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Abstract

A higher share of renewable energies in heating and enhanced energy e�ciency through better
thermal insulation and modern heating systems in buildings is required to decarbonize Ger-
many's heating sector. Electricity-based systems like heat pumps allow for a direct integration
of renewable electricity generation and o�er operational �exibility due to the thermal storage
systems they are connected to. This allows decoupling of the heating demand from the heat
pump's electricity demand for a period of time in order to operate the system during times of
low prices, favorable ambient conditions or when the grid operator requires it. Grid operators face
the challenge to connect increasing numbers of electrical �exible loads and to maintain current
and voltage limits during grid operation. A smart grid utilizes the �exibility of buildings with
heat pump heating systems and electric vehicles in order to integrate renewables, to guarantee
feasible grid operation and to prevent grid expansion. The identi�cation of a desired and feasible
operational schedule of a single building is already a complex task which requires forecasts of
weather and occupancy and a mathematical representation of the system's underlying storage
dynamics. This becomes even more challenging when possibly hundreds of physically coupled
systems are involved and have to be coordinated in a large-scale power system.
This thesis proposes a scalable algorithm to coordinate the operation of multiple residential pro-
sumers equipped with heat pump heating systems and photovoltaic plants in a distribution grid.
A hierarchical distributed controller is designed based on methods from predictive control and
distributed optimization. The control algorithm works with reduced exchange of information,
system and state knowledge of the buildings and distribution grid remains at the respective
entity and needs not to be communicated. Only residual load schedules and dual variables are
communicated iteratively between the grid operator and the prosumers to converge to a solution.
Several models are developed in this thesis to represent the thermal and electrical systems in the
controller. A thermal building model is developed to represent the dynamics of a single family
house and then validated. The low-order model can be parameterized based on building typology
data and shows satisfying accuracy with respect to temperature and energy demand predictions.
Together with a heat pump and domestic hot water model, the resulting state-space model is
used for the design of a model predictive controller for energy management of a single prosumer.
For the distribution grid, a linearized power �ow model is introduced and applied to German
reference low-voltage grids. Both the model error and the sensitivities of the grids to congestion
and undervoltages are investigated in preparation for the later simulations. Finally, the above
models are combined to formulate the central coordination problem and a mathematical decom-
position is carried out to obtain the hierarchical distributed control algorithm. Simulation studies
on voltage stability, valley-�lling and community photovoltaic self-consumption demonstrate the
e�ectiveness of the distributed control algorithm to coordinate the operation of prosumers in a
distribution grid online. The algorithm allows prosumers to exploit their �exibility to minimize
their local costs, but coordinates the operation when a shared or global cost function has to be
minimized or distribution grid constraints are violated. Closed-loop simulations over a week are
presented for di�erent building energy standards. A central optimization is used to benchmark
the e�ectiveness of the distributed optimization algorithm. The change in costs due to coordina-
tion is investigated in a comparison with the uncoordinated reference operation of the prosumers.
Prosumers located at buses with strong undervoltages face above average cost increases. It is
further shown how the volatility of the power �ow over the transformer can be reduced with only
a marginal increase in operational costs and little impact on the comfort of building occupants.
Finally, the algorithm also manages to increase the communities photovoltaic self-consumption
to achieve lower total costs.





Kurzzusammenfassung

Ein höherer Anteil erneuerbarer Energien im Wärmebereich sowie eine verbesserte Energieef-
�zienz durchWärmedämmung und moderne Heizsysteme sind zur Dekarbonisierung des deutschen
Wärmesektors erforderlich. Elektrische Wärmepumpen mit thermischen Speichersystemen er-
möglichen die Integration erneuerbarer Stromerzeugung und bieten betriebliche Flexibilität.
Diese ermöglicht die zeitliche Entkopplung des Wärmebedarfs von der Stromnachfrage zur Aus-
nutzung von Perioden mit niedrigen Preisen, günstigen Wetterbedingungen oder für einen netzdi-
enlichen Betrieb. Netzbetreiber sehen sich mit der Herausforderung konfrontiert, eine zunehmende
Anzahl elektrischer Lasten anzuschlieÿen und weiterhin Strom- und Spannungsgrenzen des Netzes
einzuhalten. Im Smart Grid werden Flexibilitäten in Gebäuden und Elektroautos zur Integra-
tion der Erzeugung, zur Unterstützung des Netzbetriebs und zur Vermeidung des Netzausbaus
genutzt. Die Ermittlung des optimalen und im Rahmen der Betriebsgrenzen möglichen Fahrplans
eines Gebäudes ist bereits komplex und erfordert Wetter- und Anwesenheitsprognosen sowie eine
mathematische Abbildung der Speicherdynamik des zugrundeliegenden Systems. Die Koordina-
tion einer Vielzahl physikalisch gekoppelter Systeme im Stromnetz ist eine Herausforderung.
Diese Arbeit präsentiert einen skalierbaren Algorithmus zur Koordination des Betriebs mehrerer
Wohngebäude mit Wärmepumpen und Photovoltaikanlagen im Verteilnetz. Basierend auf Meth-
oden der modellprädiktiven Regelung und der verteilten Optimierung wird eine verteilte Regelung
mit hierarchischer Struktur entwickelt. Der Regelungsalgorithmus ermöglicht einen reduzierten
Informationsaustausch. System- und Zustandswissen über einzelne Gebäude und das Verteil-
netz verbleibt bei den jeweiligen Teilnehmern und wird nicht zwischen diesen kommuniziert.
Lediglich Fahrpläne der Residuallasten und Dualvariablen werden zwischen den Prosumern und
dem Netzbetreiber iterativ bis zur Konvergenz zu einer gemeinsamen Lösung kommuniziert.
Mehrere Modelle der dem Regler zugrundeliegenden thermischen und elektrischen Systeme wer-
den entwickelt. Ein thermisches Gebäudemodell wird zur Abbildung der Dynamik eines Ein-
familienhauses entwickelt und validiert. Das ordnungsreduzierte Modell kann durch Gebäudety-
pologiedaten parametrisiert werden. Es erzielt eine ausreichende Genauigkeit bei Temperatur-
und Energiebedarfsprognosen. Das Gebäudemodell wird dann mit einem Wärmepumpen- und
Trinkwarmwassermodell im Entwurf eines modellprädiktiven Reglers für das Energiemanagement
eines Prosumers verwendet. Das Niederspannungsnetz wird entsprechend deutscher Referen-
znetze parametrisiert und durch ein linearisiertes Last�ussmodell abgebildet. Der Modellfehler
wird quanti�ziert und die Emp�ndlichkeit der Referenznetze im Hinblick auf Betriebsmittelüber-
lastungen und Unterspannungen untersucht. Anschlieÿend werden alle Modelle in der For-
mulierung des zentralen Optimierungsproblems zusammengeführt und der verteilte Regelungsal-
gorithmus durch eine mathematische Dekomposition entwickelt. Zur Demonstration der E�ek-
tivität des Algorithmus zur Koordination der Prosumer im Verteilnetz werden abschlieÿend drei
Simulationsstudien zur Spannungsstabilität, Lastglättung und der Eigenverbrauchsoptimierung
durchgeführt. Der Algorithmus erlaubt den Prosumern Flexibilität zur Minimierung individu-
eller Kosten auszunutzen, koordiniert den Betrieb aber, wenn gemeinsame oder globale Kosten-
funktionen zu berücksichtigen sind oder Betriebsgrenzen des Netzes verletzt werden. Closed-
Loop Simulationen über eine Woche werden für verschiedene energetische Gebäudestandards
gezeigt. Durch Koordination verursachte Kostenänderungen werden im Vergleich mit dem un-
koordinierten Betrieb ermittelt. Prosumer an Netzknoten mit starker Unterspannung erfahren
eine überdurchschnittliche Kostensteigerung durch Koordination. Im Weiteren wird gezeigt,
wie die Transformatorlast unter geringer Kostensteigerung und Auswirkung auf den Nutzerkom-
fort geglättet werden kann. Der Eigenverbrauch der Nachbarschaft kann zur Reduzierung der
Gesamtkosten durch den Algorithmus gesteigert werden.
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Chapter 1

Introduction
The aim of the �rst chapter is to provide an overview of international and national measures to
reduce global greenhouse gas emissions and to motivate the ongoing transformation of the energy
system. Literature reviews on the electri�cation of the heating sector, the use of operational
�exibility provided by buildings and technological requirements to optimally integrate buildings
in future power systems are given to de�ne points of reference for the contributions of this thesis.

