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Abstract— The tight coupling of information technology with
physical sensing and actuation in cyber-physical systems (CPS)
has given rise to new security vulnerabilities and attacks with
potentially life-threatening consequences. These attacks are
designed to transfer the physical system into unstable and
insecure states by providing corrupted sensor readings. In this
work, we present an approach for distributed secure linear
state estimation in the presence of modeling and measurement
noise between a network of nodes with pairwise measurements.
We provide security against measurement attacks and simplify
the traditional distributed secure state estimation problem.
Reachability analysis is utilized to establish a security layer
providing secure estimate shares for the distributed diffusion
Kalman filter. Furthermore, we consider not only attacks on
the link level but also on the sensor level. The proposed
combined filter protects against measurement and diffusion at-
tacks without requiring specialized hardware or cryptographic
techniques. The effectiveness of the approach is demonstrated
by a localization example of a rotating target.

I. INTRODUCTION

In the last decade, secure state estimation has attracted
attention due to the rise of new security vulnerabilities and
attacks at the sensor level with potentially life-threatening
consequences. The Office of Science and Technology Policy
(OSTP) assigns a high priority to cyber-physical systems
(CPS) security, since the recent attacks launched in the
cyber domain led to calamitous consensuses during the past
decades [1]. For instance, the Maroochy Water Breach [2]
made it possible to attack the underlying infrastructure at
Maroochy Water Services in Queensland. Also, one popular
attack is the Stuxnet attack on Supervisory Control and Data
Acquisition (SCADA) systems, which are used in industrial
process control [3], [4]; other security issues on SCADA
networks are shown in [5]. Attacks on analog sensors which
have increasingly become an indispensable part of many
modern systems are shown in [6]. Thus, researchers came
up with techniques that address the problem of secure state
estimation under the sensor, actuators, and communication
network attacks. Secure state estimation allows the esti-
mation of the state of the CPS from corrupted/attacked
measurements. We review literature focusing on centralized
and distributed secure state estimation.

Centralized Secure State Estimation: Different tech-
niques have addressed the problem of secure state estimation
against sensor attacks in centralized dynamical systems.
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Fawzi et al. show the impossibility of accurately reconstruct-
ing the state of a system if more than half of the sensors
are attacked [7]. The presence of process and measurements
noise offers attackers an additional possibility to tamper
with CPS sensors, thereby making the detection task more
challenging. Another work in [8] uses brute force search for
studying the observability of linear systems under adversarial
attacks; however, this approach is not applicable to large-
scale systems. A practical solution is proposed in [9] that
considers jitter, latency and synchronization errors. Graph-
theoretic conditions for the detectability of attacks for a
noiseless system are shown in [10]. Also, a measure of
the stealthiness of attacks in stochastic control systems is
proposed in [11].

Observing and recording sensor readings and replying
them afterward while carrying out an attack is commonly
defined as a replay attack. This kind of attack is considered
in [12] where all sensors were attacked and the attacker does
not have any model knowledge. Another work considered
a stochastic game for detecting replay attacks [13]. Also, a
solution for denial of service attacks under Gaussian noise is
proposed in [14]. Furthermore, false data injection is solved
by proposing an ellipsoidal algorithm where the strategy of
the attacker is formulated as a constrained control problem
[15].

Distributed Secure State Estimation: Distributed pro-
cessing mitigates the computation load by getting rid of the
fusion center in centralized fusion and estimation. Pasqualetti
et al. [16] propose a fully decentralized solution for at-
tack identification. However, they only consider noiseless
systems. Distributed secure controllers based on a virtual
fractional dynamic surface are designed in [17]. Also, a
consensus-based protocol is utilized for distributed secure
state estimation in [18].

Contributions: We propose an approach for distributed
linear secure state estimation in the presence of measurement
noise and modeling errors. By combining the diffusion
Kalman filter [19] with reachability analysis [20], we pro-
vide a new algorithm for distributed secure state estimation
between a network of nodes.

Outline: The paper is organized as follows. After we
introduce the problem and the proposed solution in Sec. II,
the secure measurement update is presented in Sec. III and
secure diffusion in Sec. IV. The applicability of the algorithm
is demonstrated in Sec. V. This is followed by a discussion
of the algorithm and a conclusion in Sec. VI.



