
Mathematics in Science and Engineering
Technical University of Munich

Master’s Thesis

Application of second-order optimisation for
large-scale deep learning

Julian Suk

Mathematics in Science and Engineering
Technical University of Munich

Master’s Thesis

Application of second-order optimisation for large-scale
deep learning

Author: Julian Suk
1st examiner: Prof. Dr. Hans-Joachim Bungartz
Assistant advisor: M. Sc. Severin Reiz
Submission Date: April 15th, 2020

I hereby declare that this thesis is entirely the result of my own work except where other-
wise indicated. I have only used the resources given in the list of references.

April 15th, 2020 Julian Suk

Acknowledgments

This thesis is dedicated to my grandmother Hedwig Suk and my father Thomas Suk, both
of whom passed away last year.

vii

”Vor lauter Globalisierung und Computerisierung dürfen die schönen Dinge des Lebens wie
Kartoffeln oder Eintopf kochen nicht zu kurz kommen.”

- Angela Merkel

viii

Abstract

Deep neural networks have become some of the most prominent models in machine
learning due to their flexibility and therefore, their broad applicability. The training of
large-scale deep neural networks requires vast computational resources. Stochastic gra-
dient descent methods still enjoy great popularity but Hessian-based optimisation tech-
niques are on the rise. While computing the second derivative of the loss function is still
computationally expensive, a possibly much faster convergence rate justifies the consid-
eration of such methods. Gradient descent is inherently sequential and cannot take full
advantage of highly parallelised computing architectures. This motivates the exploration
of second-order optimisation methods also in the context of high performance comput-
ing. This thesis aims to provide an overview of numerical challenges, their solutions and
stochastic details regarding the application of Hessian-based optimisation to the training
of large-scale deep neural networks. It lays emphasis on a strong theoretical foundation,
which is crucial for the less heuristic second-order methods. The potential of a quasi-
Newton method is showcased by outperforming gradient descent in optimisation of the
loss function corresponding to ResNet.

ix

Contents

Acknowledgements vii

Abstract ix

I. Introduction 1

II. Basics of neural network training 5

1. Deep neural networks 7

2. Optimisation 11
2.1. Optimality conditions . 11
2.2. Gradient descent . 13
2.3. Newton method . 14

3. Algorithmic differentiation 17

4. Hessian product 19
4.1. Gateaux derivative . 19
4.2. Relation to directional derivative . 19

5. LSE solvers 21

6. A different view on neural network training 25

III. Methods and implementation 27

7. Newton equation 29
7.1. Non-convex optimisation . 29
7.2. Tikhonov regularisation . 31

8. Stochastic approximation 33
8.1. Stochastic gradient descent . 33
8.2. Stochastic Newton method . 35

xi

Contents

9. Algorithm 39
9.1. Hessian product . 39
9.2. Optimisation . 41
9.3. On parallelisation . 44

10. Experimental setup 47
10.1. Simple CNN . 47
10.2. ResNet . 50

11. Weight initialisation 53

12. Related research 55

IV. Numerical experiments 57

13. Quality of numerical Hessians 59

14. Simple CNN 61
14.1. Explicit Hessian . 61
14.2. Hessian product . 63
14.3. Second-order optimisation . 63

15. ResNet 67
15.1. Loss surface . 67
15.2. Hessian product . 69
15.3. Second-order optimisation . 70

V. Conclusion 73

Appendix 79

A. Convergence rates 79

Bibliography 81

xii

Part I.

Introduction

1

Background and significance

The promise of artificial intelligence (AI) through machine learning has been one of the
greatest scientific endeavours of the decade. Machine learning is comprised of mathemat-
ical and statistical methods to find an underlying, latent representation in a set of data. In
particular the field of deep learning has been growing rapidly. The key idea is to construct
a mathematical model, inspired by neuron connections in the human brain. It is for this
reason that these models are referred to as neural networks. The term ”deep” is to contrast
with earlier shallow architectures that have gradually been replaced by multi-layer ones.
With this advancement come issues regarding the training of these models: the deeper the
architecture, the higher the number of training parameters. A popular example is ResNet
(residual network) [15], that won the 2015 ImageNet large-scale visual recognition compe-
tition (ILSVRC 2015) [36] and boasts a total of 23, 944, 392 trainable parameters (50-layer
layout).

Despite this challenge, deep neural networks are heavily requested in fields like com-
puter vision, biomedicine and optimal control. They are used to e.g. detect cancer metas-
tases [21], predict lung cancer [51] or in superhuman chess AIs [39]. This demand estab-
lishes the base for rapidly evolving research in mathematical optimisation: Deep neural
networks are trained by minimising a cost function that quantifies the prediction error of
their underlying mathematical model. The large scale of those networks creates a lot of
challenges in optimisation. In particular, the loss landscape is generally non-convex and
thus, finding a global optimum is difficult or impossible.

The go-to training algorithm for deep neural networks is the fairly heuristic stochastic
gradient descent (SGD), which sacrifices optimisation performance for the sake of straight-
forward applicability and little computational work. However, in order to better under-
stand these previously black-box models, curvature information about the loss landscape
is beneficial. Applications include convergence analysis and robustness experiments. As
computational power increases, demand for optimisation strategies with higher conver-
gence rates grows. This establishes the foundation for research in second-order optimisa-
tion making use of Hessian information w.r.t. the cost function.

Outline of this work

The purpose of this work is to provide a guideline for the successful implementation of
second-order optimisation suitable for large-scale deep learning based on strong theoreti-
cal foundations. Therefore, connections are emphasised to the relevant mathematical fields
of numerical analysis and stochastic wherever possible. This thesis aims to answer the fol-
lowing questions:

• Which role does mathematical optimisation play in neural network training and
which elements helped and are necessary for the successful application to large-scale
systems? (part II)

3

• Which assumptions and approximations are necessary in the high-dimensional do-
main and how does an exemplary implementation look like? (part III)

Furthermore, this thesis provides results from numerical experiments to substantiate the
established theory (part IV).

4

Part II.

Basics of neural network training

5

1. Deep neural networks

Deep neural networks are a field that has become the centre of attention for scientists and
engineers across many fields like computer vision, control theory and natural language
processing. The main workhorse of this subsection of artificial intelligence is mathematical
optimisation. In the following chapter, deep neural networks will be described in a way
that lends itself to mathematical optimisation.

Layers and activation

Neural networks can be regarded as a non-linear relation, that maps a data sample x ∈ S,
where S denotes the sample space, onto a prediction p. For the popular field of image
classification, x is an image and S may be the space of all 28 × 28 pixels greyscale images
S = {xi,j ∈ N|0 ≤ xi,j ≤ 255; i = 1, 2 . . . , 28; j = 1, 2, . . . , 28}. A prediction usually assigns
values to each of l classes between which the neural network is supposed to distinguish.
In practice, this is done in vector form p ∈ Rn. A neural network is comprised of so-
called layers that each perform some sort of mathematical manipulation. ”Deep” in deep
neural networks stands for stacking of multiple layers. The most basic example is a fully
connected layer, which performs a right multiplication of a vectorised input signal xin =
(x1, x2, . . . , xa) with filter matrix W ∈ Ra×b. In order to restrict the entries of the resulting
product to moderate values, it is run through an activation function φ : Rb → Rb. One
choice is the entry-wise processing through the popular sigmoid function

φ̂sigm(t) =
1

2

(
1 + tanh

(
t

2

))
which is given in its scalar form here. The output xout of the fully-connected layer is then

xout = φ(xinW) (1.1)

In recent years, convolutional layers rose to popularity due to their unparalleled perfor-
mance in image classification. They consist of the convolution of a two-dimensional (or
more for multichannel formats) input signal with a filter matrix (or multidimensional ten-
sor). Writing down the mathematical manipulation in symbolic form like (1.1) is not prac-
tical in this case, since it involves defining a new integration measure or extensive entry-
wise summations and offers little compared to a black-box or graph-based approach. In
classification, a neural network is supposed to output a prediction based on the input data,

7

1. Deep neural networks

Input Layer ∈ ℝ¹⁶ Hidden Layer ∈ ℝ¹² Hidden Layer ∈ ℝ⁸ Output Layer ∈ ℝ¹⁰

Figure 1.1.: Graph-based visualisation of a fully connected neural network with ten classes,
16 input neurons and two hidden layers. Coloured edges illustrate a hypo-
thetical weight configuration (blue for negative, orange for positive, opacity
proportional to magnitude)

8

i.e. provide probabilities for each class. This is achieved by using softmax activation

φsoftmax(xin)i =
e(x

in)i∑
j

e(x
in)j

after the last layer right before the network output. The result will be a vector of proba-
bilities, i.e. values in the interval (0, 1) that sum to one. Note that softmax activation is a
smooth (C∞) approximation to the arg max function.

For the purpose of this work, it makes sense to add a level of abstraction and consider
the neural network with all its layers as a non-linear function f : S × Rn → Rl that takes
a sample x ∈ S and a configuration of n filter entries, referred to as weights w ∈ Rn and
outputs a prediction p:

f(x,w) = p

The input data x is usually fixed and the degrees of freedom for model fitting are the
entries of vector w.

Loss function

The goal of neural network training is to find a weight configuration w that enables the
model to accomplish a certain task, e.g. correct classification of an image. To this end, an
objective has to be formulated in form of a loss function. Popular examples are the mean
squared error (MSE) between the model output and a reference y

cMSE(x, y, w) =
1

l
(f(x,w)− y)T(f(x,w)− y) =

1

l

l∑
i=1

(fi − yi)2

or categorical cross-entropy

centr(x, y, w) = −
l∑

i=1

yi log(fi)

The objective of neural network training is to minimise this loss. In the following, y ∈ L
is referred to as a label and L as the label space. In the context of image classification, it is
usually a one-hot encoded vector y = (y1, y2, . . . , yl) where yi = 1 to indicate the correct
class and yi = 0 otherwise.

For the most part of this work, it suffices to add another level of abstraction and ”hide”
the neural network in the training cost c(x, y, w). Building upon this implicit representa-
tion, it might make sense in the context of network training to input more than one sample
x ∈ S, but rather X ∈ Sd, i.e. d samples at once (with corresponding labels Y ∈ Ld). As a
consequence, the neural network has to produce d predictions instead of one. While this
is cumbersome to write down symbolically, implementation is typically trivial, because
the aforementioned loss functions contain a reduce-type sum and can thus just process the
additional model outputs additively.

9

2. Optimisation

Consider a loss function c : Sd×Ld×Rn → R assigned to a neural network. This function
takes d samples from sample space S with corresponding labels from label space L and
maps them to a cost value (hence c) that depends on a number of n weights. If the cost at-
tains a minimum, optimal prediction performance is expected. This leads to the following
formal problem statement:

min
w∈Rn

c(X,Y,w)

with X and Y fixed. It is an unconstrained minimisation problem. For the optimisation,
the first two arguments of c(X,Y,w) play no role, thus they will be dropped in the further
discussion for readability. The reader is referred to [46][30] for a complete introduction to
mathematical optimisation which inspired the following.

2.1. Optimality conditions

For the application in neural networks, c(w) can be constructed (continuously) differen-
tiable, e.g. by only using the building blocks discussed in the last chapter. Since they work
well for many modern deep learning problems, it is fair to assume c(w) ∈ C∞(Rn) for the
sake of the following discussion. A condition is now given that characterises any local
minimum.

Theorem 2.1 (Necessary optimality condition). Let c(w) be differentiable on Rn and w∗ ∈ K
a local minimiser of c(w) on an open set K ⊂ Rn. Then it holds

∇wc(w∗) = 0

Proof. For arbitrary d ∈ Rn and sufficiently small t > 0, the differential quotient

c(w∗ + td)− c(w∗)
t

≥ 0

Letting t→ 0 yields
∇wc(w∗)Td ≥ 0

By choosing d = −∇wc(w∗) follows the claim.

Conversely, it can be useful to establish a condition that implies a local minimum.

11

2. Optimisation

1

0.5-1
1

00.5

-0.5

0
-0.5

0

-0.5

-1

0.5

-1

1

Figure 2.1.: Example for optimisation objective with indefinite Hessian: saddle point in R2

12

2.2. Gradient descent

Theorem 2.2 (Sufficient optimality condition). Let c(w) ∈ C2(Rn), i.e. twice continuously
differentiable and Hc(w) denote the Hessian of c(w). Further, let w∗ ∈ K ⊂ Rn open and

• ∇wc(w∗) = 0

• dTHc(w
∗)d > 0 ∀d ∈ Rn\{0}

Then w∗ is a local minimiser of c(w).

