
Chair of Astronautics
Prof. Prof. h.c. Dr. Dr. h.c.
Ulrich Walter

Technical University
of Munich

DEPARTMENT OF INFORMATICS

Master’s Thesis
in

Robotics, Cognition, Intelligence

Development of a Simulation-Based Evaluation Framework
for Mechatronic Systems

Entwicklung eines Tools zur simulationsbasierten
Auswertung Mechatronischer Systeme

RT-MA 2020/08
Author: Michael Hermann Dyck
Submission date: 15 July, 2020

Supervisors: M.Sc. Jonis Kiesbye
Chair of Astronautics
Technical University of Munich

M.Sc. Jonas Wittmann
Chair of Applied Mechanics
Technical University of Munich

External Supervisor: Dr. Martin Bischoff
Siemens AG, Corporate Technology
Mechatronic Systems
München Perlach

Development of a Simulation-Based
Evaluation Framework for Mechatronic Systems
Michael Hermann Dyck

Page II

Development of a Simulation-Based
Evaluation Framework for Mechatronic Systems

Michael Hermann Dyck

Erklärung

Ich erkläre, dass ich alle Einrichtungen, Anlagen, Geräte und Programme, die mir im
Rahmen meiner Semester- oder Masterarbeit von der TU München bzw. vom Lehrstuhl
für Raumfahrttechnik zur Verfügung gestellt werden, entsprechend dem vorgesehenen
Zweck, den gültigen Richtlinien, Benutzerordnungen oder Gebrauchsanleitungen und
soweit nötig erst nach erfolgter Einweisung und mit aller Sorgfalt benutze. Insbesondere
werde ich Programme ohne besondere Anweisung durch den Betreuer weder kopieren
noch für andere als für meine Tätigkeit am Lehrstuhl vorgesehene Zwecke verwenden.

Mir als vertraulich genannte Informationen, Unterlagen und Erkenntnisse werde ich
weder während noch nach meiner Tätigkeit am Lehrstuhl an Dritte weitergeben.

Ich erkläre mich außerdem damit einverstanden, dass meine Master- oder Semester-
arbeit vom Lehrstuhl auf Anfrage fachlich interessierten Personen, auch über eine
Bibliothek, zugänglich gemacht wird, und dass darin enthaltene Ergebnisse sowie dabei
entstandene Entwicklungen und Programme vom Lehrstuhl für Raumfahrttechnik un-
eingeschränkt genutzt werden dürfen. (Rechte an evtl. entstehenden Programmen und
Erfindungen müssen im Vorfeld geklärt werden.)

Ich erkläre außerdem, dass ich diese Masterarbeit ohne fremde Hilfe angefertigt und
nur die in dem Literaturverzeichnis angeführten Quellen und Hilfsmittel benutzt habe.

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Garching, den

Unterschrift

Name: Michael Hermann Dyck

Matrikelnummer: 03706694

Page III

Development of a Simulation-Based
Evaluation Framework for Mechatronic Systems
Michael Hermann Dyck

Page IV

Development of a Simulation-Based
Evaluation Framework for Mechatronic Systems

Michael Hermann Dyck

Zusammenfassung

Die sich ständig ändernde Nachfrage am Markt für mechatronische Systeme stellt
Ingenieursfirmen vor die Herausforderung, Markteinführungszeit und Produktionskosten
zu reduzieren, und gleichzeitig präzise und flexible Produktion zu gewährleisten [1].
Durch das stetige Testen verschiedener Produktdesigns und die kontinuierliche Be-
wertung der Systemperformance virtueller Prototypen, hilft das sogenannte Virtuelle
Prototyping [2, 3] Ingenieursfirmen diesen Herausforderungen gerecht zu werden. Ziel
dieser Arbeit ist die Entwicklung eines generischen Auswertungsframeworks, das es
Produktdesignern und Domänenexperten erlaubt, virtuelle Prototypen über eine Vielzahl
von Modellparametern für bestimmte Zielfunktionen effizient auszuwerten. Darüber
hinaus wurden zwei Beispielanwendungen mit dem Franka Emika Panda Roboterarm
implementiert, die die Fähigkeiten des Auswertungsframeworks demonstrieren. Im er-
sten der beiden Szenarien wird die Energieeffizienz verschiedener Trajektorien in einer
Pick and Place Anwendung evaluiert. Das zweite Szenario modelliert einen robotischen
Bin Picking Prozess in einer industriellen Anlage mit dem Ziel, kriterien-spezifische
optimale Roboterpositionen zu identifizieren.

Entsprechend der klassischen Top-Down Vorgehensweise wurde das Auswertungs-
framework in drei Komponenten aufgeteilt: (1) Die Definition der zu testenden Design-
alternativen und auszuwertenden Zielfunktionen eines existierenden Simulationsmod-
ells ist in C# und der Game Engine Unity implementiert. (2) Die zweite Komponente
des Frameworks ist als Microsoft .NET Core Anwendung realisiert und nutzt Paral-
lelisierungsmethoden, um das Simulationsmodell in Unity für alle definierten Design-
alternativen effizient zu evaluieren. (3) Mithilfe von Python’s tkinter Bibliothek visualisiert
die dritte Frameworkkomponente die Puntkwolken im Auswertungsraum in einer interak-
tiven graphischen Benutzeroberfläche.

Die Evaluierungsergebnisse der Pick and Place Anwendung zeigen, dass für eine
energieoptimale Trajektorie so wenig Bewegung im Gelenkraum wie möglich stattfinden
muss. Dies zeigt, dass die Länge der Distanz, die im Gelenkraum zurückgelegt wird,
den größten Einfluss auf den Energieverbrauch des Roboters hat.
Die Auswertung des Bin Picking Szenarios für verschiedene Roboterpositionen in der
industriellen Anlage zeigt, dass nur ein sehr kleiner Spielraum für die Positionierung
des Roboters zur Verfügung steht. Dies liegt daran, dass die Bewegunsreichweite
des Panda Roboterarms im Vergleich zum Arbeitsraum in der Industrieanlage relativ
klein ist. Darüber hinaus führen bestimmte Roboterpositionen gleichzeitig zu geringer
Ausführungsdauer und Distanz im Gelenkraum.
Beide Szenarien demonstrieren die erfolgreiche Anwendung des kompletten Auswer-
tungsframeworks und verdeutlichen die Möglichkeiten und Stärken des Frameworks in
breiter und tiefgreifender Evaluierung virtueller Prototypen.

Aufgrund der generischen Umsetzung kommen in Zukunft unzählige weitere Anwen-
dungsbereiche für das Auswertungsframework in Frage. Darüber hinaus ist es möglich,
das Framework durch Integration weiterer Simulationssoftware und Implementierung
von multi-kriteriellen Optimierungsalgorithmen zu erweitern.

Page V

Development of a Simulation-Based
Evaluation Framework for Mechatronic Systems
Michael Hermann Dyck

Page VI

Development of a Simulation-Based
Evaluation Framework for Mechatronic Systems

Michael Hermann Dyck

Abstract

Quickly changing trends in market demand of mechatronic systems require engineering
companies to reduce production costs and time-to-market and to increase the production
flexibility and precision of product design [1]. Virtual prototyping [2, 3] aims at fulfilling
these requirements, by utilizing virtual prototypes of mechatronic systems, in order to test
system design and performance in any phase of the engineering development process.
The main objective of this thesis is to develop a generic evaluation framework, that
allows product designers and engineering domain experts to efficiently and meaningfully
evaluate multiple criteria of virtual prototypes for a variety of model parameters in
simulation. Furthermore, two exemplary applications involving the Franka Emika Panda
robot arm are implemented, in order to demonstrate the capabilities of the developed
framework. In the first scenario, different trajectories for robotic pick and place use
cases are evaluated for their energy efficiency. The second scenario models a bin
picking process of the Panda robot in an industrial plant and aims at identifying valid
and objective-specific optimal robot positions inside the plant.

The evaluation framework was designed and implemented by following a top-down
approach. Evaluating a mechatronic system was separated into three distinct steps
and correspondingly the evaluation framework comprises three main components:
(1) Defining the evaluation parameters and objective values of the evaluation from
an existing simulation model, i.e. choosing the design alternatives to be tested and
the corresponding decision criteria to be evaluated, is implemented in Unity in the
C# programming language. (2) The evaluation framework’s second component is
implemented in C# as a Microsoft .NET Core solution and uses .NET parallelization
methods to efficiently evaluate the executable of the Unity simulation model for all
combinations of evaluation parameters. (3) Using Python’s tkinter library, the third
component visualizes the resulting point clouds of all decision criteria for all design
alternatives in an interactive graphical user interface (GUI).

The evaluation results of the pick and place application show that the energy-optimal
robot trajectories in the simulated scenario correspond to those, where the robot moves
as few joints as possible, showing that the amount of distance covered in joint space
constitutes the major fraction of electric energy consumption on a trajectory.
Evaluating bin picking with the Panda robot in an industrial plant reveals, there is only
very little scope available for positioning the robot such that it is able to successfully per-
form bin picking. This lies in the fact that the Panda robot’s range of motion is relatively
small compared to its workspace in the industrial plant. Furthermore, the results show,
that robot positions resulting in trajectories with low execution time concurrently result in
short joint distance.
In both exemplary scenarios, the complete evaluation framework was applied suc-
cessfully. The applications showcase the capabilities of the evaluation framework and
demonstrate its strength in performing basic, extensive evaluation of virtual prototypes.

For future work, the generic nature of the evaluation framework makes it possible to
apply it in many different application areas and easily extend it to combine multiple
simulation software and integrate multi-objective optimization algorithms.

Page VII

Development of a Simulation-Based
Evaluation Framework for Mechatronic Systems
Michael Hermann Dyck

Page VIII

Development of a Simulation-Based
Evaluation Framework for Mechatronic Systems

Michael Hermann Dyck

Contents

1 MOTIVATION 1

2 THEORETICAL CONTEXT AND STATE OF THE ART 3

3 OBJECTIVES 9

4 APPROACH 11

5 DEVELOPMENT ENVIRONMENTS 13

5.1 Unity 13
5.1.1 Unity Editor 14
5.1.2 Unity Scripting API 16

5.2 Microsoft .NET 19
5.2.1 Asynchronous and Parallel Programming 20

5.3 Tcl, Tk, tkinter 21

5.4 Robot Operating System 23
5.4.1 MoveIt! Motion Planning Framework 25

5.5 ROS# 26

6 EVALUATION FRAMEWORK 27

6.1 Framework Architecture 27
6.1.1 Software Architecture 29
6.1.2 Choice of Development Environments 30
6.1.3 Data Storage and File System 31

6.2 Definition of Evaluation Space 32
6.2.1 Intuitive, Reusable and Modular Selection of Parameters 34
6.2.2 Data Handling in Unity 35

6.3 Execution and Evaluation 35
6.3.1 Interprocess Communication 36
6.3.2 Asynchronous Operations and Parallel Execution 39

6.4 Point Cloud Visualization 41

7 EXEMPLARY APPLICATIONS AND EVALUATION SETUP 43

7.1 Simulation Model of the Panda Arm 43

7.2 Evaluation of Trajectories with the Panda Arm 45
7.2.1 Parabolic Blending 46
7.2.2 Estimation of the Electric Energy Consumption 49

Page IX

Development of a Simulation-Based
Evaluation Framework for Mechatronic Systems
Michael Hermann Dyck

7.2.3 Evaluation Setup 52

7.3 Automated Robotic Bin Picking with the Panda Arm 55
7.3.1 Generation of Bin Picking Trajectories with MoveIt! 56
7.3.2 Integration of ROS Interface 57
7.3.3 Evaluation Setup 59

8 EVALUATION RESULTS 63

8.1 Robot Trajectory Evaluation 63

8.2 Robotic Bin Picking Evaluation 67

9 DISCUSSION 73

9.1 Energy-Optimal Robot Trajectories 73

9.2 Optimal Robot Positions for Bin Picking 76

10 CONCLUSION 81

11 OUTLOOK 83

11.1 Future Applications 83
11.1.1 Evaluation of Geometric and Dynamic Robot Parameters 83
11.1.2 Testing and Evaluation of the Complete SAINT Project Implementation 83

11.2 Framework Extensions 84
11.2.1 Mutli-Objective Design Optimization 84
11.2.2 External Software Interfaces 85

BIBLIOGRAPHY 85

A SOFTWARE AND DEVELOPMENT ENVIRONMENT VERSIONS 95

B ADDITIONAL RESULTS OF THE ROBOT TRAJECTORY EVALUATION 97

C ADDITIONAL RESULTS OF THE ROBOTIC BIN PICKING
EVALUATION 101

Page X

Development of a Simulation-Based
Evaluation Framework for Mechatronic Systems

Michael Hermann Dyck

List of Figures
Fig. 5–1: Unity ’s editor window 14
Fig. 5–2: Execution order of Unity ’s event functions 18
Fig. 5–3: Message communication in ROS 23
Fig. 5–4: Example URDF robot link written in XML 25

Fig. 6–1: Complete architecture of the evaluation framework 28
Fig. 6–2: Complete architecture of evaluation framework broken down to each

component 30
Fig. 6–3: Selection of evaluation parameters in the Unity editor 33
Fig. 6–4: Concept of executing and evaluating simulation executables 36
Fig. 6–5: Interprocess communication between the .NET solution and Unity

executable 37
Fig. 6–6: Parallelization of communication with executables on CPU cores 40
Fig. 6–7: Point cloud visualization with interactive UI elements 42

Fig. 7–1: Franka Emika Panda robot 44
Fig. 7–2: Simulation model of the Panda robot in Unity 45
Fig. 7–3: One-dimensional example of parabolic blending at waypoints on a path 47
Fig. 7–4: Relation between gear efficiency and motor speed 51
Fig. 7–5: Start, intermediate and goal configurations on the evaluated robot

trajectories 53
Fig. 7–6: Industrial plant of the SAINT project 56
Fig. 7–7: Robot positions as evaluation parameters for the bin picking process 60
Fig. 7–8: Simple and complex box in the industrial plant of SAINT 61

Fig. 8–1: Total electric energy consumption for all trajectories 64
Fig. 8–2: Electric energy consumption of the first joint for all trajectories 65
Fig. 8–3: Electric energy consumption of the second joint for all trajectories 65
Fig. 8–4: Electric energy consumption of the fourth joint for all trajectories 65
Fig. 8–5: Electric energy consumption over joint distance for all trajectories 67
Fig. 8–6: Electric energy consumption over Cartesian distance for all trajectories 67
Fig. 8–7: 3D representation of total Cartesian and joint distance, execution

time and electric energy consumption for all simulated trajectories 67
Fig. 8–8: 3D representation of all evaluated robot positions and their ability to

perform bin picking with the simple box geometry 69
Fig. 8–9: 3D representation of all evaluated robot positions and their ability to

perform bin picking with the complex box geometry 69
Fig. 8–10: Execution time of each bin picking process for all valid positions with

the simple box geometry 70
Fig. 8–11: Relation between total Cartesian distance, total joint distance and

execution time with the simple box geometry 71
Fig. 8–12: Relation between total Cartesian distance, total joint distance and

execution time with the complex box geometry 71

Fig. 9–1: Five configurations on the energy-optimal trajectory 74

Page XI

Development of a Simulation-Based
Evaluation Framework for Mechatronic Systems
Michael Hermann Dyck

Fig. 9–2: Five configurations on the trajectory with the highest electric energy
consumption 74

Fig. 9–3: Robot positions leading to shortest and longest execution time for
bin picking 78

Fig. 9–4: Bin picking for the robot position with the lowest execution time and
joint distance 79

Fig. 9–5: Bin picking for the robot position with a high execution time and joint
distance 79

Fig. B–1: Trajectory execution time of all trajectories 97
Fig. B–2: Total joint distance covered by the robot for all trajectories 97
Fig. B–3: Total Cartesian distance covered by the robot for all trajectories 98
Fig. B–4: Average joint velocity of the first joint for all trajectories 98
Fig. B–5: Average joint velocity of the second joint for all trajectories 99
Fig. B–6: Average joint velocity of the fourth joint for all trajectories 99

Fig. C–1: Execution time of each bin picking process for all valid positions with
the complex box geometry 101

Fig. C–2: Covered joint distance of each bin picking process for all valid posi-
tions with the simple box geometry 101

Fig. C–3: Covered joint distance of each bin picking process for all valid posi-
tions with the complex box geometry 102

Fig. C–4: Covered Cartesian distance of each bin picking process for all valid
positions with the simple box geometry 102

Fig. C–5: Covered Cartesian distance of each bin picking process for all valid
positions with the complex box geometry 103

Page XII

Development of a Simulation-Based
Evaluation Framework for Mechatronic Systems

Michael Hermann Dyck

List of Tables
Fig. 5–1: Main Properties of Unity ’s HingeJoint 17
Fig. 5–2: ROS message communication methods and their applications 24

Fig. 8–1: Evaluation parameters and objective values of the robot trajectory
evaluation 63

Fig. 8–2: Evaluation parameters and objective values of the robotic bin picking
evaluation 68

Page XIII

Development of a Simulation-Based
Evaluation Framework for Mechatronic Systems
Michael Hermann Dyck

Page XIV

Development of a Simulation-Based
Evaluation Framework for Mechatronic Systems

Michael Hermann Dyck

Symbols and Formulas

Symbol Unit Description Symbol Unit Description

C - configuration space qi
◦ waypoint i on trajectory

n - number of waypoints tf s duration of trajectory

vmax
◦/s joint velocity limits amax

◦/s2 joint acceleration limits

∆Ti s time between qi, qi+1 tbi s blend phase at qi
vi

◦/s joint velocity at qi ai
◦/s2 joint acceleration at tbi

Ti s time at qi q(t) ◦ joint trajectory function

qi[j]
◦ j-th component of qi vi[j]

◦/s j-th component of vi

τ Nm joint-side torque q ◦ joint position

M(q) kgm2 mass matrix q̇ ◦/s joint velocity

C(q, q̇) kgm
s

Coriolis matrix q̈ ◦/s2 joint acceleration

g(q) Nm gravity torque vector

Pel W electric power Ploss W power loss

Pmech W mechanical power Pmotor W motor power

RT Ω terminal resistance Imotor A motor current

τ j Nm j-th component of τ ωj 1/s j-th component of q̇

R - gear ratio ηgear - gear efficiency

ηmotor - motor efficiency nmotor
1

min
motor speed

τmotor Nm motor-side torque kM
Nm
A

torque constant

∆t s time step ∆Eel Ws electric energy change

Page XV

Development of a Simulation-Based
Evaluation Framework for Mechatronic Systems
Michael Hermann Dyck

Page XVI

Development of a Simulation-Based
Evaluation Framework for Mechatronic Systems

Michael Hermann Dyck

Acronyms
1D one-dimensional

2D two-dimensional

3D three-dimensional

AEC architecture, engineering and construction

API application programming interface

APM Asynchronous Programming Model

AR augmented reality

BLDC brushless direct current

CAD computer-aided design

CLI Common Language Infrastructure

COM center of mass

DOF degree of freedom

EAP Event-based Asynchronous Pattern

GUI graphical user interface

IDE integrated development environment

MADM multi-attribute decision making

MCDA multi-criteria decision analysis

MCDM multi-criteria decision making

MODM multi-objective decision making

OS operating system

PLINQ Parallel Language-Integrated Query

RNEA Recursive Newton-Euler Algorithm

ROS Robot Operating System

rpm revolutions per minute

Page XVII

Development of a Simulation-Based
Evaluation Framework for Mechatronic Systems
Michael Hermann Dyck

SAINT Supervised Autonomous Interaction in Unknown Territories

TAP Task-based Asynchronous Pattern

Tcl Tool command language

TPL Task Parallel Library

TUM Technical University of Munich

UI user interface

URDF Unified Robot Description Format

VR virtual reality

Page XVIII

Chapter 1. Motivation

1 Motivation

Mechatronic systems refer to the family of all industrial products and processes where
mechanics, electronics and control are integrated in a synergetic way and interact with
each other to support the overall system performance [4]. The market demand of
such systems today, with its quickly changing trends, price fluctuations, arise of new
technologies and global economic competition, poses new challenges to companies.
Simultaneously, the demands for high planning accuracy and quality, precise product
design and short manufacturing timeframes increase. [1, 2, 5, 6] To this end, in the past
couple of years the traditional product engineering process, in which experts from me-
chanics, electronics and control only interacted sparely, experienced an enhancement
in the form of the integration of modelling and simulation into the development process
[7]. Based on this development, during the course of the last two to three decades the
concepts of virtual commissioning and virtual prototyping, arose. The idea of virtual
commissioning [8, 9] and virtual prototyping [2, 3] is to test mechanical and electronic
design choices alongside control software in simulation, before or during the develop-
ment process of the physical product itself. This allows the designers of mechatronic
systems to examine whether design specifications are met in the system, while enabling
a comprehensive exploration of choices in the system design. Furthermore, virtual
commissioning and prototyping make it possible to gain a more detailed knowledge of
the system’s quality and performance, be it mechanical-, electronic- or control-specific in-
formation, without the explicit need for a physical prototype. Thereby, costs of production
and time-to-market can be reduced, thus posing a time- and cost-efficient instrument
for companies. At the same time, designing and evaluating mechatronic systems in
a simulation-based environment allows companies to refine product design, increase
production flexibility and react quicker on changes in market demand. [1, 6, 8, 9]

Being able to test mechanical and electronic design in simulation requires sophisticated
and highly accurate virtual models of the underlying mechatronic system. Such models
are frequently referred to as digital twins [1]. The authors of [7] provide a comprehensive
and clear definition of a digital twin, by stating that ”[t]he vision of the Digital Twin itself
refers to a comprehensive physical and functional description of a component, product
or system, which includes more or less all information which could be useful in all—the
current and subsequent—lifecycle phases” [7]. Following this definition, a digital twin
is a representation of a mechatronic system as a simulation model, which aims at
mirroring mechanical and electronic structure and design, control systems and other
properties of its physical image [1]. There exist different, more specific definitions of
digital twins, building upon the definition stated above. What most of these definitions
have in common, is that they refer to a digital twin being a virtual model used alongside
a physical prototype. Keeping that in mind, these definitions divide a digital twin into
three main components [1]: the physical product, the virtual simulation model and the
data being exchanged between the two. However, a digital twin does not necessarily
require an already existing physical prototype. A simulation model can also be utilized
very early in the engineering process where a physical system is not existing yet [1].

Page 1

Chapter 1. Motivation

The importance of digital twins in engineering companies, both today and in the future,
is also shown in a study commissioned by Forrester Consulting in October 2019. In
this study, 358 architecture, engineering and construction (AEC) and manufacturing
companies filled in an online questionnaire regarding real-time three-dimensional (3D)
content and visualization [10]. In the context of this study, real-time 3D refers to the
process of representing real-world assets, such as mechanical components of products
or newly designed buildings, by realistic digital copies, i.e. digital twins. The study
reveals that, while today the incorporation of real-time 3D visualization into production
and design process is relatively low, over half of the participating companies plan on
adopting 3D techniques in the upcoming years, indicating a significant rise of industrial
utilization of the concept of digital twins in the future. Furthermore, companies already
using digital twins in their business see substantial advantages like cost reduction, sales
increase and reduced time-to-market. [10]

To this end, being able to automatically evaluate digital twins, independent from the
type of mechatronic system being simulated, can be of high value for the industry. In
order for production and design experts to be able to examine the simulation model in
any way requires them to frame the context in which the system will be tested. This
includes defining specifications against which the model will be tested, i.e. defining
decision criteria whose evaluation allows the experts to draw conclusions from the
current system design. Furthermore, specifying the parameters for which the digital
twin shall be investigated is an important necessity for extensively testing a mechatronic
system in the context of virtual commissioning and virtual prototyping. This refers to
defining mechanical-, electronic- or controller-related properties of the mechatronic
system that comprise the space of design choices available at the current phase of
system development.

A framework providing tools for intuitively defining this evaluation space directly from the
digital twin, efficiently testing the simulation model in this context and visualizing the
test results in an informative manner can help companies to increase the value gained
from implementing virtual commissioning or virtual prototyping in their business, by
enabling experts to test design choices of all kinds in a simple, efficient and in-depth
manner, independent from the current phase of the engineering process. Additionally,
simulation of system models in general, and in combination with such an evaluation
framework, makes it possible for domain experts (electricians, mechanics, embedded
software developers) to test their sub-component concepts in the whole system. This
enables them to better grasp the impact of design modifications on the overall system
performance and behaviour.
It is for these reasons, that this thesis deals with exactly such kind of a framework for
simulation-based evaluation of mechatronic systems.

Page 2

Chapter 2. Theoretical Context and State of the Art

2 Theoretical Context and State of the Art

This chapter summarizes theoretical background information and state of the art tech-
niques, approaches and software environments applied in the industry in the context
of this thesis. This includes state of the art approaches to virtual prototyping and
model-based design, techniques implemented and realized in the industry for simulating
virtual prototypes, as well as a summary on state of the art methods in the field of
multi-criteria optimization.

Virtual Prototyping and Simulation-Based Design Generally, a product develop-
ment scenario comprises the following steps, usually arranged in a v-shape, thus
commonly referred to as the V-Model of systems engineering [11, 12]:

1. Analysis of system requirements

2. System design

(a) Modelling and model analysis continuously support the whole further devel-
opment process

3. Domain-specific design

• Mechanical engineering

• Electrical engineering

• Information technology

4. System integration

(a) During system integration, iteratively verifying and validating system require-
ments and assuring system properties in the system design

5. Product commissioning

Any issues identified during or in between any of the above development stages requires
to revise design specifications and system properties and repeat all, or a subset of the
steps mentioned above (see step 4 a) in the description of the V-Model above. Usually,
prototypes provide means for product designers to answer questions that arise during
the product development cycle [3]. Advancements in computer technology and digital-
ization lead to an increase in the integration of virtual prototypes in the development
process, thereby complementing, and even fully replacing physical prototypes. The
most important advantages of virtual over physical prototypes are the increase in design
and production flexibility and the reduced time and cost for creating and evaluating
the prototype, thereby reducing the time-to-market. Additionally, virtual prototyping
helps to reduce the number of iterations required in the development cycle, and aims at
identifying errors and potentials for improvement as early as possible. [3]
Virtual prototypes are generally classified according to their modelling purpose in the
context of the product development cycle. Five partially overlapping classes of virtual

Page 3

Chapter 2. Theoretical Context and State of the Art

prototypes can be distinguished, with each class fulfilling one of the following purposes
[3]:

• Visualization: Such virtual models can be used to examine product appearance
and form.

• Mechanical fit: Some virtual prototypes are used to evaluate the state of the
products assembly and the fit of mechanical components in the whole product.

• Testing of functions and performance: In virtual prototyping, testing and verify-
ing functions and properties of the product, as well as observing the prototype’s
performance in different scenarios, plays a central role.

• Manufacturing evaluation: These prototypes allow experts of different engineer-
ing disciplines to explore the current state of the product and collaborate on further
design and manufacturing.

• Human factors analysis: Special kinds of virtual prototypes make it possible
to evaluate safety and ergonomics of the product and test how intuitively user
interaction is realised in the current product design.

Determining the class of virtual prototype suitable for the current stage of the devel-
opment cycle is a necessity for designers to choose a proper modelling approach to
realize the virtual prototype.