II. DISTRIBUTED SECURE STATE ESTIMATION AND
PROPOSED SOLUTION

We aim to estimate the full state vector of a system in
a distributed fashion by observing physical signals through
sensory devices which are under attack. In order to deviate
the system from its correct operation, an attacker endeavors
to either a) physically attack the sensor environment, b)
attack the sensor hardware, c) break the communication
links in the CPS, or d) modify the sensor readings (e.g.,
by delaying packets in time-of-flight based localization). We
first discuss our threat model and preliminaries followed by
a mathematical formulation of the distributed secure state
estimation problem.

A. Threat Model

We consider attackers that directly compromise the read-
ings of various sensor groups and man-in-the-middle attack-
ers that endeavor to modify the data transfer between sensors,
as shown in Figure 1.a. Our assumptions are:
• The adversary can corrupt all sensors and has unlimited

computational power.
• The selection of attacked sensors is unknown to the

system and can change dynamically over time.
• The adversary can commit to unbounded attack values.
• The adversary additionally has no prior knowledge of

the system parameters.

B. Preliminaries

We state some preliminaries around the proposed solution.
Definition 1: (Zonotope) A zonotope Z = 〈c,G〉 ⊂ Rn

consists of a center c ∈ Rn and generator matrix G ∈ Rn×e.
We define G as e generators g(i) ∈ Rn (i = {1, .., e}), where
G = [g1, ..., ge] [20]. A zonotope is a set

Z =
{
c+

e∑
i=1

βig
(i)
∣∣∣− 1 ≤ βi ≤ 1

}
. (1)

�
Given two zonotopes Z1 = 〈c1, G1〉 and Z2 = 〈c2, G2〉,

we define [20]:
1) Minkowski sum:

Z1 ⊕Z2 =
〈
c1 + c2, [G1, G2]

〉
(2)

2) Linear map:
LZ1 =

〈
Lc1, LG1

〉
(3)

We define the reachable set as the set of possible solution
xi which can be reached at each time step. In this work,
reachable sets are represented by zonotopes due to their
favorable computational complexity as discussed in [20].

C. System Model

Consider a set of N nodes indexed by k ∈ {0, . . . , N−1}
distributed geographically over some region. We denote the
neighborhood of a given node by the set Nk containing the
nodes connected to node k; the size of Nk is mk. Every node
is interested in estimating the state x̃ of the network securely.

We assume that network connectivity is fixed with time and
the measurements trace follows a predefined sequence. We
consider a discrete-time, linear system model with pairwise
measurements taken per time step i.

x̃ki+1 = F̃ix̃
k
i + ñki

yk,ji = H̃k,j
i x̃ki + ṽki + ak,ji ,

(4)

where x̃ki ∈ Rnk is the state of node k at time i ∈ N and
yk,ji ∈ Rmk is the measurement sent to node k from the
neighboring node j ∈ Nk. The process and measurement
noises are denoted by ñki and ṽki , respectively. All vectors and
matrices are real-valued and have proper dimensions. The
attack vector ak,ji is a vector which models how an attacker
corrupts the sensor measurements between node k and node
j at time i. A non-zero element in the vector a corresponds
to the attacked values on the corresponding sensor, otherwise
the measurement is not attacked. Thereby, the additive attack
vector ak,ji can account for both a malicious node k and
a corrupted link (k, j). Moreover, the attack values can be
constant or time-varying. The modeling noise ñi and mea-
surement noise ṽi are assumed to be unknown but bounded
by zonotopes: ñi ∈ IQi = 〈 0, Qi〉 and ṽi ∈ IRi = 〈0, Ri〉.

D. Proposed Solution

Our proposed solution is based mainly on a diffusion
Kalman filter [21] integrated within a secure state estimation
concept [22] and combined with reachability analysis [20].
The original non-secure diffusion Kalman filter consists of
three main steps, namely, measurement update, time update,
and diffusion update. By ensuring the security of all the
steps of the diffusion Kalman filter, we can obtain a secure
distributed state estimator. Thus, our solution consists of:

1) Secure measurement update: Every node shares its
measurements with its neighbors and does some inter-
nal processing. Protecting the measurement update is
achieved by extending secure state estimation in [22]
for the distributed case.