1.1 Motivation

The physical science basis presented in the �fth assessment report of the Intergovernmental
Panel on Climate Change (IPCC) con�rms the human in�uence on the climate system. The
IPCC states a 95% certainty that humans are the main cause for current global warming, with
many climatic changes since the 1950s being unprecedented over decades to millennia [SQP+13].
Several emission pathways exist to limit the global temperature increase below 2 ◦C relative to
preindustrial levels, but intensive and urgent mitigation e�orts are required in order to avoid
higher costs and even greater technological, economic and institutional challenges [EPMS+14,
CM14]. The aim of the 2015 international Paris Agreement is to keep the increase in the global
average temperature to "well below 2 ◦C" above preindustrial levels and to pursue e�orts to limit
the temperature increase to 1.5 ◦C above preindustrial levels [Uni15]. The authors in [RGR+17]
translate the goals of the Paris Agreement into a global roadmap for decarbonization. A modeled
reduction scenario with a chance larger than 66% to achieve the 2 ◦C target and a 50% chance of
limiting the temperature increase to 1.5 ◦C by the end of the century requires the annual global
emissions to peak at around 40 GtCO2/a in year 2020 and to then decrease to 5 GtCO2/a in
2050. The authors suggest a climate law to halve emissions every decade, leading to net-zero
emissions in 2050 and leaving a total remaining budget of 700 GtCO2 until the end of the century.
Such a reduction could be, among other measures, achieved by a transition of the energy system
with a doubling of the share of zero-carbon generation resources in primary energy every �ve to
seven years1, and an upscaling of CO2 removal technologies [RGR+17].
Germany intends to reduce its greenhouse gas emissions by at least 40% in 2020 and by 80-95% in
2050, relative to the level of emissions in 1990. Key sectors expected to contribute are the energy
industry, the industry, households and transport [BMU14]. The energy industry has already
undergone a signi�cant change. Major fossil-fuel power and heating plants are included in the
European emissions trading scheme and renewable energies have been expanded signi�cantly
in the last two decades. In 2018, renewable energies had a share of 37.8% in gross electricity
consumption, but only a share of 14.2% and 5.7% in �nal energy consumption for heating/cooling
and transport, respectively [BMW19]. Special emphasis is given to those sectors, since the shares
of renewables have stagnated over the last years. One third of the �nal energy consumption alone

1Doubling time for renewables was 5.5 years in the past decade, the energy system would be carbon free around
year 2040 [RGR+17].
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is associated to space heating and hot water. Including further process heat, heat accounted for
54% of the �nal energy consumption in 2016 [BMW18]. Heat is of high relevance in private
households: space heating (70.7%) and hot water (13.9%) accounted for almost 85% of the
sector speci�c �nal energy consumption in 2016. The associated total emissions accounted for
74% of the private households' emissions for living [Fed19].
Looking at the �nal energy demand associated with buildings (residential and non-residential)
across all sectors underlines the relevance of heat and the importance of buildings as a lever
for energy e�ciency. Buildings accounted for 35.3% of the �nal energy demand in 2016, with
space heating accounting for almost 80% of that demand alone and leading to 66% of the related
emissions [BMW18].

1.2 Sector Coupling, Flexibility and the Smart Grid

Increasing energy e�ciency and expanding the use of renewable energies in heating and transport
is required to achieve Germany's climate goals. Several studies have investigated optimal path-
ways for the transition of the energy system and identify a strong electri�cation of the sectors
as necessary in order to replace fossil fuels with renewables.

1.2.1 Sector Coupling and Electri�cation

The study in [DEN18b] estimates that an average net expansion of renewable energies of up
to 8.5 GW per year is required until 2050, with main contributions from onshore wind and
photovoltaic (PV). Independent of the investigated scenario (strong or moderate electri�cation,
80% or 95% reduction of emissions), the installed capacity of renewable energies in 2050 exceeds
300 GW, which is more than a tripling of the capacity stated for 2015. In parallel, the energy
e�ciency in the building sector has to be increased through higher refurbishment rates to upgrade
the insulation standard of the existing building stock. Electrical heat pumps are mentioned as
an important technology to integrate more renewables in the building sector. Depending on
the degree of electri�cation, the authors state a total number of residential heat pump systems
ranging between 7 and 17 million in 2050 compared to near to one million systems installed
today [DEN18b]. Other studies con�rm the relevance of residential heat pump systems to enable
sector coupling, see e.g. [Fra17,BDI18]. A detailed discussion of heat pump penetration scenarios
is provided in Chapter 2.1.3.
Electrifying the heating sector with heat pumps and electrical heaters is also found bene�cial
in energy system optimization studies. The study in [SSH13] examines how the signi�cant
temporary excess generation resulting from high shares of wind and PV could be integrated in a
cost-optimal way in Germany. The authors �nd coupling of the electricity and heat sectors to be
more bene�cial than integrating the excess in the hydrogen or natural gas sectors due to �exible
and low-cost electrical heaters. Battery costs are found not to be competitive for large-scale
deployment. Expansion of the transmission grid is required to facilitate sector coupling at higher
shares of variable renewable energies. The thesis in [Hei15] investigated the cost-optimal structure
and operation of the electricity and heat supply for Germany to achieve national climate goals.
Electri�ed heating options, especially optimally operated heat pumps, lead the way to supply
heat at low costs. Heat pumps are found to be complementary to combined heat and power
(CHP) plants, which are predominantly used to supply heating grids. The additional electricity
generation from CHPs during times of high heat demand coincides with the increased electricity
demand of the heat pumps. A similar e�ect was observed for the interaction of heat pumps and
CHPs in low voltage grids in [Arn16]. Simple electric heating elements are mentioned in [Hei15]
as another low-cost option to supply heat and are found to be useful to better integrate short-
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term generation peaks of renewables. The author argues that the geographically distributed
nature of the electric heaters helps to alleviate issues of grid congestion during excess generation,
although the details of electricity grids are not covered in the optimization model used in the
thesis. Operational �exibility is mainly provided by thermal storage systems which allow heat
pumps, heating elements and CHPs to achieve higher operating times and a better integration of
renewables. Thermal storages reduce overall costs and higher emission targets lead to a higher
demand for thermal storages. A stronger coupling between the electricity and heating sectors
also reduces the demand for hydrogen as a storage option, which is in line with the results of the
previous study in [SSH13].

