
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Training Deep Convolutional Neural
Networks on the GPU Using a

Second-Order Optimizer

Mihai Zorca

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Training Deep Convolutional Neural Networks on
the GPU Using a Second-Order Optimizer

Training von Deep Convolutional Neural Networks
auf der GPU mit einem Optimierer Zweiter Ordnung

Author: Mihai Zorca
Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz
Advisor: Severin Reiz, M.Sc.
Submission Date: July 15th, 2020

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

July 15th, 2020 Mihai Zorca

Acknowledgments

I am grateful to my advisor Severin Reiz for his valuable advice and constant support
over the course of this thesis.

I would like to thank my parents for raising me and providing great role-models, and
for their ongoing love and support.

vii

”The effort of using machines to mimic the human mind has always struck me as rather silly. I
would rather use them to mimic something better.”

-Edsger W. Dijkstra

viii

Abstract

Deep Convolutional Neural Networks (CNNs) are a prominent class of powerful
and flexible machine learning models. Training such networks requires vast compute
resources: due to the large amount of training data and due to the many training it-
erations. To speed up learning, many specialized algorithms have been developed.
First-order methods (using just the gradient) are the most popular, but second-order
algorithms (using Hessian information) are gaining importance. In this thesis we give
an overview over the most common first-order optimizers and how they are used to
train networks. Then we build upon a sample second-order algorithm which we call
EHNewton (Efficient Hessian Newton). We have integrated this into the TensorFlow
platform, such that the new method can act as a drop-in replacement to standard algo-
rithms. We make use of this, by training one CNN model each out of the (1) Inception,
(2) ResNet and (3) MobileNet architectures. Due to technical limitations we limit this
study to last layer training on a single NVIDIA Titan GPU.

EHNewton shows speed-up and accuracy benefits compared to first-order training
algorithms on all three CNNs using the ImageNet database.

ix

Contents

Acknowledgements vii

Abstract ix

1 Introduction 1

2 Theoretical Background 3
2.1 An Overview of Neural Networks . 3

2.1.1 Notation . 3
2.1.2 Convolutional Layer . 4
2.1.3 Gradient-Based Optimization . 5
2.1.4 Challenges in Neural Network Training 7

2.2 First-Order Optimization Algorithms . 7
2.2.1 Stochastic Gradient Descent . 8
2.2.2 AdaGrad . 9
2.2.3 RMSProp . 9
2.2.4 Adam . 10

2.3 Second-Order Optimization . 11
2.3.1 Newton’s Method . 11
2.3.2 Fast exact Multiplication by the Hessian 12
2.3.3 The EH-Newton Algorithm . 12

2.4 Modern Convolutional Neural Networks 14
2.4.1 Inception Architecture . 14
2.4.2 Residual Networks . 15
2.4.3 MobileNet . 16

3 Implementation 17
3.1 Tensorflow . 17

3.1.1 Computational Graph Model . 17
3.1.2 Keras . 18
3.1.3 Tensorflow-Slim . 19

3.2 Integrating the EH-Newton Algorithm into TensorFlow 20
3.3 Computational Setup . 21

3.3.1 Hardware . 21
3.3.2 Software . 22

4 Evaluation 23
4.1 The ImageNet Dataset . 23

xi

Contents

4.2 Limitations . 23
4.2.1 Distribution Awareness . 23
4.2.2 Memory Requirements . 23

4.3 The Training Procedure . 24
4.3.1 Models and Loss Functions . 24
4.3.2 Finding Suitable Hyperparameters 24

4.4 Results . 25
4.4.1 InceptionV3 . 25
4.4.2 ResNet-50 . 27
4.4.3 MobileNetV2 . 30

5 Conclusion and Outlook 33

List of Figures 35

List of Tables 37

Bibliography 39

xii

1 Introduction

Neural Networks are powerful and highly flexible models. Given enough hidden units,
they can approximate any real-valued function [1]. Convolutional Neural Networks
(CNNs) are specialized models, well suited for image recognition and other visual
tasks. CNN models have even achieved superhuman performance on certain recog-
nition tasks [1].

One of the main challenges in deep learning is training such models. The resource
requirements are very large: investing multiple days to train a single network is not
uncommon [1]. Over the last decade, specialized algorithms have been developed to
solve this problem. The most popular methods are first-order optimizers, like SGD,
AdaGrad, RMSProp or Adam, that use only gradient information. But recently, power-
ful second-order optimizers (also using Hessian information) have been presented [2].
They have not displaced first-order algorithms and we suspect an important reason for
this is their increased complexity.

In a recent master’s thesis [3], a comparatively simple second-order method has been
proposed. Here, we clarify the differences between that approach and similar exist-
ing algorithms and call the new method EHNewton. Then we provide a practical im-
plementation of the algorithm in TensorFlow and compare its training performance to
first-order optimizers.

In Chapter 2 , we first give an overview of Neural Networks and the challenges in
training them. Then we present the most commonly used first-order methods before
focusing on second-order optimization and the sample EHNewton method. Finally, we
give a theoretical background on the main building blocks of three modern Convolu-
tional Neural Network architectures.

Chapter 3 presents the TensorFlow (TF) platform and its computational graph model.
Then it presents the two important high-level libraries Keras and TF-Slim, before finally
explaining how we integrated EHNewton into TF.

In Chapter 4 we explain the training setup and the limitations of our EHNewton im-
plementation. Then we train the last layer of InceptionV3, ResNet-50 and MobileNetV2
on an ImageNet dataset. Finally, we compare their performances and conclude the
effectiveness of EHNewton on training deep Convolutional Neural Networks.

1

2 Theoretical Background

This chapter gives an overview of neural networks and the challenges in training them.
Then it presents the optimization algorithms most commonly used to try to overcome
these challenges, along with the new second-order algorithm. These algorithms can
be used to train many kinds of neural networks, we focus on convolutional neural
networks. Three state-of-the art CNN architectures of models trained in this thesis are
shown in the final section of this chapter.

Note : This chapter touches on theory of neural networks and their optimization algo-
rithms. In the Seminar Paper ”Numerical Optimization for Neural Networks”, handed
in internally at TUM in 2019, we already included theory sections on many of these
topics. The paper had sections on neural network training, its challenges and the com-
monly used algorithms SGD, AdaGrad, RMSProp and Adam. Therefore, subsections
2.1.1 , 2.1.3 , 2.1.4 , 2.2.1 , 2.2.2 , 2.2.3 , 2.2.4 and 2.3.1 will inevitably show some similarities
in content and structure to their Seminar-Paper counterparts.

2.1 An Overview of Neural Networks

Neural Networks (NNs) are the ”quintessential deep learning models” [1]. In this sec-
tion we present their structure, introduce the special convolutional layer and give an
overview over the steps and challenges in training neural networks.

2.1.1 Notation

Neural networks, or multilayer-perceptrons, consist of connected layers of processor
units, called neurons [4]. This idea of layers-of-neurons is inspired from neuroscience
[1]. We call a Neural Network deep, if it has (subjectively) ”many layers” [4]. In the
following we adopt the notation of [5] combined with [1]. Neural Networks (for clas-
sification) map an input x to a category y approximating a true mapping y = f∗(x).
A feedforward network defines the parameterized function y = f(x,W). Internally, f
consists of vector functions f (1), f (2), . . . , f (n) with f(x) = f (n)

(
. . .
(
f (2)

(
f (1) (x)

))
. . .
)
,

each corresponding to a layer of the network [1].
Let the superscript (n) denote the currently considered layer. The standard, fully con-

nected, layer consists of M(n) neurons z(n)j , each connected to every vector component
f
(n−1)
i of the previous layer’s output [1]. We can write layer (n) as vector of the neurons

3

2 Theoretical Background

it contains and the output of the j-th neuron of layer (n) as [5]:

f (n) =
(
z
(n)
1 , z

(n)
2 , . . . , z

(n)
M(n)

)>
and z(n)j = φ

M(n−1)∑
i=1

(
w

(n)
ji f

(n−1)
i

)
+ w

(n)
j0

 (2.1)

where the parameters w(n)
ji represent the weights and the constants w(n)

j0 are called biases.
Both are part of the parameter set W .

The function φ denotes the neuron’s activation function. In principle, any differen-
tiable function can be used [5]. Sigmoidal functions like σ (x) = 1

1+exp(−x) or tanh−1 (x)
used to be a popular choice [4 , 5 , 6]. These functions have very small gradients across
most of their domain. The resulting insensitivity to their input makes training them
via gradients difficult [1]. The rectified linear unit (ReLU) y = max {0, x} is an easier to
optimize activation function, since it preserves most linear properties. Its main disad-
vantage, 0-gradient for x < 0, is mitigated by fixing a non-zero slope γ instead. The
resulting leaky ReLU y = max {0, x}+ γmin {0, x} receives gradient everywhere [1].

2.1.2 Convolutional Layer

The convolutional layer is a specialized layer and a building block for the Convolutional
Neural Networks (CNNs). It uses convolution in place of the general matrix multiplica-
tion of fully-connected layers [1].

A typical convolutional layer consists of three stages [1]: In the convolution stage, the
layer runs convolutions over the input, producing linear activations. The detector stage,
runs each linear activation through a nonlinear activation function. Finally, the nonlin-
ear activations are fed into a pooling function. The pooling stage can also be regarded as
its own layer, separate from the convolution [7].

