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Abstract 3

Abstract

Gamma-ray bursts have been one of the prime contenders for the astrophysical neutrinos
seen by IceCube, yet counterpart searches were so far unsuccessful. To investigate the
lack of detections, this thesis aims to place better constraints on these sources. This is
achieved, firstly, by improving the locations, and thus spectral parameters, measured by
the Fermi Gamma-ray Burst Monitor, and secondly, by testing the photospheric emis-
sion model for GRBs, which is found to perform significantly worse than optically-thin
synchrotron emission.
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Zusammenfassung

Gammastrahlungsausbrüche waren einer der Hauptkandidaten für die von IceCube detek-
tierten astrophysikalischen Neutrinos, doch die Suche nach elektromagnetischen Gegen-
stücken war bisher erfolglos. Um diesen Mangel an Detektionen zu untersuchen, zielt
diese Arbeit darauf ab, diese Quellen besser einzugrenzen. Hierzu werden erstens die
Lokalisierungen und damit auch die spektralen Parameter, die vom Fermi Gamma-ray
Burst Monitor gemessen wurden, verbessert und zweitens das photosphärische Emission-
smodel getestet, welches die existierenden Daten deutlich schlechter beschreiben kann als
optisch dünne Synchrotronemission.
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Introduction

Since their discovery more than 50 years ago, gamma-ray bursts (or GRBs for short) have
been one of the most studied sources in high energy astrophysics, yet they still are one
of the most mysterious objects in the Universe. They consist of bright flashes of gamma-
rays with durations ranging anywhere from the fraction of a second to several thousands
of seconds. As explained in more detail in Chapter 1, GRBs are thought (and to a certain
extent confirmed) to be produced by the death of massive stars, either through supernova
explosions or merger of compact objects, e.g. neutron stars, in distant galaxies. These
progenitors are believed to produce highly relativistic jets, which allow the observation of
bursts even at cosmological distances.
Since GRBs can be seen as coming from any direction of the sky at any time in an unpre-
dictable way, this implies that observing them can be quite challenging for non-dedicated
instruments, aside from serendipitous detections. In the previous decades various mis-
sions specifically designed to observe GRBs have been developed and launched to space,
one of those is the still currently operational Fermi Gamma-ray Burst Monitor, GBM
(Meegan et al., 2009). This detector is able to perform an almost constant all-sky mon-
itoring, a remarkable achievement which comes however at a price. As explained more
in detail in Chapter 2, GBM is not an imaging instrument and is not able to reconstruct
separately source’s position and spectrum. This has important consequences on how the
source reconstruction is carried out, as detailed in Chapter 4, and also means that the pro-
cess is particularly challenging and that the achieved locations suffer from much larger
error regions compared to other types of gamma-ray instruments. The situation is even
worse if the source reconstruction method suffers from systematics, as is in fact the case
for GBM.

On the other hand, by releasing the constraint of needing to have an all-sky field-of-
view, it is possible to design much more performing instruments (at least in terms of
localization ability), such as e.g. coded mask detectors. Perhaps the best example of
this kind of approach is another dedicated GRB instrument, the Swift space telescope.
Its gamma-ray coded mask detector, the Burst Alert Telescope, BAT (Barthelmy et al.,
2005)), is able to localize GRBs with far greater precision then GBM, at the price of a
much smaller field-of-view. Furthermore Swift has also at its disposal two additional in-
struments for follow-up observations, an X-ray telescope, XRT (Burrows et al., 2007),
and an optical-UV telescope, UVOT (Roming et al., 2004), making Swift a far more ver-
satile instrument.
Yet GBM still holds a unique and fundamental role in modern observations due to its abil-
ity of constantly monitoring the entire sky, which is not matched by any other instrument
currently operational. No GRB is like another and even a single event can be of extreme
scientific relevance, especially now that multi-messenger astronomy is becoming more
and more relevant. GBM suffers however from systematics which, as demonstrated in this
thesis and also in previous studies (Burgess et al., 2018; Berlato et al., 2019), arise from
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the use of a wrong reconstruction methodology. This constitutes a serious drawback to
the overall performance of the instrument, especially given that the locations provided by
GBM are of essential importance for counterpart searches, be it the afterglow (the longer-
lasting lower energy emission following a GRB, see Chapter 1) or any possible neutrino
or gravitational wave signal. A better localization corresponds to a higher chance of find-
ing counterparts, which will help in better constraining the underlying physics of these
objects.

The study of the emission mechanisms producing the GRBs has made great progress
in the past couple of decades, thanks to both the improved computational power and the
more refined theoretical models. In this regard, the two best candidates to explain the
observed GRBs’ spectra are emission from either synchrotron (Katz, 1994; Tavani, 1996)
or a dissipative photosphere (Pe’er and Ryde, 2017; Beloborodov and Mészáros, 2017).
These two models, both detailed in Chapter 1, have been part of a long-standing debate
which has yet to produce any conclusive evidence for any of the two to prevail. In fact,
both of these models fail to provide the complete picture.

The limitations of the current theoretical models became clear with the observation of
GRB 170817A1, the first simultaneous detection of an electro-magnetic and gravitational
signal, generated by a neutron star merger (Goldstein et al., 2017; Abbott et al., 2017).
This event confirmed the long-standing theory that at least part of the observed short bursts
(that is with duration < 2 s, see Chapter 1) are produced by mergers of neutron stars (Eich-
ler et al., 1989; Narayan et al., 1992). From an observational standpoint, GRB 170817A
is a very faint GRB, with a luminosity ∼ 1000 times smaller than the weakest short burst
detected before then (Bégué et al., 2017). It was observable only due to its extreme prox-
imity, with a redshift of just z ∼ 0.01, corresponding to about 40 Mpc (Soares-Santos
et al., 2017). Its unusual features challenge the conventional picture of GRBs, where the
emission is generated by either synchrotron or a dissipative photosphere. Conventionally,
the emitted radiation is assumed to be beamed in relativistic jets which allow the burst to
be observed even at cosmological distances. It needs however to be noted that, if GRB
170817A was a standard short burst observed off-axis, then both synchrotron and photo-
spheric emission would produce inconsistent results (Bégué et al., 2017), thus strongly
hinting that both of these models are most likely still not able to describe the complete
picture. The discrepancies could possibly still be accounted for by assuming either more
complex emission mechanisms, such as e.g. synchrotron self Compton (Bégué et al.,
2017) or through a different structure of the jets, such as the presence of a cocoon sur-
rounding the relativistic jet (Gottlieb et al., 2018; Kasliwal et al., 2017). In fact, recent
observation of GRB 190114C (MAGIC Collaboration et al., 2020) further confirmed the
existence of a very high energy (≳ 100 GeV) synchrotron self-Compton component during
the later stages of the emission. Regardless, GRB 170817A demonstrates that a complete
description of GRBs is still far away and that both more observations and improved theo-
retical models are necessary to achieve a better understanding of the underlying physics.

As such, the scope is of this thesis is two-fold. On one hand it aims to improve the
quality of the reconstructed Fermi-GBM GRB locations, increasing thus the chances of
successful direct identification of multi-messenger and multi-wavelength signals. On the
other hand the thesis also tests the viability of photospheric emission through spectral
fitting of the numerical spectra generated by the code developed by Pe’er and Waxman

1GRBs are commonly identified by a 6 digit number, indicating the year, month and day, following the format YYMMDD. If
there’s more than a detection in one day, a capital letter (e.g. A,B,C) is appended to the number for each GRB.
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(2005), which contributes to better constrain the underlying physics. In particular, the
sample utilized is the same as the one in Burgess et al. (2020), where synchrotron is fitted
to an extensive sample of GRB spectra, achieving a success rate of ∼ 95%. This allows
for a direct one to one comparison between the two models.

The thesis is structured in the following way. Chapter 1 provides an overview of the
main GRB observables as well as a summary of the relevant physics. Chapter 2 introduces
then the instrument and the data products to be used in the following chapters. Chapter
3 and Chapter 4 discuss the statistical and methodological approach to burst localiza-
tion in GBM, showing how a better fitting algorithm can greatly improve the localiza-
tion performance of the instrument. Chapter 5 analyzes the viability of the photospheric
model through spectral fitting of a sample of GRBs and compares it to the previous results
achieved by synchrotron fits. Finally, a summary of the achieved results and a discussion
of the possible next steps are given in the conclusions.



Introduction 12



1 Gamma-ray Bursts 13

Chapter 1

Gamma-ray Bursts

1.1 Introduction and history of the observations

The discovery of GRBs dates back to 1967, when the Vela satellites, detectors developed
by the US to monitor possible secret nuclear tests, first saw strong gamma-ray signals
coming from the outer space. While many theoretical explanations were proposed for
these puzzling signals, due to the poor performance of the gamma-ray detectors avail-
able back then, their origin was uncertain. It was in the 90’s that the understanding of
these sources took a leap forward thanks to newer, more sophisticated instruments be-
ing available. The Compton Gamma-ray Observatory, with its dedicated GRB detector
BATSE (Burst and Transient Spectrometer Experiment) allowed to establish that these
sources are isotropically distributed in the Universe, suggesting that their origin is not
in the Milky Way, but in distant galaxies (Meegan et al., 1992). Due to the gamma-ray
detectors’ limited localization ability, it was initially impossible to obtain a constraining
position of a GRB. This implied that redshift measurements were not possible, since one
could not correctly identify the host galaxy (that is the galaxy where the object resides) in
such a large sky region.

This standstill came to an end in 1997, when the space telescope Beppo-SAX managed
to detect GRB 970228 in the X-ray band, finally allowing for a precise location to be
obtained. This was also the first time a counterpart to the burst’s gamma-rays was detected
in another wavelength (Costa et al., 1997). Thanks to the precise position allowed by
an X-ray instrument, it was then possible to also find the first optical counterpart and
obtain the first ever redshift measurement for a GRB (Metzger et al., 1997). This longer-
lasting lower energy emission following the initial gamma-ray release takes the name of
afterglow. Later observations showed that afterglows can range anywhere from X-rays to
radio, with the emission shifting gradually from higher to lower energies with time. On
the other hand, the initial gamma-ray emission phase takes the name of prompt emission.

Successive optical afterglow detections allowed for more redshift estimates, which fur-
ther confirmed the hypothesis that GRBs are located in far away galaxies, at cosmological
distances. This also implied that the total energy released must have been extremely large:
if GRBs were to emit isotropically, this would correspond to energies up to Eiso ∼ 1055

erg, which is roughly on the same order of magnitude of the Sun mass energy. This
extreme energetics, which could hardly be explained otherwise, also suggested that the
emission needed to be collimated in jets. This hypothesis was later on validated by after-
glow observations, which indicated (as will be explained more in detail in Sec. 1.4.1) the
presence of jets with opening angles of the order of ∼ 5◦ (Harrison et al., 1999; Gehrels
and Mészáros, 2012).
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Figure 1.1: Examples of GRB lightcurves from the BATSE detector (Fishman and Meegan, 1995; Mészáros, 2006).

Another peculiarity of GRBs is that they exhibit extreme variability, reaching the mil-
lisecond timescales (Golkhou et al., 2015), which implies that the emitting region needs
to be very small, of the order of ctvar, where c is the speed of light and tvar the measured
variability timescale. These characteristics indicate that the astrophysical sources pro-
ducing GRBs need to be associated with compact objects, such as neutron stars or black
holes. From an observational standpoint GRBs’ lightcurves differ greatly from case to
case. They can exhibit a single sharp spike or there can be multiple peaks, which can
often partially overlap with each other, as shown in Fig. 1.1. No burst is truly like an-
other, which further complicates the process of understanding the physics behind these
objects. GRBs also exhibit a highly varying range of duration timescales, which is usu-
ally estimated with the T90, the time interval necessary to accumulate 90% of the burst
fluence (i.e. time-integrated photon flux). T90 values can range from tens of milliseconds
up to several thousands of seconds. Interestingly, the distribution of the T90 displays two
components (see Fig. 1.2), which suggested that GRBs could be broadly classified as
belonging to either one of two different classes, long or short (Kouveliotou et al., 1993)
depending on whether T90 > 2 s (long) or T90 < 2 s (short). There is of course some
overlapping between the two components of the distribution, as visible in Fig. 1.2, which
implies that this classification is somewhat fuzzy.

Regardless, these two subsets of the GRB’s population have been associated with two
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Figure 1.2: The T90 distribution from the third Fermi Gamma-ray Burst Monitor catalog (Narayana Bhat et al., 2016).

different types of progenitors, core-collapse supernovae (the so called collapsar or hyper-
nova scenario) for long GRBs and merger of compact objects (either two neutron stars
or a neutron star and a black hole) for short GRBs (Eichler et al., 1989). Observations
of GRB 980425 and supernova SN 1998bw in the same error region seemed to indicate
that long GRBs are produced by particularly energetic supernova events (Galama et al.,
1999). Later on, this hypothesis was confirmed with the observation of GRB 030329
and SN 2003dh (Hjorth et al., 2003; Stanek et al., 2003). As for short GRBs, at least a
fraction of them were hypothesized to be generated by the merger of two neutron stars
(Eichler et al., 1989; Narayan et al., 1992). This event would produce either a black hole
directly or an hyper massive neutron star, an unstable system which would collapse to a
black hole shortly after its creation. This hypothesis was recently confirmed thanks to the
simultaneous observation of GRB 170817 performed by the gravitational wave detectors
LIGO/Virgo and the gamma-ray detection from Fermi-GBM (Abbott et al., 2017; Gold-
stein et al., 2017). Another fraction of the observed short GRBs could also be produced
by a neutron star and black hole merger (Mészáros, 2006), though this hypothesis has not
yet been confirmed through direct observations. This distinction between the progenitors
for long/short bursts is also supported by afterglow observations, which showed that long
GRBs are associated with star forming regions, while short bursts are not (Piran, 2004;
Mészáros, 2006). This difference can be explained by taking into account the following.
Long bursts are thought to be produced directly by the death of massive stars (through
core collapse supernovae), which are typically very short-lived. As such, long GRBs are
far more likely to take place in galaxies with high star formation rates. Conversely, short
GRBs are not produced directly at the moment of the star death, but only when a merger
between two compact objects takes place. For this to happen, it is first necessary for the
two objects to lose angular momentum through emission of gravitational waves, which
allows them to gradually get closer to each other, until they finally merge and the short
burst can take place.

It should also be noted that current findings have proven that the long/short classifica-
tion does not capture the complete picture of the GRB population. Most notable is the
case of ultra-long GRBs (Levan et al., 2014), which are bursts with durations ≳ 103 s, with
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typical T90 values of a few thousands of seconds. This GRBs are very rare and are thought
to originate from different progenitors than the long and short ones. Possible candidates
are accretion from the envelope of very large progenitor stars (such as blue supergiants),
tidal disruption events due to black-holes destroying e.g. a white dwarf, or the formation
of a magnetar, a neutron with extremely strong magnetic fields of the order of B ∼ 1015

G, see e.g. Greiner et al. (2015).

As a final remark, it needs to be pointed out that there exists a class of sources with
GRB-like features, known as X-ray flashes (XRFs), but which emission peaks in the X-
rays instead of the gamma-rays. They are thought to constitute an extensions of the GRB
population, though it is not completely clear whether the differences are purely spectral
(less energetic emission), geometric (higher redshift, larger viewing angle) or a combina-
tion of the two (Heise et al., 2001).

1.2 Observing and localizing GRBs

Due to being short-lived transients, GRBs are very challenging sources to observe. They
can appear at any point in time in any region of the sky in a unpredictable manner. To
detect and study them, during the past decades various dedicated detectors have been
designed and launched to space. This section presents an overview of the current main
instruments and detection methods, with a particular focus on the localization aspect.

The two main currently operational GRB instruments are the Swift space telescope and
the Gamma-ray Burst Monitor on-board the Fermi spacecraft. Aside these two, there are
also other high energy detectors which observe bursts more or less frequently, such as
KONUS, the Fermi-LAT or INTEGRAL for example. While Swift and GBM are both
dedicated GRB instruments, the approach they take to observation is radically different,
as explained in this section.

The Swift space telescope is composed of three different instruments, a coded aperture
gamma-ray detector (BAT), a X-ray telescope (XRT) and an optical-ultraviolet telescope
(UVOT). While XRT and UVOT are very useful instruments for follow-up observations,
only BAT can detect the initial gamma-ray emission of the burst, thanks to its large field-
of-view of 1.4 sr (Barthelmy et al., 2005). BAT is a coded aperture telescope, which
implies that the actual detector is located behind a mask, that is a layer of high density
material with holes shaped in a known pattern. The mask casts a shadow by letting only
the photons passing through the holes reach the detector, as shown in Fig. 1.3. The
shadow’s shape depends on the position of the source relative to the spacecraft and can be
used, through specific algorithms, to reconstruct the object position. Note that this implies
that BAT’s field-of-view is always partially occulted by its own mask. However, one major
limitation of this method is that is works only for soft gamma-rays, since it is impossible
to completely absorb higher energy photons with a mask of reasonable thickness.
Nonetheless BAT is able to achieve remarkably precise position for a gamma-ray instru-
ment, with uncertainties of the order of a few arcminutes (Barthelmy et al., 2005). This
first localization can also be used for follow-up observations by the other two instru-
ments, XRT and UVOT. Overall Swift is able to detect and localize ∼ 90 bursts per year,
which allows ground-based observers to measure a redshift in about 30% of the cases (see
https://swift.gsfc.nasa.gov/archive/grb_table/).

On the other hand, GBM adopts a completely different approach to detection. Instead
of using a coded aperture telescope, it relies on having a multitude of scintillation de-

https://swift.gsfc.nasa.gov/archive/grb_table/
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Figure 1.3: A diagram showing the basic structure of a coded aperture detector (Dicke, 1968).

tectors mounted around the Fermi spacecraft (Meegan et al., 2009). This allows GBM
to achieve an all-sky field-of-view (minus the region occulted by the Earth), potentially
being able to detect GRBs from any direction. In practice, this allows the instrument to ob-
serve ∼ 240 bursts per year, which makes GBM the most prolific GRB detector in history
with its twelve years of operation. While a more detailed explanation of the instrument
is given in Chapter 2, to briefly summarize, the measurement process in GBM consists in
measuring count rates (which are proportional to the photon flux) in each of the detectors
and energy channels. These counts depend simultaneously on both the source’s spectrum
and position relative to them, which implies that GBM is not able to generate images of
sources (at least not in a conventional way). The localization is instead performed through
a “comparison” of the rates measured in the different detectors. This approach to burst
detection has both advantages and disadvantages if compared to Swift’s. On one hand
GBM achieves an all-sky field-of-view, on the other this comes at the price of a much
worse precision (i.e. larger errors) for the obtained position compared to Swift’s, with
uncertainties typically of the order of a few degrees. Additionally it must be noted that
the energy window of the two instruments is not the same, with Swift/BAT being able to
observe only up to 300 keV compared to the ∼ 40 MeV of GBM, which however has no
ability to do follow-up X-ray/optical observations.

An alternative localization method is provided by the Interplanetary Network (IPN)
through triangulation. When different space missions are able to detect the same GRB,
it is possible to use the difference in arrival times of the signal to perform a triangulation
and locate the source, but for that to be possible the different spacecrafts need to be lo-
cated far enough from each other. Part of the IPN are, among the others, Fermi, Swift,
INTEGRAL and KONUS. The triangulated position’s precision depends on many factors,
but of primary importance are the number of detectors and their relative distance to each
other. On the other hand, since the triangulation method relies solely on the difference of
arrival times of the signal in different instruments, as long as the detectors are sensitive
enough to detect a signal above the background their independent ability to localize the
burst does not matter. It is necessary to have at least two instruments to perform a triangu-
lation, though the resulting error region is usually not very constraining in that case, see
e.g. Fig 1.4. With three or more detectors the IPN triangulation is typically much more
constraining than the GBM’s positions. For a more detailed explanation of the triangula-
tion method, refer to Hurley et al. (2013).

There are of course other instruments and methods of detection available, but they
are usually less reliable or consistent. For example, the Fermi-LAT is potentially able to



1 Gamma-ray Bursts 18

Figure 1.4: An example of IPN triangulation for GRB 190415A (Svinkin, Dmitry). In this particular case, the burst
was detected by Fermi-GBM, KONUS and Mars-Odyssey. The blue and brown circles correspond to the sky regions
which the different detector combinations are able to delimit. The overall 68% probability region corresponds to the
area defined by the black lines. The cyan and dark green circles correspond to GBM-only localizations performed with
two different algorithms (more on that in Chapter 4)

.

detect high energy photons emitted from GRBs, but due to the bursts’ photon flux being
much weaker at higher energies and the instrument’s smaller field-of-view, it is able to
observe GRBs only in a small fraction of cases. To put the numbers into perspective the
LAT detected 186 bursts in its first 10 years of operation (Ajello et al., 2019), less than
8% of what GBM managed to observe in the same time interval, with its 2385 GRBs
detected (see https://fermi.gsfc.nasa.gov/ssc/data/access/gbm/). That of course doesn’t
imply that detections by other non-dedicated instruments aren’t important for other uses
aside localization, such as spectral fitting, but shows how challenging it is to consistently
detect and localize GRBs unless dedicated detectors are available. Ultimately all methods
and instruments here presented have their own advantages and shortcomings and this
proves how important it is to have simultaneous observations of the same burst as often
as possible, so to obtain the maximum amount of information from each event.

1.3 Prompt emission

The term prompt emission refers to the initial release of gamma-rays from a GRB. During
the last few decades its understanding has advanced greatly, thanks to both better instru-
ments and more refined theoretical models, however a clear and complete description is
still far from being achieved. It is known that at the origin of the emission is the forma-
tion of a compact object, either through a core-collapse supernova or a merger of neutron
stars, or possibly of a neutron star and a black hole too (Mészáros, 2006). Regardless
of the specific progenitor, during the event gravitational energy is converted to radiation,
mostly gravitational waves and neutrinos plus a much smaller (10−2 − 10−3 of the total
energy released) electro-magnetic component through the gamma-rays (Mészáros, 2006).

https://fermi.gsfc.nasa.gov/ssc/data/access/gbm/
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The observed gamma-ray spectrum peaks in the energy region comprised from a few
tens of keV up to a few MeV. There are currently no models based on a single emission
mechanism (e.g. synchrotron) which can explain the entirety of the observed GRBs. As
such, it has been common practice to use empirical functions for spectral fitting instead,
the most popular one being the Band function (Band et al., 1993), which is defined as
follows

F(E) = A


(

E
Epiv

)α
e−

E
Eb if E ≤ (α − β)Eb(

E
Epiv

)β
eβ−α

(
(α−β)Eb

Epiv

)α−β
if E > (α − β)Eb

(1.1)

where F is the differential flux (i.e. the number of photons per unit of energy, time and
area), A is the amplitude of the function at 100 keV, α and β are respectively the low
and high energy indices, Eb is the break energy (which sets the position of the peak,
Epeak = (2+α)Eb ) and Epiv is the pivot energy (usually fixed to 100 keV), which just sets
the reference value for A. The Band function is essentially a power-law with an expo-
nential cut-off at lower energies which is then smoothly connected to a power-law higher
energy component. While there is no underlying physical process in the definition of the
Band function, it has often been used as a proxy to test the viability of emission models,
particularly for the case of synchrotron emission, as described later in Sec. 1.3.3.