1.2.2 Operational Flexibility

In addition to a stronger electri�cation through electric heat pumps and electromobility, tech-
nological solutions like storages and load management are needed to decouple demand from
generation in a more renewable and volatile energy system [BMW18]. Increasing shares of re-
newable energy sources (RES) will result in more non-controllable stochastic in-feed into power
systems and generation will have limited capabilities to follow the demand. The latter needs to
be �exible in operation to adapt to the volatility in generation [DEN18b].
[UA12] investigates general operational �exibility in power systems and �nds it on both the
generation and demand side. Sources include fast responding conventional power plants or RES
curtailment, stationary storage capacities or load management to change the shape of the de-
mand curve. The authors de�ne operational �exibility as the ability of units in the power system
to modulate power and energy in-feed and out-feed. Operational �exibility can be characterized
by the metrics power capability for up- or down-regulation measured in [W], power ramping rate
in [W/s] and energy storage capability in [Ws] [UA12,MLMdM09]. The metrics di�er among
di�erent sources of �exibility and depend in the operational constraints of the unit. Activities
that allow for a change of the time pattern and magnitude of the electricity customer are not
new to the energy industry and are also summarized under the term Demand Side Management
(DSM) [Gel85].
The focus of this thesis lies on the optimal integration of operational �exibility provided from
residential buildings in power systems. The heating sector provides multiple sources of �exi-
bility in addition to the obvious �exibility from electrical battery storage systems to decouple
electrical supply and demand. The electricity demand of an electri�ed heating system can be
decoupled from the heating demand by use of a thermal storage system. A detailed discussion of
di�erent thermal storage systems and their DSM potential is given in [AHP12]. The structural
building mass has been of great interest as a thermal storage in recent years, besides commonly
available water tanks and bu�er storages. The basic idea is to bene�t from the thermal inertia
of a building by temporary overheating parts of the structural thermal mass, e.g. �oor, walls,
ceilings and concrete elements. Also the zone air can be overheated within a comfort temper-
ature range. The literature addresses modeling and control of concrete core activation in o�ce
buildings [Sou12,Jun14], the impact of the type of building and structural thermal mass on the
potential of DSM [HAS+14,Rey15] and the potential of a single family house equipped with an
air-to-water heat pump and �oor heating or a radiator heat emission system to integrate local
PV generation [RNS13]. The latter �nds signi�cant short-term �exibility to shift the electricity
demand of a heat pump from peak demand to peak supply times whilst maintaining thermal
comfort. Several studies try to quantify the �exibility beyond single building cases, i.e. the �ex-
ibility from aggregations of buildings or even the total provided on the national level. [SHM16]
introduces a methodology to compute the above �exibility metrics for a single building energy
system. The approach allows for upscaling to investigate the �exibility on city or even regional
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and national levels. The works in [PH14,RS14,RDS17] develop bottom-up models to characterize
and quantify the potential from typology buildings of the residential Belgian building stock. In
contrast, [KH17] presents a top-down approach to quantify the �exibility from residential and
non-residential heating and cooling in Germany based on the rated power of devices and the
approximated thermal capacity of buildings, explicitly including the thermal building mass. A
potential capacity of 200 GWh and 20 GW up- and down-regulation power are estimated for the
status quo. Finally, the Annex 67 program of the International Energy Agency was an interna-
tional initiative to acquire more insights into the �exibility potential of di�erent building types,
its usefulness for energy system services and appropriate control strategies, see [JMPL+17] and
the many subsequent publications of the working group2. Even though the working group states
grid supportive building operation as an important use case of �exibility, none of the publications
addresses the actual impact on power grids in terms of line power �ows and voltages.
Operational �exibility is a complex technological option since it has use cases and impacts on
di�erent levels of the energy system, involving di�erent stakeholders. The authors in [SHM16]
name three exemplary use cases of �exibility for:

• increase of building level or city quarter/district self-consumption,

• balancing RES �uctuations on the level of the national power system,

• power system support, e.g. mitigation of grid congestion.

Studies on the building level self-consumption with heat pumps and local PV systems are for
example carried out in [VGC+14,TSWB15,BKHB17]. Average autarky rates between 20% and
40% for a 10 kW PV plant and optimized heat pump operation are stated in [TSWB15] for
residential buildings of di�erent thermal standards. The authors underline the requirement of
an interface to enable optimal control of the heat pump. Potential bene�ts on the city district
level are discussed in [MMS+15] and the authors of [JAL+18] develop a �exibility index to com-
municate the available �exibility of single or multiple buildings to a grid operator to participate
in balancing or day-ahead markets.
Other studies address the impact of DSM from buildings on the national power system level.
[PBA+15] derives an approach to integrate DSM of heat pumps and electrical resistance heaters
in a national power system model and tries to include the price elasticity of the �exible systems
in a merit order model. The same authors use the model to investigate increasing shares of de-
mand response participants in [APB+16]. More customers participating in load shifting leads to
lower total operational costs of the energy system due to the additional �exibility in operation,
but also to a decrease of the per participant reward. [PH16] presents an integrated framework
to optimize both residential building energy system design (investments) and operation for nine
energy mix scenarios in Belgium. Investing in heat pumps with �oor heating and local PV sys-
tems results in lowest emissions for additional annual costs of 350 EUR when compared with the
status quo fossil fuel heating system. The authors in [AHW+17] investigate the impact of DSM
on the German energy mix and power plant dispatch until the year 2050. Electri�cation of the
building sector leads to a higher electrical load, which is mainly covered by RES, and reduced
CO2 emissions. Flexibilization of the new load allows for a better utilization of combined cycle
power plants and reduces emissions further. Two di�erent heat pump penetration scenarios lead
to a strong reduction of emissions, i.e. a tenth of the emission associated with a conventional
heating scenario.

2Project website: http://www.annex67.org/.
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1.2.3 Smart Grid

The electrical peak load of the whole building sector in Germany is expected to double from
33 GW to 65 GW in the electri�cation scenarios for year 2050 in [DEN18b]. Necessary invest-
ments in low voltage grids to integrate new loads and generators are expected to exceed those
in medium and high voltage grids in all 2050 scenarios, ranging between 68 and 150 bn EUR
depending on the degree of electri�cation and emissions reduction. The use of grid-supportive
�exibility options is assumed to reduce the costs from 150 to 103 bn EUR in the ambitious
electri�cation scenario. Additionally exploiting the inertia of buildings was not considered in the
study and might o�er a further cost reduction [DEN18b].
Increasing numbers of RES, electri�ed heating systems and electric vehicles will pose challenges
for distribution grids and change the way future power systems are planned and operated. While
the authors in [BKF+14] �nd the combination of curtailment and on-load tap changers favorable
to limit distribution grid expansion costs associated with local RES integration, integrated sector
studies like in [DEN18b,Fra17] highlight the importance of DSM to actively control heat pumps
and electric vehicle charging. Enabled by enhanced capabilities in measurement and automa-
tion, innovative concepts for the operational management of power grids are, besides the bene�ts
discussed above, required to reduce costs of grid expansion [DEN18b].
Distribution system operators (DSO) face multiple challenges. As the interface to higher level
grids, distribution grids must host many of the new electrical loads which are required to adapt
their operation to available RES generation and market price signals. At the same time, opera-
tional limits of distribution grids must be maintained. In the light of increasing wind generation
capacity the study in [SKP+,PKG+17] investigates the cost optimal thermal standard and heat-
ing system design to integrate electricity generation from strong wind events which occur with
a 95% probability every 13 days during the heating period and last in average for 9 hours. A
residential single-family house should have a tight insulation, a low temperature emissions sys-
tem like �oor heating, a large thermal water storage and an operational zone temperature range
from 20 ◦C to 25 ◦C in order to maximize the stored wind energy in the building to bridge calm
wind days and to avoid use of fossil back-up generation. Since the heating demand of two weeks
has to be stored in only a couple of hours, direct electrical heating is suggested to avoid expen-
sive overdimensioning of the heat pump. The total rated power of the building is found to be
signi�cantly higher than what is commonly assumed in grid planning. The authors recommend
to "adjust" distribution grids to the new peak load. In this case, grid-supportive operation is
limited to the integration of excess generation from wind and the impact on local grid operation
is beyond the scope of the study. The authors also highlight the need for prediction-based control
algorithms to enable wind-oriented operation.
The simulation study in [Arn16] assumes less extreme system designs but �nds undervoltages
caused by heat pumps as the limiting factor in a suburban distribution grid scenario for year
2020. The author assumes an air-to-water heat pump with an electrical power rating of 4 kW
and a heating rod of the same size3. DSM is implemented in form of a simple local proportional
controller which limits the maximum power of a heat pump linearly when the local bus voltage is
between 0.91 p.u.4 and the lower limit of 0.9 p.u.. Since undervoltages often occur at the ends of
grid feeders, the majority of heat pump controllers do not see the undervoltages, and the overall
power reduction is not su�cient to support the voltage. Even worse, DSM also causes a loss in
end-user comfort due to the simple hysteresis heating system control. On-load tap changers are