In general, convolution is an operation on two functions I,K, defined by [1]:

S (t) = (I ∗K) (t) =

∫
I (a)K (t− a) da (2.2)

In the context of convolutional networks, the first argument I is called input and the
second function K is the kernel [1]. If I and K are defined only on integer t, the integral
is replaced by a sum in the discrete convolution. Discrete or continuous, we can use
convolutions also over more than one axis t at a time. If we use a 2D image I as input
with a 2D kernel K, we obtain a two-dimensional discrete convolution [1]:

S (i, j) = (I ∗K) (i, j) =
∑
x

∑
y

I (x, y)K (i− x, j − y) (2.3)

Color images additionally have at least a channel for red, blue and green intensity
at each position. Assume that each image is a 3D-tensor and Vi,j,k describes the value
of channel i at row j and column k. Then let our kernel be a 4D-tensor with Ki,j,k,l

denoting the connection strength (weight) between a unit in input channel j and output
channel i at an offset of k rows and l columns between input and output. We may

4

2.1 An Overview of Neural Networks

additionally want to sample only every s positions to save computations. With a stride
s, we obtain the convolution [1]:

Zi,j,k = c (K,V , s)i,j,k =
∑
l,m,n

Vl,(j−1)s+m,(k−1)s+nKi,l,m,n (2.4)

Since the kernel K does not depend on the position j, k, we speak of parameter sharing
[1]. The same structure of neighboring pixels, like an edge, can then be detected any-
where in the image. If we want to extract different features at different locations, we
can use the locally connected layer [1]. It is related to convolution, but its kernel weights
depend additionally on the position j and k. This means the weights are not shared, and
K is replaced by the 6D tensor Ki,j,k,l,m,n in equation 2.4 .

The pooling stage produces a summary statistic about nearby outputs of the previous
stage. This makes the representation invariant to small local translations [1]. A common
example is max pooling that, given a size n× n, outputs the maximum activation out of
each n× n block of the input.

Padding adds additional zero rows and columns around the input. There are two
main types of padding [1]. Same padding adds just enough zeros that the output has
the same dimension as the input. Full padding adds even more zeros - enough to make
every input pixel be visited the same amount of times. Convolution or pooling without
padding is sometimes referred to as valid [1].

2.1.3 Gradient-Based Optimization

In supervised learning, the focus of this work, we are given N inputs xi and N corre-
sponding target outputs yi, the model function f(x,W) and its parameter set W .

Optimization algorithms for training Neural Networks are different from traditional
optimization algorithms. Function minimization is the main goal in pure optimization.
But in machine learning, we care about some (often intractable) performance measure
P . In the hope of improving P , we define a different cost or loss function L (W) to be
minimized instead [1]. Common examples for L include the sum-of-squares function [5]:

L (W) =
1

2

N∑
i=1

‖f (xi,W)− yi‖2 (2.5)

and the cross-entropy (for K classes) between training data and model distribution [5]:

L (W) = −
N∑
i=1

K∑
k=1

yki ln fk (xi,W) (2.6)

where, for the latter loss, the variables yi have a 1-of-K encoding indicating the class.
The cross-entropy loss led to greater performance in models with sigmoid and softmax
outputs, which suffered from slow learning with the squared error loss [1].

5

2 Theoretical Background

The main task of optimization in network training is to minimize the chosen L (W)
by finding the right parameters W . Optimization algorithms used in training are itera-
tive. Starting at a point W0, they generate a sequence of sets {Wk}k∈N until a stopping
criterion has been fulfilled [8]. Since we are interested in minimizing L, we stop when
approximating a local minimum, where the gradient is (close to) zero. All commonly
used algorithms are line search [8] methods. For each step k they first compute a search
direction pk and then decide how far to move along pk. We get Wk+1 = Wk + αkpk,
where α is called the step length [8] or learning rate (lr) [5]. Algorithm 1 shows the itera-
tive structure that the main training algorithms follow.

Algorithm 1 Basic line search procedure for network training

Require: L (W): The chosen loss function with parameters W
Require: W0: Starting point

1: k ← 0
2: while Wk not converged do
3: k ← k + 1
4: pk ← p Compute current step direction. Gradient descent: p = −∇L (Wk−1)
5: αk ← α Compute or use a given step size.
6: Wk ←Wk−1 + αkpk
7: end while

For most algorithms, pk has to be a descent direction [8], i.e. p>k∇L (Wk) < 0. The
gradient descent algorithm employs a simple choice: always move along the steepest
descent pk = −∇L (Wk). While modern algorithms add further enhancements, the
gradient remains the main information they rely upon.

Error Backpropagation

Modern deep learning models often have millions of free parameters, all of which re-
quiring their gradient in every training step. It is thus essential to compute the gradient
efficiently. Fortunately, we can exploit the network’s structure by using backpropagation
[6]. Backpropagation (or BP) uses repeated application of the chain rule to compute the
derivatives. It is a special case of reverse mode automatic differentiation (AD) [9].

In AD (and by extension in BP) there are two phases [9]: In the forward pass, the func-
tion is run over the input and intermediate values and their dependencies are recorded.
The derivatives are then computed in the second pass. Gradient information is prop-
agated in reverse from the outputs to the inputs. This technique is very efficient for
functions f : Rm → Rn with m � n, as the number of passes scales only with n [9].
Since in network training, we optimize a scalar loss value, we only need O (1) passes
through the function. According to [9], the constant c hidden by the O-notation is guar-
anteed to be c < 6 and typically c ∼ [2, 3].

6

2.2 First-Order Optimization Algorithms

2.1.4 Challenges in Neural Network Training

Optimization in general is extremely difficult. In this subsection we describe some of
the most important challenges more specific to training deep neural networks.

In training, we are confronted with a highly non-convex loss function. This is in part
due to structural properties of the model, such as the weight space symmetry [1 , 5]: In any
layer we can swap the incoming weight vector for unit i with the one for unit j and do
the same to the outputs. Form layers with n units each, there are n!m ways to rearrange
the units. For certain units like ReLUs, we can scale the incoming weights and biases
by some factor ε and all outgoing weights by 1

ε . These examples show that for any local
minimum, there is a very large number (possibly uncountably many) of equivalent
local minima. This problem is an active area of research nowadays. In practice, it is
suspected that for large models most local minima have a low loss value. Finding a
global minimum might also not be as important as simply finding a non-optimal point
with low loss [1].

For high-dimensional problems, among the points with zero gradient, saddle points
are more common. While the Hessian is positive definite at a minimum, saddle points
have a Hessian matrix with both positive and negative eigenvalues. For many classes
of random functions f : RN → R, the ratio of saddle points to minima grows expo-
nentially with N [1]. First-order optimization algorithms are designed to move ”down-
hill”, so they can escape most saddle points. But Newton’s method might get stuck as
it solves for any point where the gradient is zero [1].

In recurrent or very deep neural networks the gradient itself might be problematic. If
several small or large weights are multiplied together, the respective partial derivatives
might shrink or grow exponentially. In the former case we speak of vanishing, in the
latter of exploding gradients [2]. In practice vanishing/exploding gradients can cause
feedforward networks to hardly optimize entire layers at all [2]. The optimization al-
gorithm could also lose progress in a step, if a large gradient causes the parameters to
be moved extremely far away [1]. Per-parameter learning rate algorithms and approx-
imate newton methods have a better chance of correcting these problems than pure
gradient descent [2]. Careful initialization methods, like layer-wise pre-training [10], can
help by choosing initial parameters such that issues like vanishing gradients are not an
immediate problem [2].

2.2 First-Order Optimization Algorithms

Consistent with literature, we call algorithms using only gradient information first-order
optimization algorithms. Methods that also use the (approximate) Hessian matrix are
called second-order optimization algorithms [1 , 8].

7

2 Theoretical Background

2.2.1 Stochastic Gradient Descent

In 2.1.3 we introduced gradient descent, which follows the gradient over an entire train-
ing set. This is referred to as batch learning [5] and can get increasingly expensive for
larger training sets. Training can be accelerated by randomly sampling in each step a
small subset of points, called mini-batch, instead of the whole dataset. We call the num-
ber of points in each mini-batch the batch size and algorithms using mini-batches are
referred to as stochastic [1 , 11]. Performing gradient descent using mini-batches and a
given, not computed, learning rate results in stochastic gradient descent (SGD) [12].

There are good reasons beyond computational efficiency to prefer mini-batches over
the entire set in training steps. The most important reason is that per-step computa-
tion time only grows with the batch size, independent of the size of the training set [1].
In practice, the data in our training set will contain some redundancy. In an extreme
example, consider doubling a training set by inserting each sample twice. Then batch
learning will require twice the computational effort, while stochastic methods stay un-
affected [11]. While such an example is highly unlikely in practice, there may be a large
number of examples with similar contributions to the gradient [1]. By only approxi-
mating the gradients, a certain amount of ”noise” is added, which can help stochastic
methods to escape points with zero-gradient [11].

The choice of batch size is influenced by several factors [1] (list was also in the
Seminar-Paper, see 2):

• A larger batch size provides a more accurate estimate, but with sublinear returns.
If we estimate the mean of n examples, the standard error is given by σ√

n
where

σ is the true standard deviation of the sample values [1]. A 100 times larger batch
leads to 100 times more computation, but only a 10 times more accurate gradient.

• Too small batches underutilize parallel capabilities of modern hardware. Below a
minimum size, no speedup in processing each batch is achieved.

• Certain hardware, like GPUs, work best with specific sizes, typically powers of 2.

• The main limiting factor: Memory requirements scale linearly with the batch size.

Choosing a suitable learning rate is much harder. Typically, the rate αk is gradually
decayed from a chosen initial value α0, staying constant after a certain number of iter-
ations [1]. Many different learning rate schedules have been proposed, like the more
complex cyclical learning rate schedule in [13]. Convergence of SGD is guaranteed, if the
learning rate sequence {αk}k∈N fulfills the Robbins-Monro conditions [11]:

∞∑
k=1

αk =∞ and

∞∑
k=1

α2
k <∞ (2.7)

The choice of the learning rate greatly influences training performance: Too low and
the learning will progress slowly or even get stuck at a high loss-value plateau. Too
high and we might oscillate in progress or even diverge entirely [1].

8

2.2 First-Order Optimization Algorithms

The main advantage of SGD is quick initial progress, even in large Datasets. While it
can be improved via momentum [14] or Nesterov momentum [15], it is often outclassed by
the newer adaptive learning rate algorithms. They keep a separate learning rate for each
parameter and adapt these rates throughout training [1].

