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Abstract— Ground truth data plays an important role in
validating perception algorithms and in developing data-driven
models. Yet, generating ground truth data is a challenging
process, often requiring tedious manual work. Thus, we present
a post-processing approach to automatically generate ground
truth data from environment sensors. In contrast to existing
approaches, we incorporate raw sensor data from multiple
vehicles. As a result, our cooperative fusion approach over-
comes drawbacks of occlusions and decreasing sensor resolution
with distance. To improve the alignment precision for raw
sensor data fusion, we include mutual detections and match
the jointly-observed static environment to support differential
global positioning system localization. We further provide a
new registration algorithm, where all point clouds are moved
simultaneously, while restricting the transformation parameters
to increase the robustness against misalignments. The benefits
of our raw sensor data fusion approach are demonstrated with
real lidar data from two test vehicles in different scenarios.

I. INTRODUCTION

Ground truth data must be more reliable compared to
online perception models, e.g., for evaluating object tracking
and detection quality. However, previous approaches for of-
fline ground truth generation (e.g., [1]-[4]) only post-process
the sensor data of a single vehicle, which are subject to
the same limitations as online methods regarding the sensor
resolution in the distance and restricted sensing perspectives.
Thus, we propose an offline cooperative raw sensor data
fusion approach to generate ground truth with lidar data from
multiple vehicles. The benefits of our cooperative fusion par-
ticularly include improved detection of object shapes, higher
detection reliability, and increased awareness of occluded
objects.

A. Related Work

The classical approach to obtaining object reference
trajectories relies on differential global positioning systems
(DGPS) [5], which is limited to target vehicles equipped
with high-cost localization devices. A cheaper alternative
is to enhance recorded data offline: In contrast to online
methods, one can use more precise methods since real-time
capability is no longer required and one can exploit future
measurements in the recordings.

Only few works on offline generation of ground truth data
exist: The work in [1] combines classical fitting of character-
istic shapes with offline smoothing. Vehicle trajectories are
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Fig. 1. Motivation for a two vehicles setup for ground truth generation
based on a typical highway scenario: By fusing the additional perception of a
second vehicle into the perception of the first vehicle, a more comprehensive
detection of the object appearance is provided.

iteratively extracted in [2] by initializing the vehicle track at
an optimal time step and extending the track both into the
past and the future. An approach using a CAD model has
been shown in our previous work [3], where the maximum
achievable accuracy for vehicle tracking is investigated. In
[4], objects are tracked forward using a standard approach
based on occupancy grids. The estimates are refined using
an additional backward pass with updated object size and
extended using object detections in the time steps before the
initialization. Since previous works suffer from occlusions
and a decreasing resolution with distance when considering
sensors of a single vehicle, we pursue a multiple vehicle
concept instead.

Processing data from multiple vehicles has been widely in-
vestigated for data exchange between vehicles to extend their
sensing range [6]. Such cooperative methods are considered
as a helpful supplement to on-boards sensors [6, pp. 10-17].
Relevant research regarding cooperative perception includes
the localization of communicating vehicles and sensor data
fusion for detecting other traffic participants. The latter can
be broadly subdivided into object-level and map-level fusion
[7]. The cooperative fusion of raw sensor data [8] is an
apparent extension, but not the scope of previous work due
to the challenge of transmitting the required data in real time.

Fusing object lists is shown in [7], where sensor in-
formation transmitted from surrounding vehicles is treated



as virtual sensor data supporting the global object tracker
for each vehicle. To handle unknown correlations between
object tracks perceived by different vehicles, covariance
intersection filters [9] are applied. For simulative evaluation,
ideal communication and known relative positioning between
communicating vehicles were assumed. Real-world deploy-
ment is challenging due to establishing temporal and spatial
alignment, which are required to preprocess the sensor/object
data [10]. This problem is tackled in [11] by applying point
matching algorithms on object lists from different vehicles
to align the perceived information.

Occupancy maps are often used as an intermediate rep-
resentation in perception models between raw sensor data
and object lists [12], [13]. Typically, more information is
shared compared to object-level fusion requiring a higher
data rate. In [14], occupancy maps of different vehicles
are superimposed using Dempster-Shafer reasoning to yield
a fused map. It has been further shown that erroneous
estimations of vehicle states pose a major challenge in map
alignment [15], [16].