3 [NMB+12] reports of a distribution grid design of a German DSO which assumes a total connection of 3.5 kVA
per house including the heat pump.

4The per-unit system is used in power systems analysis to express and compare technical quantities. The
dimensionless value is obtained from dividing a physical quantity by a base reference value used for all components,
i.e. for voltages Vp.u. = V

Vbase
= 0.36kV

0.4kV
= 0.9 p.u..
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found to be e�ective and the most cost-e�ective solution among others, but DSM could become
viable when information exchange enables a more sophisticated and coordinated control of the
heat pumps [Arn16]. Extensive simulation studies to assess the impact of building/neighborhood
properties, air-to-water heat pump and PV system penetrations rates in Belgian low-voltage dis-
tribution grids are carried out in [PS17]. Modelica-based simulations show that especially rural
grids face violations of operational grid limits. Already heat pump penetrations rates between
20% and 30% cause line overloading in larger rural grids, undervoltages occur at slightly higher
rates. Coincidence in demand, especially caused by electrical back-up heaters, poses a major
problem and the authors point out that DSM and a smarter operation of the grid could be bene-
�cial. Issues related to the use of auxiliary heaters are con�rmed in [NMB+12] based on a smart
meter data study. The authors further investigate the e�ect of a synchronized reaction of heat
pumps to a price signal in order to use DSM to reduce individual costs. The required investments
in grid reinforcement overcompensate the total cost bene�t of the customers. This incentivices
solutions for intelligent grid operation to simultaneously facilitate DSM and the consideration of
power system constraints from a welfare-economic point of view. High coincidence in demand
due to reactions on market prices must be avoided [Fra17].
The idea of an intelligently operated distribution grid which integrates new loads and genera-
tors but also optimally exploits local �exibility to the extent that its own operational limits are
maintained, is conceptualized in the so-called Smart Grid. The need of a smart grid to tackle
challenges in future energy systems is stated in [LHM+07,BLHP09,RGR+17]. "Smart" refers to
the circumstance that enhanced sensing, automation and control enables the grid to optimally
operate a system of increasing complexity. [UA12] provides a control-theoretical perspective, un-
derstanding the term as "the sum of all e�orts that improve observability and controllability over
individual power system processes happening on the transmission and distribution grid level".
The smart grid also has the task to "empower its stakeholders to de�ne and realize new ways of
engaging with each other and performing energy transactions across the system" [Far10]. This
aspect is, among other things, motivated by a transition of small-scale electricity customers:
previous passive consumers become active producers who sell locally generated electricity, often
referred to as prosumers5 [LVK10]. Improved communication infrastructure and metering of
devices together with controllability and predictability over various distributed energy resources
are key elements of a smart grid. Missing communication and metering infrastructure is seen as
an important reason for limited deployment of DSM so far [Str08]. A review of communication
technologies and standards used in di�erent domains (e.g. grid operation, building automation)
is provided in [GSK+11]. A wider use of monitoring solutions also raises concerns of data privacy.
Metering close to the private customer involves the risk of revealing behavior, activities and occu-
pancy [MM09,LXL+12]. This concerns not only smart meters tracking the household electricity
consumption, but also advanced energy management solutions to operate heating systems. As
will be shown in the next section, state-of-the-art control approaches base optimal scheduling
decisions on multiple forecasts, potentially including occupancy.
Assuming availability of communication technologies, suitable control strategies have to be devel-
oped to integrate and enable the use of �exibility in distribution grids. The authors in [DEMM17]
highlight characterizing factors that in�uence the development of such real-time control strategies
in the context of distribution grids. Flexibility stems from non-electrical storages and coupling
of the sectors results in so-called multi-energy systems with signi�cantly di�erent time constants
of physical processes in power systems and thermodynamics. Previously independently devel-
oped and applied control and optimization strategies used e.g. in power systems and heating,
ventilation and air conditioning (HVAC) have to be combined now. In order to integrate �exible

5The term is used in this thesis for a residential customer whose building is equipped with an electrical heat
pump and a PV plant.
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operation of buildings in distribution grids, a non-exhaustive set of tasks and aspects can be
given which seems to be relevant and is addressed in the context of this thesis:

• Economic dispatch and cost optimal use of �exibility :
The control strategy must allow the computation of set-points for the local systems (pro-
sumer, HVAC system) to meet individual subsystem objectives, e.g. minimal energy costs
or maximum comfort, but must also allow for consideration of global objectives of the
community or DSO to match overall demand and supply targets [DEMM17]. The strategy
should be able to �nd a cost-minimal selection among multiple �exibility options.

• Local and global feasible operation:
Operational schedules must account for intertemporal dependencies of storages and satisfy
both operational constraints of the subsystems (e.g. individual temperature and power
limits) and of the distribution grid (e.g. voltage and current limits). Modeling constraints
of systems is crucial to assess and optimally exploit �exibility [UA12].

• Predictability and uncertainty treatment :
The control strategy must account for the volatility of RES generation pro�les and the
impact of non-controllable disturbances on systems and their �exibility through predictions.
Especially building operation is driven by ambient conditions and user behavior. The
authors in [OMSE+14] hint at the higher uncertainty of load pro�les in smaller microgrids
compared to the bulk power systems due to a smaller number of systems and a weaker
averaging e�ect.

• Information exchange:
The necessity of a certain degree of information exchange between the subsystems and
the DSO is evident. Price signals or information on grid conditions could be revealed
to the subsystems to make independent local decisions. Conversely, DSOs could monitor
and directly control subsystems in order to steer demand pro�les [IA09]. Since DSOs
might be unwilling to share topological and operational data with electricity customers,
and customers might have privacy concerns when sharing detailed operational data of
their subsystems, data protection and minimum information exchange are desired features.
Reduced communication requirements might also be of importance for critical tasks in grid
operation [OMSE+14].