2.2.2 AdaGrad

Adaptive learning rate algorithms can be seen as approximating the so-called empiri-
cal Fisher matrix [2]. The empirical Fisher itself somewhat approximates second-order
curvature information [2]. In the case of AdaGrad [16], its approximator matrix Gt is the
sum of the outer products of all t past gradients:

Gt =

t∑
i=1

gig
>
i (2.8)

with gi = ∇L (Wi) [16].
The learning rates are scaled inversely proportional to the square root of the sum of

all historical squared values. Note that diag(Gt) =
∑t

i=1 gi ◦ gi is precisely this sum
(with ◦ denoting the Hadamard, or element-wise, product). Adding a small constant
δ ≈ 10−7 to avoid division by zero, this yields the weight update:

Wk+1 = Wk −
αk

δI +
√
diag (Gt)

◦ ∇L (Wk) (2.9)

We can improve efficiency by directly computing the diagonal of Gt. For this, we
accumulate the current sum in rk and add the new squared gradients in each step:
rk+1 = rk +∇L (Wk) ◦ L (Wk) with r0 = 0. The final weight update then becomes:

Wk+1 = Wk −
αk

δ +
√
rk+1

◦ ∇L (Wk) (2.10)

Using the simplified notation from [1], this derivation was a very short summary of the
work in [16].

Since the learning rates are scaled inversely proportional to the sum-of-gradients,
parameters with larger partial derivatives rare decreased the fastest, while parameters
with small derivatives have a slower decrease in learning rate. As a result, AdaGrad can
make greater progress on surface regions with gentler slopes [1]. Originally developed
for convex optimization, it performs well for some but not all types of deep networks.
Accumulating all gradients can cause the learning rate to decrease too quickly [1].

2.2.3 RMSProp

RMSProp [17] improves on AdaGrad by changing the gradient accumulation into an
exponentially weighted moving average [1]. The use of the moving average introduces

9

2 Theoretical Background

a decay rate ρ that controls how many gradients are considered in each update. The
RMSProp update step works exactly like AdaGrad, except for the accumulator rk:

rk+1 = ρrk + (1− ρ)∇L (Wk) ◦ L (Wk) (2.11)

AdaGrad converges quickly when applied to a convex function. For a non-convex
function training a neural network, we may pass many different structures and finally
arrive at a locally convex region [1]. Old historical entries may have caused AdaGrad to
shrink the learning rate too much before reaching at a convex region. Thanks to the de-
caying average, RMSProp discards old information, avoiding such slowdowns. Inside
a convex structure, it converges just like an instance of AdaGrad initialized within the
structure [1]. RMSProp is considered ”one of the go-to methods” [1] used for training,
due to its effectiveness at optimizing deep neural networks.

2.2.4 Adam

Of the three presented adaptive learning rate algorithms, Adam [18] (short for adaptive
moment estimation) is the most sophisticated. In addition to rk, it employs an exponen-
tial moving average sk of the gradients (not squared). Both have their own decay rate:
β1 for sk and β2 for rk. In [18], sk is considered an estimate of the 1st moment (mean) and
rk an estimate of the 2nd raw moment (”uncentered variance”) of the gradient. Their
initialization as vectors of 0’s lead to moment estimates ”biased towards zero” [18].
Adam corrects these biases with the estimates ŝk = sk/

(
1− βk1

)
and r̂k = rk/

(
1− βk2

)
.

All pieces put together, this results in the following procedure [1 , 18]:

Algorithm 2 Adam

Require: α0: Initial learning rate (and a schedule to compute αk)
Require: β1, β2 ∈ [0, 1): Exponential decay rates
Require: L (W): Loss function with parameters W
Require: W0: Starting point

1: s0, r0 ← 0 (Initialize moment estimates)
2: k ← 0
3: while Wk not converged do
4: k ← k + 1
5: αk ← α (Compute or use given learning rate)
6: gk ← ∇L (wk−1) (Gradient at current step)
7: sk ← β1sk−1 + (1− β1) gk (Biased 1st moment)
8: ŝk ← sk

(1−βk
1)

(Correct bias in 1st moment)

9: rk ← β2rk−1 + (1− β2) (gk ◦ gk) (Biased 2nd moment)
10: r̂k ← rk

(1−βk
2)

(Correct bias in 2nd moment)

11: Wk ←Wk−1 − αk ŝk
(δ+
√
r̂k)

(Update the weights)

12: end while

10

2.3 Second-Order Optimization

Compared to Adam, RMSProp lacks the bias-correction term for the accumulated
gradient moments. In case of β2 (ρ for RMSProp) close to 1, this leads to large stepsizes
and possibly even divergence [18]. Adam is considered robust to the choice of hyper-
parameters [1] and it is invariant to gradient rescaling [18]. In general, Adam combines
advantages from RMSProp and AdaGrad. In many scenarios, Adam performs at least
as well as RMSProp. For sparse gradients, Adam matches AdaGrad, both outperform-
ing RMSProp [18].

2.3 Second-Order Optimization

Challenges in network learning can be seen as a special case of problems arising in
general non-linear optimization. For example, parameters are often tightly coupled
and have strong local dependencies. Different directions in parameter space might
have large variations in scale. Gradient descent is very sensitive to these issues and
must drastically lower its learning rate to avoid instability in these situations [2].

Second-order optimization methods are better equipped to solve the problem of scale
and curvature variations along different directions. They rescale the gradient along
the different ”eigen-directions” of the curvature matrix B according to their associated
eigenvalue (curvature) [2].

2.3.1 Newton’s Method

The classic second-order method is the Newton-Raphson, or simply Newton’s method,
with all second-order methods deriving from it [2].

Around the current point Wk, we approximate the function L (Wk + δ) by a local
quadratic model using the curvature matrix B [2]:

L (Wk + δ) ≈ 1

2
δ>Bkδ +∇L (Wk)

> δ + L (Wk) (2.12)

For the standard Newton’s method, Bk is given by the Hessian H and the quadratic
model becomes a second-order Taylor series expansion ignoring higher derivatives [8].
During the update step we have to solve the linear systemBkδ = −∇L (Wk), called the
Newton equation. This yields the newton step:

Wk+1 = Wk −B−1k ∇L (Wk) (2.13)

If we are in a neighborhood of the solution W ∗ and the Hessian is positive semidefinite,
then Newton’s method converges quadratically towards W ∗ [8].

Unmodified Newton’s method might run into problems when used for training neu-
ral networks, due to the highly non-convex loss function. In non-convex regions, the
Hessian is indefinite, causing Newton’s method to move in the wrong direction [2]. A
way to counteract this issue is to apply damping techniques. Arguably the simplest is
called Tikhonov regularization [19] and adds, for some positive τ , a multiple of the iden-
tity matrix τI to H , obtaining B = (τI +H) which is again positive definite [8 , 2]. If H

11

2 Theoretical Background

has negative eigenvalues close to zero, Tikhonov regularization works fairly well. But
for extreme negative curvature, τ would have to be very large, andB dominated by the
τI term. Then, Newton’s method converges to SGD, with (1/τ) times the stepsize [1].

Beyond structural problems, the main disadvantage of Newton’s method is its com-
putational cost. In a deep network with ‖W ‖ > 107 parameters, simply computing or
storing the Hessian with ‖W ‖2 entries is impractical. Newton’s Method additionally
requires inverting the Hessian, in time O

(
‖W ‖3

)
, in every iteration [1].

2.3.2 Fast exact Multiplication by the Hessian

While the computation of the Hessian remains expensive, we can gain ”cheap” access to
its curvature information. Specifically, [20] proposed a method to compute the Hessian
vector product Hv for any v in just two (instead of ‖W ‖) backpropagations.

In [20], the new differential operatorR{·} is introduced. It is defined as:

Rv {f (W)} = ∂

∂r
f (W + rv)

∣∣∣∣
r=0

(2.14)

Then simply Hv = Rv {∇L (W)}. We can compute this in just two backprops. Specifi-
cally, for a twice continuously differentiable function f , we obtain:

Hv = Rv {∇L (W)} =
(
∂

∂r
∇WL (W + rv)

)∣∣∣∣
r=0

= ∇W

(
∇L (W)> v

)
(2.15)

The proof of the third equality is omitted here, but is included in [3]. The resulting
formula is both efficient and numerically stable [20].

2.3.3 The EH-Newton Algorithm

Many approximate second-order algorithms have been developed that try to gain ad-
vantages of Newton’s method without the computational burden. The most prominent
include nonlinear Conjugate Gradients and quasi-Newton methods like (L-)BFGS [8],
and more recently the Hessian-Free and K-FAC algorithms [2]. In practice none of them
have displaced first-order methods as the main algorithm choice. Seeing how especially
the latter K-FAC method works much faster than plain gradient descent [2], we suspect
that often first-order algorithms are chosen mainly for their ease of implementation.
Therefore, we will focus here on a comparatively simple approach.

The main computational bottleneck of Newton’s method is solving the system of
linear equations Bkδ = −∇L (Wk). Instead of solving exactly, we can approximate the
solution using the (linear) Conjugate Gradients method (CG). This approach has already
been proposed in [21] and is known as Truncated Newton. Originally, it computed the
Hessian-vector product via numerical approximation. In [3] the use of the fast exact
product (see 2.3.2) is added. To emphasise the use of this product, we call the resulting
algorithm Efficient-Hessian Newton, or EH-Newton.

12

2.3 Second-Order Optimization

In short, CG solves Ax = b by producing a set of directions {p0, p1, . . . , pn} conjugate
w.r.t. the matrix A. That is, ∀i 6= j : p>i Apj = 0. For a detailed derivation of the updates,
see [8]. The final CG method is shown in algorithm 3 . Note, that it only requires Matrix
vector products, and never needs A itself. Since we solve the newton equation, A = H
and by the previous section, we can compute the Hessian-vector products efficiently.

Algorithm 3 Conjugate Gradients

Require: A, b: We want to solve Ax = b for x.
Require: x0: Initial estimate for x.