Simulation Technology and Software for Virtual Prototypes There exist various
approaches and software environments for simulating mechatronic systems using digital
twins. The software that is best suited for the respective application depends on the
type of system being simulated, i.e. the type of virtual prototype according to their
aforementioned classification, as well as on the context and objectives of the simulation,
be it of mechanical-, electronic- or control-related nature.
Discrete event system simulation [13] is a simulation technology, in which the simulation
progresses by processing a sequence of events. The model of a system in such a
simulation can be represented by finite automaton, a list of current and future events
in the simulation, as well as specifications of event timings and the logic behind the
execution of events [13]. Discrete event system simulation is a technology often used in
the context of computer networks. ns-3 [14] and OMNet++ [15] are two examples of
software tools implementing discrete event system simulation techniques.
MATLAB/Simulink [16] is a model development environment for equation-based/signal
oriented simulation approaches. It is based on the programming language MATLAB
and realizes modelling and simulation in the form of graphic blocks. In the context of
mechatronic systems, the technique of signal oriented simulation in MATLAB/Simulink
is mainly used for one-dimensional (1D) simulations of virtual models of control systems,
but has difficulties when simulating 3D mechanics and collision detection.
Game engines are another toolkit for modelling and simulating mechatronic systems.
Game engines like Unreal Engine [17] and Unity [18] experience a great increase in
their application in industries other than entertainment. They can be used as model
development environments and for 3D real-time simulation methods of systems in

Page 4

Chapter 2. Theoretical Context and State of the Art

a physically realistic environment. Thus, they pose simulation environments for 3D
mechanics, with libraries and extension possibilities in various other relevant physical
domains.
Dassault Systèmes’ CATIA [19] and DELMIA [20] software solutions provide toolkits for
performing ergonomics analysis with virtual prototypes. These software environments
provide various multi-domain simulation possibilities and support multiple system mod-
elling approaches and simulation techniques. Thereby, these environments allow users
to simulate a variety of different virtual prototypes within one development environment.
Commercial packages, such as ADAMS [21], Altair ’s HyperWorks [22] and MATLAB’s
Simscape Multibody [23] are great tools for modelling and simulating the mechanics of
multi-body systems, ranging from mechanical dimensioning to vibration studies.
Modular physical modelling is a modelling method originating in the 1970’s and has
evolved into numerous different modelling languages and simulation environments. [2]
Modelica [24] is probably the most famous modelling language in this context. In modu-
lar physical modelling, complex physical systems are formulated as a set of ordinary and
algebraic differential equations. Using modular physical modelling is especially useful
when interdisciplinary characteristics of mechatronic systems have to be addressed in
simulation, since it allows to combine thermal, electronic, hydraulic, control and other
system components into one simulation model.

Multi-Criteria Decision Making Multi-criteria decision making (MCDM), also called
multi-criteria decision analysis (MCDA), refers to situations in which decisions are
influenced by multiple, often conflicting, criteria [25, 26]. MCDM has experienced a
drastic increase in application in the past few years, and is seen as one of the most well
known disciplines of general decision making. Generally, in MCDM, the actions available
to the decision maker, i.e. the different choices of parametrization of the underlying
decision problem, are referred to as alternatives. Furthermore, the criteria, i.e. the
attributes or decision criteria, of the problem represent the perspectives and dimensions
from which the alternatives of the problem are examined. Usually, this means that the
decision problem is defined by alternatives representing different problem scenarios, for
each of which the attributes of the MCDM are evaluated. [25, 26] In general, decision
making is very problem-specific. Nonetheless, optimization in the context of MCDM
problems comprises the following characteristics [25]:

• Multiple attributes: Every MCDM problem consists of multiple attributes. These
are problem-specific and usually defined by the decision maker.

• Conflicting attributes: Usually, some, or all, attributes of the underlying problem
conflict with each other. This means that there is often a trade off between different
dimensions the decision maker has to consider.

• Incomparable units: Since each attribute of the MCDM problem represents a
different dimension, their units differ and cannot be related in a straightforward
manner.

• Solution: In the end, the decision maker aims at finding the best-possible,
problem-specific compromise solution for all considered decision criteria. This

Page 5

Chapter 2. Theoretical Context and State of the Art

often requires the decision maker to identify Pareto fronts and find the Pareto-
optimal alternative therein. Here, Pareto-optimal refers to the alternative leading
to the best possible result in all considered decision criteria, i.e. the optimal trade
off between all attributes.

Following many authors, e.g. [25, 26], MCDM can be divided into two main disciplines:
(1) multi-objective decision making (MODM) applied for decision problems with con-
tinuous decision criteria, such as mathematical objective functions; (2) multi-attribute
decision making (MADM) focuses on discrete decision spaces with a finite set of alter-
natives.
For both these disciplines of MCDM, there exist multiple distinct methods, with different
application-related advantages and disadvantages. In [27], the most common and state
of the art methods for both MODM and MADM, as well as several other approaches
are summarized and reviewed. These methods include Multi-Attribute Utility Theory,
Analytic Hierarchy Process, Fuzzy Set Theory, Case-based Reasoning, ELECTRE
and PROMETHEE, just to name a few. Additionally, [25, 26] provide the basics and
details for each of these methods. Without going into detail, the ultimate goal of every
MCDM method is to support the decision maker in defining the decision problem’s
alternatives and attribute space. Besides that, such methods help the decision maker to
find criteria to weight, rank and evaluate the problem’s attributes and to evaluate and
identify conflicting alternatives and decision criteria. An important concept therein is
meaningful treatment and visualization of the data. [25, 26, 27]

Visualization Techniques in MCDM Meaningfully treating and visualizing the data of
any MCDM problem plays a major role in decision making techniques and is an important
feature of most state of the art MCDM software solutions [25, 26, 27, 28, 29, 30].
Amongst many others, current state of the art software includes 1000Minds, Analytica,
Decerns, Diviz, just to name a few. Concerning visualization, the complexity of an MCDM
problem is determined by the number of alternatives and the number of attributes, i.e.
decision criteria or objectives. In general, any graphical representation of a problem’s
decision space should aim at providing the information of the data in an informative
and clear way, thus enabling the decision maker to intuitively explore the problem
data, evaluate alternatives and identify objective trade offs. [29, 30] The technique
used to visualize the data is thereby depending on the main purpose of the graphical
representation. The following list presents some common visualization techniques and
the situations in which they might be most appropriate [29]:

• Single alternative snapshot: When only looking at single alternatives, i.e. a
snapshot of the values of all decision criteria for a specific solution, bar charts
are usually the way to go. In this context, a snapshot refers to a user-specified
selection, or subset of decision alternatives and decision criteria. Another option
is the so-called Chernoff face, which represents a snapshot of an alternative by
a human face, comprised of primitive geometric shapes, whose properties are
determined by the values of the decision criteria. [31]

• Evaluating multiple alternatives: If the set of alternatives is finite and very small,
again a bar chart can be used to visualize the attributes for each alternative in the

Page 6

Chapter 2. Theoretical Context and State of the Art

decision space, with one bar for each alternative and attribute. If there are too
many alternatives, however, or the decision maker wants to compare alternatives
directly, bar charts are not sufficient. Alternatively, line graphs are commonly used
to visualize decision problems with small sets of data. Each line usually represents
an attribute, and its values for the corresponding alternatives on the x-axis are
connected by straight lines. This allows the decision maker to directly compare
alternatives. Switching this representation, such that objectives are organized
on the x-axis and each alternative is represented by a line, results in a so-called
score profile.

In [28], over 20 different MCDM software solutions are reviewed, evaluated and com-
pared. One important aspect in the evaluation of these software tools was the technique
used to represent the decision space. Besides the aforementioned methods, some of
these tools utilize more advanced graph representations, such as radar, spider, hierar-
chical tornado and bubble graphs, and even combine multiple visualization techniques
to enable the decision maker to grasp the information of the decision problem more
easily. What most of these software solutions have in common, is their interactive
interface. Almost all graphical representations are extended by interactive user interface
(UI) elements, that allow the decision maker to modify the visualization, rank and weigh
decision criteria, select preferred alternatives or focus on explicitly selected decision
criteria and their relations.

Unity Simulation In September 2019, Unity Technologies, creator of the aforemen-
tioned Unity game engine [18] announced Unity Simulation. Unity Simulation is a
product, implementing the idea of running multiple simulations of a Unity project at
scale, similar to the idea of the Execution and Evaluation component of the evaluation
framework presented in this thesis (see Section 6.3). [32] With Unity Simulation, Unity
Technologies introduces a cloud-based solution that allows users to run millions of
simulations at the same time. As mentioned similarly in Chapter 1, Unity Simulation can
be applied to virtual prototyping approaches, since it enables companies to test multiple
scenarios in simulation, prior to the costly manufacturing of physical products. The
primary idea of Unity Simulation—according to Unity Technologies—is to apply the new
solution to computer vision, AI and machine learning problems in automotive, gaming
and robotics industries. In this context, Unity Simulation simplifies and accelerates the
training of machine learning algorithms, the testing of multiple scenarios in simulation,
and the validation of product performance before going into production. [32]

Page 7

Chapter 2. Theoretical Context and State of the Art

Page 8

Chapter 3. Objectives

3 Objectives

The main objective of this thesis is to develop and implement an independent evaluation
framework capable of evaluating simulation models of mechatronic systems. The idea
is to provide an evaluation framework as a set of standalone tools that enable the user
to easily evaluate simulation models in a user-defined evaluation space. In this context,
the evaluation framework must be capable of providing means to define the parameters
and decision criteria for which the simulation model should be evaluated, automatically
and efficiently carry out multiple sequences of simulations of the underlying model and
visualize the results from these simulations in a meaningful and informative manner.
Visualizing the point clouds resulting from the decision criteria being evaluated for a
large sequence of simulations should enable the user to obtain an overview of the
multi-dimensional evaluation space and the corresponding scope of designing and
planning the mechatronic system. Furthermore, another objective of the thesis is to
implement two exemplary applications demonstrating the capabilities of the evaluation
framework. The framework shall then be used to evaluate the simulation model of both
applications and identify optimal parameters in the context of the two scenarios.

Going into more detail, the fundamental requirement of this thesis is to develop the
evaluation framework building upon the game engine Unity, and implementing the
functionality of the framework in the C# programming language. Furthermore, one
central demand during the implementation of the evaluation framework is to increase
the framework’s efficiency and execution speed by concentrating on parallelizing the C#
code, in order to be able to execute simulations in parallel.
In reference to the aforementioned exemplary applications demonstrated and evaluated
in this thesis, the following details must be considered. The first scenario reproduces
a robotic picking process, i.e. robotic motion along different trajectories, in simulation.
Here, the goal is to use the evaluation framework to identifying application-specific, opti-
mal geometric and dynamic parameters of the simulated robot arm. The objective of the
second scenario is to determine the optimal position of the Franka Emika Panda robot
arm inside an industrial plant in the context of a bin picking process for the Supervised
Autonomous Interaction in Unknown Territories (SAINT) project, in which the Chair of
Astronautics and Chair of Applied Mechanics at Technical University of Munich (TUM)
participate. Initially, the idea was to use the evaluation framework to evaluate the two
applications and discuss their results, while falling back on already existing simulation
models and environments. However, during the work on the two scenarios, an additional
focus was laid upon modelling them in physically realistic simulations in Unity.

Page 9

Chapter 3. Objectives

Page 10

Chapter 4. Approach

4 Approach

Implementing the objectives explained in Chapter 3 and satisfying all of the specified
requirements was achieved through multiple distinct, but closely related steps. Obvi-
ously, the initial focus of the work was laid upon building a first, fully-functional version of
an evaluation framework, already containing all main components required to evaluate
a mechatronic system in a simulation-based environment. On completion of this first
version, a simple simulation acting as a test environment for the evaluation framework
was developed and used to debug errors in the code. Subsequently, the focus of the
work shifted towards modelling the two aforementioned scenarios and representing
them in a Unity simulation. Continuously applying the evaluation framework on these
two applications pointed out missing features in the current state of the evaluation frame-
work that prove helpful for the process of evaluating a simulation model and improve the
framework’s usability, efficiency and robustness. To this end, the evaluation framework
was extended and improved, while, in parallel, the two applications were finalised and,
in the end, evaluated with the completed evaluation framework. One major focus of
implementing the two application examples and extend the evaluation framework was
the integration of the Robot Operating System (ROS) into the framework’s architecture.
In this context, the evaluation framework alongside ROS was used to simulate realistic,
complex robot trajectories.

Designing and implementing the core components of the evaluation framework was
achieved by following, to some extend, a top-down approach. Initially, the overall idea
and concept of evaluating a mechatronic system in simulation was framed and then
divided into several distinct components, by separating independent functions the evalu-
ation framework has to carry out. With this main concept and the different features of
the evaluation framework identified, the design and functionality of each separate part
of the framework could be delineated from the other components and formulated as part
of the whole architecture in more detail. Consequently, all components of the framework
could be implemented separately. In fact, the order in which each of the framework’s
components was implemented corresponds to the earlier identified sequence of steps
required to evaluate a simulation model of a mechatronic system.

The content of this thesis is organized similar to the development approach outlined
above. Chapter 5 introduces the basic concepts of all development environments uti-
lized during the implementation of the evaluation framework. Subsequently, Chapter
6 presents details regarding architecture, design choices, functionality and code im-
plementations of the evaluation framework and its components. With the evaluation
framework being completed, Chapter 7 dives into the two scenarios implemented in
this work. The chapter presents the simulation model of the mechatronic system being
evaluated, explains the two applications in detail and showcases how the evaluation
framework can be utilized in this context. Afterwards Chapters 8 and 9 present and
discuss the evaluation results of the two exemplary applications. Chapter 10 concludes

Page 11

Chapter 4. Approach

the thesis and summarizes the results obtained during this work. Lastly, Chapter 11
puts the results into perspective and provides ideas for future work with and extensions
of the evaluation framework.

Page 12

Chapter 5. Development Environments

5 Development Environments

The evaluation framework developed in this thesis is based on several existing devel-
opment environments, code libraries and toolkits. The focus of this chapter is to give
a brief introduction into the main concepts behind these software tools used during
development. Section 5.1 explains the basics of Unity, originally a game engine and
today widely used in other industries as well. Microsoft .NET, a cross-platform software
development platform, and its fundamental components in developing .NET solutions
are summarized in Section 5.2. Subsequently, Section 5.3 dives into the basics of tkinter,
a Python library for creating interactive UIs. These three development environments
are the basis of the three main components of the evaluation framework developed
during this work, respectively. In addition to that, Section 5.4 and 5.5 provide information
about ROS and the open-source library ROS#, which build the software foundation for
applications of the developed evaluation framework discussed in Chapter 7.
All software and development environment versions used to implement and test the
evaluation framework of this thesis are listed in Appendix A.

5.1 Unity

Approximately 50 % of all computer, console and mobile games are powered by Unity,
thus reaching nearly three billion devices worldwide and making Unity primarily known
to be the world’s leading game engine [33]. Unity is a software environment that enables
users to create two-dimensional (2D) and 3D simulations, as well as augmented reality
(AR) and virtual reality (VR) solutions [34]. As stated by Unity ’s former CEO David
Helgason the company’s mission is to ”[...] democratize game development” [35]. While
initially being released for Mac OS X in 2005, Unity is now available on 30 different
platforms, including Windows, iOS and Android. By providing tools that empower de-
velopers to create visual content while maximizing ease-of-use, Unity opened up the
broad field of game development to both experts and beginners. [36]
Today, Unity plays an important role in cross-industry software development and is
widely used for projects that go beyond entertainment applications. In 2014, Unity was
already applied in industries like architecture and art to create photo-realistic, interactive
3D visualizations and experiences. Unity was also established as an important tool in
medical education and training, enabling students and staff to run through virtual, realis-
tic medical situations and practice without the danger of causing any harm. AR solutions
for interactive virtual tours through museums and art galleries constitute another part of
industry in which Unity took root. [37] In 2018, Unity broadened its target audience by
officially introducing development bundles and software extensions for, amongst others,
automotive, film, construction and engineering [38, 39, 40, 41, 42]. The ten leading car
manufacturers already use Unity ’s real-time 3D platform for several crucial operations
in the design, construction and marketing of cars, thereby showing Unity ’s success in
industrial sectors [43].

Unity can be divided into two main parts: the Unity editor itself alongside its main

Page 13

Chapter 5. Development Environments

Fig. 5–1: Unity ’s editor window. (A): Toolbar, (B): Hierarchy window, (C): Game view, (D):
Scene view, (E): Inspector window, (F): Project window. (Source: [44])

components and the Unity scripting application programming interface (API). The basic
concepts of those two parts when creating Unity solutions will be briefly introduced in
the following sections.

5.1.1 Unity Editor
The editor window is the main interface Unity users work with during development.
Figure 5–1 depicts this window in its general form, with distinct sub-windows, tagged
with different letters. It is important to note that the layout of the editor window can be
fully customized by the user. All windows can be rearranged, docked, resized, duplicated
and removed, while additional windows and functionalities can be added to exactly
match the creator’s needs. In Unity objects present in the scene are referred to as
GameObjects (see below). [44] The components highlighted in Figure 5–1 compose
the most basic windows required for almost any solution created with Unity and serve
the following purposes [44]:

(A) Toolbar: The toolbar is the only window inside the editor that cannot be rearranged
or changed. It provides the basic features for changing the editor window layout,
manipulating GameObjects and navigating in the scene view. Buttons for starting,
stopping or pausing the execution of the project are also part of the toolbar. Starting
the application is referred to as entering Play Mode, whereas its counterpart is
denoted as Edit Mode.

(B) Hierarchy window: All GameObjects existing in the application scene are listed
in the hierarchy window. The default order of GameObjects inside the hierarchy
window results from their order of creation and can be changed via drag-and-drop.
The concept of parenting is solved by introducing a tree-like structure for parent

Page 14

Chapter 5. Development Environments

and child GameObjects, with the parent GameObject being the topmost layer and
all children hierarchically grouped underneath. In order to increase the clarity of the
scene view and maximize ease-of-use when manipulating the scene, the visibility
of GameObjects can be modified in the hierarchy window.

(C) Game view: Each Unity project contains one Unity camera by default. The game
view is rendered from exactly this (and all other present) camera(s) and represents
the view of the player using the application. Using the play, pause and stop buttons
of the toolbar allows the creator to switch from developing the project to the player’s
view of the current state of the application.

(D) Scene view: Every virtual world created in Unity is displayed in the so-called
scene view. Using mouse and keyboard, the user can navigate in the scene and
manipulate cameras, lights and all other objects per drag-and-drop.

(E) Inspector window: Selecting a GameObject displays its associated information in
the inspector window. Besides GameObjects, basically all project assets can be
selected and inspected in the inspector window. Additionally, the window allows the
user to modify the properties of the selected asset or GameObject.

(F) Project window: Unity ’s project window contains information about the organiza-
tion of the entire project. The window lists all files present in the project, arranged
in folders in a tree-like structure. In Unity, all items existing as files in the project
window, such as textures, meshes and scripts, are referred to as assets, which is
why the top folder in the project window containing them is always named Assets.
A search bar enables the user to navigate inside the project and quickly find and/or
reorder assets and other project-related files. To the right of the hierarchical depic-
tion of the project content, another window exists showing a visual representation
of the files inside the currently selected folder.

By default another tab is activated besides the project window enabling the Unity
console. The console window displays errors and warnings generated by Unity. The
console is furthermore frequently used as a debugging tool for developers, since it
allows them to print specific messages at any point in their application. [45]

GameObjects and Components As already mentioned, all scene objects in Unity are
called GameObjects. GameObjects, however, are not Unity assets, since they are not
represented by files stored in the assets folder, but only exist in the scene and hierarchy
window. Every GameObject consists of Components describing a functional part of the
object. [46] Thus, GameObjects are in some sense containers for Unity ’s Components.
Without any Components, a GameObject is basically just a visual representation of
an object, without any functionality. Unity supports a variety of built-in Components
that can be used, while additional customized Components can be added by the user
[46]. Each Component itself comprises multiple Properties determining the functional
characteristics of the respective Component. By default, any GameObject has one
Transform Component, representing position, orientation and scale of the object within
the scene. [46] Looking at the concrete example of simulating a person in Unity,
the person itself could be represented by one or several connected GameObjects, a

Page 15

Chapter 5. Development Environments

Component could be the hat worn by the person, and the hat’s Property would be its
material and color. In this example, the hat’s material Property would usually be stored
as an asset in the project window.
The main Components relevant to this thesis are summarized below:

• Colliders: Physical collision between GameObjects in Unity require the objects to
have a Collider Component. Colliders define the collision shape of a GameObject
that must not necessarily match the shape of the object’s mesh (a mesh is the
main graphics primitive in Unity). A simple Collider can be of primitive shape,
such as Box, Sphere and Capsule Colliders, making its usage in gameplay very
efficient. More complex collision shapes can be represented by Compound Col-
liders, combining multiple primitive Colliders. Even more complex shapes have
to be realized by Mesh Colliders, which match the shape of the GameObject
exactly, thus providing accurate collision control. However, these Mesh Colliders
are processor-intensive and hence slow-down the performance of the application
drastically. [47]

• Rigidbody: GameObjects can only behave in a physically realistic way if they
have a Rigidbody Component attached. A Rigidbody allows any GameObject to
receive forces and torques, react to gravitational influences or experience collisions
with other objects, in order to be able to realistically accelerate and move in the
scene. The GameObject ’s mass, as well as drag and angular drag coefficients can
be specified as Properties of the Rigidbody Component. Besides that, the body’s
inertia is also managed by the Rigidbody Component. Unity provides real-world
physical behaviour through the NVIDIA PhysX physics engine. [48]

• HingeJoint: Connecting two Rigidbodies in Unity can be achieved in multiple
ways. Two objects can be connected by FixedJoints, HingeJoints, Configurable-
Joints and others. Unity ’s HingeJoint Component provides a specifically con-
venient way to simulate a hinge connecting two bodies, as it is often required
in robotic applications when simulating revolute joints with one angular degree
of freedom (DOF). Table 5–1 summarizes the most important Properties of a
HingeJoint. [49]

• Scripting: Scripting is the process of creating customized Components through
code. In Unity, C#-scripts can be attached to GameObjects just like any other
built-in Component, thus appearing in the GameObject ’s inspector window. In
Section 5.1.2 detailed information on Unity ’s Scripting API is provided. [50]

5.1.2 Unity Scripting API

Creating customized Components in Unity is done via scripts. A script is a piece of
code that allows the developer to trigger events, respond to input from the player, modify
Properties of built-in Components, control the behaviour of objects in the scene and
even modify the Unity editor itself. C# is the natively supported programming language
and Visual Studio is the default editor used to implement scripts, that can be automati-
cally downloaded alongside Unity. However, many other languages and editors can be
used within Unity, as long as they fulfil some specific requirements. [51]

Page 16

Chapter 5. Development Environments

Scripts, which are one particular type of Unity assets, can generally be implemented
in any code editor. However, creating and opening a script in Unity opens Unity ’s
default Visual Studio code editor. Every script implements its own class. To provide
functionalities in Play Mode, a script normally inherits from Unity ’s built-in MonoBe-
haviour class, thus connecting the scripted Component to Unity ’s internal workings.
As a result, a script inheriting from MonoBehaviour is not activated until it is attached
to a GameObject, which can be achieved the same way as any other Component is
attached. Properties of built-in Components are now represented by variables in the
script. Scripts attached to a GameObject furthermore enable the developer to modify
other attached Components within the script at runtime, in order to e.g. move the object
or change its Rigidbody ’s mass, as well as spawn and destroy other objects inside the
scene. [51]

Execution Flow Specific event functions included in the MonoBehaviour class control
the execution of scripts before, during and after Play Mode, rather than just running the
code line-by-line in an endless loop. If a script Component needs to react to any of
those events, a function with the corresponding event-name has to be defined in code,
thus executing the body of the function whenever the event is triggered. By default,
MonoBehaviour scripts are only executed in Play Mode. However, some specific events
are triggered even while working in the editor window. Figure 5–2 displays the order of
execution of Unity ’s most common event functions listed below [52]:

• Initialization events: Unity ’s Awake function is the first function called when
entering Play Mode, being triggered on scene load. Straight after the Awake
function, a Start function is executed. Both of these functions can be used for
initialization purposes, since they are executed before Unity enters the main
execution loop.

• Update events: These are events that are repeatedly called during Play Mode
of the game. A game is simply a sequence of animation frames and in Unity,

Tab. 5–1: Main Properties of Unity ’s HingeJoint (Source: [49])

Property Function

Connected
Body

Rigidbody of the GameObject the object is connected to.

Anchor Position of the axis of rotation.

Axis Axis of rotation.

Limits Minimum and maximum rotation angle of the joint.

Spring A spring stretched between the joint’s current and target angle. The
specified spring force pushes the joint towards its target angle, while
its damping force dampens the angular velocity during the movement.

Motor A simulated motor moving the joint. The motor tries to reach a given
target velocity without exceeding its specified maximum torque.

Page 17

Chapter 5. Development Environments

Fig. 5–2: Execution order of Unity ’s event functions. (Adapted from [53])

the Update function is called just before the next animation frame is rendered.
Hence, changing the position or behaviour of objects is mostly done inside the
Update function. It is important to note that the Update function is not called
in constant time-intervals, but rather depends on the varying frame rate of the
game and the hardware capabilities. Therefore, Unity provides a FixedUpdate
function. The event triggering the execution of this function is elicited in constant,
user-specified time intervals right before the next physics engine update. The
physics engine requires a constant time step. Thus, all physics-related calculations
must be performed inside the FixedUpdate function. Additionally, the LateUpdate
function is called after the Update and FixedUpdate functions have been called on
all GameObjects.

• GUI events: The so-called OnGUI function is called periodically and should
contain any code that needs to react on changes and clicks on GUI controls
inside the Unity editor windows. It is also used to implement code responsible
for changing the visual appearance of editor windows. Other GUI event-functions
include OnEnable and OnDisable, called whenever a GameObject becomes
enabled and active or disabled and inactive, respectively. In contrast to the
update event functions, GUI events are triggered even outside the Play Mode, thus
reacting on changes in Unity ’s GUI. Usage of the OnGUI function is explained in
more detail below.

• Decommissioning events: When the application is quit or, in the editor, Play
Mode is quit, or when a GameObject is destroyed, the OnApplicationQuit and
OnDestroy functions are called, respectively.

Editor Scripting When the developed application is not in Play Mode, Unity is in
Edit Mode. Scripts inheriting from the previously described MonoBehaviour class are
normally not executed in Edit Mode. However, there is a way in Unity to implement code
that executes independently from Play Mode and hence affects the Unity editor windows.

Page 18

Chapter 5. Development Environments

As already mentioned, the complete UI of Unity ’s editor with all of its windows and tabs
can be customized and rearranged to match the developer’s needs. Besides that, it
is possible to create new editor windows through scripts. Basis of this editor scripting
is to derive the script-class from Unity ’s EditorWindow class instead of the default
MonoBehaviour (which is used to attach scripts as Components to GameObjects). All
code defining the appearance and behaviour of the newly created window is packed
into the body of the aforementioned OnGUI event function. Code inside this OnGUI
function executes periodically, whether Unity is in Play Mode or not. [54]
Further customization of Unity ’s editor can be achieved through CustomEditors. By
default, any Component attached to an object has a standard appearance in Unity ’s
inspector window when selecting the corresponding object. Hence, all Properties of
each Component can be edited in the inspector. However, it might be convenient to
customize the appearance of frequently re-used Components to speed up development.
A CustomEditor achieves exactly that by replacing the default interface of Unity ’s
inspector for a specified Component. Implementing such a CustomEditor is carried out
by inheriting the script class from Unity ’s Editor class and adding a reference to the type
of Component the CustomEditor is modifying. Similar to the OnGUI function mentioned
above, code to customize a Component ’s visual behaviour through CustomEditors has
to be placed into the so-called OnInspectorGUI function. [54]

Scriptable Objects As opposed to GameObjects, ScriptableObjects are assets and
hence are stored in Unity ’s assets folder and cannot be attached to GameObjects as
a customized Component. The primary use case for ScriptableObjects is the storage
of large amounts of data. ScriptableObjects are usually used to either store data that
is shared by various objects and used at runtime, or to save data accumulating in Edit
Mode. This can be particularly useful when information about application, scene or
specific objects can be gathered during Edit Mode without requiring the application to
actually execute. [55] Specific utilization of ScriptableObjects in the context of this thesis
will be discussed in Section 6.2.