• Adaptability and scalability :
The number of subsystems and the composition by type might change over time, and with
this the overall system model used in a controller. Thus a control strategy should facilitate
seamless integration and removal (the "plug-and-play" feature, see [Sto09]) and be able
to deal with topological changes in the grid [OMSE+14]. In addition, the size and type
of optimization problems to solve may become a challenge. Nonconvexity resulting from
the underlying power �ow physics, non-linear e�ciency models, binary decision variables
of HVAC systems, increasing system size and optimization horizon can lead to models of
high and possibly prohibitive computational complexity [DEMM17].6

1.3 Smart Grid Control

This section gives an introduction to standard and advanced control methods and architectures
applied to problems in building controls and power systems. Di�erent methods are brie�y dis-
cussed with respect to the aspects described above and a literature review on building controls

6A short introduction to convex optimization is provided in Appendix A.1.
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for heat pumps and large-scale systems given. The goal is to motivate the development of a dis-
tributed hierarchical model predictive controller for the coordination of prosumers in distribution
grids in this thesis.

1.3.1 Rule-based Control and Model Predictive Control

Multiple conventional controllers are applied to operate building HVAC systems. [SNN+14] pro-
vides a review of common controllers and names thermostats, proportional-integral (PI) and
proportional-integral-derivative (PID) controllers among others. Besides classical feedback con-
trollers used for setpoint tracking, so-called Rule-based Control (RBC) schemes are frequently
applied in building automation to steer overall system behavior. In RBC, inputs for actuators
are determined based on a set of rules stated in a structure such as if (condition) - then (action
1) - else (action 2) [VLOA13], e.g. a thermal storage is recharged when the temperature falls
below a certain threshold and charging stops after a prede�ned amount of time. To �nd a set
of rules which achieves the best possible operation with respect to costs or comfort might be
di�cult, the task might become even more challenging in complex systems with hundreds of
actuators.
The task to optimally control a physical process of a system is a standard dynamic optimization
problem, e.g. the decision when to optimally charge or discharge a thermal storage system over
time can be found by solving such a problem. Core element is a model representation of the
physical process, stated as a discrete-time (time index k) dynamic model:

x(k + 1) = h(x(k), u(k), d(k)), x(0) = x0. (1.1)

x is the state of the system (e.g. temperature in the storage), u is the controllable input (e.g.
power injection from an electrical heater and/or controlled discharge) and d is a predicted,
non-controllable disturbance in�uencing the process (e.g. random discharge of the storage, sur-
rounding temperature driving heat loss). All variables might be vectors. The evolution of the
state of the system over time is de�ned by the possibly nonlinear function h and the initialization
of the model with x(0) = x0 where x0 is the latest measurement of the state. The dynamic opti-
mization then solves for the optimal vector uNP = (u(0)T , u(1)T , . . . , u(NP − 1)T )T to minimize
the stage cost function F and the terminal cost function Fx over the prediction horizon NP :

min
uNP

NP−1∑
k=0

F(x(k), u(k)) + Fx(x(NP )). (1.2)

The optimal sequence of controllable inputs (e.g. values of charging and discharging power) is
computed with techniques from numerical optimization to attain the minimum aggregated cost
over the �nite prediction horizon. F might be linear or nonlinear and depends on either of the
variables, depending on the control objective chosen. Minimizing cost of the use of the heater
or tracking a prede�ned trajectory with the storage temperature are possible applications. A
weighted combination of linear and/or quadratic terms can also be implemented.
Computing the optimal sequence u∗NP once and applying the solution to the system over the
length of the predicted time steps might result in bad operation and the actual progress of the
state might deviate from the predicted trajectory. The process model h might be inaccurate and
forecasts of disturbances erroneous. In addition, predictions for a �xed future time step usually
become better the closer one is to it. One might also bene�t from taking a new measurement
of the system into account. Instead of applying the whole sequence u∗NP on the system, only a
part of it, e.g. the �rst element u(0)∗, is used. The dynamic process of the system advances and
a new measurement for x(1) and updated predictions of d are used to repeat the optimization.
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This online procedure is referred to as Model Predictive Control7 (MPC), see [BBM15,RM09]
and the introductions therein.
MPC evolved from the chemical process industry in the 1970s and has since then found appli-
cation in many other industries [QB03]. A crucial advantage over other control methods lies
in the explicit consideration of interdependencies and operational constraints on multiple model
inputs and outputs, which helps to avoid their violation during operation. The dynamic model
can be extended by such constraints in the optimization problem [BBM15]. While MPC is often
used to perform setpoint tracking and economic objectives are only considered in a steady-state
optimization layer located above the actual MPC controller, so-called Economic MPC considers
economic objectives directly in the objective function (1.2) [RAB12].
The ability of MPC to schedule operation with respect to di�erent performance criteria in
real-time, to take process dynamics and physical constraints into account and to make use of
predictions and treat uncertainty, make MPC attractive also for applications in building con-
trols. [MKDB12] provides a thorough introduction on MPC for thermal storage operation of com-
mercial HVAC systems and demonstrates how MPC can be used for energy e�cient operation and
demand response services. [KK16] describes how in contrast to a standard PID controller imple-
mentation, MPC is able to anticipate a severe drop in the ambient temperature, takes the delayed
response in the zone temperature of the building into account and �nally operates the heating
system with only a minimal loss in comfort. Multiple works have addressed control problems
in both commercial and residential buildings, addressing energy e�ciency, occupant comfort or
the response to price signals. Publications have covered di�erent settings and control tasks, with
a focus on energy e�cient building operation for radiator heating systems [HGP12a,HGP12b],
water-based cooling systems [MBH+10], control of multizone buildings [AH16] or the minimiza-
tion of discomfort from thermal strati�cation in shopping centers [MF15]. [OPJ+12] investigates
the impact of MPC on energy e�ciency and occupant comfort and controls blind positions and
lighting in addition to the HVAC system. A stochastic MPC approach to deal with uncertainty
in weather predictions was introduced and found to be superior with respect to energy consump-
tion and comfort compared with the standard deterministic formulation. Stochastic MPC for
large HVAC systems is also addressed in [MMB15]. Robust MPC for disturbance uncertainty is
investigated in [MSV13].
In modern systems MPC is implemented as a part of a multi-level control hierarchy where the
higher level MPC determines setpoints for basic �eld level controls [QB03]. This allows for in-
tegration of MPC as supervisory control with existing PID and rule-based controllers, see the
exemplary structure in a building automation system in [KK16] or the experimental HVAC
setup with a three-level control hierarchy to accomplish energy reserve scheduling and frequency
regulation signal tracking in [VKM+16a,VKM+16b].

