
Load Balancing and Auto-Tuning for
Heterogeneous Particle Systems using ls1

mardyn

Steffen Seckler and Fabio Gratl and Nikola Tchipev and Matthias Heinen and

Jadran Vrabec and Hans-Joachim Bungartz and Philipp Neumann

Abstract ls1 mardyn is a molecular dynamics (MD) simulation framework that en-

ables investigations of multicomponent and multiphase processes relevant to engi-

neering applications, such as droplet coalescence or bubble formation. These sce-

narios require the simulation of ensembles containing a large number of molecules.

We present recent advances in ls1 mardyn both from the software design and high-

performance computing perspective. From the former we describe the recently intro-

duced plugin framework, from the latter we will look at some recent load balancing

improvements to ls1 mardyn.

We further present preliminary results of the integration of AutoPas, a C++ node-

level library employing auto-tuning to achieve optimal node-level performance for

particle simulations, into ls1 mardyn.

1 Introduction

Molecular dynamics (MD) simulations have become a valuable tool for engineering

applications. They rest on molecular models that describe the molecular interac-

tions and encode the macroscopic behavior of matter. Equilibrium MD simulations
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thus enable sampling of thermodynamic properties in a consistent manner. Such

data can be used to develop either fully predictive equations of state (EOS) or hy-

brid EOS, where simulation data are combined with experimental data [11]. An

important advantage is that simulations can straightforwardly be carried out under

extreme conditions, i.e. high temperatures and pressures, that are hardly accessi-

ble with experiments. Beside classical equilibrium scenarios, MD simulations can

also be employed to investigate systems that are not in global equilibrium so that im-

posed gradients drive processes like droplet coalescence [17], bubble formation [12]

or interfacial flows [13]. For many phenomena concerning multi-phase systems, the

interface between the phases plays a key role. The spatial extent of the interface re-

gion is often only a few molecular diameters and can therefore only be resolved on

the atomistic level. Employing molecular simulation, there are no additional mod-

eling approaches, the physical processes evolve naturally and hence can be inves-

tigated unbiasedly. For many fluids that are relevant for engineering applications,

comparatively simple molecular force field models have been developed, consisting

of a few interaction sites, e.g. Lennard Jones (LJ) sites considering the dispersive

interaction and point charges, dipoles or quadrupoles to model the electrostatic in-

teraction. A typical example is the mixture of acetone (four LJ sites, one dipole

and one quadrupole) and nitrogen (two LJ sites and one quadrupole) which is fre-

quently used to model fuel injection-like scenarios in thermodynamic laboratories.

However, the present simulations were conducted with a simpler molecular model,

consisting of a single LJ site. This model can be parametrized such that it mimics

the thermodynamic behavior of noble gases like argon, krypton or xenon as well

as methane [22]. This model is well suited for investigations focusing on the basic

understanding of processes like the droplet coalescence so that it was considered in

the present work.

In a long-term interdisciplinary effort of computer scientists and mechanical en-

gineers, the MD framework ls1 mardyn has evolved over the last decade to inves-

tigate such large systems of small molecules [14]. ls1 mardyn has been used in

various studies [21] and has been continuously extended to optimally exploit cur-

rent HPC architectures [6, 18, 20]. In the following, we detail recent developments

within the framework to achieve optimal performance at node and multi-node level.

After introducing the actual problem setting of short-range molecular dynamics, re-

lated work and the original implementation of ls1 mardyn in Sect. 2, we introduce

the newly developed plugin framework of ls1 mardyn in Sect. 3. Improvements to

the MPI load balancing are shown in Sect. 4. We report preliminary results on the

integration of AutoPas in ls1 mardyn in Sect. 5, which have been published in [8].

We close with a summary and an outlook to future work in Sect. 6.
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2 Short-range Molecular Dynamics

2.1 Theory

In short-range MD, Newton’s equations of motion are solved numerically [16]. In

the following, considerations are restricted to small molecules. Due to their negligi-

ble conformational changes, molecules undergo translational or rotational motion;

both are included in the equations of motion and are solved simultaneously in ls1

mardyn using a leapfrog time integrator, without the need for iterative procedures

(such as the SHAKE algorithm) to handle geometric constraints [16].

Molecules interact via force fields. In short-range MD, arising forces are only

explicitly accounted for if the distance between two considered molecules is below

a specified cut-off radius rc. There are basically two variants to efficiently implement

the cut-off condition: linked cells and Verlet lists [16]. Both methods turn the actual

molecule-molecule interaction complexity from O(N2) to O(N). In the Verlet list

approach, a list of all molecules within a surrounding rc + h is stored per molecule

and updated regularly. Computing interactions thus reduces to traversing the list.