The following sections provide a summary of the current state of knowledge of the
prompt emission, from the generally accepted elements to the more uncertain and still
currently debated aspects of the emission.

1.3.1 The compactness problem

One of the most important characteristics of the prompt emission is that it exhibits non-
thermal features, i.e. it is not compatible with a simple blackbody spectrum. On the other
hand, a naive calculation (neglecting redshift corrections, which are of the order of a few)
of the optical depth would produce extremely large values, i.e. the photons scatter many
times before being released. This would imply that the radiation reaches thermal equi-
librium and that the spectrum should be approximately thermal, in stark contrast with the
observations. This generates an apparent paradox known as the compactness problem,
which, as shown here, can be solved by the presence of relativistic motion.
In the source’s frame, photons can produce pairs through γγ → e+e− if they satisfy (ne-
glecting an angular factor) the condition

√
E1E2 > mec2, where E1,2 are the photons’

energies and me the electron mass (Piran, 1999). The pair production optical depth is then
given by the following equation (Piran, 1999)

τγγ =
fpσT FD2

R2mec2 (1.2)

where fp is the fraction of the photon pairs meeting the energy requirement, σT is the
Thomson cross-section, F is the observed fluence, D the distance of the source and R ∼
ctvar is the size of the emitting region. Using typical values one finds that τγγ ∼ 1013.
This extremely large optical depth would imply that pairs are copiously produced and
these particles can then Compton scatter with the lower energy photons, ending up greatly
increasing the overall optical depth. In that case, thermal equilibrium should be quickly
reached and the GRB spectra would be a blackbody, thus in conflict with the data from
observations. The solution of this apparent paradox lies in the presence of relativistic
motion. If the emitting region is moving at relativistic speeds towards the observer, two
corrections come into play in Eq. 1.2. First, due to blueshifting, the fraction of photons
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meeting the energy requirement in the source frame is actually much lower than what
initially inferred from the observations. The correction takes the form of fp → Γ−2α fp,
with Γ Lorentz factor and α high energy spectral index of the observed photons. Second,
the size of the emitting region as inferred from the variability is wrong, and is instead
R→ Γ2R. Overall, the previous estimate of the optical depth changes as τγγ → Γ−(4+2α)τγγ.
To observe a non-thermal spectra, the optical depth needs to be τγγ ≲ 1, which implies
typical values for the Lorentz factors of Γ ≳ 100 (Piran, 1999). Relativistic motion is thus
able to solve the compactness problem and explain the presence of non-thermal spectral
features in a self-consistent way.

1.3.2 The fireball model

The most widely accepted physical model used to describe emission from GRBs is the
fireball model (Paczynski, 1986; Goodman, 1986). It is based on the idea that, with the
formation of the compact object (regardless of the specific mechanism generating it), an
energy of the order of few solar masses is released in a timescale which can be as short
as a few milliseconds (Piran, 2004; Mészáros, 2006). In the process, gravitational energy
is converted to radiation, mostly gravitational waves in the frequency range 102 − 103 Hz
and electron neutrinos with typical energies of 10 − 30 MeV, plus a smaller (10−3 − 10−2

of the total energy released) electro-magnetic component (Mészáros, 2006). The result-
ing outflow forms a so-called fireball, which is a rapidly expanding ejecta composed by
a plasma of baryons, e+e− pairs and photons, most likely also containing a significant
amount of magnetic field energy (Mészáros, 2006). The fact that the fireball needs to be
expanding can be deduced from the observations, which imply a luminosity greatly ex-
ceeding Eddington’s limit, LE = 4πGMmpc/σT . This value sets the maximum luminosity
a gravitationally bound object can reach before its own radiation pressure causes it to ex-
pand and lose mass through some wind or outflow.
Due to the fireball’s large initial optical depth, the photons cannot escape and the outflow
expands adiabatically. Particles are accelerated until they reach a maximum Lorentz fac-
tor determined by the initial random internal energy per particle, also known as entropy,
Γmax ≡ η = E0/M0c2 with M0 mass of the ejecta (Mészáros, 2006). The radius at which
this occurs is known as the saturation radius rs and beyond this point the Lorentz factor
does not increase anymore due to the fact there’s no more energy to convert. Note that
the ejecta can reach the value defined by η only if the fireball is still optically thick at the
saturation radius, otherwise the the photons would escape too soon and the acceleration
process would come to a halt prematurely.

Moreover the fireball, due to the reasons detailed in Sec. 1.3.1, needs to be expanding
relativistically. This has important implications on the baryon content (also called baryon
load) of the outflow. Since even very small number densities of baryons will end up dom-
inating the mass of the ejecta, the baryon load cannot be too large. If that was not the
case, then the outflow would become too “heavy” and the fireball would not be able to
reach relativistic speeds, in contrast with what required by the observations.

The relativistic fireball is initially transparent only to gravitational waves, but as it
expands it quickly also becomes transparent to neutrinos first and later on to photons
too. While the fireball model itself makes no prediction regarding the angular distribution
of the ejecta, simple arguments regarding the overall energetics already suggest that the
emission is beamed into relativistic jets (Piran, 2004). Compared to a spherically symmet-
ric scenario, this allows to lower the overall energy required by the explosion by a factor
of ∼ θ2

jet/2, assuming two relativistic jets with small aperture angle θ jet. Note however
that due to relativistic beaming even with a spherically symmetric outflow, only radiation
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Figure 1.5: A schematic of a GRB. Credit: NASA.

emitted within an angle ∼ 1/Γ is visible to the observer. As detailed later on in Sec. 1.4.1,
the jet scenario is further confirmed by afterglow observations, which lightcurves display
typical changes in the slope known as jet breaks. These occur whenever the Lorentz factor
decreases enough to enable the observer to see the entirety of the jet, 1/Γ ∼ θ jet. From this
point onwards, since the jet is already fully visible, a further decrease in Lorentz factor
won’t contribute to increase the observable emitting surface. Thus, from afterglows’ ob-
servations, typical jet angle values of 5 − 10◦ are estimated (Beloborodov and Mészáros,
2017).
What is however highly uncertain is the structure itself of the jets, which are often simply
assumed to be uniform within their aperture angle, with the burst having then negligible
off-axis emission. This is the scenario described by the so-called top-hat model. On the
other hand, if the jets have any kind of non-uniform angular profile (e.g. power-law or
gaussian), they are said to be structured. In general the structure of the jets is still not
very well understood, especially because it is very hard to disentangle the geometrical
dependence from the spectral dependence in the prompt emission.
The presence of jets also implies that, unless the burst is located at extremely small red-
shifts (in which case off-axis emission may be observable), it will be detected only if seen
on-axis, that is the angle between the line-of-sight and the jet is θ ≲ θ jet. The observer
thus sees the radiation emitted by the fireball as blueshifted due to the outflow moving
in its direction, which also increases the apparent brightness of the object. In general, if
the jet is observed at an angle θ, the Doppler factor of the emitted radiation is (neglecting
redshift corrections)

D = [Γ(1 − β cos θ)]−1 (1.3)

where Γ is the Lorentz factor of the relativistic shell and β is its speed divided by c. In
the simplest case, θ ∼ 0 and Γ ≫ 1 (i.e. an ultra-relativistic jet pointing straight into the
observer), the Doppler factor is D ∼ 2Γ.

The fireball is assumed to start expanding from a generic radius r0, which represents
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the size of the inner engine. This expansion is initially adiabatic due to the very large
optical depth of the plasma. The fireball pressure is dominated by radiation, which can
be described as a gas with adiabatic index p = 4/3 (Mészáros, 2006). Taking thus into
account that energy and entropy are conserved during this first phase, it’s easy to show
that the Lorentz factor of the fireball grows linearly until reaching the value defined by
the entropy, η, at the saturation radius rs, that is

Γ(r) =

 r
r0

for r ≤ rs

η for r > rs
(1.4)

Note that this equation holds under the assumption of the fireball remaining optically
thick at least until rs. In the opposite case, the photons would escape too soon and the
acceleration process would come to a halt (Pe’er, 2015). In the same way, it is possible
to derive a law for the evolution of the temperature of the fireball in the observer frame
(Pe’er, 2015):

Tobs(r) =

T0 for r ≤ rs

T0

(
r
rs

)− 2
3 for r > rs

(1.5)

where T0 =

(
L

4πr2
0ac

) 1
4

is the temperature at the base of the fireball, with L being the lumi-
nosity of the fireball and a being the Stefan constant. Once again, this relation only holds
as long as the fireball is optically thick.

As the fireball expands, its Thomson scatter optical depth τ decreases until the outflow
eventually becomes transparent, i.e. the photons are able to escape. The surface where
this happens, conventionally defined by τ = 1, takes the name of photosphere. To find
the radius of the photosphere rph, one can solve the following equation for the Thomson
optical depth ∫ ∞

rph

neσTΓ(1 − β)dr ≃ neσT
rph

2Γ
(1.6)

where ne is the electron density, σT is the Thomson cross-section and it was made use
of the approximation 1 − β ≃ 1

2Γ for Γ ≫ 1. If ne is equal to the baryon density (which
is equivalent to assuming that the baryon content is dominated by protons), given by
np = L/(4πr2mpc3ηΓ), the photospheric radius is then given by (Pe’er, 2015)

rph =
LσT

8πmpc3ηΓ2 (1.7)

where, past the saturation radius rs, Γ ≡ η. Note however that strictly speaking the value
of rph provided by Eq. 1.7 is valid only for on-axis (with respect to the observer) emission.
Photons seen as coming from an angle follow a different optical path and this implies that
the value of the photospheric radius changes with the angle (Pe’er, 2015).

Since photons cannot escape before reaching the photosphere, it could naively be ex-
pected that the spectrum emitted by a fireball would be described by a blackbody dis-
tribution, since radiation should have had the time to achieve thermal equilibrium. This
however does not match the strongly non-thermal features present in the observations. To
achieve such spectra, there is the need for one additional element to the model, which is
the presence of a dissipation mechanism, that is some kind of physical process able to
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accelerate particles and produce the observed non-thermal features. The fireball model it-
self does not specify which mechanism is exactly at work in the ejecta and, depending on
which energy form is dominating the outflow (i.e. kinetic or magnetic) there are different
possible candidates, outlined in Sec. 1.3.5.

1.3.3 Optically thin synchrotron emission

One of the simplest, yet physically motivated models used to explain GRBs’ spectra is
synchrotron emission, that is the radiation emitted by charged particles (in particular elec-
trons) accelerated to relativistic speeds in a magnetic field. Synchrotron could in principle
produce the observed non-thermal spectra, although the emission needs to take place in
an optically thin region, otherwise the photons would be absorbed/scattered and the spec-
trum would no longer be described by pure synchrotron. For a single particle, the power
of the emitted radiation in the local frame is given by the following equation (Dermer and
Menon, 2009)

Psyn =
16π

3

(
q2

mc2

)2 (
B2

8π

)
cβ2

parγ
2
e sin2 ψ (1.8)

where q is the charge of the particle, m its mass, c the speed of light, B the magnetic field,
βpar the speed of the particle (divided by c) along the direction of the magnetic field, γ
is the Lorentz factor of the particle and ψ is the pitch angle (i.e. the angle between the
particle velocity vector and the magnetic field). In practice, in an astrophysical plasma,
emission is dominated by electrons due to the dependence of the power on the inverse of
the squared mass Psyn ∝ m−2. Assuming that in the local frame the pitch angle distribution
is isotropic, the sin2 ψ factor is averaged to 2/3. Furthermore, if γe ≫ 1 for the electrons,
it is possible to rewrite Eq. 1.8 into

Psyn =
4
3

cσT UBγ
2
e (1.9)

where σT =
8π
3

(
q2

mc2

)2
is the Thomson scattering cross-section and UB =

B2

8π is the energy
density associated to the magnetic field. To compute the power emitted in the observer
frame Pobs, it is necessary to correct for the relativistic effects by multiplying Eq. 1.9
by Γ2, the square of the bulk Lorentz factor of the ejecta. For a single electron, the
characteristic observer energy of the synchrotron photon is

Epeak =
ℏqeB
mec

γ2
eΓ (1.10)

which depends linearly on both Γ and B. It is possible to associate a cooling timescale to
synchrotron emission (Piran, 2004), which, in the fluid frame, is simply given by the ratio
between the total particle energy and the power of the emitted radiation

tsyn =
γemec2

Psyn
=

3mec
4σT UBγeΓ

(1.11)

which is thus dependent on the photon energy, tsyn ∝ E−
1
2 . This sets a limit to the variabil-

ity for optically thin synchrotron, since the observed lightcurves cannot include peaks of
shorter duration than tsyn (Piran, 2004). This is of course valid only for a single electron,
whereas in a realistic scenario one needs to consider an electron distribution in terms of γ
and integrate over it to calculate the overall emitted spectrum. This distribution is usually
assumed to be a power-law dNe

dγ ∝ γ−p, comprised between a minimum γmin and a max-
imum γmax ≫ γmin Lorentz factor. The assumption of a power-law may seem arbitrary,
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but it is in reality very loose, since various different physical processes are able to gener-
ate such distribution, such as Fermi acceleration or magnetic reconnection (Piran, 2004;
Dermer and Menon, 2009; Sironi and Spitkovsky, 2014). If no cut-off γmax is assumed,
the power-law index needs to be p > 2 in order for the energy not to diverge. Note that,
from a physical standpoint particles cannot reach arbitrarily large values of γ, since at
some point they will be cooling as fast as they are being accelerated. It can be shown
however that typical values of γmax are extremely large and do not realistically impact the
power-law approximation (Piran, 2004).
To compute the spectrum emitted by a distribution of electrons, it is necessary to know
how much energy is present in both particles and magnetic field. While ideally this should
predicted by a model on the basis of physical principles, in practice this is most often not
feasible. Thus the two microphysical parameters ϵe and ϵB are introduced to quantify the
fraction of the energy contained respectively in the electrons and in the magnetic field:

ϵe =
Ue

U

ϵB =
UB

U
=

B2

8πU

(1.12)

where U is the total thermal energy density. From these two parameters it is possible to
derive both the magnetic field B and the minimum Lorentz factor of the electron distri-
bution, γmin ≃ ϵe

mp

me

p−2
p−1 (Pe’er, 2015). γmin is of particular importance because it specifies

where, in terms of energy, most of the electrons are. Since most of the electrons have γe

values close to γmin, this defines the typical energy of the emitted photons (Piran, 2004).
In fact, synchrotron exhibits two distinct cooling regimes (Sari et al., 1998a; Piran, 2004),
depending on whether the electrons are losing a significant fraction of their energy due to
the synchrotron emission during the timescale set by the hydrodynamics of the outflow,
thyd. These two regimes are named fast and slow cooling (Sari et al., 1998b). The critical
value separating the two is given by Eq. 1.13

γc =
3mec

4σT UBΓthyd
(1.13)

which is the Lorentz factor of an electron cooling on the hydrodynamical timescale, ob-
tained by imposing tsyn = thyd (Piran, 2004). In the fast cooling regime γc < γmin and all
electrons cool quickly. Conversely, in the slow cooling scenario γc > γmin and only the
high energy tail of the electrons’ (γe > γc) distribution cools (Piran, 2004), which im-
plies that slow cooling is a less efficient regime, since the bulk of the electron population
γe ∼ γmin does not cool (Piran, 2004).

It can be shown that these two cooling regimes correspond to different spectral slopes
at lower energies. In particular, the maximum value of the slope of the spectrum is −3/2
for fast cooling and −2/3 for slow cooling. This gave rise already in the 90’s to the so-
called “line-of-death” problem (Preece et al., 1998), when the low energy slope of many
GRB spectra was found to be incompatible with synchrotron emission. Until recent times
however synchrotron was not being tested by fitting it directly to the data, but simply by
comparing the spectral slopes computed through empirical function fits (such as the Band
function) to the range of values allowed by optically thin synchrotron. This method was
proven to produce inaccurate results in Burgess et al. (2020), where a direct synchrotron
fit to a large sample of GRB spectra resulted a 95% acceptance rate for the model.

As an additional remark, it’s also possible that some physical effects may be distort-
ing the synchrotron spectral shape. One of these, for example, is jitter radiation, which
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Figure 1.6: The distribution of the Band function’s low energy index α for a sample of Fermi-GBM GRBs. The colored
lines denote the position of the limits for fast cooling synchrotron (FCS, in blue) and slow cooling synchrotron (SCS,
in red). Figure from Burgess et al. (2015).

occurs when the magnetic field is highly non-uniform, i.e. the magnetic field changes sig-
nificantly on a scale smaller than the Larmor radius of the emitting electrons (Medvedev,
2000).

1.3.4 Emission from a dissipative photosphere

Photospheric emission, in its simplest implementation, corresponds to a purely thermal
spectrum emitted by the fireball at the photosphere, where the outflow becomes transpar-
ent and radiation can escape. In this case the spectral shape is completely defined by the
temperature of the plasma at the photosphere, which is given by substituting r = rph in
Eq. 1.5 (Pe’er, 2015):

Tph = T0

(
rph

rs

)− 2
3

(1.14)

valid under the assumption of rs < rph. The observed luminosity of the thermal compo-
nent is then given by Lobs

th = Γ
24πr2

phσT 4
ph ∝ L

1
3Γ

8
3 r0

2
3 , where σ is the Stefan-Boltzmann

constant and the factor Γ2 is meant to take into account relativistic beaming.
Observations have however long ruled out a pure blackbody spectrum, which implies that
either the thermal component is sub-dominant (i.e. other mechanisms such as synchrotron
dominate the emission) or heavily modified by some other physical processes. The lat-
ter case is the scenario described by the so-called dissipative photosphere models, which
could in principle be able to reproduce the observed non-thermal spectra. These models
are typically very complex and try to include all of the relevant physical interactions tak-
ing place in the relativistic outflow. These normally include all electron/photon processes,
such as Compton scattering, pair production/annihilation, synchrotron emission and self-
absorption etc., see e.g. Fig 1.7. Some implementations of the dissipative photosphere
also take into account proton-neutron interactions, which may play an important role in
the generation of the observed spectrum (Vurm and Beloborodov, 2016).

It should be noted however that even without the aforementioned dissipative processes,
the spectral component produced by the photosphere is expected to deviate from a pure
thermal distribution to some extent. Some broadening of the blackbody component can
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Figure 1.7: Two example spectra for optically thin (left) and sub-photospheric (right) dissipation. The different lines
show the various components of the spectra: cyclo-synchrotron only (dotted), synchrotron emission and self-absorption
only (dash-dotted), same plus Compton scattering (dashed) and finally all processes, including pair production (solid).
Figures from Pe’er and Waxman (2005).

take place due to the fact that the outflow does not suddenly become transparent at rph:
the photosphere is in reality “fuzzy” and rph simply denotes the radius at which τ = 1,
that is where the photons have a probability e−1 of escaping from the plasma (Pe’er and
Ryde, 2017). To this effect, the contribution due to geometrical broadening needs also
to be added, which is caused by the fact that the radiation reaching the observers comes
from different parts of the jet (but still within the beaming angle ∼ 1/Γ). Photons coming
from different regions of the jet follow different optical paths which will cause a “limb
darkening” effect, with radiation coming from an the edges appearing colder than the one
coming from on-axis (Pe’er and Ryde, 2017). It should be noted however that these broad-
ening effects alone are not sufficient to explain the observed non-thermal GRB spectra.
These effects overall contribute to change a hypothetical thermal spectrum to a pseudo-
blackbody, that is a thermal distribution which is subject to some broadening. Even with
these effects being taken into account, it is however not possible to consistently describe
the observations with a thermal distribution and some kind of dissipative process needs to
be present so to provide a non-thermal component.

A very important factor for determining how much the spectrum generated by a dis-
sipative photosphere deviates from a blackbody is where the dissipation takes place with
respect to the photosphere. Regardless of the specific mechanism involved in the dissi-
pation process, if it takes place deep inside the ejecta (rd ≪ rph) any initial non-thermal
component will end up being thermalized due to the photons scattering many times before
reaching the photosphere. If the dissipation takes place below the photosphere, but not
too deep inside the outflow, the non-thermal component does not get completely thermal-
ized and modifies the otherwise thermal spectrum emitted by the photosphere. The exact
spectral shape depends thus very strongly on the optical depth τ at which the dissipation
takes place, as shown in Fig. 1.8. When the dissipation takes place in the optically thin
regime (rd ≳ rph) the thermal component is relegated to a minor role (often probably
undetectable by detectors such as GBM) and synchrotron and synchrotron self-Compton
(SSC) dominate the emission.

Historically, the presence of a steep low energy component (α = 1 for a pure black-
body) or the width observed in Band function fits has been taken to be indirect evidence
against synchrotron emission and in favor of a thermal component (Pe’er and Ryde,
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Figure 1.8: Example spectra of the dissipative photosphere model developed by Pe’er and Waxman (2005). Here τγe

indicates the Thomson optical depth at the dissipation radius. Note the strong dependence of the spectral shape on τγe:
it starts as pseudo-thermal at large τγe, but as the dissipation radius gets closer to photosphere (τγe = 1) and then goes
beyond it, the different physical components (thermal, synchrotron, inverse Compton etc.) of the model become more
and more distinct. In particular, in the optically thin regime (blue line) the emission is dominated by synchrotron and
synchrotron inverse Compton. Figure from Pe’er and Ryde (2017).

2017). This approach was however proven to produce unreliable interpretations of the
data (Burgess, 2019; Burgess et al., 2020), and only direct fitting of the physical models
can produce definitive results.
Due to the complexity of the simulations, generating numerical spectra requires consid-
erable computational power, thus dissipative photosphere models have only been fitted to
a very limited extent, see e.g. Ahlgren et al. (2015, 2019a,b). Most often these complex
models were simply tested by evaluating their ability to reproduce the spectral shapes and
peak positions given by Band function fits and not by fitting them directly to the data,
which requires the generation of a very large table models. Chapter 5 addresses this prob-
lem by studying the viability of the dissipative photosphere model developed by Pe’er and
Waxman (2005) by generating a large table model and fitting it directly to Fermi-GBM
data.