5.2 Microsoft .NET

Microsoft .NET (pronounced dotnet) is a an open source, cross-platform software tool
for developers to create and build multiple distinct types of programs and applications
[56]. It is a developer platform that allows for the usage of different programming
languages alongside libraries that provide the necessary functionality. Microsoft .NET
currently supports C#, Visual Basic and F# as programming languages, as well as
three different libraries called platforms themselves [56]: (1) .NET Core as cross-
platform development tool running on Windows, MacOS and Linux; (2) .NET Framework
used to, among others, create websites, running solely on Windows; (3) Mono as
.NET platform for mobile applications. All of these platforms share a set of standard
libraries combined in the so-called .NET Standard platform. By default, .NET code
is created using Microsoft ’s Visual Studio integrated development environment (IDE).
All .NET platforms implement the Common Language Infrastructure (CLI), which is
a set of standardized specifications that allow the developer to choose between the
aforementioned programming languages when developing .NET solutions. Furthermore,

Page 19

Chapter 5. Development Environments

all supported .NET programming languages are type-safe, meaning that each object
in code is an instance of a specific type. Objects of each type can only call methods
associated with their type. Type definitions in .NET are object-oriented and thus work
with the concept of base classes and class inheritance. Each type in .NET languages
inherits from the overall base class object. [56] Microsoft ’s .NET Documentation [57]
provides useful information on the main concepts of .NET implementations. Important
concepts in the context of this thesis are summarized in more detail below.

5.2.1 Asynchronous and Parallel Programming
Writing asynchronous or parallel code in .NET can be achieved through a wide range
of methods and libraries. This section deals with the most common and best-practice
approaches to achieve asynchronous and/or parallel program execution. In general,
asynchronous programming is required to keep applications responsive for the user
while - asynchronously - the program is processing in the background to e.g. download
files from a server. Parallelization aims at speeding up the the execution of a program
by efficiently using different threads to fully exploit the computer’s hardware resources.

Asynchronous Code in .NET .NET provides three templates for implementing asyn-
chronous code: Task-based Asynchronous Pattern (TAP), Event-based Asynchronous
Pattern (EAP) and Asynchronous Programming Model (APM). All three of them will be
briefly introduced, even though TAP is clearly stated to be best-practice when it comes
to asynchronous programming and should be preferred over EAP and APM in most use
cases. Among these methods, TAP is the most high-level, easy-to-use and scalable
method for creating asynchronous code, without explicitly having to deal with threading
operations and memory locks. [58]

• TAP: This pattern only uses one method for initiating, monitoring and disposing an
asynchronous operation and is the preferred method for most .NET applications.
TAP is based on the Task-namespace of .NET, that is implemented in the Task
Parallel Library (TPL), and C# ’s async and await keywords. TAP was first available
in .NET Framework 4. [58]

• EAP: As opposed to TAP, EAP requires one method performing the asynchronous
operation alongside one event handler or delegate, which triggers on completion
of the asynchronous operation. Hence, it requires already more lines of code in
comparison to .NET ’s TAP method. According to [58], EAP was introduced in
.NET Framework 2.

• APM: The third option is APM, which requires the definition of two separate
methods to Begin and End the asynchronous operation. [58]

Parallelizing .NET Solutions Microsoft .NET ’s TPL is the library behind the Task-
namespace used by TAP to create asynchronous code. Besides the TPL, Parallel
Language-Integrated Query (PLINQ) is a common toolkit for parallelizing .NET code.
Both TPL and PLINQ serve different purposes. [59] Since parallelization of the code
implemented in this thesis solely builds upon TPL, it will be briefly introduced below.

Page 20

Chapter 5. Development Environments

The main benefit of creating parallel code using TPL is that the developer does not have
to deal with any low-level parallelization concepts and can focus solely on implementing
the actual program, while still optimizing code performance. TPL automatically adjusts
the degree of parallelism to fully exploit the computer’s CPU resources. Besides that,
TPL plans the distribution of threads, supports cancellation handling and deals with
many other low-level concepts. However, parallelizing code, especially when dealing
with short code sections requiring only very few processing power, can also affect code
performance negatively, since the additional effort through parallelization slows down
the performance of the program. Hence, the developers have to chose carefully, when
and to what extent they fall back to parallel programming concepts. [60]
.NET further specifies various data structures useful for improving and stabilizing parallel
code. These structures can be used in combination with any available parallelization
library. Nonetheless, TAP, or rather TPL, remain best-practice when dealing with parallel
or asynchronous program execution in .NET. The data structures provided by .NET
apply to the following areas of parallel programming [61]:

• Concurrent collection classes: This namespace provides classes handling
thread-safety when dealing with collections, such as arrays or lists, being modified
concurrently from within different threads. Adding- and removing-operations do
not require the developer to implement locks specifically. By using the concurrent
collection classes, .NET takes care of avoiding locks as often as possible, while
still providing fine-grained locking whenever necessary.

• Synchronization primitives: These classes implement different mechanisms
that allow for efficient, high-performance synchronization methods. .NET provides
various synchronization primitives, enabling synchronized, concurrent access of
shared resources, as well as coordination of thread execution and completion and
restriction of the degree of parallelization.

• Lazy initialization: This term refers to the concept of allocating memory for an
object only when it is needed, that is, accessed, in code. In doing so, memory
allocation for large objects can be spread evenly across the full execution of a
program and, in some cases, can lead to significantly increased performance.

5.3 Tcl, Tk, tkinter

When aiming to develop a desktop UI application, one easily stumbles across Tool
command language (Tcl) and Tk. Tcl is a dynamic programming language developed in
the 1980’s by John Ousterhout, a computer science professor at University of California,
Berkley at that time [62]. Tcl was developed with the objective to provide an easily
extensible, simple and generic language with good facilities for integration. While
working on Tcl , John Ousterhout initiated the emergence of a toolkit called Tk, providing
the necessary tools to build GUIs in desktop applications, Unix-only at first. Since both
Tcl and Tk were developed and extended in parallel, back in the 1980’s Tk was only
meant to be an extension to Tcl that enables the developer to implement UI solutions
by reusing as many components as possible and assembling them with Tcl . [62]
Today, Tk is a cross-platform toolkit, working on a higher-level than most conventional

Page 21

Chapter 5. Development Environments

GUI toolkits. As Tk is connected to the dynamic programming language Tcl since its
early development, it is now also supported by most dynamic programming languages
available, such as Python, Ruby or Perl. Due to its high-level functionality, Tk is not only
accessible to experienced developers, but offers easily to use tools for people without
computer science background. Python’s interface to the Tk GUI Toolkit is called tkinter.
[63]

Widgets Every component of a GUI created with Tk is a widget, also referred to as
controls and windows. Every widget is an object, i.e. an instance of a class representing
a UI-component, such as buttons, sliders and so on. That is, when adding a widget to
the Tk application, the corresponding class has to be identified first. While there exist
many different widget classes, some of the most common are Frame, Label, Button,
Panedwindow, Canvas and Checkbutton. Furthermore, each widget follows a specific
window hierarchy, in which each widget is child of a window, or Frame, and at the top
of the whole application there is one root window, representing the main UI window.
The hierarchy, however, can be arbitrarily deep, such that Frames can be children of
other Frames. Furthermore, each widget has additional configuration parameters, that
modify the appearance of the widget and make the GUI customizable, such as font size,
background color and border size. [64]

Geometry Management Creating widgets does not automatically add them to the GUI
window. Each widget has to be placed individually into its parent Frame. This process
is called geometry management. Tk offers three different geometry managers: Grid,
Pack and Place. The Grid geometry manager is the most useful and straightforward to
use manager of these three, which is why the other three will not be discussed here.
Geometry management in Tk follows the principle of master and slave. The master is
any toplevel Frame or window, while its child widgets represent the slaves. In some
sense, the geometry manager controls how each slave widget is aligned and arranged in
the master window. It does so by capturing each slave’s natural and desired (specified)
size, as well as using each slave’s set of parameters provided in code specifying how to
arrange the slave inside the window. [64]
In the case of the Grid geometry manager, arranging widgets is achieved by separating
each master window into rows and columns, thus spanning a grid over the total space
available. Each widget thus specifies a row and column number (starting from index 0)
to determine its relative position inside the parent Frame. [65]

Event Handling Handling events in Tk, as in many other UI libraries, is handled in an
event loop. Tk internally manages common events, such as changing the background
color of a button when hovering over the widget with the mouse. For each widget
particular events can be caught by specifying a callback (in Tk referred to as command),
which simply is a function executed when e.g. a button is pressed. Widgets without
default events associated to them can still react to any event triggered, by declaring a
corresponding callback function to define the reaction to that event. [64]

Page 22

Chapter 5. Development Environments

Fig. 5–3: Message communication in ROS. (Source: [66])

5.4 Robot Operating System

ROS is a meta-operating system, meaning that ROS provides functionality similar to
a real operating system (OS), such as Windows, MacOS and Linux. This refers to the
fact that ROS includes hardware abstraction layers and utilizes computing resources to
perform scheduling, monitoring, message communication, error handling an many other
processes. However, ROS cannot be installed on a computer as a standalone system,
but rather runs on top of any existing Linux OS, such as Ubuntu. Besides that, ROS
serves as a development environment, providing libraries for creating and running code
specialized for robot applications. In doing so, ROS aims at maximizing ease-of-use
and code re-usage. [66]

Main Concepts Figure 5–3 depicts the main concept of message communication in
ROS. The figure shows two nodes communicating with eath other via ROS messages.
A node is ROS’ smallest unit and can be thought of a small executable program itself.
Usually, one individual node is created for each separate function in the ROS application.
As an example, in a robotic use-case one node would be implemented for driving the
motors of a robot, reading its sensor data and recognizing objects, respectively. [67]
Every node in the system is connected to a single ROS master, which serves as
a common server for all connections and message communications within the ROS
application. In order to connect a node to a master, the node has to specify a set of
parameters. The master uses a HTTP-based protocol to communicate with its slaves
(nodes), while the slaves themselves fall back to specific TCP/IP protocols for inter-node
communication. [68]
Each node can serve as one or multiple of six types of message source or destination.
Which type(s) the node actually represents, depends on the types of messages the
node uses to communicate. Table 5–2 summarizes relations between the type of

Page 23

Chapter 5. Development Environments

node and type of message in ROS applications. In addition to those concepts, each
node’s parameters can be modified from outside the node. Each message type and the
respective concept of communication are summarized in more detail below [66]:

• Topic: In order to communicate via topics, both publisher (node sending the
message) and subscriber (node receiving the message) have to be connected by
specifying the exact same topic name as parameter. One node can be publisher
and subscriber at the same time. Topics work uni-directional, meaning the topic
publisher does not receive any feedback by the subscriber. That being said, topics
are most convenient for transmitting sensor data that is continuously gathered by
the robot. Publishers and subscribers cannot only be connected one by one, but
also support 1:N, N:1 and N:N connections.

• Service: Communicating with services requires a service client requesting and
a service server responding to the request. As opposed to topics, services are
a one-time communication method. The server responds only when a client is
sending a request, and as soon as both request and response communication
are completed, both nodes are disconnected. Services in ROS are often used to
command specific operations and in some cases can be used to replace topics,
thereby reducing the communication load in the program.

• Action: Similar to services, actions work bi-directional. However, an action is
composed of a goal sent by the action client and a result answered by the action
server on completion. Both action goal and action result correspond to the service
request and response, respectively. Since actions are used to replace services
whenever execution of a command takes a very long time, such as moving a
robotic arm to a specific position or making it follow a trajectory, ROS actions
additionally define a feedback provided by the action server at any time. This
allows for the client to monitor the progress of the execution of an action and tells
it how close the goal is. Other than that, the action client can cancel the execution
of an action at any time.

Tab. 5–2: ROS message communication methods and their applications. (Adapted from:
[66])

Node type Message type Features Description

Subscriber,
Publisher

Topic Asynchronous,
Unidirectional

Continuously transfer data between
nodes

Service Client,
Service Server

Service Synchronous,
Bi-directional

Used when message communica-
tion requires request-response prin-
ciple

Action Client,
Action Server

Action Asynchronous,
Bi-directional

Provides immediate feedback during
long response times, alternative to
server concept when dealing with
long-running requests

Page 24

Chapter 5. Development Environments

Fig. 5–4: Example URDF robot link written in XML. (Source: [69])

Unified Robot Description Format (URDF) In ROS, the model of a robot is repre-
sented by an URDF file [69]. URDF is formatted and written in XML. URDF allows to
define a multi-body system model of the robot. Some of the most common and in robot
models often reused URDF specifications are depicted in Figure 5–4. The figure shows
an example on how to create a robotic link, tagged with a unique name, and several
additional components. The visual appearance of the link is specified first. This can
be done by combining one or multiple geometric primitives and assign a material and
color, or by specifying a path to a computer-aided design (CAD) file (in dae or stl format)
containing a mesh representation of the link. Similarly, collision shapes of the link are
defined. Physical properties like mass and inertia are configured inside the inertial tag.
Joints are added to a robot model in a very similar fashion. However, they comprise
different parameters that have to be set, including the parent and child object the joint
is connecting, its axis of rotation, the joint position, velocity and effort limits and many
more. Defining a robot in this way facilitates the modular creation of the robot model,
since each component, in other words each of the robot links and joints, can be added
individually and parametrized according to its real-world specifications. [69]

5.4.1 MoveIt! Motion Planning Framework

MoveIt! is the primary open-source robotics toolkit for motion planning and robot
manipulation in ROS. Many of the standard robot models available in ROS already
support the integration of MoveIt! into the ROS application work flow. MoveIt! is a
software framework written entirely in C++, with Python implementations for high-level
scripting. Its main purpose is to provide easily usable motion planning algorithms
in ROS. Therefore, MoveIt! uses ROS’ messaging and communication system, and
defines its core functionalities in plugins from three different areas: motion planning,
collision detection and kinematics. MoveIt! is thus widely used by the ROS community
to calculate forward and inverse kinematics of a robot model, detect and avoid collisions
with objects, plan trajectories in joint or Cartesian space and many more. [70]

Page 25

Chapter 5. Development Environments

5.5 ROS#

ROS# [71] is an open-source library developed and maintained by Siemens, providing
tools written in C# that enable communication between ROS and .NET applications.
Primarily, ROS# was developed to communicate between Unity simulations and ROS
systems. While ROS# was implemented for Windows, the software has successfully
been deployed on various other platforms by community members. Above all, ROS#
aims at providing a simple tool for using standard ROS communication concepts, such
as topics, services and actions within .NET programs. Furthermore, ROS# also offers
an URDF importer, which allows the user to import a URDF file into Unity in a straight-
forward manner. Thus, ROS# makes it possible to e.g. visualize and simulate the robot
in Unity (detached from ROS), control the real robot via Unity, visualize the state of the
real robot in Unity, simulate in Unity and visualize in ROS, or even simulate the robot in
both Unity and ROS and compare the results. [71]
ROS# provides a Unity package containing the required project assets to import ROS#
into Unity applications for direct usage. However, all libraries are also available as
independent .NET solutions and hence can be used in .NET projects independent from
Unity, as well. Three main libraries compose the complete open-source library: (1) Ros-
BridgeClient provides the .NET communication interface to ROS via rosbridge suite (a
ROS package to communicate with ROS from non-ROS applications); (2) UrdfImporter
contains a file parser to import URDF files in .NET applications; (3) MessageGeneration
is the .NET library that automatically generates C# source code from ROS messages,
services and actions. [71]

Page 26

Chapter 6. Evaluation Framework

6 Evaluation Framework

The evaluation framework for evaluating simulation models, i.e. digital twins, of mecha-
tronic systems developed in this thesis is presented in this chapter. During the develop-
ment of this framework, decisions concerning architecture, design, code structure, data
storage and parallelization had to be made. While explaining the functionality of each
part of the framework, this chapter also focusses on these decisions, the reasoning
behind them and their realization. Specific information on these development choices
are arranged in separate subsections, providing details about the underlying context.
The chapter starts in Section 6.1 by explaining the complete architecture of the frame-
work on a high level, introducing its separate, independently usable components and
the data and files communicated between these components. Subsequently, each
component is discussed in detail. The sequence of actions each component performs
and which main classes and functions it uses are described thoroughly. Section 6.2
illustrates how the evaluation space can be defined from inside the Unity editor, and
explains concepts of the code providing this functionality. Afterwards, Section 6.3 sum-
marizes how the code developed in .NET repeatedly calls an executable and evaluates
the simulation. Finally, Section 6.4 outlines the idea of the third component of the
framework, which reads in a .txt file and produces a visualization of the evaluation
results alongside a UI for the user.

6.1 Framework Architecture

Figure 6–1 shows a scheme of the general architecture of the evaluation framework,
split into three main segments visualized as blue pieces. In the remainder of the thesis,
these segments will be referred to as components of the framework. The naming of the
three components reflects their respective role in the process of evaluating a simulation
model: (1) Definition of Evaluation Space; (2) Execution and Evaluation; (3) Point Cloud
Visualization. The architecture highlights that the components can be executed in a
sequence.
Besides its main components, the evaluation framework includes three segments
required to transfer information, which are represented by gray pieces. Hereinafter,
these bridges between components will be referred to as inputs.

Evaluating a Mechatronic System in Simulation Evaluation of a mechatronic sys-
tem based on its representation in simulation requires multiple distinct, but closely
connected steps. In general, these steps can be directly linked to the concept of virtual
prototyping presented in Chapter 2. At first, the user has to define the evaluation space
in which the digital twin should be evaluated. This includes the specification of a set of
parameters which should be varied in the simulation model of the mechatronic system.
Such a parameter set usually relates to properties of components of the inspected
mechatronic system, whose variation is expected to have impact on things like appear-
ance, behaviour, functionality, efficiency or safety of the system. In the implemented
software architecture, these parameters are entitled evaluation parameters. Generally,

Page 27

Chapter 6. Evaluation Framework

Fig. 6–1: Complete architecture of the evaluation framework. Blue: three main components
of the framework, gray: inputs of the three main components.

the user wants to identify optimal settings for the evaluation parameters and thus is
interested in simulating the mechatronic system over a range of different values. Hence,
the user chooses an evaluation parameter and specifies a range of values, in which the
parameter should be varied, together with a step size. This process is repeated until all
desired evaluation parameters and their range of variation are defined.
Objective values comprise the second part of the evaluation space. These values repre-
sent decision criteria the user wants to be evaluated during simulation. This means that
objective values are typically properties of the mechatronic system, whose values the
user is interested in when simulating the system with different evaluation parameters.
Below, two exemplary mechatronic systems with possible sets of evaluation parameters
and objective values are listed.

• Autonomous vehicle

– Evaluation parameters: Scanning resolution of LIDAR sensor; Controller
parameters for steering

– Objective values: Number of obstacles detected in test environment; Ability
to autonomously follow a line

• Robotic arm

– Evaluation parameters: Type of motor used in joints; Length of robot links;
Intermediate joint configuration on trajectory

– Objective values: Degree of realizability of example robot motions with each
type of motor; Production costs of robot links; Energy efficiency during motion
on trajectories

The total evaluation space then comprises a grid spanned over all evaluation parame-
ters, thus including all possible combinations of evaluation parameters, as well as the
user-defined objective values as functions to be evaluated for each set of evaluation
parameters.

Page 28

Chapter 6. Evaluation Framework

Secondly, for each evaluation parameter combination, the mechatronic system is simu-
lated (execution) and the predefined objective values are calculated (evaluation). One
step of execution and evaluation is hereinafter referred to as one evaluation step.
Running simulations and retrieving objective values one by one does not allow the user
to intuitively evaluate the model by recognizing relations between evaluation parameters
and objective values. Therefore, the third step is the visualization of the point clouds
generated by repeatedly running an evaluation step for each combination of evaluation
parameters. A good visualization in combination with intuitively designed UI elements
enables the user to inspect the evaluation space from different perspectives, identify
interdependencies and effects of evaluation parameters on objective values, select
optimized sets of parameters (optimal in the sense of application-specific objectives)
and find the best trade off solution in conflicting objectives. This is closely connected to
the MCDM problems introduced in Chapter 2. In this context, the evaluation parameters
of the simulation correspond to the alternatives of the decision analysis problem, the
objective values refer to the attributes, that is, decision criteria in MCDM.

The evaluation framework as a whole is broken down to its individual components and
their interconnections in Figure 6–2. The three components of the evaluation framework
use three different development environments: simulating the mechatronic system
and defining the evaluation space is done in Unity, execution and evaluation of each
executable is implemented in Mircrosoft .NET and the point cloud visualization is carried
out with the help of Python’s tkinter library. Besides that, this figure depicts which
component is responsible for providing which input. Unity is responsible for creating
an executable (.exe file) of the simulation. Additionally, the evaluation space is defined
inside the Unity editor and exported into two .json files. The .NET implementation of
the evaluation framework reads these two .json files and then periodically calls the
Unity executable, sends a combination of evaluation parameters and receives the set of
objective values. After all parameter combinations have been simulated and evaluated,
the results are stored into a .txt file. This file in turn is the input for the final component
of the framework: the point cloud visualization.

6.1.1 Software Architecture
The architecture of the evaluation framework developed in this thesis is closely linked to
the aforementioned process of evaluating a simulation model of a mechatronic system
as easily and intuitively as possible. As a result, the user of the framework immediately
recognizes each component and understands its purpose in the context of the whole
software. Besides that, the main motivation behind this software design is the goal of
developing the framework as generic as possible, thus providing an easily re-usable
and transferable set of software components. Even though all three components of
the framework are closely linked in the process of evaluating a mechatronic system in
simulation (see Figure 6–1), each component can also be used individually, detached
from its connected components. As a result of the chosen architecture, providing the
Execution and Evaluation component with two sets of parameters, evaluation parameters
and objective values, respectively, and an executable build from the simulation of the
mechatronic system, this component runs all evaluation steps automatically. It is not
dependent on a specific development environment used to define the evaluation space

Page 29

Chapter 6. Evaluation Framework

Fig. 6–2: Complete architecture of evaluation framework broken down to each component.

and to simulate in. Furthermore, the GUI visualizing point clouds and providing a UI
for interaction does not depend on the user having defined the evaluation space and
simulated and evaluated the mechatronic system with the evaluation framework. This
third framework component can be also used as a standalone GUI to inspect point
clouds and results obtained from completely different applications. Hence, if any of the
three components is provided with its respective input, it works independently, can be
separated from the remaining evaluation framework and used as a standalone software
tool.

6.1.2 Choice of Development Environments

When designing the evaluation framework, the development environments for all three
components had to be chosen. The game engine Unity served as a simulation environ-
ment during the course of this thesis. Unity was selected due to its easy-to-use and
intuitive UI, allowing for a quick familiarization with its concepts. Aside from that, Unity
is already widely used in many industries for real-time 3D visualization and simulation.
Hence, it is a great tool for building digital twins and representing mechatronic systems
in simulation. Apart from that, both the Chair of Astronautics of TUM and the Siemens
AG already deploy Unity in some of their projects. That made it possible to use lots of
already existing know-how to support the development process. As already mentioned,
Unity also provides lots of options to customize the appearance of the editor and add
scripted editor windows for specific purposes. This is especially helpful when defining
the evaluation space by selecting properties of the simulated mechatronic system (see
Section 6.2). Furthermore, Unity offers a simple way of building any simulation into

Page 30

Chapter 6. Evaluation Framework

an executable and call it as a standalone program. This feature made it possible to
further generalize the evaluation framework by implementing the .NET component in
such a way that it only needs the path to an executable, without explicitly depending on
a specific simulation environment for the mechatronic system.
Scripting in Unity is mostly done in C#, which is the reason why Microsoft ’s development
platform .NET alongside the C# programming language were utilized to implement
the Execution and Evaluation component of the framework. This ensures a smooth
transition from implementing scripts in Unity to building a .NET solution. With TPL,
(see Section 5.2.1) .NET also provides a great library to easily implement parallel
code, which is definitely an important requirement when running thousands, or even
more, simulations. Beyond that, .NET is a cross-platform development environment,
which makes it easier to implement device agnostic code and port the framework to
other operating systems. Furthermore, ROS#, as described in Section 5.5, is a set
of C# libraries implemented as .NET solutions. This results in an easy integration of
ROS# into the Execution and Evaluation component of the evaluation framework. An
application of such a software integration will be presented in Section 7.3.
For developing the visualization component of the framework, Mathworks’ MATLAB and
Python came into question. Both provide great and easy-to-use visualization techniques
and GUI development tools. In order to retain the possibility of making the evaluation
framework publicly available as an open-source project, the point cloud visualization
was implemented in Python, since MATLAB does not offer any open-source solutions.
tkinter as a toolkit for creating the GUI was chosen due to its popularity in the Python
community, being one of the primarily used libraries for developing GUIs, and its easily
expandable and customizable UI widgets.

6.1.3 Data Storage and File System

Transferring data between the evaluation framework’s components is essential to ensure
a smooth program sequence. As can be seen in Figure 6–2, evaluation parameters
and objective values are stored in .json files, while the point clouds are saved into a .txt
file. For the definition of the evaluation space and its transfer into readable files, the
json file system was preferred over .yaml and .txt files. The reason behind that is the
fact that C# offers straightforward serialization of data into .json files through built-in
serialization methods and external packages. The Newtonsoft Json.NET [72] framework
is a popular package containing many different serialization libraries for storing data
into .json files. An implementation of Newtonsoft Json.NET is also available as an
extension to Unity. Alternative software for json serialization include Microsoft .NET ’s
System.Text.Json namespace [73], or Unity ’s Json Serialization [74]. However, the
former .NET toolkit does not support serialization from within Unity, while the latter Unity
class only provides serialization for basic data types like strings and integer variables.
Consequently, the Newtonsoft Json.NET package was used to both store evaluation
parameters and objective values from Unity into .json files, as well as to read those
files in the framework’s Execution and Evaluation component. Furthermore, the json file
format fits to the structure of data obtained from defining the evaluation space. Data in
.json files is structured into separate fields, where in this context each field represents
an evaluation parameter or objective value. Additionally, the data in those files can be

Page 31

Chapter 6. Evaluation Framework

easily extended by adding new fields, that is, parameters, while existing fields can be
modified independently.
Keeping in mind that the visualization of the simulation results falls back on Python’s
tkinter library, it was decided to use a .txt file to transmit the point cloud data between the
latter two components of the framework. Python offers many tools to read csv-formatted
.txt files (or plain .csv files) in a simple and efficient manner. Additionally, using the .txt
file format makes it easy to organize data into tables, which is the most convenient way
of formatting the evaluation space: one column per evaluation parameter, one column
per objective value, and, correspondingly, one row for each combination of evaluation
parameters and the resulting objective values. On these grounds, the point cloud data is
serialized into a .txt file and used as input by the Point Cloud Visualization component.
Along with the reasoning behind these choices of data storage, the aforementioned
generalization of the evaluation framework plays a central role. All the file systems used
in the evaluation framework are widely used and supported tools for data storage and
transmission. Hence, data in the format of these files can easily be provided by other
software tools as well, making it easier to incorporate other development environments
into the evaluation framework or use each component as a standalone program.