1.3.2 MPC for Residential Buildings

An early contribution in optimal control (not MPC) for heat pump scheduling with respect
to time-of-use tari�s can be found in [RGZ88]. The authors derive the optimal trajectories of
operation for a bilinear system model for the case of periodic boundary conditions, i.e. the price
pro�le and ambient temperature are assumed to have a period of 24 hours. The work in [Wim04]
designs and successfully tests a linear-quadratic MPC implementation for a residential heat
pump in a real single-family house. [Bia06] extends the work and develops online parameter
identi�cation techniques to automatically adapt parameters of the system model. The works in
[VDL+12,VLvH12] investigate the impact of di�erent nonlinear and convex problem formulations
for the 24 hours optimal control problem, to schedule a residential heat pump on model accuracy,

7Receeding Horizon Control is another term frequently used in the literature.
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costs and comfort. The use of a simpli�ed linearized model for the heat pump e�ciency seems
valid when power peaks are penalized in the cost function.
Several works investigate �nancial bene�ts of economic MPC for residential heating systems
and the impact on comfort. [ZMPK+12] demonstrates how MPC is used to increase PV self-
consumption and to exploit low spot prices in a building with electrical heaters. [HBP+12]
achieves annual electricity cost reductions between 25% and 30% compared with a thermostat
control when using MPC for spot price optimized control of a water storage tank. A cost
reduction in the range of 25% to 35% (depending on the zone temperature constraint) over a �ve
day simulation is reported in [HPMJ12] when operating MPC on day-ahead prices instead of a
constant price. [KMW+13] estimates a house model based on measurements and optimizes the
heat pump operation against spot prices from the Nord Pool power exchange. A cost reduction by
7% together with a slight increase in the standard deviation of the zone temperature resulted from
a simulation of a winter month. MPC is also simulated for di�erent price signals in [VLOA13]
for a residential building with a heat pump, slab cooling, a domestic hot water heater, PV and
a battery. Simulations show a good response of the building system to day-ahead and real-time
prices, which quali�es for energy market oriented demand response services. Depending on the
building and price scenarios, a cost reduction between 18% and 28% can be achieved against a
rule-based reference implementation. The author of this thesis designs a predictive controller for
a residential ground-source heat pump in [KJC16] based on the thermal model from [HPMJ12]
to investigate the trade-o� between minimizing electricity costs and discomfort. A seven day
closed-loop simulation with a 24 hours prediction horizon reveals a possible cost reduction of
62% when the controller must no longer maintain a 22 ◦C zone temperature and is allowed to
exploit spot price di�erences while keeping the average zone temperature at 22 ◦C. A benchmark
optimization with perfect predictions over the whole simulation period demonstrates the impact
of the limited prediction horizon in MPC.
Cost saving results must be interpreted in the context of often simpli�ed building and heating
system models. Such estimates heavily depend on the quality of the benchmark controller when
compared with standard control methods. [FBMW17] tests RBC implementations of di�erent
sophistication against a convex MPC for an air-to-water heat pump heating system in a multi-
family house. MPC outperforms all RBC solutions with respect to annual costs (reduction
between 6%-16%), energy e�ciency and comfort in all scenarios, but requires signi�cant modeling
e�ort and is computationally more expensive. RBC is initially easier to design, but satisfying
results require much �ne-tuning and the derived rules are not robust to changing boundary
conditions. This is also an important result with respect to the parallel operation of multiple
buildings, i.e. de�ning rules for a close to optimal operation of an aggregations of systems might
be impossible with RBC.
To conclude, RBC has limited applicability for load shifting in buildings and MPC o�ers many of
the features required in the context of building operation in smart grids. [KK16] argues that there
is no other control strategy comparable to MPC with similar suitability to integrate buildings
in smart grids. MPC computes an operational dispatch with respect to technical or economic
objectives, assures feasible system operation and is able to take forecasts and uncertainty into
account. The above literature review supports the view that MPC could be the primary candidate
to enable DSM of buildings for services in power systems, due to the ability to shift electrical
loads in response to price signals. Finally, this section has revealed two important limitations:
Studies with price signals focus on prices from market places such as European energy exchanges
or time-of-use tari�s provided by local utilities. The studies are limited to the assessment of
the general �exibility to change a building's load pro�le. The actual impact of price responsive
operation on distribution grids is not investigated further. The perspective from the single
optimized building needs to be extended by the view of the DSO. In addition, multiple buildings
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must be controlled to enable coordination in distribution grids, which requires a method reaching
further than single building MPC.

1.3.3 Control Architectures

Independent of the methods used to control complex dynamic systems, control architectures are
commonly distinguished with respect to the distribution of information, the distribution of com-
putational power and the required communication infrastructure.
Centrality requires all information to be available at a central control unit where all decisions
are made, including complete process knowledge, i.e. dynamic models of all systems but also
sensor measurements of all states. Centralized architectures fail in large-scale systems due to
limits of costly information gathering and central computation capability [BB10]. Geographi-
cally dispersed power systems with many connected subsystems are one example where centrality
fails [SVAS78,VHRW08]. Extensive communication would be required between a central con-
troller and the executing units [OMSE+14].
In contrast, decentralized architectures assume that the large-scale system is in fact a compo-
sition of many autonomous subsystems, each one of them able to perform control tasks on its
own [NdSH04,Sca09]. No communication between the systems exists. All subsystem information
remains local and all decisive power is given to the subsystems, which requires local computa-
tional power. It �nally depends on the degree of interactions, i.e. the physical coupling between
the subsystem, whether or not a decentralized architecture is su�cient to guarantee overall per-
formance and feasible operation [Sca09]. See [SVAS78] for analysis of weak and strong coupling
in decentralized systems. Coupling may exit between states of subsystems or their controllable
inputs. In the context of this thesis, coupling among the building and prosumer subsystems
exists in the shared use of the distribution grid through the residual loads. Coupling may further
exist in a shared cost function of the controllable inputs. Assuming sel�shly operating MPCs in
multiple buildings without further coordination is an instance of a totally decentralized architec-
ture.
Coordination is better achieved in a distributed architecture, where a certain iterative or non-
iterative exchange of information between subsystem controllers is possible. A further distinction
is made between fully and partially distributed architectures, referring to communication net-
work topologies where a subsystem has information exchange with all other subsystems or only
a subset [Sca09]. The latter results in reduced communication and might be favorable where
not all subsystems share interdependencies/coupling with one another. The basic idea of a dis-
tributed architecture is to decompose the overall system model of a central coordinator into
smaller subproblems solved by local controllers8. Depending on the type of information ex-
change, distributed architectures are also categorized by the extent of cooperation between the
subsystems. While communication based/independent settings assume that competing subsys-
tems are unaware about the cost functions of other subsystems, cooperative settings assume that
such knowledge is available and the subsystems operate towards a systemwide objective. On
algorithm convergence, cooperative settings can achieve global optimal performance like in a
centralized setting. In contrast, even if convergence is possible, an optimal solution is not guar-
anteed in the non-cooperative setting, one obtains the so called Nash equilibrium which might
not lie on the Pareto optimal surface, i.e. the set of optimal trade-o�s between the subsystems'
objectives. See [Sca09] and the works in [VRW05,VRW06] for distributed MPC and a discussion
of its relationship to the cooperative/non-cooperative game theory.
Distributed architectures can further have a hierarchical structure to achieve coordination,