1: r0 ← Ax0 − b, p0 ← −r0, k ← 0
2: while rk too large do

3: αk ←
r>k rk

p−k>Apk
Compute step size

4: xk+1 ← αkpk Apply step
5: rk+1 ← rk + αkApk Compute new residual

6: βk+1 ←
r>k+1rk+1

r>k rk
Factor, such that pk−1 and pk are conjugate w.r.t. A

7: pk+1 ← −rk+1 + βk+1pk Compute new step direction
8: k ← k + 1
9: end while

One last precaution is needed. If the gradient vector points in a direction with nega-
tive curvature, or simply due to numerical ill-conditioning, the CG-generated solution
pk may not be feasible [21 , 3]. Therefore, we check ∇L (Wk)

> pk against a small posi-
tive threshold. If larger, feasibility is not guaranteed and we simply revert to using the
steepest descent direction [3].

Algorithm 4 shows the resulting procedure. Inside the CG()-subroutine, the product
(H + τI) v should be computed as Hv + τv using the efficient Hessian-vector product.

Algorithm 4 (Truncated) EH-Newton

Require: L (W): The chosen loss function with parameters W
Require: W0: Starting point
Require: τ : Tikhonov regularization/damping factor

1: k ← 0
2: while Wk not converged do
3: k ← k + 1
4: pk ← CG((H + τI) ,−∇L (Wk)) Approx solution to (H + τI) pk = −∇L (Wk)

5: if∇L (Wk)
> pk > τ then pk ← −∇L (Wk) Feasibility check.

6: αk ← α Compute or use a given step size.
7: Wk ←Wk−1 + αkpk
8: end while

13

2 Theoretical Background

2.4 Modern Convolutional Neural Networks

Convolutional Networks have long played an important role in deep learning. In some
ways, they even ”carried the torch for the rest of deep learning” [1]. They were some
of the first models to perform well and have been used in commercial applications for
decades. For example, by the end of the 1990s, a system based on CNNs developed at
AT&T [22] was used to read over 10% of all checks in the US [1].

More recently, deep convolutional networks have risen to prominence, after they
have been used in 2012 to win the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) [23]. Since then many architectures have been designed to improve perfor-
mance even further, or to increase computational efficiency while maintaining reason-
able accuracy. In the following, we present the main ideas behind three of the most
prominent modern architectures.

2.4.1 Inception Architecture

The Inception [7 , 24 , 25] architecture underlies a series of models. The first, 22-layer
deep GoogLeNet, won at the ILSVRC in 2014 [7].

The main idea of the Inception architecture, is the Inception module. The final network
mainly consists of several stacked inception modules. Each module takes as input a
3-D tensor (height × width × channels) and produces as output another 3-D tensor.
Internally, the input is fed into four alternative parallel paths [7]: a path for 1 × 1 con-
volutions, one for 3× 3 convolutions, a path for 5× 5 convolutions1

 and one path with
pooling. Here, we refer to convolutions with a n × n × c kernel (with c channels) as
n×n convolution. All convolutions in the Inception architecture are followed by ReLU
activations [7]. Each path produces a 3-D tensor of the same height and width, varying
just the number of channels. The output of all paths is then concatenated, forming the
module’s output.

Assuming each unit of the earlier layer (now input) corresponds to some region in
the image, then correlated units concentrate in local regions [7]. They can be covered
by the layer of 1 × 1 convolutions in the next module. Clusters that are more spatially
spread out are covered by the larger 3 × 3 and 5 × 5 convolution layers of the next
module. The larger convolutions, especially the 5 × 5, are computationally expensive.
To reduce their costs, a 1× 1 convolution with fewer channels is added before all 3× 3
and 5 × 5 convolutions. This is called dimensionality reduction [7]. Figure 2.1 shows the
final Inception module with its 4 paths and dimension reduction (yellow) applied to
the larger convolutions.

In addition to a main final layer of logits, Inception networks have auxiliary classifiers
[7]. These extra layers are built on top of earlier layers in the model. Originally thought
to help with gradient propagation, they were found to have a regularizing effect [24].
Inception-v3 and onwards also batch-normalize [26] the auxiliary classifier.

1Later versions replaced 5× 5 convolutions by two layers of 3× 3 convolution [24].

14

2.4 Modern Convolutional Neural Networks

Figure 2.1: Inception module with dimensionality reduction
From Figure 2(b) in [7]. © 2015 IEEE

This architecture brings certain advantages [7]: It allows for building stages with
many more units without blowing up the computational complexity. The parallel struc-
tures within the modules align with the intuitive idea of processing visual information
at various scales. The aggregation of outputs enables the next module to abstract fea-
tures from all scales simultaneously.

2.4.2 Residual Networks

A deep residual learning framework is introduced in [27]. As in the paper, let H (x)
denote the desired underlying mapping to be learned by the model. The main idea
of residual learning is to learn F (x) := H (x) − x instead. The original mapping is
then equal to F (x) + x, which is supposed to be easier to learn optimize than the
original mappingH. The new formulationF (x)+x can be realized by adding ”shortcut
connections” [27]. The modified layer then takes as input not just the previous layer,
but also the output from two or more layers behind. Figure 2.2 shows this modification.
The shortcut identity introduces no new parameters to be optimized.

Figure 2.2: Residual learning: a building block.
From Figure 2 in [27]. © 2016 IEEE

15

2 Theoretical Background

This block forms the basis of Residual Networks (ResNet). Deeper blocks (skipping
three layers) are also used in the deepest ResNet models. As is shown in Figure 2.2 ,
ReLU units serve as layer nonlinearities. The weight layers are mostly 3 × 3 convolu-
tions with the number of channels growing inversely proportional to the output size,
to keep the same time complexity in each layer [27]. Batch-norm is applied right after
each convolution. Output size is halved several times in the network, by using stride 2
convolutions. Whenever this happens (and the number of channels doubles), the iden-
tity shortcut can either be padded with zeros, or be replaced by a 1 × 1 convolution
(introducing extra parameters) [27].

This reformulation seems to ”provide reasonable preconditioning” [27] when learn-
ing the underlying mapping. The new shortcut connections counteract the phenomenon
of degradation, where deeper models surpassing a certain depth have again larger train-
ing and test errors. This allows much deeper networks to be trained effectively, like
the 101-layer ResNet, or even a 152 layer variant. An ensemble of the latter won at the
ILSVRC 2015 with a top-5 error of only 3.57% [27].

2.4.3 MobileNet

MobileNets [28 , 29 , 30] are a group of models tailored for mobile and low-resources
environments.

The core of MobileNets are depthwise separable convolution layers [28]. They separate
standard convolution into a depthwise and a pointwise layer. The depthwise layer
applies one filter each per input channel. To combine the channels into new features,
a 1 × 1 (or pointwise) convolution is used. While reducing accuracy slightly, it is ex-
tremely efficient. For example, a 3×3 depthwise separable convolution uses 8 to 9 times
less computation than a standard convolution [28]. Batchnorm and ReLU activations
are used after both layers.

Version 2 introduced the inverted residual with linear bottleneck module [29]. It starts
with a 1 × 1 convolution, expanding the number of channels by a factor greater than
1. According to [29], this is in contrast to residual blocks, where the factor is smaller
than 1. This is followed by a depth-wise 3× 3 convolution (possibly strided). A second
1 × 1 convolution is then used to project the output into a dimension with less-than-
expanded channels. This second convolution has a linear activation, as it was found
to increase performance [29]. If and only if input of the first 1 × 1 conv. and output
of the second 1 × 1 conv. have the same number of channels, a residual connection
(”shortcut”) is added between input and output [30].

MobilenetV3 is mainly a new combination of these layers as building blocks. It was
tuned automatically by hardware-aware network architecture search (NAS) in combination
with the NetAdapt algorithm [30].

All MobileNets also include two hyperparameters to trade-off accuracy and perfor-
mance [28]: the width-multiplier α and the resolution-multiplier ρ. The number of input
and output channels of each layer is simply multiplied by α. The input image (and thus
implicitly every subsequent layer) is scaled by ρ.

16

3 Implementation

This chapter describes in detail how the second-order algorithm was integrated with
the TensorFlow [31] library. Additionally, we list the computational setup used in the
following chapter to compare the algorithms’ training performance.

Specifically, we implemented a new tf.Optimizer executing a step of the algo-
rithm in its update step. Using this integrated optimizer we can leverage the higher-
level APIs provided by TensorFlow, such as Keras and TensorFlow Slim. These APIs
(described later) simplify the declaration and training of large-scale deep neural net-
works. In particular, we use TF Slim to declare and train our convolutional networks.

3.1 Tensorflow

In the 2015 white paper, TensorFlow is introduced as both an ”interface for express-
ing machine learning algorithms” as well as the ”implementation for executing such
algorithms” [31].

The TensorFlow programming model consists of two main steps1
 :

• Define computations in form of a ”stateful dataflow graph” [31].

• Execute this graph, which now remains fixed, with possibly different inputs.

The define-and-run [9] approach enables optimizations of the graph structure, at the
expense of limited control flow and being more difficult to debug.

3.1.1 Computational Graph Model

The dataflow graph mentioned above consists of nodes and edges. Nodes represent oper-
ations (ops), such as matrix multiplication, while edges indicate dependencies between
nodes [31]. The input of an operation is represented by zero or more incoming edges
into its graph node. Zero or more outgoing edges provide the outputs. Along these
edges, values flow in form of tensors, arrays of arbitrary dimension. The shape and
underlying element type of a tensor can be specified explicitly or inferred while con-
structing the graph [31]. Figure 3.1 shows a small working example. Note that lines 3
to 8 don’t compute any result — they merely add op nodes to the graph.

1Later TensorFlow versions (1.7 onwards) additionally include eager execution capabilities. In this mode,
the native Python interpreter is used to immediately evaluate operations, without first building a
graph. However, due to a possible performance overhead without functional benefits, we do not make
use of this functionality in this thesis.