Proof. Since Hc(w
∗) is positive definite and continuous, there exist ε > 0 so that for d ∈ Rn

and any z ∈ Bε(w∗) (the n-dimensional open ball around w∗ with radius ε)

dTHc(z)d > 0

Choosing any d with 0 < ‖d‖2 < ε and applying Taylor’s theorem yields

c(w∗ + d) = c(w∗) +∇wc(w∗)Td+
1

2
dTHc(w

∗ + td)d = c(w∗) +
1

2
dTHc(w

∗ + td)d > c(w∗)

for some t ∈ [0, 1].

2.2. Gradient descent

It can be shown that the direction of steepest descent w.r.t. the Euclidean norm, i.e. solu-
tion of

min
‖d‖2=1

∇wc(w)Td

is the negative, normalised gradient direction [46]. This property is utilised in the gradient
descent method. Note that choosing a direction where the cost value decreases is usually

Data: number of iterations, initial w0

for k in 0 to number of iterations do
if ∇wc(wk) = 0 then

break
end
sk ← −∇wc(wk)
calculate σk so that c(wk + σks

k) < c(wk)
wk+1 ← wk + σks

k

end
return wk

Algorithm 1: Gradient descent

possible for the above assumptions until a minimum is reached. The only limitation is
convergence to a point where∇wc(w) = 0 but which is not a minimum (saddle point).

13

2. Optimisation

Proposition 2.3. For c(w) ∈ C(Rn) either ∇wc(w) = 0 or there exists a σ ∈ R so that with
s = −∇wc(w)

c(w + σs) < c(w)

Proof. Suppose ∇wc(w) 6= 0. The claim follows from continuity of∇wc(w).

In the general case, no convergence result for algorithm 1 can be given. Further assump-
tions are necessary to assess the convergence rate: assume c(w) ∈ C2(Rn) is quadratic and
its Hessian is positive definite. If the best possible step length is chosen in each iteration,
the error converges Q-linearly [23]:

c(wk+1)− c(w∗) ≤ ρ · (c(wk)− c(w∗))

where w∗ denotes the local minimiser and ρ ∈ [0, 1).

2.3. Newton method

The Newton method for the solution of non-linear systems of equations is the archetype for
second-order optimisation. There are two ways to derive the connection. One is slightly
shorter and is thus reserved for a brief motivation of context in a later chapter. In this sec-
tion, the focus will be on the second derivation, which involves quadratic approximation
of the objective function c(w + s) around w: using Taylor series, the quadratic form reads

q(s) = c(w) +∇wc(w)Ts+
1

2
sTHc(w)s

If there exists a minimum of q(s), the necessary optimality condition has to hold.

∇sq(s) = ∇wc(w) + Hc(w)s
!

= 0

This leads to the so-called Newton equation

Hc(w)s = −∇wc(w)

which can be applied successively until convergence. This is called Newton method (al-
gorithm 2). Note that this algorithm, unlike gradient descent, does not incorporate a step
size calculation. Since the Newton method is based on quadratic approximation of the ob-
jective, curvature information is available. This makes step size adaption obsolete. More
importantly, fast local convergence can be shown for a reasonably applicable case. Assume
c(w) ∈ C2(Rn) and its Hessian is positive definite. Denote the local minimiser of c(w) by
w∗. Then there is a δ > 0 so that for all w0 ∈ Bδ(w∗) algorithm 2 either terminates with
wk = w∗ or converges Q-superlinearly [46]:

‖wk+1 − w∗‖ = o(‖wk − w∗‖)

14

2.3. Newton method

Data: number of iterations, initial w0

for k in 0 to number of iterations do
if ∇wc(wk) = 0 then

break
end
solve Hc(w

k)sk = −∇wc(wk)
wk+1 ← wk + sk

end
return wk

Algorithm 2: Newton method

The convergence result only applies if the starting point is sufficiently close to the mini-
mum. Indeed, algorithm 2 is not globally convergent for all starting pointsw0. To illustrate
this, consider c : R→ R, c(w) =

√
(w)2 + 1. Then

∇wc(w) =
w√

(w)2 + 1
, Hc(w) =

1

((w)2 + 1)
3
2

> 0

Substituting this in the Newton equation yields

sk = −wk((wk)2 + 1)

and thus the weight update becomes

wk+1 = −(wk)3

It is evident that any |w0| > 1 leads to divergence |wk| → ∞. In order to make algorithm 2

globally convergent, it has to be modified in a way that it

• checks if the solution of the Newton equation is a descent direction and if not, em-
ploys an appropriate fall-back (e.g. steepest descent)

• includes step size adaption to avoid instability and account for the fall-back method.

15

3. Algorithmic differentiation

One of the main reasons deep neural networks can be as successful as they are, is the dis-
covery of backpropagation. The term was originally introduced in [35], incorporated in a
form of (stochastic) gradient descent. Since then, the technique has become the backbone of
neural network training. The underlying idea is to arrange the model into a computational
graph and recursively calculate the gradient using input-dependent derivatives equipped
to each node. This is known as algorithmic differentiation (AD). The name ”backpropaga-
tion” relates to the manner in which the gradients are calculated: Let f(x,w) be a neural
network characterised by a succession of k layers each implied in their activation function
φi(φi−1), i = 2, . . . , k and φ1(x) as

f(x,w) =
(
φk ◦ φk−1 ◦ · · · ◦ φ1

)
(x)

where each φi(·) depends on a sub-vector of w in a way that every weight only appears in
one layer. This assumption is motivated by common practice. Consider as an example the
partial derivative of the i-th component of f(x,w) w.r.t. the j-th weight wj that appears in
layer φν(·). Applying the chain rule yields

∂fi
∂wj

=

(
∂φk

∂φk−1
◦ φk−1 ◦ · · · ◦ φ1

)
·
(
∂φk−1

∂φk−2
◦ φk−2 ◦ · · · ◦ φ1

)
· · ·
(

dφν

dwj
◦ φν−1 ◦ · · · ◦ φ1

)
which can be interpreted as ”passing backwards” through the graph. Neural networks
are well suited for a graph-based implementation due to their modular composition of
layers, activation and loss. For further information-theoretic details of the implementa-
tion of algorithmic differentiation, refer to [13]. Note that AD calculates exact derivatives,
as opposed to approximated ones (e.g. by finite differences), while keeping the complex-
ity close to a regular function evaluation (”forward pass”). The main drawback of this
method regarding network design is the limitation to a finite library of building blocks
with well-defined derivatives. There are several AD packages for Python, including Au-
tograd, CasADi [3] and TensorFlow last of which is designed for neural network use.

17

4. Hessian product

For application of the second-order optimisation algorithm proposed in section 2.3 , the
Newton equation

Hc(w)s = −∇wc(w)

has to be solved in every iteration. Explicit evaluation of the Hessian, however, may be
infeasible for state-of-the-art large-scale deep neural networks, as will be discussed later in
this work. Therefore, the efficient Hessian-vector multiplication presented in the following
chapter has become a key component of modern second-order training frameworks.

4.1. Gateaux derivative

Pearlmutter proposes in [32] a fast and exact way to evaluate the product of a vector s ∈ Rn
with the Hessian Hc(w). The right-hand side of

Hc(w)s =

(
∂

∂r
∇wc(w + rs)

)∣∣∣∣
r=0

(4.1)

is known as the Gateaux derivative of ∇wc(w) at w in direction s. In the context of algo-
rithmic differentiation (AD), it allows a product with the Hessian to be computed in two
backpropagations instead of n.

4.2. Relation to directional derivative

Since this representation was created with different computational frameworks in mind
than are available today, a modern form that is linked to the directional derivative will be
derived in the following.

Proposition 4.1. Let c ∈ C2(Rn), i.e. twice continuously differentiable. Then(
∂

∂r
∇wc(w + rs)

)∣∣∣∣
r=0

= ∇w (∇wc(w) · s)

Proof. Assume c ∈ C2(Rn). The Hessian matrix is then defined as

Hc(w) =


∂2

∂w1∂w1
c(w) ∂2

∂w1∂w2
c(w) . . . ∂2

∂w1∂wn
c(w)

∂2

∂w2∂w1
c(w) ∂2

∂w2∂w2
c(w) . . . ∂2

∂w2∂wn
c(w)

...
...

. . .
...

∂2

∂wn∂w1
c(w) ∂2

∂wn∂w2
c(w) . . . ∂2

∂wn∂wn
c(w)



19

4. Hessian product

Consider the left-hand side of equation (4.1). With the definition of the Hessian, it can be
written as

Hc(w)s =



n∑
i=1

si
∂2

∂w1∂wi
c(w)

n∑
i=1

si
∂2

∂w2∂wi
c(w)

...
n∑
i=1

si
∂2

∂wn∂wi
c(w)


=



∂
∂w1

n∑
i=1

si
∂
∂wi

c(w)

∂
∂w2

n∑
i=1

si
∂
∂wi

c(w)

...
∂

∂wn

n∑
i=1

si
∂
∂wi

c(w)


since s is constant and ∂

∂ · is a linear operator. Applying the definition of the gradient yields

∂
∂w1

n∑
i=1

si
∂
∂wi

c(w)

∂
∂w2

n∑
i=1

si
∂
∂wi

c(w)

...
∂

∂wn

n∑
i=1

si
∂
∂wi

c(w)


=


∂
∂w1

(∇wc(w) · s)
∂
∂w2

(∇wc(w) · s)
...

∂
∂wn

(∇wc(w) · s)

 = ∇w (∇wc(w) · s)

and thus it is equivalent to the Gateaux derivative from earlier.

Note that ∇wc(w) · s = ∇wc(w)Ts is the directional derivative of c(w) at w in direction
s. Consequently, the product of the Hessian with an arbitrary vector s can be seen as the
gradient of the directional derivative w.r.t. s. These calculations are motivated by the
fact that this new representation is easy to implement, e.g. in the popular AD framework
TensorFlow.

Remark 4.2. If one would need the vector-matrix product sTHc(w), by symmetry of the
Hessian (Schwarz’s theorem)

sTHc(w) = (Hc(w)s)T

20

5. LSE solvers

The solution of the Newton equation is an important element of second-order optimisa-
tion. Consider the cost function c(X,Y,w) withX,Y fixed. With its Hessian Hc(w) ∈ Rn×n,
the equation reads

Hc(w)s = −∇wc(X,Y,w)

For fixed w, it has to be solved for s and is therefore a linear system of equations (LSE).
Numerical mathematics provide a plethora of solution methods for LSEs. Note that for
c(X,Y,w) ∈ C2(Rn) the Hessian is symmetric by definition and Schwarz’s theorem.

Direct methods

Originally, LSE solvers were developed with small, well-defined systems in mind. It is for
that reason that many of these algorithms lead to an exact solution in a finite number of
steps. While achieving this, they operate on an explicit and dense system matrix. Popular
examples are Gaussian elimination, QR decomposition and Cholesky factorisation. To be
successful in finding a solution, they usually require a certain regularity of the system
matrix: For Gaussian elimination and QR decomposition it has to be invertible and for
Cholesky factorisation even positive definite. There are two main reasons direct methods
are not suitable for large-scale deep learning.

• Regularity. In practice, the Hessian cannot be guaranteed to be non-singular. This
can be due to numerical noise or certain behaviour of the loss landscape, as will be
explained in section 7.1 . Only for carefully chosen cost functions c(X,Y,w) some sort
of regularity can be established, which sacrifices flexibility and makes them unsuit-
able for modern machine learning tasks.

• Explicit Hessian. For state-of-the-art deep neural networks, computation and stor-
age of the explicit Hessian may not be feasible. It is due to the extremely high dimen-
sion n of the weight space, because both computation work and storage scale with
O(n2). This will be elaborated on later in this work.

Iterative methods

Addressing the aforementioned concern of regularity, predominantly iterative methods
are employed in neural network training. Instead of solving the LSE in one go, they usu-
ally increase the quality of the solution in each iteration. Stopping after a number of it-
erations creates an approximation to the correct solution. Therefore, when the Newton

21

5. LSE solvers

equation is solved in this way, it is called inexact Newton method. Iterative methods are
relevant in practice, because they allow even numerically noisy problems that are ill-posed
as a consequence to be approximately solved. This is achieved by creating a stopping cri-
terion based on the average per-iteration improvement or simply by stopping after a set
number of iterations. Additionally, computational resources can be used efficiently, since
the numerical precision is limited anyway and iterative methods usually incorporate a tol-
erance for a sufficient solution. With the first problem of direct methods taken care of, only
the explicit Hessian evaluation has to be addressed to find a method fit for deep learning
applications.