1.3.5 Dissipation mechanisms

One of the limitations of the fireball model is that it does not specify in which way the
energy of the outflow (kinetic and magnetic) is converted to radiation. This section pro-
vides a summary of the main dissipation mechanism candidates, with particular focus on
internal shocks and magnetic reconnection.
The internal shock theory was developed back in the 90’s (Paczynski and Xu, 1994; Rees
and Meszaros, 1994) and describes a scenario in which the energy dissipation is generated
by collisions between shells within the relativistic outflow. Due to the unsteadiness of the
inner engine, a variable number of these shocks can take place during a single GRB and
even complex lightcurves with several peaks can in principle be explained by the presence
of multiple shocks (Beloborodov and Mészáros, 2017). Internal shocks thus convert ki-
netic energy to radiation through the collision of two or more shells with different Lorentz
factors within the relativistic outflow, offering a natural explanation to the high variability
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observed in many GRBs, as explained in the following.
In the simplest scenario, two shells with similar Lorentz factors Γ1 ∼ Γ2 ≡ Γ and
Γ1 − Γ2 ∼ Γ are produced by the inner engine on a timescale δt ∼ r0/c. Shell 1 will
catch up and collide with the slower moving shell 2 at the radius rcoll ≃ cδtΓ2 (Piran,
2004). δt is intuitively identified as being the variability timescale, which is ultimately set
by the size of the inner engine, providing thus a natural way of explaining the high vari-
ability observed in many GRBs by assuming the formation of a compact object is taking
place with the burst. For a single shock between two shells of mass m1, m2 and Lorentz
factor Γ1, Γ2, conservation of four-momentum yields the following final Lorentz factor
(Kobayashi et al., 1997)

Γ f =

(
m1Γ1 + m2Γ2

m1/Γ1 + m2/Γ2

) 1
2

(1.15)

The efficiency of the dissipated kinetic energy is then given by

ϵd = 1 −
(m1 + m2)Γ f

m1Γ1 + m2Γ2
(1.16)

This implies that to achieve high dissipation efficiency similar masses and largely differ-
ent Lorentz factors are required. For example, for Γ1/Γ2 = 10 and m1 = m2, ϵd ≳ 40%,
but this holds true only for a first collision, consecutive shocks will have progressively
lower efficiencies (Pe’er, 2015). More likely values for the shells’ conditions produce
efficiencies in the range 1−10% (Mochkovitch et al., 1995). Moreover, dissipated energy
does not directly translate to emitted radiation, since particles need to first be accelerated
to high energies and then emit photons through some mechanism, e.g. synchrotron. As
such, the main drawback of the internal shock scenario is its very low efficiency in con-
verting kinetic energy to emitted radiation (Pe’er, 2015).
It must also noted that shocks don’t necessarily take place only within the outflow, they
can also occur between jet and the circum-burst medium (CBM) surrounding the progen-
itor. These shocks, known as external shocks, take place at much larger radii (r ≳ 1017

cm) compared to the internal shock scenario. The larger collision radius implies however
that this mechanism cannot explain the high variability present in many of the observed
GRBs and thus this scenario is unable to explain prompt emission. On the other hand,
external shocks are however able to consistently describe the afterglow emission, as ex-
plained later on in Section 1.4.1.

In contrast to the internal shock scenario, it is also possible that most of the energy
of the jet is actually not kinetic, but magnetic (i.e. the jet is Poynting dominated). This
is the case of magnetized outflows, which arise for example in the case of the formation
of a magnetar, a neutron star with extremely strong magnetic fields, B ≳ 1015G (Pe’er,
2015). This object is thought to be formed as an intermediate step before the progenitor
ultimately collapses to a black hole (Usov, 1992; Thompson, 1994; Pe’er, 2015). The
amount of energy stored in the magnetic field is commonly parametrized by the magneti-
zation parameter σ

σ =
LM

LK
=

B2

4πΓ2nmpc2 (1.17)

which is simply the ratio between the magnetic (or Poynting) and kinetic energy flow. In
an highly magnetized jetσ ≫ 1. Due to the fast rotation of the magnetar, changes in polar-
ity of the magnetic field are possible on a scale λ ∼ 2πc/Ω, whereΩ is the angular velocity
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of the central object (Coroniti, 1990; Pe’er, 2015). Where these changes occur, magnetic
field lines can undergo a rearrangement known as magnetic reconnection. This process
converts part of the energy of the magnetic field into kinetic energy and can accelerate
particles. The mechanism cannot generally be described analytically and requires com-
plex magneto-hydrodynamical simulations to be studied (Sironi and Spitkovsky, 2014;
Granot, 2016), however one of its main advantages is that it can in principle reach much
higher efficiencies if compared to the typical internal shock scenario, though how large
this value can be is still unclear (Pe’er, 2015).

It should also to be mentioned that there are other types of mechanisms that can con-
vert the energy within the outflow to radiation. One of those is based on the presence
of free neutrons in the jet, which are produced by photo-disintegration of nuclei. Since
p-n collisions have a lower cross-section than proton Thomson scattering, they end up
having different velocities, which leads to some friction between the two types particle
species. This results in p − n collisions, which produce pions. These pions decay and
produce positrons e+, which radiate synchrotron emission and interact through Compton
scattering with the thermal photons. These processes ultimately produce a non-thermal
spectrum peaking around 1 MeV (Beloborodov, 2010; Pe’er, 2015).
Finally, there are also hybrid models, such as the Internal-collision-induced Magnetic
Reconnection and Turbulence (ICMART), where both internal shocks and magnetic re-
connection take place (Zhang and Yan, 2011). In the scenario described by the ICMART
model, the shocks dissipate only a small quantity of energy (thus avoiding efficiency is-
sues), but distort the magnetic field lines, allowing for magnetic reconnection to occur
and act as the main dissipation mechanism (Zhang and Yan, 2011).

1.3.6 Polarization

Polarization measurements are potentially one of the best tools available to discriminate
between different emission models for the prompt emission. From an observational stand-
point, such measurements have proven to be very challenging and the results from differ-
ent instruments are often inconsistent (Gill et al., 2020). To measure polarization in the
gamma-ray energy range, instruments rely on the azimuthal asymmetry present in the
Klein-Nishina cross-section for Compton scattering. In principle this allows to recon-
struct both the polarization angle and the polarization fraction (i.e. the fraction of polar-
ized radiation) of the incoming photons, but in practice this procedure is made difficult
by the usually low photon statistics available and by the presence of significant back-
ground. The currently available polarization measurements are thus not very constraining
and were not able to shed much light on the underlying physics of GRBs, see e.g. Gill
et al. (2020) for a summary. There is however evidence for the presence of a change in
polarization angle during the prompt mission, as inferred independently from the GAP
(Yonetoku et al., 2011) and POLAR (Produit et al., 2018) instruments (Yonetoku et al.,
2012; Burgess et al., 2019).

For non-dissipative photospheric emission, the maximum value for the polarization
fraction is expected to be Π ≲ 15−20% (Gill et al., 2020), though this estimate can
change quite significantly when considering instead dissipative emission. On the other
hand, a single constraining measurement with polarization fraction 50% ≲ Π ≲ 65% or
measuring consistently Π ≳ 20% in a a large burst sample would strongly point in favor
of synchrotron emission (Gill et al., 2020). It’s also important to keep in mind that the
observed polarization is affected by the geometry of the jet and the angle at which it is
observed. This effects can be complex to quantify, especially given how little is known
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about the jet structure.
Overall, polarimetry is one of the best candidates to successfully discriminate between
different physical models for the prompt emission, but it is currently held back by the
lack of instruments able to provide more constraining measurements.

1.4 Long-wavelength emission following GRBs

1.4.1 Afterglow

The longer-lasting, lower energy emission following the initial release of gamma-rays
is known as afterglow and it can range anywhere from X-rays to radio, shifting gradu-
ally from higher to lower energies. Afterglows are observed when the burst’s relativistic
jets collide with the circum-burst medium (CBM) surrounding the progenitor (Rees and
Meszaros, 1992; Paczynski and Rhoads, 1993), a scenario which is described by the ex-
ternal shock model. The observed emission is very well characterized by synchrotron
radiation from a power-law population of electrons, in an analogous way as what de-
scribed in Sec. 1.3.3. Afterglows lightcurves are typically characterized through the use
of power-law segments, which express the dependence of the flux on time and frequency,
F ∝ t−αν−β. The observed values of the indices identify precise aspects of the dynamics
and geometry of the outflow (Sari et al., 1998c), as is here summarized.
The theoretical framework, already developed back in the 70’s by Blandford and McKee
(1976), describes a scenario in which a spherically symmetric ultra-relativistic shell of
width ∼ r/Γ2 propagates through a generic external medium surrounding the progenitor
(Piran and Granot, 2001). When the outflow collides with the CBM, two shocks are pro-
duced: one moving forward (forward shock) and one moving backwards into the ejecta
(reverse shock). The forward shock is the one responsible for the main afterglow emis-
sion, while the reverse shock produces (at least in a fraction of cases) a so-called optical
flash. This transient is very short-lived (∼ 10 min) and in most cases it is not observed
at all (Gill et al., 2020). The main focus of this section is however on the forward shock
generating the main afterglow emission.
In the simplest scenario of the Blandford-McKee solution, the CBM has uniform density,
but further generalizations include radial mass density profiles in the form of a power-
law, ρ = Ar−k. Of particular interest is the case k = 2, which describes a wind, that is
the envelope lost by the progenitor prior to the GRB explosion. Under the assumption
of the system being adiabatic, that is the energy losses due to radiation having negligible
effect on the overall hydrodynamics, energy conservation yields the following (Piran and
Granot, 2001)

E =
Ω

3 − k
Ar3−kΓ2c2 (1.18)

where Ω is the solid angle covered by the outflow, with Ω = 4π for a spherically symmet-
ric solution (in the case of jets Ω ≈ 2πθ2

jet). This equation defines a natural length scale,
known as Sedov length:

lS =

[
(3 − k)E
ΩAc2

] 1
(3−k)

(1.19)

The Sedov length defines the radius at which the ejecta sweeps up a mass of the external
medium equivalent to the outflow’s initial energy. In the simplest case of a spherically
symmetric outflow in a uniform medium (k = 0 and ρ ≡ ρ0 = 4πmpn0, assuming the mass
to be dominated by protons) the Sedov length is simply lS = (3E/4πmpc2n0)1/3. This
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implies that lS also defines where the transition from the initial ultra-relativistic regime
(i.e. Blandford-McKee solution) with Γ ≫ 1 to a Newtonian regime Γ ≈ 1 takes place.
In the lightcurve, this corresponds to an achromatic break, that is a change in the slope of
the flux lightcurve present at all frequencies (Piran and Granot, 2001).

Considering instead the more realistic case of jetted emission, the afterglow becomes
more complicated to describe. For simplicity, it is here assumed that the jets are uni-
form, with small aperture angles θ jet. During the first phase of the emission, as long
as Γ ≳ θ−1

jet, relativistic beaming prevents the observer from seeing the entirety of the jet,
which implies that it is initially not possible to discriminate between jetted and spherically
symmetric emission. When the ejecta slows down to Γ ≈ θ jet

−1, the relativistic beaming
effect subsides and the jet becomes fully visible. This implies that a further decrease in
speed of the outflow will not increase anymore the emitting surface visible to the observer.
This corresponds to a change of the steepness in the flux lightcurve known as jet break.
As previously mentioned in Sec. 1.3.2, the presence of these transition points in after-
glow observations constitutes strong evidence for the presence of relativistic jets during
the prompt emission. Additionally, while in the ultra-relativistic regime the motion of the
jet is conical (i.e. the angular spread is negligible), at later times sideways expansion of
the jet becomes relevant. This can produce an additional break in the lightcurve, though
its position depends on the speed with which this sideways expansion takes place (Piran
and Granot, 2001).
It should also be noted that various assumptions here considered are likely violated for at
least part of the emission. For example, the adiabatic approximation can be violated at the
very early stages of the afterglow emission, when the system may be in a radiative regime,
where energy losses due to radiation can be large enough to affect the hydrodynamics of
the outflow (Piran, 2004). Moreover the shape and internal structure of the jets play also
an important role in characterizing the afterglow emission and a uniform jet approxima-
tion may deviate significantly from reality.

Finally, additionally to pure synchrotron emission, there are at least two other effects
to take into account: synchrotron self-absorption (SSA) and synchrotron self-Compton
(SSC). SSA is an absorption mechanism where the population of electrons responsible for
the emission of the synchrotron photons is also absorbing part of them. In practice, this
translates in a steep slope ∝ ν 5

2 at lower energies. Note that this mechanism is unimportant
for the prompt emission and the first part of the afterglow, as it only matters when the
emission shifts to longer wavelengths, such as radio (Piran, 2004).
SSC is instead thought to be responsible for the observation of very high energy photons
(up to hundreds of GeV, see e.g. MAGIC Collaboration et al. (2020)) soon after the
prompt emission is detected (Zhang et al., 2020). The existence of such high energy
component is also suggesting that the conditions to produce high energy neutrinos are
likely to be present, see Sec. 1.5. In this case, the neutrino production could be delayed
with respect to the prompt emission and take place instead during the afterglow phase
(Waxman and Bahcall, 2000). In such scenario, neutrinos with energies up to ∼ 1019

eV would be produced through ∆ resonance (see Sec. 1.5) by the interaction between
high energy protons (with energies ≲ 1020 eV) and optical-UV photons produced by the
afterglow’s reverse shock. The corresponding neutrino flux may however be too weak to
be detected by the current generation of detectors (Nir et al., 2016; Thomas et al., 2017).
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1.4.2 Kilonovae

In the case of neutron star mergers, in addition to the jetted emission responsible for
gamma-rays and afterglow, another component is expected to be present, the so-called
kilonova (Li and Paczyński, 1998; Metzger et al., 2010). The kilonova emission occurs
when, during the merger, a small fraction of the mass of the binary system (of the order
of 10−4 − 10−2 M⊙) is expelled due to tidal and/or hydrodynamical forces (Metzger et al.,
2010; Ascenzi et al., 2019). The resulting outflow is mildly relativistic (with speeds of
∼ 0.1c) and is expected to be highly rich in neutrons, implying thus a high rate of ele-
ment synthesis through r-process. The following radioactive decays power then a thermal
optical/infrared/ultraviolet transient, with typical luminosities ranging from 1040 to 1044

erg/s (Metzger et al., 2010). The first of these transients was detected only in relatively
recent times, with the observation of GRB 130603B (Tanvir et al., 2013). Of particular
importance is also the fact that kilonova emission is expected to be roughly isotropic, im-
plying that it is in principle possible to observe these transients even from off-axis angles,
i.e. when the relativistic jets are not pointing onto the observer. This was most likely the
case for the particularly significant kilonova detection of GW/GRB 170817 (Troja et al.,
2018).
The kilonova ejecta can present multiple components depending on the lanthanide content
(i.e. high Z elements formed through r-process synthesis). An outflow with very little or
no lanthanide content would move faster due to its lower mass and appear “bluer”, thus
the name of blue kilonova. Conversely, a lanthanide rich ejecta would move slower and
appear “redder”, i.e. a red kilonova (Ascenzi et al., 2019). The distinction between these
two components arises due to the two different forces acting as ejection mechanisms: the
matter which is ejected by tidal forces is expected to be richer in neutrons (i.e. larger lan-
thanide content through r-process) while the matter expelled by hydrodynamical forces
would instead be poor in neutrons (Ascenzi et al., 2019).
The theoretical predictions regarding kilonovae were largely confirmed with the excep-
tional observation of GW/GRB 170817, which provided an unprecedented amount of data
thanks to the many instruments being involved in the observations (Metzger et al., 2010).
Kilonovae remain however challenging to observe and identify, both because they require
very precise localization (from e.g. X-ray detectors observing the afterglow) and also
because the kilonova emission doesn’t peak right away after the burst, but typically 1-2
days after the GRB has occurred (Metzger et al., 2010), so instruments may often not be
observing during the optimal time window.

1.5 GRBs as multi-messenger sources

GRBs are deemed to be good candidates for multi-messenger observations and, at least
for short GRBs, detection of a simultaneous EM-GW signal has been proven to be pos-
sible (Abbott et al., 2017; Goldstein et al., 2017). GRBs are not only gravitational waves
sources, but they are also thought to dissipate a significant fraction of their energy through
the emission of neutrinos (potentially up to very high energies), which could in principle
be observed by today’s neutrino detectors, such as e.g. IceCube (Aartsen et al., 2017). In
GRBs, an efficient channel to produce neutrinos is through pion decay π− → µ− νµ or its
π+ equivalent, in which case pions are produced through pγ or pp interactions. The pγ
process requires the photon to have an energy of about ∼ 200 MeV in the proton frame so
to be able to create ∆ particles (m∆ = 1.2 GeV) through a resonance (Piran, 2004). These
particles can then decay into pions, which in turn decay to neutrinos with typical energies
of ∼ 50 MeV in the proton frame. Given that protons are moving at relativistic speeds
with a Lorentz factor γp in the observer frame, neutrinos are observed having energies a
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factor γp higher. With this mechanism neutrinos with energies up to 1019 eV can be pro-
duced, assuming the photon flux is large enough and that there are no significant energy
losses for the pions before they decay (Piran, 2004).
Observation of astrophysical neutrinos is however extremely challenging: even with very
large detectors such as IceCube, the event statistics is very poor and the reconstruction
difficult. As of now, with the exception of the serendipitous observation of supernova SN
1987A (Burrows and Lattimer, 1987), the only identified neutrino source is the blazar (i.e.
an active galactic nucleus with its jet pointing in the observer direction) TXS 0506+056
(IceCube Collaboration et al., 2018). Moreover, neutrinos produced by GRBs could also
lack an electro-magnetic counterpart, which would make the identification of the neutri-
nos as part of the GRB emission most likely impossible. In the core-collapse scenario,
this would be the case for bursts with chocked jets, i.e. when the jet cannot manage
to pierce through the stellar envelope and no gamma-ray emission is detectable. These
GRBs could constitute a significant fraction of the unidentified astrophysical neutrinos
in the detectors. The findings in IceCube Collaboration et al. (2018) seem however to
indicate that a significant fraction of the observed IceCube neutrinos may be produced
by active galactic nuclei (AGNs), though how large this fraction is still under debate.
Nonetheless, GRBs are still good candidates to explain a large part of the remaining flux,
although there has been no successful identification so far. From a detection standpoint,
compared to AGNs, they present both advantages and disadvantages. Since GRBs are
transients, their detection and localization is very challenging: observation is only possi-
ble in a narrow time window and the reconstructed gamma-ray position is often not very
constraining. Precise localizations from e.g. X-rays or optical instruments are available
only in a fraction of cases. If one assumes that the neutrinos are emitted mainly during the
prompt emission (Mészáros, 2015), this allows however to set a narrow time window for
the neutrino-electromagnetic coincidence searches, which can yield a higher significance
for a potential simultaneous signal. In the AGN and other steady sources cases instead,
the position is well known, but the time of potential neutrino emission is not.

As of now, there are two major obstacles to GRB neutrinos detection, namely the lo-
cation and spectrum of these sources. Most of the currently detected bursts are from
Fermi-GBM observations, which are often not very constraining in terms of localization,
especially due to the fact that large positional systematics are present, as detailed in Chap-
ter 4. A large position uncertainty from the gamma-ray observation on top of the often
not very constraining neutrino localization implies that, even if a simultaneous signal was
to be detected, it would be impossible to confirm that it is produced by the same source
due to the low resulting significance. Furthermore, the many unknowns about the electro-
magnetic emission in GRBs affect the predicted neutrino flux, which as of today still
remains very uncertain.

Similar arguments can also be made for gravitational wave signals. As previously
mentioned, GRBs have been theorized to be strong sources of gravitational waves. This
was observationally confirmed in 2017, with the simultaneous detection of a gamma-ray
signal together with LIGO’s observation of gravitational waves from a binary neutron start
merger (Abbott et al., 2017; Goldstein et al., 2017). While gravitational waves detectors
are continuously improving, the detection of binary neutron star mergers is still very chal-
lenging, since it requires the event to take place close enough so that the GW instruments
can detect it, but also that the gamma-ray signal is bright enough to be seen by detectors
such as Fermi-GBM. Much like neutrinos, correct identification of gravitational waves’
counterparts also relies on having gamma-ray locations as constraining as possible.
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1.6 Tackling the open issues in GRB science

Gamma-ray bursts, with their extreme luminosities which allow them to be detected even
at cosmological distances, constitute one of the best candidates to explore the high red-
shift Universe. Yet these sources, even after decades of studies, remain poorly understood.
There are a multitude of issues still afflicting the study of these objects, arising from both
the difficulty in observing GRBs and the complexity in modeling them from a theoretical
standpoint. This thesis thus tries to tackle both of these problems.
First of all is the issue of the locations provided by GBM. While the instrument can reli-
ably observe a large number of bursts every year, the localizations the instrument provides
are most often not very constraining, even more so since the detector is affected by sig-
nificant systematics. This implies that follow-up multi-wavelength observations (but also
multi-messenger searches, see Sec. 1.5) become much more difficult to carry out and are
much more likely to turn out unsuccessful. This constitutes a significant problem, es-
pecially given how much importance afterglow observations and redshift measurements
hold when studying GRBs and their host environments.
On the other hand, the understanding of the physical processes involved in the prompt
emission is also struggling to advance. This is the case not due to the lack of a the-
oretical framework, but due to its insufficient testing performed so far. As previously
mentioned in Sec. 1.3.4, due to being very computationally expensive, physical models
have been directly fitted to GRBs only to a very limited extent. Most often they have just
been compared to the spectral shapes of empirical functions fits (e.g. Band function fits),
methodology which has been proven to be unreliable for performing physical inference
(Burgess et al., 2020) and thus doesn’t allow for proper estimation of the physical param-
eters of the source.

As such, the purpose of this thesis is twofold: Chapter 4 addresses the issue of poor
localizations, showing that a better statistical methodology can vastly improve Fermi-
GBM positions and almost completely remove its systematics, while Chapter 5 shows
how fitting physical models to GRBs can help constrain the physical conditions of the
source, which can also be used to improve the accuracy of the predicted neutrino flux
from theoretical models.
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Chapter 2

The Fermi space telescope

2.1 Introduction

The Fermi space telescope (formerly known as GLAST) is a space observatory designed
to observe gamma-ray sources. Launched on June 11, 2008, it is still currently opera-
tional. It is composed of two separate instruments: a pair production telescope, the Large
Area Telescope (LAT), and a Gamma-ray Burst Monitor (GBM). The spacecraft is orbit-
ing around the Earth at an altitude of 565 km every ∼1.5 h and is able to scan the whole
sky through a rocking motion, i.e. the spacecraft changes its pointing from one hemi-
sphere to the other every orbit, allowing for a roughly uniform sky exposure (Atwood
et al., 2009). Overall, Fermi can observe photons with energies comprised within 8 keV
and 300 GeV.