8Autonomous "local controllers" or just "subsystems" have similarity to "agents", a term used in computer
science [Sca09], see also [NdSH04] referring to "Multi-agent MPC".
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see [Sca09]. In a two level structure a central entity or "coordinator" on the top level coor-
dinates the operation among all subsystems on the lower level by exchange of communication
variables. The global optimization problem has to be reformulated in order to decompose it into
separate subproblems [SVAS78]. The subsystems take prices communicated by the coordinator
into account when solving for their local optimal operation and then communicate a part of the
local solution back to the coordinator. The iterative procedure is repeated until global feasible
operation is achieved, i.e. consensus in the coupled variables exists. Conditions for convergence
and optimality depend on the overall optimization problem and algorithm chosen to solve the
distributed problem. In order to break a central problem, e.g. the minimization in (1.2) sub-
ject to (1.1), into smaller distributed subproblems, a mathematical decomposition of the initial
problem has to be carried out and speci�c algorithms are used to calculate a solution. Methods
frequently applied in the smart grid literature are the dual decomposition and the alternating di-
rection method of multipliers (ADMM), but many others exist. The choice of algorithm depends
on the mathematical properties of the underlying optimization problem, associated convergence
properties and the speed of convergence. As will be shown in the next section, some publica-
tions propose algorithms that are not supported with proofs of convergence and optimality. A
motivation for the use of ADMM in this thesis is given in Chapter 5.
Architectures for hierarchical control are attractive where the distribution of knowledge is im-
portant. Since neither the central coordinator nor the local controllers of the subsystems need to
know the global problem, i.e. the overall system model including all cost functions, knowledge
is decentralized [SVAS78]. This is highly applicable in the context of this thesis, where it is
desirable to keep knowledge of internal building system states, occupancy predictions and cost
functions with the local system controller. Simultaneously it can be assumed that a DSO is
not willing to share any topological, asset and operational distribution system information with
customers.
A further advantage of a hierarchical architecture in the context of MPC may lie in computational
requirements. Depending on the model and objective, MPC requires the solving a linear or non-
linear optimization problem online. Even though linear or quadratic problems are easy to solve
with today's methods, large-scale problems with many variables and long prediction horizons can
still become computationally demanding [MH99]. Computational complexity is reported to be
a potential challenge in building controls where inexpensive computing platforms have limited
computational resources [MKDB12]9 and problem speci�c optimization methods are designed
to enable fast computation on embedded systems [BBM15]. Obviously, limited memory can be
a reason for a distributed solution. Since computation time often increases at a greater than
linear rate with problem size (often polynomial growth for MPC problems [ESJ09,HVP+16]),
solving smaller subproblems in parallel instead of one large central problem might be bene�cial.
However, the time needed to iterate could outweigh savings and a �nal judgement is problem
speci�c [SVAS78]. Nevertheless, previous works on DSM carried out through distributed opti-
mization found better scalability in terms of computation time and peak memory use for instances
with many subsystems when compared with centralized implementations [HVP+16,RGJ17]. The
latter found superior performance when more than 100 electric vehicles are controlled.

1.4 Literature Review on Coordination of Distributed Systems in

Power Grids

This section provides an overview of di�erent control strategies and architectures applied to
coordination problems including buildings and power systems.

9The author is aware that this argument must be put into perspective by applications in cloud computing.
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1.4. LITERATURE REVIEW ON COORDINATION OF DISTRIBUTED SYSTEMS IN
POWER GRIDS

1.4.1 Central Strategies

The study in [dCBS+14] investigates how residential buildings equipped with air-to-water heat
pumps and domestic hot water storages can help to reduce curtailment of local PV generation
in order to avoid overvoltages. The Modelica-based simulation study tests di�erent rule-based
control strategies for the domestic hot water loop, i.e. the set point temperature of the water
tank is temporarily increased, triggered by a timer, an active power measurement or a voltage
measurement at each house. A central control architecture is tested in addition to the simple
decentral solutions. Here, a coordinator has access to all building voltages and storage tem-
peratures and triggers a temperature increase in all storages as soon as a single bus voltage
violates the limit. All strategies help to reduce curtailment losses and the most complex central
strategy leads only to a small improvement compared to the simpler solutions. The authors
�nd best results when the whole neighborhood participates in a DSM strategy. MPC to operate
the whole neighborhood is expected to outperform the rule-based strategies. [TBSH15] solve a
central optimization problem to investigate the potential of electrical heat pumps with bu�er
storages of a group of residential buildings to help integrate PV generation and to mitigate volt-
age increase. The distribution grid (IEEE European Low Voltage Test Feeder) is not part of
the optimization, only the aggregated residual load of the buildings is optimized. The study
uses low-order dynamic models to forecast the heating demand of buildings with di�erent energy
e�ciency standards and includes the domestic hot water demand. Shifting charging times of the
bu�er storages helps to integrate PV and leads to lower maximum voltage peaks. The domestic
hot water demand helps to integrate PV during the summer months. The authors of [MSSVP14]
propose a central MPC framework on top of the classical PI-controlled generation control to
provide up- and down-regulation power from commercial building HVAC systems for frequency
regulation in the transmission system. Control areas with buildings, frequency dependent loads
and generators are coupled through a simple power system model, i.e. no losses, voltages and
reactive power �ows are considered.

1.4.2 Distributed Coordination of Flexibility

A general hierarchical control architecture to coordinate houses and distributed appliances to-
wards a global objective is presented in [MBB+10]. [LvS13] presents a distributed MPC approach
to coordinate the power imbalance with small-scale CHPs based on a dual decomposition algo-
rithm. In the partially distributed setting, a system only communicates with a subset of all
systems depending on the typology. Both a relaxed and a nonconvex problem formulation with
binary decision variables to account for on-o� switching are tested. In [CGB+13], a distributed
MPC algorithm is presented to coordinate the aggregate peak load of a cluster of buildings, PV
plants, batteries and electric vehicles at their single point of common coupling to the grid. The
local controllers of the units take the shared coupling constraint into account and asynchronously
access a central "blackboard" to retrieve the total operation plan and publish their schedules. No
central coordinator optimization problem has to be solved, but the authors do not provide formal
guarantees on convergence and optimality for the proposed algorithm. A third-order model of an
o�ce building from the literature is used to represent more realistic building dynamics. A similar,
asynchronous approach is used in [SAM16] to coordinate DERs including residential heating sys-
tems in order to shape the aggregated load pro�le. The control scheme's impact on a distribution
grid is brie�y investigated for an IEEE benchmark grid, but local operational grid constraints
are not explicitly considered in the coordination. The works in [WKGW14,WKB+15] present
a hierarchical distributed MPC approach to �atten the aggregated power pro�le of residential
energy systems equipped with electric batteries. The distributed mechanism is enabled through
a central coordinator, the "market maker", who iteratively adjusts buying and selling prices for
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electricity based on the schedules received from the subsystems. In [WKB+15], the algorithm
is compared with a simple rule-based, a centralized MPC and a decentralized MPC approach in
which the individual subsystems penalize their deviation from the average demand and neither
communicate with each other nor with the coordinator. The simple decentralized rule-based
controllers fail to exploit storage �exibility in order to reduce the peak-to-peak variation in the
aggregated pro�le. The distributed MPC achieves the performance results of the centralized
MPC in some cases and always outperforms the decentralized implementation. Unfortunately,
an investigation of the convergence properties of the distributed MPC algorithm is left for future
work.
Many publications propose distributed control frameworks including single or multiple aggrega-
tors as interfaces between energy markets and the many subsystems. [TBS11] propose a hierar-
chical distributed MPC scheme where possibly multiple aggregators subsume a group of �exible
consumers and steer them to achieve top level power balancing. Single aggregator settings and
optimal electric vehicle charging have been studied in e.g. [MDP13] and [RWH+13]. The lat-
ter presents a decomposition to hierarchically coordinate between an aggregator and a �eet of
electric vehicles based on ADMM. Objectives are minimum cost or valley-�lling, i.e. charging
when the aggregated load is low in order to prevent new peaks in the total electricity pro�le.
A dual decomposition and ADMM are applied in [DVM14,DSM16] to coordinate heat pumps
coupled to a simple thermal storage in a day-ahead optimization with respect to di�erent local
and global cost functions, no building dynamics are modeled. [HJP+13, HVP+16] propose hi-
erarchical distributed MPC based on Douglas-Rachford splitting to coordinate thermal storage
systems in order to achieve cost-minimal tracking of a prede�ned consumption pro�le the aggre-
gator has committed to. [HVP+16] presents closed-loop MPC simulation results for exemplary
second-order systems parameterized with time constants from a typical range of refrigerators and
heat pumps.
[BFG+18] proposes a hierarchical distributed MPC algorithm based on ADMM for physically
decoupled subsystems with a coupling in a shared objective function handled by the grid opera-
tor. Convergence is guaranteed for convex MPC problems, i.e. the minimization of (1.2) subject
to constraints in (1.1) form a convex optimization problem. The size of the problem solved by
the central coordinator can be made independent of the number of subsystems through an aver-
aging procedure and the communication to the subsystems at each iteration reduces to a single
vector of information transmitted to all participating systems. Case studies with simple models
for residential battery systems investigate closed-loop valley-�lling, operation with respect to a
time-varying aggregate power grid constraint and islanding of a micro grid. The paper provides
a mathematically rigorous treatment of the decomposition for linear time-varying dynamic sys-
tems and the thesis in [BFG+16] by the same author provides a proof of convergence adapted
to the context of MPC. The author of this thesis has adapted the hierarchical distributed MPC
algorithm from [BFG+18] to the setting of a cluster of residential buildings equipped with heat
pumps in the publication in [KJC17b]. The objective is to �atten the electrical demand of the
heat pumps, which adds to the non-�exible pro�le of remaining electrical loads, at minimum
costs. In a closed-loop simulation study with 20 well insulated buildings, the variance of the
aggregate demand pro�le is reduced by over 70% while the overall energy consumption increases
by around 3%, since the buildings have to deviate from their local optimal schedules.