Conjugate gradient method

In chapter 4 , a trick was proposed to avoid the explicit evaluation of the Hessian. It turns
out that the product of a vector with the Hessian can be exactly evaluated in a numerical
efficient way. This leaves one to find a LSE solver that incorporates the Hessian exclusively
in a product with an arbitrary vector. Fortunately, a well-established and straight-forward
algorithm with this trait is given in the conjugate gradient (CG) method [16]. Given a
symmetric and positive definite Hessian Hc ∈ Rn×n it even finds the exact solution to the
Newton equation in at most n steps. Therefore, it becomes a direct method at n iterations.
What is more, CG also functions very well as an iterative method: it can be shown that

Data: system matrix A, right-hand side b, initial guess ξ0, tolerance
Result: approximate solution of Aξ = b
r0 ← b−Aξ0
p0 ← r0

k ← 0
while ‖rk‖ > tolerance do

αk ← (rk)Trk

(pk)TApk

ξk+1 ← ξk + αkpk

rk+1 ← rk − αkApk

βk ← (rk+1)Trk+1

(rk)Trk

pk+1 ← rk+1 + βkpk

k ← k + 1
end
return ξk+1

Algorithm 3: Conjugate gradient (CG) method

it converges R-linearly, dependant on the condition number of the system matrix [25].
Consider algorithm 3 and assume A is symmetric positive definite. With the ratio of the

22

maximum and minimum eigenvalue of A

κ(A) =
σmax(A)

σmin(A)

the rate of convergence to the exact solution ξ∗ = A−1b is

‖ξk − ξ∗‖A ≤

(√
κ(A)− 1√
κ(A) + 1

)k
‖ξ0 − ξ∗‖A

where ‖ · ‖A =
√

(·)TA(·), the energy norm of A. This implies that the algorithm produces
monotonically improving iterates. Due to the dependence of the convergence rate on the
condition number, preconditioning may be crucial in practice.

23

6. A different view on neural network
training

Consider a neural network that is characterised by its model output f : S × Rn → Rl, i.e.
takes a sample x ∈ S and for a given weight configuration w ∈ Rn outputs a prediction
assigning a value from [0, 1] to a number of l classes. Given a label vector y in one-hot
encoding (one for the correct class, zero otherwise) the mean squared error c(x, y, w) of the
model output is

c(x, y, w) =
1

l
(f(x,w)− y)T(f(x,w)− y) =

1

l
(f(x,w)Tf(x,w)− 2f(x,w)Ty + yTy)

In order to train the network on the given sample, the cost function is minimised. For the
necessary optimality condition, the gradient has to be equal to zero. To this end, reformu-
late the equation

1

l
(f(x,w)Tf(x,w)− 2f(x,w)Ty + yTy) =

1

l
(
l∑

i=1

f2i − 2
l∑

i=1

fiyi + yTy)

It becomes evident that the gradient calculates to

∇wc(x, y, w) =
1

l
(2

l∑
i=1

fi∇wfi − 2
l∑

i=1

yi∇wfi) =
2

l
(Jf (w)T(f(x,w)− y))

and the necessary optimality condition is

∇wc(x, y, w) = 0⇔ Jf (w)T(f(x,w)− y) = 0 (6.1)

In the following, fix x ∈ S. If now the model f(x,w) is linear or linearly approximated
around w, i.e.

f(x,w + s) = f(x,w) + Jf (w)s

the optimality condition (6.1) becomes

Jf (w)T(f(x,w) + Jf (w)s− y) = 0⇔ Jf (w)TJf (w)s = Jf (w)T(y − f(x,w)) (6.2)

since
f(x,w) = b(x) +A(x)w ⇒ Jf (w) = A(x)

25

6. A different view on neural network training

The linear system of equations (6.2) can be solved by an appropriate solver, for example
the conjugate gradient method (CG). The applicability of the resulting solution will depend
on how close to linearly the neural network behaves locally. A drawback of the presented
approach is that deriving second order optimisation algorithms in logical succession to the
previous calculations is tedious. While it can be done theoretically, modern algorithmic-
differentiation frameworks handle the occurring calculations efficiently and in a black-
box manner. Thus, abstraction to the level of only considering a non-linear cost function
c(x, y, w) is practical.

26

Part III.

Methods and implementation

27

7. Newton equation

7.1. Non-convex optimisation

Relation of strict convexity and positive definiteness

In the training of deep neural networks for image classification, the objective is to minimise
a cost (or loss) function c : Sd × Ld × Rn → R, where S is the sample space, L is the label
space, n denotes the number of neuron connection weights and d denotes the number of
available data samples:

min
w∈Rn

c(X,Y,w) (7.1)

with X ∈ Sd and Y ∈ Ld fixed. This is an unconstrained optimisation problem. In the
following, the notion of convexity will be discussed. The first two arguments of c will be
dropped for simplicity.

Definition 7.1. Let K ⊂ Rn be a convex set. A function c : Rn → R is called strictly convex
on K if for all a, b ∈ K, a 6= b and λ ∈ (0, 1)

c((1− λ)a+ λb) < (1− λ)c(a) + λc(b)

In the context of neural network training, the cost function c can be chosen continu-
ously differentiable on the weight space. This requires the appropriate building blocks in
the form of activation and loss functions, as seen before. For continuously differentiable
functions, strict convexity can be further concretised [46].

Theorem 7.2. Let c ∈ C2(Rn), i.e. twice continuously differentiable on Rn and K ⊂ Rn be
convex. The function c(w) is strictly convex on K if its Hessian Hc(w) is positive definite for all
w ∈ K, i.e.

∀d ∈ Rn\{0} : dTHc(w)d > 0

Proof. With arbitrary a, b ∈ K, Taylor’s theorem yields

c(b) = c(a) +∇c(a)T(b− a) + (b− a)THc(ξλ)(b− a)

for ξλ = a + λ(b − a) and some fixed λ ∈ [0, 1]. This is to say ξλ lies on the line segment
between a and b. By the positive definiteness of Hc(w),

c(b)− c(a) > ∇c(a)T(b− a) (7.2)

29

7. Newton equation

In order to arrive at the definition of convexity, consider for general λ ∈ [0, 1]

(1− λ)c(a) + λc(b)− c(ξλ) = (1− λ)(c(a)− c(ξλ)) + λ(c(b)− c(ξλ))

From (7.2) follows

(1− λ)(c(a)− c(ξλ)) + λ(c(b)− c(ξλ)) > (1− λ)∇c(ξλ)T(a− ξλ) + λ∇c(ξλ)(b− ξλ)

and the right-hand side simplifies to

∇c(ξλ)T((1− λ)a+ λb− ξλ) = 0

Consequently,
(1− λ)c(a) + λc(b)− c(ξλ) > 0

which is the definition of convexity.

Remark 7.3. It can be shown that the converse of theorem 7.2 does not hold. In other words:
Even if c(w) is strictly convex, it is not guaranteed that its Hessian is positive definite.
Consider f(x) = x4 as a counterexample on R: This function is strictly convex on [−1, 1]
but f ′′(0) = 0.

While the cost function c can be chosen C2, it is generally not strictly convex on the whole
weight space. This leads to the Hessian not being positive definite on some subsets.

Corollary 7.4. Let c ∈ C2(Rn) be not strictly convex on K. Then the Hessian Hc is not positive
definite everywhere on K.

Proof. Assume for a proof by contradiction that Hc(w) is positive definite for all w ∈ K.
Then c is strictly convex on K by theorem 7.2 .

Consequently, if c is not strictly convex on Rn, its Hessian is not positive definite every-
where.

Implications for optimisation: pre-training

Consider now the minimisation problem (7.1). In optimisation, a necessary (but not suffi-
cient) condition for a minimum is

∇wc(w + s) = 0 (7.3)

On a set where Hc is positive definite, this zero of the gradient can be found by solvers for
non-linear systems of equations, e.g. the Newton method. To this end, Taylor-approximate
equation (7.3) linearly around w:

∇wc(w) + Hc(w)s+ ρ(s) = 0

30

7.2. Tikhonov regularisation

where ‖ρ(s)‖ = o(‖s‖) and thus it can be neglected for small s. This leads to the Newton
equation

Hc(w)s = −∇wc(w) (7.4)

and the idea is to solve it for s and update w iteratively until the loss attains a satisfactory
tolerance.

Although (7.4) is a linear system of equations, solving it by explicit methods is not fea-
sible in practice. It would require computation and storage of the full Hessian with n2

entries, taking n backpropagations in an algorithmic-differentiation framework. It is much
more efficient to leverage the tools discussed in chapter 4 in the context of an appropriate
LSE solver, e.g. the conjugate gradient method. Recall that many solvers, including CG,
require the system of equations to have a positive definite matrix [46]. However, from
corollary 7.4 follows that this is not the case everywhere. Even in the convex neighbour-
hood w ∈ K of a minimum, where c(w) is strictly convex, its Hessian is not necessarily
positive definite, as shown in remark 7.3 .

Nonetheless, in order to make sure that the Hessian can be positive definite everywhere,
by corollary 7.4 , a set K has to be found, where c is strictly convex. This is important be-
cause the Newton equation represents a quadratic approximation to the cost function (see
section 2.3) for which minimisation is only meaningful if the objective is convex. Addi-
tionally, CG can generally not be used to solve the Newton equation (7.4) outside of such a
neighbourhood. If the Hessian is positive definite almost everywhere in K, there is a high
chance that CG performs well. In neural network training, naı̈ve methods (e.g. gradient
descent) can be employed during a pre-training period to iterate towards such a neigh-
bourhood.

7.2. Tikhonov regularisation

Due to the large scale of state-of-the-art deep neural networks, the linear system of equa-
tions resulting from application of the Newton method to the optimisation problem (7.1)
may often be ill-conditioned, i.e. with the maximum and minimum eigenvalue of Hc

σmax(Hc)

σmin(Hc)
� 1

The computational solution of such a system is prone to numerical instability, since the
matrix is close to singular. This can also leads to slow convergence of the CG method, as
was mentioned in chapter 5 .

Quasi-Newton method

To address this issue, some sort of regularisation can be applied. A straight-forward and
easy-to-implement method is the so-called Tikhonov regularisation [44][43][45]. It was

31

7. Newton equation

independently developed for many different mathematical fields, e.g. statistics, where it
is known as ridge regression. Given a linear system of equations

Hcs = −∇wc

the key idea is to add an appropriate Γ ∈ Rn×n to the system matrix Hc in order to enforce
certain desired properties. For example, this matrix can be chosen Γ = αI, with a small
α ∈ R, which is known as L2-regularisation [28]:

(Hc + αI)s = −∇wc (7.5)

To incorporate the previously discussed efficient Hessian product, by linearity

Hcs+ αs = −∇wc

Note that by changing the system matrix used in the Newton method, a so-called Newton-
like method is introduced. Together with inexact Newton methods, this class is usually
summarised under the term quasi-Newton methods. These have been extensively stud-
ied [9][29] with the most prominent algorithm for machine learning being the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method [20][5].

Drawbacks

The discussed regularisation improves the conditioning of the problem and thereby facili-
tates the numerical solution. However, it comes at the cost of distorting the loss landscape:
Adding noise to the exact Hessian can be interpreted as altering the curvature of the orig-
inal cost function in (7.1). This ultimately changes the minimisation objective and leads to
imprecise solutions. Therefore, a trade-off has to be found between numerical efficiency
and precision of the objective. To this end, the factor α in (7.5) is typically chosen to be
slightly above machine precision.

32

8. Stochastic approximation

8.1. Stochastic gradient descent

Consider the optimisation problem (7.1). The previously discussed gradient descent method
can be applied as a naı̈ve algorithm for its solution. To this end, the weight vector receives
an update in each iteration that is computed with the gradient of the cost function and a
step size σk as

wk+1 = wk − σk∇wc(X,Y,wk) (8.1)

where X ∈ Sd, i.e. from the d-dimensional sample space and Y ∈ Ld, from the d-
dimensional label space. In other words, d sample-label pairs are used in the computation
of a gradient.