17

3 Implementation

1 import tensorflow as tf
2

3 A = tf.constant([[1., 2.],
4 [4., 5.]], name="A")
5 b = tf.ones([2, 1], name="b")
6 x = tf.constant([[10.], [10.]], name="x")
7 o = tf.add(tf.matmul(A, x, name="Ax"), b,
8 name="result")
9 with tf.Session() as sess:

10 res = sess.run(o) # executes the graph
11 print(res) # res is a python value

Figure 3.1: Exemplary TensorFlow code and corresponding computational graph

After a graph is created, it can be executed within a Session. Upon executing its
run() method, TensorFlow computes the transitive closure of nodes needed to pro-
duce the requested output, and arranges their order respecting dependencies [31]. This
op rescheduling aims to minimize the time during which intermediate results are kept
in memory. As a result, peak memory consumption can be reduced – important for
GPUs with limited memory or highly contended network connections [31].

Most regular tensors are only stored during one execution of the graph. A Variable is a
mutable tensor that stores state across executions of the graph [31]. Stateful operations,
such as assign or assign add can change the value of the variable. Handles to the
mutable tensor can also be passed to regular tensor operations.

Machine learning models typically store their parameters in variables [31], each roughly
corresponding to a layer of the model. An Optimizer can be used to compute variable
updates during training. This happens in two steps: compute gradients() com-
putes the gradients of the loss w.r.t. the trained variables and apply gradients()
applies one step of the optimization algorithm using the computed gradients.

Building the graph out of simple ops, like additions or multiplications, is possible but
error-prone and not always intuitive. To train the model on a dataset, the built graph
is usually executed over many Session.run calls, forming the training-loop. Both
of these steps are handled automatically by higher-level abstractions also included in
TensorFlow. Two such APIs are Keras [32] and (in TensorFlow 1) TF-Slim [33].

3.1.2 Keras

Keras is a high-level deep learning API, running on top of TensorFlow2
 . It is pack-

aged with TensorFlow as the module tf.keras. Keras aims to simplify declaring and
training ML models. The core abstractions of Keras are layers and models [32].

A layer consists of a tensor-in tensor-out [32] computation function and state, stored

2Multi-backend Keras is superseded by tf.keras according to the README on the Keras github page.
(https://github.com/keras-team/keras , accessed on 17-Jun-2020)

18

https://github.com/keras-team/keras

3.1 Tensorflow

in TensorFlow variables. A wide variety of layers come built-in with Keras, including
core layers (e.g. the dense fully-connected), activation layers (such as ReLU), convo-
lution layers, pooling layers and even recurrent layers or regularization and normal-
ization layers [32]. Custom layers can be defined by subclassing the base Layer class.
The internal state is composed of the two TF variable lists trainable weights and
non trainable weights, the former being included in backprop. Every layer is a
callable and the logic of applying the layer to the input tensors is performed in call()
[32].

Models are objects representing groups of layers with added training and inference
features [32]. They consist of one or more inputs and one or more outputs connected
by the model’s layers. Like layers, models are callables and the logic of applying the
layers to the inputs is performed in call(). These calls can be chained together like
layers or even nested (model consisting of multiple models) [32].

Apart from subclassing the base Model class, the main ways to instantiate models
are Sequential and the Functional API [32]. A Sequential model represent a list of lay-
ers where each layer has exactly one input and one output tensor. While convenient,
Sequential models have certain limitations, most importantly non-linear network topol-
ogy (e.g. a residual connection) is not supported [32].

The functional API is a more flexible way to create models: as graphs of layers. Layers
represent nodes and their call methods add an edge to the graph [32]. For example,
if a and b are layers then calling out=a(b) corresponds to a graph with nodes {a,b}
and an edge from a to b. The same graph of layers can be used to define multiple
models and each model can have multiple inputs and/or outputs [32].

As mentioned above, model training is simplified in Keras. Given a declared model,
it consists of two method calls: model.compile and model.fit [32]. Within compile,
the loss function is specified, as well as the optimizer. The fit method trains the model,
using its declared loss and optimizer, for a fixed number of epochs.

3.1.3 Tensorflow-Slim

TF-Slim is a high-level library on top of TensorFlow. In many ways similar to Keras, it
is – as the name suggests – more lightweight. Slim also introduces the layer abstraction,
new variables and argument scoping. Additionally, Slim includes common regularizers,
losses, metrics and many widely used convolutional neural network models [33]. Most
functions in TF-Slim are thin wrappers around groups of TensorFlow operations and
aim to reduce code clutter and speed up model development.

TF-Slim layers, like their Keras counterpart, are higher-level concepts that consist of
several TensorFlow operations and can store parameters in variables [33]. They are also
callable and can be called with tensors or other Slim layers as inputs. While less exten-
sive than Keras, TF-Slim provides several built-in layers, including convolutional, fully
connected, dropout and batch norm [33]. Via a single repeat or stack method call, a
sequence of multiple layers can be declared. It is more limited than Keras’ Sequential
Model, however, as the Slim methods can only sequence a single layer type.

19

3 Implementation

Variables in Slim are thin wrappers around TensorFlow variables, declaring shape,
the initializer, regularization and device placement in one method call [33]. Slim divides
its variables in two categories: model variables and regular variables. Model variables
represent parameters of a machine learning model. They are updated during learning
and possibly loaded from a checkpoint during inference. Layers define model vars and
plain TF vars can be added to the model var collection. All other variables are called
regular variables and not stored into or loaded from checkpoints [33].

The argument scoping mechanism adds unique functionality to Slim. The scope is
declared with a set of operations and a set of arguments. Within the scope, each op
contained in the scope’s op-set will receive the additional arguments from the scope’s
arg-set [33].

TF-Slim provides functionality for training and evaluating models. A single call to
slim.learning.train starts a training loop that updates the model, logs model
statistics such as the loss, and periodically saves the model in a checkpoint [33]. The
stored model can be completely or partially restored from the checkpoint using one of
several slim.get variables * helper methods. Training models can be evaluated
in parallel along defined metrics using slim.evaluation.evaluation loop [33].

The separately offered TensorFlow-Slim image classification model library builds on top
of the core TF-Slim library [34]. It includes several CNNs like Inception, ResNet or Mo-
bileNet built with Slim layers. Finally, it also provides two python scripts for training
and inference. These scripts handle model instantiation, model deployment, handling
datasets (like Imagenet) and running the training or inference automatically. They can
be configured via flags to use the desired models, optimizers, datasets and hyperpa-
rameters.

This second library was the main reason why TF-Slim was chosen over Keras for
our thesis. The train image classifier.py and eval image classifier.py
scripts were modified to use the local copy of tf slim instead of tf.contrib.slim
(and to include our new optimizer next to the built-in TF optimizers). We also had
to change optimizer device() in deployment/model deploy.py, a helper file
used by the training script. The function now places the optimizer on a GPU, which
is necessary for our EHNewton optimizer to execute ops on the GPU (see section 3.2).
Regular TF optimizers are not affected by this new placement.

3.2 Integrating the EH-Newton Algorithm into TensorFlow

At the heart of model training in TensorFlow lies the Optimizer. In TF 1 there are
two sets of optimizers.One set is packaged in tf.train and the other set comes with
Keras, exported as tf.keras.optimizers. Both sets have a base optimizer class (in
tf.train.Optimizer or in tf.python.keras.optimizer v2.Optimizer v2)
that is subclassed by different optimizer algorithms (like Adam or SGD).

The base class handles the two main steps of optimization: compute gradients()
and apply gradients(). When applying the gradients, for each Variable that is

20

3.3 Computational Setup

optimized, the method resource compute dense(grad, var)3
 is called with the

variable and its (earlier computed) gradient. In this method the algorithm update step
for this variable is computed. It has to be overridden by any subclassing optimizer.

For this thesis, we implemented two versions of our optimizer: one inheriting from
the Optimizer in tf.train and one inheriting from the Keras Optimizer v2. Because
they are functionally equivalent, we will focus here on the tf.train.Optimizer
subclass EHNewtonOptimizer. Both versions loosely build on the implementation of
Julian Suk in his Master’s thesis [3].

Like with any other TF optimizer, the user has to instantiate an object before using
EHNewton. The constructor accepts the learning rate as well as the EHNewton hyperpa-
rameters: the regularization factor τ , the CG-convergence-tolerance and the max. number
of CG-iterations (see 2.3.3). Internally, the parameters are converted to tensors and stored
as python object attributes.

The main logic happens in the above mentioned resource compute dense(grad, var)
method. It works in three steps:

• Compute unscaled step: step = self. newton step(grad, var.handle)

• Scale the step: scaled = math ops.multiply(step, self. lr t)

• Assign: return state ops.assign add(var, scaled, ...)

The newton step() method first computes an approximate CG-solution x to

(H + τI)x = −∇varf (3.1)

where H is the Hessian of f w.r.t. var, by calling cg solve(). Then, as suggested in
[3], it compares (∇varf)>x to the threshold −τ . If (∇varf)>x is larger, then feasibility
is not guaranteed and we take a simple gradient descent step instead. To explain the
loop body of cg solve(), we refer to figure 3.2 . It shows the code snippet and each
equivalent line in pseudocode. The callable Ax() is passed to cg solve from within
newton step. It computes the left-hand side of equation (3.1). That loop body is executed
at most maximum iterations times inside a tf.python.ops.while v2.while loop.
It is the only control-flow op in TF that supports the necessary second-order derivatives.

3.3 Computational Setup

3.3.1 Hardware

For most of the code development and test runs we used a computer provided by the
Chair of Scientific Computing at TUM. The machine had 16 GB of RAM and a four-core

3To optimize sparse variables, the method resource compute sparse() needs to be implemented.
There is no algorithmic difference between the dense and the sparse case, but working with sparse
variables requires significant implementational effort. Therefore we only consider dense variables in
our thesis.

