2 Singular Value Decomposition
Another drawback of the pre-existing code is lots of raw coding on calculation of parameters in SVD.
The old code spent almost 100 lines of code calculating accuracy, doing inverse mapping and finding
optimal adaptivity. The accuracy calculation requires sophisticated calculation in a loop, while adaptivity
calculation needs nested loops and many condition checks. So, both need to be optimized. Moreover,
inverse mapping creates a dictionary with key and value, and later tries to find key according to some
value. This type of operation consumes a large memory when matrix is big and also very costly as we
need to go through all dictionary values to find corresponding keys.

We recognize much of the inefficiencies can be mitigated by applying scipy.linalg.interpolative
package to Eq. (8). Instead of SVD, the package uses an efficient algorithm called rank-revealing QR to
factorize the input matrix.

1 rows = len(self. selected_rows )
2 cols = len(self. selected_columns )
3 G = np.zeros ((rows , cols))
4 for i in range (rows):
5 G[i, :cols] = K[int(self. selected_rows [i]), :cols]
6
7 [Q, R, PI] = linalg .qr(G, pivoting =True)
8
9 self.s, idx , proj = sli. interp_decomp (G, rtol , rand=False)

10
11 self. skeleton = G[:, idx [: self.s]]
12
13 self.P = sli. reconstruct_interp_matrix (idx , proj)
14
15 if (self.left is not None):
16 self. Permute = PI
17 self. selected_columns = self. selected_columns [PI [0: self.s]]

Our new implementation above takes only 17 lines to implement the original one with around 100
lines that are filled with nested loops, conditions and data structures. The code cleanup paves way for
readability and usability.

3.3 Optimization Performance
We analyze the performance of old codes and improves ones in terms of accuracy and running speed. It
turns out that most sampling methods plus their evaluation time have gained a speedup of 5% compared
to the old one. Moreover, the mean and max error for most sampling method plus its evaluation drops
by an order of magnitude from 10−15 to 10−16 and 10−13 to 10−14, respectively.
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Mean Error Max Error Running Speed
old 1.1× 10−15 8.5× 10−14 0.83s
new 7.7× 10−16 3.08× 10−14 0.80s

Table 1: Performance comparison of neighbor based sampling

Mean Error Max Error
old 1.60× 10−15 6.4× 10−13

new 7.5× 10−16 3.08× 10−14

Table 2: Performance comparison of uniform sampling

Mean Error Max Error Running Speed
old 9.80× 10−16 7.60× 10−14 2.15s
new 7.25× 10−16 3.08× 10−14 2.06s

Table 3: Performance comparison of skeleton sampling

4 GOFMM Applications
To demonstrate usability of revised GOFMM and the library in general, we devised two examples. The
first example is about piping 2D position data sets into the GOFMM tree structure, computing density
of data points and plotting. The second one is about using GOFMM to classify images. Both examples
use Gaussian Kernel Density Estimation (Gaussian KDE). The reason for using a continuous estimator
like Gaussian KDE is that traditional bin estimator of statistical distribution changes dramatically when
we modify bin size. Approximating groups of neighboring points using KDE in general smooth down
fluctuation and gives a much more accurate distribution [6]. First, we will briefly go over some theoretical
parts of KDE.

Let X1, ..., Xn ∈ Rd be independently, identically distributed samples from some distribution with
PDF f̂h(x). Then, its kernel density estimator can be written as [5]

f̂n(x) = 1
nhd

n∑
i=1

K

(
x−Xi

h

)
(9)

where h is the bandwidth, which characterizes flatness of the curve and K : Rd → R kernel function. The
probability density at x sums up all local kernel density at x centering at each different Xi. The kernel
function depends on which statistical distribution that we use to fit data. One of the most common
examples is to use Gaussian distribution [5].

K(x) =
exp

(
−‖x‖2

/2
)

v1,d
, v1,d =

∫
exp

(
−‖x‖2

/2
)

(10)

In practice, in order to calculate the PDF, we first need to fit Gaussian curves at every group of points
that are delimited by grids. Then, we calculate the value of x at each locally fitted Gaussian curve. In
the end, we sum all values of x up for the PDF.