Limitations and stochastic approximation

Using a suitable framework for algorithmic differentiation, this requires O(d) work, i.e.
scales linearly with the number of samples. In practice, training data sets are typically
large. In the domain of image classification, prominent examples are the MNIST hand-
written digits data set with 60, 000 samples in its training set and ImageNet, a collection of
images depicting different objects, people and animals, with around 1.2 million samples
in its 2012 version respectively. Since computation of the gradient becomes impractical for
such large d, the optimisation is usually restricted to a subset Xi of b� d samples.

Xi ∈ Sb, Yi ∈ Lb

This gives rise to a stochastic approximation of the original optimisation problem (7.1)
which becomes exact as b→ d:

min
w∈Rn

ci(Xi, Yi, w)

with ci : Sb × Lb × Rn → R. The so-called batch size b can be chosen arbitrarily small,
up until b = 1. In the case where computing with all available samples at once is not
possible due to limited computational resources, sequential optimisation on a selection of
subsets Xi, i = 1, . . . ,m may be used as a compromise. Typically, the union of all subsets
comprises the whole available data.

m⋃
i=1

Xi = X

33

8. Stochastic approximation

One cycle in which all samples are used in sub-optimisations is often referred to as an
epoch. Stochastic gradient descent (SGD) in the narrow sense is the method of randomly
sampling a batch of size b = 1 in each of multiple sequential sub-optimisations and repeat-
ing over several epochs. An example of an algorithm working with larger mini-batches of
input data is the prominent Adam method [18].

SGD vs. full-batch approach

For large data sets, SGD in the narrow sense might have desirable properties and thus be
favoured over a full-batch approach. To illustrate this, fix X ∈ Sd and Y ∈ Ld and assume
c(X,Y,w) ∈ C2(Rn) has a positive definite Hessian on a setK and attains a minimum onK
which is denoted by c∗. To find said minimum, first employ the full-batch gradient descent
method (8.1). With a carefully selected step size and applied to a quadratic objective, the
algorithm will exhibit R-linear convergence [7], i.e. there exists ρ ∈ (0, 1) so that after k
iterations

c(X,Y,wk)− c∗ ≤ O(ρk)

In order to arrive at a desired tolerance ε > 0, it follows that O(log(1/ε)) iterations are
needed:

ε ≤ O(ρk)⇔ log(ε) ≤ O(k log(ρ))

and since ρ ∈ (0, 1), log(ρ) is negative and non-zero

O
(

log(ε)

−1| log(ρ)|

)
≥ k ⇒ O

(
log

(
1

ε

))
≥ k

Recall that the computation of each full-batch gradient requires O(d) work. Multiplied
by the number of iterations this yields O(d log(1/ε)). SGD can be analysed in a similar
manner. Let Xi ∈ S, i = 1, . . . , d be uniformly sampled from the whole data set X . Un-
der certain regularity assumptions about c(w) and with a certain step size, the algorithm
converges sublinearly [6]: After k iterations

E
[
c(X,Y,wk)− c∗

]
= O

(
1

k

)
i.e. the expected value of the training error decreases proportionally to 1/k. Consequently,
the tolerance ε is attained after O(1/ε) iterations. Note that this convergence rate is in-
dependent of the data set size d and directly translates into the required work, because
no large gradients have to be calculated. As d is usually large, the convergence rate may
favour SGD over the full-batch approach in practice.

Implications for classification and regression

Considering the context of image classification, (7.1) can be interpreted as a mathematical
translation of the ambiguous formulation ”assign the correct labels to arbitrary images”.

34

8.2. Stochastic Newton method

If the initial task is to classify samples that are not contained in the training data, one
might expect that not all d samples have to be used anyway. Moreover, evidence suggests
that predictions might even be more robust when the network is sequentially trained on
smaller subsets of data. Yao et al. state in [50] that large-batch training leads deep neural
networks to be weak to adversarial attacks, i.e. perturbation of inputs with small but
carefully-chosen noise to provoke classification errors. A well-received explanation is that
the network cannot rely on the training set as heavily in that case.

This, in turn, means that for regression problems, where the task is to assign the right
value to certain samples in a preferably precise way, such a stochastic approach exhibits
low chances of success. Instead of flexibility, regression problems call for the precise map-
ping of the training data. The stochastic approach adds unwanted variance to the objective
and thus seems unfit. With respect to the aforementioned convergence rates, SGD also con-
verges too slowly to guarantee a precise solution in a feasible amount of time.

8.2. Stochastic Newton method

Motivation for second-order methods

Yao et al. argue in [50] that large-batch training leads the optimisation algorithm to con-
verge to areas with high curvature in the loss landscape. Such areas are weak to adversar-
ial attacks, since slight perturbations highly influence the cost value and therefore exhibit
weak generalisation properties. In contrast, a stochastic approach introduces approxima-
tion noise which is believed to enable the iteration to skip past those minima. Depending
on the application however, a stochastic approximation with high variance might be un-
wanted. Examples are regression problems and classification problems with (infinitely)
large training sets, which are still supposed to be efficiently mapped. In those cases, a
larger mini-batch size is preferred [4].

When leaving the regime of high-variance approximation, second-order optimisation
methods become attractive. Since the gradient descent method is inherently sequential,
it cannot fully take advantage of modern computational architectures. For this reason,
second-order optimisation methods have been rising to prominence. These exhibit fast
convergence to a local optimum due to the incorporation of curvature information. When
computing power is no longer the bottleneck, their extensive computational cost seems
justified.

To summarise, large mini-batch sizes favour second-order methods. Conversely, large
batches are needed in order to construct a quadratic, stochastic approximation of the ob-
jective function in a meaningful way, avoiding variance. Advances have been made to
develop stochastic variants of the BFGS method which are scalable to high-dimensional
regimes [38].

35

8. Stochastic approximation

Stochastic Newton method

The Newton method is prototypical for second-order optimisation. Most other methods
either approximate the curvature matrix (Newton-like) or the solution of the Newton equa-
tion (inexact) and thereby create the family of quasi-Newton methods. Consider the New-
ton equation for the solution of (7.1),

Hc(w
k)s = −∇wc(X,Y,wk)

where X and Y again denote the whole data. After it is solved for s, an update is applied
to the weights according to

wk+1 = wk + s

Note that no step-size adaption is applied here. In a theoretical framework where certain
properties of the cost function c(X,Y,w) are assumed, the Newton method autonomously
produces an appropriate step size. It is implied in s. For this reason, it is commonly
believed that the inclusion of curvature information leads to less hyper parameters in those
methods. In an applied context, however, step size control may be needed to balance out
numerical instabilities and ill-conditioning.

Analogously to the first-order case, restricting the training data so a subset of the avail-
able samples introduces a stochastic approximation

min
w∈Rn

ci(Xi, Yi, w)

to the minimisation problem.

Convergence analysis

Estimating the required computational work of this iteration is less trivial. Consider the
corresponding stochastic extension to the Newton equation

Hci(w
k)s = −∇wci(Xi, Yi, w

k)

In order to make meaningful statements, assume it can be solved in O(ψ(b)) work, where
b is again the mini-batch size. Function ψ(·) is determined by the method of numerical
solution. This assumption is motivated by the algorithm discussed in the next chapter.
Fix X ∈ Sd and Y ∈ Ld and assume c(X,Y,w) ∈ C2(Rn) has a positive definite Hessian
on a set K. Denote its minimizer on K by w∗. The convergence analysis of the full-batch
problem follows the one in section 2.3 :

‖wk+1 − w∗‖ = o(‖wk − w∗‖)

i.e. the iteration converges Q-superlinearly. In order to achieve a desired tolerance ε > 0
the iterate wk only has to be sufficiently close to the minimum while each iteration has the

36

8.2. Stochastic Newton method

complexity O(ψ(d)). Regarding the stochastic approach, where in each iteration, a mini-
batch of size b = 1 is uniformly sampled from the available data, Agarwal et al. showed
that the expected convergence rate cannot be better than sublinear [1].

E
[
c(X,Y,wk)− c∗

]
= O

(
1

k

)
Here, the total required work to achieve expected ε-optimality multiplies to O(ψ(1)(1/ε)).
Consequently, a stochastic Newton method with batch size b = 1 would have little ad-
vantage over SGD, if any. In order to leverage the benefits of second-order optimisation,
larger mini-batches should be aimed for, as is once again illustrated. The transition from
stochastic to full-batch approach is an interesting subject of research. Advances have been
made to impose R-linear convergence on a stochastic second-order method using online
batch size adaption [5]. To this end, the batch size is progressively increased during the
optimisation.

37

9. Algorithm

The following chapter will provide an overview over the implementation details of large-
scale second-order machine learning. For simplicity, suppose a regression problem is to be
solved. In order to achieve a sufficiently accurate solution, a full-batch approach is taken:

min
w∈Rn

c(X,Y,w)

with X ∈ Sd and Y ∈ Ld fixed. Regarding the implementation details, this is no different
from solving a stochastic sub-problem in the context of a classification task:

min
w∈Rn

ci(Xi, Yi, w)

withXi ∈ Sb and Yi ∈ Lb. The latter can be extended to a state-of-the-art training algorithm
by cumulating the sub-problems in an appropriate outer loop. For ease of readability,
the first two arguments as well as the index of ci(Xi, Yi, w) are dropped in the following.
This is motivated by the fact that modern deep learning frameworks like TensorFlow can
handle inputs in a vectorised manner with no need to redefine the cost function.

It should be stated that the following optimisation routine is in no way meant to be com-
petitive with complete state-of-the-art stochastic training methods like SGD. The goal is
merely to provide a template for second-order optimisation including all necessary com-
ponents. For this reason, where there is exemplary code, it is provided in Python using
TensorFlow (fast prototyping). Given the template, novel ideas and approaches can easily
be implemented. To showcase the potential of second-order optimisation in large-scale
machine learning, the performance of naı̈ve implementations of first- and second-order
methods will be compared in the next part.

9.1. Hessian product

The main bottleneck of large-scale second-order optimisation is the solution of the Newton
equation

Hcs = −∇wc(w) (9.1)

with w ∈ Rn. All the variants are based on this equation. Replacing Hc with a differ-
ent matrix, possibly imposing positive definiteness or improving conditioning, leads to a
Newton-like method. Approximately solving (9.1) via an iterative method yields an inex-
act Newton iteration.

39

9. Algorithm

Comparison to full Hessian

Explicitly computing the Hessian is infeasible in many modern applications with respect to
computational work and memory. Fortunately, the efficient Hessian product described in
chapter 4 enables computation of the left-hand side of (9.1) in two backpropagation steps.
Multiplying with the input batch size, here denoted by b, leads to O(2bn) work. However,
the solution of the classic Newton equation requires an LSE solver, e.g. the conjugate
gradient method. Since each CG step is powered by one left-hand-side evaluation, the
total work sums up to O(2mbn), where m is the number of CG iterations needed to attain
a satisfactory tolerance. It is well known that for a well-posed system, CG converges to the
exact solution in at most n iterations and thus

m ≤ n

Given that a full computation of the Hessian via backpropagation requires O(n2b) work
- one backward pass times n for the second partial derivatives - it is evident that the ap-
proach outclasses explicit computation in almost every case. It is better, precisely if

2m < n

where m can be controlled via a tolerance argument passed to the CG algorithm.

Implementation details

The efficient Hessian product can easily be implemented using modern deep learning
frameworks. Here, an exemplary code snippet in Python 3 with TensorFlow 2.0 is given.� �

1 import tensorflow as tf
2

3 # Hessian product
4 def Hs (samples , labels , weights , s) :
5 with tf .GradientTape () as g :
6 g .watch (weights)
7 with tf .GradientTape () as gg :
8 gg .watch (weights)
9 c = cost (samples , labels , weights)

10 grad = gg .gradient (c , weights)
11 grad_s = tf .matmul (grad , s , transpose_a=True)
12 return g .gradient (grad_s , weights)� �

Line 11 contains the directional derivative of c(w) w.r.t s

∇wc(w)Ts

For the sake of completeness, it will also be explained how to compute the full Hessian in
O(n2b) work using TensorFlow. To this end, recall that taking the Jacobian of a gradient
equals the Hessian.

J∇wc = Hc

40

9.2. Optimisation

Consequently, the full Hessian of the cost function can be computed by applying nested
tf.GradientTape() calls.� �

1 import tensorflow as tf
2

3 # full Hessian
4 def H (samples , labels , weights) :
5 with tf .GradientTape (persistent=True) as g :
6 g .watch (weights)
7 with tf .GradientTape () as gg :
8 gg .watch (weights)
9 c = cost (samples , labels , weights)

10 grad = gg .gradient (c , weights)
11 return g .jacobian (grad , weights , experimental_use_pfor=False)� �

However, previous TensorFlow versions included a significantly more efficient function
for direct computation: tf.Hessians().