21

3 Implementation

1 # one CG iteration to approximate Ax=b
2 rtr = self._vv(r, r) # r is the residual
3 axp = Ax(p) # Ax(p) computes A*p
4 alpha = math_ops.divide(rtr, self._vv(p, axp))
5 x = math_ops.add(x, math_ops.multiply(p, alpha))
6 r = math_ops.subtract(r, math_ops.multiply(axp, alpha))
7 rtr_new = self._vv(r, r)
8 beta = math_ops.divide(rtr_new, rtr)
9 p = math_ops.add(r_ret, math_ops.multiply(p, beta))

10 return x, r, p # the new values of x, r and p

Lines 2 to 4:
βold ← r>r
α← (r>r)/(p>Ap)
Line 5: x← x+ αp
Line 6: r ← r − αAp
Lines 7 to 9:
p← r + p r

>r
βold

Figure 3.2: The while-loop body of cg solve() and the corresponding pseudocode.

TensorFlow

Keras

TF-Slim

train

train-image-classifier

Optimizer

EHNewtonOptimizer

lr t: Tensor
tau t: Tensor
cg tol t: Tensor
max iter t: Tensor

...

vv(a, b): Tensor
pearlmutter hessian(grad, var, s): Tensor
cg solve(Ax, b, x init): Tensor
newton step(grad, var): Tensor
resource compute dense(grad, var): Tensor

...

Figure 3.3: UML diagram of the main software components and their relations. All
shown attributes and methods are protected.

(8 hyper-threaded) Intel Core i7 3770K processor. It had one NVIDIA Titan XP (12GB
VRAM) and one Quadro P4000 GPU (8GB VRAM). The Titan GPU was used to train
the models, while evaluation could run in parallel on the P4000.

Additionally, near the end of this thesis, we had a few hours of access to a virtual
server provided by the Leibniz Supercomputing Centre. The server provided a 16 core
Intel Xeon CPU, 240 GB of RAM and a dedicated NVIDIA P100 GPU (16GB VRAM).

3.3.2 Software

The OS on both the computer and the virtual server was Linux Ubuntu. Python 3.7
with TensorFlow version 1.15 (and TF-SLim v. 1.1.0) was used. Figure 3.3 shows
a UML diagram with the relations of the main classes and packages in our project.
The train-image-classifier class refers to the modified train image classifier.py script. This
diagram is only an overview, as only the most relevant classes and relations are shown.

22

4 Evaluation

In this section we compare the performance of the presented EH-Newton algorithm to
the state-of-the-art first order optimizers. For this, we train one instance each of the
three model architectures from section 2.4 : InceptionV3, ResNet-50 and MobileNetV2.

4.1 The ImageNet Dataset

For training, we use the ImageNet Large Scale Visual Recognition Challenge dataset
[35]. It contains almost 1.3 million images split into 1000 object classes. These classes
have been selected out of the set of all ImageNet categories, such that their synsets
(synonym sets) don’t overlap [35]. The categories are diverse (animals, objects, places,
...) but also fine-grained (e.g. different dog breeds).

The data is split into a training and a validation set. We train the models on the training
set with about 1.28 million images (732 to 1300 per class). Evaluation happens on the
validation set of 50000 images (50 per class).

4.2 Limitations

In this section we describe the two main limitations of our implementation, and how
they affect our evaluation setup.

4.2.1 Distribution Awareness

Unlike other tf.Optimizer classes, the EHNewtonOptimizer does not support the
tf.distribute API. That API is responsible for coordinating data-parallel compu-
tations on multiple devices. As a result, our Optimizer cannot be used to train syn-
chronously on multiple devices (like GPUs). Additionally, our Optimizer has to be
explicitly placed on the device that should run its computations. This can be achieved
by wrapping the instantiation of the object inside a tf.device scope, e.g.:

1 with tf.device('/GPU:0'):
2 e = EHNewtonOptimizer(...)

4.2.2 Memory Requirements

The main limiting factor of our implementation is its graph memory requirement. Be-
fore being executed, the optimization procedure has to be compiled into a TensorFlow

23

4 Evaluation

graph first (see 3.1). Like every other tf.Optimizer, we have to compile the opti-
mization procedure separately for every trained variable in the model graph. Unlike
other optimizers, we have to compute (second-order) gradients inside our procedure.
To compute these gradients, TensorFlow has to copy graph-information to each pro-
cedure. The amount of graph information required scales linearly with the variable
depth: output variables don’t require additional information, input variables need the
entire model graph. This is a technical, not an algorithmic, limitation. Copying the
graph structure is not necessary in principle, since all gradients are taken over the same
model.

As a consequence, our Optimizer has quadratic memory requirements. Performance
is severely impacted if we try to train an entire deep model. For this reason, we re-
strict ourselves to training the last layer of the convolutional models. Fortunately, this
already gives insights into the behaviour and performance of the EHNewton algorithm.

4.3 The Training Procedure

4.3.1 Models and Loss Functions

As mentioned in 3.1.3 , we use the modified train and eval scripts provided by the
TF-Slim image classification model library (Slim-CML) to execute the runs. Both run
in parallel, with training using the primary Titan XP GPU. For all three models, the
Slim-CML implementations are used.

Each model has as output a vector f of K = 10011
 logits. They are fed into the

softmax activation function σ (f)i =
efi∑K

j=1 e
fj

. The softmax outputs serve as inputs to
the cross-entropy loss (see 2.1.3).

Additionally, each model will define regularization losses. Regularization losses work
on just the model parameters, for example by penalizing very large weights or by en-
couraging weight sparsity [1]. These measures intend to improve the generalization ca-
pabilities of a model (but not necessarily improve its train error). While it is an active
topic of research, covering its theory is outside the scope of this thesis. For an overview,
we refer to Chapter 7 Regularization for Deep Learning in [1].

The sum of cross-entropy loss and the regularization losses forms the total loss, which
is then minimized by our optimizers.

4.3.2 Finding Suitable Hyperparameters

For the four first-order algorithms Adam, RMSProp, AdaGrad and SGD we stick mostly
to default hyperparameter values, consistent with literature [1] and practice [34]. The
following values have been used to train all three models:

• Adam: β1 = 0.9 and β2 = 0.999 and ε = 10−7 (for stability)

• RMSProp: ρ = 0.9 and ε = 10−7 (for stability)

1The ResNet-50 implementation only supports 1000 classes – dropping the 1001th, empty, class [34].

24

4.4 Results

Optimizer Start LR Decay Rate Decay Every Epochs
EHNewton 0.001 0.94 0.05

Adam 0.0001 0.94 0.05

RMSProp 0.0001 0.94 0.05

AdaGrad 0.001 0.94 0.05

SGD 0.0001 0.94 0.1

Table 4.1: Learning Rates and Decay Schedules for Training InceptionV3

• SGD: Plain SGD was not able to make meaningful progress. Adding momentum
[14] of 0.9 greatly improved its performance.

To find a good learning rate, we use a rather simple heuristic. First, we sweep over
the set

{
10−i : i ∈ [7]

}
. For the i offering the greatest progress (lowest loss) after 300

steps, we also try increasing values from
{
n ∗ 10−i : n ∈ [9]

}
until one does not offer

further improvement. The chosen learning rate is decayed exponentially. Decay rate
and -speed vary between models and algorithms.

4.4 Results

4.4.1 InceptionV3

We train the last layer of InceptionV3. For this, we intialize all layers, except the last,
from a pre-trained checkpoint linked to by Slim-CML (achieving top-1 accuracy of
78.0% and top-5 recall of 93.9%).

Inception networks (see 2.4.1) also include auxiliary (aux) logits. For training, we
consider both the logit and aux logit layers. Their losses are added with weight 1.0
for the main logits and 0.4 for the aux logits. The Slim-CML implementation of In-
ceptionV3 includes L2-regularization (of weight λ = 0.00004) on all convolutional and
fully-connected layers. L2 loss over a weight set W is defined by λ

∑
w∈W w2. Batch-

norm (decay 0.9997, ε = 0.001) is applied after all convolutional layers.
For EHNewton, we find that a maximum of 20 CG-iterations and a convergence toler-

ance of 10−5 proved accurate. Further decreasing the tolerance or increasing the num-
ber of iterations slows down training without benefiting convergence. A fairly large
Tikhonov regularization of τ = 0.01 improves convergence and stability.

Batch size for training is 64, the largest possible multiple-of-8 batch size that fits on
the Titan XP GPU. We train for 20100 steps, one full epoch2

 of the ILSVRC set. Table
4.1 shows the used learning rate schedules for each algorithm. Since an epoch is almost
exactly 20019 steps (of size 64), decaying every 0.05 epochs translates to 1000 steps.

Consistent with literature [2], the second-order algorithm supported a larger learning-
rate, as it scales its steps using more accurate curvature information. Also to note, Ada-
Grad needs a 10× larger LR than RMSProp to counteract its excessive early slowdown.

2We save checkpoints every 300 steps. 20100 is the smallest multiple of 300 after one full epoch.

25

4 Evaluation

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

To
p-

1
Ac

cu
ra

cy

EHNewton
Adam
RMSProp
AdaGrad
SGD

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

To
p

5
Re

ca
ll

EHNewton
Adam
RMSProp
AdaGrad
SGD

Figure 4.1: Inception Top-1 Accuracy (left) and Top-5 Recall (right) over Training Steps.

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

0.740

0.745

0.750

0.755

0.760

0.765

0.770

0.775

To
p-

1
Ac

cu
ra

cy

EHNewton
Adam
RMSProp

0 50 100 150 200 250
Minutes since Start of Training

0.740

0.745

0.750

0.755

0.760

0.765

0.770

0.775

To
p-

1
Ac

cu
ra

cy

EHNewton
Adam
RMSProp

Figure 4.2: Close-up: Inception Accuracy over Training Steps (left) and Time (right).

Figure 4.1 shows the top-1 accuracy (#correct predictions
#of predictions) and the top-5 recall (no. of

predictions containing the correct result in the top-5 outputs divided by the no. of
predictions) over the number of train steps. Both figures show SGD and even AdaGrad
clearly outclassed by EHNewton, Adam and RMSProp. The latter three show similar
performance: rapid improvement at first, followed by only tiny incremental changes.