2.2 The Large Area Telescope

The LAT is a pair production telescope designed to observe photons ranging from ∼20
MeV up to more than 300 GeV, providing a field-of-view of 2.4 sr (Atwood et al., 2009).
Correct reconstruction of photons below 100 MeV is however very challenging due to
severe energy dispersion and as such the use of these events for data analysis requires
particular care through a technique known as LAT Low Energy (LLE), see Pelassa et al.
(2010) for more details. LLE data is nonetheless very useful for GRB spectral analysis
and will be used, whenever available, to better constrain the high energy components in
the fits performed in Chapter 5. While in terms of number of detected bursts LAT is a
far less prolific detector than GBM, the instrument has nonetheless been able to provide
a number of important observations of high energy emission from GRBs (Ackermann
et al., 2013; Ajello et al., 2019). Furthermore, the LAT is also designed to be automati-
cally repointed to any burst of particular interest detected by GBM through an automated
algorithm (Meegan et al., 2009). If a burst is thus detected by the LAT, the reconstructed
location is far more precise than GBM’s.
The LAT is composed of two main parts, a tracker and a calorimeter. The tracker consists
in a series of 16 layers of single-sided silicon strip detectors (SSDs), which purpose is to
track the trajectories of the pairs. To provide the necessary cross-section to produce the
pairs, tungsten plates are inserted in between the tracker layers. Each of the SSDs can
only measure the position along one direction, so consecutive layers are rotated by 90◦

with respect to each other in order to provide a two-dimensional position measurement
(Atwood et al., 2009).

The second part of the LAT is a calorimeter composed by 96 cesium iodide (CsI)



2 The Fermi space telescope 36

Figure 2.1: A schematic of the LAT and its measurement process. Incoming photons interact with the tungsten plates
in the tracker, creating an e−e+ pair. The trajectories of these particles are then measured by the tracker, while their
energies are measured by the calorimeter. Figure from Atwood et al. (2009).

scintillation bars coupled to photo-multiplier tubes (PMTs) for read-out. The crystals are
arranged in a hodoscopic fashion, i.e. consecutive layers are rotated by 90◦ with respect
to each other. This allows the calorimeter to also provide some positional information
about the energy deposition along the bars through the different amount of scintillation
light being collected at the opposite ends of the crystal (Atwood et al., 2009).
The instrument is also surrounded by a plastic anti-coincidence detector (ACD) to avoid
triggers due to charged particles from cosmic rays.

2.3 The Gamma-ray Burst Monitor

The Gamma-ray Burst Monitor (GBM) is an instrument primarily designed to observe
gamma-ray bursts, though it is also able to detect other gamma-ray transients such as so-
lar flares, terrestrial gamma-ray flashes etc. GBM observes the energy band comprised
between 8 keV and 40 MeV, an energy window which captures most of the GRBs’ emis-
sion (Meegan et al., 2009). The instrument is the main focus of this chapter, as it provides
the vast majority of the data being used in Chapter 4 for localizations and in Chapter
5 for spectral fitting. The instrument is operating at all times, except during the transit
through the South Atlantic Anomaly (SAA). This region, which roughly encompasses
South America and the South Atlantic Ocean, corresponds to a zone of weaker geomag-
netic field, which implies that there’s a much higher flux of charged particles compared to
the other regions of equal altitude. This area greatly increases the background in scientific
instruments and can potentially even cause damage, if they are not turned off during the
transit. As such, GBM does not collect data while flying over this location, which reduces
the total observation time by ∼15% (Fermi website).
The instrument can potentially detect GRBs from any direction in the sky, but in practice
the detector array is optimized for detection from the upper hemisphere of the spacecraft,
since the lower one is for the most part occulted by the Earth. GBM detects roughly 240
bursts per year, of which about 17% are short GRBs (Connaughton et al., 2015), and is
thus the most prolific GRB detector in history, with more than 2700 detected GRBs as of
now (Fermi-GBM data).

https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_Introduction/mission_overview.html
https://fermi.gsfc.nasa.gov/ssc/data/access/gbm/
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GBM consists of an array of 14 detectors (see Fig. 2.2), each pointing in a different
direction so to provide an overall all-sky field-of-view to the instrument. Each of these
detectors is a unit composed of a scintillation crystal coupled to a photo-multiplier tube
(PMT), one of which is shown in Fig. 2.2. There are 12 thallium activated sodium iodide
(NaI(Tl), denoted by a “n” from now on) detectors for low energy photons (8 − 1000
keV) and two bismuth germanate (BGO, denoted by a “b”) detectors for higher energies
(0.2 − 40 MeV). The NaI crystals are cylinders with dimensions of 12.7×1.27 cm, while
the BGO crystals are thicker, with a size of 12.7×12.7 cm (Meegan et al., 2009).

Figure 2.2: On the left, a schematic of the detector array composing GBM (NaIs from 1 to 12, 13 and 14 for BGOs).
On the right, a photo of one of the NaI detectors. Original figures from Meegan et al. (2009).

For each detector and energy channel a count rate is measured. These counts depend on
both the spectrum and the position of the source through the change in the corresponding
effective area, as shown in Fig. 2.3. It is important to understand that the measured counts
are simultaneously affected by both spectrum and position and as such it is impossible to
separate the source reconstruction process in a location fit and a spectral fit, unless e.g.
there is external data from another instrument providing a position for the source.
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Figure 2.3: Photopeak effective area curves for a single NaI detector for varying incidence angle (i.e. angle between
the incoming photon and detector boresight). Figure from Berlato et al. (2019).

The reconstruction process is further complicated by the presence of significant energy
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dispersion: the counts in each energy channel do not necessarily belong to source photons
of the corresponding energy bin, but may be generated by higher energy photons instead.
This can happen due to various possible reasons, such as e.g. scattering on passive mate-
rials or other parts of spacecraft, partial absorption of the photons in the crystals etc. This
implies that for photons of a certain energy emitted by the source, counts can be generated
not only in the corresponding energy bin, but also in all the lower energy channels.

Figure 2.4: A graphical representation of the response matrix for one of the NaI detectors. For an ideal instrument
without energy dispersion, the effective area would be non-zero only along the diagonal (within the limits of the energy
resolution of the instrument).

The detector response is thus not a one-to-one correspondence between true and re-
constructed energy, but there is always some "smearing" of the reconstructed energy to
lower values, see Fig. 2.4. This has the important consequence that the response matrix
is not invertible, since there is no unique correspondence between true and reconstructed
photon energies.

In practice this implies that, even if the position of the source is known, it is impos-
sible to directly invert the response and reconstruct the flux in each energy channel. It is
however still possible to reconstruct both the source’s spectrum and position through an
approach known as forward-folding. The main idea of this method relies on testing differ-
ent combination of parameters (in general both positional and spectral) by convolving that
particular source configuration through the detector response and comparing the counts
obtained by that test configuration to the actual ones. The process is then repeated until
the most likely parameter combination is found. The details on how this is performed in
practice depend on the specific fitting methodology, as detailed in Sec. 4.1.
To obtain reliable results from the fitting, an accurate instrument response is of utmost
importance. In GBM, this response is composed of three different components (Kippen
et al., 2007; Meegan et al., 2009; Bissaldi et al., 2009):

1. Direct response: this is the count rate measured by the instrument if the photons
reach directly the detectors. This response has been generated through simulations
and also measured directly through laboratory calibrations.

2. Spacecraft scattering model: since photons can be absorbed and scattered by the
different spacecraft parts, an additional response component needs to be taken into
account. This was computed through the use of GEANT4 simulations.
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3. Atmospheric scattering: the source’s photons will also be scattered by the Earth’s
atmosphere, and this will cause an additional component which needs to be taken
into account. Again, this response is obtained through simulations.

These three different components of the response all affect the final measured counts and,
through the fitting process, the accuracy of the reconstructed source parameters. As dis-
cussed more in detail in Sec. 4.3, an inaccurate response can introduce systematics in the
source reconstruction process.

Finally, GBM regularly produces various different types of data products (see Tab.
2.1), but in the scope of this thesis only trigdat (trigger data) and TTE (Time Tagged
Event) data will considered. Both of these data types are automatically generated when a
trigger of any kind occurs.

Table 2.1: The main GBM data products (Meegan et al., 2009). Trigdat data is the only data available right after a
trigger. For further information, refer to GBM Data Products Description.

Data type Description Resolution

Trigdat Low resolution trigger data Energy: 8 channels
Time: 0.064 - 8.192 s

TTE High resolution trigger data Energy: 128 channels
Time: 2 µs

CSPEC Continuous high energy resolution Energy: 128 channels
Time: 4.096 s

CTIME Continuous high time resolution Energy: 8 channels
Time: 0.256 s

Figure 2.5: Example of GBM trigdat data for detector n0 for GRB 150201.574. On the left, the lightcurve with the
selected source interval (orange filling) and the fitted background (light blue line). Counts are rebinned for easier
visualization. On the right, the corresponding count spectrum. The first and the last energy channels are grayed-out
since they are not used for fitting.

Trigdat data is almost immediately (∼10 min) generated and down-linked after an event
is triggered in GBM. This very short delay comes however at the price of a much lower
resolution: the detector counts are binned both in energy (8 channels) and in time, with a
variable resolution ranging from 64 ms close to the trigger time to 8.192 s farther away,
see Fig. 2.5. This is done to minimize the amount of data which needs to be processed
and transferred, so that the data files are available as quickly as possible. This is the
data type commonly used for GRB localization and it is employed for counterpart (multi-
wavelength and/or multi-messenger) searches. A further complication is that, from the

https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_Data/GBM_DP.html
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total 8 energy channels, the first (due to significant absorption of the photons by the pas-
sive materials) and the last (due to pile-up of the counts from photons with energies greater
than the maximum allowed by the detector) need to be excluded when fitting.

On the other hand, TTE data is available only a few hours after the trigger, but carries
much more detailed information: for each detector, the count data is binned in 128 energy
channels and unbinned in time. This data type is down-linked several hours after the
trigger, usually too late to be used for counterpart searches (e.g. afterglow), but it is very
important for spectral fitting due to the finer energy resolution. Chapter 4 relies on trigdat
data for the localization performance study and systematics searches, while Chapter 5
employs instead TTE data for the spectral fitting.
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Chapter 3

Statistics considerata

3.1 Introduction

The scope of this chapter is to briefly discuss the different statistical approaches to the
source reconstruction process in gamma-ray detectors, with particular focus on what is
used for GBM. As previously explained in Chapter 2, this procedure cannot in general be
separated in a positional and spectral fit: both of them need to be performed at the same
time. As will be shown in Chapter 4, failure to do so introduces systematics in the source
reconstruction process. This issue can however be avoided by making use of the proper
statistical treatment.

In high-energy astrophysics the signal, that is the counts measured by the detector, fol-
lows Poisson statistics, which naturally describes data from counting experiments. The
normal approximation is generally not valid, as the counts can be a very small. As ex-
plained in the next section, this has important consequences on how the fitting is per-
formed and on which form the likelihood function takes. In the measured counts, to-
gether with the source’s signal, there exists always a background component, which also
generally follows Poisson statistics (though in many cases the associated counts are large
enough that it can be approximated to a normal or truncated normal distribution). In many
cases the background component is of the same order or even dominant when compared
to the source’s signal and as such correct statistical modeling of this contribution is of
fundamental importance for achieving correct results in the reconstruction process.

The following sections thus provide a brief summary of the differences between the
main fitting approaches. Sec. 3.2 shows how different statistics affect the fitting method,
while Sec. 3.3 details the approach used for fitting and model checking in this thesis.

3.2 χ2 and Poisson statistics

Historically, the most common fitting method in astronomy has been the χ2 minimization
(see e.g. Andrae et al. (2010) for a review) due to its ease of computation. This procedure
involves the minimization of the following quantity

χ2 =

n∑
i=1

(
yi − f (xi,

#»α )
σi

)2

(3.1)

where yi are the measured values at position xi, σi are the uncorrelated gaussian uncer-
tainties of the data, #»α is the vector of parameters describing the model and f (xi) is the
expected value at xi. If the measured values are normally distributed, this minimization
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process is equivalent to computing the maximum likelihood for the model. In case they
are not, there is no correspondence between the two methods. While gaussian distributed
quantities are common in physics, they are certainly not the rule and using χ2 minimiza-
tion when its assumptions are not valid can produce incorrect results.

More generally in high energy astrophysics the measured quantities, such as the counts
measured per energy/time bin, follow Poisson statistics, that is

P(n) =
λne−λ

n!
(3.2)

which represents the probability of measuring n counts given the expected value λ in a
particular bin. Note that only in the limit of large λ the Poisson distribution becomes
a gaussian, using a normal distribution to describe the counts would generally lead to
incorrect results. The different statistics implies that the χ2 minimization method is no
longer applicable and that the likelihood takes a different form.

It’s important to keep in mind that the quantity following Poisson statistics is always
the total signal (source plus background). The background component can be estimated
through an off-time (before and/or after the source is active) or off-position (pointing
away from the source) measurement. The obtained value cannot however be considered
as a constant to be subtracted from the total signal, since this neglects the background
uncertainties and can produce negative source counts, which are unphysical and cannot
be accounted for by a Poisson distribution. Failure to properly incorporate the background
uncertainties in the model can produce inaccurate results in the final parameter estimation
obtained through the fit and is one of the potential sources of systematics.

3.3 Bayesian approach

In contrast to the frequentist definition, which views probability as the frequency of a
particular outcome in the limit of an infinite amount of trials, the bayesian approach sees
probability as a value quantifying the amount of information available regarding a certain
event. Notably, this also implies that any prior belief or knowledge regarding the outcome
affects the estimated probability. As the name implies, this approach is based on the
Bayes’ theorem, that is

P(A|B) =
P(B|A)P(A)

P(B)
(3.3)

where and P(x) is the probability of x and P(x|y) is the conditional probability of x given
y. This general probabilistic statement can in practice be used to draw information on the
parameters of a model to be fitted to the data. Suppose the data D is fitted with model
M, described by the vector of parameters #»α . Then the Bayes theorem takes the following
form

P( #»α |D) =
P(D| #»α )P( #»α )

P(D)
(3.4)

where the different terms have the following meaning:

• P( #»α |D) is the posterior distribution, which describes how likely a certain parameter
configuration is, given the information provided by both the data P(D| #»α ) and any
prior knowledge or belief given by P( #»α ).

• P(D| #»α ) is the likelihood, that is the probability of measuring the data given a specific
parameter vector #»α of modelM.
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• P( #»α ) is the prior distribution, which quantifies how likely a certain parameter con-
figuration is a priori. This knowledge usually comes from previous experiments,
observations or theoretical constraints.

• P(D) is the evidence, that is the probability of measuring the data under the as-
sumption of modelM being the true model (integrating over all possible parameter
configurations). This term plays a secondary role in analyses due to the fact that it
merely acts as an overall normalization factor and as such can be neglected in most
cases.

Regardless of the specific type of problem, the objective of a bayesian analysis is ulti-
mately to reconstruct the posterior distribution describing the model’s parameters, which
is formally computed by integrating the second term of Eq. 3.4 over #»α (i.e. all possible
parameter configurations), that is

P( #»α |D) =
∫

P(D| #»α )P( #»α )
P(D)

d #»α (3.5)

Solving this integral analytically is generally not possible and in practice it is almost al-
ways necessary to make use of numerical methods. There are multiple ways to approach
the problem, but most commonly what is done is to employ Monte Carlo integration,
which relies on approximating the integral through sampling techniques. This operation
is usually performed through the use of Markov chain Monte Carlo (MCMC) methods
(see e.g. Betancourt (2017) for a review), though there are also alternatives such as
MULTINEST (Feroz et al., 2009), which is used in Chapter 4 and 5 for fitting respec-
tively locations and spectra. Regardless of the specific approach, sampling the posterior
distribution is generally a much more computationally demanding task when compared
to standard frequentist methods such as the maximum likelihood, which, from a numer-
ical standpoint, constitutes just a minimization problem. This is the main reason why
the bayesian approach to data analysis wasn’t very common until even just a couple of
decades ago, however, with the rapid improvement of the available computational power,
it is now possible to perform such analyses in reasonable times, depending of course on
the complexity of the problem.

Once the posterior is available, it is possible to compute the probability distribution
of a single parameter in the model simply by marginalizing, that is integrating, over the
other parameters, as in the following

P(αi|D) =
∫

P(D| #»α )P( #»α )
P(D)

d #»α k,i (3.6)

where the integration is performed over all the αk with k , i. A common way to dis-
play the marginal distributions is through the use of the so-called corner plots, such as
the one displayed in Fig. 3.1. The figure displays the results of one of the spectral fits
from Chapter 5. The precise meaning of the parameters is not relevant in the context of
this chapter, what is interesting to observe is the shape of the distributions themselves.
Depending on the “strength” of the data and the ability of the model to describe it, it can
be more or less difficult to constrain some parameters. For example, the parameter ϵB in
the figure, is in this case poorly constrained, retaining for the most part the shape of its
prior, a log uniform distribution. Note that this does not constitute a problem in itself, it
just implies that either the data is too weak to constrain the value of the parameter, or that
the parameter itself has relatively poor predictive power in the context of the model, i.e.
the other variables have a far greater impact on the measurable quantities, i.e. the detector
counts.
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Figure 3.1: An example of a corner plot from one of the spectral fits in Chapter 5. On the top of each column, the
marginal distribution of each parameter is visible. Below, the 2-dimensional distributions for the various parameter
combinations are displayed, with the two shades of blue denoting the 68% (darker) and 95% (lighter) probability
regions.

Regarding what is considered as the final “best” fit parameters, they are chosen as the con-
figuration maximizing the posterior, i.e. the mode of the distribution. Note that in general
these values are different from the ones maximizing the individual marginal distributions
of Eq. 3.6. Generally speaking, the posterior distribution can be multimodal and as such
it is important to monitor plots like Fig. 3.1 to see if the distributions exhibit any peculiar
features that could skew the final parameter estimates and cannot always be noticed by
simply looking at point estimates (such as mode, mean or median) and their uncertainties.

3.3.1 Model checking

A very common problem in data analysis is “model checking”, that is assessing whether
the fitted model is able to describe the data accurately or not. In general it is not possible
to verify whether the chosen model is the “real” one, but only whether it is a sufficiently
good approximation of the physical phenomenon being described. If one is not able to find
significant inaccuracies in the model given the constraints applied by the measurements’
uncertainties, then it can be deemed to fit the data well. In some instances, the model can
directly be tested against a “true” value, which may come from e.g. an independent and
much more constraining measurement. This is for example the case for the GBM GRB
localizations in Chapter 4, which are compared to the much more precise Swift positions.
In general however it is not so straightforward to verify whether a given model is able to
describe the data accurately or not, especially when many parameters are simultaneously
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affecting the end result, as for example in the case of the spectra fitted in Chapter 5. In
these instances the model can be validated through the use of graphical checks (Wilk and
Gnanadesikan, 1968; Gelman, 2003), which allow for a quick and reliable assessment
of the fit’s performance. In practice, in Chapter 4 this is done through a comparison of
the expected and achieved distributions for the parameters describing the localization’s
performance of GBM, while in Chapter 5 posterior predictive checks (PPCs, see e.g.
Gabry et al. (2019)) are instead employed. PPCs are tests which purpose is to assess
whether the fitted model can replicate the observed data. Assuming a hypothetical fitted
model described by the posterior P( #»α |D), it is possible to draw a parameter vector from
this distribution. This vector defines a configuration for the model which can be used to
simulate a new dataset Drep. This operation can be repeated many times, sampling each
time a new parameter vector from the posterior distribution and generating a new dataset
from that model configuration. Mathematically, this can be expressed as

P(Drep|D) =
∫

P(Drep| #»α )P( #»α |D)d #»α (3.7)

which expresses the likelihood of observing the replicated data given the original mea-
surements. In practice, by replicating many datasets from different parameter configura-
tions one is able to obtain credible regions (i.e. probability intervals) which should capture
the vast majority of the real data, if the fitted model is a good description of the physical
phenomenon being studied. This can be better visualized with a practical example, as
shown in Fig. 3.2, where GBM’s observed counts are compared to the credible regions of
the counts expected by the fitted model.
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Figure 3.2: An example of PPC plot, used later in Chapter 5 to assess the goodness of the fitted model. The yellow line
denotes the observed counts, while the gray regions indicate, from darker to lighter, the 68% and 95% credible regions
for each bin.

As one can see, if the model fits the data well, the real counts are almost always falling
inside the chosen credible region (usually the 95% one is used, though this is to some
extent arbitrary). Nonetheless, this approach allows for a quick and reliable identification
of poor fits and is especially useful in case of models depending simultaneously on many
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parameters, where otherwise some kind of summary statistic would be needed.
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Chapter 4

Improved GRBs localizations

4.1 Localizing with GBM

This chapter analyzes the improvements to the Gamma-ray Burst Monitor GRB local-
izations made possible by the use of a better fitting algorithm. Sec. 4.1 introduces the
localization methodology, while Sec. 4.2 and 4.3 quantify the achieved improvement in
performance and conduct a search for any possible remaining instrument systematic. Fi-
nally, Sec. 4.4 discusses some of the potential applications of the improved locations.
The standard fit methodology employed for GRB localization relies on the Daughter of
Location (DoL) algorithm, which uses a χ2 minimization technique to find the optimal
source parameters. This implies that the locations published in the official catalogs are
all computed by using DoL, unless any better measurement from another instrument is
available (Paciesas et al., 2012; von Kienlin et al., 2014; Narayana Bhat et al., 2016; von
Kienlin et al., 2020). In GBM, the observed counts include a background component,
which for DoL is simply estimated with a polynomial fit and then subtracted from the
total counts. This implies that background uncertainties are not taken into account dur-
ing the fit. For each direction in the sky, the instrument spatial response is obtained by
the interpolation of the original response grid of 272 points (generated through GEANT
simulations), allowing the final spatial response matrix, amounting to a total of 41 168
points, to achieve a 1◦ resolution (Connaughton et al., 2015). Three of these tables are
constructed through the use of different spectral templates, based on different (but fixed)
spectral parameters’ values, as shown in Tab. 4.1. Up to 2019, the template spectra were
based on a Band function (Band et al., 1993), but, in response to the issues pointed out
in Berlato et al. (2019) and Burgess et al. (2018), they have been recently changed to
make use of a cut-off power-law model (Goldstein et al., 2019). This approach is however
akin to simply fine-tuning the parameters to achieve a slightly better performance and
does not solve the underlying issue of using only three spectral templates. Usually, the
soft template is employed for solar flares and Soft Gamma-ray Repeaters, the moderate
one for long GRBs and the hard one for short GRBs. Note that the only free parameter
for the spectrum is the amplitude, which defines the overall normalization. For each of
these templates, a χ2 minimization is performed to find the most likely source position,
i.e. the location most likely to produce the observed counts. The spectrum with lowest χ2

is chosen as the best one. The 68% error radius is defined as the average distance of the
points which lie at ∆χ2 = 2.3 (Connaughton et al., 2015). Due to the spatial response grid
resolution, a minimum value of 1◦ is assumed for the statistical uncertainty (Connaughton
et al., 2015).