6.2 Definition of Evaluation Space

The evaluation space can be defined from inside the Unity editor. In order to make
this possible, a concept had to be developed that allows the user to choose evaluation
parameters and objective values in an intuitive manner while Unity itself is in Edit Mode.
The idea of Unity ’s editor scripting as introduced in Section 5.1.2 plays the main role in
this context. Figure 6–3 shows a scheme of the code structure providing the functionality
for selecting evaluation parameters in Unity. Please note that the same concept is
used for objective values as well. The three concepts of customizing the Unity editor
through C# scripts introduced in Section 5.1.2 are utilized in this part of the evaluation
framework:

1. Adding additional editor windows through Unity ’s EditorWindow class

2. Using CustomEditor as a tool for changing the appearance of a Component in the
inspector window

3. Utilization of Unity ’s ScriptableObject as data storage object

To this end, most of the code implemented in Unity is packed into the already introduced
OnGUI and OnInspectorGUI functions.

The Unity component of the evaluation framework can be initiated by selecting a menu
item in the Unity editor specifically added in the context of this component. This results
in two things. Firstly, an empty GameObject named EvaluationFramework is added
to Unity ’s hierarchy. Secondly, a customized EditorWindow pops up, referred to as
the EvaluationParameterManager (see Figure 6–3). This window provides buttons to
add and remove evaluation parameters. Besides that, it lists information of the already
selected evaluation parameters inside the window. Now, adding an evaluation parameter
initiates a sequence of actions inside the Unity editor:

Page 32

Chapter 6. Evaluation Framework

Fig. 6–3: Selection of evaluation parameters in the Unity editor.

1. A ScriptableObject is created and stored in the Unity assets folder.

2. The appearance of said ScriptableObject in the inspector window is modified by a
CustomEditor referred to as EvaluationParameterEditor.

3. Through UI elements in the ScriptableObject ’s inspector, the user can now select
a GameObject, one of its Components and finally a variable, i.e. a Property, of
the Component as evaluation parameter. The Component has to be a C# script
Component, and cannot be one of Unity ’s built-in Components.

4. On selection of a variable, the user is prompted with fields to enter the settings
for the selected evaluation parameter. The framework supports the selection of
integer, float and boolean variables, as well as integer and float arrays. For integer
and float variables, this includes the definition of a minimum value, a maximum
value and a step size at which the parameter should be varied. For array variables,
the size of the array has to be specified additionally. Selecting a boolean variable
as evaluation parameter does not require any further specification.

5. Finally, the user optionally can set the unit of the selected evaluation parameter.
This makes it easier to understand and draw conclusions from the visualization of
the point clouds later on.

When the selection process is complete, the information about the evaluation parameter
pops up inside the EvaluationParameterManager editor window. The information dis-
plays the name of the selected GameObject, Component and variable, as well as the
defined minimum and maximum values and step size.
Hence, for each evaluation parameter a separate ScriptableObject is created. Removing
an evaluation parameter from the evaluation space simply deletes the corresponding

Page 33

Chapter 6. Evaluation Framework

ScriptableObject. As soon as the user is satisfied with the selection of evaluation
parameters, a button in the EvaluationParameterManager editor window allows the
user to save all information contained in the different ScriptableObjects as an array
of evaluation parameters into a separately implemented C# class entitled Evaluation-
ParameterStorage. Additionally, a unique script Component is added to the initially
created GameObject EvaluationFramework. This Component stores the same array of
evaluation parameters for later usage. Subsequently, this whole process is repeated
analogously for the definition of all objective values.
Finally, the user initiates the serialization of the parameter arrays from both Evalua-
tionParameterStorage and ObjectiveValueStorage (not depicted in Figure 6–3) into
two .json files, respectively, with the help of the aforementioned Newtonsoft Json.NET
package. Additionally, the whole simulation scene in Unity is built into a standalone
executable, which is used later on by the Execution and Evaluation component of the
evaluation framework.

6.2.1 Intuitive, Reusable and Modular Selection of Parameters

The design of this component of the evaluation framework is motivated by making its
usage as intuitive and easy as possible, even for users with only basic knowledge of
Unity ’s editor and the concepts of GameObjects and Components. With the architecture
mentioned above, the user is able to quickly understand the process of selecting an
evaluation parameter. Once understood, the same steps are repeated for the complete
process of defining the evaluation space.
While moving through the process, the user can review the evaluation space selected so
far by either looking at the information provided in the two EvaluationParameterManager
editor windows, by inspecting the information saved in each distinct ScriptableObject
listed inside the assets folder, or by looking at the saved .json files. Besides that, all UI
elements in the editor and inspector windows are straightforward to use. Removing mis-
takenly configured parameters is as easy as clicking a button. Selecting a GameObject
from the hierarchy window is possible through drag-and-drop or a built-in Unity selection
window. Choosing Components and variables thereafter is realised by simple drop down
menus. Besides that, some UI elements are locked until special events in the Unity
editor are triggered. As an example, a new evaluation parameter can only be added
as soon as the previously selected parameter is saved into a ScriptableObject. The
button inside the EvaluationParameterManager window for building the executable is
only activated after both evaluation parameters and objective values were safely stored
into the .json files. This ensures a simple and reliable definition of the evaluation space.
Apart from that, the outlined design of this component in Unity is very modular. The
implemented EvaluationParameterManager editor windows for selecting evaluation
parameters and objective values are almost identical. Likewise, the CustomEditors
for ScriptableObjects, whether it stores an evaluation parameter or an objective value,
are nearly the same. Lastly, the implementation of the functionality of providing the
user with a list of all Components and their variables for a selected GameObject is
independent from what GameObject is actually selected. All of this results in the fact
that this component of the developed evaluation framework is completely detached from
the Unity simulation itself and can be used for any type of application developed in

Page 34

Chapter 6. Evaluation Framework

Unity, since it only runs in Edit Mode and does not require any information from the
simulation’s behaviour.

6.2.2 Data Handling in Unity
Saving data during the course of defining the evaluation space is crucial. When
deciding on how to handle the storage of evaluation parameters and objective values
in Unity, the fact that the code fully executes in Edit Mode played a central role. As
described in Section 5.1.2, ScriptableObjects are great for storing data gathered during
Unity ’s Edit Mode. Besides that, using ScriptableObjects made it easy to assign one
ScriptableObject for each defined parameter, thus keeping the selection process clear
and traceable. In contrast, storing all selected parameters in one single file would result
in the opposite. Firstly, it would be cumbersome and inefficient to remove any already
selected parameter from the file. Secondly, the user would have a much harder time to
maintain an overview of the selected evaluation space.
However, ScriptableObjects are saved as assets and stored in the project’s assets
folder. When building a standalone executable from any Unity simulation, the executable
cannot access any ScriptableObject asset. As a result, the already gathered information
on the selected GameObject, Component and variable for each parameter would
be lost. In order to circumvent this issue, the sets of evaluation parameters and
objective values are additionally packed into the EvaluationFramework GameObject.
By adding one dedicated Component to the GameObject for each set of parameters,
respectively, the information about the evaluation space is also available inside the
executable and can be used for communication with the framework’s Execution and
Evaluation component. This bypasses the necessity to communicate information about
the evaluation parameters to the executable each time it is called from the .NET solution,
and reduces the communication between these two programs to just the values of the
parameters.

6.3 Execution and Evaluation

In order to obtain an overview on the solution space and to identify optimized system
configurations, many evaluations must be performed. The Execution and Evaluation
component of the evaluation framework developed in this thesis carries out this large
number of simulations and stores the resulting point clouds in a format that can then be
read by other visualization tools for spreadsheets for further analysis. The component
initially reads the .json file specifying all information about the evaluation parameters.
Since each parameter is given with a range in which it should vary, as well as a step size
along this range, each evaluation parameter in evaluation space can be represented
by an array, or in case the evaluation parameter already is an array, it is represented
by a matrix in evaluation space. The goal of the evaluation framework is to simulate
the whole evaluation space in a brute-force fashion. This means that all evaluation
parameters are combined with each other to form a multi-dimensional point cloud
containing all possible combinations of evaluation parameters in evaluation space.
What remains for the Execution and Evaluation component to carry out, is to call the
simulation executable for each of these evaluation parameter combinations and retrieve
the predefined objective values as results. Figure 6–4 summarizes this process of

Page 35

Chapter 6. Evaluation Framework

Fig. 6–4: Concept of executing and evaluating simulation executables. Red arrows: evalua-
tion parameters, blue arrows: objective values.

reading the .json files, spanning a multi-dimensional grid over the evaluation space and
carrying out a simulation for each combination of evaluation parameters. It does so by
scheming the implementation of said functionality in Microsoft ’s .NET platform.

From the main entry-point of the .NET implementation, the definition of the evaluation
space in form of the two .json files is used. Therefore, a static C# class entitled
EvaluationData was implemented, reading both files by falling back on the Newtonsoft
Json.NET package. The class reads these files and spans the previously addressed
multi-dimensional grid over the whole evaluation space. The resulting evaluation space
is stored in a multi-dimensional C#-list. As depicted in Figure 6–4, the path of the
evaluation parameters in this framework component is represented by red arrows,
while the objective values are visualized in blue. Another implemented class of the
.NET component entitled SimulationInstanceHandler retrieves each combination of
evaluation parameters and is from then on responsible for executing simulations and
fetching objective values. In short, one instance of the SimulationInstanceHandler
class is created per evaluation parameter combination, and each one of them calls the
executable, communicates its combination of evaluation parameters to the executable
and receives results in the form of objective values. Both upcoming Sections 6.3.1 and
6.3.2 elucidate this process of communicating parameters between the .NET solution
and the executable and the concept of parallelization implemented in this context.

6.3.1 Interprocess Communication

Simply calling and running the Unity executable is not enough for evaluating a digital
twin of a mechatronic system. The course of the simulation, as well as the values of
the objective values likely depend on the values of the evaluation parameters. Hence,
as already mentioned, the standalone executable requires a combination of evalua-

Page 36

Chapter 6. Evaluation Framework

Fig. 6–5: Interprocess communication between the .NET solution and Unity executable.

tion parameters. Likewise, the Execution and Evaluation component of the evaluation
framework has to fetch all objective values at the end of each simulation from each
executable. Since the executable itself and the Execution and Evaluation component
run on separate processes, a direct communication between both processes is re-
ferred to as interprocess communication. Figure 6–5 visualizes how this interprocess
communication is realized, following the same scheme of colourization as used in
Figure 6–4. Furthermore, the symbol representing the executable file of the simulation
in Figure 6–4 is re-used likewise. For each combination of evaluation parameters,
the corresponding SimulationInstanceHandler class calls the executable, sends its
set of evaluation parameters and, when the simulation is completed, it receives and
stores the resulting objective values. In Figure 6–5, this process is depicted for one
SimulationInstanceHandler instance communicating with one executable.

The implementation falls back on a C# concept of interprocess communication called
pipes. A pipe can be basically thought of as a connection between two processes. One
of the processes simply writes data, or in other words messages, into the pipe, while the
other process reads these messages from the pipe. [75] It is for this reason that pipes
pose a very handy way of communicating evaluation parameters and objective values
between the participating processes. While C# supports both anonymous and named
pipes, in the context of the procedure of repeatedly and concurrently communicating
with multiple executables at a time, using named pipes provides a more reliable and
plausible means of message exchanging.
It can be seen in Figure 6–5 that two one-way pipes are used: one for sending a
combination of evaluation parameters to the executable (red) and a second one for
receiving objective values at the end of the simulation (blue). In order to achieve this
behaviour, the two components of the GameObject added to the Unity scene while
defining the evaluation space (see Section 6.2) open their end of the two pipes in
Unity ’s Awake and OnApplicationQuit functions for receiving evaluation parameters in
the beginning and sending objective values in the end of the simulation, respectively.
As mentioned earlier, these two pipes must have unique names assigned. To this end,
each instance of the SimulationInstanceHandler class holds an integer representing its
pipe ID. When launching an executable, the pipe ID is handed over to the executable as
a command line argument, represented by the black arrow in Figure 6–5. Thereby, both
processes communicating via the two pipes share a unique ID used to name both pipes

Page 37

Chapter 6. Evaluation Framework

and can now directly exchange messages.
It is important to note that in C#, writing data into a pipe is done byte-wise without stating
the type of data currently being transmitted. When reading the data, however, one
obviously needs to know the data type. This problem is solved by allocating evaluation
parameters and objective values in a pre-defined order. To keep it simple, this order
matches exactly the order in which evaluation parameters and objective values were
selected in Unity, and hence matches the order in which these parameters are written
into and read from the .json files. That is why during the process of defining the
evaluation space in Unity, arrays of all evaluation parameters and objective values,
including the GameObject, Component and variable of each parameter, were stored in
the simulation scene for reuse during simulation.

Alternatives for Interprocess Communication When implementing the interprocess
communication, three additional options for designing the communication interface were
investigated: command line parsing, shared memory and reading and writing files. The
first method refers to the idea of specifying the combination of evaluation parameters
as command line arguments to the Unity executable. Since command line arguments
can easily be parsed form inside the executable, this method provides an easy to
implement and efficient way to send data to the executable. However, command line
arguments cannot be utilized to receive objective values from the executable. As a
result, the objective values would have to be written into a temporary file and in turn
read by the SimulationInstanceHandler object. This would result in a very in-efficient
and cumbersome way of exchanging messages, especially when thousands or tens of
thousands of simulations have to be executed and evaluated.
The second interprocess communication concept uses memory allocated specifically
for the purpose of being shared between processes. All participating processes would
have the possibility to access the same set of evaluation parameters from memory and
store objective values at the end of simulation. Having said that, using shared memory
can be very cumbersome when dealing with concurrent memory access, since memory
locks have to be considered.
Finally, reading and writing files is another option realizing communication between
the Unity executable and the .NET solution, that is, communication between two
processes. In comparison to pipe communication, this method, however, is cumbersome
in implementation and consumes more memory, and, hence is not as efficient as pipe
communication.
As already mentioned, evaluation parameters and objective values are allocated and
sent through the two pipes in a pre-defined order. In doing so, the need for cumbersome,
additional data communication between the executable and .NET is prevented. However,
in order to gain more flexibility and use the Execution and Evaluation component with
simulation environments other than Unity (where the order of parameters might not
be known to the simulation model), the order of evaluation parameters send to and
objective values received from the model could initially be communicated via command
line arguments, or written once into a file shared between both processes.
In the underlying context, only one-to-one communication is necessary, making it
intuitively plausible to use pipes as a means of communication.

Page 38

Chapter 6. Evaluation Framework

Conclusively, transmitting evaluation parameters and objective values via pipes seemed
to provide the most efficient and straightforward instrument for interprocess communica-
tion in this application.

6.3.2 Asynchronous Operations and Parallel Execution

One main focus when implementing the evaluation framework’s Execution and Eval-
uation component was laid on parallelizing the repeated execution of the executable.
Spanning the aforementioned multi-dimensional grid in the evaluation space can lead to
tens of thousands of combinations of evaluation parameters. Synchronously simulating
one executable for each parameter combination might take up many hours or even
days. Microsoft .NET ’s TPL as introduced in Section 5.2.1 is a library for high-level
implementation of parallel code. Figure 6–6 depicts in what way TPL is used in the
Execution and Evaluation component to efficiently parallelize the loop in which the
Unity executable is called with each combination of evaluation parameters. The figure
highlights two main concepts in the parallel implementation of this code. Firstly, for each
combination of evaluation parameters a new object of the SimulationInstanceHandler
class is created. This can be completed before entering the main loop of executing and
evaluating each executable. Secondly, the most efficient parallelization in this context is
achieved by running one executable per CPU core. This ensures full saturation of CPU
resources and achieves a CPU occupancy rate of 100 % during the whole process.

Architecture of Parallel Code The reasoning behind this choice of parallelization
architecture is supported by various arguments. Ensuring that each combination of
evaluation parameters is handled by a distinct object of the SimulationInstanceHandler
class circumvents the expense of dealing with memory locks and faulty interaction be-
tween executables in a cumbersome way. Each SimulationInstanceHandler object has
its unique pipe ID and holds one combination of evaluation parameters. The pipe IDs
are defined when spanning the multi-dimensional grid of evaluation parameters: every
parameter combination gets a unique pipe ID assigned, corresponding to the index of
the parameter combination inside the grid. Thus, each object can individually launch the
executable, pass the ID as a command line argument and independently communicate
via two peculiarly named pipes with the executable. Furthermore, the SimulationIn-
stanceHandler object retrieves the objective values of its assigned executable (blue
arrows in Figure 6–6) and stores them individually until all executables have been called
and evaluated. As soon as this main loop of simulating all combinations of evaluation
parameters is complete, the stored data of all SimulationInstanceHandler objects is
gathered and written into the resulting .txt file at once (violet arrows in Figure 6–6). As
a result, all combinations of evaluation parameters are evaluated independently from
each other and are perfectly suitable for being parallelized.
As already mentioned, TPL provides high-level tools for parallelizing execution in .NET
solutions. Things like memory allocation for threads, properly opening and closing them
or handling efficient thread distribution across resources are managed by TPL internally.
Doing very CPU-heavy work, such as running multiple Unity executables, on one CPU
can in some cases even slow down the execution. Hence, the processes running the
simulation executables are automatically distributed across the available CPU resources,

Page 39

Chapter 6. Evaluation Framework

Fig. 6–6: Parallelization of communication with executables on CPU cores.

without overloading the hardware.

Asynchrony and TPL Utilization Going into more detail, each process of calling
the executable from a SimulationInstanceHandler object, communicating evaluation
parameters and objective values via two pipes and, when finished, disposing the
executable process is packed into an enclosed TPL task. As soon as a CPU resource
is free, that task is executed on a dedicated CPU core, thereby performing the following
synchronous and asynchronous operations:

1. Create a TPL task to open a pipe to send evaluation parameters to the executable.
Inside this task, asynchronously wait for a connection on the pipe,

(a) When a connection is established, write each evaluation parameter into the
pipe and dispose the task.

2. Create a TPL task to open a pipe to receive objective values from the executable.
Inside this task, asynchronously wait for a connection on the pipe,

(a) When a connection is established, read all objective values from the pipe and
dispose the task.

3. Synchronously call the executable (while both pipes are asynchronously waiting
for a connection) and block enclosing task execution until the executable process
is disposed again,

4. Synchronously wait for the two pipe tasks to be disposed correctly,

5. Store results read from the objective value pipe and dispose enclosing task.

This combination of synchronous and asynchronous operations ensures that both
communication pipes already wait for a connection when the executable itself is launched

Page 40

Chapter 6. Evaluation Framework

and all data is transferred correctly. This design furthermore guarantees that each task
is only disposed after the executable process and all sub-tasks were closed and the
objective values were set aside. Lastly, representing each pipe by a separate task
makes it easier to interrupt the pipe’s asynchronous waiting operations and successfully
free all allocated memory in case the executable process is stuck and the execution has
to be cancelled after a specified time limit is reached.

6.4 Point Cloud Visualization

Meaningful evaluation of a simulation model in the context of this evaluation framework
strongly depends on an intuitively usable and highly informative visualization of the
point clouds resulting form calculating objective values for all combinations of evaluation
parameters. The evaluation framework’s third component aims at achieving exactly this.
Figure 6–7 shows a screenshot of the GUI developed in this thesis, which reads the
point cloud results stored into a .txt file and visualizes them, adding some UI elements
to allow the user to investigate the evaluation space thoroughly. The complete GUI
was implemented in Python tkinter, parsing the data from the .txt file and preparing it
for visualization is done with the help of Python’s Pandas library [76]. Generally, the
GUI in Figure 6–7 can be split into two main parts, i.e. into two main tkinter Frames as
introduced in Section 5.3. The upper Frame highlighted in red shows a 2D or 3D plot of
the evaluation space, and the lower Frame depicts evaluation parameters and objective
values alongside their range of values. Each point in the plot represents one point in the
evaluation space. The plot shows axis labels for the currently selected parameters on
the x- and y-axis. Furthermore, a third dimension of visualization is added by introducing
a color bar, which colors the values inside the plot according to the values of a selected
parameter. Additionally, a toolbar in the lower left corner of the upper Frame allows the
user to zoom into the plot, drag the axes and save the plot as an image to the disk.
Each widget inside the two main Frames has a specific purpose in evaluating the
simulation model and provides the user means to investigate the results in more detail.
The widgets highlighted in Figure 6–7 and their functionality are summarized below:

• Choose axis of plot (blue): Each of the plot’s three dimensions mentioned above
can represent any evaluation parameter or objective value in the evaluation space.
Clicking on any of these elements opens a drop-down menu in which the user can
select the desired parameter.

• Limit parameter range (yellow): In the lower of the two main Frames, each
evaluation parameter and objective value is listed. Besides its name, a slider
depicts the range of values existing of the respective parameter in evaluation
space. Both ends of the slider can be dragged left or right, thus limiting the range
of the parameters that are displayed. The plot in the upper Frame only displays
those points in color which lay between the left and right end of the sliders in the
lower Frame. The residual points are greyed out.

• Select a specific solution (violet): By clicking a point in the plot, the user can
select it, thereby setting it as the currently selected solution. The point is then
circumvented by a black circle (see violet arrow). Furthermore, the values of all

Page 41

Chapter 6. Evaluation Framework

Fig. 6–7: Point cloud visualization with interactive UI elements.

evaluation parameters and objective values of the currently selected solution are
displayed in red in the lower Frame. By clicking the ”Launch Current Solution”
button in the top Frame, the executable is called once with the combination of
evaluation parameters and executed visibly for the user.

All these UI elements were added to the overall GUI to improve its strength of visualizing
and intuitively investigating the results of all evaluations. By choosing the axes of the
plot, the user is able to identify connections and interdependencies between objective
values and evaluation parameters. Furthermore, multiple objective values can be
visualized against each other, thus revealing conflicts between objective values only
solvable by choosing an appropriate trade off. Extending the plot by a color axis and
adding the option to switch from a 2D- to a 3D-plot enables the user to compare multiple
dimensions of the evaluation space at once. The slider widgets in the lower Frame in
Figure 6–7 make it possible for the user to inspect, compare and evaluate only parts
of the evaluation space, by limiting either evaluation parameters or objective values.
This can be particularly useful when a specific range of evaluation parameters, or a
specific range of resulting objective values is of interest for the user. Finally, selecting a
solution in the plot, seeing its combination of evaluation parameters and its objective
values and running a simulation with this set of parameters allows the user to inspect
each simulation in detail. It is for these reasons that the design and structure of the GUI
explained above were chosen, in order to visualize point clouds in the evaluation space.

Page 42

Chapter 7. Exemplary Applications and Evaluation Setup

7 Exemplary Applications and Evaluation Setup

This chapter covers two use cases demonstrating the application of the evaluation
framework developed during this work. The focus lies on the creation of the simulation
model of the Panda robot of Franka Emika GmbH being evaluated, the main ideas
behind the two applications, their industrial context, outlines the setup of Unity, in which
the Panda robot is simulated, and shows the evaluation parameters and objective values
used for evaluation.
This chapter begins with Section 7.1 introducing a robot arm with seven DOF, namely
the Panda robot of Franka Emika GmbH. The section furthermore presents how the
Panda robot can be transformed into a digital twin in Unity, reflecting the real robot as
accurately as possible. Afterwards, Section 7.2 explains the first of the two covered
applications, which showcases how the framework can be used to evaluate trajectories
of the Panda robot from different perspectives. Section 7.3 then presents the application
of robotic bin picking with the same robot arm and how ROS can be consulted to extend
the evaluation framework’s capabilities in the context of this application.

7.1 Simulation Model of the Panda Arm

The robot simulated in the two applications of the evaluation framework is the Panda
robot by Franka Emika. The robot is depicted in Figure 7–1. The Panda robot comprises
seven revolute joints. It is capable of carrying a payload of three kilograms, which is
as much as a quarter of the total moving mass of the robot. Sensing both forces and
torques is supported at very high resolution, with over 100 sensors integrated into the
Panda robot and, amongst others, accurate torque sensors in all seven axes. ROS
supports loading, visualizing and controlling the robot through an open-source ROS
package for the Franka Emika Panda, which includes Panda’s URDF file. The robot’s
specifications, such as Denavit-Hartenberg parameters, joint limits and maximum joint
motor torques can be found in the documentation in the Franka Emika Github repository
[77]. Due to its wide range of application in various industries, its open-source availability,
and given the fact that Franka Emika is partner of a project at the Chair of Astronautics
at TUM, Panda was chosen as a suitable robot arm for the work done in this thesis and
is used as exemplary mechatronic system to demonstrate the evaluation framework.
[78]

In order to model the Panda robot in Unity and simulating it in a physically correct
simulation environment, besides the robot’s kinematic parameters—i.e. its Denavit-
Hartenberg parameters, lengths of links, etc.—dynamic parameters of the robot, such
as masses of links and inertial properties have to be known. In the official URDF of
the Panda robot, Franka Emika solely specifies kinematic parameters and provides no
information on masses of links, positions of each link’s center of mass (COM), and the
robot’s inertia tensor elements. In a paper by Gaz et al. [79] the authors developed
an optimization algorithm to estimate the dynamic parameters of the Franka Emika
Panda robot. As unofficially stated by Franka Emika on personal request, the results in

Page 43

Chapter 7. Exemplary Applications and Evaluation Setup

Fig. 7–1: Franka Emika Panda robot. (Source: [78])

obtained by Gaz et. al are close to the true dynamics of the robot arm, and hence are
used in the remainder of this thesis to simulate the robot. Consequently, the URDF of
the Panda robot was extended—as described in Section 5.4—by adding mass, inertia
tensor and position of the COM as given by Gaz et al. in [79] to each of the robot’s
links. With the dynamic parameters identified, the robot can be evaluated in a physically
realistic Unity simulation.

Importing the robot into a Unity scene is very easily achieved through ROS# ’s UrdfIm-
porter mentioned earlier in Section 5.5. Figure 7–2 depicts the Panda robot imported
into a Unity scene, alongside its tree-like structure in Unity ’s hierarchy window. The
UrdfImporter takes care of the complete process of importing a robot from a URDF file
and representing it properly in terms of Unity ’s GameObjects and Components. As can
be seen in this figure, the concept of parenting is extensively used to represent the real
robot. The robot consists of seven links, represented by one GameObject, respectively.
The following list illustrates how the Unity Components introduced in Section 5.1.1 are
utilized in each link GameObject in this simulation model.

• Rigidbody: Each link has a Rigidbody Component, which holds the link’s mass
and inertia tensor as specified in the URDF .

• MeshCollider: In order to be able to collide with other objects, each link has
MeshCollider Component (BakedColliders in Figure 7–2), which adds a complex
Collider to each link, whose shape accurately matches the shape of the link.

Page 44

Chapter 7. Exemplary Applications and Evaluation Setup

Fig. 7–2: Simulation model of the Panda robot in Unity.

• HingeJoint: Every link’s Rigidbody is connected to the Rigidbody of its child
GameObject through Unity ’s HingeJoint. The joint’s axis of rotation, the connected
Rigidbody and joint position limits are specified as properties of the HingeJoint.

• HingeJointMotor: The motor of Unity ’s HingeJoint is used to control the move-
ment of each joint. It allows the specification of a maximum torque for each motor,
which is directly extracted from the URDF . By setting a target velocity for each
HingeJointMotor in the robot model, the Panda robot can be moved and controlled
in a physically correct manner.

This robot model is used for both applications discussed in this chapter, and is the basis
for the evaluation setup presented in the upcoming sections. Modelling the physics of
the Panda robot arm was not initially considered a major issue in this thesis. However,
while working on the two exemplary applications, creating and improving the simulation
model of the robot turned out to be an important factor.