Cooperative localization approaches [6, pp. 12-13] im-
prove the pose estimation accuracy of communicating ve-
hicles, which remedies the sensor data fusion alignment
problem. In [17], a cooperative localization method is pre-
sented based on the GPS position of the ego vehicle, range
sensor measurements of the distances to other vehicles, and
positions communicated from detected vehicles. The fusion
particularly improves the yaw estimation of the ego vehicle.
A framework for cooperative localization is shown in [18]
by fusing low-cost GPS, odometry, camera and lidar with
data transmitted between vehicles. By sharing the polygon
enclosing the ego vehicle [19], other vehicles can better
localize its relative position and return the information to
the ego vehicle.

B. Contributions

This paper proposes a state estimation framework for the
localization and sensor data fusion of lidars from multiple
vehicles to extend the field of view (FOV) of a single
vehicle. Compared to previous approaches with inter-vehicle
data sharing, no limitations on the communication data rate
exist for the goal of ground truth generation, which enables
raw sensor data to be fused. To increase the localization
accuracy for better aligning sensor data, we fuse DGPS
data with measurements from mutual detections and the
registration of the jointly observed static environment. For
the latter, we further present a novel robust registration
algorithm that matches the point clouds while preserving
their initial origins. We demonstrate the performance of our
fusion approach in real-world experiments with two test
vehicles, for which we evaluate the alignment precision and
the outcome of a tracking algorithm applied on the fused
sensor data. Even though we apply object tracking, the fused
sensor data can be equally used for other perception tasks
like road modeling or free-space estimation.

This paper is organized as follows: Section II shows our
approach for localizing the involved vehicles and for fusing

raw sensor data. In section III, we present a new registration
algorithm, which restricts the transformation parameters to
improve robustness. The proposed raw sensor data fusion
concept is evaluated in section IV. We conclude our research
work in section V.

II. PROPOSED LOCALIZATION AND RAW SENSOR DATA
FUsioN FRAMEWORK

We fuse raw sensor data in a local world-fixed coordinate
system as presented in Fig. 2. To this end, we require a
localization of all involved vehicles, which we estimate in a
centralized fusion framework. Compared to a distributed es-
timation system as shown in [18], centralized fusion benefits
from the lapsed handling of correlations between parallel
estimations. Below, we describe the transition model of
our joint localization framework for an arbitrary number N
of involved vehicles and give details about the considered
measurements.

1) Joint State Space Model with Dynamics Input: We use
a joint state space model with the stacked state vector
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Let us introduce the variables of the i*" vehicle: s, and s,
represent the rear axle center position in a local world-fixed
coordinate system (see Fig. 3), v, and v, are the longitudinal
and lateral velocity, a, and a, are the longitudinal and lateral
acceleration, v is the yaw angle, and v is the yaw rate. Our
nonlinear 2D kinematic model for a single vehicle x; is [20]

Vg COS 1) — vy Sin 7 0 0
Vg Sin Y + vy, cos 0 0
T; = 0 +lu, | +lwg |, @
vyl/). Ua, Way,
—Ug Y i Uay |, Wa, | ;

with the inputs u,_, Ua,> Uy consisting of the measurements
of the inertial measurement unit (IMU), and random variables
Wa,,» Wa,, W, accounting for the process noise of the sub-
scripted variables. The dynamic model is discretized using
the forward Euler method.

2) Differential Global Positioning System: The propa-
gation of the dynamic model using IMU measurements
alone results in a drift of pose and velocity states, which
is corrected using absolute DGPS pose measurements. The
corresponding measurement function is

Sz,i

Y; DGPS = | Sy, + fp(vipaps), 3)

i DGPS

where fj(v; paps) denotes the DGPS measurement noise.
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Fig. 3. Local world-fixed coordinate system.