While DoL allows for very fast fitting, this approach is strictly speaking wrong due to
its inherent inaccuracy, i.e. the inability of reproducing the real spectrum of the source.
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Table 4.1: The previous Band function (left) and current cut-off power-law (right) spectral templates used by DoL
(Connaughton et al., 2015; Goldstein et al., 2019).

Template α β Epeak (keV)

Soft -1.9 -3.7 70
Moderate -1 -2.3 230

Hard 0 -1.5 1000

Template α Epeak (keV)

Soft 1.95 50
Moderate -1.15 350

Hard -0.25 1000

Whenever the real spectrum of the source deviates significantly from the templates, sys-
tematics are being introduced in the localization process. A better approach uses the
newer and more advanced fitting algorithm, BALROG (BAyesian Location Reconstruc-
tion of GRBs), which is able to completely remove this issue thanks to a full fit, which
reconstructs simultaneously both source’s position and spectrum (Burgess et al., 2018).
Compared to DoL, this method is much more computationally expensive, since every dif-
ferent source’s parameters combination (both spectral and positional) requires a specific
response that the code is generating dynamically while fitting. Such an approach to fitting
wouldn’t probably have been viable (or at least, not for rapid localizations) at the start of
the mission, but with the much improved computational power now at disposal it is pos-
sible to run the code in ∼10 − 15 min with parallelization (∼16 CPUs). While BALROG
also fits the background with a polynomial, it properly takes into account the uncertain-
ties instead of relying on the incorrect procedure of background subtraction. The result of
each BALROG fit is a posterior distribution, describing simultaneously both spectral and
positional parameters of the source (Burgess et al., 2018). The “best” configuration of
parameters is chosen as the one which maximizes the posterior distribution. The position
distribution for a source is then obtained by simply integrating over the spectral parame-
ters, see Fig. 4.1.

In Connaughton et al. (2015), the authors perform a study of the systematics through a
comparison between the locations computed by DoL fits and the reference locations ob-
tained by much more precise instruments, e.g. the Swift space telescope or the Fermi-LAT,
or the ones obtained through triangulation by the Interplanetary Network (IPN). From the
analysis performed, it was found that GBM locations are affected by systematics, which
are empirically parametrized through the use of a combination of a two component model
(or core-plus-tail, see Sec. 4.3 for more details), see Fig. 4.2. By convolving the original
statistical error contour with this offset distribution, it is possible to recover the accuracy
(i.e. the error contours capture the real location as often as they should) at the expense of
the precision (much larger error region).

This approach however does not fix the fundamental issue of the DoL algorithm, which
is the use of the spectral templates. Larger uncertainties can only hide the problem at best,
but not fix it, since the fitted model requires more adaptability then what allowed by the
use of templates. Moreover, the much larger error regions represent a serious drawback
when performing searches for possible counterparts. Afterglow searches run into a much
higher number of unrelated transients, while any e.g. neutrino search would see the sig-
nificance of a hypothetical signal being decreased, since it gets “smeared” on a much
larger region of the sky. In the following Sec. 4.2, the BALROG code performance is
analyzed and compared to DoL’s, while also performing a search for potential remaining
instrument systematics.
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Figure 4.1: A corner-plot of the posterior distribution of the trigdat fit of GRB 090328.401. ra and dec represent the
right ascension and declination of the burst, while K, index and xc are respectively the amplitude, spectral index and
break energy of the fitted cut-off power-law. The distributions for the single parameters are obtained by integrating the
full posterior distribution over the other source parameters.

4.2 BALROG localization performance

A study of the BALROG code performance and its comparison to DoL’s is here presented.
The sample used is the same as in Berlato et al. (2019) (see Appendix A), composed of
105 bright GRBs with known reference location, which is provided by the Swift space
telescope. Swift localizations are much more constraining than GBMs, with typical un-
certainties of the order of a few arcminutes for Swift/BAT (Barthelmy et al., 2005) and a
few arcseconds for Swift/XRT (Burrows et al., 2007). In comparison, typical GBM po-
sitions have statistical errors of the order of a few degrees. As such, the uncertainties of
the reference locations are neglected in the analysis here performed. Of the 105 GRBs in
the sample, 69 are triggers with a DoL location, which can be compared to the BALROG
location to assess the comparative performance of the two methods. The remaining 36
bursts do not have a public DoL position, but are nonetheless used to increase the sam-
ple size for systematics searches, see Sec. 4.3. The bright bursts selected for the sample
satisfy the following cut in fluence S and peak flux Fpeak:

Fpeak > b − a · S , (4.1)

where b = 6 cm−2s−1 and a = 0.857 · 105 erg−1s−1. This cut, which is to some extent
arbitrary, is meant to strike a balance between a large enough sample and events with
sufficiently small statistical uncertainties. The small statistical errors are fundamental for
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Figure 4.2: A fit of GBM systematics with a two component Fisher-von Mises model for a single spacecraft quadrant.
In general, systematics were found to be spacecraft coordinates dependent. Image from Connaughton et al. (2015).

this analysis, as any possible systematic would be very hard, if not impossible, to detect
if the statistical error is the dominating contribution.
For the scope of the comparison between the two algorithms, it is of interest to estimate
both the precision and accuracy of the computed locations. The former is estimated as the
angular separation between Swift and GBM positions, while the second uses a quantity
here defined, the σ level, which quantifies the ability of the error contours to capture the
real location. In practice, this means that, if the positions are perfectly accurate and a large
enough sample is available, the e.g. 68% probability contour provided by the posterior
should capture the real location 68% of the times, the 95% probability contour would
capture the real location 95% of the times and so on. In all generality, for each GRB of
the sample both a position distribution from the fit and a Swift location are available. This
reference position lies on some probability contour CR of the location distribution, where
CR defines a curve which points have equal probability density. Integrating the region
inscribed by CR yields a probability, given by the following equation

p =
∫

CR

P(ϕ, θ)dϕdθ (4.2)

where ϕ and θ are the two angular coordinates. This probability value can be converted
to the usual σ notation used for gaussian distributed quantities, i.e. 1σ corresponding to
68% probability, 2σ corresponding to 95% probability and so on. To compute the σ level,
it is sufficient to invert the following equation:

p =
∫ σ

0

2
√

2π
e−

x2
2 dx (4.3)

where a half-gaussian is used due to the fact that angular offsets are positive definite. Fol-
lowing this definition, it is possible to compare both offset and accuracy for BALROG
and DoL, as shown in Fig. 4.3. BALROG is able to simultaneously improve both preci-
sion and accuracy of the locations provided by GBM. In particular, GRBs with very large
offsets (> 10◦) are not present with the BALROG code, while with DoL there are two of
these cases, with angular separations of ∼16◦ and ∼19◦ (not shown in Fig. 4.3). BAL-
ROG is also more accurate, as visible from the more rapidly rising cumulative distribution
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Figure 4.3: Performance comparison between BALROG and DoL. On the top, the offset and its cumulative distribution
are shown. On the bottom, the same plots for the σ level are visible.

function (CDF) in Fig. 4.3, due to the fact that it is able to remove all of the outliers, i.e.
the bursts where the mismatch between templates and actual spectrum is very large.

Fig. 4.4 shows instead the difference for the offsets and σ levels achieved by DoL and
BALROG. One can see that most of the data points favor BALROG (positive values in the
plots), due to its ability to remove very inaccurate locations. There are of course instances
where DoL is able to achieve slightly better results, but this is only due to statistical
scatter: just by chance some measurement happen to be closer to the real value. One can
see that, on a sample basis, BALROG always performs in a better or comparable way with
respect to DoL.

In Fig. 4.5, the fitted locations are also shown in spacecraft coordinates. The majority
of the positions are located in the upper hemisphere due to the fact that most of the lower
hemisphere is occulted by the Earth, though not in a constant way due to the spacecraft
rocking motion.

4.2.1 BALROG localizations with spectral templates

The DoL fitting method can conceptually be thought as a subset of the BALROG algo-
rithm, where instead of allowing for the simultaneous fitting of position and spectrum,
all of the spectral parameters (expect the amplitude) are set to fixed values. It is of in-
terest to see how much of a performance change is present when using the BALROG
code with spectral templates. This comparison is performed only for the Band templates,
but qualitatively speaking the results will be similar for the more recent cut-off power law
templates (see Tab. 4.1) introduced in Goldstein et al. (2019), since roughly speaking they
can be thought as a tweaking of the previous templates, but ultimately do not improve in
any way the overall flexibility of the method, which still relies on only three distinct spec-
tral shapes. For each GRB, the three Band templates are fitted with the BALROG code
and the best one is kept as a final location for the burst. The results of the comparison are
shown in Fig. 4.6 and, as easily noticeable, the use of the templates yields a far worse
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Figure 4.4: Effects of statistical scatter on the localizations. On the top is shown the difference between DoL’s and
BALROG’s offsets, while on the bottom is the same but for the σ level. Positive values imply a worse performance for
DoL and negative values a worse performance for BALROG.

localization performance due to the loss of flexibility of the model.

4.3 Search for systematics

Through the use of the BALROG code it is possible to remove the systematics which
are intrinsic to the wrong methodology used by DoL, i.e. the use of spectral templates.
Nonetheless, this does not guarantee that the instrument is completely free of system-
atics. This section conducts a further investigation to search and quantify any possible
remaining systematic component in GBM. As mentioned in Sec. 4.1, a similar study
was performed in Connaughton et al. (2015), where systematics were found and esti-
mated empirically through the use of a core-plus-tail model, that is a combination of two
Fisher-von Mises distributions, which are individually described by the following equa-
tion (Connaughton et al., 2015)

F =
k

ek − e−k ek cos δ (4.4)

where δ is the offset between fitted and reference location and k is the concentration
parameter, which controls how broad or tight the distribution is. This core-plus-tail is then
defined as a linear combination of two Fisher-von Mises distributions Ftot = a1F1 + a2F2,
with the two components peaking respectively at 3.7◦ and 14.3◦. The first component
contains 90% of the total probability (a1 = 0.9), while the tail contains the remaining 10%
(a2 = 0.1). Furthermore, Connaughton et al. (2015) found evidence of this systematic
component being dependent on the source position relative to the spacecraft. These results
are however heavily affected by the use of a wrong methodology for source reconstruction
and are thus not a good benchmark for the presence of “true” systematics, dependent on
the instrument response and not on an incorrect algorithm.

To check for the presence of remaining systematics in GBM, it is necessary to assess
whether the localizations provided by BALROG are statistically accurate. The σ level
should, in absence of systematics, be asymptotically (that is with a large enough sample)
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Figure 4.6: Performance comparison between standard and template BALROG. The offset distribution is shown on the
left, while on the right is instead the σ level distribution.

distributed as a half standard normal. The comparison between expected and achieved
cumulative distributions for the σ level is shown in Fig. 4.7.

As visible, a discrepancy is clearly present within the two. It is however not straight-
forward to assess whether the difference arises due to the presence of systematics or due
to statistical fluctuations. The sample here utilized is still rather small and large statistical
fluctuations are to be expected. The possibility of this difference arising purely from sta-
tistical fluctuations is discussed more in detail in Sec. 4.3.1.

There are various potential reasons which could cause the observed discrepancy, which
are here investigated. One possibility is the emission from the Earth’s limb is affecting
negatively the localization quality. The Earth is a bright source in the gamma-rays in
GBM’s energy window, though its effect is already taken into account by the background
fit performed by either BALROG or DoL. More likely to cause issues in the locations are
possible inaccuracies in the Earth scattering model (see Sec. 2.3). To verify that, one can
plot the dependence of the offset angle and σ level on the minimum angle between the
detectors’ boresight and the Earth’s limb, as in Fig. 4.8. If the Earth is affecting negatively
the locations, there should be a noticeable pattern, though this does not seem the case.

The procedure is also performed for the Sun angle, and again no particular change
in location quality is visible, see Fig. 4.9. Except during solar flares, the gamma-ray
emission from the Sun seems negligible.

It is also possible to investigate whether the observed discrepancy arises from specific
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Figure 4.7: The cumulative distribution function (in log scale) of the σ level for the sample locations (in black) and the
expected behavior of the distribution (in red) from a half standard normal.
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Figure 4.8: Dependence of offset and σ level on angular separation between the Earth’s limb and the detector boresight.
Negative angles represent detectors pointing inside the Earth’s limb.

detector combinations or parts of the spacecraft. A first simple check which can be made
is to see if any specific detector pair (i.e. combination of two detectors) is particularly
underperforming in terms of offset and σ level, as shown in Fig. 4.10.

Note however that a different performance for the pairs does not necessarily arise from
the presence of systematics. Due to the different orientations and mounting points of the
detectors, some pairs are less likely to be used together and are worse performing due to
the average weaker signal-to-noise ratio. As expected, one can see that for the most part
detectors from the same side of the spacecraft are much more likely to be used together
in a localization (see Fig. 4.10). From the plots it is also possible to see that the b0 side
(detectors from n0 to n5) seems to be slightly underperforming compared to the b1 side
(detectors from n6 to nb).

It is then of interest to investigate whether there are significant differences in the lo-
calization performance depending on the spacecraft coordinates of the burst. Such an
issue could be present due to the asymmetric mass distribution in the satellite bus and
correspondingly different spacecraft scattering components. To verify whether that’s the
case, one can check whether the positions obtained from the fit become systematically
less accurate at particular azimuth and zenith angles. In Fig. 4.11, the dependence of the
localization performance on the zenith angle is shown. Again, no clear pattern is visible,
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Figure 4.9: Dependence of offset and σ level on angular separation between the Sun and the detector boresight.
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Figure 4.10: Color maps showing the performance of different detector pairs. On the right, the frequency with which
each detector combination is used. In the center, the average offset achieved by each detector pair. On the right, the
same but for the σ level. Groups of detectors on the same side are marked by a red contour.

though there seem to be slightly more events with larger offsets at larger zenith angles.
This is not however evidence for the presence of systematics, but only the effect of the
larger statistical fluctuations due to the weaker signal-to-noise ratio for such events, since
GBM is optimized to detect events from the top hemisphere of the spacecraft. Further-
more, from Fig.4.11 one can see that such events, even if affected by larger uncertainties,
are still accurately localized.

The same performance check can be done for the spacecraft azimuth angle, as shown
in Fig. 4.12. Here it is again possible to see some differences between the two sides of the
spacecraft, in a similar way as to what already seen in Fig. 4.10. Localizations on the b0
side (at 0◦) seem to present larger offsets and also slightly larger σ levels. The same issue
is also present close to 90◦/270◦, where the solar panels are located, possibly hinting to
some inaccuracy in the spacecraft mass model.

To further investigate the asymmetry in performance, it is possible to divide the loca-
tions in the sample in three different sets:

1. b0 side: localizations obtained only by using the detector subset n0, n1, n2, n3, n4,
n5 and b0.

2. b1 side: localizations obtained only by using the detector subset n6, n7, n8, n9, na,
nb and b1.

3. both sides: localizations obtained with detectors from both sides of the spacecraft.
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Figure 4.11: Offset and σ level in function of the spacecraft zenith angle. Here 0◦ corresponds to the LAT pointing
direction, while 180◦ points right below the spacecraft.
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Figure 4.12: Offset and σ level in function of the spacecraft azimuth angle. Detectors b0/b1 are located at 0◦/180◦,
while solar panels are situated 90◦/270◦.

By applying this classification to the sample, it is possible to check whether there is any
difference in localization quality between the different sides of the spacecraft, as shown in
Fig. 4.13. One can immediately notice how localizations with detectors from both sides
are overall much less accurate compared to the single-side only locations, possibly due
to the scattering of photons on the solar panels or other parts of the spacecraft which are
unaccounted for in the mass model.

A further comparison between the position obtained by using only detectors on the
b0 side and the b1 side produces Fig. 4.14. Here the difference between the two sides
becomes clearly noticeable, with the b0 side showing both larger offsets and σ levels.

This is also visible in the CDFs, as shown in Fig. 4.15, although the discrepancy
between the two sides is considerably smaller than the one with the localizations obtained
by both sides.

Since from each location fit a full posterior distribution is obtained, it is possible to
extract even more information from the data. The position distribution, which is obtained
by marginalizing the posterior over the spectral parameters, can be used to compute an
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Figure 4.13: Offset angle (left) and σ level (right) in function of the spacecraft azimuth angle. Detectors b0/b1 are
located at 0◦/180◦, while solar panels are situated 90◦/270◦.
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Figure 4.14: Offset (left) and σ level (right) comparison for the b0 and b1 side.
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Figure 4.15: Comparison between the cumulative distribution functions for the different sets. The purple line denotes
the expected behavior from a standard normal CDF.

offset distribution simply by calculating the offset between each point of the position
distribution and the Swift reference location. Each of these distributions can be thought as
a sample of a larger “global” offset distribution, which describes the overall localization
performance for GBM. The achieved distributions are shown in Fig. 4.16. Again, the
discrepancy in performance between the two sides is easily noticeable, with the b1 side
yielding overall better locations. Note also that, compared to Connaughton et al. (2015),
the offset distributions are not found to be compatible with a combination of Fisher-von
Mises distributions.
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Figure 4.16: Global offset distribution for the full sample (blue) and for the two opposite spacecraft sides (red and
green).

4.3.1 Systematics and statistical fluctuations

As last step of this analysis, it is necessary to assess whether the observed discrepancies
are compatible with simple statistical noise due to the sample size or are actually a symp-
tom of true systematics. This check can in practice be performed through the use of a
simple Monte Carlo by simulating many samples of equal size as the original. By bin-
ning the synthetic data in the same way as the real one, one can define probability intervals
which encompass the expected range of values for each bin. This process is performed for
both the full BALROG sample (all 105 GRBs) and the reduced DoL sample (69 GRBs),
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Figure 4.17: Comparison between the percentile regions of the simulated datasets for the data points from BALROG
(left, all 105 GRBs) and DoL (right, 69 GRBs) locations.

the results of which are shown in Fig. 4.17. As one can see, both of the datasets dis-
play bins which are incompatible with the probability regions defined by the expected
(i.e. assuming no systematics) half standard normal distribution. The discrepancy is most
significant in the tail (2.5-3 σ) for BALROG, while for the DoL sample it is present both
at small and large σ. Even with the proper statistical treatment possible with BALROG, a
systematic component still survives. This implies that the instrument response, or at least
one of its components, is inaccurate.

Finally, while it is impossible to properly estimate the systematics without identifying
their cause, it is at least feasible to provide a rough estimate of their “average” effect on
the sample, i.e. to compute some form of constant correction to apply to the sample CDF
to bring it closer to expected CDF behavior. Here a quadratic sum is adopted for the sake
of simplicity, but it should be noted that this does not constitute a proper estimate of the
systematics, which in general act in a different, unknown way on each GRB, but merely
a rough estimation of their effect. Thus, by performing this procedure, the “corrected”
CDFs of Fig. 4.18 are obtained. As shown, roughly speaking the systematics correspond
to an error of σsys ∼ 1− 2◦, depending also on the subset being considered, with locations
from the b0/b1 sides being overall more accurate then the ones from the solar panels’
sides.

The remaining systematics are most likely a product of an inaccurate response, though
it is hard to pinpoint which components exactly. Based on the fact that the Earth sepa-
ration angle (see Fig. 4.8) doesn’t seem to contribute too much to the inaccuracy of the
position, one can infer that the systematics are for the most part coming from either the
direct detector response or the spacecraft scattering model. The detectors were however
accurately calibrated on ground and, while they are known to have an an azimuthal de-
pendence in their effective area (up to ∼10%), this cannot account for the discrepancy
observed. The remaining systematics are most likely arising from inaccuracies in the
spacecraft mass model. As shown in Fig. 4.13, localization performed by using detectors
on both sides seem to be less accurate. This may actually be caused by the presence of the
solar panels on the sides or by inaccuracies in other parts of the spacecraft mass model,
which is not available to the public, making further investigations of the systematics very
hard.
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Figure 4.18: BALROG CDF with different systematic errors summed in quadrature to the statistical uncertainty. The
y axis is in log scale.

4.3.2 Systematics and size of the error regions

With a rough estimate of the systematics at disposal, it is finally possible to also compare
the typical size of the error regions for the locations computed by the two algorithms.
While both of the methods ultimately suffer from systematics, BALROG locations are af-
fected to a far lesser extent. According to the analysis done in Connaughton et al. (2015),
the core-plus-tail model corresponds to a 2σsys ∼ 16◦ systematic error, computed as the
95% containment interval for the offset distribution. This corresponds to an increase in the
size of the error region of π(2σsys)2 ∼ 800 deg2. Conversely for BALROG, the systematics
increase the size roughly by π(2σsys)2 ∼ 50 deg2. There is thus a significant improvement
in terms of the size of the error region over DoL (see for example Fig. 4.19), which allows
for faster and more reliable multi-wavelength and multi-messenger searches.
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Figure 4.19: Location of GRB 170705.115, an example of the different sizes of the final error contours once system-
atics are taken into account. BALROG is able to consistently achieve more accurate localizations while still retaining
smaller error regions. The systematics component here considered is 1◦ due to the direction of the burst in spacecraft
coordinates. Figure from Berlato et al. (2019).