2) Secure diffusion: Every node shares its network state
estimate with its neighbors and combines the estimates
in a convex way. We protect the diffusion step by
accepting the shared estimate if and only if it is within
the accepted region of the reachability analysis.

3) Time update: Every node updates its state, which is
trivially protected as no data is exchanged.

We will describe the protection of the measurement update
and secure diffusion in more detail in the following sections.

III. SECURE MEASUREMENT UPDATE

Sensor nodes have one radio for one type of measurement.
Thus, each node has one active link at each time step
for performing measurements (like calculating the pairwise
distances between nodes). For instance, node1 performs
measurement with node3 at t1 in Figure 1.b. Then, it will
perform measurement with node4 at time t2 in Figure 1.c.
At the same time, node2 performs measurements with node4
then with node3 as shown in Figures 1.b and 1.c. We have



Fig. 1: Attacks are on links and sensors as shown in sub-figure a. Links are divided into passive (dashed) and active (bold)
links at each time step. Active links carry a measurement between two nodes. The two sub-figures b and c show the active
and passive links at two-time steps.

five links with five attacks to be mitigated in Figure 1 accord-
ing to (4). Related work typically considers collecting the
measurements from all the links and performs the estimation
at once. This results in a very complex problem with the
number of unknown attacks to be equal to the number of
links.

In contrast, we propose solving the problem from another
perspective: We define the links between node2 and node4
and between node1 and node3 in Figure 1.b as "active" links
(bold) which carry measurements. The other links (dashed)
in Figure 1.b are called "passive" links. The measurements’
time horizon is divided into time steps where each node
performs a measurement at each time step. We do not
estimate the attack on passive links at the corresponding time
steps. So, for example at time t1 in Figure 1.b, why do we
trouble ourselves to estimate a2,31 ? At each time instant i,
each node performs measurement with one neighbor. Note
that due to this principle, it is possible to denote the attack
ak,ji only by aki , i.e., neighbor j is uniquely defined by time
step i and node k. With this idea, the number of attacks at
each time instant equals the number of nodes, instead of the
number of links. Therefore, we drastically simplify the secure
state estimation problem. All the links for each node are
modeled using one variable at different time steps. This even
works while attacking all the links with time-varying attacks
as we will show in Sec. V. This concept is repeated at each
node k as every node is interested in estimating the network
state. In short, we consider the attack variables attached to
nodes instead of links at different time steps.

We utilize our idea to change the general model in (4) by
including the attack value in the state of the node initiating
the measurement. Following this procedure, the state of node
k is extended to xki = [x̃k T

i , ak,j T
i ]T yielding a modified

system model

xki+1 = Fix
k
i + nki ,

yk,ji = Hk,j
i xki + vki .

(5)

Proposition 1: System model (4) is equivalent to system
model (5) under the assumption that the measurements

processing is done for each node with one neighbor at each
time step for a network with pairwise measurements.
Proof: We get rid of j in ak,ji in (4) by choosing
xki = [x̃k T

i , ak,j T
i ]T where the variations in j would be

presented by changing the time step i, i.e., the couple i
and k uniquely defines the neighbor j because node k can
only communicate with one node at time i. The matrices
F̃i and H̃k,j

i are changed accordingly to matrices Fi and
Hk,j
i , respectively. We assume that the network connectivity

is fixed with time and the sequence in measurements trace
is predefined. �

We wish to highlight that our proposed solution still works
if nodes perform multiple measurements at the same time
step. This would be done by dividing the time horizon and
processing one measurement for each node at one time step,
as shown in Figures 1.b and 1.c.

A valid question would be how to model the time-
evolution for time-varying attacks aki ? We choose to set
aki+1 = aki + nkai , and the variance of the modeling noise of
the attack entries nkai accounts for the time-varying aspect
of the attack and for changing the links between time steps.
This lets us move from specifying specific dynamics for the
attacks. Another question would be how to obtain bounds
on nkai . Our proposed solution is to use reachability analysis
[20] and only accept the measurements that let the state
stay inside the expected reachable set. Also, it should be
noted that, since high attack values can be easily detected
by threshold methods (e.g., if the reported distance is far
beyond the range of the area where the network is employed),
critical attacks can occur within a limited interval, which can
be represented by the modeling covariance. This concept -
of modeling a time-varying signal using the modeling noise
- has been applied before in localization [23] where the
authors use a stationary model for process updates of a flying
quadrotor. As long as the quadrotor moves in the range of the
modeling noise, the work in [23] would be able to localize
it correctly.