7.2 Evaluation of Trajectories with the Panda Arm

Today, robot arms are widely used in many different industries for e.g. assembling,
welding, spraying, milling, polishing and packaging [80]. In all of these tasks, the robot
arm has to move along different trajectories of different lengths and complexities, while
following them as accurately as possible. To this end, simulating robot arms in physically
realistic environments like Unity and evaluating them from different perspectives and

Page 45

Chapter 7. Exemplary Applications and Evaluation Setup

with different objectives can be of great value and provide important insights. The first
application presented in the following evaluates the seven-DOF Panda robot arm in
the form of comparing different trajectories from the perspective of, amongst others,
execution time, energy efficiency and total Cartesian and joint distance. This section
summarizes the process of generating robot trajectories from discrete waypoints, as
well as how physical properties of the robot arm, such as inertia and mechanical energy,
can be estimated from the system, in order to provide a physically-realistic simulation.
This section closes by explaining the evaluation space being used for this application.

7.2.1 Parabolic Blending

Trajectories consists of waypoints parametrized by time. In order to ensure that the
robot arm follows the trajectory, a method denoted as parabolic blending is used cf.
Kunz and Stilman [81]. The paper shows how robot configurations on a path can be
turned into a time-parametrized trajectory by using parabolic blending. Simply defining
waypoints in the robot’s configuration space and connecting them with straight lines
results in discontinuities at the waypoints. The robot has non-zero mass and only finite
torques can be applied to its motors. Hence, the robot is not able to instantaneously
change its direction of motion to move across all waypoints on the path. The only way
of following the path would be to add a complete stop of the robot at each waypoint,
ultimately leading to slower, inconsistent motion along the path. [81]
As a solution, adding parabolic blends at the waypoints is one standard method com-
monly applied in robotics. Figure 7–3 illustrates the idea of approximating the straight
line connecting two waypoints by parabolic functions around the waypoints. The al-
gorithm was firstly introduced in [82] and [83] and builds the foundation for the work
of Kunz and Stilman in [81]. The basic concept of parabolic blending will be briefly
summarized below. The information provided about this concept is taken from [81],
rather than directly from [82] and [83], hence represents second-hand information.

Hereinafter, the aforementioned waypoints in the configuration space C of the robot are
denoted qi, i ∈ {1...n}, with n being the total number of specified configurations on the
path. In the case of the Panda robot, a configuration qi is represented by a vector with
seven entries, one for each joint position. Intuitively, connecting these waypoints to a
path can be achieved by drawing straight line segments between them, as depicted in
Figure 7–3. Now, a trajectory is a function q mapping any point in time between 0 and
the total duration of the trajectory tf to a robot configuration: q : [0, tf]→ C. [81] Two
conditions further constrain the trajectory: (1) at the first and last waypoint the robot has
zero velocity and the trajectory starts and ends, respectively, at exactly these waypoints;
(2) during the trajectory, both velocity and acceleration constraints of the robot have
to be satisfied: ∀t : |q̇(t)| ≤ vmax ∧ |q̈(t)| ≤ amax. [81] It is important to note that the
algorithm does not guarantee that each waypoint on the path is exactly reached by the
robot. That being said, the trajectory between two waypoints consists of two phases: a
linear phase during which the robot follows the straight line segment between the two
configuration (see Figure 7–3) and a parabolic blend phase. During the linear phase,
the robot moves with zero acceleration, hence at constant velocity and linearly changing
its position in time. When entering the parabolic blending phase, the robot switches to

Page 46

Chapter 7. Exemplary Applications and Evaluation Setup

Fig. 7–3: One-dimensional example of parabolic blending at waypoints on a path. (Source:
[81])

constant acceleration, and hence its configuration changes quadratically in time, as can
be seen in Figure 7–3. The algorithm as presented in [82] and [83] assumes that the
timing of all waypoints is known. Thus, the time ∆Ti the robot needs to move between
two waypoints qi, qi+1, as well as the duration tbi of the blending phase at waypoint i are
given. Knowing these timings, the constant velocity of the robot during linear phase
between qi and qi+1 can be calculated as follows:

vi =
qi+1 − qi

∆Ti
. (7–1)

Since moving with this velocity along a straight line during the whole time interval would
lead to discontinuous velocities at each waypoint, parts of two neighbouring linear
segments are replaced by a parabola. This parabola is followed by the robot with
constant acceleration

ai =
vi − vi−1

tbi
. (7–2)

An important condition is given by Equation 7–3, which ensures that two blend phases
of neighbouring waypoints do not overlap each other:

tbi + tbi+1 ≤ 2∆Ti. (7–3)

Page 47

Chapter 7. Exemplary Applications and Evaluation Setup

After introducing the blend phases, the robot starts following the straight line segment
between waypoints qi and qi+1 at Ti +

tbi
2

and enters the subsequent blend phase around

qi+1 at Ti+1 −
tbi+1

2
.

As can be seen in Figure 7–3, the trajectory does not start at t = T0 and eventually does
not end at t = Tn. The first and last waypoints can be treated exactly the same way
each waypoint is considered, by pretending that the first waypoint is preceeded by a
linear line segment with velocity zero, and accordingly such a line segment follows the
last waypoint. As a result, both the first and last waypoint now have two neighbouring
linear phases. To this end, the trajectory has to start tb0

2
before the first waypoint and

tbn
2

after the last waypoint, in order to fully include the first and last blend phase in the
trajectory. Consequently, Equation 7–4 states the total duration of the trajectory from
waypoint 0 to waypoint n.

tf =
tb0
2

+
n∑
i=1

∆Ti +
tbn
2

(7–4)

Following this process, the final trajectory q : [0, tf]→ C is given by

q(t) =


qi + vi−1(t− Ti) + 1

2
ai(t− Ti +

tbi
2

)2,

if Ti − tbi
2
≤ t ≤ Ti +

tbi
2
, i ∈ {1...n},

qi + vi(t− Ti),
if Ti +

tbi
2
≤ t ≤ Ti+1 −

tbi+1

2
, i ∈ {1...n− 1},

(7–5)

with v0 = vn+1 = 0, thus satisfying the previously mentioned condition of starting and
finishing the trajectory at rest. Now, linear phases are given by the second part of
Equation 7–5, whereas robot configurations according to the first part of Equation 7–5
correspond to blend phases. By explicitly calculating the time derivatives of the trajectory
given by Equation 7–5, velocities and accelerations of the robot on the trajectory are
obtained. [81]
As explained earlier, the trajectory above can only be generated when the timings
of the waypoints and parabolic blending phases are known. Generally, however, in
robotics applications these timings are not known to the developer and hence have to
be determined on-the-fly. Kunz and Stilman [81] propose a method of obtaining these
values automatically, while still satisfying the aforementioned velocity and acceleration
constraints of the robot. In their paper [81], the authors present an iterative method of
choosing timings of the waypoints, as well as durations of each parabolic blend phase.
Firstly, the timings of the waypoints are chosen in such way that the joint velocities are
maximized:

∆Ti = max
j

|qi+1[j]− qi[j]|
vmax

. (7–6)

In Equation 7–6, [j] refers to the j-th component of the joint configuration q. Furthermore,
maximization of joint velocities in this context refers to calculating the timings of the
waypoints such that at least one joint moves at its maximum velocity. [81] Secondly, the
durations of the blend phases tbi are chosen likewise, such that at least one joint moves

Page 48

Chapter 7. Exemplary Applications and Evaluation Setup

with maximum acceleration during each blend phase:

tbi = max
j

|vi[j]− vi−1[j]|
amax

(7–7)

Velocity and acceleration limits of all joints of the Franka Emika Panda robot can be
found in [77].

While this idea seems straightforward, Kunz and Stilman point out that it is not guar-
anteed that the condition given by Equation 7–3 is satisfied when choosing ∆Ti and
tbi in that way. Hence, they propose a method to iteratively adapt the length of blend
phases and waypoint timings until no neighbouring blend phases overlap. [81] Due to
the simplicity of trajectories generated in the application in this thesis, however, the first
iteration given by Equations 7–6 and 7–7 already fulfils this condition. To this end, the
aforementioned iterative approach of Kunz and Stilman will not be further discussed
here. The interested reader is referred to Chapter 4 in their publication [81].

7.2.2 Estimation of the Electric Energy Consumption

Being able to meaningfully compare and evaluate the robot’s energy consumption on
different trajectories requires to know the electric power fed into every joint motor. This
section presents how this motor power consumption is calculated for the simulation
model of the Panda robot. Since the technical details beyond datasheet information
are not known for the joints of the Panda robot, several model assumptions on the
robot’s motors and their power consumption are made and highlighted accordingly.
However, the objective of this application is to qualitatively evaluate the electric energy
consumption of the robot on different trajectories. In order to compare them and identify
the best solutions, the actual values required to drive each motor are of minor interest,
which is why we presume that, even if the the given model assumptions might deviate
from the actual energy consumption values in reality, the identified Pareto-optimal
solutions are sufficiently accurate.
As it is common in industrial robots, it is assumed that the Panda robot uses brushless
direct current (BLDC) motors in all its joints. Motor specific constants required to
calculate the electric power are taken representatively from motor specifications of a
robot arm designed by the Siemens AG in Munich.

Equations of Motion The equations of motion of a robot are generally represented
by Equation 7–8 and can be derived from the Newton-Euler or Lagrangian formulation
of robot dynamics: [84]

τ = M(q)q̈ + C(q, q̇)q̇ + g(q). (7–8)

In Equation 7–8, τ refers to the joint-side torques of the robot, q, q̇, q̈ represent the
angular position, velocity and acceleration, respectively. M(q) is the so-called mass
matrix in C-space. It is important to note, that the mass matrix M(q) is positive definite
and symmetric. Off-diagonal terms in this matrix reflect the inertia coupling between
robot joints, i.e. acceleration of one joint influences other joint-side torques through
these terms. C(q, q̇) represents centrifugal and Coriolis terms acting on the robot, and

Page 49

Chapter 7. Exemplary Applications and Evaluation Setup

g(q) describes the gravitational forces. [84] In the case of the Panda robot, it holds

τ, q, q̇, q̈ ∈ R7x1. (7–9)

Based on the joint torques, the energy consumption of a joint motor of the Panda robot
can be calculated. With the positions, velocities and accelerations of each joint known
at any point in time in the simulation, the corresponding joint torques τ have to be
determined. This problem, i.e. determining the joint torques required to achieve a
desired motion, is referred to as inverse dynamics [85].
The Recursive Newton-Euler Algorithm (RNEA) [85] provides a computationally ef-
ficient means for solving the inverse dynamics problem, specifically. For multi-body
systems with n DOF, the RNEA’s time complexity is linear in n, i.e. O(n) [85]. The
RNEA comprises two steps: forward and backward recursion. In the forward recursion,
kinematic variables and momentum changes of the robot are calculated for all joints,
originating from the robot’s root and recursively going outwards towards the end effector.
Subsequently, the backward recursion step begins at the end effector and recursively
calculates each joint’s forces and torques, based on the values obtained during forward
recursion. [85] Since RNEA is state of the art for solving inverse dynamics problems,
the underlying formulas will not be provided here. For more information, the interested
reader is referred to e.g. [85].
The RNEA was implemented in Unity for the Panda robot, thereby falling back to the
dynamic parameters of each link taken from Gaz et al. [79]. At each point in time, i.e.
after each physics engine update step, the joint-side torques τ are obtained by means
of the RNEA and used for calculating each joint motor’s electric energy consumption.
In the following, the superscript j refers to the joint being considered, i.e. refers to the
subsystem of links rotating around joint j. All following motor calculations are taken
from [86].

Electric Power of a BLDC Motor The electric power P j
el(t) required to drive the motor

of joint j is determined by Equation 7–10.

P j
el(t) = P j

loss(t) + P j
motor(t). (7–10)

P j
loss(t) is the power lost due to the motor current Ijmotor(t) flowing through the terminal

resistance RT :
P j
loss(t) = RT ∗ Ijmotor(t)2. (7–11)

The terminal resistance usually lies below one ohm, and in this model is assumed to
be RT = 0.22 Ω. Energy losses through the electric inverter and power supply itself are
neglected in this model.
P j
motor(t) is the motor power transformed into mechanical power by the joint motor, in

order to move the robot. The mechanical power can be calculated as product of the
joint-side torque as given by Equation 7–8 and the joint’s angular velocity:

P j
mech(t) = τ j(t) ∗ ωj(t). (7–12)

The corresponding motor power required to generate said mechanical power requires
to know the motor speed and gear ratio, and additionally considers gear and motor

Page 50

Chapter 7. Exemplary Applications and Evaluation Setup

Fig. 7–4: Relation between gear efficiency and motor speed.

efficiencies. Typically, robot arms such as the Panda robot use harmonic gearing.
Following this, the joint rotates at a given joint velocity ωj(t), which is related to the
motor speed through the gear ratio R = 100:

njmotor(t) = ωj(t) ∗ 60

2π
∗R. (7–13)

The gear efficiency itself is a function of the motor’s speed. Generally it holds, the higher
the revolutions per minute (rpm), the lower the gear efficiency:

ηgear(nmotor ≤ 500) = 0.75

ηgear(nmotor = 1000) = 0.69

ηgear(nmotor = 2000) = 0.63,

ηgear(nmotor = 3000) = 0.58. (7–14)

Between these corner points specified in Equation 7–14, the gear efficiency is assumed
to decrease linearly. Figure 7–4 depicts this relation between gear efficiency and motor
speed graphically. The values in Equation 7–14 are taken from the same robot arm of
Siemens mentioned above.
Now, for the calculation of the motor-side torque required to generate a specific joint-side
torque, two cases have to be distinguished:

τ jmotor(t) =

{
1

ηgear∗ηmotor
∗ τ

j(t)
R
, if the motor is accelerating,

ηgear ∗ ηmotor ∗ τ
j(t)
R
, if the motor is recuperating,

(7–15)

with the constant motor efficiency ηmotor = 0.92. Thus, the total motor power can be
calculated as follows:

P j
motor(t) = τ jmotor(t) ∗ 2π ∗ njmotor(t). (7–16)

Page 51

Chapter 7. Exemplary Applications and Evaluation Setup

In order to calculate the power loss, the motor current Ijmotor(t) is required, which is
proportional to the motor-side torque:

τ jmotor(t) ∼ Ijmotor(t). (7–17)

Using this relation, motor torque and current can be linked by a proportionality constant
referred to as torque constant kM , which is, like the other motor specific variables, taken
from the Siemens robot and assumed to be constant at kM = 0.134 Nm

A
. Generally,

this torque constant kM is dependent on the ambient temperature. This dependency,
however, is neglected in these calculations, assuming that the accuracy of the resulting
energy suffices in the context of this application. It follows, that

τ jmotor(t) = kM ∗ Ijmotor(t)→ Ijmotor(t) =
τ jmotor(t)

kM
. (7–18)

Thus, the total electric power supplied to the joint motor results to

P j
el(t) = P j

loss(t) + P j
motor(t) = RT ∗ Ij

2

motor(t) + P j
motor(t). (7–19)

Recuperation in the joint motor reflects in the second summand of Equation 7–19, that
is, the motor power. The mechanical power of the robot, and hence the motor power,
becomes negative, if the joint-side torque τ j(t) and the joint’s angular velocity ωj(t) point
in opposite directions. In this case, the motor is braking and the negative mechanical
power is transformed into electric power and fed back into the motor. To this end,
negative mechanical power leads to negative electric power, and hence, corresponds to
recuperation.

Electric Energy Finally, the change in electric energy consumed by the motor of joint
j at time t over the time interval ∆t is

∆Ej
el(t) = P j

el(t) ∗∆t. (7–20)

Summing this change in electric energy for all time steps results in the total energy
consumption of each motor. Additionally, the sum over all joint motors results in the total
energy consumption of the Panda robot on a trajectory.

7.2.3 Evaluation Setup
The main idea of this application is to evaluate properties of different robot trajectories.
As a consequence, these different trajectories have to be generated in some way, and
then simulated in the form of the Panda robot moving along each trajectory.
Generating trajectories in Unity is done according to the concept of parabolic blending
discussed in Section 7.2.1. Thus, multiple robot configurations qi, representing a path
in the Panda robot’s configuration space C were defined and turned into a trajectory
following Equation 7–5. In total, all trajectories evaluated during the simulations com-
prise three robot configurations q1, q2, q3, representing the start, intermediate and goal
configuration of the robot on the trajectory, respectively. Furthermore, the start and goal
configurations q1 and q3 are kept constant for all evaluated trajectories, while solely the

Page 52

Chapter 7. Exemplary Applications and Evaluation Setup

Fig. 7–5: Start, intermediate and goal configurations on the evaluated robot trajectories.

intermediate joint position q2 is modified.

Figure 7–5 visualizes exactly this approach to generating different trajectories. Both
q1 and q3 represent a configuration where the robot arm is fully extended horizontally.
Their only difference lies in the angle of the second joint, which simply has to rotate
180 ◦ for the robot to move from q1 to q3. Therefore, the start and goal configurations are
selected as follows:

qn = (qn[1] 90 ◦ 0 ◦ 0 ◦ 0 ◦ 90 ◦ 0 ◦), n ∈ {1, 3}, (7–21)

with q1[1] = 0 ◦ and q3[1] = −180 ◦. Joint six was additionally rotated by 90 ◦, in order to
align the end effector of the robot along the vertical, just as if the robot was carrying an
object. It is important to note that in Unity, the initial configuration corresponding to q1 in
Equation 7–21 is automatically set as a configuration with all 0 ◦ angles. Thus, Equation
7–22 will be used in the remainder of this thesis as the start and goal configurations of
the Panda robot.

qn = (qn[1] 0 ◦ 0 ◦ 0 ◦ 0 ◦ 0 ◦ 0 ◦), n ∈ {1, 3}, (7–22)

with q1[1] = 0 ◦ and q3[1] = −180 ◦. This kind of robot motion is inspired by the idea of a
human picking up a cup of coffee on a table to his or her left, and putting the cup down
on a table to the right, only using one arm. Both tables, however, are in such distance to
the human, that the cup can only be reached and released with a fully extended arm.
Imagining this scenario, the human now has multiple options to move the arm between
the two moments of picking up and putting down the cup: keeping the arm stretched out
and simply rotating from the shoulder, moving the cup close to the body by additionally
bending the elbow, and many others. Likewise, the Panda robot can move along various
trajectories, in order to rotate from q1 to q3. These different possibilities are represented
by the intermediate configuration q2.
Following this approach, in this application the evaluation parameters represent the
different intermediate configurations q2. In order to keep the evaluation as simple as

Page 53

Chapter 7. Exemplary Applications and Evaluation Setup

possible, but still generate an interesting variety of trajectories for the Panda robot, only
two joint angles were changed from q1 and q3 to q2. Furthermore, the second joint angle
of q2 was chosen such that the configuration actually represents the intermediate joint
position on the trajectory. In other words, the second joint angle of q2 lies exactly in the
middle of q1[1] = 0 ◦ and q3[1] = −180 ◦, where qi[j] represents the j-th component of
the configuration vector. Equation 7–23 depicts this intermediate configuration q2.

q2 = (−90 ◦ q2[2] 0 ◦ q2[4] 0 ◦ 0 ◦ 0 ◦) (7–23)

The two joint angles differing from both q1 and q3 (neglecting the constant angle of
the first joint q2[1] = −90 ◦) are the second and fourth joint angle. Falling back to the
comparison of this application to a human lifting and moving a cup of coffee, the second
joint angle can be thought of as the shoulder of the robot, while the fourth joint angle
corresponds to its elbow. The specification of q2[2] and q2[4] as evaluation parameters
are given below.

q2[2] ∈ [−100 ◦, 20 ◦], q2[4] ∈ [0 ◦, 140 ◦], s2/4 = 1 ◦ (7–24)

In Equation 7–24, s2/4 represents the step size for both evaluation parameters, which
determines how each parameter is increased each evaluation step. The border cases
of these two evaluation parameters can be thought of as follows:

• q2[2] = −100 ◦, q2[4] = 0 ◦: Fully extended, vertically aligned robot arm.

• q2[2] = 0 ◦, q2[4] = 140 ◦: The shoulder is kept steady, while the elbow bends
downwards 140 ◦.

• q2[2] = −0◦, q2[4] = 0 ◦: The robot arm remains horizontally and fully extended
and simply rotates around the second joint.

• q2[2] = −100 ◦, q2[4] = 140 ◦: Both joints move. The second joint lifts the robot arm
up, while the fourth joint bends the elbow downwards.

Combining both these parameters in Equation 7–24, the—in this case 2D—grid spanned
over the evaluation space contains 121 ∗ 141 = 17061 combinations of evaluation param-
eters in total.

What is missing in order to actually evaluate these trajectories is the specification
of objective values. As a reminder, objective values represent properties of the mecha-
tronic system or the application itself, whose values and their relation to different
evaluation parameters the user is interested in. In this application, the main objective is
to investigate the energy efficiency of the motion of the Panda robot on all trajectories.
This includes, amongst others, the energy consumption of each joint motor in total.
Besides that, the execution time of each trajectory, as well as the distance the robot
covers in both Cartesian and joint space will be examined. While many other objective
values can be of interest in this kind of evaluation, such as maximum joint velocities
and accelerations on the trajectories, or peak torques in the joints, the objective values
mentioned above comprise the main evaluation criteria of this application.
The results of this application are presented in Section 8.1.

Page 54

Chapter 7. Exemplary Applications and Evaluation Setup

7.3 Automated Robotic Bin Picking with the Panda Arm

The second application presented in this thesis deals with robotic bin picking in an
industrial plant. The idea of this application is part of the SAINT project of Franka
Emika GmbH and FIEGE Logistik Stiftung & Co. KG, in cooperation with the Chair of
Astronautics and Chair of Applied Mechanics at TUM. With bin picking being a popular
field of use of robot arms in industrial applications, the motivation of SAINT is to realize
bin picking in unknown environments, while satisfying high reliability requirements of
robotic grasping. [87] The two cooperating chairs a TUM aim at improving existing path
planning and computer vision algorithms, in order to equal the efficiency of humans in
bin picking and achieve a low error rate at the same time. Furthermore, the concept
of supervised autonomy in the SAINT project is realized through a fault recovery and
teleoperation module. With the former, the robot is able to autonomously avoid faulty
configurations and recover from them, if necessary. When the robot is stuck in a bad
condition in which the fault recovery module cannot find a way to recover a valid state
of the robot, the teleoperation module allows a human operator to manually move the
robot into a valid configuration. [87]

The industrial plant, in which the robot operates, is depicted in Figure 7–6. As can be
seen in this figure, Franka Emika’s Panda robot is used as robot manipulator in the
SAINT project. Operating in this industrial environment, the objective of the robot is
to detect objects in boxes—in the case of SAINT these objects are pieces of clothing
packed in plastic bags—by applying machine vision algorithms, autonomously grasp
these objects and place them into a specific area on a conveyor. At the same time, it
should be possible for a human to safely work in the same environment alongside the
robot. The teleoperation module allows another human to recover valid states of the
robot by controlling it over a screen via a joystick.
In the context of the SAINT project, the application presented in this thesis models the
industrial plant and the Panda robot in Unity and simulates the process of picking up an
object, moving the robot arm above the conveyor and dropping the object at the correct
position. The goal of this application is to evaluate the bin picking process for different
positions of the Panda robot inside the industrial plant. For simplicity, automatically
detecting objects through computer vision is neglected in this application. Furthermore,
the fault recovery and teleoperation modules are not integrated into the simulation.
However, the evaluation of this application with the evaluation framework was designed
in such way that these three components of SAINT can be easily integrated into the
simulation and evaluation in the future. The clothing object picked up by the robot is
simulated in Unity by a pendulum-like GameObject hanging from the Panda gripper.
Most of the weight of the simulated object is positioned at the end of the pendulum
(250 g), while a small weight represents the stick of the pendulum (20 g). Thus, the total
weight of the clothing object is assumed to be 270 g and can swing freely around its
anchor point at the Panda gripper.

The upcoming sections discuss how trajectories for bin picking are generated in this
application, and how, accordingly, the evaluation framework was extended with a ROS
interface, in order to generate those trajectories and incorporate components and

Page 55

Chapter 7. Exemplary Applications and Evaluation Setup

Fig. 7–6: Industrial plant of the SAINT project. (Source: [87])

concepts of SAINT into the evaluation of the Panda robot in the industrial plant.

7.3.1 Generation of Bin Picking Trajectories with MoveIt!

As an entry point for evaluating a simulation model of the Panda robot in the SAINT
environment, this application aims at simulating the bin picking process of the robot.
Since such a bin picking operation requires the robot to move along complex trajectories,
the idea of generating trajectories from distinct robot configurations as described in
Section 7.2.1 is likely not sufficient to realize bin picking in the industrial plant. To this
end, another solution of generating trajectories for the Panda robot was exploited. In
order to provide a basis for further extensive evaluation of concepts of SAINT , the
application was designed in such way that the results obtained from evaluating the
system provide meaningful insights, while at the same time the application can be easily
extended to integrate more components of SAINT in the future.
In the SAINT project, the path planning algorithms developed at TUM ’s Chair of Applied
Mechanics are based on MoveIt!, the ROS Motion Planning framework (see Section
5.4.1). As a result, it was decided to generate the trajectories for robotic bin picking in
the industrial plant for this application by motion planning algorithms of MoveIt! directly.
This enables the user to evaluate the robotic bin picking process based on trajectories
generated with MoveIt!’s in a first step, and later on exchange the integration of MoveIt!
by the motion planning algorithms developed at the chair.

MoveIt! supports generating trajectories from a series of waypoints in Cartesian space.

Page 56

Chapter 7. Exemplary Applications and Evaluation Setup

In this application, the robotic bin picking was represented by seven distinct Cartesian
positions pi, i ∈ {1...7} as listed below.

1. p1: Position above box containing the object to pick up

2. p2: Position in box when picking up the object, vertically below p1

3. p3: Position above box with object in gripper (p3 = p1)

4. p4: Position above conveyor where the object should be placed

5. p5: Position close to the conveyor to release the object, vertically below p4

6. p6: Position above conveyor after releasing the object (p6 = p4)

7. p7: Position above box to pick up the next object (p7 = p3 = p1)

Providing these waypoints to the MoveIt! planning library via the ROS service (see
Section 5.4) GetCartesianPathRequest results in a GetCartesianPathResponse, which
contains the trajectory along these waypoints in the robot’s joint space. The result of
the Cartesian path planning is a list of joint positions, velocities and accelerations on
the trajectory, as well as the timings of each of these configurations. Besides that, the
GetCartesianPathResponse contains a number representing the percentage of the
trajectory MoveIt! was actually able to plan for the given waypoints, without colliding
with obstacles or leaving the robot’s workspace.
For the simulation in Unity, a detailed model of the whole industrial plant in form of a
CAD file was already available. However, generating the trajectories for bin picking in
MoveIt! required to model those parts of the plant that are potential obstacles during
bin picking. By adding these obstacles to the MoveIt! planning scene, the motion
planning algorithm factors these obstacles into the planning process and tries to return
a trajectory that does not collide with any of them.

Now, to simulate the bin picking in Unity, the generated trajectory has to be com-
municated to the Unity executable. The next section explains how the evaluation
framework as discussed in Chapter 6 is extended, in order to be able to communicate
with ROS.

7.3.2 Integration of ROS Interface
Varying the robot’s positioning inside the industrial plant requires to re-plan the bin
picking trajectory every time, since the seven Cartesian waypoints and all obstacles on
the trajectory depend on the robot’s position. Hence, for each socket position of the
Panda robot, MoveIt! must plan a new trajectory. In Section 5.5, ROS# was introduced
as a library, providing tools to communicate between ROS and .NET applications,
specifically Unity simulations. ROS# was primarily developed to communicate with
ROS programs directly from Unity, but also contains C# libraries for integration of ROS#
into independent .NET solutions. Thus, two possibilities for designing the integration of
ROS and MoveIt! into the evaluation framework by means of ROS# were examined:

• Establishing a connection to the ROS system originating directly from each Unity
executable called during the evaluation process of a simulation model. Using this

Page 57

Chapter 7. Exemplary Applications and Evaluation Setup

method, ROS# sets up a connection between the Unity executable and ROS once
for each robot’s socket position. Each connection is then used to plan a trajectory
in MoveIt! corresponding to the current socket position, and to communicate this
trajectory directly back to the Unity executable.