The only potential drawback of BALROG would be its speed, but with current hard-
ware locations are regularly computed on a timescale of ∼ 30 min: 10 min for the data
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to be available plus another 10 − 20 min for fitting and quality checks. Furthermore,
an automated version of the algorithm has been developed at the Max Planck Institute
for Extraterrestrial Physics and it allows regular rapid localization of GRBs with mini-
mal human intervention (see https://grb.mpe.mpg.de/). Locations are openly available to
the community and, in case of more interesting bursts, are also distributed through the
Gamma-ray Coordinates Network (GCN) with email alerts. All of the automated BAL-
ROG localizations have been publicly available since January 2019. Since then, 36 GRBs
have been detected by both GBM and Swift: a limited, but still significant sample which
allows to assess the performance of the automated BALROG positions, as shown in Fig.
4.20, which already includes the systematic component in its uncertainties. Similarly to
what seen in Fig. 4.18, one can once again see that there seems to be a small remaining
systematic component, which most likely arises due to imperfections in the automatic se-
lection algorithm responsible, among other things, for selecting the time intervals to be
used for the background fits. Their occasional inaccuracy can cause the discrepancy visi-
ble in the CDFs of Fig. 4.20. Note however that such issues are unique to the automated
algorithm and are instead not present in the “human” locations previously discussed in
this chapter, where all of the selections are done manually.
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Figure 4.20: The cumulative distribution function of the 36 Swift GRBs localized by the automated BALROG algo-
rithm. Systematic uncertainties are already included in the σ level calculation. The red line denotes the expected CDF
behavior in absence of systematics.

4.4 Conclusions and further studies

The methodology introduced by the BALROG code is able to significantly improve the
localization performance of Fermi-GBM, increasing the accuracy (by removing most of
the systematics) and reducing the size of the error regions of the reconstructed posi-
tions. These improvements bring a series of benefit to GRB observations, ranging from
the increased chances of successful afterglow detections to the more constraining multi-
messenger searches. In this regard, neutrino searches are of particular interest in the scope
of this thesis. As previously discussed in Sec. 1.5, GRBs represent good candidates to
explain part of the observed astrophysical neutrino flux in IceCube. So far, the stan-
dard approach for GRB neutrino searches has been to apply simple time window selec-
tions (wide enough to include the whole burst plus some extra margin) and then compare
the locations of the burst and any potentially remaining neutrino. These searches have
been unsuccessful up to now (see e.g. Aartsen et al. (2016); Coppin and van Eijndhoven
(2019)), which may simply depend on the use of overly simplistic time cuts together with

https://grb.mpe.mpg.de/
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locations affected by systematics, thing which would greatly decrease the probability of
a successful detection. To understand why that is the case, assume that there is a simul-
taneous detection of neutrinos and gamma-rays from a GRB. Since the standard GBM
locations have inflated uncertainties to compensate for DoL’s systematics (arising for the
vast majority from a wrong fitting methodology), any neutrino signal falling inside the er-
ror region would see its significance greatly decreased due to the fact that a larger sky area
implies a much greater probability of chance coincidence (i.e. cannot distinguish between
background and signal neutrinos). This would imply that, even if there is a simultaneous
detection, it would be impossible to correctly identify it. The improved GBM locations
provided by the BALROG code can thus increase the chances of a successful detection,
if a real signal is present in the data. If not, the improved positions can still be used to
better constrain the neutrino flux from GRBs, which is nonetheless helpful for modeling
the emission mechanisms.

Further studies performed by von Minckwitz (2020) also analyze the impact of wrongly
reconstructed locations on the spectra. This was done by considering a sample of simu-
lated GRBs and randomizing their positions, that is by introducing an offset from the
true location. The generated response is thus inaccurate and introduces systematics in the
fitting process, which affect the estimated spectral parameters in a complex and a priori
unknown way. The problem is of a certain difficulty due to its high dimensionality: the fit
results are affected both by source spectrum and position (with respect to the spacecraft
frame), but also by which of the detectors are chosen for the fit and their signal-to-noise
ratio. In von Minckwitz (2020) it was found that a wrong position can introduce signifi-
cant systematics in the spectrum (see e.g. Fig. 4.21), particularly for bright GRBs, where
the statistical uncertainties are already small. This effect is present for all of the spectral
parameters, but it is particularly pronounced for peak energy and fluence of the burst, fact
which may have important consequences on studies relying on these parameters, if they
are estimated through a GBM position.

Figure 4.21: The impact of wrongly reconstructed locations on the fitted Epeak of a Band function. The plot displays
how an increasingly larger offset from the brightest detector (left) and from the BALROG position (right) affect the
estimated value of Epeak for a bright GRB. The dashed lines denote the fitted Epeak value for the true position (in red)
and for the BALROG position (in blue). The purple points indicate synthetic locations where the distance from the
second brightest detector NaI B is kept fixed, but the separation from the brightest one NaI A is increased. Original
figures from von Minckwitz (2020).
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Chapter 5

Test of the photospheric emission model

5.1 Introduction

As seen in Chapter 1, the emission mechanisms in GRBs are still poorly understood.
While in principle there are physical models which could explain the observations (such
as optically thin synchrotron or photospheric emission), in practice so far they have only
been tested to a very limited extent and conclusive evidence in favor of one or the other
is still lacking. For most of the field’s history, spectra have been fitted with simple em-
pirical functions, such as the Band function, the main reason for this being the lack of
computational power able to handle complex numerical models. It is however important
to understand that tests performed with such methodology cannot substitute a real direct
fit of a physical model to the data, as this “empirical” approach has been proven to pro-
vide inaccurate results when used for physical inference (Burgess et al., 2020). As seen
in Sec. 1.3.3, a clear example of this is the synchrotron’s line-of-death, where the low
energy index α of Band function fits was found to be consistently violating the limits set
by optically thin synchrotron emission (Preece et al., 1998). This result was then used
as an argument against a synchrotron dominated emission and often also interpreted as
indirect evidence for the presence of a photospheric component (Pe’er and Ryde, 2017).
This methodology was however proven to produce unreliable results by Burgess et al.
(2020), which found that fitting an optically thin synchrotron model directly to the data
yields acceptable fits in at least 95% of the cases. Thus, similarly to what already done
for synchrotron, the purpose of this chapter of the thesis is to perform an analogous study
with the main competing model, that is emission from a dissipative photosphere.

While definitive evidence for photospheric dominated emission is still lacking, some
GRBs have been found to be compatible with the presence of a thermal component,
the most notable example being GRB 090902B (Abdo et al., 2009). This burst spectral
shape is well fit by a strong thermal component, plus a weaker non-thermal one (Pe’Er
et al., 2012), which suggests that photospheric emission may be dominant in at least some
GRBs, see Fig. 5.1. Motivated by the presence of such GRBs, this chapter investigates
the viability of the photospheric model.
So far, tests of the dissipative photosphere models have been performed only to a very
limited extent, see e.g. Ahlgren et al. (2015, 2019a,b), due to the difficulties involved
in generating a sufficient number of template spectra. Aiming to fill this gap, the model
developed by Pe’er and Waxman (2005) is here tested on a sample of bright GRBs by
generating a table model able to cover a large region of the parameter space. The model
performance is then compared to the one achieved by Burgess et al. (2020) when testing
optically thin synchrotron emission, allowing thus for the first time for a direct compar-
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Figure 5.1: Original joint fit of GRB 090902B, performed by using data from both GBM and LAT (Abdo et al.,
2009). The spectrum here fitted is composed of a Band function plus a power-law component. In the context of a
dissipative photosphere model, these features can be identified as a thermal peak plus synchrotron and inverse Compton
components (Pe’Er et al., 2012). Figure from Abdo et al. (2009).

ison of two different physical models on the same GRB sample. For the test to be as
fair as possible, the sample here employed adopts the same binning, detector selections,
background fits etc. as the analysis performed in Burgess et al. (2020).

The chapter is thus structured as follows. Sec. 5.2 provides a description of the model
developed by Pe’er and Waxman (2005). Sec. 5.3 details instead how the table model is
generated, the sample is selected and the fits evaluated. Sec.5.4 presents the results of the
analysis, while Sec. 5.5 and Sec. 5.6 discuss the physical implications and the possible
next steps.

5.2 The model

While there exist various different implementations of emission from a dissipative photo-
sphere, the one here considered was developed by Pe’er and Waxman (2005). It is based
on the standard fireball scenario (see Sec. 1.3.2 for a review) in which all of the energy
is assumed to be released by a single dissipation episode (e.g. an internal shock). An
interesting feature of the model is that it is able to describe not only the case of sub-
photospheric dissipation, but also the scenario in which the dissipation takes place in the
optically thin region beyond the photosphere, in which case synchrotron and synchrotron
self-Compton (SSC) are expected to become more relevant. Which of the two scenarios
is taking place fundamentally depends on where the dissipation occurs with respect to
the photospheric radius. As shown in Fig. 1.8, the corresponding optical depth affects
the spectral shape quite dramatically. Note that large optical depths (τ ≳ 100) will result
in a pseudo-blackbody spectrum, which is already known not to be compatible with the
observations. This occurs due to the fact that any non-thermal component produced by
the dissipation episode will end up being thermalized, if occurring deep beneath the pho-
tosphere.

From a physics standpoint, the model includes all the relevant electron-photon pro-
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cesses, such as synchrotron emission, Compton scattering, synchrotron self-absorption,
pair production/annihilation etc. Interactions between nucleons and pion production are
instead here not considered. In the model, protons are thus assumed to have negligible
interactions with the rest of the plasma, although they still constitute the bulk mass of the
outflow. The model described by Pe’er and Waxman (2005) assumes the outflow to be
composed by a uniform plasma made of electrons, positrons, photons and protons. The
dissipation process is assumed to take place on a time scale equal to the dynamical time
td ∼ R/c, with R characteristic length scale of the plasma. The evolution of the various
particle species is followed until the end of the dynamical time, after which the photons
can escape immediately if τ < 1. In the case τ > 1, the plasma is still optically thick
and the photons cannot be released right away, in which case it is here assumed that the
fireball expands adiabatically until reaching τ = 1. At this point, the photons are finally
released. In practice, this corresponds to applying adiabatic cooling to the photons, which
is here modeled as a factor A = 2τ−

2
3 (Vurm and Beloborodov, 2016) acting on the photon

energies (and thus also modifying their distribution).
The evolution of the different particles species and their interaction with each other are
tracked by making use of Fokker-Planck equations (Pe’er and Waxman, 2005). Electrons
are assumed to follow a two component distribution: a fraction of them is accelerated (i.e.
non-thermal), and thus follows a power-law distribution, while the rest remains thermal.
Finally, note that the model does not include any jet geometry (thus effects like geometri-
cal broadening are not considered) or any dynamical prediction, i.e. there’s no prediction
regarding the spectral evolution.

The spectrum generated by the code depends on the 9 following physical parameters:

1. ϵe: the fraction of the dissipated energy carried by the electrons.

2. ϵB: the fraction of the dissipated energy carried by the magnetic field.

3. ϵd: the fraction of the total energy which is dissipated.

4. ϵpl: the fraction of the electrons following a power-law distribution. The remaining
1 − ϵpl is thermally distributed.

5. rd: the radius at which the dissipation takes place.

6. r0: the radius at the base of the outflow.

7. Γ: the Lorentz factor of the ejecta.

8. LGRB: the total isotropic luminosity of the fireball emitted by the central engine.

9. p: the index of the power-law distribution of the electrons.

Given the relatively large number of parameters, the computation of a table model can
be quite challenging. To keep the number of spectra to a manageable level, 4 of the 9
parameters were fixed. The dissipation efficiency was thus set to ϵd = 0.05, which would
be a standard value for e.g. an internal shock scenario, where typically 1% ≲ ϵd ≲ 10%
(Piran, 2004; Pe’er, 2015). r0 is fixed to the value of 107 cm, representing a “generic” size
of the inner engine (Pe’er, 2015). Finally, it is assumed ϵpl = 0.1 and p = 2.24 (canonical
relativistic shock prediction (Kirk et al., 2000)).

The other 5 parameters are used to set up a grid of points with the following values:

• ϵe = [0.3, 0.6, 0.9]
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Table 5.1: Example of fit results for a simulated spectrum at z=0.1. In the figure, two of the marginal distributions for
the fit parameters are shown. As can be seen, the fitted values are consistent with the simulated ones.

Parameter Simulated Fitted

ϵe 0.8 0.80 ± 0.06
ϵB 10−2 (1.03 ± 0.03) · 10−2

rd (cm) 1013 (1.1 ± 0.1) · 1013

Γ 200 200.3 ± 0.4
LGRB (erg/s) 1054 (1.01 ± 0.02) · 1054
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Figure 5.2: Marginal distributions for ϵe and Γ for a simulated spectrum. The distributions are found to be able to
consistently reproduce the real parameter values.

• ϵB = [10−6, 10−4, 10−3, 10−2, 10−1]

• rd = [1012, 1013, 1014, 1015, 1016] cm

• Γ = [50, 100, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000]

• LGRB = [1050, 1051, 1052, 1053, 1054, 1055] erg/s

which corresponds to a total of 6300 numerical spectra.
Compared to the previous studies done in Ahlgren et al. (2019a,b), one of the main dif-
ferences is that this implementation of the photospheric model releases the assumption
of a fixed optical depth (τ = 35 in previous works), which allows for more flexibility in
the model in adapting to different spectral shape, see 1.8. Additionally, this allows the
model to describe the cases for both sub-photospheric and optically thin dissipation sce-
narios, depending on where the dissipation takes place with respect to the photosphere. A
more detailed comparison between the previous studies and the analysis here presented is
reserved for Sec. 5.5.

5.3 Sample selection and fitting methodology

Before fitting the real data, the fitting method was tested onto synthetic datasets, so to
make sure that the results are consistent. The table model fits are found to reliably repro-
duce the simulated values, as shown in Tab. 5.1. In the example, the synthetic spectra
is set at small redshifts so to provide large count statistics in the detector and thus small
parameter uncertainties, which allow to perform a strict test in terms of the accuracy of
the fitting method. Note that typical parameters’ errors for the real bursts are much larger.
Fig. 5.2 also show an example of the marginal distributions for two of the parameters.

As for the chosen sample, it is the same as the one used in Burgess et al. (2020), con-
stituted of 19 GBM time resolved GRBs, corresponding to a total of 162 spectra (see Tab.
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5.2). These GRBs present high signal-to-noise ratio, which allows for more constrain-
ing parameter estimation. All of the bursts also have a known redshift, which has two
important implications:

1. It allows to correct for the cosmological effects and to assess the true burst energet-
ics. This is strictly speaking a requirement when trying to fit directly for the true
luminosity of a GRB, as in the study here performed.

2. It implies that a very precise location is available from optical observations. Position
uncertainties become thus negligible, with typical values below a few arcseconds.
Errors of this order of magnitude have no real effect on the spectral analysis, thus
for all practical purposes the estimated position can be treated as the real location of
the source.

The choice to employ the same sample stems from the fact that this allows for a direct
comparison between the two different physical models. Moreover, the fact that the se-
lected bursts’ lightcurves present a single-contiguous pulse, implies that they are compat-
ible with the assumption of a single dissipation episode from Pe’er and Waxman (2005).
The sample is mainly constituted by GBM-only data, but three bursts also present LAT
Low Energy (LLE) detections, see the events marked by an asterisk in Tab. 5.2.
For the calculations regarding the luminosity distance, standard Λ-CDM cosmology is
employed, with a Hubble constant H0 = 67.4 km s−1 Mpc−1, matter density parameter
Ωm = 0.321 and a dark energy density parameter ΩΛ = 0.679 (Planck Collaboration
et al., 2018). Note however that in practice the fits are not sensitive to minor differences
in cosmological models due to the still relatively large uncertainties present in the esti-
mated parameters.

For each GRB of the sample, the detectors with a source separation angle < 60◦ are
selected so to maximize the signal-to-noise ratio. Among those, the brightest NaI detec-
tor (i.e. highest significance) is used to generate the binning of the lightcurve through the
Bayes blocks algorithm (Scargle et al., 2013). Only time bins with significance > 5σ are
employed in the fit, where the significance is estimated as a Poisson signal (the source
counts) in presence of a gaussian background, as described in Li and Ma (1983); Vianello
(2018).

Each of the spectra is fitted independently, as the model provides no dynamical pre-
diction. For each of the fit parameters, uninformative priors are chosen (all units are in
cgs):

Π(ϵe) = Unif(0.1, 0.9)

Π(ϵB) = LogUnif(10−6, 10−1)

Π(rd) = LogUnif(1012, 1016)
Π(Γ) = Unif(50, 1000)

Π(LGRB) = LogUnif(1050, 1055)

(5.1)

Aside from these priors, responsible for the physical parameters of the model, another
set of priors is used as effective area corrections (Bissaldi et al., 2009) for the detectors,
which are factors multiplying the nominal value of the effective area for each of the de-
tectors, meant to represent the calibration uncertainties in the azimuthal dependence of
the effective area. The priors for these parameters take the form of a truncated normal
distribution centered on the nominal value (i.e. ck = 1) of the effective area:
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Table 5.2: The GRB sample used for the fits. Bursts with LLE data are marked with an asterisk.

GRB T90(s) Redshift Total spectra Accepted fits

GRB 081118 20.7 2.58 4 4
GRB 081221 29.7 2.26 18 10
GRB 081222 18.9 2.77 6 4

GRB 090926B 64.0 1.24 5 5
GRB 091020 24.3 1.71 6 4

GRB 100704A 171.5 3.6 4 1
GRB 100728B 10.2 2.11 3 3
GRB 100816A 2.1 0.8 3 3
GRB 110213A 34.3 1.46 9 7
GRB 120119A 55.3 1.73 15 13
GRB 120326A 11.8 1.80 6 3
GRB 120729A 25.5 0.8 3 3
GRB 120811C 14.3 2.67 3 1

GRB 130518A* 48.6 2.49 25 0
GRB 131011A 77.1 1.87 4 3
GRB 140606B 22.8 0.38 5 0
GRB 140808A 4.5 3.29 4 3

GRB 141028A* 31.5 2.33 12 2
GRB 160509A* 369.7 1.17 27 0

Total 162 68

Π(ck) = TruncNormal(µ = 1, σ = 0.1, a = 0.5, b = 1.5) (5.2)

where a and b are the lower and upper bound. The fit itself is performed trough the
use of MULTINEST (Feroz et al., 2009), which reconstructs the posterior distribution of
model’s parameters through a sampling procedure. The “best fit” parameters are chosen
as the ones which maximize the posterior, i.e. the ones defining the mode. The goodness
of fit is assessed through the criteria introduced in Sec. 3.3.1, that is by making use of
posterior predictive checks (PPCs), which test the ability of the fitted model to reproduce
the observed data. An example of such plots is given in Fig. 5.3, where two PPC plots are
shown: one for a successful and one for an unsuccessful fit.

5.4 Fit results

Each of the accepted spectral fits produces a complete set of parameters for the corre-
sponding time bin of the GRB, as shown in Fig. 5.4. In the plots, two examples are
provided: one for a well fitted GRB and another for a poorly fitted one. The shaded area
around each spectrum denotes the 68% credible region, which tracks how “uncertain” the
model prediction is. Note that the spectra are plotted up to 100 MeV, but GBM can only
observe up to ∼ 40 MeV. As such, beyond this energy the spectrum is not directly ob-
servable (unless LLE data is available), but is instead a prediction of the model. For the
complete sets of spectra and lightcurves of the GRB sample, refer to Appendix B, which
also provides a Band function equivalent for each of the successful fits.

Note however that there are no dynamical predictions in the model, that is each time
bin is fitted independently from one another. In general, the model produces low ac-
ceptance rates, with only a few GRBs being overall well fitted, see Tab. 5.2. In total,
only ∼ 40% (68/162) of the spectra passed the PPCs. Interestingly, a fraction of them
(∼ 25% of the accepted spectra) are in the optically thin regime, which loosely corre-
sponds to τ ≳ 1, see Fig. 5.5. As visible from the plots, most of the values lie in the
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Figure 5.3: PPC plot examples for two different spectra: a successful (top, from bin 3 of GRB 090926B) and unsuc-
cessful fit (bottom, from bin 9 of GRB 081221). Note how, in the second case, the model is unable to consistently
capture the real data within its 95% probability region (light gray). Compared to Fig. 3.2, here the counts per bin have
been normalized for easier visualization.
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Figure 5.4: Example results of the model fits. On top are two examples of the GRB spectral fits performed with the
model: a fully successful one (left) and a mostly unsuccessful one (right). Fits not passing the PPCs are rejected and
their time bins are marked in red. On the bottom are instead the corresponding accepted spectra, with colors ranging
from dark purple to yellow (corresponding to a viridis color map) denoting earlier to later time bins.

range 1 ≲ τ ≲ 30, which implies that the dissipation takes place close beneath the photo-
sphere in most cases. Larger optical depths are disfavored, as they produce spectra which
get progressively closer to a pure blackbody distribution, which is already known to be
unable to describe the strongly non-thermal features of GRBs.

In many of these GRBs, the model seems to struggle particularly during the main phase
of the lightcurve (i.e. the central part of the peak, see Appendix B), where the emission is
stronger and the significance of the signal in the detectors is higher. This can be taken to
imply that the photospheric model is either not managing to produce a sufficiently large
flux (i.e. insufficient dissipated luminosity) or that it cannot reproduce the correct spectral
shape. This is also shown in Fig. 5.6, which displays how the fit acceptance rate changes
with increasing significance: as can be clearly seen, with larger values the model fits
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Figure 5.5: On the left, the distribution of the optical depth for the accepted fits. On the right, a barplot of τ, showing
the values (with corresponding uncertainties) in ascending order.
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Figure 5.6: Histograms displaying the significance of the brightest NaI (left) and BGO detector (right) for the accepted
and rejected fits. Note how the higher the signal-to-noise ratio, the lower the acceptance rate is.

almost always fail. This can be caused by either (or both) of the following:

1. The model is unable to capture the correct spectral shape whenever the detectors can
better constrain it due to the higher counts’ significance.

2. The model is unable to reach a dissipated luminosity (∝ ϵdLGRB) large enough to
reproduce the flux (or more accurately the counts) measured by the detectors.

Looking at Fig. 5.7, it is possible to see that the luminosity distribution is pushed to the
upper boundary for more than half of the accepted spectra. This suggests that the model,
is most likely struggling to produce a large enough flux to match the detector counts, that
is there is not enough dissipated energy. Larger values for the dissipation efficiency could
in principle ameliorate the luminosity issue, as the dissipated energy scales roughly like
∝ ϵdLGRB. Much larger efficiencies, while not impossible, are however far less likely.
Moreover, even in the best case scenario could only increase the overall dissipated energy
by another order of magnitude, as discussed more in detail in Sec. 5.5.

Since the model makes constraining predictions regarding the spectral shape at all en-
ergies, even outside the GBM energy window, it is possible to compute the bolometric
observed luminosity for the accepted fits and check how it is distributed, as in Fig. 5.8.
As visible, Lobs increases roughly linearly with the luminosity of the fireball LGRB until
reaching the maximum value Lmax

obs ∼ ϵdLmax
GRB ∼ 1054 erg/s.