The choice of h dictates the frequency of necessary list rebuilds on the one hand and

the overall size of interaction search volume on the other hand. ls1 mardyn makes

use of the linked cell approach: a Cartesian grid with cell sizes ≥ rc is introduced

and covers the computational domain. The molecules are sorted into these cells.

Molecular interactions only need to be considered for molecules that reside within

the same cell or in neighboring cells.

All simulations reported in this contribution rest on the truncated and shifted

form of the LJ potential [22]

U(ri j) = 4ε

(

(

σ

ri j

)12

−

(

σ

ri j

)6
)

, (1)

with species-dependent parameters for size σ and energy ε and the distance ri j

between molecules i and j. Due to the truncation of the potential, no long range

corrections have to be considered. This simplifies the treatment of multi-phase sys-

tems, where the properties of the interface can be strongly dependent on the cut-off

radius [24]. The force calculation is typically by far the most expensive part of MD

simulations that often contributes ≥ 90% to the overall compute time and hence is

the preferential target for code optimizations.
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2.2 Related Work

HPC and Related MD Implementations

Various packages efficiently and flexibly implement (short-range) molecular dy-

namics algorithms, with the most popular ones given by Gromacs1, LAMMPS2

and NAMD3. Gromacs leverages particularly GPUs but also supports OpenMP and

large-scale MPI parallelism, and it also exploits SIMD instructions via a new par-

ticle cluster-based Verlet list method [1, 15]. A LAMMPS-based short-range MD

implementation for host-accelerator systems is reported in [2] with speedups for

LJ scenarios of 3-4. A pre-search process to improve neighbor list performance at

SIMD level and an OpenMP slicing scheme are presented in [10, 23]. The arising

domain slices, however, need to be thick enough, to actually boost performance at

shared-memory level. This restricts the applicability of the method to rather large

(sub-)domains per process.

ls1 mardyn

An approach to efficient vectorization built on top of the linked cell data structure

within ls1 mardyn is presented for single- [5] and multi-site4 molecules [4]. This

method, combined with a memory-efficient storage, compression and data man-

agement scheme [7], allowed for a four-trillion atom simulation in 2013 on the

supercomputer SuperMUC, phase 1 [6]. A multi-dimensional, OpenMP-based col-

oring approach that operates on the linked cells is provided in [20]. The method

has been evaluated on both Intel Xeon and Intel Xeon Phi architectures and ex-

hibits good scalability up to the hyperthreading regime. ls1 mardyn further supports

load balancing. It uses k-d trees for this purpose. Recently, this approach has been

employed to balance computational load on heterogeneous architectures [18]. A de-

tailed overview of the original release of ls1 mardyn is provided in [14]. Various

applications from process and energy engineering, including several case studies

that exploit ls1 mardyn, are discussed in [21]. Recently, ls1 mardynwas used to sim-

ulate twenty trillion atoms at PFLOPS performance [19].

3 Plugin Framework

ls1 mardyn has many users with different backgrounds (process engineering, com-

puter science) which have very differing levels of C++ knowledge. To implement

1 www.gromacs.org
2 www.lammps.org
3 http://www.ks.uiuc.edu/Research/namd/
4 Molecules that consist of several interaction sites, e.g. two LJ sites
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Fig. 1 Extension points of ls1 mardyn through plugins. The extension points are marked in green,

normal steps of the simulation are shown in white

new features developers had to first understand wide parts of the program before

being able to contribute to ls1 mardyn. Additionally, most changes were done on

a local copy or a private branch within the main simulation loop of the program

or within some deeply coupled classes. This meant that integrating the new code

intro the main source tree became a major difficulty and often was not performed

at all. And if it was performed it cluttered the source code and made it harder to

understand. Often features were not easily configurable and could only be disabled

or enabled at compile-time.

To prevent the mentioned drawbacks, we have performed major code refactoring

steps within ls1 mardyn to allow for both easier maintainability and extendability

by introducing a plugin framework. Most user code can now be expressed as plug-

ins that can be easily implemented, maintained, extended, integrated into ls1 mar-

dyn and enabled upon startup of the simulation. Additionally, the user code is now

mostly removed from the main simulation loop and main classes from ls1 mardyn,

making maintainability more affordable and the code more readable.
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ls1 mardyn provides a total of five different extension points that each prove their

own purpose:

beforeEventNewTimeStep This extension point (EP) is used as legacy support for

some older code parts. Mostly endStep can be used instead.

beforeForces At this point the positions have been updated. Using this EP you can

change positions of particles, for example to realign a droplet at the center of the

domain.

siteWiseForces This EP can be used to apply forces on specific sites of the

molecules. One existing plugin uses it to implement a site-wise potential that

prevents Lennard-Jones sites from moving through a wall.

afterForces At this point additional forces to entire molecules can be added.

endStep This step is mostly used for output. Most plugins only use this extension

point.