• Connecting the .NET solution of the evaluation framework’s execution and eval-
uation component to the ROS system once before entering the main loop of
evaluating a simulation model. With this concept, ROS# only establishes a con-
nection to the ROS program once. Thus, MoveIt! successively plans all trajectories
corresponding to each position of the robot that the user wants to simulate. After-
wards, the execution and evaluation component of the framework is responsible
for communicating the respective trajectory to each executable.

One major drawback of the first method is its slow performance and communication
overhead. Individually connecting each executable to ROS means that for each simula-
tion, ROS# has to establish a connection to the ROS system via rosbridge suite (see
Section 5.5) and send the current socket position of the robot. MoveIt! subsequently
plans a trajectory for said socket position and returns it to the executable. Finally, ROS#
must perform operations to close the connection again. While the process of connect-
ing to ROS via rosbridge suite and afterwards closing the connection is rather quick,
experience has shown that repeating this process during the evaluation of thousands of
simulations does increase the duration of the total evaluation drastically. Besides that,
connecting to MoveIt! directly from inside each Unity simulation results in multiple calls
at the same time, since one executable is run on each CPU core. While multiple clients
can easily connect to a ROS system via ROS#, it would be cumbersome to deal with
multiple, independent planning instances of MoveIt!. As a result, the second approach
was chosen.

The following steps describe how the evaluation framework’s execution and evalu-
ation component is modified and extended to realize these requirements. In order
to keep the ROS integration as generic as possible, the extension was structured in
such way, that the combination of the evaluation framework and ROS can easily be
deactivated or extended even further.

1. Read data: As described in Sections 6.2 and 6.3, the component initially reads
the evaluation space from .json files. Defining the evaluation space in Unity is
extended to include the definition of an additional set of parameters, denoted ROS
parameters. Selecting these parameters is implemented and handled in exactly
the same way as evaluation parameters and objective values are. These ROS
parameters represent the parameters used inside the Unity simulation, originating
from a ROS system, in this case originating from MoveIt!. Consequently, the
EvaluationData class of the execution and evaluation component also reads these
parameters from the corresponding .json file.

2. Establish connection to ROS: Only once, after parsing the .json files, the frame-
work component connects to the ROS system running on a virtual machine with
the Ubuntu OS. On the virtual machine, one main ROS node runs the MoveIt!

Page 58

Chapter 7. Exemplary Applications and Evaluation Setup

planning library.

3. Generate trajectories: Subsequently, the execution and evaluation component
sends all combinations of evaluation parameters (only those parameters that
affect the trajectory planning in MoveIt!) to ROS. Thereafter, MoveIt! successively
generates all trajectories based on the received evaluation parameters, and returns
them to the .NET solution as the aforementioned ROS parameters. Afterwards,
the connection between ROS and the .NET solution is immediately closed.

4. Evaluate simulations and write results: From then on, the process of evaluating
all simulations is equivalent to the process discussed in Section 6.3, with only
the difference that now an additional pipe for the ROS parameters is opened for
the interprocess communication between .NET and executables, thus resulting in
three pipes in total.

Thus, only small adjustments to the evaluation framework had to be made, while only
very few new code had to be implemented, since most code required for the integration
of ROS could be re-used from the respective components of the evaluation framework.

7.3.3 Evaluation Setup
Robotic bin picking with Franka Emika’s Panda manipulator is the core idea of this
application. Correspondingly, this section presents the definition of the evaluation space
in which the Panda robot and the process of bin picking are evaluated. The idea of this
evaluation is to examine how different positions of the Panda robot between the box
and the conveyor (see Figure 7–6) influence the robot’s ability to carry out the complete
bin picking process. Mounting the robot too close to or too far away from either the box
or the conveyor might result in the robot not being able to reach the object in the box
or to drop the object onto the conveyor. Besides that, different socket positions of the
robot could increase the chance of collisions along the trajectory. Additionally, things
like the relation between energy efficiency of bin picking and the robot’s positioning, or
examining connections between different box geometries and the robot’s ability to reach
the object inside the box can be evaluated.

As already mentioned, based on a CAD file accurately modelling the industrial plant,
the proper environment for the Panda robot to perform bin picking could easily be
imported into a Unity simulation. The robot’s origin, i.e. zero position, corresponds to
the socket position of the robot as depicted in Figure 7–6. Based on that origin, the
seven Cartesian positions pi, i ∈ 1...7 as presented in Section 7.3.1, as well as the
positions of box, conveyor and other obstacles relative to the socket position of the robot
were determined. With these values specified, the initial planning scene for the MoveIt!
node running on the ROS system was set up. Now, changing the robot’s socket position
in Unity is equal to shifting all waypoints pi on the trajectory and all obstacles in MoveIt!
relative to the robot in the opposite direction of the position change. This enables the
usage of one MoveIt! planning environment, while still generating valid trajectories for
all socket positions of the robot.

According to the idea of this application, the evaluation parameters of this simula-

Page 59

Chapter 7. Exemplary Applications and Evaluation Setup

Fig. 7–7: The Panda robot’s x-, y- and z-positions inside the industrial plant as evaluation
parameters for the bin picking process.

tion comprise the x-, y- and z-position offsets (xpos, ypos, zpos) of the robot relative to
the zero position the bin picking should be evaluated for. Figure 7–7 visualizes the
evaluation parameters and all combinations of them chosen in this application, forming
a cuboid in evaluation space. The dimensions shown in Figure 7–7 correspond to
the directions of axes as specified in Unity and are here related to the industrial plant
depicted in Figure 7–6: the positive x- direction points towards the conveyor of the
industrial plant, the positive y-axis is directed upwards and the positive z-direction points
towards the box containing the clothing-object. Equation 7–25 shows the minimum
and maximum values chosen for each position offset in meters. The ranges of these
values were chosen such that the robot is still in a valid position inside the plant without
instantly colliding with any obstacle. Other than that, the ranges of position offsets were
limited by socket positions that obviously would lead to the Panda robot not being able
to reach the box or the conveyor at all.

xpos ∈ [−0.4 m, 0.15 m], ypos ∈ [−0.2 m, 0.2 m], zpos ∈ [−0.4 m, 0.15 m] (7–25)

For each of these evaluation parameters, the step size is set to s = 0.05 m.
One additional evaluation parameter was added to the evaluation space. Represented
by a boolean, this parameter specifies if the box containing the clothing object has a
special geometry, which is often seen in the real industrial environment of the industry
partner of SAINT . The two different boxes are depicted in Figure 7–8. What makes the
box geometry special, is that it is not a simple cuboid with an open top, but has additional
overhanging pieces intruding into the open top of the box. Thereby, the opening of the
box becomes a little smaller, making it harder for the robot to actually grasp the object
without colliding with the box. In the remainder of this thesis, the two types of boxes will

Page 60

Chapter 7. Exemplary Applications and Evaluation Setup

Fig. 7–8: Simple and complex box in the industrial plant of SAINT. Left: simple box, right:
complex box.

be referred to as simple and complex boxes. Consequently, this evaluation comprises
12 ∗ 9 ∗ 12 ∗ 2 = 2592 combinations of evaluation parameters.

As explained in Section 7.3.1, the bin picking trajectories the Panda robot follows in
Unity are generated by MoveIt!. To this end, the evaluation framework was extended, in
order to be able to specify additional ROS parameters, that is, parameters used inside
Unity but not being part of the evaluation parameters themselves. In this context, three
components of the generated MoveIt! trajectory were specified as ROS parameters.
Firstly, the timings of all configurations on the trajectory. Secondly, the corresponding
joint positions on the trajectory. And lastly, the fraction of the trajectory MoveIt! was able
to plan for the robot without colliding or leaving the robot’s workspace. While the former
two parameters are required to actually allow the robot to move along the trajectory in
Unity, the latter ROS parameter is used as an objective value itself, since it provides
interesting insights into how much of a trajectory could be executed based on the robot’s
socket position.

The following additional objective values were defined for this application. A boolean
determining whether the robot was able to completely perform the act of bin picking, i.e.
if the robot was positioned in such way that it could pick up the object, move above the
conveyor, release the object and return to its initial position, was selected as another
objective value. Furthermore, the energy consumption of the robot during its motion,
calculated according to Section 7.2.2, was evaluated.
Section 8.2 presents the results corresponding to this evaluation setup.

Page 61

Chapter 7. Exemplary Applications and Evaluation Setup

Page 62

Chapter 8. Evaluation Results

8 Evaluation Results

In this chapter, the evaluation results of the two exemplary applications discussed in
Chapter 7 are presented. All results are obtained from the Point Cloud Visualization
component of the evaluation framework. Section 8.1 works through the result obtained
from the robot trajectory evaluation described in Section 7.2. Subsequently, Section
8.2 presents the results obtained from evaluating the robot bin picking process in the
context of the SAINT project introduced in Section 7.3.

8.1 Robot Trajectory Evaluation

The main objective of the evaluations carried out in the context of the application pre-
sented in Section 7.2 is to analyse the electric energy consumption of the Panda robot
on different trajectories. As specified in Section 7.2.3, the two evaluation parameters rep-
resent the second and fourth joint angle q2[2] and q2[4], respectively, of the intermediate
configuration on the robot trajectories. The total electric energy is obtained by summing
up the individual energy consumption of each joint motor, which in turn is calculated
according to the approach presented in Section 7.2.2. Generally, every solution in the
evaluation space, that is, every pair of evaluation parameters, is represented by a circle
in the plot. Table 8–1 summarizes all evaluation parameters and objective values of this
evaluation.

Figure 8–1 depicts the total electric energy consumption of the Panda robot for all
combinations of evaluation parameters, that is, for all trajectories simulated in Unity. In

Tab. 8–1: Evaluation parameters and objective values of the robot trajectory evaluation.

Name Symbol Unit Min Max

SecondJointAngle q2[2] ◦ −100 20

FourthJointAngle q2[4] ◦ 0 140

TotalElectricEnergyConsumption Eel Ws 19.46 110.02

JointwiseElectricEnergyConsumption1 Eel[1] Ws 5.08 40.27

JointwiseElectricEnergyConsumption2 Eel[2] Ws 4.78 63.88

JointwiseElectricEnergyConsumption4 Eel[4] Ws 1.31 35.64

TrajectoryExecutionTime t s 1.28 2.12

TotalJointDistance sjoint
◦ 177.5 590.2

TotalCartesianDistance sCart m 2.17 2.90

AverageJointVelocities1 q̇avg[1] ◦/s 78.5 129.5

AverageJointVelocities2 q̇avg[2] ◦/s 0.5 88.0

AverageJointVelocities4 q̇avg[4] ◦/s 0.8 120.3

Page 63

Chapter 8. Evaluation Results

Fig. 8–1: Total electric energy consumption for all trajectories.

Figure 8–1, the x-axis represents q2[2], ranging from −100 ◦ to 20 ◦, with a resolution,
i.e. step size, of 1 ◦. With the same resolution, the y-axis ranges from 0 ◦ to 140 ◦,
representing q2[4]. Hence, the plot in Figure 8–1 comprises the full 2D grid in evaluation
space spanned by the two evaluation parameters. The third dimension in the plot, that
is, the color bar, shows the spectrum of electric energy consumption Eel in watt-seconds.
The resulting energy consumption for all trajectories ranges from Eel,min = 19.46 Ws
in violet, corresponding to [q2[2] = 0 ◦, q2[4] = 0 ◦], to Eel,max = 110.02 Ws in red,
corresponding to [q2[2] = −100 ◦, q2[4] = 140 ◦].
The differences in electric energy consumption between neighbouring solutions are
relatively homogeneous and smooth. Neighbouring solutions here refers to the 2D grid
of evaluation parameters, and thus refers to trajectories being similar and only differing
slightly in the intermediate configuration q2. An accumulation of trajectories with very
low electric energy consumption can be identified for values of q2[2] and q2[4] close to
zero degree. A clear trend towards higher energy consumption can be seen when going
towards trajectories, in which both the second and fourth joint move significantly.

Since on all trajectories, only the first, second and fourth joint of the Panda robot
move actively, while the remaining joints hold their positions, the individual electric
energy consumption of these three joints are depicted in Figures 8–2, 8–3 and 8–4. All
these figures show the two evaluation parameters q2[2] and q2[4] on the x- and y-axis,
respectively. The color bar represents the electric energy consumption of the first joint
in Figure 8–2, the second joint in Figure 8–3 and the fourth joint in Figure 8–4.

Looking at Panda’s first joint motor and its electric energy consumption on all trajectories
visualized in Figure 8–2, an accumulation of high energy consumption values can
be identified for all trajectories with −85 ◦ ≤ q2[2] ≤ −40 ◦ and q2[4] ≈ 85 ◦, with the
maximum Eel,max[1] = 40.27 Ws for q2[2] = −74 ◦ and q2[4] = 85 ◦. Besides that, clearly
the lowest energy consumption values result from trajectories with q2[4] ≈ 0 ◦ and
q2[2] = −100 ◦. Indeed, the minimum electric energy consumption of the first joint motor

Page 64

Chapter 8. Evaluation Results

Fig. 8–2: Electric energy consumption of
the first joint for all trajectories.

Fig. 8–3: Electric energy consumption of
the second joint for all trajectories.

Fig. 8–4: Electric energy consumption of
the fourth joint for all trajectories.

Eel,min[1] = 5.08 Ws is obtained on the trajectory [q2[2] = −100 ◦, q2[4] = 0 ◦].
Going into more detail, Figure 8–3 depicts the energy consumption of the Panda robot’s
second joint motor. The lowest electric energy consumption of this motor Eel,min[2] =
4.78 Ws is obtained on the trajectory [q2[2] = 1 ◦, q2[4] = 76 ◦]. In general, the lowest
electric energy consumption of the second joint motor is obtained on trajectories, where
q2[2] remains close to zero, independent from the value of q2[4]. The solution leading
to the maximum of all energy consumptions of the second joint motor corresponds
to the trajectory [q2[2] = −100 ◦, q2[4] = 126 ◦] and results in Eel,max[2] = 63.88 Ws.
Furthermore, a trend can be seen, showing a higher electric energy consumption for
smaller values of q2[2], while the fourth joint angle q2[4] shows almost no influence on
Eel[2].
Lastly, Figure 8–4 shows the electric energy consumption of the fourth joint motor for
all trajectories. The minimum for the fourth joint lies at Eel,min[4] = 1.31 Ws on the
trajectory corresponding to [q2[2] = 20 ◦ and q2[4] = 0 ◦, while the maximum lies at
Eel,max[4] = 35.64 Ws for [q2[2] = −86 ◦, q2[4] = 140 ◦]. This plot clearly shows, the
smaller the fourth joint angle at q2, the lower the fourth joint motor’s electric energy
consumption. On trajectories with lots of movement in both the second and fourth joints,
the fourth joint motor consumes the most electric energy. Thus, as opposed to the
electric energy consumption of the second joint motor being almost independent from
q2[4], Eel[4] is clearly influenced by the movement of the second joint.

In order to gain a deeper understanding of the behaviour of the electric energy con-

Page 65

Chapter 8. Evaluation Results

sumption of the robot on different trajectories, Figures 8–5 and 8–6 visualize the relation
between the total electric energy consumption and the overall distance covered by the
robot.

For all simulated trajectories, Figure 8–5 shows the correlation between the robot’s
total electric energy consumption Eel on the y-axis and the overall joint distance sjoint,
specified in degree. This joint distance is simply obtained by summing up the absolute
values of the changes in joint angles for all time steps and all joints. On all trajectories,
the shortest joint distance covered equals sjoint,min = 177.5 ◦ for [q2[2] = 0 ◦, q2[4] =
0 ◦], while the longest joint distance lies at sjoint,max = 590.2 ◦ on the trajectory with
[q2[2] = −100 ◦, q2[4] = 140 ◦]. Figure 8–5 shows, that the trajectory with the highest
total joint distance sjoint,max simultaneously represents one of the highest electric energy
consumptions Eel = 109.95 Ws. Furthermore, the trajectory with the lowest joint distance
sjoint,min corresponds to Eel,min = 19.46 Ws. In general, the figure shows that on
trajectories with a total joint distance of approximately sjoint = 400 ◦, the range of energy
consumption values is the highest. As an example, the trajectory [q2[2] = 0 ◦, q2[4] =
140 ◦] leads to sjoint = 428.8 ◦ and an energy consumption of Eel = 34.42 Ws, while
the trajectory [q2[2] = −91 ◦, q2[4] = 88 ◦] results in almost the same joint distance
sjoint = 429.0 ◦ but consumes Eel = 100.21 Ws of electric energy. Overall, a slight
tendency towards high electric energy consumption for trajectories with high joint
distance and vice-versa can be identified.
Similarly, Figure 8–6 visualizes the relation between total electric energy consumption
and distance covered in Cartesian space, that is, the total distance in meters the
robot’s end effector moves on the trajectories. The figure shows, that on the trajectory
[q2[2] = −100 ◦, q2[4] = 140 ◦], the robot has to cover the shortest Cartesian distance,
sCart,min = 2.17 m, of all trajectories. This trajectory results in the highest electric energy
consumption Eel,max = 110.02 Ws. Furthermore, the trajectory with the longest Cartesian
distance of sCart,max = 2.90 m results in a relatively low electric energy consumption
of Eel = 39.86 Ws and corresponds to the trajectory [q2[2] = 20 ◦, q2[4] = 140 ◦].
Additionally, Figure 8–6 shows an accumulation of trajectories with high electric energy
consumption for relatively small Cartesian distances. Trajectories on which the robot’s
end effector covers long Cartesian distances tend to result in relatively low electric
energy consumption. However, in contrast to these observed tendencies, the minimum
electric energy consumption Eel,min results from a trajectory with a rather short Cartesian
distance of sCart = 2.27 m.

Finally, Figure 8–7 shows a 3D plot, visualizing the relation between total Cartesian
distance sCart, total joint distance sjoint, trajectory execution time t in seconds and total
electric energy consumption Eel. In general, no clear relation between the four visualized
objective values can be identified. However, this figure highlights an accumulation of
high electric energy consumption values on trajectories with short Cartesian distance,
long execution time and long joint distance. Additionally, a trend towards lower electric
energy consumption Eel for longer Cartesian distances sCart, similar to the observation
in Figure 8–6, can be observed. The general influences of sjoint on the electric energy
consumption as highlighted in Figure 8–5 can also be examined here. The trajectory
execution time t seems to have the least influence on the robot’s total electric energy

Page 66

Chapter 8. Evaluation Results

Fig. 8–5: Electric energy consumption over
joint distance for all trajectories.

Fig. 8–6: Electric energy consumption over
Cartesian distance for all trajectories.

Fig. 8–7: 3D representation of total Cartesian and joint distance, execution time and electric
energy consumption for all simulated trajectories.

consumption.

In Appendix B, additional results listed in Table 8–1 obtained from the evaluation
performed here are visualized. However, they are not part of the main evaluation and
discussion of the energy-optimality of robot trajectories.

8.2 Robotic Bin Picking Evaluation

The results presented in this section originate from the exemplary application of robotic
bin picking in the context of the SAINT project, as explained in Section 7.3. In this
application, the evaluation framework is used to evaluate the positioning of the Panda
robot inside an industrial plant. This is done by identifying robot positions that allow the
robot to successfully perform the whole process of bin picking, and subsequently analyse
these positions for execution time and distance covered by the robot. As a reference,
the 3D grid spanned by the three main evaluation parameters of the evaluation space

Page 67

Chapter 8. Evaluation Results

is depicted in Figure 7–7. In the following, successfully performing bin picking refers
to the robot being able to follow all seven waypoints pi, i ∈ {1...7} (see Section 7.3.1)
without collision. The corresponding robot position is denoted a valid position. Table
8–2 summarizes all evaluation parameters and objective values of this evaluation.

For all robot positions simulated in this evaluation, Figure 8–8 visualizes their ability
to perform the complete process of bin picking. The x-, y- and z-position offsets are
denoted SockelXPosOffset, SockelYPosOffset, SockelZPosOffset, respectively. Red
circles correspond to robot positions that lead to a successful bin picking, while the violet
circles represent all solutions for which the robotic bin picking process was terminated
early. As mentioned in Section 7.3.3, besides the three position parameters, a fourth,
boolean, evaluation parameter is specified. This parameter determines, if a special
geometry for the box holding the clothing object is simulated, which models the true box
geometry of the industrial plant more closely and leads to a more narrow aperture of
the box (see Figure 7–8). To this end, the robotic bin picking process was simulated
twice for each robot position. Correspondingly, Figure 8–8 shows the results with the
simple box geometry, and Figure 8–9 equally illustrates the results of all evaluations in
which the complex box geometry was simulated.

In total, 1296 robot positions were tested for both types of boxes, respectively. With the
simple box geometry, the results in Figure 8–8 show that overall 139 valid positions, that
is, 10.73 % of all simulated positions, exist. In contrast, only 46 positions, i.e. 3.55 %,
allowed the robot to completely move along all waypoints when falling back to the
complex box geometry. All valid positions for bin picking with the complex box geometry
are also valid positions when simulating the simple box geometry. Going into more

Tab. 8–2: Evaluation parameters and objective values of the robotic bin picking evaluation.

Name Symbol Unit Min Max

SockelXPosOffset xpos m −0.4 0.15

SockelYPosOffset ypos m −0.2 0.2

SockelZPosOffset zpos m −0.4 0.15

UseSimpleBoxGeometry

FullTrajectoryExecuted − − 0 1

TrajectoryExecutionTime t s 11.94 19.39

TotalJointDistance sjoint
◦ 1643.9 3590.3

TotalCartesianDistance sCart m 3.56 9.14

UseComplexBoxGeometry

FullTrajectoryExecuted − − 0 1

TrajectoryExecutionTime t′ s 12.90 17.46

TotalJointDistance s′joint
◦ 1836.3 3031.0

TotalCartesianDistance s′Cart m 3.64 4.84

Page 68

Chapter 8. Evaluation Results

Fig. 8–8: 3D representation of all evaluated robot positions and their ability to perform bin
picking with the simple box geometry. Red : bin picking successfully performed, violet : bin
picking terminated early.

Fig. 8–9: 3D representation of all evaluated robot positions and their ability to perform bin
picking with the complex box geometry. Red : bin picking successfully performed, violet : bin
picking terminated early.

detail, using the simple box geometry, the positions in Figure 8–8 leading to a successful
bin picking have the following characteristics. It is important to note, that the position
values in evaluation space represent the offset of the robot position from its origin, which
is set as the position of the robot depicted in Figure 7–6.

• X-positions: Of the total range of x-position offset values, only those in the
interval [−0.2 m, 0.15 m] lead to at least one complete bin picking process.

Page 69

Chapter 8. Evaluation Results

Fig. 8–10: Execution time of each bin picking process for all valid positions with the simple
box geometry.

• Y -positions: For the y-position offset, only one solution with a negative offset is
valid, more precisely, only one solution for ypos = −0.05 m lead to a successful bin
picking. Furthermore, all simulated positive y-position offset values lead to at least
one valid solution.

• Z-positions: Similar to the x-position offsets, at least one valid solution exists for
all values in the interval [−0.2 m, 0.15 m] simulated for the z-position offset.

Correspondingly, the following lists the characteristics of valid positions depicted in
Figure 8–9 corresponding to valid solutions:

• X-positions: Of the total range of x-position offset values, only those in the
interval [−0.2 m, 0 m] lead to at least one complete bin picking process.

• Y -positions: Only y-position offsets in the interval [0.05 m, 0.2 m], i.e. only
positive position offsets, lead to at least one successful bin picking.

• Z-positions: For all values in the interval [−0.1 m, 0.15 m] simulated for the
z-position offset at least one valid solution exists.

Besides these results, the objective values of the evaluation space defined for this
application also comprise the total execution time in seconds required for the bin picking
process, as well as the corresponding Cartesian and joint distance covered by the robot
during bin picking, in meters and degress, respectively. The results for the execution
time are depicted in Figure 8–10 for all valid positions with the simple box geometry. All
non-valid solutions are removed from the plots and not considered in the scale of the
color bar. The results corresponding to the simulations carried out with the complex box
geometry can be found in Appendix C.

Page 70

Chapter 8. Evaluation Results

Fig. 8–11: Relation between total Cartesian
distance, total joint distance and execution
time with the simple box geometry.

Fig. 8–12: Relation between total Cartesian
distance, total joint distance and execution
time with the complex box geometry.

The results of the execution time obtained from all valid positions for the simple box
geometry, depicted in Figure 8–10, show a wide range of values. The minimum execution
time was tmin = 11.94 s, corresponding to the robot position with xpos = 0 m, ypos =
0.05 m, zpos = −0.05 m. The longest execution time was obtained from the robot
position corresponding to xpos = 0 m, ypos = −0.05 m, zpos = 0.1 m, with a total time
of tmax = 19.39 s. For reference, the minimum execution time for bin picking with the
complex box geometry was t′min = 12.90 s for the robot position xpos = −0.1 m, ypos =
0.1 m, zpos = 0 m, while position offset xpos = 0 m, ypos = 0.1 m, zpos = 0 m resulted
in the longest time, t′max = 17.46 s. Furthermore, Figure 8–10 shows a trend towards
higher execution time for valid positions with positive offset in the z-direction. A similar
trend is visible for the solutions with the complex box geometry. The longest execution
time seems to be an outlier when compared to all other valid solutions in Figure 8–10.

Finally, Figures 8–11 and 8–12 depict the relation between three different objective
values: (1) execution time in seconds on the vertical axis; (2) total joint distance in
degree on the horizontal axis; (3) total Cartesian distance in meters on the color bar.
Here, Figure 8–11 shows the results obtained for all valid positions with the simple box
geometry, Figure 8–12 displays the same results with the complex box geometry.

Figure 8–11 clearly highlights, that the aforementioned outlier concerning the execution
time for position xpos = 0 m, ypos = −0.05 m, zpos = 0.1 m also reflects in total joint and
Cartesian distance covered by the robot during bin picking, simultaneously representing
the position with the highest joint distance, Cartesian distance and execution time.
Looking at the results obtained from simulating the complex box geometry, two similar
outliers can be identified. Furthermore, all remaining solutions have very similar values
for the total Cartesian distance (sCart ≈ 4 m). Besides that, an almost linear relation
between trajectory execution time and total joint distance can be identified in Figure
8–11. The minimum joint distance sjoint,min = 1643.9 ◦ is obtained when positioning the
robot with an offset of xpos = −0.2 m, ypos = 0.2 m, zpos = −0.2 m. Furthermore, the
position offset xpos = −0.1 m, ypos = 0.1 m, zpos = 0 m results in s′joint,min = 1836.3 ◦,
while at the same time corresponding to the position offset leading to t′min = 12.90 s.

Appendix C shows additional results obtained from the evaluation of robotic bin picking
in the SAINT project. However, these results will not be discussed any further.

Page 71

Chapter 8. Evaluation Results

Page 72

Chapter 9. Discussion

9 Discussion

This chapter discusses and critically assesses the results of the two exemplary applica-
tions presented in Chapter 8. The purpose of this chapter is to examine the results in
detail, identify the application- and objective-specific optimal solutions, observe relations
between objective values and evaluation parameters, and understand and explain the
interdependencies of the various presented evaluation results. Section 9.1 discusses the
results obtained from the robot trajectory evaluation presented in Section 8.1, Section
9.2 assesses the results of the robotic bin picking evaluation showcased in Section 8.2.