It is also of interest to investigate what happens when the luminosity of the fireball LGRB

is pushed close to its maximum value, as it may significantly affect the other estimated
parameters in a non-trivial way. Fig. 5.9 does so by splitting the sample in two groups,
that is spectra with LGRB > Lthr and LGRB < Lthr, where Lthr = 3.16 · 1054 erg/s is the lower
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Figure 5.7: Parameter distributions for the successful fits. On the left column are the histograms for the fitted val-
ues, while on the right column the corresponding barplots are visible, showing each of the parameters’ value (with
corresponding uncertainties) in ascending order.
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Figure 5.9: The distribution of the fitted parameters depending on the luminosity. The accepted spectra are split in two
sub-samples: one having LGRB > Lthr = 3.16 · 1054 erg/s (last luminosity bin in Fig. 5.7) and the rest with LGRB < Lthr.

edge of the last bin of the histogram in Fig. 5.7. The most striking change is observed in
the Lorentz factor distribution, which loses almost all of the values present in the tail of
the distribution Γ ≳ 500 for LGRB < Lthr. As discussed in the following, this tail is most
likely an effect introduced by the insufficient fluxes generated by the model.

The distribution of the Lorentz factors seems on the other hand for the most part well
behaved, peaking roughly at Γ ∼ 400, but with a tail extending up to very large values.
Note that larger Γ values also indirectly contribute to larger observed fluxes. As seen
in Sec. 1.3.4, the luminosity of a pure thermal (i.e. non-dissipative) component scales
like Lth ∝ Γ

8
3 . While the model here described is of course a dissipative photosphere,

the “strength” of this original component will still end up affecting the overall luminosity
of the final spectrum to some extent, at least in the case of sub-photospheric dissipation.
This is due to the fact that the original thermal component is still providing photons,
which can then undergo different physical processes (e.g. Compton scatter) to generate
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Figure 5.10: Same as Fig. 5.7, but here the parameters are separated in the optically thin τ < 1 (green) and sub-
photospheric τ > 1 (blue) dissipation regimes.
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Figure 5.11: Γ − LGRB scatterplot. The blue points denote sub-photospheric dissipation (τ > 1), while the green points
indicate an optically thin regime (τ < 1).

the final spectrum. This can be further verified in Fig. 5.11, which displays a Γ − LGRB

scatterplot. In the figure, it is possible to see that an increase in Lorentz factor is (loosely)
tied to an increase in luminosity. This trend continues until the maximum LGRB is reached,
after which a further increase is not possible anymore and the LGRB values end up being
tightly packed close to their boundary. This reasoning regarding the thermal component
applies of course only to the cases where the dissipation is sub-photospheric (blue points
in Fig. 5.11). As the transition to the optically thin regime takes place, synchrotron and
SSC become more and more dominant in the emission.

The distribution for ϵe and ϵB from Fig. 5.7 are a bit less straightforward to interpret,
as it seems that larger values are preferred, but not quite as strongly as in the case of the
luminosity. The values of ϵB in particular are very poorly constrained below ≲ 10−2, due
to the magnetic field being too weak to have an appreciable effect on the fitted spectrum.
From a practical purpose, they act essentially as upper limits. The situation changes in-
stead for ϵB ≳ 10−2, where the magnetic field becomes stronger and starts affecting the
spectrum in a more appreciable way. As this corresponds to a stronger synchrotron and
SSC component, this effect becomes particularly noticeable in the optically thin regime,
as also visible in 5.10, which shows that most of the ϵB ≳ 10−2 have an optical depth
τ ≲ 1. In general, it seems that the the magnetic field component is not always negligible
and should be taken into consideration, differently from what done previously in other
studies (Ahlgren et al., 2019a,b).
Finally, the distribution of the dissipation radius rd exhibits an interesting multimodal be-
havior, see Fig. 5.7. The histogram displays two distinct peaks, one at rd ∼ 1012 cm and a
smaller bump at rd ∼ 1014 − 1015 cm. These two peaks can be identified to roughly corre-
spond to respectively sub-photospheric and optically thin regimes, though this distinction
is somewhat fuzzy. This can also be seen in Fig. 5.10, where most (but not all) of the peak
with large rd belongs to the optically thin regime. It is also interesting to note that a few
of the spectra in the sub-photospheric regime have large dissipation radii rd ≳ 1014 cm,
which would imply even larger photospheres, normally thought to be very unlikely due
to requiring very large matter densities. These radii are however for the most part very
poorly constrained (see Fig. 5.12), as such this may not be a significant issue.
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Figure 5.12: τ − rd scatterplot.

Additionally, it is also possible to check how the photospheric radius is overall dis-
tributed in the sample of the accepted spectra. This is done by summing together the
samples of each single spectral fit, so to provide a “global” distribution of the photo-
spheric radius, as shown in Fig. 5.13. The result is a distribution peaking at rph ∼ 1013

cm and then decaying sharply for rph ≳ 1014 cm. Larger values of rph are in principle
possible, but very unlikely as they require high matter densities at large radii.

5.5 Discussion

Before discussing the results, it is of interest to further analyze the fits in terms of their dis-
tribution in the parameter space, as this allows to identify in which emission regimes the
reconstructed spectra are. The following analysis adopts the same classification scheme
as the one defined in Mészáros and Rees (2000), which laid the framework of the model
here tested, developed by Pe’er and Waxman (2005). Adopting thus the same formalism,
the dimensionless entropy is defined as η = LGRB/Ṁc2, with Ṁ mass ejection rate. This
parameter sets the maximum achievable value for the Lorentz factor, assuming that the
acceleration of the outflow can be completed, which is always the case as long as the
saturation radius rs is smaller than the photospheric radius rph. The condition rs ≤ rph

corresponds to η ≤ η∗, with η∗ typically being a very large Lorentz factor, achievable
only if the baryon load of the fireball is very low. For all of the fits here considered,
η∗ > Γmax = 1000, thus this region of the parameter space is not relevant for the analysis
here performed.
The comoving compactness parameter, defined as ℓ = nγσT (r/Γ) (with nγ comoving pho-
ton density), can be used to assess whether pair creation γγ → e+e− is significantly affect-
ing the photon spectrum (Mészáros and Rees, 2000). The presence of pairs is of particular
importance, as they contribute to increase the overall Thomson scattering optical depth.
For ℓ ≳ 1, comptonization (that is Compton scatter of the photons to higher energies)
becomes important, while for ℓ ≲ 1 simple synchrotron dominates the emission (note that
the radius at which ℓ = 1 is always beyond the photosphere). Fig. 5.14 shows an example
(see Appendix C for the complete list of phase space plots for the successful fits) of how
the parameter space can be represented in terms of η and r/r0, with the result of a single fit
being identified by the blue point with η = Γ and r/r0 = rd/r0. Starting from the bottom,
it is possible to see the green line defining the saturation radius rs. All points above this
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Figure 5.13: Global distribution for the photospheric radius, obtained by summing together the samples of the rph

distributions for each spectral fit.

line correspond to completely accelerated ejecta, reaching the coasting Lorentz factor,
while anything below is not (note that this is never the case for any of the results here dis-
cussed). The red line identifies instead the photosphere rph, which decreases as rph ∝ η−3

until reaching the critical value η∗, where rph = rs. Past this point, the photosphere occurs
in the accelerating region and behaves instead like rph ∝ η−

1
3 (Mészáros and Rees, 2000).

This region is never reached by any of the fits, as it requires very large Lorentz factors
η ≳ 1000 for luminosities LGRB ≳ 1052 erg/s. In the figure, the dashed line indicates the
minimum dissipation radius allowed by the internal shock scenario, rmin

sh = 2r0η
2. This is

computed assuming a minimum variability timescale set by the size of the inner engine,
tvar = r0/c. Anything below this line is not consistent with simple internal shock and
requires some different or additional kind of dissipation mechanism. Note that rmin

sh ∝ η2

only up to η∗, as past this value the shells are not being fully accelerated anymore, as the
saturation radius occurs beyond the photosphere. Finally, the optically thin region r > rph

(i.e. τ < 1) is divided in two zones depending on the compactness value. The magenta
line denotes the radius at which ℓ = 1, that is past this boundary the comptonization of the
photons becomes negligible (and pure synchrotron should dominate the emission), while
points falling in the ℓ > 1 region should still exhibit a synchrotron plus inverse Compton
spectrum.

Fig. 5.14 displays the behavior for a single spectrum, however it is more of interest
to see how the results of the sample of accepted fits are overall distributed. This check
is however not completely trivial to perform, as the different regions shift with different
source (i.e. parameter) configurations. In particular, different values of LGRB will move
the rph and ℓ = 1 lines vertically, while the η∗ line moves horizontally. Thus each fit result
has its own version of the phase space diagram. Moreover, the boundary lines themselves
are actually “fuzzy”, as they depend on the estimated fit parameters, which are actually
described by distributions and not single values (for the sake of clarity, Fig. 5.14 only
plots the line corresponding to the parameter configuration of the mode of the posterior).
This implies that it is not trivial to understand were exactly a fit result lies in the parameter
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Figure 5.14: Results of a single fit in the η − r/r0 phase diagram. The various lines mark the transition points between
different regimes and have the following meanings: saturation radius (green), photospheric radius (red), compactness
ℓ = 1 (magenta) and minimum dissipation radius allowed by internal shocks (black dashed line). The shaded regions
thus denote the different regimes: dissipation incompatible with internal shocks (red), sub-photospheric dissipation
(cyan), optically-thin dissipation with high compactness (yellow) and optically-thin dissipation with low compactness
(green). The blue dashed line denotes the value η∗ for which rs = rph, which is also the value of η for which rmin

sh stops
increasing. η∗ is too large to be reached by any of the accepted fits. Finally, the white region below rs corresponds to
very small radii (never reached in the fits) for which the ejecta are not completely accelerated.

space, as the distinction between different regions is not sharp. To solve this issue, while
also taking fully into account the uncertainties, the following method was thus employed.
As each fit produces a posterior distribution through sampling (see Sec. 3.3), each of
these sampled points corresponds to a specific source configuration, with its own version
of the phase space diagram. In this case it is however unaffected by uncertainties, as a
single point is simply a draw from the posterior distribution, a single realization out of the
many possible ones. It is possible to see how the results of a fit are distributed by sim-
ply checking where each sampling point lies (i.e. in which of the shaded regions of Fig.
5.14), thus obtaining at the end a probability quantifying how likely it is for the source to
be in certain region or the other of the parameter space. This process can be repeated for
all of the posterior distributions of the accepted fits, allowing to assess how the sample is
overall distributed with respect to the different emission regimes. This is shown in Fig.
5.15, which quantifies how likely each region is for the sample of the accepted fits. Most
notably, it is possible to see that almost half of the probability lies in the region below
the minimum limit set by simple internal shocks. As such, other/additional dissipation
mechanisms may be at work, e.g. magnetic reconnection. Moreover, while ∼ 75% of
the probability is in the sub-photospheric regime, the remaining fraction lies in the opti-
cally thin region. Most of these are in the high compactness ℓ > 1 region, thus indicating
that inverse Compton plays an important part in the generation of the observed spectra
even above the photosphere. Finally, the remaining small fraction of the probability lies
the synchrotron dominated region ℓ < 1, meaning that the model still favors simple syn-
chrotron emission in some cases.

This chapter performed a test of the dissipative photosphere model developed by Pe’er
and Waxman (2005), analyzing the viability of the emission mechanisms described in
Sec. 1.3.4. The fits were performed on a sample of 19 time-resolved GRBs, correspond-
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Figure 5.15: Distribution of the fit results in the η − r/r0 phase space diagram. The various percentages denote how
many of the total sampling points are captured by each of the different regions. The size of the zones is not in scale to
the actual parameter space they correspond to.

ing to a total of 162 spectra. It was found that the model is overall unable to describe the
observations due to several issues discussed in the following.
First of all, the most problematic aspect of the model is the luminosity. Its distribution for
the accepted spectra peaks sharply at the maximum value allowed by the parameter space,
that is LGRB = 1055 erg/s, which is hard (though strictly speaking not impossible) to justify
on a physical basis, as this would imply emitting the equivalent of ∼ 5M⊙ in a timescale
of one second. Naively, one could think that the luminosity issue can be solved by simply
adopting larger dissipation efficiencies, but this approach effectiveness is also affected by
severe limitations. The efficiency value here adopted is fixed to ϵd = 5%, which can be
considered a typical value for e.g. the internal shock scenario (Piran, 2004; Pe’er, 2015).
While larger values are possible, they are unlikely, as they require some degree of fine-
tuning of the shell conditions (see Sec. 1.3.5). Much larger efficiencies, possibly up to
ϵd ∼ 50% (Giannios and Spruit, 2006), could be reached by assuming that the dissipation
occurs through magnetic reconnection. Even in that case however, the dissipated energy
can only increase by another order of magnitude, hardly enough to solve the current lu-
minosity issue, with most of the current accepted spectra exceeding LGRB ≳ 1054 erg/s,
values hard to motivate on a physical ground, as a luminosity of ∼ 1055 erg/s corresponds
to emitting ∼ 5M⊙ of energy in a timescale of one second. While larger ϵd values would
be able to recover a fraction of these extreme luminosities, more would fill those bins, as
the spectra which were rejected due to the model not generating a sufficient flux would
now able to, but only by combining large values of LGRB and ϵd, which are hard to justify
consistent basis.

As mentioned before, there exist previous studies performed with the same model, see
Ahlgren et al. (2015, 2019a,b). A comparison to the results obtained in these previous
works is here provided. Since Ahlgren et al. (2015) includes only two GRBs and employs
a very small grid, the focus will be on the later studies, namely Ahlgren et al. (2019a,b).
Both of these studies test a specific scenario, that is sub-photospheric dissipation through
internal shocks at a fixed optical depth of τ = 35. Furthermore, the following parameters
are fixed: ϵe = 0.9, ϵB = 10−6 (i.e. negligible magnetic fields), rd = rph/τ (dissipation at
fixed optical depth) and rd = r0Γ

2 (minimum dissipation radius under internal shock as-
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sumption). The parameters being fitted are instead Γ, LGRB and ϵd. Ahlgren et al. (2019b)
employs GBM and LLE data (when available) on a sample of 36 time-resolved GRBs
(for a total of 634 spectra), while Ahlgren et al. (2019a) uses GBM and Swift/XRT on a
sample of 8 GRBs (for a total of 32 spectra). In the following are summarized the main
differences between these previous works and the analysis performed here.

In Ahlgren et al. (2019b) the grid used for the fitting is defined by the following parameter
values:

• Γ = [100, 150, 200, 250, 300, 350, 400, 450, 500]

• LGRB = [0.1, 0.5, 1, 5, 10, 50, 100, 200, 300] · 1052 erg/s

• ϵd = [0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4]

which corresponds to a total of 891 template spectra. Note that the assumption of τ = 35
is to some extent constraining the spectral shapes the model can take, as spectra generated
at this optical depth tend to display a single, well defined peak, mainly generated by the
comptonization of the thermal photons. The parameter distributions resulting from the
fits are displayed in Fig. 5.16. Of the analyzed 634 spectra, only 171 (∼ 27%) were
found to be well described by the model. Similarly to what found in this thesis, the main
reason for the low success of the fits is deemed to be the inability to generate sufficiently
large fluxes. The luminosity issue is also evident from Fig. 5.16, where, even by allowing
efficiencies up to 40%, the luminosity distribution is still peaking at the upper boundary.
Interestingly however, the vast majority of the fitted spectra result in a ϵd ≲ 10% value,
which seems to further reinforce the validity of the assumption of ϵd = 5% adopted in the
analysis done in this thesis. The Lorentz factor distribution is instead different from what
achieved here, as it peaks at its lower boundary Γ ∼ 100. This behavior is less clear, but
it could be caused by the simultaneous presence of constraint τ = 35 and rd = r0Γ

2. The
dissipation radius (though not a free parameter in Ahlgren et al. (2019b)), peaks sharply
at rd ∼ 1012 cm, similarly to what found in this thesis, though that constitutes the lower
boundary of the parameter space in this case.

Ahlgren et al. (2019a) employs instead a larger table model for the fitting, that is:

• Γ = [50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000]

• LGRB = [0.1, 0.5, 1, 5, 10, 50, 100, 200, 300, 1000] · 1052 erg/s

• ϵd = [0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4]

for a total of 1650 templates. The use of Swift/XRT data allows to extend the energy
window of the observations down to 0.3 keV, which can help further constrain the spectral
shape. The acceptance rate is 50% (16/32 spectra), thus almost double what found in
Ahlgren et al. (2019b), most likely due to the lower luminosity of the GRBs, LGRB ∼
1051 − 1052 erg/s for the accepted spectra. It needs however to be pointed out that 11 of
the 16 accepted spectra have very large dissipation efficiency values ϵd ≳ 20%, which is
hard to justify on a consistent basis in an internal shock scenario, such as the one being
considered. The still modest success rate is likely the product of the assumption of a fixed
optical depth for the dissipation, as this can limit the ability of the model of describing
more complex spectral shapes. This is particularly important, given the extended energy
range of the observations provided by the presence of Swift/XRT with GBM.

The performance of the model as assessed in this thesis is grossly consistent with what
seen in the previous studies (Ahlgren et al., 2019a,b), with low acceptance rates and issues
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Figure 5.16: Distributions of the fitted parameters from Ahlgren et al. (2019b).

in producing large enough fluxes. In the case of the analysis performed here, the most con-
straining parameter is the dissipation efficiency. Theoretically, larger values are possible,
perhaps up to ϵd ∼ 50% in a magnetic reconnection scenario (Giannios, 2006), though
this dissipation mechanism is still subject to many theoretical uncertainties. However,
even in the best case scenario of ϵd ∼ 50%, it remains very unlikely that the luminosity
problem of the model could be solved, as is also demonstrated by the results of Ahlgren
et al. (2019b), which, even by allowing much larger efficiencies, still failed to consistently
fit the analyzed GRBs spectra.
On the other hand, looking at the results of the synchrotron fits performed by Burgess
et al. (2020) on the same sample of GRBs studied here, one finds far different results: it
was demonstrated that simple optically thin synchrotron is able to successfully fit 95%
(154/162) of the spectra. Furthermore, the results indicate that the emission is incompati-
ble with the presence of a photospheric component, as the Lorentz factor required by it is
smaller than the lower limit imposed by the transparency of the outflow to higher energy
photons (see Sec. 1.3.1). These synchrotron fits are however not completely exempt from
issues, as many of the fitted spectra are found to be in the slow cooling regime in a signif-
icant fraction of the cases. This is problematic, as this regime is intrinsically inefficient in
radiating photons.

5.6 Conclusions

The study performed in this thesis provides for the first time a direct comparison between
a dissipative photosphere model and the synchrotron emission on the same sample of
GRBs. For this work, the photospheric model developed by Pe’er and Waxman (2005)
was adopted and used to generate a large table model, covering an extensive parameter
space. The achieved results show an overall poor performance of the model, with only
∼ 40% of the fits being accepted. This is in all probability caused by the inability of the
model to generate sufficiently large fluxes. While this can be partially attributed to the
assumption of a low-moderate dissipation efficiency of ϵd = 5%, even much larger values
(which could roughly increase the dissipated energy up to another order of magnitude) are
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unlikely to completely solve the issue. They would also be harder to justify from a physi-
cal standpoint, at least with conventional dissipation mechanisms such as internal shocks
and magnetic reconnection, which typically have efficiencies of the order of ϵd ∼ 10%
(Piran, 2004; Giannios, 2006).
Regardless of the performance of the model, it is still possible to make some interesting
physical considerations out of the accepted spectra, where the dissipative photosphere
emission is able to describe the data. First of all, it is interesting to note that a fraction
of the fits (∼ 25%) still favors the optically thin regime, where synchrotron emission is
significant, over pure sub-photospheric dissipation (which was the only case considered
by the previous studies performed by (Ahlgren et al., 2019a,b)). This could imply that
hybrid models, allowing for both regimes, are a better description of the prompt emis-
sion. It is possible, if not likely, that the dissipation is not always occurring in either the
optically thin or optically thick region, but that this varies from case to case. As shown
by Fig. 5.15, this corresponds to different emission regimes, where different components
become more or less important depending on the parameter space region the GRB lies in.
Moreover, as seen in Sec. 5.5, it was also found that the accepted spectra are not entirely
consistent with simple dissipation from internal shocks and may require different or more
complex mechanisms, at least in a fraction of the cases.
This once again shows the potential of direct fits of physical models, which allow to per-
form proper physical inference on the data. Future studies may proceed down this path
by testing different implementations of the dissipative photosphere (or optically thin syn-
chrotron) models, which may allow to further constrain the underlying physics of the
prompt emission.
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Conclusions and outlook

The work performed in this thesis demonstrates that it is possible to better constrain
gamma-ray bursts by approaching the problem in two different, yet connected, ways.
First, the GBM localization study here presented shows that, while achieving constraining
GRB positions with GBM remains often challenging, large improvements can be achieved
by means of a better source reconstruction method. The traditional localization method
for GBM, i.e. the DoL algorithm, fits for the position by assuming that the spectrum fol-
lows either one of three spectral templates, which correspond to different responses for
the detector. This implies that whenever real spectrum and template do not match, sys-
tematics are being introduced into the estimated position. To compensate for this inherent
inaccuracy of the method, the DoL positions adopt much larger error regions through the
addition of a systematic error component (Connaughton et al., 2015). As demonstrated
in this thesis, by making use of the BALROG algorithm (Burgess et al., 2018), which al-
lows for a simultaneous fit of both position and spectrum, these systematics arising from
a wrong methodology can be removed. The improved locations so obtained are both more
accurate (i.e. correct error regions) and more precise (i.e. smaller uncertainties).
Other follow-up studies performed by von Minckwitz (2020) also show that wrong po-
sitions do affect the results of spectral fits due to the wrong response being employed.
These findings have important implications, as any study reliant on the standard GBM
positions could be indirectly affected by systematics. As such, these issues should also be
further investigated in the future. Finally, a natural next step to the work performed here
is to use the BALROG locations for new multi-messenger searches (e.g. neutrinos), given
that the improved accuracy of the positions will be able to provide more reliable results.