3) Mutual Localization: The mutual localization (see Fig.
2) requires a direct line-of-sight between vehicles and es-
timates the relative poses by matching CAD models with
sensor point clouds as presented in [3]. The relative pose
obtained by vehicle 7 detecting vehicle j is considered by
the measurement function

(Sm,j — Sz.,i) cos(¢;) + (Sy,j - Sy,i) sin(1;)
Yijm = —(82,5 — Sz.4) sin(¥i) + (sy,; — 8y.i) cos(¢;)
Vi — Py M
+fu(vijm),

4)
with ¢ # j for i, j = 1,..., N and the expression fy;(v;jm)
accounting for the measurement noise. To account for erro-
neous registrations due to, e.g., occlusions between vehicles,
measurements are discarded if the likelihood of the measure-
ment falls below a threshold (cf. [3]).

4) Registration of Static Environment: A point cloud
acquired by a 3D lidar usually contains many points reflected
from the static environment, which is used to match point
clouds from different vehicles for relative pose estimation
(see Fig. 2). We use a new robust joint registration algorithm
that restricts the transformation of each involved point cloud
(see section III for further details), which provides the yaw
angles 1;, 1; and relative position As ;;, As, ;; of each

vehicle pair (without repetition) so that

Sx,j — Sz,i
Sy,j — Sy,
i

Y; g
with 4,5 = 1,...,N and ¢ < j, and noise fg(v;js). Com-
pared to mutual localization, no line-of-sight is necessary, but
an overlap of the sensor point clouds is required. Thus, both
types of measurements effectively complement each other.

Yijs = + fs(vijs) )

III. POINT CLOUD REGISTRATION WITH RESTRICTED
TRANSFORMATIONS

To match point clouds from different vehicles, we propose
to use a registration algorithm that transforms all involved
point clouds and regularizes their transformation parameters
to increase robustness. Below, we define the preliminaries
for rigid transformations and introduce our new registration
method based on the well-known point-to-plane iterative
closest point (ICP) algorithm [21].

A. Preliminaries on Rigid Transformations

Let the lidar point clouds of vehicle ¢ = 1,..., N be
defined as P; = {p, € R®*|k = 1,..., N;} with N; being the
number of points in P;. The rigid transformation in SE(3)
is given by p) = R;p,, + t;, where the orthogonal rotation
matrix R; € R3*3 and the translation vector ¢; € R3 are

obtained by
ti = [§x17 5%7 521]7

with Euler angle increments d¢;, §6;, d1; relating to the roll,
pitch, and yaw angle, and éz;, dy;, dz; to the incremental
translation in the Cartesian frame. For compactness, we
further concatenate these parameters to a vector

zi = [0, 00,065, 03, 6yi, 62i] " @)
and introduce the rigid transformation function
9(z,p.0") = R(2) (p— ") +t(z) + 0" (8

to transform a point p around the origin o” of point cloud
P.



B. Robust ICP with Restricted Transformations

The original point-to-plane ICP algorithm [21] registers
two point clouds iteratively by alternately finding point
correspondences between them and minimizing their squared
perpendicular distances to the local surface. Due to the
unrestricted transformation (8) of one point cloud to match
the other and the proneness to converge into local minima,
large transformation errors can arise depending on the initial
relative pose. Thus, we propose to restrict the transformation
parameters in (8) and extend the registration approach to
multiple point clouds, while jointly moving the point clouds
of all involved vehicles at the same time.

Let us first introduce the association function A%4 (p,,) =
argming, cp [P, — pyf| from [21], which basically returns
the closest point p; € P; to p;, € P;. We denote the normal
vector of the local surface at p;, € P; by nf’ and the stacked
transformation parameter vector by z1.y = [27,...,2%]T.
Our minimization problem for the joint registration over all

involved point clouds is defined by

N N
Ziy =argmind 0 Y Y wy [rizi%rjzjnz
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©))
where we include ||T'z||?> with Tikhonov regularization ma-
trix I' [22] to restrict the transformation from the initial pose
and a weighting factor wy, to handle points of dynamic ob-
jects and outliers outside the overlapping area. The restriction
of point cloud transformation enhances the robustness of the
registration algorithm, particularly in case of small overlaps,
which otherwise would increase the transformation errors in
each iteration due to erroneous point associations. However,
the regularization requires that the deviation between the
initial and true relative poses of the point clouds are small
since a higher deviation introduces a higher bias error to
Zi.N-

The expression denoted by h;;; in (9) is adopted from
the point-to-plane ICP algorithm, which corresponds to
the squared perpendicular distance of the associated point
A%i(p,) to the local surface at p, € P;. Note that
normal vectors nf are only taken from one point cloud
in each pair, which also applies to the original point-to-
plane ICP algorithm. Analogously to [21], we solve (9)
using the Gauss—Newton algorithm [23, pp. 396-399] with
the weighting factor wy computed using the Welsch robust
criterion function [24].