Even though less than a year has passed since these changes were implemented

(as of March 2019), we have already seen a lot of user code to actually find its way

into the main source tree. Additionally, the user-base has provided very positive

feedback on these changes, as their life got easier as well.

4 Load Balancing

In the previous report, we presented preliminary results on the coalescence of two

droplets with a diameter of d = 50nm containing a number of N = 106 particles,

cf. Fig. 2. These simulations were, however, only run on a fairly small amount of

processes. When we tried scaling the simulation to more processes we discovered

that the k-d tree-based load balancing implementation (kdd, see [3, 14, 18], Figure

3) in ls1 mardyn at that point did not provide the performance we expected, as the

load-unaware Cartesian domain decomposition (sdd, Figure 4) outperformed the

load-balancing kdd starting at around 32 nodes (see old, sdd in Figure 5).

The kdd distributes the domain by splitting the overall domain into a grid of cells.

A load ccell is assigned to each cell. The grid is then split into N disjunct subdomains,

such that each subdomain j contains roughly the same load

Csubdomain = ∑
cells in subdomain

ccell =Ctotal/N, (2)

where Ctotal is the total combined cost for the entire domain

Ctotal = ∑
all cells

ccell.

To get the loads per cell a load estimation model was used, that takes the number of

particles in the current cell ncell and its neighbors nneighbor cell into account and uses

a quadratic model:
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Fig. 2 Snapshot of two argon droplets with a diameter of d = 50nm containing a number of N =
106 particles in equilibrium with their vapor at a temperature of T = 110K, rendered by the cross-

platform visualization framework MegaMol [9]. It shows the time instance where a liquid bridge

starts to grow, spanning over the initial gap of 1nm between the droplets’ interfaces. The colors red

and green were selected to be able to distinguish between particles that initially constituted either

the left or right droplet. To provide a clear view through the vapor, particles were rendered with a

diameter of σ/3

Fig. 3 Space-partitioning using kdd. The

different colors represent the different levels

of the splitting hyperplanes.

Fig. 4 Space-partitioning using a 2-d Carte-

sian grid (sdd). Shown is a splitting into 12

subdomains.

ccell = n2
cell +

1

2
∑

neighboring cells

ncell ·nneighbor cell (3)

The investigation of the observed performance drops showed that the distribution

of the loads Csubdomain was appropriate, but the actual time spent on the calculations
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Fig. 5 The different load estimation techniques for a droplet coalescence scenario with 8 million

particles using 8 OpenMP threads per rank and the full shell method.
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Fig. 6 Comparison of the different scenarios for the vecTuner load estimator. The eight-shell

method has been used for the kdd, marked by es in the legend.

of a specific subdomain did not properly match the loads, indicating a poor estima-

tion of the loads ccell. We henceforth introduced three additional load estimators:

vecTuner This load estimator evaluates the time needed for each cell by doing

a reference simulation at the beginning of the simulation. Therefore, for each
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particle count ncell the time needed to calculate the interactions within a cell and

the interactions across cells is measured.

measureLoadV1 This load estimator uses dynamic runtime measurements within

the actual simulation. Therefore, the time needed to calculate all interactions

within each process is measured. This time is the sum of the times needed for

each cell, similar to Eq. (2):

Tsubdomain = ∑
cells in subdomain

tcell (4)

The time for each cell tcell cannot be easily measured, because these times are

very small and exhibit a high level of noise and inaccuracy. Instead of deter-

mining the values tcell we decided to introduce cell types to get better statistical

properties. One typical cell type would be characterized by the number of parti-

cles per cell, but other characterizations are possible. Using the cell types Eq. (4)

becomes

Tsubdomain = ∑
cell types

ncell type · tcell type. (5)

Assuming that the processes need the same amount of time for each cell of the

same type, we can derive the matrix equation

∀i : Ti = ∑
j

ni, j · t j, (6)

where Ti is the time needed by process i, ni, j is the amount of cells of type j

within rank i and t j is the time needed to calculate the interactions of cell type j.