To highlight the differences between EHNewton, Adam and RMSProp, Figure 4.2

shows a close-up of accuracy over both steps and elapsed training time. We can see
EHNewton consistently outperforming the other two on per-step values after ca. 3000
steps. It finishes at almost 77.4%, very close to the pre-trained value of 78.0%. Adam
comes second with a final accuracy of 77.2% followed by RMSProp with 77.1%. The per-
step performance comes at a higher computational cost. This is reflected in the per-time
performance, where both Adam and RMSProp reach higher accuracies much faster. In
fact, it takes EHNewton twice as long before its accuracy first overtakes Adam’s highest
value. Top-5 recall behaves similarly: EHNewton tops out at 93.7%, just shy of the pre-
trained 93.9%, followed by Adam (93.6%) and RMSProp (93.3%).

26

4.4 Results

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

0

2

4

6

8

10

Cl
on

e
Lo

ss

EHNewton
Adam
RMSProp
AdaGrad
SGD

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

0

5

10

15

20

Re
gu

la
riz

at
io

n
Lo

ss

EHNewton
Adam
RMSProp
AdaGrad
SGD

0 5000 10000 15000 20000
Training Steps

0

5

10

15

20

25

To
ta

l L
os

s

EHNewton
Adam
RMSProp
Adagrad
SGD

Figure 4.3: Inception Clone Loss, Regularization Loss (left) and Total Loss (right).

The algorithms achieve their accuracy in quite different ways. Figure 4.3 shows the
total loss and its components over the number of steps. The clone loss is the weighted
sum of cross-entropy for logits and aux. logits. Regularization loss surges when train-
ing with RMSProp, whereas it remains almost constant for all other algorithms. Adam
converges to the lowest cross-entropy and total loss values. It remains consistently be-
low EHNewton’s, even though the latter produces higher accuracies. The up-to-5×
higher loss values of AdaGrad are also surprising, given its 55.7% final accuracy.

4.4.2 ResNet-50

To train the last layer of ResNet-50, a 50-layer variant of ResNet, we again use a pre-
trained checkpoint linked in [34]. It achieves a top-1 accuracy of 75.2% and top-5 recall
of 92.2%. All layers, except the last layer, are initialized from this checkpoint.

ResNet has just a single final layer of logits. Apart from its cross-entropy loss, we
also have regularization losses. For all convolutional layers, an L2 loss is defined, with
weight λ = 0.0001.

For EHNewton we find that, remarkably, performing only a single CG-iteration per
step leads to as-good-or-better per-step performance than doing 20 CG-iterations. Since
this approach is much cheaper computationally, we show the results of single-iteration
EHNewton compared to the first-order optimizers. Tikhonov regularization is τ = 0.01.

27

4 Evaluation

Optimizer Start LR Decay Rate Decay Every Epochs
EHNewton 0.001 0.94 0.05

Adam 0.0006 0.94 0.05

RMSProp 0.0001 0.94 0.05

AdaGrad 0.002 0.94 0.1

SGD 0.0001 0.94 0.1

Table 4.2: Learning Rates and Decay Schedules for Training ResNet-50

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

To
p-

1
Ac

cu
ra

cy

EHNewton
Adam
RMSProp
AdaGrad
SGD

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

5
Re

ca
ll

EHNewton
Adam
RMSProp
AdaGrad
SGD

Figure 4.4: ResNet Top-1 Accuracy (left) and Top-5 Recall (right) over Training Steps.

Batch size for training is again 64 and we train for 20100 steps, one full epoch of the
ILSVRC set. Table 4.2 shows the learning rate schedules for the algorithms. Like for In-
ception training, the second-order algorithm supports a higher learning rate than most
first-order methods. This time AdaGrad needs an even higher LR (20× RMSProp’s)
and slower decay to counteract its slowdown.

Figure 4.4 shows the top-1 accuracy and the top-5 recall over the number of train
steps. Again, SGD and AdaGrad are outclassed by EHNewton, Adam and RMSProp.
This time, however, the former two get final accuracy and recall values much closer to
the better performing algorithms. EHNewton more decisively outperforms Adam and
RMSProp, posting higher accuracy and recall values for every step after 1200.

Nonetheless, their values are still very close and can be better viewed more close-up
in Figure 4.5 . We can see a consistent 1% to 1.5% margin between EHNewton per-step
accuracy values and those of Adam and RMSProp. Since we only perform one CG-
iteration, our algorithm didn’t take any longer for training than Adam or RMSProp.
Consequently, EHNewton reaches higher accuracies in fewer steps and in less wall time.

The final accuracy values: EHNewton reaches 73.1%, followed by Adam with 72.6%,
RMSProp with 71.7%, AdaGrad with 62.3% and finally SGD with 57.3%. Top-5 recall
behaves similarly to the accuracy: EHNewton achieves 91.2% and Adam gets 90.1%,
below RMSProp at 90.3%. AdaGrad is not far behind with 85.2%, followed by SGD at
81.6%.

28

4.4 Results

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

0.700

0.705

0.710

0.715

0.720

0.725

0.730

0.735

To
p-

1
Ac

cu
ra

cy

EHNewton
Adam
RMSProp

0 20 40 60 80 100 120 140
Minutes since Start of Training

0.700

0.705

0.710

0.715

0.720

0.725

0.730

0.735

To
p-

1
Ac

cu
ra

cy

EHNewton
Adam
RMSProp

Figure 4.5: Close-up: ResNet Accuracy over Training Steps (left) and Time (right).

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

0

1

2

3

4

5

6

7

8

Cr
os

se
nt

ro
py

 L
os

s

EHNewton
Adam
RMSProp
AdaGrad
SGD

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Re
gu

la
riz

at
io

n
Lo

ss

EHNewton
Adam
RMSProp
AdaGrad
SGD

0 5000 10000 15000 20000
Training Steps

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

To
ta

l L
os

s

EHNewton
Adam
RMSProp
Adagrad
SGD

Figure 4.6: ResNet Cross-Entropy and Regularization Loss (left) and Total Loss (right).

29

4 Evaluation

Optimizer Start LR Decay Rate Decay Every Epochs
EHNewton 0.005 0.90 0.05

Adam 0.0006 0.94 0.05

RMSProp 0.0001 0.95 0.05

AdaGrad 0.002 0.94 0.1

SGD 0.001 0.94 0.05

Table 4.3: Learning Rates and Decay Schedules for Training MobileNetV2

Figure 4.6 shows the total loss and its components, cross-entropy and regulariza-
tion, over the number of steps. Like during the Inception training, RMSProp increases
regularization loss drastically, whereas the other algorithms leave it roughly constant.
Adam, EHNewton and RMSProp all converge to similar cross-entropy values (the low-
est points reached by EHNewton). AdaGrad and SGD both decrease their loss much
further than during Inception training.

4.4.3 MobileNetV2

We train the last layer of MobileNetV2. Its width-multiplier is α = 1.4 and input images
have a resolution of ρ = 224 × 224. All layers, except the last, are initialized from a
checkpoint linked in [34]. MobileNet with all checkpoint parameters achieves a top-1
accuracy of 74.9% and top-5 recall of 92.5%.

MobileNet has a single final layer of logits. Its cross-entropy loss is accompanied by
L2-regularization on all (non-separable) convolutional layers, with weight λ = 0.00004.

EHNewton, like during ResNet training, shows similar performance with 1 CG-
iteration per step as it does with 20 such CG-iterations. Again, Tikhonov regularization
of τ = 0.01 improves convergence and stability.

As MobileNet is smaller than ResNet or Inception, we can fit a batch size of 96 on
the Titan XP GPU. Accounting for the larger batch size, we take only 15300 steps. A
little more than one full epoch of the ILSVRC set, this matches the training times of the
previous two models.

Table 4.3 shows the learning rate schedules for each algorithm. As a full epoch is
almost 13345 steps, decaying every 0.05 epochs translates to 667 steps. The second-
order optimizer still supports the highest LR, but needs a stronger decay for stability
towards the end of training. AdaGrad once again needs a high learning rate, but even
SGD profits from an increased rate.

Figure 4.7 shows the top-1 accuracy and the top-5 recall over the number of train
steps. AdaGrad and SGD are again outclassed by EHNewton, Adam and RMSProp.
But SGD performs better than AdaGrad, reaching an almost 20% higher accuracy and
top-5 recall. EHNewton, Adam and RMSProp show rapid improvement at first, but
converge to very similar accuracy values.

The differences between these three algorithms is highlighted in Figure 4.8 . It shows
a close-up of their accuracy values over train steps and elapsed time. RMSProp and

30

4.4 Results

0 2000 4000 6000 8000 10000 12000 14000
Training Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

To
p-

1
Ac

cu
ra

cy

EHNewton
Adam
RMSProp
AdaGrad
SGD

0 2000 4000 6000 8000 10000 12000 14000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

5
Re

ca
ll

EHNewton
Adam
RMSProp
AdaGrad
SGD

Figure 4.7: MobileNet Top-1 Accuracy (left) and Top-5 Recall (right) over Training
Steps.

0 2000 4000 6000 8000 10000 12000 14000
Training Steps

0.700

0.705

0.710

0.715

0.720

0.725

0.730

0.735

To
p-

1
Ac

cu
ra

cy

EHNewton
Adam
RMSProp

0 20 40 60 80 100 120 140
Minutes since Start of Training

0.700

0.705

0.710

0.715

0.720

0.725

0.730

0.735

To
ta

l L
os

s

EHNewton
Adam
RMSProp
Adagrad
SGD

Figure 4.8: Close-up: MobileNet Accuracy over Training Steps (left) and Time (right).

EHNewton produce very similar per-step accuracy values, until EHNewton overtakes
at around step 10000. Both have slightly higher values than Adam, although Adam
catches up to RMSProp in the last 300 steps. EHNewton finishes at 73.2% accuracy,
ahead of Adam with 72.9% and RMSProp at 72.8%. Since we only perform a single CG-
iteration, our algorithm didn’t take any longer for training than Adam or RMSProp.
Thus, again, EHNewton reaches the highest accuracy in fewer steps and in less wall
time. Top-5 recall behaves similarly: EHNewton tops out at 91.4% and Adam achieves
91.2%, below RMSProp at 91.4%.