To provide an initial relative pose for our registration
algorithm, we take the predicted state estimates s; ; preds
Sy,ipreds and ¥; preq With ¢ =1, ..., N from section II. The
results of the point cloud registration method are returned
to the localization framework as relative position and yaw
angle measurements of each vehicle pair (cf. section II-.4),

which are defined as
Asyij = (82,0 preda +0x;) —
Asy,ij = (Sy.ipred +0Y;) —
Vi = Vi pred + 6V,
Vi = Vjpred + 6.

(82,j,pred + 0T7),

(sy,j,pred + 53/;)7 (10)

IV. EXPERIMENTAL RESULTS

In our experiments, we first visualize the performance
of our approach and quantify its performance using the
crispness measure [25]. Secondly, we apply a simple multi-
object tracker on the fused and individual point clouds from
the involved vehicles to compare the tracking performance.

We acquire real sensor data using two test vehicles, each
equipped with a Hesai Pandar laser scanner on a roof rack.
The sensor rotates at 10Hz and provides a 3D point cloud
with 40 vertical layers, a vertical resolution of 0.33° and 1°
depending on the angle ranges, and a horizontal resolution of
0.2°. DGPS and IMU data are provided by RTK-supported
DGPS systems from OxTS. We also record the DGPS and
IMU data from a third test vehicle, which we consider as the
target to be tracked. Each vehicle is a BMW 740Li, for which
a point cloud is obtained by scanning the CAD model from 5
sides with a resolution of 2cm (cf. [3]). For the evaluation,
the sensor data timestamps are synchronized between the
vehicles using the GPS timestamps of the DGPS-system.

DGPS information was always available during our ex-
periments. However, short DGPS outages of a single vehicle
could be bridged using the measurements from the mutual
localization and the registration of the static environment.

A. Point Cloud Alignment Quality with Localization Frame-
work

To visually assess the performance of our raw sensor data
fusion framework, Fig. 4 provides an exemplary alignment
comparison of the point clouds of both vehicles. It can be
seen that the alignment based solely on DGPS and IMU
exhibits small heading errors leading to large position errors
in the distance. Such errors are reduced using the predicted
poses obtained from our localization approach. A visually
perfect match of both point clouds is produced by the
proposed registration algorithm. Compared to conventional
registration algorithms, which transform one point cloud
to match the other, the origins of both point clouds are
approximately preserved.

We further quantify the performance using the crispness
measure [25], which is a well-known metric in sensor calibra-
tion problems. Therein, the alignment quality of point clouds
from different platform poses is determined by maximizing
the smoothness of the superposed point cloud. We adapt the
original metric to the matching problem by only considering
point pairs between both point clouds, yielding

N1 N
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Fig. 4. Exemplary comparison of the raw sensor data fusion performance. Left: Alignment only based on the DGPS and IMU data of both vehicles. Mid:
Alignment using predicted poses of our localization framework. Right: Alignment after applying the proposed registration algorithm to match both point
clouds. The positions of both vehicles are marked using DGPS (left) and predicted (mid and right) poses.

with the number of points N; and N» of both point clouds
and distance variance parameter o,4. Note that this metric can
be extended to more than two point clouds using pairwise
computation, which is neglected here for clarity.

The results of the crispness measure are shown in Fig.
5 for a dataset of approximately 7 minutes, recorded on
mixed urban and rural roads. One can see that the alignment
based on predicted poses provides a higher crispness measure
than solely using DGPS poses, while the jointly matched
point clouds perform even better. In the time range 100s <
t < 120s, higher crispness measures are obtained for all
three configurations due to the close distance between both
vehicles, consequently leading to a higher overlap between
both point clouds. Large occlusions by the environment or
other traffic participants reduce the overlap between the
sensor point clouds, which can be observed at ¢ ~ 180s,
where a truck drives between both test vehicles. Since ground
points are removed in our input data, open fields (at ¢ ~
245s) lead to a small number of lidar points, which in turn
causes a dip in the crispness measure for all configurations.