9.2. Optimisation

Algorithm

The Newton method for optimisation is not globally convergent for every starting point
w0. In particular, a strictly convex objective does not imply convergence of the method, as
the counterexample in section 2.3 shows. The solution of the Newton equation may yield
an infeasible search direction for which, assuming c(w) is continuous, no minimisation
of the loss can be guaranteed. In this case, an optimisation algorithm should fall back to
some safe method. Furthermore, pre-training is required to set the LSE solver up for a high
probability of success, as was elaborated on in section 7.1 .

The optimisation routine is sketched in the following. The Newton equation is usually
solved implicitly with CG using the Hessian product discussed in the previous section.
Although, different approaches are possible. Since the Newton equation is prone to nu-
merical ill-conditioning, even explicit solutions favour iterative solvers, e.g. least-squares
approximation. Afterwards, the search direction sk is checked against a threshold T < 0.
If

∇wc(wk)Tsk > T

i.e. the directional derivative w.r.t sk is non-negative, feasibility cannot be guaranteed and
the algorithm falls back to a gradient descent iteration. This causes the need for a step size
adaption. In the case when sk is a feasible descent direction, the step size could be chosen
σk = 1 because the Newton equation implies a valid step due to curvature information. In
practice however, this might not be the case due to an ill-posed (locally not strictly convex)
objective or numerical instabilities. It is therefore safer to apply the step size adaption even
for feasible sk.

41

9. Algorithm

Data: carefully initialised weights w0

Result: local minimum of c(w)
for number of pre-training iterations do

apply gradient descent
end
for k in 0 to number of training iterations do

compute sk by solving Hc(w
k)sk = −∇wc(wk)

if∇wc(wk)Tsk > T then
sk ← −∇wc(wk)

end
determine step size σk
wk+1 ← wk + σks

k

end
Algorithm 4: Globalised Newton method for optimisation

Step size adaption

In the following, two popular step size adaptions will be explained.

• Armijo step size adaption. Line-search methods offer an intuitive approach to find-
ing suitable step lengths σk. Their key idea is to impose certain constraints on a
hypothetical step and iteratively lower σk until the constraints are met. Ideally, this
is done while avoiding additional gradient evaluations. The so-called Armijo step
size adaption operates as follows [46]: Given β ∈ (0, 1) and γ ∈ (0, 1), determine

σk ∈ {1, β, β2, . . . }

so that
c(wk + σks

k)− c(wk) ≤ σkγ∇wc(wk)Tsk

A geometric interpretation of the method is shown in figure 9.1 .

• Learning rate. For some applications the additional loss evaluations introduced by a
line search algorithm might be problematic. This is typically the case for large-scale
networks or certain code frameworks where the cost is not explicitly implemented
as a function of the weights. In those cases, one can resort to using a learning rate.
The step size is set to a predefined value that is tested to yield acceptable results.
Learning rates can be adapted during the optimisation exclusively using first-order
information [52] or incorporating second-order information [37][48][8].

Note that by adding a step size adaption, hyperparameters are introduced for the second-
order method.

42

9.2. Optimisation

0 1 2 3 4 5 6
4

3

2

1

0

1

2

k wc(wk)Tsk

c(wk + ksk) c(wk)
k wc(wk)Tsk

Figure 9.1.: Geometric interpretation of Armijo step size adaption on R. Letting γ → 1
leads to greedier step selection but may cause stagnation

Curse of dimensionality

In large-scale neural networks, the dimension n, i.e. number of weights is typically very
high. Slight disturbances or numerical noise across all dimensions have great impact on
summation operations that transform from Rn to R. To illustrate this, suppose v ∈ Rn
is afflicted with a numerical error ε. Model this by adding a vector x of independent,
uniformly distributed random variables

xi ∼ U(−ε, ε), i = 1, . . . , n

Now, consider the summation over all elements. Taking the variance yields

Var

(
n∑
i=1

(vi + xi)

)
=

n∑
i=1

Var(vi + xi) =

n∑
i=1

Var(xi)

and by the formula for the variance of uniformly distributed random variables

n∑
i=1

Var(xi) =

n∑
i=1

1

12
(ε+ ε)2 = n

ε2

3

It is evident that for very large n, this operation exhibits somewhat significant numerical
variance. To combat this effect, the machine precision has to be set appropriately. How-
ever, this is not always feasible in terms of memory. Therefore, the Euclidean norm

‖v‖2 =

√√√√ n∑
i=1

v2i

43

9. Algorithm

loses part of its significance. This can get problematic because iterative solvers usually rely
on an error norm as stopping criteria. To deal with this issue, one can factor the dimension
n into these norms, for example by multiplying the tolerance by

√
n. Another approach

could be to account for the underlying global geometry of the input data and formulate a
novel distance measure, compare [42].

Complexity

Classic gradient descent requires one gradient evaluation per iteration. With the afore-
mentioned assumptions this amounts to O(bn) work. Since gradient descent acts as the
fall-back method, the second-order techniques expand on this complexity. The computa-
tional bottleneck of algorithm 4 is the evaluation of the Hessian. In the proposed form
this requires a mathematical framework to perform two backpropagations, thus scaling
linearly with batch size b and number of weights n:

O(2bn)

As previously proposed, choose the conjugate gradient method for the solution of the
Newton equation (9.1). Given that a satisfactory solution can be attained in m ≤ n steps,
the overall complexity is O(2mbn). In summary, algorithm 4 requires O(bn) work for the
underlying gradient descent routine as well as additional O(2mbn) for the second-order
component. Its computational cost is justified by a faster convergence rate as will be ex-
plained now. Choose c(w) to be twice continuously differentiable. Assume c(w) possesses
a positive definite Hessian on a convex set T ⊂ Rn which is aimed to be reached after
pre-training. Then, the loss sequence converges with Q-superlinear rate to the minimiser
w∗, i.e.

‖wk+1 − w∗‖ ≤ o(‖wk − w∗‖)

on the current stochastic sub-problem. It should be stated that in the context of an image
classification task this does not imply the same convergence regarding the training error,
unless the network is trained on the whole data, i.e. b = d. In comparison, (with the
necessary assumptions) pure gradient descent converges R-linearly and stochastic gradi-
ent descent sublinearly. Throughout this work, the analysis of second-order methods was
limited to merely showing superlinear convergence. Additional assumptions on the regu-
larity of∇wc(w) for w ∈ T , namely Lipschitz continuity, would however lead to quadratic
convergence. Such regularity could be imposed on the network by design with an appro-
priate layer architecture.

9.3. On parallelisation

The following section will deal with computational parallelisation and the difficulties therein
regarding deep neural network training. To motivate those considerations, note that the
implementation of loss of a neural network is typically batch-wise additive.

44

9.3. On parallelisation

Definition 9.1. Given a number of functions ci : Sbi × Lbi × Rn → R, i = 1, . . . , a, the
function

c : S
∑a

i=1 bi × L
∑a

i=1 bi × Rn → R

is called batch-wise additive w.r.t ci, if the identity

a∑
i=1

ci(Xi, Yi, w) = c(X,Y,w)

holds for
a⋃
i=1

Xi = X,

a⋃
i=1

Yi = Y

Corollary 9.2. The loss c(X,Y,w) of a deep neural network is batch-wise additive w.r.t any num-
ber of stochastic approximations defined on a disjoint partition of the training data.

Intuitively, this seems to promote parallel processing of an optimisation algorithm. Sadly,
the sequential nature of weight updates severely limits possibilities. The prediction of a
neural network depends on its weights, which in turn cannot be updated batch-wise. Ad-
vances in the field are thus confined to increasing the computational work required in each
iteration to increase opportunities for parallelisation. However, there has been effort to
break the sequential nature of neural network training altogether in the form of algebraic
methods [24] that factor in the dependence between weight updates and in asynchronous
techniques [53]. Ba et al. propose in [4] a method that computes quasi-Newton updates
asynchronously from the rest of the optimisation and accept possible mismatch as addi-
tional stochastic variance. A downside of this approach is lacking reproducibility caused
by dependence on computational capacities.

45

10. Experimental setup

10.1. Simple CNN

Network layout

For prototyping purposes a simple convolutional network (CNN) was created. Its archi-
tecture consists of one convolutional and two fully-connected layers. The precise layout is
as follows: As input, the network takes a 28× 28 pixels greyscale image, i.e. a single-track
square tensor (as opposed to RGB images with three tracks). The signal is passed to a con-
volutional layer with a 4× 4 pixels filter and stride one along both dimensions. Padding is
added to prevent the signal from shrinking to a square tensor of dimensions

28− (4− 1) = 25

and to maintain the same output of 28 × 28 pixels. As activation function, ReLU was
chosen. The signal is then vectorised to shape (1, 784) and successively right-multiplied
by the filters W1 ∈ R784×4 and W2 ∈ R4×10 followed by sigmoid and softmax activation
functions respectively. To calculate the final loss, categorical cross entropy is employed. In
total, this amounts to

4 · 4 + 784 · 4 + 4 · 10 = 3192

trainable variables. Regarding the implementation, the images’ pixel value range was
scaled dividing by the maximum (white) value 255.

MNIST

The network was trained on batches of the MNIST hand-written digits data set [19]. The
data consists of greyscale images of 28× 28 pixels which are partitioned in a training set of
size 50, 000, a validations set of size 10, 000 and a test set of size 10, 000. Each image shows
a hand-written number from 0 to 9. The corresponding labels were one-hot encoded for
the purpose of training.

Regularity

Much of the numerical analysis in this work assumes the loss function c(w) ∈ C2(Rn),
twice continuously differentiable. It is an important prerequisite for guaranteeing a well-
posed Newton equation and convergence of the employed numerical methods. However,

47

10. Experimental setup

Figure 10.1.: Layout of the simple CNN. Convolutional layer followed by flattening and
two fully-connected layers

Figure 10.2.: Sample images from MNIST training set (hand-written digits)

48

10.1. Simple CNN

5.0 2.5 0.0 2.5 5.0
0.0

0.2

0.4

0.6

0.8

1.0

sigmoid

2 0 2
0

2

4
ReLU

Figure 10.3.: Sigmoid (left) and ReLU (right) activation. While sigmoid is smooth, it suffers
from vanishing gradients due to close-to-constant behaviour for small and
large inputs. ReLU is not continuously differentiable at zero, yet standard for
state-of-the-art deep learning architectures

this assumption is violated in this simple CNN, since ReLU activation is used after the
convolutional layer. This is defined as

φReLU(t) = max{0, x} =

{
0 if t < 0
x if t ≥ 0

for x ∈ R and thus only continuous, but not continuously differentiable. The reasons ReLU
activation is usually chosen over the twice continuously differentiable sigmoid function

φsigm(t) =
1

2

(
1 + tanh

(
t

2

))
are manifold. Experiments in the field of image classification have shown that it can be
beneficial for a deep neural network to obtain a sparse representation of the data [41], for
which the ReLU with its hard zero is naturally suited [11]. On the other hand, the non-
linearity can block backpropagation through the corresponding neurons, giving rise to a
problem called dying ReLU [22]. It is characterised by certain neurons becoming unre-
sponsive, as their gradients are equal to zero. This can also happen for sigmoid activation
both for very high and low x, because the function is nearly constant in those domains.
The phenomenon is sometimes referred to as saturation. These effects are summarised
under the term vanishing gradient. Experiments on the simple CNN have shown ReLU
activation to be superior to sigmoid for this network, since more weights across all layers
could be reached during training. While sigmoid activation is prone to causing vanishing

49

10. Experimental setup

gradients, ReLU can additionally suffer from the opposite: exploding gradients [14] and
thus weights. This is due to unboundedness of the linear component.