Figure 4.9 shows the total loss and its components, cross-entropy and regularization,
over the number of train steps. Once again, regularization loss surges when train-
ing with RMSProp, but remains almost constant for all other algorithms. EHNewton,
Adam and RMSProp quickly converge to similarly low cross-entropy values. This time,
SGD decreases its loss faster than AdaGrad, but both don’t reach loss values as low as
during ResNet training.

31

4 Evaluation

0 2000 4000 6000 8000 10000 12000 14000
Training Steps

0

2

4

6

8

10

Cr
os

se
nt

ro
py

 L
os

s

EHNewton
Adam
RMSProp
AdaGrad
SGD

0 2000 4000 6000 8000 10000 12000 14000
Training Steps

0

2

4

6

8

10

Re
gu

la
riz

at
io

n
Lo

ss

EHNewton
Adam
RMSProp
AdaGrad
SGD

0 5000 10000 15000
Training Steps

0

2

4

6

8

10

12

To
ta

l L
os

s

EHNewton
Adam
RMSProp
Adagrad
SGD

Figure 4.9: MobileNet Cross-Entropy and Regularization Loss (left) and Total Loss
(right).

32

5 Conclusion and Outlook

In this thesis we gave an overview of Neural Network training and its challenges. The
most common first-order algorithms were presented, before we introduced the new
second-order optimizer EHNewton.

We then implemented the new algorithm in TensorFlow, so that it can be used to train
any model defined as a graph in TF. This also made our implementation compatible
with the higher-level library TF-Slim.

To compare EHNewton to the first-order optimizers Adam, RMSProp, AdaGrad and
SGD, we trained the last layer of three CNNs on an ImageNet dataset. EHNewton
showed higher per-step top-1 accuracy and top-5 recall for the models InceptionV3,
ResNet-50 and MobileNetV2. A more exact approximation of the solution to the new-
ton equation via 20 CG-iterations led to greater performance on InceptionV3, but at the
cost of much increased computational times. Surprisingly, only performing one CG-
iteration didn’t negatively impact per-step performance when training ResNet-50 and
MobileNetV2. In these cases EHNewton reached higher accuracies in fewer steps and
in less time.

Possible future work could include a thorough investigation of its hyperparameters,
especially regarding the surprisingly good performance of its single-CG-iteration vari-
ant.

Also, the technical limitations of our implementation have to be addressed, before
the algorithm can be used in practice. Especially the ”quadratic” memory requirement
prevented us from running experiments on more than a few layers at a time. Once
this problem is solved, EHNewton can prove to be a practical alternative to first-order
algorithms.

In conclusion, despite some limitations of the implementation, EHNewton proved
an effective and efficient optimization algorithm. This shows that even simple second-
order approaches can still be powerful.

33

List of Figures

2.1 Inception module with dimensionality reduction 15
2.2 Residual learning: a building block. 15

3.1 Exemplary TensorFlow code and corresponding computational graph . 18
3.2 The while-loop body of cg solve() and the corresponding pseudocode. 22
3.3 UML diagram of the main software components and their relations. All

shown attributes and methods are protected. 22

4.1 Inception Top-1 Accuracy (left) and Top-5 Recall (right) over Training
Steps. 26

4.2 Close-up: Inception Accuracy over Training Steps (left) and Time (right). 26
4.3 Inception Clone Loss, Regularization Loss (left) and Total Loss (right). . 27
4.4 ResNet Top-1 Accuracy (left) and Top-5 Recall (right) over Training Steps. 28
4.5 Close-up: ResNet Accuracy over Training Steps (left) and Time (right). . 29
4.6 ResNet Cross-Entropy and Regularization Loss (left) and Total Loss (right). 29
4.7 MobileNet Top-1 Accuracy (left) and Top-5 Recall (right) over Training

Steps. 31
4.8 Close-up: MobileNet Accuracy over Training Steps (left) and Time (right). 31
4.9 MobileNet Cross-Entropy and Regularization Loss (left) and Total Loss

(right). 32

35

List of Tables

4.1 Learning Rates and Decay Schedules for Training InceptionV3 25
4.2 Learning Rates and Decay Schedules for Training ResNet-50 28
4.3 Learning Rates and Decay Schedules for Training MobileNetV2 30

37

Bibliography

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org .

[2] J. Martens, “Second-order optimization for neural networks,” Ph.D. dissertation,
University of Toronto, 2016.

[3] J. Suk, “Application of second-order optimisation for large-scale deep learning,”
Master’s thesis, Technical University of Munich, Munich, 2020.

[4] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural
Networks, vol. 61, pp. 85 – 117, 2015. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0893608014002135

[5] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and
Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[6] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986. [Online].
Available: https://doi.org/10.1038/323533a0

[7] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1–9.

[8] J. Nocedal and S. Wright, Numerical optimization. Springer Science & Business
Media, 2006.

[9] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic dif-
ferentiation in machine learning: a survey,” Journal of Marchine Learning Research,
vol. 18, pp. 1–43, 2018.

[10] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” science, vol. 313, no. 5786, pp. 504–507, 2006.

[11] K. P. Murphy, Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

[12] H. Robbins and S. Monro, “A stochastic approximation method,” The Annals
of Mathematical Statistics, vol. 22, pp. 400–407, 1951. [Online]. Available:
https://doi.org/10.1214/aoms/1177729586

39

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.sciencedirect.com/science/article/pii/S0893608014002135
http://www.sciencedirect.com/science/article/pii/S0893608014002135
https://doi.org/10.1038/323533a0
https://doi.org/10.1214/aoms/1177729586

Bibliography

[13] L. N. Smith, “Cyclical learning rates for training neural networks,” in 2017 IEEE
Winter Conference on Applications of Computer Vision (WACV). IEEE, 2017, pp. 464–
472.

[14] B. Polyak, “Some methods of speeding up the convergence of iteration methods,”
Ussr Computational Mathematics and Mathematical Physics, vol. 4, pp. 1–17, 12 1964.

[15] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initial-
ization and momentum in deep learning,” in International Conference on Machine
Learning, 2013, pp. 1139–1147.

[16] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learn-
ing and stochastic optimization,” Journal of Machine Learning Research, vol. 12, pp.
2121–2159, 2011.

[17] T. Tieleman and G. Hinton, Lecture 6.5-rmsprop: Divide the gradient by a running av-
erage of its recent magnitude. COURSERA: Neural Networks for Machine Learning,
2012.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.
[Online]. Available: http://arxiv.org/abs/1412.6980

[19] A. N. Tikhonov and V. Y. Arsenin, “Solutions of ill-posed problems,” Wiley, pp.
1–30, 1977.

[20] B. A. Pearlmutter, “Fast exact multiplication by the hessian,” Neural computation,
vol. 6, no. 1, pp. 147–160, 1994.

[21] R. S. Dembo and T. Steihaug, “Truncated-newton algorithms for large-scale un-
constrained optimization,” Mathematical Programming, vol. 26, no. 2, pp. 190–212,
1983.

[22] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing sys-
tems, 2012, pp. 1097–1105.

[24] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the incep-
tion architecture for computer vision,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 2818–2826.

40

http://arxiv.org/abs/1412.6980

Bibliography

[25] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-
resnet and the impact of residual connections on learning,” in Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, ser. AAAI’17. AAAI Press,
2017, p. 4278–4284.

[26] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” in Proceedings of the 32nd International Con-
ference on International Conference on Machine Learning - Volume 37, ser. ICML’15.
JMLR.org, 2015, p. 448–456.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 770–778.

[28] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.
[Online]. Available: https://arxiv.org/abs/1704.04861

[29] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks,” arXiv preprint arXiv:1801.04381, 2018.
[Online]. Available: https://arxiv.org/abs/1801.04381

[30] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, and H. Adam, “Searching
for mobilenetv3,” arXiv preprint arXiv:1905.02244, 2019. [Online]. Available:
https://arxiv.org/abs/1905.02244

[31] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[32] F. Chollet et al., “Keras,” https://keras.io , 2015.

[33] S. Guadarrama and N. Silberman, “TensorFlow-Slim: A lightweight library for
defining, training and evaluating complex models in tensorflow,” 2016, [accessed
17-June-2020]. [Online]. Available: https://github.com/google-research/tf-slim

[34] ——, “Tensorflow-slim imgage classification model library,” 2016, [accessed 17-
June-2020]. [Online]. Available: https://github.com/tensorflow/models/tree/
master/research/slim

41

https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1905.02244
https://www.tensorflow.org/
https://keras.io
https://github.com/google-research/tf-slim
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim

Bibliography

[35] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale
Visual Recognition Challenge,” International Journal of Computer Vision (IJCV), vol.
115, no. 3, pp. 211–252, 2015.

42

	Acknowledgements
	Abstract
	Introduction
	Theoretical Background
	An Overview of Neural Networks
	Notation
	Convolutional Layer
	Gradient-Based Optimization
	Challenges in Neural Network Training

	First-Order Optimization Algorithms
	Stochastic Gradient Descent
	AdaGrad
	RMSProp
	Adam

	Second-Order Optimization
	Newton's Method
	Fast exact Multiplication by the Hessian
	The EH-Newton Algorithm

	Modern Convolutional Neural Networks
	Inception Architecture
	Residual Networks
	MobileNet

	Implementation
	Tensorflow
	Computational Graph Model
	Keras
	Tensorflow-Slim

	Integrating the EH-Newton Algorithm into TensorFlow
	Computational Setup
	Hardware
	Software

	Evaluation
	The ImageNet Dataset
	Limitations
	Distribution Awareness
	Memory Requirements

	The Training Procedure
	Models and Loss Functions
	Finding Suitable Hyperparameters

	Results
	InceptionV3
	ResNet-50
	MobileNetV2

	Conclusion and Outlook
	List of Figures
	List of Tables
	Bibliography