9.1 Energy-Optimal Robot Trajectories

As explained in Section 7.2.2, the joint-side torques of a robot follow the equations of
motion, and thus entail complex interrelations between the robot links, such as mass
and inertia coupling, as well as the influence of gravitational forces. Thus, it is difficult
to explain the reasons behind the obtained energy consumption values, since many
factors have to be considered, that might not be intuitively graspable. This section
aims at discussing the results of the robot trajectory evaluation and finding plausible
explanations for the observed behaviour.

Looking at Figure 8–1, the energy-optimal intermediate configuration of the Panda robot
on the trajectories simulated in this evaluation corresponds to [q2[2] = 0 ◦, q2[4] = 0 ◦].
Below, five configurations on such a trajectory are listed, adding the configurations q1−2
between q1 and q2 and q2−3 between q2 and q3.

q1 = (0 ◦ 0 ◦ 0 ◦ 0 ◦ 0 ◦ 0 ◦ 0 ◦)

→ q1−2 = (−45 ◦ 0 ◦ 0 ◦ 0 ◦ 0 ◦ 0 ◦ 0 ◦)

→ q2 = (−90 ◦ 0 ◦ 0 ◦ 0 ◦ 0 ◦ 0 ◦ 0 ◦)

→ q2−3 = (−135 ◦ 0 ◦ 0 ◦ 0 ◦ 0 ◦ 0 ◦ 0 ◦)

→ q3 = (−180 ◦ 0 ◦ 0 ◦ 0 ◦ 0 ◦ 0 ◦ 0 ◦).

Figure 9–1 shows the Panda robot in Unity for these five configurations. Furthermore,
the trajectory leading to the highest electric energy consumption corresponds to [q2[2] =
−100 ◦, q2[4] = 140 ◦], again with five configurations on this trajectory specified below.

q1 = (0 ◦ 0 ◦ 0 ◦ 0 ◦ 0 ◦ 0 ◦ 0 ◦)

→ q1−2 = (−45 ◦ −50 ◦ 0 ◦ 70 ◦ 0 ◦ 0 ◦ 0 ◦)

→ q2 = (−90 ◦ −100 ◦ 0 ◦ 140 ◦ 0 ◦ 0 ◦ 0 ◦)

→ q2−3 = (−135 ◦ −50 ◦ 0 ◦ 70 ◦ 0 ◦ 0 ◦ 0 ◦)

→ q3 = (−180 ◦ 0 ◦ 0 ◦ 0 ◦ 0 ◦ 0 ◦ 0 ◦).

Page 73

Chapter 9. Discussion

Fig. 9–1: Five configurations on the energy-optimal trajectory. The motion is progressing in
clock-wise direction.

Fig. 9–2: Five configurations on the trajectory with the highest electric energy consumption.
The motion is progressing in clock-wise direction.

In Figure 9–2 these five configurations are depicted.

Comparing the scenarios of the robot moving on the different trajectories to a human,
picking up a cup from a table on his/her left, and releasing it on another table to the
right, the observed behaviour of the robot’s electric energy consumption is unexpected.
Intuitively, a human would likely pick up the cup, bend the elbow and lower the arm from

Page 74

Chapter 9. Discussion

the shoulder, thus forming a v-shape with the lower and upper arm, in order to bring
the cup close to the body. Going back to the context of robot motion, this idea would
correspond to the solutions where the intermediate configurations on the trajectory bring
the end effector close to the axis of rotation. In the evaluation space of this application,
such a trajectory corresponds to a lift of the robot coming from the second joint, i.e.
q2[2]� 0 ◦, and a simultaneous downwards bend of the robot’s elbow coming from the
fourth joint, i.e. q2[4]� 0 ◦, thus forming a reverse v-shape. On the contrary, as shown in
Figure 8–1, these trajectories seem to result in the highest electric energy consumptions
in the whole evaluation space. However, there are multiple reasons why the human
analogy does not necessarily apply to this application. Firstly, the underlying criteria
that lead to the human moving the arm in a specific way are not fully understood [88].
Besides energy efficiency, there might be other, conflicting objectives for the selected
motion, leading to a trade off that does not comply with the energy-optimal solution.
Secondly, many of the evaluated trajectories do not comply with the physiological range
of motion of a human elbow and shoulder, such as bending the lower arm downwards
while keeping the upper arm straight, or forming a reverse v-shape with the lower and
upper arm.

The results show a strong bias towards higher electric energy consumption when in-
creasing the total joint motion on the trajectory. Clearly, the highest energy consumption
values accumulate at trajectories with q2[2] < −60 ◦ and q2[4] > 80 ◦. Reducing the
amount of joint motion comes along with a smooth decrease in total electric energy
consumption. These observations are directly reflected in, both Figures 8–5 and 8–6,
which relate the electric energy consumption to the joint and Cartesian distance covered
by the robot, respectively. A long distance in joint space corresponds to a short distance
in Cartesian space, since controlling both joints in the way specified by the evaluation
parameters moves the end effector close to the robot socket, and hence reduces the
overall Cartesian distance. While there is no linear relation between these distance
values and the electric energy consumption, the evaluations highlight, a shorter total
joint distance, that is, a longer Cartesian distance, results in lower electric energy
consumption.

Generally, the torque exerted on the second joint through gravity is the highest when
keeping the robot arm straight, i.e. q2[2] = 0 ◦ and q2[4] = 0 ◦, since the COM rotating
around the second joint is relatively far away from its pivot point, while at the same
time the axis of rotation and direction of gravity are fully aligned. Both, lifting the robot
arm from the second joint or bending the elbow downwards, i.e. q2[4] > 0 ◦, reduce
the impact of this force onto the joint. However, the power required by each motor to
realise the additional joint motion clearly outweighs the energy savings resulting from
the reduced impact of gravitational forces onto the joints. Additionally, the coupling
between joint torques and joint accelerations through the off-diagonal entries of the
mass matrix M(q) adds up. This means, due to the impact of inertia, acceleration in
one joint applies additional stress onto another joint, thus increasing its required motor
power to realise a specific motion.

Looking closer at the individual energy consumption values for joints one, two and four
in Figures 8–2, 8–3 and 8–4, allows to break down the overall results into its roots.

Page 75

Chapter 9. Discussion

The motor of Panda’s first joint consumes the least electric energy when the second
joint fully lifts the robot upwards and the fourth joint remains at 0 ◦. This most likely
arises from the fact that lifting the robot arm into a vertical position drastically reduces
the inertia counteracting the rotational motion of the first joint. In contrast, an angle
at the intermediate configuration of q2[4] ≈ 85 ◦ results in the highest electric energy
consumption for a large range of values of q2[2]. Again, complex coupling between joints
through their inertial properties and angular accelerations could be the reason behind
these observations.
As shown in Figure 8–3, the second joint requires the highest electric energy input of
all joints, on average. This lies in the fact that a large fraction of the robot’s mass is
connected to this joint, while its axis of rotation is, for a horizontally stretched robot arm,
perpendicular to the effective direction of gravity. Consequently, lifting the robot arm by
decreasing q2[2] consumes lots of electric energy. Even though the influence of gravity
onto the second joint is the largest for q2[2] = 0 ◦, keeping the joint still requires by far
the least electric energy.
Additionally, the electric energy consumption of the fourth joint motor depicted in Fig-
ure 8–4 shows similar behaviour, indicating a significant biases towards high energy
consumption for trajectories with much joint motion.

Ultimately, the discussed results show that the total amount of distance covered by all
joints of the robot constitutes the major fraction of electric energy consumption on a
trajectory. These results do not comply with the initially expected evaluation outcome,
which was deduced from the aforementioned human analogy.

9.2 Optimal Robot Positions for Bin Picking

Identifying valid positions for robotic bin picking in the industrial plant of the SAINT
project by looking at the plots in Figures 8–8 and 8–9 matches the expected results. Due
to the more narrow opening of the complex box compared to the simple one, the scope
of valid positions for the Panda robot is reduced by about 100 possibilities. Moreover,
none of the positions with ypos ≤ 0 m, i.e. with a y-position of the robot lower than the
origin, lead to a successful bin picking when the robot is confronted with the complex
box geometry. This comes due to the fact that the narrow box opening leads to parts
of the fourth and fifth link colliding with the box. With a wider opening, the robot has
more space to move into the box without the risk of touching it. To this end, there exist
also valid solutions for ypos ≤ 0 when using the simple box shape. For the exact same
reason, the reduced scope of valid positions reflects in the possible position offsets in
x- and z- direction when comparing the two types of boxes. Generally, the maximum
position offsets xpos = 0.15 m and zpos = 0.15 m tested in this evaluation represent
valid positions when picking objects out of the simple box. These offsets correspond
to robot positions very close to both the conveyor and the box, which ensures that the
box itself, as well as the position of the conveyor to place the object upon are within
range of motion of the robot. As a result, moving the robot further away, at some point it
becomes impossible for the robot to grab the object or reach the conveyor. This directly
reflects in the fact that no valid solution exists for xpos < −0.2 m and zpos < −0.2 m.
Figure 8–9 furthermore demonstrates, that the robot being too close to the conveyor

Page 76

Chapter 9. Discussion

prevents him from performing the complete bin picking process for the complex box
shape, since no position with xpos > 0 m is valid in this case. This, again, is founded on
the reduced space available to the Panda robot, resulting from the narrow box opening,
when grasping the object inside the box.

Looking into the valid positions in more detail, the time-optimal positioning of the robot
when using the simple box corresponds to xpos = 0 m, ypos = 0.05 m, zpos = −0.05 m.
However, multiple solutions exist with very similar execution times, only deviating by
a few tenths of a second. Moreover, the time-optimal robot position when confronted
with the complex box geometry corresponds to xpos = −0.1 m, ypos = 0.1 m, zpos = 0 m,
while simultaneously resulting in the lowest distance covered in joint space. Generally,
the results in Figure 8–10 show that an increase in the z-position offset simultaneously
increases the time required for the complete bin picking process. Furthermore, a
similar relation for the x- and y-position offsets cannot be identified. Using the feature
of the evaluation framework’s point cloud visualization component, that allows the
user to re-run a simulation corresponding to a specific solution and looking at the
simulation progress, made it possible to recognise the reason behind this relation
between execution time and the robot’s zpos offset. The closer the Panda is positioned
to the box, the more difficult it is for the robot to move into the box and lift the object,
without self-colliding. If the robot stands very close to the box, a simple bend downwards
from the second joint to reach the object is not possible, since this would lead to the
robot colliding with the box’s back wall. Hence, the robot has to perform a complex
combination of joint movements, while avoiding collision between links. As a result, the
joint trajectory in MoveIt! is planned at a higher resolution, that is, with more discrete
joint configurations in critical positions, and lower joint velocities and accelerations to
ensure a successful and safe execution. As a result, the overall bin picking execution
time increases.

The outlier in Figure 8–10 with by far the longest execution time of t = 19.39 s si-
multaneously also represents the position that led to the highest overall joint and
Cartesian distances covered by the robot, which are obtained for xpos = 0 m, ypos =
−0.05 m, zpos = 0.1 m. By looking at this specific simulation, it could be observed that
the Panda robot has to perform a complex combination of joint movements to actually
reach inside the box and lift the object. Additionally, this results in a joint configuration
at the third waypoint p3—the position above the box with the clothing object in the
gripper—which does not allow the robot to simply rotate clockwise around the first joint
to reach the fourth waypoint p4 above the conveyor, since it would exceed some of
the robot’s joint limits and likely result in a self-collision at the same time. Instead, the
trajectory is planned such that the robot rotates counter-clockwise, thereby covering a
long joint and Cartesian distance around joint one, while simultaneously ensuring that
the gripper remains oriented vertically by additionally moving multiple robot joints in a
complex manner. Thereby, the time necessary to execute the full trajectory, as well as
the total joint and Cartesian distance covered during bin picking increase drastically.

Figure 9–3 depicts the robot position in the Unity simulation model leading to the
shortest (left) and longest (right) execution time. Clearly, the robot position on the
right is very close to the box and lower than the time-optimal position on the left, and

Page 77

Chapter 9. Discussion

Fig. 9–3: Robot positions leading to shortest (left) and longest (right) execution time for bin
picking.

thus confirms the aforementioned reasoning behind the long execution time. Further
comparing these results to the execution time of all valid positions with the complex box
geometry, neglecting the outlier discussed above, the average trajectory execution time
increases by about one second. This, again, is based on the fact that with the reduced
space available to the robot when grasping the object, especially the fifth robot link
comes very close to the box, which is why the discretization of the trajectory in these
cases includes more joint configurations with less distance in between and leads to
reduced joint velocities during bin picking.

In Figures 9–4 and 9–5, three robot configurations on the bin picking trajectory are
displayed, respectively. Figure 9–4 corresponds to the robot position resulting in the
lowest execution time and joint distance when simulating the complex box geometry,
xpos = −0.1 m, ypos = 0.1 m, zpos = 0 m. In contrast, Figure 9–5 displays the joint
configurations on a trajectory obtained with the robot position xpos = 0.05 m, ypos =
0.05 m, zpos = 0.15 m, i.e. a position very close to the box, resulting in a longer
execution time t = 15.81 s and joint distance sjoint = 2281.0 ◦. Both figures show
three configurations: (1) the joint configuration at waypoint p2 inside the box, (2) the
joint configuration at waypoint p5 at the conveyor, (3) the joint configuration between
waypoints p6 and p7. The figures support the reasoning behind the difference in execution
time and joint distance for robot positions very close to the box.

Finally, Figures 8–11 and 8–12 illustrate the relation between the total joint and Cartesian
distance and the trajectory execution time. First of all, the Cartesian distance covered
by the robot is almost identical for all robot positions except the aforementioned outlier.
Hence, this dimension does not carry much information, which is also reflected in
the two figures showing that the colors of all solutions are almost identical. This
similarity in Cartesian distances arises from the fact that the same seven waypoints
pi, i ∈ {1...7} were used to generate the bin picking trajectory for all robot positions,

Page 78

Chapter 9. Discussion

Fig. 9–4: Bin picking for the robot position with the lowest execution time and joint distance.

Fig. 9–5: Bin picking for the robot position with a high execution time and joint distance.

and thus fully matches the expectations. Besides that, these results show a clear
tendency towards higher execution time for longer joint distances. This observation fits
the explanation given above, that certain positions require the robot to perform very
complex combinations of joint motions, in order to avoid self-collision or collision with
the box, which increases the total execution time as explained above. Obviously, all
motions simultaneously involving several joints increase the total joint distance.

Page 79

Chapter 9. Discussion

Page 80

Chapter 10. Conclusion

10 Conclusion

The main objective of using the evaluation framework for simulating and evaluating
different robot trajectories with the Panda robot was to identify the energy-optimal
trajectory. In other words, the goal was to find the trajectory—parametrized by the
second and fourth joint angle of the trajectory’s intermediate configuration—leading to
the least electric energy consumption of the Panda robot. The results show that for the
trajectory with [q2[2] = 0 ◦, q2[4] = 0 ◦] the electric energy consumption is minimized
to Eel,min = 19.46 Ws. In conclusion, the evaluation highlights, that moving the end
effector close to the main axis of rotation by actively controlling both the second and
fourth joint—similar to how a human would most likely move his/her arm to pick and
place a cup—leads to the highest electric energy consumption of the Panda robot. This
demonstrates, that the electric power required by the joint motors to actively move each
joint significantly exceeds the benefit from reducing influence of gravity onto the joint
motors by moving the robot’s mass close to its origin. To this end, in the simulated pick
and place application, the most energy efficient trajectory result from moving as few
joints as possible, thus only rotating the first joint 180 ◦. However, it is important to note
that these results have to be treated carefully, since many model assumptions were
made for both controlling the Panda robot in Unity and modelling its joint motors.

In summary, the goal of evaluating different robot positions for bin picking in the context
provided by the SAINT project was to identify the scope of valid robot positions available
in the project. Again, a position is valid in the sense that the robot is able to perform the
complete process of bin picking simulated in Unity (move across all seven Cartesian
waypoints pi, i ∈ {1...7}) without collision. Furthermore, two different box geometries
containing the clothing object were considered. In total, 10.73 % of all simulated positions
turned out to be valid when considering the simple box geometry, while only 3.55 % are
valid when using the complex box geometry. This shows, that the scope of possible
positions available in the project is rather small. Presumingly, the main reason for that is
the relatively small Panda robot’s size and range of motion, compared to its workspace in
the industrial plant. Furthermore, the results show, there is a relation between bin picking
trajectories with low trajectory execution time and short joint distance. Time-optimality,
i.e. the shortest execution time, is obtained for the robot position corresponding to the
offset xpos = 0 m, ypos = 0.05 m, zpos = −0.05 m with the simple box geometry and
xpos = −0.1 m, ypos = 0.1 m, zpos = 0 m for the complex box geometry. In case of the
simulation with the complex box, the same position offset results in the least distance
covered by the robot in joint space. In conclusion, the robot position has to be chosen
very carefully, in order to ensure a safe and collision-free bin picking, while considering
influence of specific robot position offsets onto execution time and total joint distance.

The two evaluations carried out by means of the evaluation framework developed in
this thesis demonstrate its wide range of applicability and its capabilities in extensively
evaluating decision criteria and design alternatives of mechatronic systems in simulation.
As shown in the two exemplary applications, based on an existing simulation model

Page 81

Chapter 10. Conclusion

in Unity, the evaluation framework can be used to efficiently evaluate the simulation
objectives for all alternatives and visualize the resulting multi-criteria point clouds in
a powerful GUI, that allows the user to gain an in-depth understanding of the impact
of design modifications on the overall system performance from multiple perspectives.
The utilization of the evaluation framework in the two presented applications and the
presented results, furthermore demonstrate the framework’s flexibility in examining the
solution space and its independence from the actual context of the application and the
underlying evaluation objectives. To this end, the evaluation framework serves as a
great instrument for virtual prototyping of mechatronic systems.

Looking back at the objectives and requirements for this thesis, as presented in Chapter
3, ultimately the main goal is satisfied and all specified requirements are met. All
components of the evaluation framework were implemented and all functionalities tested
successfully. Furthermore, both initially specified scenarios used to demonstrate the
evaluation framework’s capabilities were implemented, evaluated with the framework’s
execution and evaluation component, and the application-specific optimal solutions
identified by using the framework’s Point Cloud Visualization component. Additionally,
a strong focus and great amount of time was put into modelling the Panda robot
in a physically realistic simulation environment by estimating the robot’s inertial and
energetic properties, as well as controlling the robot motion in Unity without the access
to advanced and sophisticated control techniques for the Panda robot. Due to time
constraints, the optional requirement of integrating machine learning algorithms into
the framework was not dealt with. However, the general idea of integrating optimization
algorithms into the evaluation framework is briefly discussed in the final Chapter 11.

Conclusively, the evaluation framework developed in this thesis proves to be a helpful
tool for basic, general evaluation of simulation models, that is, for performing virtual
prototyping on mechatronic systems. With the brute-force evaluation of all alternatives
in the evaluation space, and the general, interactive visualization of the results, the
evaluation framework poses a great instrument for initial, extensive evaluation of virtual
prototypes, and can serve as the basis for more detailed model-based design and virtual
prototyping.

Page 82

Chapter 11. Outlook

11 Outlook

Due to the framework’s generic nature, many possibilities for future applications, further
improvements and framework extensions are provided, which will be briefly discussed
in this chapter. Firstly, Section 11.1 presents two applications, in which the evaluation
framework is intended to be used in the future. Subsequently, Section 11.2 discusses
possible extensions of the evaluation framework, ranging from the utilization of various
optimization techniques to the integration and combination of additional simulation
software solutions.

11.1 Future Applications

Generally, the evaluation framework can be used to evaluate any simulation model of
any system kind, independent from the field of application and evaluation objectives.
Even the software used as simulation environment is not restricted to Unity only. In the
following, two specific applications will be presented, in which the evaluation framework
is intended to be used in the near future, alongside the objectives of deploying the
framework in these applications.

11.1.1 Evaluation of Geometric and Dynamic Robot Parameters
Since no information on the Panda robot beyond the technical details specified in the
publicly available datasheets is available, some assumptions on the simulation model
of the Franka Emika Panda robot were taken over from specifications of a robot arm
created at Siemens AG in Munich. Consequently, Siemens intends to deploy the
evaluation framework in the near future for evaluating their own robot arm. With full
technical specification of all robot components, including the exact dynamic parameters
of the robot, detailed motor models with temperature and speed dependent efficiencies
and information regarding workload-specific motor voltage and current, there is no need
for all the assumptions made for the Panda robot as presented in Section 7.2. In contrast
to the evaluation carried out in this thesis, using the extensive information available
about the Siemens robot drastically increases the degree of detail, accuracy and validity
obtained from evaluating the robot arm with the developed evaluation framework.
Similar to the objective presented in this thesis, one result of interest for Siemens is the
total electric energy consumption of the robot when deployed in different environments.
Beyond that, different design choices of the robot arm and their influence on the overall
performance, as well as the impact of different dimensioning of joint motors and, e.g.,
the results of adding an additional joint at the end effector shall be investigated.

11.1.2 Testing and Evaluation of the Complete SAINT Project Implementation
The bin picking scenario implemented and evaluated in Unity in this thesis is part of
the SAINT project at TUM. In order to keep the complexity of the implementation of
this scenario within the scope of this thesis, the full process of bin picking with the
robot was reduced to the problem of following a trajectory parametrized by multiple

Page 83

Chapter 11. Outlook

Cartesian positions. While the results of the evaluation carried out in this context provide
meaningful insights into the scope of valid robot positions available in the industrial
plant, applying the evaluation framework to parts, or even the whole implemented
SAINT system can benefit the current state of development. All components of the
SAINT project implemented at TUM are part of a complex ROS program consisting
of various nodes realising different functionalities. To this end, as already mentioned,
the integration of MoveIt! into the evaluation framework’s execution and evaluation
component was implemented in a generic way, such that the simple ROS system only
running MoveIt! can easily be replaced by the SAINT program in the future. Connecting
the complete ROS program to the evaluation framework allows to evaluate the whole
workflow of the bin picking process. This would allow the project partners of SAINT
to efficiently evaluate, train and benchmark the implemented machine vision module
responsible for recognizing the clothing objects, the algorithm identifying valid gripper
positions and planning individual trajectories, as well as the fault recovery module for
countless different scenarios in simulation.

11.2 Framework Extensions

In this section, several future extension possibilities for the implemented framework will
be briefly discussed.

11.2.1 Mutli-Objective Design Optimization
The evaluation framework evaluates simulation models of mechatronic systems in a
brute-force, extensive manner. Each evaluation parameter has to be defined for a
specific range and step size, and the framework, subsequently, performs evaluations for
all possible combinations of evaluation parameters and visualizes the complete planning
scope, i.e. the scope of design alternatives, to the user. While this process might
be very meaningful for initial, broad model evaluation, evaluating mechatronic system
components in simulation at a later state of the development process might require
more advanced search techniques, combined with optimization methods to identify
objective-specific optimal solutions. As presented in Chapter 2, the resulting scope of
design alternatives presented to the user after extensive evaluation represents a MCDM
problem. In this context, finding the optimal solution among a collection of objective
function,s that not only influence the overall system performance individually, but also
impact each other, is referred to as multi-objective optimization, or multi-criteria design
optimization. There exist countless approaches and architectures in the literature solving
these kinds of multi-criteria optimization problems. In [89, 90] a summary and review of
existing multi-criteria and multidisciplinary design optimization methods are presented.
Genetic algorithms pose another advanced method for performing mutli-objective de-
sign optimization, see e.g. [91, 92, 93]. Furthermore, the framework could also be
extended to perform optimization by means of evolutionary algorithms as described in,
e.g. [94, 95, 96].
There exist many more approach to solve said type of problems. Extending the frame-
work by one, or even multiple of these algorithms, would allow users to combine a first,
broad and extensive evaluation to obtain an idea about the scope of design alternatives
worth considering, and use optimization to identify specific optimal solutions.

Page 84

Chapter 11. Outlook

11.2.2 External Software Interfaces
Another future extension possibility is to integrate other simulation software solutions
into the evaluation framework. As shown in Section 7.3.2, the execution and evalu-
ation component of this framework was easily extended by an interface to any ROS
system running on a Linux machine. Similarly, additional interfaces can be added to the
evaluation framework and integrated especially into the workflow of the execution and
evaluation component. As it is often the case in virtual prototyping and virtual commis-
sioning, experts from different domains need to test sub-component, domain specific
features and design choices of the complete system, in order to see their impact on the
overall system behaviour. Ideally, the process of testing these design alternatives does
not proceed individually and detached from other domain-specific design modifications.
By extending the execution and evaluation component to communicate and combine
other simulation software, like e.g. MATLAB/Simulink and ROS, it would be possible
to, e.g., simulate control-software of a robot arm in MATLAB/Simulink, generate robot
trajectories in MoveIt! and combine both results in a physically realistic simulation model
in Unity. Consequently, the extended framework would make it possible to evaluate
simulation models of mechatronic systems by simulating domain-specific system com-
ponents in their respective optimized simulation environment and combine the results
into one Unity simulation, thereby closely and accurately mirroring the physical product
in a realistic simulation environment.
Furthermore, a possible extension for the evaluation framework is the implementation of
the parallel execution of simulations on GPUs, in order to increase the efficiency of the
framework even more.

Page 85

Chapter 11. Outlook

Page 86

Bibliography

Bibliography
[1] R. Wagner, B. Schleich, B. Haefner, A. Kuhnle, S. Wartzack, and G. Lanza, “Chal-

lenges and potentials of digital twins and industry 4.0 in product design and
production for high performance products,” Procedia CIRP, vol. 84, pp. 88–93,
2019.

[2] G. Ferretti, G. Magnani, and P. Rocco, “Virtual prototyping of mechatronic systems,”
Annual Reviews in Control, vol. 28, no. 2, pp. 193–206, 2004.

[3] F. Zorriassatine, C. Wykes, R. Parkin, and N. Gindy, “A survey of virtual prototyping
techniques for mechanical product development,” Proceedings of the institution of
mechanical engineers, Part B: Journal of engineering manufacture, vol. 217, no. 4,
pp. 513–530, 2003.

[4] “Integrated mechanical electronic systems,” in Mechatronic Systems: Fun-
damentals. London: Springer London, 2005, pp. 1–32. [Online]. Available:
https://doi.org/10.1007/1-84628-259-4 1

[5] C. J. Paredis, A. Diaz-Calderon, R. Sinha, and P. K. Khosla, “Composable models
for simulation-based design,” Engineering with Computers, vol. 17, no. 2, pp.
112–128, 2001.

[6] B. Schleich, N. Anwer, L. Mathieu, and S. Wartzack, “Shaping the digital twin for
design and production engineering,” CIRP Annals, vol. 66, no. 1, pp. 141–144,
2017.

[7] S. Boschert and R. Rosen, “Digital twin—the simulation aspect,” in Mechatronic
futures. Springer, 2016, pp. 59–74.

[8] P. Hoffmann, R. Schumann, T. M. Maksoud, and G. C. Premier, “Virtual commis-
sioning of manufacturing systems a review and new approaches for simplification.”
in ECMS. Kuala Lumpur, Malaysia, 2010, pp. 175–181.

[9] C. G. Lee and S. C. Park, “Survey on the virtual commissioning of manufacturing
systems,” Journal of Computational Design and Engineering, vol. 1, no. 3, pp.
213–222, 2014.