The following test of the photospheric emission model approaches instead the “GRB
problem” from a different angle and tries to better model the spectrum of these sources.
The physics underlying the prompt emission in GRBs is still uncertain, with two main
competing models being present at the moment: emission from a dissipative photosphere
and optically thin synchrotron. Due to the numerical complexity of these models, they
have seldom been tested directly onto the data (Ahlgren et al., 2015, 2019a,b; Burgess
et al., 2020) and most of the physical inference so far has been performed through the use
of simple empirical functions (e.g. Band function).
This thesis instead tests directly the dissipative photosphere model developed by Pe’er
and Waxman (2005) by generating a table model covering a large parameter space. The
results of the fits show that the model is unable to consistently describe the data, achiev-
ing an acceptance rate of ∼ 40%, as in many instances it cannot generate a large enough
flux to match the measured detector counts. Larger dissipation efficiencies may be able
to ameliorate the issue, potentially increasing the dissipated energy by up to an order of
magnitude, but this is unlikely to completely solve the problem.
The model however still constitutes a useful tool to probe the underlying physics of GRB
prompt emission. From the accepted spectra, it was found that in a significant fraction
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of cases (∼ 25%) the dissipation occurs in the optically thin region, where synchrotron is
expected to be an important part of the spectrum, suggesting thus that the emission does
not occur exclusively in only one of the two regimes. It was also found that the fitted
spectra are not entirely consistent with simple internal shocks. This likely implies that
different or additional dissipation mechanisms are at work, which future studies may be
able to further investigate.

Both of the analyses performed in this thesis laid the groundwork for future more
advanced studies. The improved GBM locations can be used for better follow-up obser-
vations and more constraining multi-messenger searches, with the locations being openly
available to the scientific community at https://grb.mpe.mpg.de. This is of particular im-
portance, as the main limiting factor of the current observations is not their overall num-
ber, but their “completeness”, i.e. only a relatively small fraction of the total sample have
observations ranging from the prompt emission until the later stages of the afterglow.
This severely limits what can be inferred from the available detections. Conversely, when
many multi-wavelength (and possibly multi-messenger) observations are present for the
same event, much more information can be obtained and thus used for physical inference,
as demonstrated by events such as GRB 170817A (Abbott et al., 2016; Goldstein et al.,
2017). As such, having a constraining and accurate gamma-ray position available is of
utmost importance for follow-up observations and multi-messenger searches.
On the other hand, the fits of the photospheric model here performed test the emission
mechanisms of GRB prompt emission. Identifying the correct physical processes would
allow for a better understanding of the source, which could help in constraining the pre-
dicted neutrino fluxes. While the photospheric model here analyzed is unable to fully
describe the observations, it was shown that from the sample of accepted spectra it is
possible to perform physical inference regarding the emission regimes and the dissipation
mechanisms at work in GRBs. Future studies may be able to test different and possibly
more sophisticated implementations of the emission from a dissipative photosphere or op-
tically thin synchrotron, further refining the analysis done here. New measurements could
also be able to shed more light on the matter. Polarimetry in particular is an especially
good candidate to discriminate between different emission models: for example, a sin-
gle measurement of the polarization fraction Π ≳ 50% would strongly favor synchrotron
over photospheric emission (Gill et al., 2020). With the upcoming polarimeter POLAR 2,
such measurements may be soon be possible and thus provide the observations needed to
achieve a better understanding of the emission mechanisms in GRBs.

https://grb.mpe.mpg.de/
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Appendix A: location tables

Table 5.3: List with the analyzed GRBs. In the model column, the abbreviations have the following meanings: cpl =
cut-off power-law, band = Band function and pl = power-law. Asterisks in front of the trigger numbers denote short
GRBs.

Swift BALROG DoL Data

RA DEC RA DEC Offset Model RA DEC Err. Offset Fluence Peak fluxTrigger (◦) (◦) (◦) (◦) (◦) (◦) (◦) (◦) (◦) (erg · cm−2) (ph · cm−2 · s−1)

080714745 188.1 -60.2 184.6 ± 5.0 −57.4 ± 2.1 3.3 cpl 183.5 -57.5 3.9 3.6 6.3 · 10−6 6.9
080723557 176.8 -60.2 178.6 ± 0.6 −61.2 ± 0.6 1.3 cpl 175.1 -60.7 1.0 1.0 7.2 · 10−5 3.0 · 101

080725435 121.7 -14.0 120.7 ± 1.7 −12.8 ± 2.3 1.5 cpl 123.1 -23.1 2.2 9.2 8.0 · 10−6 3.4
080727964 32.6 64.1 41.6 ± 6.9 63.3 ± 2.9 4.1 cpl 40.0 62.2 2.7 3.8 1.3 · 10−5 3.5
080804972 328.7 -53.2 325.9 ± 3.7 −52.7 ± 1.3 1.8 cpl 320.8 -52.7 2.4 4.8 9.1 · 10−6 3.8
080916009 119.8 -56.6 121.3 ± 1.1 −57.2 ± 0.7 1.0 band 124.4 -54.7 1.4 3.2 6.0 · 10−5 1.4 · 101

081102739 331.2 53.0 327.2 ± 5.0 50.2 ± 3.3 3.8 pl 321.3 51.9 4.5 6.1 3.8 · 10−6 2.7
081121858 89.3 -60.6 95.6 ± 7.7 −64.6 ± 1.7 5.0 cpl 97.2 -59.9 1.1 4.0 1.5 · 10−5 7.7
081126899 323.5 48.7 327.5 ± 1.2 48.2 ± 2.3 2.7 cpl 326.9 50.3 2.7 2.7 1.1 · 10−5 6.5
081221681 15.8 -24.5 13.4 ± 0.4 −22.9 ± 0.5 2.7 cpl 14.1 -25.2 1.2 1.7 3.0 · 10−5 2.5 · 101

081222204 22.7 -34.1 20.5 ± 1.1 −32.5 ± 0.7 2.5 cpl 18.6 -32.4 1.5 3.8 1.2 · 10−5 1.3 · 101

090102122 128.2 33.1 124.5 ± 1.0 31.0 ± 0.6 3.8 cpl 128.5 30.3 1.5 2.8 2.8 · 10−5 1.1 · 101

090129880 269.1 -32.8 266.4 ± 6.6 −36.7 ± 1.9 4.5 cpl 270.6 -33.8 1.8 1.6 5.6 · 10−6 6.6
090323002 190.7 17.1 191.2 ± 2.1 16.0 ± 1.9 1.2 cpl 190.1 21.1 1.2 4.0 1.1 · 10−4 1.3 · 101

090328401 90.9 -42.0 94.4 ± 1.6 −44.1 ± 0.6 3.3 band 95.9 -45.1 1.0 4.8 4.2 · 10−5 1.7 · 101

090424592 189.5 16.8 190.3 ± 0.2 17.7 ± 0.3 1.2 cpl 191.5 18.1 1.6 2.3 4.6 · 10−5 1.1 · 102

090510016* 333.6 -26.6 334.5 ± 1.7 −30.3 ± 1.6 3.8 cpl 335.0 -31.3 1.0 4.9 3.4 · 10−6 9.1
090531775* 252.1 -36.0 249.8 ± 6.1 −33.7 ± 3.4 3.0 cpl 252.9 -31.5 7.2 4.5 3.2 · 10−7 3.4
090618353 294.0 78.4 285.3 ± 2.9 79.7 ± 0.3 2.1 cpl 288.4 80.0 1.0 1.9 2.7 · 10−4 6.9 · 101

090813174 225.1 88.6 280.9 ± 28.9 87.3 ± 1.3 2.2 cpl 40.2 86.0 5.1 5.4 3.3 · 10−6 1.4 · 101

090902462 264.9 27.3 262.5 ± 0.5 26.3 ± 0.3 2.4 cpl 261.4 26.1 1.0 3.3 2.2 · 10−4 7.7 · 101

090904058 264.2 -25.2 260.4 ± 1.5 −23.4 ± 2.5 3.9 cpl 265.9 -30.1 1.9 5.1 2.2 · 10−5 6.8
090926181 353.4 -66.3 354.0 ± 0.5 −66.1 ± 0.1 0.3 cpl 350.1 -63.5 1.0 3.1 1.5 · 10−4 8.1 · 101

091003191 251.5 36.6 251.2 ± 0.3 36.3 ± 0.2 0.4 cpl 251.2 37.3 1.0 0.7 2.3 · 10−5 2.9 · 101

091020900 175.7 51.0 175.1 ± 3.3 50.1 ± 2.0 1.0 cpl 174.4 52.7 3.1 1.9 8.3 · 10−6 6.8
091112737 257.7 -36.7 254.0 ± 2.7 −41.6 ± 3.1 5.7 cpl 258.3 -36.7 3.2 0.5 9.9 · 10−6 4.2
091127976 36.6 -19.1 38.1 ± 0.5 −18.1 ± 0.5 1.7 cpl 38.1 -21.0 1.1 2.4 2.1 · 10−5 6.8 · 101

091208410 29.4 16.9 28.5 ± 0.9 16.6 ± 1.1 0.9 pl 30.1 13.5 2.6 3.5 6.2 · 10−6 2.1 · 101

091221870 55.8 23.2 57.4 ± 2.4 22.1 ± 1.4 1.8 cpl 54.5 27.3 1.2 4.3 8.9 · 10−6 4.3
100401297 290.8 -8.3 295.4 ± 4.1 −10.4 ± 3.9 5.0 pl 290.0 -16.3 7.9 8.0 1.9 · 10−6 4.1
100414097 192.1 8.7 191.8 ± 0.6 8.1 ± 0.6 0.6 band 185.7 15.7 1.0 9.4 8.8 · 10−5 2.2 · 101

100427356 89.2 -3.5 86.0 ± 1.2 −0.3 ± 1.8 4.5 cpl 91.0 -1.4 2.6 2.8 2.3 · 10−6 3.8
100522157 7.0 9.5 8.0 ± 1.2 10.4 ± 1.0 1.4 cpl 8.0 10.5 3.9 1.4 3.9 · 10−6 1.1 · 101

100615083 177.2 -19.5 173.1 ± 2.6 −20.1 ± 2.4 3.9 pl 175.6 -21.1 2.4 2.2 8.7 · 10−6 8.3
100619015 84.6 -27.1 86.1 ± 2.4 −20.0 ± 3.0 7.2 pl 84.0 -25.5 6.6 1.7 1.1 · 10−5 7.4
100704149 133.6 -24.2 133.5 ± 1.3 −20.0 ± 2.3 4.2 cpl 133.2 -23.6 1.6 0.7 8.4 · 10−6 7.2
100728095 88.8 -15.3 91.8 ± 1.0 −14.2 ± 0.9 3.1 cpl 88.3 -13.7 1.0 1.7 1.3 · 10−4 1.1 · 101

100728439 44.1 0.3 41.0 ± 2.4 1.9 ± 1.6 3.4 pl 41.5 0.2 4.2 2.6 3.3 · 10−6 6.2
100906576 28.7 55.6 24.9 ± 1.1 53.6 ± 0.6 3.0 cpl 28.0 55.2 1.1 0.6 2.3 · 10−5 1.4 · 101

101024486 66.5 -77.3 89.4 ± 49.8 −74.0 ± 5.9 6.5 pl 147.1 -77.2 9.6 16.4 3.3 · 10−6 8.3
101201418 1.9 -16.1 3.2 ± 0.8 −14.1 ± 1.2 2.4 band 3.9 -14.7 1.6 2.4 2.4 · 10−5 6.9
110102788 245.9 7.6 245.3 ± 0.9 5.6 ± 0.8 2.1 cpl 246.2 6.0 2.0 1.6 3.7 · 10−5 1.4 · 101

110213220 43.0 49.3 39.6 ± 1.7 47.9 ± 1.2 2.7 pl 49.0 52.8 2.3 5.1 9.4 · 10−6 1.8 · 101

110318552 338.3 -15.3 337.9 ± 0.9 −17.8 ± 1.1 2.5 cpl 335.9 -14.9 1.9 2.4 8.2 · 10−6 1.1 · 101
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Swift BALROG DoL Data

RA DEC RA DEC Offset Model RA DEC Err. Offset Fluence Peak fluxTrigger (◦) (◦) (◦) (◦) (◦) (◦) (◦) (◦) (◦) (erg · cm−2) (ph · cm−2 · s−1)

110402009 197.4 61.4 196.7 ± 9.1 57.9 ± 3.6 3.5 cpl 187.7 58.7 2.2 5.5 1.1 · 10−5 7.8
110610640 308.2 74.8 300.9 ± 5.8 73.7 ± 1.2 2.3 pl 306.5 75.9 2.6 1.2 8.0 · 10−6 5.8
110625881 286.8 6.8 287.7 ± 0.2 8.2 ± 0.2 1.6 cpl 287.7 6.7 1.0 0.9 6.5 · 10−5 7.7 · 101

110709642 238.9 40.9 238.5 ± 1.3 39.0 ± 1.5 1.9 cpl 241.2 41.8 1.1 1.9 3.7 · 10−5 1.1 · 101

110731465 280.5 -28.5 281.8 ± 0.3 −26.5 ± 0.7 2.3 cpl 283.1 -34.0 1.0 5.9 2.3 · 10−5 2.1 · 101

111228657 150.1 18.3 148.8 ± 0.4 19.1 ± 1.2 1.5 pl 146.6 14.6 2.4 5.0 1.8 · 10−5 2.1 · 101

120102095 276.2 24.7 275.6 ± 1.3 21.1 ± 0.7 3.6 cpl 277.1 20.4 2.0 4.4 1.3 · 10−5 1.9 · 101

120119170 120.0 -9.1 120.1 ± 0.5 −8.9 ± 0.6 0.2 cpl 119.0 -9.0 1.1 1.0 3.9 · 10−5 1.7 · 101

120326056 273.9 69.3 276.5 ± 3.7 70.5 ± 1.7 1.5 pl 262.2 62.1 4.2 8.6 3.3 · 10−6 7.7
120624933 170.9 8.9 171.1 ± 1.1 10.2 ± 0.9 1.3 cpl 171.8 5.6 1.0 3.4 1.9 · 10−4 1.8 · 101

120703726 339.4 -29.7 335.1 ± 1.9 −31.0 ± 1.3 3.9 cpl 339.8 -29.5 1.7 0.4 8.3 · 10−6 1.7 · 101

120913997 213.6 -14.5 217.0 ± 2.1 −18.9 ± 1.2 5.5 pl 214.8 -16.6 1.5 2.4 2.0 · 10−5 5.3
121031949 170.8 -3.5 170.1 ± 2.2 −5.8 ± 2.8 2.4 pl 173.1 -1.9 3.4 2.8 1.5 · 10−5 7.4
121128212 300.6 54.3 300.2 ± 1.9 57.3 ± 1.3 3.0 cpl 278.8 41.6 1.5 19.2 9.3 · 10−6 1.8 · 101

130216790 58.9 2.0 61.3 ± 1.0 1.2 ± 1.0 2.5 pl 61.7 3.5 2.3 3.2 4.9 · 10−6 1.5 · 101

130216927 67.9 14.7 70.8 ± 0.6 16.0 ± 1.0 3.0 pl 69.4 16.3 1.5 2.2 5.9 · 10−6 9.2
130305486 116.8 52.0 115.5 ± 0.6 51.6 ± 0.6 0.9 cpl 119.7 49.0 1.0 3.5 4.6 · 10−5 2.7 · 101

130306991 279.5 -11.8 276.1 ± 0.6 −11.6 ± 0.4 3.3 cpl 276.9 -11.5 1.0 2.6 1.2 · 10−4 2.9 · 101

130420313 196.1 59.4 185.0 ± 11.4 55.3 ± 4.7 7.3 cpl 205.7 58.8 4.4 5.0 1.2 · 10−5 5.4
130427324 173.1 27.7 174.2 ± 0.0 26.9 ± 0.1 1.3 cpl 172.5 25.5 1.0 2.3 2.5 · 10−3 1.1 · 103

130502327 66.8 71.1 66.9 ± 1.9 71.0 ± 0.6 0.1 cpl 77.0 70.3 1.0 3.5 1.0 · 10−4 4.6 · 101

130504978 91.6 3.8 94.6 ± 0.4 4.2 ± 0.3 3.0 cpl 90.7 4.3 1.0 1.0 1.3 · 10−4 4.3 · 101

130518580 355.7 47.5 352.8 ± 0.4 46.9 ± 0.3 2.1 cpl 356.3 47.0 1.0 0.6 9.5 · 10−5 4.5 · 101

130609902 53.8 -40.2 50.1 ± 1.8 −37.9 ± 1.3 3.7 cpl 51.9 -42.9 1.0 3.1 5.4 · 10−5 1.4 · 101

130727698 330.8 -65.5 329.6 ± 4.4 −61.3 ± 4.2 4.3 cpl - - - - 8.2 · 10−6 1.1 · 101

130925173 41.2 -26.1 43.6 ± 1.9 −25.1 ± 0.7 2.4 cpl - - - - 8.5 · 10−5 1.1 · 101

131229277 85.2 -4.4 86.5 ± 1.1 −6.8 ± 1.4 2.7 cpl - - - - 2.6 · 10−5 2.4 · 101

140108721 325.1 58.7 326.1 ± 2.4 59.3 ± 1.2 0.7 cpl - - - - 2.0 · 10−5 1.0 · 101

140206304 145.3 66.8 147.9 ± 1.7 68.3 ± 1.1 1.9 cpl - - - - 1.6 · 10−5 1.7 · 101

140209313* 81.3 32.5 81.8 ± 0.8 29.6 ± 0.5 2.9 cpl - - - - 9.0 · 10−6 5.8 · 101

140213807 105.2 -73.1 102.7 ± 16.6 −71.9 ± 1.0 1.5 cpl - - - - 2.1 · 10−5 3.7 · 101

140323433 357.0 -79.9 356.0 ± 5.2 −77.2 ± 1.3 2.7 cpl - - - - 3.2 · 10−5 9.7
140506880 276.8 -55.6 275.6 ± 5.8 −56.4 ± 3.0 1.1 cpl - - - - 6.6 · 10−6 1.6 · 101

140512814 289.4 -15.1 294.1 ± 2.3 −19.5 ± 1.8 6.3 cpl - - - - 2.9 · 10−5 1.1 · 101

140716436 108.1 -60.1 102.2 ± 2.7 −65.2 ± 2.2 5.7 cpl - - - - 1.2 · 10−5 1.1 · 101

141004973 76.7 12.8 78.0 ± 2.7 11.7 ± 2.9 1.7 cpl - - - - 1.2 · 10−6 9.8
141220252 195.1 32.1 198.5 ± 1.0 32.1 ± 1.4 2.9 pl - - - - 5.3 · 10−6 1.2 · 101

150201574 11.8 -37.6 11.3 ± 0.5 −38.0 ± 0.2 0.6 cpl - - - - 6.3 · 10−5 8.9 · 101

150309958 277.0 86.4 276.3 ± 15.6 86.7 ± 0.9 0.3 cpl - - - - 4.0 · 10−5 1.5 · 101

150323395 260.5 38.3 263.3 ± 3.6 38.0 ± 3.8 2.3 cpl - - - - 1.9 · 10−5 8.9
150403913 311.5 -62.7 310.1 ± 0.7 −60.5 ± 0.5 2.3 cpl - - - - 5.5 · 10−5 3.3 · 101

150430015 326.5 -27.9 325.2 ± 1.1 −27.4 ± 1.8 1.2 cpl - - - - 1.6 · 10−5 9.9
150817087 249.6 -12.1 251.0 ± 1.4 −11.7 ± 1.4 1.4 cpl - - - - 1.2 · 10−5 1.6 · 101

151027166 272.5 61.4 271.5 ± 2.8 62.2 ± 0.6 1.0 cpl - - - - 1.4 · 10−5 1.1 · 101

151229285 329.4 -20.7 327.9 ± 2.9 −22.8 ± 2.3 2.5 pl - - - - 1.1 · 10−6 1.1 · 101

160325291 15.7 -72.7 13.5 ± 3.4 −74.0 ± 1.0 1.5 cpl - - - - 1.9 · 10−5 8.5
160905471 162.2 -50.8 159.8 ± 0.5 −53.6 ± 0.3 3.1 cpl - - - - 7.3 · 10−5 1.6 · 101

161004964 112.2 -39.9 110.1 ± 0.5 −37.7 ± 0.7 2.7 band - - - - 1.7 · 10−5 1.6 · 101

161117066 322.1 -29.6 323.8 ± 0.8 −28.3 ± 0.7 2.0 cpl - - - - 3.1 · 10−5 1.0 · 101

170126480 263.6 -64.8 264.3 ± 2.5 −67.7 ± 1.1 3.0 cpl - - - - 8.5 · 10−6 1.2 · 101

170208940 127.1 -9.0 128.5 ± 1.1 −6.8 ± 1.4 2.6 cpl - - - - 1.0 · 10−5 1.2 · 101

170405777 219.8 -25.2 217.5 ± 0.8 −27.2 ± 1.0 2.9 cpl - - - - 7.4 · 10−5 1.6 · 101

170607971 7.4 9.2 5.5 ± 1.2 12.5 ± 1.2 3.8 pl - - - - 9.4 · 10−6 1.5 · 101

170626401 165.4 56.5 160.6 ± 1.6 56.1 ± 0.7 2.7 cpl - - - - 1.5 · 10−5 3.7 · 101

170705115 191.7 18.3 192.3 ± 1.0 17.9 ± 0.5 0.7 cpl - - - - 1.3 · 10−5 2.2 · 101

170906030 203.9 -47.1 201.4 ± 0.6 −45.0 ± 0.6 2.8 cpl - - - - 9.5 · 10−5 2.2 · 101

170906039 232.2 -28.3 233.4 ± 1.8 −29.9 ± 1.7 1.9 cpl - - - - 3.0 · 10−6 1.0 · 101

171120556 163.8 22.5 164.6 ± 0.3 23.5 ± 0.4 1.3 cpl - - - - 1.6 · 10−5 3.6 · 101

180113116 19.2 68.7 17.4 ± 2.9 61.8 ± 1.9 6.9 cpl - - - - 1.4 · 10−5 9.3
180404091 53.4 -50.2 55.0 ± 1.7 −52.0 ± 0.8 2.0 cpl - - - - 2.8 · 10−5 8.0
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Appendix B: spectral fit results

The following plots display the results of the fits from Chapter 5. On the top left are
the light curves with the parameters estimated for each (successful) time bin. The top
right shows instead the lightcurves for the signal-to-noise ratio (computed as described in
Vianello (2018)). The first one is for the brightest NaI detector, while the second is for
the BGO detector. Time bins with unsuccessful fit are marked in red.
On the bottom are instead the spectra for each of the accepted bins: on the left for the
photospheric model and on the right the for Band function equivalent. The shaded are
surrounding each spectra denotes the 68% credible region. GRBs with no successful fits
are not displayed.
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