Hereby only t j is an unknown and can thus be estimated by solving the matrix

equation of the typically overdetermined system through a least squares fit. We

are always using the characterization of cell type by particle number, i.e. cell type

j resembles all cells with j particles.

measureLoadV2 This load estimator is based on measureLoadV1, but addition-

ally assumes a quadratic dependency of t j on the particle count j.

t j = a0 + a1 · j+ a2 · j2 (7)

The resulting matrix equation

∀i : Ti = ∑
j

ni, j ·

2

∑
k=0

jk ·ak (8)

∀i : Ti =
2

∑
k=0

(∑
j

ni, j · jk) ·ak (9)

is then solved using a non-negative least squares algorithm to obtain ak.

A comparison of the results using the different load estimation techniques is

shown in Figure 5 for a droplet coalescence scenario with 3 million particles, show-
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Fig. 7 Time evolution of the droplet contour of the scenario with 25 million particles

ing a clear improvement of all new load estimators compared to the old one. While

for 64 nodes a speedup of roughly 4x over the old load estimation techniques and

an improvement of 2x over the standard domain decomposition (sdd) is visible, the

sdd still performs best for large process counts. This is due to better communication

schemes and sub-optimal load balancing even when using the new estimators with

the kdd.

Scaling results using vecTuner for scenarios with 25 million and 200 million

particles are shown in Figure 6. For these scenarios the kdd always outperforms the

standard domain decomposition if the new load estimators are used.

Simulations over a longer time-scale have been calculated for all three scenarios.

For the scenario with 25 million particles, the evolution of the droplets is show in

Figure 7. In contrast to the previous simulations the larger simulation was able to

visualize the wiggling within the droplet formation nicely.



Load Balancing and Auto-Tuning for Heterogeneous Particle Systems using ls1 mardyn 11

Fig. 8 Spinodal decomposition scenario with 4 million particles calculated with ls1 mar-

dyn and AutoPas. The images on the top show the end configuration of the system from

the side (top left) and a slice of it (top right). The bottom figure shows the time needed

for each iteration for two different shared-memory parallelization strategies. AutoPas is

able to automatically choose between these two strategies.

5 Preliminary Results: AutoPas Integration

Our work further concentrated on the integration of the C++ library AutoPas [8]

into ls1 mardyn. The library employs auto-tuning to provide close to optimal node-

level performance for particle simulations, which is expected to complement the

distributed-memory load balancing approach. Early studies have shown successful

automatic adaptions of the employed algorithms to both varying inputs as well as

dynamically changing scenarios.

Figure 8 shows how AutoPas can already be used to calculate a spinodal decom-

position scenario using ls1 mardyn. The simulation starts with a homogeneously

distributed gas at a temperature far below the critical temperature of the system. Due

to the very low temperature the gas rapidly contracts (see Figure 8, top). During the

simulation the system thus changes from a homogeneous state to a very heteroge-

neous one. Looking at shared-memory parallelization strategies, in the beginning,
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while the system is still homogeneous, a load-unaware strategy can be used that

simply splits the subdomain into even parts to be calculated by each thread of a cpu.

Later on, when the system becomes increasingly heterogeneous a load-balancing

strategy is needed. In the shown figure AutoPas is allowed to choose between two

shared-memory parallelization strategies, here called traversals [20, 19]:

c08 This traversal uses coloring to split the domain into multiple groups of cells

(colors), where calculation on all cells in one group can be done in parallel with-

out any data races. The cells of each color are then distributed to the threads

using OpenMP’s dynamic scheduling. After one color is finished, the next color

is started.

sli The sliced traversal (sli) slices the domain into multiple equally sized subdo-

mains. Each subdomain is then calculated by one thread. Locks are employed to

prevent data races.

Henceforth, the c08 traversal is better suited for heterogeneous scenarios, as it

provides dynamic scheduling, while the sli traversal is better suited for homoge-

neous scenarios, as it uses less overhead. As expected, AutoPas switches the shared-

memory parallelization strategy for the mentioned scenario at time step ∼9 000 from

sli to c08.

6 Summary and Outlook

We have outlined recent progress in usability (plugin concept), load balancing (kdd-

based decomposition and load estimation approaches) and auto-tuning (library Au-

toPas) to improve the molecular dynamics software ls1 mardyn. Load balancing

improvements enabled unprecedented large-scale droplet coalescence simulations

leveraging the supercomputer Hazel Hen. Yet, more work and effort is required

to improve scalability of the scheme beyond O(200) nodes. The auto-tuning ap-

proach we follow by the integration of AutoPas appears promising in terms of both

scenario- as well as hardware-aware HPC algorithm adoption. More work in this

regard is in progress, focusing amongst others on the incorporation of Verlet list

options and different OpenMP parallelization schemes.
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