[10] J. Blackborow, “Digital experiences in the physical world - are AEC and
manufacturing companies ready for real-time 3D?” A Forrester Consulting Thought
Leadership Paper Commissioned By Unity, Mar. 2020, Retrieved on: 2020-06-10.
[Online]. Available: https://create.unity3d.com/unity-forrester-study

[11] Verein Deutscher Ingenieure (VDI)-Fachbereich Produktentwicklung und Mecha-
tronik, “VDI 2206 - design methodology for mechatronic systems,” june 2004.

[12] I. Gräßler, J. Hentze, and X. Yang, “Eleven potentials for mechatronic v-model,” in
6th International Conference Production Engineering and Managment, vol. 29, no.
30.09, 2016.

[13] J. Banks, J. S. CARSON II, L. Barry et al., “Discrete-event system simulation,”
2005.

Page 87

https://doi.org/10.1007/1-84628-259-4_1
https://create.unity3d.com/unity-forrester-study

Bibliography

[14] “ns-3,” https://www.nsnam.org/, Accessed on: 2020-06-30.

[15] “OMNet++,” https://omnetpp.org/, Accessed on: 2020-06-30.

[16] “MATLAB/Simulink,” https://de.mathworks.com/products/simulink.html, Accessed
on: 2020-06-30.

[17] “Unreal Engine,” https://www.unrealengine.com/en-US/, Accessed on: 2020-06-30.

[18] “Unity,” https://unity.com/, Accessed on: 2020-06-30.

[19] “Catia - Dassault Systèmes,” https://www.catia.com/, Accessed on: 2020-06-30.

[20] “Delmia - Dassault Systèmes,” https://www.delmia.com/, Accessed on: 2020-06-30.

[21] “Adams,” https://www.mscsoftware.com/product/adams/, Accessed on: 2020-06-
30.

[22] “Altair HyperWorks,” https://altairhyperworks.com/, Accessed on: 2020-06-30.

[23] “Simscape Multibody,” https://de.mathworks.com/products/simmechanics.html, Ac-
cessed on: 2020-06-30.

[24] “Modelica language,” https://www.modelica.org/modelicalanguage, Accessed on:
2020-06-30.

[25] H.-J. Zimmermann and L. Gutsche, “Multi-criteria-entscheidungen,” in Multi-Criteria
Analyse: Einführung in die Theorie der Entscheidungen bei Mehrfachzielsetzungen.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1991, pp. 21–33. [Online].
Available: https://doi.org/10.1007/978-3-642-58198-4 3

[26] E. Triantaphyllou, “Multi-criteria decision making methods,” in Multi-criteria Decision
Making Methods: A Comparative Study. Boston, MA: Springer US, 2000, pp.
5–21. [Online]. Available: https://doi.org/10.1007/978-1-4757-3157-6 2

[27] M. Velasquez and P. T. Hester, “An analysis of multi-criteria decision making
methods,” International journal of operations research, vol. 10, no. 2, pp. 56–66,
2013.

[28] J. Mustajoki and M. Marttunen, “Comparison of multi-criteria decision analytical soft-
ware for supporting environmental planning processes,” Environmental Modelling
& Software, vol. 93, pp. 78–91, 2017.

[29] P. Korhonen and J. Wallenius, “Visualization in the multiple objective decision-
making framework,” in Multiobjective optimization. Springer, 2008, pp. 195–212.

[30] J. Gettinger, E. Kiesling, C. Stummer, and R. Vetschera, “A comparison of repre-
sentations for discrete multi-criteria decision problems,” Decision support systems,
vol. 54, no. 2, pp. 976–985, 2013.

[31] H. Chernoff, “The use of faces to represent points in k-dimensional space graphi-
cally,” Journal of the American statistical Association, vol. 68, no. 342, pp. 361–368,
1973.

Page 88

https://www.nsnam.org/
https://omnetpp.org/
https://de.mathworks.com/products/simulink.html
https://www.unrealengine.com/en-US/
https://unity.com/
https://www.catia.com/
https://www.delmia.com/
https://www.mscsoftware.com/product/adams/
https://altairhyperworks.com/
https://de.mathworks.com/products/simmechanics.html
https://www.modelica.org/modelicalanguage
https://doi.org/10.1007/978-3-642-58198-4_3
https://doi.org/10.1007/978-1-4757-3157-6_2

Bibliography

[32] C. Sinhaseni, “Unity Technologies announces Unity Simulation - a new cloud prod-
uct to train, test, or validate products and services at scale,” Unity News, Accessed
on: 2020-06-30. [Online]. Available: https://unity.com/our-company/newsroom/
unity-technologies-announces-unity-simulation-new-cloud-product-train-test-or

[33] “Unity - our company,” https://unity.com/our-company, Accessed on: 2020-06-09.

[34] S. Axon, “Unity at 10: For better—or worse—game devel-
opment has never been easier,” Ars Technica, Accessed on:
2020-06-09. [Online]. Available: https://arstechnica.com/gaming/2016/09/
unity-at-10-for-better-or-worse-game-development-has-never-been-easier/

[35] D. Helgason, “Leading Unity into the future,” Unity Blog, Accessed
on: 2020-06-09. [Online]. Available: https://blogs.unity3d.com/2014/10/22/
leading-unity-into-the-future/

[36] J. Brodkin, “How Unity3D became a game-development beast,” Dice, Accessed
on: 2020-06-09. [Online]. Available: https://insights.dice.com/2013/06/03/
how-unity3d-become-a-game-development-beast/

[37] D. Adams, “No limits – Unity in cross industry development,” Unity Blog,
Accessed on: 2020-06-10. [Online]. Available: https://blogs.unity3d.com/2014/06/
05/no-limits-unity-in-cross-industry-development/

[38] “Unity industrial bundle,” https://unity.com/solutions/
automotive-transportation-industrial-bundle, Accessed on: 2020-06-09.

[39] “Sales & marketing,” https://unity.com/solutions/brands-and-creative-agencies, Ac-
cessed on: 2020-06-09.

[40] “Film, animation and cinematics,” https://unity.com/solutions/
film-animation-cinematics, Accessed on: 2020-06-09.

[41] “Automotive, transportation & manufacturing,” https://unity.com/solutions/
automotive-transportation-manufacturing, Accessed on: 2020-06-09.

[42] “Architecture, engineering & construction,” https://unity.com/solutions/
architecture-engineering-construction, Accessed on: 2020-06-09.

[43] N. Davis, “How real-time 3D is changing every industry,” Unity Blog, Accessed
on: 2020-06-10. [Online]. Available: https://blogs.unity3d.com/2019/06/19/
how-real-time-3d-is-changing-every-industry/

[44] “Unity’s interface,” Unity Documentation, Unity Manual, Accessed on:
2020-06-11, Documentation version: 2019.3. [Online]. Available: https:
//docs.unity3d.com/2019.3/Documentation/Manual/UsingTheEditor.html

[45] “Console window,” Unity Documentation, Unity Manual, Accessed on:
2020-06-11, Documentation version: 2019.3. [Online]. Available: https:
//docs.unity3d.com/2019.3/Documentation/Manual/Console.html

Page 89

https://unity.com/our-company/newsroom/unity-technologies-announces-unity-simulation-new-cloud-product-train-test-or
https://unity.com/our-company/newsroom/unity-technologies-announces-unity-simulation-new-cloud-product-train-test-or
https://unity.com/our-company
https://arstechnica.com/gaming/2016/09/unity-at-10-for-better-or-worse-game-development-has-never-been-easier/
https://arstechnica.com/gaming/2016/09/unity-at-10-for-better-or-worse-game-development-has-never-been-easier/
https://blogs.unity3d.com/2014/10/22/leading-unity-into-the-future/
https://blogs.unity3d.com/2014/10/22/leading-unity-into-the-future/
https://insights.dice.com/2013/06/03/how-unity3d-become-a-game-development-beast/
https://insights.dice.com/2013/06/03/how-unity3d-become-a-game-development-beast/
https://blogs.unity3d.com/2014/06/05/no-limits-unity-in-cross-industry-development/
https://blogs.unity3d.com/2014/06/05/no-limits-unity-in-cross-industry-development/
https://unity.com/solutions/automotive-transportation-industrial-bundle
https://unity.com/solutions/automotive-transportation-industrial-bundle
https://unity.com/solutions/brands-and-creative-agencies
https://unity.com/solutions/film-animation-cinematics
https://unity.com/solutions/film-animation-cinematics
https://unity.com/solutions/automotive-transportation-manufacturing
https://unity.com/solutions/automotive-transportation-manufacturing
https://unity.com/solutions/architecture-engineering-construction
https://unity.com/solutions/architecture-engineering-construction
https://blogs.unity3d.com/2019/06/19/how-real-time-3d-is-changing-every-industry/
https://blogs.unity3d.com/2019/06/19/how-real-time-3d-is-changing-every-industry/
https://docs.unity3d.com/2019.3/Documentation/Manual/UsingTheEditor.html
https://docs.unity3d.com/2019.3/Documentation/Manual/UsingTheEditor.html
https://docs.unity3d.com/2019.3/Documentation/Manual/Console.html
https://docs.unity3d.com/2019.3/Documentation/Manual/Console.html

Bibliography

[46] “Game objects,” Unity Documentation, Unity Manual, Accessed on: 2020-06-11,
Documentation version: 2019.3. [Online]. Available: https://docs.unity3d.com/2019.
3/Documentation/Manual/GameObjects.html

[47] “Colliders,” Unity Documentation, Unity Manual, Accessed on: 2020-06-11,
Documentation version: 2019.3. [Online]. Available: https://docs.unity3d.com/2019.
3/Documentation/Manual/CollidersOverview.html

[48] “Rigid body,” Unity Documentation, Unity Manual, Accessed on: 2020-06-11,
Documentation version: 2019.3. [Online]. Available: https://docs.unity3d.com/2019.
3/Documentation/Manual/class-Rigidbody.html

[49] “Hinge joint,” Unity Documentation, Unity Manual, Accessed on: 2020-06-11,
Documentation version: 2019.3. [Online]. Available: https://docs.unity3d.com/2019.
3/Documentation/Manual/class-HingeJoint.html

[50] “Creating components with scripting,” Unity Documentation, Unity Manual, Ac-
cessed on: 2020-06-11, Documentation version: 2019.3. [Online]. Available: https:
//docs.unity3d.com/2019.3/Documentation/Manual/CreatingComponents.html

[51] “Scripting overview,” Unity Documentation, Unity Manual, Accessed on:
2020-06-11, Documentation version: 2019.3. [Online]. Available: https:
//docs.unity3d.com/2019.3/Documentation/Manual/ScriptingConcepts.html

[52] “Event functions,” Unity Documentation, Unity Manual, Accessed on: 2020-06-11,
Documentation version: 2019.3. [Online]. Available: https://docs.unity3d.com/2019.
3/Documentation/Manual/EventFunctions.html

[53] “Order of execution for event functions,” Unity Documentation, Unity Manual,
Accessed on: 2020-06-11, Documentation version: 2019.3. [Online]. Available:
https://docs.unity3d.com/2019.3/Documentation/Manual/ExecutionOrder.html

[54] “Extending the editor,” Unity Documentation, Unity Manual, Accessed on:
2020-06-11, Documentation version: 2019.3. [Online]. Available: https:
//docs.unity3d.com/2019.3/Documentation/Manual/ExtendingTheEditor.html

[55] “ScriptableObject,” Unity Documentation, Unity Manual, Accessed on: 2020-06-11,
Documentation version: 2019.3. [Online]. Available: https://docs.unity3d.com/2019.
3/Documentation/Manual/class-ScriptableObject.html

[56] “What is .NET?” Channel 9, .NET Core 101 Series, Accessed on: 2020-06-12.
[Online]. Available: https://channel9.msdn.com/Series/NET-Core-101/What-is-NET

[57] “Tour of .NET,” Microsoft Documentation .NET, Accessed on: 2020-06-12. [Online].
Available: https://docs.microsoft.com/en-gb/dotnet/standard/tour

[58] “Async,” Microsoft Documentation .NET, Accessed on: 2020-06-15. [Online].
Available: https://docs.microsoft.com/en-gb/dotnet/standard/async

[59] “Parallel programming in .NET,” Microsoft Documentation .NET, Accessed on:
2020-06-15. [Online]. Available: https://docs.microsoft.com/en-gb/dotnet/standard/
parallel-programming/

Page 90

https://docs.unity3d.com/2019.3/Documentation/Manual/GameObjects.html
https://docs.unity3d.com/2019.3/Documentation/Manual/GameObjects.html
https://docs.unity3d.com/2019.3/Documentation/Manual/CollidersOverview.html
https://docs.unity3d.com/2019.3/Documentation/Manual/CollidersOverview.html
https://docs.unity3d.com/2019.3/Documentation/Manual/class-Rigidbody.html
https://docs.unity3d.com/2019.3/Documentation/Manual/class-Rigidbody.html
https://docs.unity3d.com/2019.3/Documentation/Manual/class-HingeJoint.html
https://docs.unity3d.com/2019.3/Documentation/Manual/class-HingeJoint.html
https://docs.unity3d.com/2019.3/Documentation/Manual/CreatingComponents.html
https://docs.unity3d.com/2019.3/Documentation/Manual/CreatingComponents.html
https://docs.unity3d.com/2019.3/Documentation/Manual/ScriptingConcepts.html
https://docs.unity3d.com/2019.3/Documentation/Manual/ScriptingConcepts.html
https://docs.unity3d.com/2019.3/Documentation/Manual/EventFunctions.html
https://docs.unity3d.com/2019.3/Documentation/Manual/EventFunctions.html
https://docs.unity3d.com/2019.3/Documentation/Manual/ExecutionOrder.html
https://docs.unity3d.com/2019.3/Documentation/Manual/ExtendingTheEditor.html
https://docs.unity3d.com/2019.3/Documentation/Manual/ExtendingTheEditor.html
https://docs.unity3d.com/2019.3/Documentation/Manual/class-ScriptableObject.html
https://docs.unity3d.com/2019.3/Documentation/Manual/class-ScriptableObject.html
https://channel9.msdn.com/Series/NET-Core-101/What-is-NET
https://docs.microsoft.com/en-gb/dotnet/standard/tour
https://docs.microsoft.com/en-gb/dotnet/standard/async
https://docs.microsoft.com/en-gb/dotnet/standard/parallel-programming/
https://docs.microsoft.com/en-gb/dotnet/standard/parallel-programming/

Bibliography

[60] “Task Parallel Library (TPL),” Microsoft Documentation .NET, Accessed on:
2020-06-16. [Online]. Available: https://docs.microsoft.com/en-gb/dotnet/standard/
parallel-programming/task-parallel-library-tpl

[61] “Data structures for parallel programming,” Microsoft Documentation .NET,
Accessed on: 2020-06-16. [Online]. Available: https://docs.microsoft.com/en-gb/
dotnet/standard/parallel-programming/data-structures-for-parallel-programming

[62] J. Ousterhout, “History of Tcl,” Tcl Developer Xchange, Accessed on: 2020-06-12.
[Online]. Available: http://www.tcl.tk/about/history.html

[63] “Tk backgrounder,” Tk Docs, Accessed on: 2020-06-12. [Online]. Available:
https://tkdocs.com/resources/backgrounder.html

[64] “Tk concepts,” Tk Docs, Accessed on: 2020-06-12. [Online]. Available:
https://tkdocs.com/tutorial/concepts.html

[65] “The grid geometry manager,” Tk Docs, Accessed on: 2020-06-12. [Online].
Available: https://tkdocs.com/tutorial/grid.html

[66] P. Yoonseok, C. Hancheol, J. Leon, and L. Darby, ROS Robot Programming
(English). ROBOTIS, 12 2017. [Online]. Available: http://community.robotsource.
org/t/download-the-ros-robot-programming-book-for-free/51

[67] “Nodes,” ROS Wiki, Accessed on: 2020-06-15. [Online]. Available: http:
//wiki.ros.org/Nodes

[68] “Master,” ROS Wiki, Accessed on: 2020-06-15. [Online]. Available: http:
//wiki.ros.org/Master

[69] “URDF tutorials,” ROS Wiki, Accessed on: 2020-06-15. [Online]. Available:
http://wiki.ros.org/urdf/Tutorials

[70] D. Coleman, I. Sucan, S. Chitta, and N. Correll, “Reducing the barrier to entry
of complex robotic software: a MoveIt! case study,” pp. 1–14, 2014. [Online].
Available: http://arxiv.org/abs/1404.3785

[71] “ROS#,” GitHub Siemens, Accessed on: 2020-06-15. [Online]. Available:
https://github.com/siemens/ros-sharp

[72] “Newtonsoft Json.NET,” https://www.newtonsoft.com/json, Accessed on: 2020-06-
18.

[73] “System.Text.Json namespace,” Microsoft Documentation .NET, Accessed on:
2020-06-30. [Online]. Available: https://docs.microsoft.com/en-gb/dotnet/api/
system.text.json?view=netcore-3.1

[74] “JSON utility,” Unity Documentation, Unity Manual, Accessed on: 2020-06-
30. [Online]. Available: https://docs.unity3d.com/2019.3/Documentation/Manual/
JSONSerialization.html

Page 91

https://docs.microsoft.com/en-gb/dotnet/standard/parallel-programming/task-parallel-library-tpl
https://docs.microsoft.com/en-gb/dotnet/standard/parallel-programming/task-parallel-library-tpl
https://docs.microsoft.com/en-gb/dotnet/standard/parallel-programming/data-structures-for-parallel-programming
https://docs.microsoft.com/en-gb/dotnet/standard/parallel-programming/data-structures-for-parallel-programming
http://www.tcl.tk/about/history.html
https://tkdocs.com/resources/backgrounder.html
https://tkdocs.com/tutorial/concepts.html
https://tkdocs.com/tutorial/grid.html
http://community.robotsource.org/t/download-the-ros-robot-programming-book-for-free/51
http://community.robotsource.org/t/download-the-ros-robot-programming-book-for-free/51
http://wiki.ros.org/Nodes
http://wiki.ros.org/Nodes
http://wiki.ros.org/Master
http://wiki.ros.org/Master
http://wiki.ros.org/urdf/Tutorials
http://arxiv.org/abs/1404.3785
https://github.com/siemens/ros-sharp
https://www.newtonsoft.com/json
https://docs.microsoft.com/en-gb/dotnet/api/system.text.json?view=netcore-3.1
https://docs.microsoft.com/en-gb/dotnet/api/system.text.json?view=netcore-3.1
https://docs.unity3d.com/2019.3/Documentation/Manual/JSONSerialization.html
https://docs.unity3d.com/2019.3/Documentation/Manual/JSONSerialization.html

Bibliography

[75] “Pipe operations in .NET,” Microsoft Documentation .NET, Accessed on:
2020-06-22. [Online]. Available: https://docs.microsoft.com/en-gb/dotnet/standard/
io/pipe-operations

[76] “pandas,” https://pandas.pydata.org/, Accessed on: 2020-06-18.

[77] “Robot and interface specifications,” Franka Emika, Franka Control Interface,
Accessed on: 2020-06-25. [Online]. Available: https://frankaemika.github.io/docs/
control parameters.html

[78] “Panda technology,” Franka Emika, Accessed on: 2020-06-24. [Online]. Available:
https://www.franka.de/technology

[79] C. Gaz, M. Cognetti, A. Oliva, P. Robuffo Giordano, and A. De Luca, “Dynamic
identification of the Franka Emika Panda robot with retrieval of feasible parameters
using penalty-based optimization,” IEEE Robotics and Automation Letters, vol. 4,
no. 4, pp. 4147–4154, 2019.

[80] “Collaborative robot applications,” Universal Robots, Accessed on: 2020-06-24.
[Online]. Available: https://www.universal-robots.com/applications/

[81] T. Kunz and M. Stilman, “Turning paths into trajectories using parabolic blends,”
Georgia Institute of Technology, 2011.

[82] J. J. Craig, Introduction to Robotics: Mechanics and Control (3rd Edition), 3rd ed.
Prentice Hall, August 2004.

[83] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling, Planning
and Control. London: Springer, 2009.

[84] M. W. Spong and M. Vidyasagar, Robot Dynamics and Control, 1st ed. USA:
John Wiley & Sons, Inc., 1989.

[85] R. Featherstone, “Inverse dynamics — the recursive Newton-Euler method,” in
Robot Dynamics Algorithms. Boston, MA: Springer US, 1987, pp. 65–77. [Online].
Available: https://doi.org/10.1007/978-0-387-74315-8 4

[86] “Gleichstrommotor,” studyflix, Accessed on: 2020-06-30. [Online]. Available:
https://studyflix.de/elektrotechnik/gleichstrommotor-1368

[87] J. Kiesbye, “SAINT,” Chair of Astronautics, TUM, Accessed on: 2020-06-26. [On-
line]. Available: https://www.lrg.tum.de/en/lrt/research-at-the-chair-of-astronautics/
robotic-operations/saint/

[88] R. Marshall, G. Wood, and L. Jennings, “Performance objectives in human move-
ment: A review and application to the stance phase of normal walking,” Human
Movement Science, vol. 8, no. 6, pp. 571–594, 1989.

[89] G. Odu and O. Charles-Owaba, “Review of multi-criteria optimization methods–
theory and applications,” IOSR Journal of Engineering (IOSRJEN), vol. 3, no. 10,
pp. 1–14, 2013.

Page 92

https://docs.microsoft.com/en-gb/dotnet/standard/io/pipe-operations
https://docs.microsoft.com/en-gb/dotnet/standard/io/pipe-operations
https://pandas.pydata.org/
https://frankaemika.github.io/docs/control_parameters.html
https://frankaemika.github.io/docs/control_parameters.html
https://www.franka.de/technology
https://www.universal-robots.com/applications/
https://doi.org/10.1007/978-0-387-74315-8_4
https://studyflix.de/elektrotechnik/gleichstrommotor-1368
https://www.lrg.tum.de/en/lrt/research-at-the-chair-of-astronautics/robotic-operations/saint/
https://www.lrg.tum.de/en/lrt/research-at-the-chair-of-astronautics/robotic-operations/saint/

Bibliography

[90] J. R. Martins and A. B. Lambe, “Multidisciplinary design optimization: a survey of
architectures,” AIAA journal, vol. 51, no. 9, pp. 2049–2075, 2013.

[91] L. G. Caldas and L. K. Norford, “A design optimization tool based on a genetic
algorithm,” Automation in construction, vol. 11, no. 2, pp. 173–184, 2002.

[92] B. S. D’Souza and T. W. Simpson, “A genetic algorithm based method for product
family design optimization,” in International Design Engineering Technical Con-
ferences and Computers and Information in Engineering Conference, vol. 36223,
2002, pp. 681–690.

[93] M. Bischoff and K. Daechert, “Allocation search methods for a generalized class
of location–allocation problems,” European Journal of Operational Research, vol.
192, no. 3, pp. 793–807, 2009.

[94] K. Deb, Multi-objective optimization using evolutionary algorithms. John Wiley &
Sons, 2001, vol. 16.

[95] R. Saravanan, S. Ramabalan, N. G. R. Ebenezer, and C. Dharmaraja, “Evolutionary
multi criteria design optimization of robot grippers,” Applied Soft Computing, vol. 9,
no. 1, pp. 159–172, 2009.

[96] A. Ghosh and S. Dehuri, “Evolutionary algorithms for multi-criteria optimization: A
survey,” 2005.

Page 93

Bibliography

Page 94

Appendix A. Software and Development Environment Versions

A Software and Development Environment Versions

The following list summarizes the versions of all software used by and required for the
evaluation framework developed in this thesis. Accordingly, the evaluation framework
was only tested to run on these versions.

• Unity: 2019.3.3f1

• ROS#: Version 1.6, Release of 12-20-2019

• .NET: .NET Core 3.1.300

• Newtonsoft Json.NET: 12.0.3

• Python: 3.7.7

• tkinter: 8.6

• Pandas: 1.0.3

• NumPy: 1.18.1

• Matplotlib: 3.1.3

• Virtual Machine: Ubuntu 16.04.1

• Ubuntu Kernel: 4.15.0-106-generic

• ROS: ROS Kinetic

• MoveIt!: Latest version from pre-built binaries, obtained by running sudo apt
install ros-kinetic-moveit

The following list summarizes all development environments used to implement all code
during the course of this thesis:

• Development OS: Windows 10

• C# and .NET IDE: Microsoft Visual Studio Community 2019, 16.6.0

• Python Version Handling: Anaconda 4.8.3

• Python IDE: Spyder 4.1.3

Page 95

Appendix A. Software and Development Environment Versions

Page 96

Appendix B. Additional Results of the Robot Trajectory Evaluation

B Additional Results of the Robot Trajectory Evaluation

Fig. B–1: Trajectory execution time of all trajectories.

Fig. B–2: Total joint distance covered by the robot for all trajectories.

Page 97

Appendix B. Additional Results of the Robot Trajectory Evaluation

Fig. B–3: Total Cartesian distance covered by the robot for all trajectories.

Fig. B–4: Average joint velocity of the first joint for all trajectories.

Page 98

Appendix B. Additional Results of the Robot Trajectory Evaluation

Fig. B–5: Average joint velocity of the second joint for all trajectories.

Fig. B–6: Average joint velocity of the fourth joint for all trajectories.

Page 99

Appendix B. Additional Results of the Robot Trajectory Evaluation

Page 100

Appendix C. Additional Results of the Robotic Bin Picking
Evaluation

C Additional Results of the Robotic Bin Picking
Evaluation

Fig. C–1: Execution time of each bin picking process for all valid positions with the complex
box geometry.

Fig. C–2: Covered joint distance of each bin picking process for all valid positions with the
simple box geometry.

Page 101

Appendix C. Additional Results of the Robotic Bin Picking
Evaluation

Fig. C–3: Covered joint distance of each bin picking process for all valid positions with the
complex box geometry.

Fig. C–4: Covered Cartesian distance of each bin picking process for all valid positions with
the simple box geometry.

Page 102

Appendix C. Additional Results of the Robotic Bin Picking
Evaluation

Fig. C–5: Covered Cartesian distance of each bin picking process for all valid positions with
the complex box geometry.

Page 103

Appendix C. Additional Results of the Robotic Bin Picking
Evaluation

Page 104

	Motivation
	Theoretical Context and State of the Art
	Objectives
	Approach
	Development Environments
	Unity
	Unity Editor
	Unity Scripting API

	Microsoft .NET
	Asynchronous and Parallel Programming

	Tcl, Tk, tkinter
	Robot Operating System
	MoveIt! Motion Planning Framework

	ROS#

	Evaluation Framework
	Framework Architecture
	Software Architecture
	Choice of Development Environments
	Data Storage and File System

	Definition of Evaluation Space
	Intuitive, Reusable and Modular Selection of Parameters
	Data Handling in Unity

	Execution and Evaluation
	Interprocess Communication
	Asynchronous Operations and Parallel Execution

	Point Cloud Visualization

	Exemplary Applications and Evaluation Setup
	Simulation Model of the Panda Arm
	Evaluation of Trajectories with the Panda Arm
	Parabolic Blending
	Estimation of the Electric Energy Consumption
	Evaluation Setup

	Automated Robotic Bin Picking with the Panda Arm
	Generation of Bin Picking Trajectories with MoveIt!
	Integration of ROS Interface
	Evaluation Setup

	Evaluation Results
	Robot Trajectory Evaluation
	Robotic Bin Picking Evaluation

	Discussion
	Energy-Optimal Robot Trajectories
	Optimal Robot Positions for Bin Picking

	Conclusion
	Outlook
	Future Applications
	Evaluation of Geometric and Dynamic Robot Parameters
	Testing and Evaluation of the Complete SAINT Project Implementation

	Framework Extensions
	Mutli-Objective Design Optimization
	External Software Interfaces

	Bibliography
	Software and Development Environment Versions
	Additional Results of the Robot Trajectory Evaluation
	Additional Results of the Robotic Bin Picking Evaluation