Certain methods were proposed to deal with this problem. Some argue that proper
weight initialisation is the solution [10][26]. For the simple CNN, this was tested and
satisfactory results were achieved. The details will be explained in the next chapter. How-
ever, second-order optimisation techniques usually benefit from their strong theoretical
frameworks, that factor in the assumption of regularity. Additionally, unstable activation
functions may negatively influence the conditioning of the Newton equation. Based on
those conjectures, a different network needed to be considered for further experiments.
There have been attempts to design continuously differentiable activation functions with
possibly learnable parameters [34]. However, by far the most prominent ansatz to avoid
the aforementioned problems is batch normalisation [17]: internal covariate shift, or sat-
urated non-linearities, are relaxed by incorporating input normalisation into the network
architecture. This implies including two learnable parameters to each activation, namely
mean and variance. Since this architecture can possibly harmonise with the twice contin-
uously differentiable sigmoid function, good synergy with second-order optimisation is
expected. A popular network layout that incorporates batch normalisation is the so-called
ResNet.

10.2. ResNet

The academic neural network described above was useful for prototyping of the optimi-
sation routine, but possesses little technical significance. Its shallow layout allows for fast
backpropagation making both evaluation and storage of its Hessian Hc ∈ R3192×3192 pos-
sible on low-end processors. In the domain of deep neural networks, additional problems
arise. As benchmark of technical relevance, the popular ResNet [15] was chosen. With
around 20 million trainable variables in the 50-layer version, more thought has to be put
into the optimisation algorithm. Assuming 32-bit (4 byte) single precision, the required
storage space for a dense Hessian becomes extensive at approximately 1, 600 terabyte.
Thus, the training algorithm has to be designed more carefully.

Network layout

In the experiments, a 50-layer ResNet architecture is considered. It is comprised of a plain
network and residual connections. The plain network consists of convolutions with fil-
ters of 3 × 3 pixels where downsampling is performed by a stride of two. After each
convolution, batch normalisation is adopted. At the end, global average pooling is em-
ployed followed by a 1000-way fully-connected layer with softmax loss. Based on the
plain network, residual connections are incorporated. These are denoted by the additional
errors on the right in figure 10.4 . The dotted lines indicate a connection that increases
the signal dimensions. In total, the network has 3.6 billion FLOPs (multiply-adds) and

50

10.2. ResNet

Figure 10.4.: ResNet visualisation [15]. VGG-19 [40] (left) for reference, plain network
(middle) and residual layout (right). Dotted lines indicate an increase in di-
mensions.

51

10. Experimental setup

Figure 10.5.: Samples from the ImageNet validation set (ILSVR 2012)

contains 23, 944, 392 trainable weights. Regarding implementation, the input images were
resized to triple-track (RGB) 224 × 224 pixels tensors using OpenCV’s cv2.resize(). ResNet
is available in TensorFlow via Keras through the tf.keras.applications.resnet.ResNet50() class.
A downside is that the model works with 32-bit single precision which cannot be adjusted
without adapting the source code. Keras provides a set of weights that were pre-trained
on ImageNet using images that were not normalised, i.e. with pixel values from [0, 255].

ImageNet

As training input, the data set from 2012 ImageNet large-scale visual recognition (ILSVR
2012) challenge [36] was used. It consists of RGB images of various size depicting an
animal, person or object from 1000 different classes. There are approximately 1.28 million
images in the training set, 50, 000 validation and 100, 000 test images. The labels were
one-hot encoded for training.

52

11. Weight initialisation

In respect of section 10.1 , activation functions play an important role in the convergence of
neural network training. There, the concepts of vanishing gradients, exploding gradients
and dying ReLU were briefly described. These phenomenons distort the backpropagation
by making large parts of the network inaccessible or scale them to enormous values. ReLU
or sigmoid activation can get ”stuck” and thereby lead to inefficient weight updates.

Example

For illustration, consider the first fully-connected layer in the simple CNN from section
10.1 . It consists of the right-multiplication

(xconv)TW1

where xconv ∈ R784 is the vectorised signal passed from the convolutional layer (which
maps from S to R784) and W1 ∈ R784×4. If the filter W1 was naı̈vely initialised by (e.g.)
ones, it is easy to see how even moderate xconv will blow up the output and saturate the
following sigmoid activation. To this end, sample the entries of xconv from a normal distri-
bution. This is to represent the colour spectrum of an image-based signal. Since the images
are scaled beforehand, assume xconv,i ∼ N (0.5, 0.25), i ∈ [1, 784] independently. Then, the
expected value of the four output entries each sums up to

E

[
784∑
i=1

xconv,i

]
=

784∑
i=1

E [xconv,i] = 784 · 0.5 = 392

which is high enough to saturate the sigmoid activation. This means driving the output
into its near constant regime and thus hindering the gradient-based optimiser to make
meaningful changes to corresponding weights.

Implication for non-convex optimisation

Some authors propose that proper weight initialisation, i.e. starting the training from a
carefully chosen initial point, fixes the aforementioned issues [10][14][22][26]. Indeed, sat-
urating, killing or blowing up neurons can be avoided by simply inputting moderate val-
ues. To set the optimisation algorithm up with the best possible chances of success, proper
weight initialisation is crucial. Especially in non-convex optimisation, where convergence
to a global minimum is highly unlikely, the local minimum found depends entirely on the

53

11. Weight initialisation

initial vector. Regarding the benefits of ”killing” neurons and a sparse data representa-
tion causing an increase in performance [41][11], it should be stated that this is typically
an increase in classification accuracy, but not in optimiser performance. Since the latter is
subject of this work, thorough attention had to be paid to weight initialisation.

Xavier-inspired initialisation

For the fully-connected layer of the simple CNN above this means requiring the expected
value of the outputs to be around zero. Additionally, the variance is scaled by the dimen-
sions for numerical stability. The finally chosen initialisation scheme was

Wj ∼ N

(
0,

√
2

nj, in + nj, out

)
, j ∈ [1, 3]

where Wj are the filter matrices, nj, in the input (fan-in) and nj, out the output dimension
(fan-out). It is based on the so-called Xavier initialisation first proposed by Xavier Glorot
et al. in [10]:

W ∼ U
(
−
√

6

nin + nout
,

√
6

nin + nout

)
Since then, many different initialisation schemes have been proposed, e.g. asymmetric
methods to account for ReLU’s asymmetry [22] and sequential ones that trace the signal
through layers hence factoring in the network’s depth [26].

54

12. Related research

Additional approaches to second-order training for deep neural networks are manifold.
In-depth analysis is conducted regarding the loss landscape, using curvature information
obtained through statistical algorithms [49][12]. This paves the way for well-understood
training methods and potentially a stronger theoretical foundation. In the stochastic do-
main, Agarwal et al. apply a stochastically approximated Hessian inverse with linearly-
scaling work in second-order optimisation [2]. Pilanci et al. propose in [33] a quasi-
Newton method which in every step uses a randomly sub-sampled Hessian that achieves
superlinear convergence. In the deterministic domain, promising ideas are cubic regulari-
sation and trust-region methods [27][47] which are able to deal with negative curvature
and thus non-convex domains. This is achieved by introducing additional constraints
to the optimisation. Moving on to a larger-scale proof-of-concept, Osawa et al. applied
K-FAC-powered second-order training to ResNet on ImageNet [31]. Another promising
advance is the inclusion of second-order information obtained in an efficient way to first-
order optimisation. Yao et al. make use of this in curvature-based batch size adaption [48]
for SGD in order to escape regions prone to adversarial attacks.

55

Part IV.

Numerical experiments

57

13. Quality of numerical Hessians

An important precursor to numerical second-order optimisation is the availability of stable
and sufficiently precise (quasi-)Hessians. Algorithmic differentiation supplies this need by
recursively passing gradients through the network in an exact manner. Together with the
tools provided in chapter 4 and section 9.1 this makes the exact Hessian or an Hessian-
vector product readily available. This computational bottleneck of second-order training
was implemented in the context of this work for the simple CNN from section 10.1 and
ResNet. To confirm numerical stability, those implementations were thoroughly tested.

Taylor approximation error

A simple mathematical measure to check the quality of a numerically computed Hessian
matrix is the Taylor-approximation error. Consider the mapping c : Rn → R. Taylor
approximation around w = w̄ yields

c(w) = c(w̄) +∇wc(w̄)T(w − w̄) +
1

2
(w − w̄)THc(w̄)(w − w̄) + o(‖w − w̄‖2) (13.1)

Note that the error term depends quadratically on the norm of (w − w̄). For comparison,
the function is additionally approximated to the first order:

c(w) = c(w̄) +∇wc(w̄)T(w − w̄) + o(‖w − w̄‖)

where the error scales with ‖w−w̄‖. To examine the Hessian quality, the error term in (13.1)
is now evaluated at certain distances from w̄. If the numerical Hessian is precise, linear
convergence is observed towards the approximation point. It should be noted that if c(w)
is affine, there will be virtually no difference between the first- and second-order Taylor
approximation. This stems from the fact that in a domain with negligible curvature the
Hessian Hc will be close to zero. However, in a neighbourhood w ∈ K around a minimum
w∗ where c(w) is positive definite and thus strictly convex, there will be a clearly visible
difference in quality. It is thus fair to assume that the second-order approximation gets
better near a minimum. From this, it can be inferred that second-order optimisation gains
an advantage over first-order optimisation in the vicinity of a minimum.

Working precision

The standard numeric data type for deep neural network training is 32-bit single precision
(tf.float32 in TensorFlow). Even though numerical stability would favour higher precision,

59

13. Quality of numerical Hessians

as was made plausible for Euclidean norms in section 9.2 , the extensive amount of required
memory limits the possibilities. Especially in the distributed-computing setting, single
precision is chosen over 64-bit double precision (tf.float64 in TensorFlow), to get rid of
computational overhead. In second-order training, some go as far as to reduce the data
type to half precision [31] to be able to deal with explicitly evaluated (quasi-)Hessians in
approximately 20 million dimensions. While the efficient Hessian-vector products takes
away some of the complexity, still a large amount of RAM is required, especially with
increasing training batch sizes.

TensorFlow

The recently released TensorFlow version 2.0 introduced significant changes compared
to earlier versions. Most importantly, the session-based execution of a previously built
graph was abolished in favour of eager execution to fit natively into the Python frame-
work. While the efficient Hessian product can still be implemented without major dif-
ficulties, evaluating the Hessian explicitly is more demanding due to the removal of the
efficient tf.Hessians() function. It can still be done easily, however less efficiently, by taking
the Jacobian of the gradient, see section 9.1 .

60

14. Simple CNN

The simple CNN with its moderate scale allowed for numerical experiments using the 64-
bit double precision (tf.float64 in TensorFlow) numeric data type. The switch from default
was motivated by tests that showed unsatisfactory Hessian quality at single precision. For
reproducibility, Experiments on the simple CNN were conducted on a home computer
with a 2,7 GHz Intel Core i7 processor and 4 GB 1333 MHz DDR3 RAM. Python 3.6.8 was
used along with TensorFlow 2.1.0

14.1. Explicit Hessian

For experiments with the fully evaluated Hessian, first a sanity check was performed. On
a single-sample batch, an explicit Hessian was computed with the TensorFlow version two
framework. This took on average 35.447 [s] across seven runs. For comparison TensorFlow
version one was used which took 7.461 [s] on average and the difference between the two
Hessians evaluated to 3.19e−16 in the Frobenius norm

‖A‖F :=

√∑
i

∑
j

|Aij |2

which is zero to working precision. Next, the computation-time scaling regarding batch
size was examined. TensorFlow version one was used. Table 14.1 summarises the findings.
In conformity with the previous theoretical analysis, approximately linear scaling can be
observed. The numerical experiments were concluded by the evaluation of the Taylor

batch size 1 10 100 1000
comp. time [s] 6.529 15.722 145.366 1256.274

Table 14.1.: Evaluation time of full Hessian. Expected batch size scaling is linear

approximation error. To this end, a batch size of b = 100 samples was chosen. In order to
be sufficiently close to a minimum, k = 150 gradient descent iterations were performed.
The test direction, in which the distance was measured, was naı̈vely chosen to be a uniform
(unit) vector across all 3192 dimensions. The results are presented in figure 14.1 . In the
logarithmic scale, linear and quadratic convergence correspond to a slope of one and two,
respectively. This can be shown by the simple calculation

|y| = |x|s ⇔ log(|y|) = s log(|x|)

61

14. Simple CNN

10 510 410 310 210 1

distance

10 13

10 11

10 9

10 7

10 5

10 3

10 1

er
ro

r

first-order
second-oder

Figure 14.1.: First- and second-order Taylor approximation error for simple CNN with
b = 100. Logarithmic scale. Linear and quadratic error convergence can be
observed through an approximate slope of one and two, respectively

62

14.2. Hessian product

The expected convergence rates of the firs- and second-order Taylor approximation can be
observed in the plot. It can therefore be concluded that the Hessian possesses sufficient
numerical quality.