4.1 2D Statistical Plotting
In this subsection, we classify 2D data points based on their local density. The input is coupled measure-
ments that are randomly generated from the 2D normal distribution. Our goal is to reassemble these
points and classify them according to their neighboring density. GOFMM accomplishes two tasks here.
The first is to store the data in its tree structure using skeletonize. And the second is to fast calculate
a matrix-vector multiplication which is required in Eq. (9) using evaluate. Here, we present the density
plot along with their original data points in Fig. 1.

This application takes advantage of GOFMM’s capacity of efficiently storing and querying the data.
Moreover, it accelerates the matrix-vector multiplication. This example is implemented in the code
gofmm_app.py.
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Figure 1: 2D density plot using Gassusian KDE and GOFMM

4.2 Image Classification
We can further expand GOFMM to include features on classifying images. We are interested in applying
Bayes classification to testing data based on training data. Let x be a random datapoint from sample
space and y a random label from all labels. According to Bayes’ Rule

P (y|x) = P (x|y)P (y)
P (x) (11)

Assuming all samples are distinctive, then P (x) is a constant. Therefore, P (y|x) ∝ P (x|y)P (y). Our
task now is to calculate P (x|y) and P (y). We implement Bayes classification as follows [6]

1. Split the training data into sets according to their labels.

2. Perform KDE on each distinctive label (set from step 1). This step gives P (x|y).

3. Calculate P (y) based on occurrence of y relative to all samples

4. Given a testing point x, calculate P (x|y) for each label y. Select the one with the largest probability
and label x with this y.

In order to perform KDE in step 2, we first need to construct a Gaussian kernel matrix, K. An entry
Kij is calculated by Eq. (10). It corresponds to testing sample i with respect to training sample j. Then,
we construct the KDE matrix, E, based on K by summing up probability of testing sample i to training
samples of each label. Eij corresponds to testing sample i with respect to j label in training data. The
value Eij is proportional to P (x|y) in step 2.

We aim to run our self-implemented KDE on images. The dataset comes from sklearn.datasets.load_digits
which consists of more than one thousand 8× 8 black and white images [7]. Each image stores a hand-
written digit from 0 to 9. We design an experiment on recognizing 44 testing images based on 30 training
samples. Each of the training sample is manually labeled. The KDE is then applied to the testing sample
with respect to training sample. The result is in Fig. 2.

The KDE prediction on 44 testing images gives labels
1 $ python -i kde_handwriting .py
2 >>> predictionLabels . reshape (4 ,11)
3 array ([[0 , 1, 2, 3, 4, 5, 6, 7, 8, 9, 0],
4 [1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1],
5 [2, 3, 4, 5, 6, 7, 8, 9, 0, 9, 5],
6 [5, 6, 5, 0, 9, 8, 3, 8, 4, 1, 7]])
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Figure 2: Raw data and KDE prediction. The upper image displays the raw 44 handwriting digits. The
lower image presents our KDE prediction on these 44 images. The prediction of a digit is demonstrated
by an image that was manually sorted by label.

By comparing the predcitionLabels with raw image data, we find that the Gaussian KDE can success-
fully predict 43 out of 44 images. The success rate is 97.73%. We can futher improve the rate by adding
our prediction result to training data. Then, we can predict another set of new images. And we can keep
doing this to improve our training model. The code of this example is stored in kde_handwriting.py.

5 Conclusion
This guided research project focuses on code optimization and software package integration. We first im-
plemented sampling methods in set and demonstrated an improvement of code readability and efficiency.
Then, we implemented low-rank compression completely based on the python package scipy.linalg. This
modification allows us to add more features to the general GOFMM package later on as the previous
code did hard coding with nested loops and conditions. The new code achieves a 5% speed up and an
order of magnitude improvement on error for a 1024× 1024 matrix sample.

After GOFMM had been set in place, we wrote additional packages to implement Gaussian KDE and
two user cases to demonstrate the usability of GOFMM. The first case is about generating statistical
density plot of random 2D points. It takes advantage of GOFMM’s tree data structure and matrix-vector
multiplication. It reduces the storage space and query speed to O

(
N log(N)

)
. The second example is

about predicting image labels using Gaussian KDE based on training data. The result shows that our
implementation not only is capable of processing high dimensional data, but also accurately predicts
image label. To further improve the training model based on Gaussian KDE, we can further add testing
data from the previous round of running to the training data in the current round. In this way, we
assemble more reliable data for future classification.
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continuous integration is also implemented for running scenarios, statistical plotting and handwriting
recognition in .gitlab-ci.yml.
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