To move forward with utilizing reachability analysis in our
solution, we need to define the following sets:

Definition 2: (Predicted State Set) Given system (5) with



initial state x0 ∈ 〈c0, G0〉, the reachable state set Z k
i of node

k is defined as the set of all possible solutions xi which can
be reached given xi−1. IQi is the zonotope which bounds
modeling noise [24, p.4]

Z k
i = FiZ

k
i−1 ⊕ IQi

. (6)
�

Definition 3: (Measurement State Set) Given system (5),
the measurement state set S k,j

i of node k is defined as the
set of all possible solutions xi which can be reached given
yi and vi. This measurement set is a strip [24, p.4]:

S k,j
i =

{
xi

∣∣∣|Hk,j
i xi − yk,ji | ≤ R

j
i

}
. (7)

�
Definition 4: (Corrected State Set) Given system (5)

with initial state x0 ∈ 〈c0, G0〉, the reachable corrected state
set Z k

ψi|i
of node k is defined as the intersection between

Z k
i and S k,j

i [24, p.4]:

Z k
ψi|i

= Z k
i ∩S k,j

i . (8)
�

We denote the predicted and the filtered estimates of xi at
time step i obtained by node k as x̂ki+1|i and x̂ki|i, respectively.
The main algorithm is summarized in Algorithm 1. We start
with zonotope Z0 = 〈c0, G0〉 where the center c0 equals the
expected initial estimates x0.

Every measurement yk,ji restricts the state to be in a strip
S k,j
i as shown in (7). Every node corrects the reachable

set (zonotope Z k
i|i−1) by determining the set of consistent

states with the model and the measurements received from
each neighbor. Therefore, we need to find the intersection
between the family of strips in (7) and the zonotope Z k

i|i−1.
This results in calculating the corrected over-approximated
zonotope Z k

ψi|i
for node k. We extend the work [25] in the

following theorem to find the required intersection.
Theorem 1: The zonotope Z = 〈c0, G0〉, the family of

m strips S k,j
i (7), and the vectors λk,ji ∈ Rn are given. The

intersection between the zonotope and the strips can be over-
approximated by a zonotope Z k

ψi|i
= 〈c(λ), G(λ)〉, where

c(λ) = c0 +
∑
j∈Nk

λk,ji (yj −Hk,j
i c0) (9)

G(λ) =
[
(I −

∑
j∈Nk

λk,ji Hk,j
i )G0, λ

k,1
i R1

i , ..., λ
k,mk

i Rmk
i

]
.

(10)
Proof: Let x ∈ (Z ∩S k,j

1 ∩ ... ∩S k,j
m ), then there is a

z, where

x = c0 +G0z, (11)

where G0 has full rank. We would like to high-
light that the over-approximation comes from choosing
x ∈ (Z ∩ S k,j

1 ∩ ... ∩ S k,j
m ). Then, adding and

subtracting
∑
j∈Nk

λk,ji Hk,j
i G0z results in

x = c0 +
∑
j∈Nk

λk,ji Hk,j
i G0z + (I −

∑
j∈Nk

λk,ji Hk,j
i )G0z.

(12)

Given that x is inside the intersection of the zonotope Z
and the family of strips, then x ∈ S k,j

i , ∀j ∈ Nk, i.e., there
exists a bj ∈ [−1, 1] in (7) for the jth strip so that:

Hk,j
i x− yj = Rji bj . (13)

Inserting (11) in (13) results in

Hk,j
i G0z = yj −Hk,j

i c0 +Rji bj . (14)

Inserting (14) in (12) results in

x = c0 +
∑
j∈Nk

λk,ji (yj −Hk,j
i c0 +Rji bj)

+ (I −
∑
j∈Nk

λk,ji Hk,j
i )G0z

= c0 +
∑
j∈Nk

λk,ji (yj −Hk,j
i c0)