14.2. Hessian product

As a sanity check, the explicit Hessian was left-multiplied with a random direction s and
compared with the Hessian product for a batch size b = 100 (and random weights). The
2-norm (or Euclidean norm) of the remainder was 2.40e−13 which is sufficiently small in
double precision, given that the high-dimensional Euclidean norm is prone to numerical
variance (see section 9.2). Computation times of the efficient Hessian-vector product are
given in table 14.2 . Again, approximately linear scaling can be observed, as expected. With
this technique at hand, it is possible to scale the batch size to the maximum and work with
the full training set of 60, 000 samples (MNIST).

batch size 1 10 100 1000 10000
comp. time [s] 0.030 0.064 0.204 1.173 11.580

Table 14.2.: Evaluation time of Hessian-vector product. Expected batch-size scaling is lin-
ear

14.3. Second-order optimisation

Next up, the template algorithm explained in section 9.2 was compared against naı̈ve gra-
dient descent in a practical scenario. Leveraging the low computation times of the Hessian
product, a full-batch approach with b = d = 60, 000 was taken. For globalisation purposes,
the quasi-Newton method operates with Armijo line search. For the gradient descent, line
search proved impractical. This is due to the cost function being coercive, i.e. growing
rapidly at the limits of Rn. Thus, not for every cost function evaluation, a (numerically)
finite value can be guaranteed, hindering the trial-and-error-based line search. Note that
second-order methods do not suffer from this drawback, since they implicitly find a mod-
erate step.

Consequently, an appropriate learning rate had to be found for the gradient descent in
the context of hyperparameter tuning. In each iteration, the weights were updated a fixed
distance in the direction of steepest descent. The results can be seen in figure 14.2 . For
convenience, the optimisation was done on 28 cores of a supercomputing cluster made
up of several Intel Xeon E5-2690 v3 ”Haswell” processors and with a supply of 64 GB
of RAM (DDR4). However, it could have easily been done on the home system. On the
supercomputer, one gradient evaluation clocked in at 1.523 [s] and one Hessian product
was processed in 3.742 [s]. Factoring in overhead, this roughly confirms the previously

63

14. Simple CNN

50 55 60 65 70 75 80
iteration

60000

65000

70000

75000

80000

85000

c(
X,

Y,
w)

gradient descent
quasi-Newton

Figure 14.2.: Per-iteration cost of quasi-Newton method compared to gradient descent for
simple CNN on MNIST (full training data b = d = 60, 000). Comparison starts
after pre-training

64

14.3. Second-order optimisation

established theory ofO(d) work andO(2d) work, respectively. In a pre-training period, 60
gradient descent iterations were executed, followed by 20 training iterations per method.

The conjugate gradient (CG) method was warm-started from the normalised weight
vector

wk

‖wk‖2
for faster convergence. On average, CG required m̄ = 7.8 iterations which each require
one Hessian product. This means that the average quasi-Newton step took ca. 15.6 times
the work of a gradient descent step as additional overhead. While the per-iteration cost
alone cannot justify using the second-order method, the potential for HPC applications is
evident.

65

15. ResNet

Computing the Hessian product posed more of a challenge for ResNet than for the sim-
ple CNN. Needless to say, evaluating the Hessian explicitly is infeasible in approximately
20 million dimensions. For this reason, computation was moved to a supercomputing
cluster. There, 28 cores, made up of several Intel Xeon E5-2690 v3 ”Haswell” processors
were used, with a supply of 64 GB of RAM (DDR4). Even with this computing power at
hand, the maximum practicable batch size from the ImageNet training data turned out to
be b = 16. Reasonable larger-scale experiments would require parallelisation efforts or
approval of extensive RAM consumption. This, in turn, hinders meaningful studies of the
Hessian-product computation time. However, a simple proof-of-concept for the algorithm
proposed in section 9.2 along with other investigations were possible.

15.1. Loss surface

The shape of the n-dimensional loss landscape plays an important role in optimisation.
Especially second-order methods depend highly on the quality of their underlying ap-
proximation. As previously established, those methods get better in the neighbourhood of
a minimum where the cost function is close to strictly convex. On the other hand, saddle
points can hinder convergence, as the Hessian becomes indefinite which causes problems
for CG. Second-order methods rely on the shape of the loss landscape more heavily than
first-order methods, because they include curvature in addition to slope. It can thus be
insightful to examine the loss landscape. This is usually done by computing principal
eigenvectors of Hc, i.e. those with the highest absolute value, via a so-called power iter-
ation. Given the principal eigenvector v1, the largest absolute eigenvalue λ1 can then be

Data: number of iterations
Result: approximation to principal eigenvector of Hc in unit length
sample b0 ∼ N (0, 1)
normalise b0 to unit length
for k in 0 to number of iterations do

bk+1 ← Hcb
k

normalise bk+1 to unit length
end
return bk+1

Algorithm 5: Power iteration

67

15. ResNet

Figure 15.1.: Loss surface of ResNet (trained on ImageNet), plotted along the first two prin-
cipal directions with eigenvalues λ1 = 131, 942.86 and λ2 = 101, 590.70

computed by calculating the norm ‖Hc(v
1)‖2 since by the eigenvector equation

Hc(v
1) = λ1v

1

Once the first eigenvalue is computed, the second eigenvector is obtained by repeating the
procedure with

H̄c = Hc − λ1v1(v1)T

To make this plausible, recall that

Hc =
n∑
i=1

λiv
i(vi)T

The principal directions of the Hessian can be interpreted as the directions of maximum
curvature of the loss function c(w) in the weight space. Neglecting all but the first two
eigenvectors yields an approximate loss surface. This is illustrated in in figure 15.1 for
the given implementation of ResNet, pre-trained on ImageNet. The corresponding ap-
proximate eigenvalues are λ1 = 131, 942.86 and λ2 = 101, 590.70, computed in 20 power
iterations each. Since the network was initialised with pre-trained weights, a minimum
can be observed along those (highest-curvature) directions.

68

15.2. Hessian product

Figure 15.2.: Loss surface from figure 15.1 rotated 90◦ counter-clockwise

15.2. Hessian product

Similar to the simple CNN, the quality of numerical Hessian was evaluated through Taylor
approximation error. For ResNet however, no explicit Hessian could be computed, so the
efficient Hessian product was used. As stated before, in order to observe a difference in ap-
proximation error between first- and second-order approximation, the cost function must
not be affine along the test direction. If a random vector is chosen in a high dimensional
space, there is a chance the chosen direction is affine. To guarantee non-zero curvature, the
Taylor approximation error was tested along the eigenvector corresponding to the largest
eigenvalue of Hc. The error is given in table 15.1 Computing the Hessian product took

distance 0.1 0.01 0.001 1e−4 1e−5

err. (1st) 70.9687 3.37188 0.0773926 0.000835419 5.722 05e−5

err. (2nd) 588.7740 3.22557 0.0114250 0.000175476 4.959 11e−5

Table 15.1.: Error of first- and second-order Taylor approximation to the loss function of
ResNet along the principal direction of Hc. Linear and quadratic convergence
can be observed. Convergence plateaus in the end due to implementation-
forced (TensorFlow) single precision limiting the range for analysis

20.577 [s] on average across four evaluations on the supercomputer. While quadratic con-
vergence of the second-order approximation can be observed in the first four steps, the
error plateaus in the end. This happens because the robustness against numerical vari-
ance is ”saturated” for the extremely high-dimensional problem near machine precision,
compare section 9.1 . This imposes a limit on the range where meaningful analysis is pos-
sible. Due to the coerciveness of c(w), further distances lead to numerically infinite values.
It can be concluded that, to unlock the full potential of second-order approximations and
therefore quasi-Newton methods, double precision is necessary. Unfortunately, this would
have required re-implementing ResNet which exceeded the scope of this work.

69

15. ResNet

15.3. Second-order optimisation

Concluding the numerical experiments, the template second-order optimisation routine
from section 9.2 was applied to the large-scale ResNet in a proof-of-concept. To this end, a
mini-batch of size b = 16 was used from ImageNet, as stated before. Scaling the problem
up to larger batch sizes is possible on state-of-the-art supercomputers (e.g. the aforemen-
tioned cluster) but to be done properly, requires parallelisation of the per-iteration compu-
tational work. Additionally, code optimisation in terms of overhead is necessary.

To create the experimental setup, the pre-trained minimum was perturbed by multiply-
ing the weight vector w with a n-dimensional random vector

p ∼ N (1, 0.01)

eliminating the need for pre-training. As comparison and fall-back method, naı̈ve gradient
descent was implemented, using a learning rate for step size regulation. Six sample runs
were performed and the results can be seen in figure 15.3 . The conjugate gradient (CG)
method required m̄ = 4.4 iterations on average. It can be observed that the second-order
method consistently out-performs the first-order method in terms of convergence. Further
increase of this advantage is expected when changing from single to double precision.

70

15.3. Second-order optimisation

0 2 4 6 8 10
0

10

20

30

40

c(
X,

Y,
w)

gradient descent
quasi-Newton

0 2 4 6 8 10
0

20

40

60

80 gradient descent
quasi-Newton

0 2 4 6 8 10
0

20

40

60

c(
X,

Y,
w)

gradient descent
quasi-Newton

0 2 4 6 8 10
0

10

20

30

40 gradient descent
quasi-Newton

0 2 4 6 8 10
iteration

0

10

20

30

40

c(
X,

Y,
w)

gradient descent
quasi-Newton

0 2 4 6 8 10
iteration

0

10

20

30

40

50 gradient descent
quasi-Newton

Figure 15.3.: Proof-of-concept of second-order optimisation for ResNet (on ImageNet with
batch size b = 16). Start from randomly perturbed minimum (pre-trained).
Algorithm 4 is compared against gradient descent

71

Part V.

Conclusion

73

Summary

In this work, a template for second-order optimisation tailored to application in the train-
ing of large-scale deep neural networks was motivated, established and analysed. To
substantiate the theoretical claims, the algorithm was tested in a practical environment
alongside other investigations. Through application to the popular ResNet on ImageNet,
the potential of second-order optimisation in large-scale deep learning could be demon-
strated. A short recap of the thesis work including the most important findings will be
given in the following.

Deep neural networks were briefly introduced and the connection to mathematical opti-
misation was established. It was found that the associated cost function can be constructed
smooth and thus suitable for second-order optimisation. In batch-wise input handling, a
heuristic implementation detail was discussed and brought into conformity with rigorous
mathematical analysis. Afterwards, the optimisation problem was formally stated and
the optimality conditions were derived. Based on the preliminaries, gradient descent and
the Newton method were introduced. In particular, the relation between Euclidean space
and gradient descent was clarified and the importance of quadratic approximation for the
Newton equation was indicated. Since the second-order method is not globally convergent
for every starting point, globalisation measures were proposed. Algorithmic differentia-
tion was briefly discussed and the term ”backpropagation” was motivated. In anticipa-
tion of computational infeasibility regarding an explicit Hessian evaluation, a trick was
presented to compute an implicit Hessian-vector product, reducing the complexity from n
gradient calculations down to two. Subsequently, a brief overview was given over solution
methods for the Newton equation in the context of large-scale deep learning. Conjugate
gradient (CG) was found as a well-suited algorithm that can be used to exploit the afore-
mentioned Hessian-vector trick. As an important detail, CG converges monotonically in
exact arithmetic.

In a short digression, a first-order optimisation technique using CG was derived, based
on a different formal problem statement, to contrast with the above.

Moving further towards practical application, the impact of strict convexity regarding
the objective function on the solution of the Newton equation was formally examined. It
was found that applicability is rather a question of positive definiteness and these two do
not necessarily coincide. Heuristic measures to deal with ill-conditioning were introduced
in pre-training and Tikhonov regularisation. The notion of stochastic approximation was
explained and applied to both gradient descent and the Newton method, bridging the
gap to common deep learning practice. Considering a stochastic sub-problem, gradient
descent converges with R-linear rate under certain circumstances. Motivation was given
for the use of second-order over first-order methods. In particular, they are better suited
to take advantage of extensive computing power. A stochastic modification of the Newton
method was introduced, with Q-superlinear convergence regarding the stochastic sub-
problems.