B. Evaluation based on Object Tracking Application

To demonstrate the benefits of our approach as a pre-
processing step for perception algorithms, we evaluate its
impact using a simple multi-object-tracker (MOT). To this
end, we apply a distance-based segmentation algorithm from
[26] on sensor point clouds, from which ground points are
removed beforehand. The global nearest neighbor method
[27] associates the centroids from the clustered point clouds
to the MOT, for which we deploy the object management
concept from [28] with a constant turn rate and velocity
model [29]. The MOT provides an object list, from which
we further extract the relevant tracks corresponding to the
tracked test vehicle by associating the detected tracks to the
recorded DGPS positions.

We perform the MOT on a test drive of about 14 minutes,
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Fig. 5. Evaluation of a real test drive section. Top: DGPS Euclidean dis-

tance between both test vehicles. Middle: Number of points recorded from
the lidars of both vehicles (excluding ground points). Bottom: Comparison
of the crispness measure (with o4 = 0.1m) for alignments based on DGPS,
predicted state estimates, and using a new registration algorithm.

which is recorded on mixed highway, urban, and rural roads.
The dataset further includes multiple approaching, overtak-
ing, and separating maneuvers of the involved vehicles. Table
I shows the results of the tracking performance based on the



fused and individual sensor point clouds of both vehicles.
Therein, the detection time ratio relates the duration the
reference vehicle is tracked by the MOT to the time it lies in
the theoretic sensor FOV (100 meters range from the sensor
without consideration of occlusions). The root mean square
errors (RMSE) of the velocity, yaw angle, and yaw rate are
computed using the filtered estimates of the extracted vehicle
tracks with respect to DGPS. The position errors are not
included since our simple MOT only tracks the center of
gravity as the reference point, which is prone to changes in
the observed perspective.

The results show a much higher detection time ratio for
the fused point cloud since a second vehicle is able to
compensate both occlusions and blind spots from a single
vehicle perspective. Regarding the RMSE of the state, the
results using the fused sensor data performs better, except for
the RMSE of the yaw angle and yaw rate compared to vehicle
1. However, one must take into account that more estimates
are included for the computation of the results for the fused
sensor data, which also includes inaccurate estimates from
time steps when the object is not tracked by vehicle 1 at
all. Note that the results mainly provide a simple qualitative
comparison between the fused and individual sensor data as
input to the MOT. For a more detailed comparison, more
sophisticated tracking algorithms have to be used.

TABLE I
TRACKING PERFORMANCE COMPARISON BETWEEN FUSED AND
INDIVIDUAL POINT CLOUDS OF VEHICLE 1 AND 2.

Metric Fused Vehicle 1 Vehicle 2
Detection time 92.1%'/94.3%2/ 68.4% 68.7%
ratio 92.2%3

Yaw angle RMSE ~ 1.03 ° 0.91 ° 1.45 °
Velocity RMSE 0.39 m/s 0.43 m/s 0.46 m/s
Yaw rate RMSE 2.87°/s 2.27°/s 3.48 °/s

Lsuperposed theoretic FOV of both vehicles
2relates to theoretic FOV of vehicle 1
3relates to theoretic FOV of vehicle 2

V. CONCLUSIONS

This paper presents a concept of fusing raw sensor data
from multiple test vehicles for the offline generation of
ground truth data. To provide accurate spatial alignments of
sensor data, we refine the IMU/DGPS localization data by
exploiting mutual detections of the test vehicles and pose
parameters obtained from a new robust registration method
that matches the lidar points from the static environment.
Based on experiments with real sensor data, we demonstrated
the benefits of our approach, which includes a high sensor
data alignment accuracy and an improved object detection
quality compared to solely using the sensor data of a single
test vehicle.

Our proposed method provides an intermediate step for au-
tomatic ground truth generation, which allows developers to

subsequently apply arbitrary perception algorithms according
to their needs. In the future, we would like to generate ref-
erence object trajectories using more sophisticated tracking
algorithms, which more effectively exploit the availability of
multiple perspectives on objects at the same time.
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