+ (I −
∑
j∈Nk

λk,ji Hk,j
i )G0z +

∑
j∈Nk

λk,ji Rji bj

= c0 +
∑
j∈Nk

λk,ji (yj −Hk,j
i c0)︸ ︷︷ ︸

c(λ)

+
[
(I −

∑
j∈Nk

λk,ji Hk,j
i )G0, λ

k,1
i R1

i , ..., λ
k,mk

i Rmk
i

]
︸ ︷︷ ︸

G(λ)


z
b1
..
bmk



= c(λ) +G(λ)


z
b1
..
bmk

 �

Choosing an appropriate λ: In order to find an appro-
priate over-approximation for the intersection of a zonotope
with a family of strips, λ is typically chosen to minimize
an approximation criterion. The authors in [25] proposed
two approaches for intersecting a zonotope with a strip. The
first approach is a segment-minimization approach which
has a low computational complexity by minimizing the
Frobenius norm of G(λ). The second approach provides a
better approximation; it is a volume-minimizing approach
and requires solving a convex optimization problem.

However, if we take a careful look at (15), which is the
measurement update equation that propagates the measure-
ment effect into the estimates in the diffusion Kalman filter
[21], we can find that the structure is very similar to our
formula (9) which finds the new center of the intersection of
a zonotope with a family of strips.

ψki = x̂ki|i−1 + P ki|i
∑
j∈Nk

H∗
k,j

i Rji
−1

[yk,ji −H
k,j
i x̂ki|i−1]

(15)



Thus, we choose to use the λ that is aligned with diffusion
Kalman filter theory at each node k as shown in step 1 of
Algorithm 1:

λk,ji = P ki|iH
∗k,j

i Rji
−1

(16)

We choose the center of the reachable set on every node k
as the estimate ψki . Also, as the size of the generators is
increasing in each step by doing the previous measurement
update, we reduce the order of the corrected zonotope
Z k
ψi|i

= 〈ψki , Gkψi|i
〉 order by the method from [26, p.7].

IV. SECURE DIFFUSION

In the diffusion step [21], every node shares its own local
estimate ψji with its neighbors. Then every node averages the
shared estimates ψji from the neighbors to achieve a better
estimate of the system state. The averaging is based on some
weights wk,ji for each neighbor j [21]. However, these shares
may be under attack. Thus, we make use of reachability
analysis to protect against attacks during the diffusion step.

We propose to let every node compute the next corrected
state-set Z k

ψi|i
. Then, the combination in the diffusion step

[21] is executed over shares ψji inside the corrected reachable
set Z k

ψi|i
of the node. If the share ψji is outside its corrected

set, it would be marked as "attacked share" and thus ex-
cluded. Thus, we can limit the effect of the attack on the
diffusion shares ψji . More specifically, we assign the weight
to zero if the share is outside the reachable set Z k

ψi|i
. Shares

inside Z k
ψi|i

take new weights ŵk,ji where
∑
j∈Nk

ŵk,ji = 1.

wk,ji =

{
0 if ψji /∈ Z k

ψi|i

ŵk,ji else
(17)

This illustrates Step 2 of Algorithm 1.

V. EVALUATION

Our proposed algorithm is implemented in Matlab 2017
on a similar example to the one presented in [21], where a
network of eight nodes attempts to track the position of a
rotating object. All computations run on a single thread of
an Intel(R) Core(TM) i7-8750 with 16 GB RAM. We made
use of Cora [27]–[29] for zonotope operations. Our example
is quite representative for secure state estimation, since it
includes modeling noise and measurements noise. The state
of each node consists of the unknown 2-dimensional position
of the object combined with the attack on the measurements.
The state matrix in (5) is

F =

 0.992 −0.1247 0
0.1247 0.992 0

0 0 1

 , (12)

and the measurement matrix Hk,j
i is [0 1 1] or [1 0 1] in

the sequence of the taken measurements. This means that
the nodes take measurements of the unknown position of the

Algorithm 1 Secure Diffusion Kalman Filter

Start with x̂k0|−1 = x0, P k0|−1 = Π0 and zonotope Z k
0|−1 =

〈x̂k0|−1, G
k
0|−1〉. For all k, and at every time instant i,

compute at every node k:
Step 1: Measurement update (Sec. III):