Moving on to the implementation details, a template second-order optimisation routine

75

for large-scale deep learning was proposed. Fall-back steepest descent and line-search
were introduced as globalisation measures. In total, the additional overhead compared
to gradient descent regarding the stochastic sub-problem was calculated to be O(2mbn),
where b is the batch size and m the number of CG iterations. Additionally, the impact of
dimensionality on the Euclidean norm was made plausible in a stochastic sense and the
challenges of parallelisation for optimisation were characterised. The experimental setup
was discussed. Motivating the transition from an academic example to ResNet, the inter-
play between activation functions and optimisation was sketched, including dying ReLU,
vanishing gradients and batch normalisation. Lastly, the importance of careful weight ini-
tialisation for neural network training was demonstrated and a Xavier-like scheme was
proposed. To build on the template algorithm, a collection of relevant approaches to
second-order optimisation for large-scale deep learning was given.

Concluding the work, above established theory was implemented in Python 3 using
TensorFlow 2.0 and thoroughly tested. Adopting the efficient Hessian product in the op-
timisation routine made scaling up the batch size to b = 60, 000 (MNIST training set) for
the simple CNN possible. The proposed algorithm outperformed gradient descent consis-
tently across all test cases (simple CNN and ResNet), demonstrating its potential. Addi-
tionally, the fast Hessian product inspired a loss landscape study powered by eigenvalue
analysis. Even though the ResNet optimisation was computed on an HPC cluster, a tech-
nical ceiling was hit, overcoming which would require parallelisation of the per-iteration
computational work.

Perspectives

As was the goal of this work, a template for the incorporation of new approaches is now
readily available. The rapidly evolving field of deep neural network training offers many
promising ideas. Given more time, cubic regularisation and trust-region methods [47] as
well as preconditioning for conjugate gradient [8] would have been investigated to address
the issues of lacking global convergence and ill-conditioning. Another interesting ansatz
for the latter is to expand the second-order approximation and ”approximate positive def-
initely” through the generalised Gauss-Newton matrix (Jc)

THcJc. The counter-approach
to developing increasingly robust optimisation methods is creating deep neural networks
that are easily optimisable by design. Particularly in the field of optimal control, where
sooner or later learning and decision making is supposed to be performed in real-time,
this appears relevant. Regarding second-order optimisation, a potential starting point
would be guaranteeing Lipschitz-continuity of the Hessian which leads to Q-quadratic
convergence of the Newton method. What is more, a geometric approach could be taken
to incorporate manifold learning into optimisation: Considering the dependence of gradi-
ent descent on the Euclidean space, methods could be created exploiting the underlying
manifold of the training data.

76

Appendix

77

A. Convergence rates

Convergence rates quantify the convergence of a sequence to some limit. They are a com-
mon tool in optimisation and deep learning literature. It can be useful to put them in direct
comparison. For convenience, the convergence rates used throughout this work are listed
here:

• Sublinear.
c(wk)− c(w∗) ≤ O (1/k)

• R-linear.
c(wk)− c(w∗) ≤ O(ρk), ρ ∈ (0, 1)

• Q-linear.
c(wk+1)− c(w∗) ≤ ρ · (c(wk)− c(w∗)), ρ ∈ (0, 1)

• Q-superlinear.
‖wk+1 − w∗‖ = o(‖wk − w∗‖)

79

81

Bibliography

[1] Alekh Agarwal, Martin J. Wainwright, Peter L. Bartlett, and Pradeep K. Ravikumar.
Information-theoretic lower bounds on the oracle complexity of convex optimization.
In Advances in Neural Information Processing Systems 22, pages 1–9. Curran Associates,
Inc., 2009.

[2] Naman Agarwal, Brian Bullins, and Elad Hazan. Second order stochastic optimiza-
tion in linear time. ArXiv, abs/1602.03943, 2016.

[3] Joel A. E. Andersson, Joris Gillis, Greg Horn, James B. Rawlings, and Moritz Diehl.
CasADi – A software framework for nonlinear optimization and optimal control.
Mathematical Programming Computation, 11(1):1–36, 2019.

[4] Jimmy Ba, Roger B. Grosse, and James Martens. Distributed second-order optimiza-
tion using Kronecker-factored approximations. In ICLR, 2017.

[5] Raghu Bollapragada, Dheevatsa Mudigere, Jorge Nocedal, Hao-Jun M. Shi, and Ping-
Tak P. Tang. A progressive batching L-BFGS method for machine learning. ArXiv,
abs/1802.05374, 2018.

[6] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-
scale machine learning. SIAM Review, 60:223–311, 2016.

[7] Frank E. Curtis and Wei Guo. R-linear convergence of limited memory steepest de-
scent. IMA Journal of Numerical Analysis, 38, 2016.

[8] Yann Dauphin, Harm de Vries, and Yoshua Bengio. Equilibrated adaptive learning
rates for non-convex optimization. In NIPS, 2015.

[9] Ron S. Dembo, Stanley C. Eisenstat, and Trond Steihaug. Inexact Newton methods.
SIAM Journal on Numerical Analysis, 19(2):400–408, 1982.

[10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the Thirteenth International Conference on Ar-
tificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research,
pages 249–256, Chia Laguna Resort, Sardinia, Italy, 13-15 May 2010. PMLR.

[11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural net-
works. In Proceedings of the Fourteenth International Conference on Artificial Intelligence

83

Bibliography

and Statistics, volume 15 of Proceedings of Machine Learning Research, pages 315–323,
Fort Lauderdale, FL, USA, 11-13 Apr 2011. PMLR.

[12] Diego Granziol, Xingchen Wan, Timur Garipov, Dmitry P. Vetrov, and Stephen
Roberts. MLRG deep curvature: An open-source package to analyse and visualise
neural network curvature and loss surface. In MLRG Deep Curvature, 2019.

[13] Andreas Griewank. Automatic Differentiation, chapter VI.7, pages 749–752. Princeton
University Press, 2014.

[14] Boris Hanin. Which neural net architectures give rise to exploding and vanishing
gradients? In NeurIPS, 2018.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016.

[16] Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving
linear systems. Journal of research of the National Bureau of Standards, 49:409–436, 1952.

[17] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Proceedings of the 32nd International
Conference on International Conference on Machine Learning - Volume 37, ICML’15, page
448–456. JMLR.org, 2015.

[18] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014.

[19] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86:2278–2324, 1998.

[20] Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical Programming, 45(1-3):503–528, 1989.

[21] Yun Liu, Krishna Gadepalli, Mohammad Norouzi, George E. Dahl, Timo Kohlberger,
Aleksey Boyko, Subhashini Venugopalan, Aleksei Timofeev, Philip Q. Nelson, Gre-
gory S. Corrado, Jason D. Hipp, Lily Peng, and Martin C. Stumpe. Detecting cancer
metastases on gigapixel pathology images. CoRR, abs/1703.02442, 2017.

[22] Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karniadakis. Dying ReLU and
initialization: Theory and numerical examples. ArXiv, abs/1903.06733, 2019.

[23] David G. Luenberger. Introduction to Linear and Nonlinear Programming. Addison-
Wesley, 1973.

[24] Saeed Maleki, Madan Musuvathi, and Todd Mytkowicz. Parallel stochastic gradient
descent with sound combiners. ArXiv, abs/1705.08030, 2017.

84

Bibliography

[25] Andreas Meister. Numerik linearer Gleichungssysteme. Wiesbaden: Springer Spektrum,
2015.

[26] Dmytro Mishkin and Juan E. Sala Matas. All you need is a good init. CoRR,
abs/1511.06422, 2015.

[27] Yurii Nesterov and Boris Polyak. Cubic regularization of Newton method and its
global performance. Mathematical Programing, 108:177–205, 2006.

[28] Andrew Y. Ng. Feature selection, L1 vs. L2 regularization, and rotational invariance.
In Proceedings of the Twenty-First International Conference on Machine Learning, ICML
’04, page 78. New York: Association for Computing Machinery, 2004.

[29] Jorge Nocedal. Updating quasi-Newton matrices with limited storage. Mathematics of
Computation, 35(151):773–782, 1980.

[30] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York,
NY, USA, second edition, 2006.

[31] Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Rio Yokota, and Satoshi
Matsuoka. Large-scale distributed second-order optimization using Kronecker-
factored approximate curvature for deep convolutional neural networks. 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 12351–
12359, 2018.

[32] Barak A. Pearlmutter. Fast exact multiplication by the Hessian. Neural Computation,
1993.

[33] Mert Pilanci and Martin J. Wainwright. Newton sketch: A linear-time optimization
algorithm with linear-quadratic convergence. SIAM Journal on Optimization, 27:205–
245, 2015.

[34] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation func-
tions, 2017.

[35] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning Internal
Representations by Error Propagation, page 318–362. MIT Press, Cambridge, MA, USA,
1986.

[36] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C.
Berg, and Fei-Fei Li. ImageNet large scale visual recognition challenge. International
Journal of Computer Vision, 115:211–252, 2015.

[37] Nicol N. Schraudolph. Fast curvature matrix-vector products for second-order gradi-
ent descent. Neural computation, 14:1723–38, 2002.

85

Bibliography

[38] Nicol N. Schraudolph, Jin Yu, and Simon Günter. A stochastic quasi-Newton method
for online convex optimization. In Proceedings of the Eleventh International Conference on
Artificial Intelligence and Statistics, volume 2 of Proceedings of Machine Learning Research,
pages 436–443, San Juan, Puerto Rico, 21-24 Mar 2007.

[39] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Tim-
othy P. Lillicrap, Karen Simonyan, and Demis Hassabis. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. ArXiv, abs/1712.01815,
2017.

[40] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. CoRR, abs/1409.1556, 2014.

[41] Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deeply learned face representations are
sparse, selective, and robust. 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2892–2900, 2014.

[42] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric frame-
work for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

[43] Andrey N. Tikhonov. Numerical methods for the solution of ill-posed problems. Dordrecht:
Kluwer Academic Publishers, 1995.

[44] Andrey N. Tikhonov and Vasiliy Y. Arsenin. Solutions of ill-posed problems. Washing-
ton: Winston, New York: Halsted Press, 1977.

[45] Andrey N. Tikhonov, Aleksandr S. Leonov, and Anatolij G. Yagola. Nonlinear ill-posed
problems. London: Chapman & Hall, 1998.

[46] Michael Ulbrich and Stefan Ulbrich. Nichtlineare Optimierung. Mathematik Kompakt.
Basel: Birkhäuser, 2012.

[47] Peng Xu, Farbod Roosta-Khorasani, and Michael W. Mahoney. Newton-type meth-
ods for non-convex optimization under inexact Hessian information. Mathematical
Programming, pages 1–36, 2017.

[48] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W. Mahoney. Large batch size
training of neural networks with adversarial training and second-order information.
ArXiv, abs/1810.01021, 2018.

[49] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W. Mahoney. PyHessian:
Neural networks through the lens of the Hessian. ArXiv, abs/1912.07145, 2019.

[50] Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and Michael W. Mahoney. Hessian-
based analysis of large batch training and robustness to adversaries. In NeurIPS, 2018.

86

Bibliography

[51] Kun-Hsing Yu, Ce Zhang, Gerald Berry, Russ Altman, Christopher Ré, Daniel Ru-
bin, and Michael Snyder. Predicting non-small cell lung cancer prognosis by fully
automated microscopic pathology image features. Nature Communications, 7, 2016.

[52] Matthew D. Zeiler. ADADELTA: An adaptive learning rate method. CoRR,
abs/1212.5701, 2012.

[53] Sixin Zhang, Anna Choromanska, and Yann LeCun. Deep learning with elastic aver-
aging SGD. In NIPS, 2015.

87

	Acknowledgements
	Abstract
	Introduction
	Basics of neural network training
	Deep neural networks
	Optimisation
	Optimality conditions
	Gradient descent
	Newton method

	Algorithmic differentiation
	Hessian product
	Gateaux derivative
	Relation to directional derivative

	LSE solvers
	A different view on neural network training

	Methods and implementation
	Newton equation
	Non-convex optimisation
	Tikhonov regularisation

	Stochastic approximation
	Stochastic gradient descent
	Stochastic Newton method

	Algorithm
	Hessian product
	Optimisation
	On parallelisation

	Experimental setup
	Simple CNN
	ResNet

	Weight initialisation
	Related research

	Numerical experiments
	Quality of numerical Hessians
	Simple CNN
	Explicit Hessian
	Hessian product
	Second-order optimisation

	ResNet
	Loss surface
	Hessian product
	Second-order optimisation

	Conclusion
	Appendix
	Convergence rates
	Bibliography