P−1
k

i|i = P−1
k

i|i−1 +
∑
j∈Nk

H∗
k,j

i Rji
−1
Hk,j
i

λk,ji = P ki|iH
∗k,j

i Rji
−1

ψki = x̂ki|i−1 +
∑
j∈Nk

λk,ji (yk,ji −H
k,j
i x̂ki|i−1)

Gkψi|i
= [(I −

∑
j∈Nk

λk,ji Hk,j
i )Gki|i−1, λk,1i R1

i ,

..., λk,mk

i Rmk
i ]

Reduce the order of the corrected zonotope Z k
ψi|i

=

〈ψki , Gkψi|i
〉 order by Girard method [26, p.7].

Step 2: Diffusion update (Sec. IV):
Filter ψji based on the reachability analysis, i.e. average ψji
from neighbors if they are within the expected reachable
set and assign the weights wk,ji accordingly. (wk,ji = 0 if
ψji /∈ Z k

ψi|i
).

x̂ki|i =
∑
j∈Nk

wk,ji ψji

Gki|i = Gkψi|i

Step 3: Time update:

x̂ki+1|i = Fix̂
k
i|i

P ki+1|i = FiP
k
i|iF

∗
i +Qi

Gki+1|i = [FiG
k
i|i, Qi]

object either in the x or y direction and the measurements
are under attack aki . We generate the attacks aki as following:

aki =


2 rand + 4 if t < 1/3Tsim,

randp(3, 2) + 8 if 1/3Tsim < t < 2/3Tsim,

2 randn + 50 if t > 2/3Tsim,
(13)

where rand and randn return pseudo-random values
drawn from the standard uniform distribution on the open
interval (0,1) and the standard normal distribution, respec-
tively. On the other hand, randp(3, 2) generates values form
the Pareto distribution, where the shape equals 3, and the
scale equals 2. Tsim is the total simulation time.

The implemented random attacks have time-varying statis-
tics, as shown in (13). The simulations without protection and
with protection are shown in Figures 2a and 2b, respectively,
by attacking the measurement step only. Then, we attack
the diffusion shares ψki using the three presented random
generators. The insecure and secure versions run on the same
values of random numbers for a fair comparison and the



diffusion step only is under attack. The outputs are shown in
Figures 3a and 3b. Finally, we attack both the measurement
and diffusion steps and report the output in Figures 4a and
4b. We obtain the reported means and standard deviations
in Table I with and without the proposed protection on the
same set of attacks. The mean is around 3m for the secure
version with a standard deviation around 1.5 regardless of
the attack type.

VI. CONCLUSION

We combine reachability analysis with secure state esti-
mation to obtain a secure and fully distributed estimator.
Our approach works for discrete-time, linear systems affected
by disturbances, and measurement noises. Our proposed
solution is fully distributed and does not require a fusion
center. We consider attacks on the sensor levels as well
as the communication links. At each time step, estimation
output is supervised by reachability analysis to provide
secure estimation shares. Reachability analysis allows us to
have secure diffusion in distributed secure state estimation.
We demonstrate the applicability of our approach with a
simulation of a rotating target where the measurements and
the diffusion shares are under attack.
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Insecure Secure

Steps under attack mean std mean std

Measurement step only 31.558 28.119 3.306 1.523
Diffusion step only 219.325 136.567 3.194 1.474

Measurement and diffusion steps 250.161 164.489 3.220 1.518

TABLE I: The mean and standard deviation of the localization error (m) of the rotating target at one node with and without
the proposed protection algorithm.
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Fig. 2: Localization error at one node of the rotating target where all the measurements are under attack. The measurements
only are under attack while the diffusion step is not under attack. Attacks are generated from uniform, normal and Pareto
pseudo-random distributions, as shown in (13). Y-scales are different in Figures (a) and (b).
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Fig. 3: Localization error at one node of the rotating target where all the diffusion shares are only under attack. Attacks are
generated from uniform, normal and Pareto pseudo-random distributions. Y-scales are different in Figures (a) and (b).
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Fig. 4: Localization error at one node of the rotating target where all the measurements and the diffusion shares are under
attack with time varying values. Attacks are generated from uniform, normal and Pareto pseudo-random distributions as
shown in (13). Y-scales are different in Figures (a) and (b).