1.4.3 Distributed Coordination in Distribution Grids

Beyond simple limits on aggregate power capacities, the above works on distributed control do
not consider operational limits of the distribution grid, i.e. topology, line �ow and voltage limits
are not taken into account in the problem statements. With respect to the contributions in
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distributed control, this generally means that coupling is limited to a shared cost function or an
aggregated variable constraint. A number of publications address power system constraints in
distributed settings, e.g. [BGHL16] investigates decomposition approaches for the nonlinear AC
optimal power �ow problem to coordinate power exchange between control areas in a distributed
MPC setting. Multiple methods exist to manage congestion in distribution grids, i.e. to allevi-
ate line overloading or voltage issues related to the operation of DERs. [AHH12] gives a more
generic discussion of grid capacity markets, capacity allocation or dynamic tari�s as strategies to
coordinate high penetrations of electric vehicles in distribution grids. The review in [HWLN14]
distinguishes between indirect ("market") and direct control methods for congestion manage-
ment. The former includes all methods where a price signal is used to in�uence the operation of
�exible loads, while the latter refers to measures exclusively taken by the DSO to directly access
and manipulate controllable inputs in order to prevent blackouts. The authors suggest to DSOs
to �rst make use of close to cost free direct methods (network recon�guration, on-load tap chang-
ers, reactive power control), then to use market methods to achieve welfare optimal and feasible
operation and �nally to apply direct control of active power as a last resort, since signi�cant
losses in customer comfort are expected by the author. Several methods exist to establish a price
on grid constraints in order to avoid congestion. The authors in [BASB12] propose a hierarchical
distributed MPC to coordinate consumers grouped under di�erent balancing responsible parties
(BRP) with respect to simple line �ow capacities in a distribution grid. The central optimization
problem, initially formulated in [BSBA12] is decomposed based on dual decomposition and the
communication takes place between the DSO and the BRPs in the form of shadow prices for
each branch of the simple grid. Congestion management is also addressed in [NSB17], where
a multi-level structure is proposed to coordinate BRPs, aggregators and �exible loads. Simple
DSO line �ow limits are considered in a neighbor-to-neighbor optimization. Lagrange multipliers
of the dual decomposition are used in [MT13] to coordinate customers in a 24 hours day-ahead
optimization with respect to three-phase nodal balance constraints, voltages are not considered.
The authors suggest the use of ADMM as an alternative in case not strictly convex cost/utility
functions are used. ADMM is used in [JAW14] to coordinate electric vehicles and heat pumps
to reduce grid losses in a simpli�ed distribution grid model neglecting voltages. The concept of
distribution locational marginal prices (DLMP) introduces node speci�c congestion prices with
respect to grid constraints. DLMPs are used in [LWO14] to coordinate electric vehicle charg-
ing between a DSO and an aggregator. The DLMPs are computed by the DSO in a central
optimization including a DC power �ow representation of the grid, i.e. the voltage is assumed
to be constant 1 p.u. at all nodes for simplicity. The approach is enhanced in [HWO+15] to
guarantee uniqueness of the solution in order to prevent divergence of the DSO and aggregator
solutions. A case study includes a literature-based parameterization for a second-order dynamic
model of a house with a heat pump. Line �ow limits are the only grid constraints considered.
The work in [HMG+17] extends the concept through a dual decomposition algorithm in order
to compute the DLMPs in a distributed fashion while preserving privacy of the DSO and ag-
gregators/customers. The formulation contains line �ow limits and a test case with commercial
building HVAC systems is presented. Demand uncertainty is treated in [HGM+17] with the
introduction of day-ahead robust DLMPs and the resulting conservatism is alleviated with a
real-time adjustment method.
In contrast to the simple power �ow models used above, the full non-convex optimal power
�ow problem is solved by ADMM for varying degrees of decomposition (TSO-level, DSO-level,
Microgrid-level) for di�erent IEEE test grids in [LBD15], see also [LDB16]. Even though conver-
gence of ADMM is not guaranteed for non-convex problems, the algorithm was found to converge
for a certain selection of penalty parameters, suggesting applicability in practice. In [DZG13],
a relaxed convex semide�nite programming reformulation of the non-convex optimal power �ow
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problem is solved with ADMM to coordinate multiple areas of unbalanced microgrids. In contrast
to the iterative methods above, [WDCD14] suggests a one time information exchange heuristic
including transformer and voltage limits (linear model) to coordinate electric vehicles in distri-
bution grids.

1.5 Contributions

This thesis hopes to make a contribution to the approaches to coordinate residential prosumers
equipped with electrical heat pump systems in distribution grids to enable sector coupling on
a technological level. Gaps with respect to the optimal coordination and closed-loop operation
of heat pump systems can be identi�ed based on the previous literature review. Many works
focus on the coordination of electric vehicles and heat pumps, but the full potential of �exible,
electri�ed heating system operation is not addressed due to simple literature-based parameteri-
zations or completely neglected building dynamics. In addition, closed-loop behavior is usually
not investigated since most works focus on single open-loop or day-ahead optimizations. This
concerns the e�ciency of the multi-period operation of thermal systems but also the performance
of the decomposition algorithm, which has to be sequentially executed at di�erent time steps
with updated measurements and predictions. Furthermore, distribution grid limits are only se-
lectively addressed, i.e. voltages are neglected in works that have investigated distributed control
schemes to coordinate heat pumps.
This thesis demonstrates how residential prosumers with electrical heat pumps can help to miti-
gate grid congestion and support voltage stability in low voltage distribution grids and simulta-
neously achieve both global and local level objectives. As a result, prosumers can still react to
price di�erences on energy markets to minimize their costs, but only to the extent that a secure
operation of the distribution grid is maintained. In order to show how the complete �exibility
of the prosumers can be exploited to achieve feasible distribution grid operation and at what
cost this is achieved, a hierarchical distributed model predictive controller is designed and sim-
ulated. Di�erent thermal and electrical models with parameterizations typical for Germany are
combined to facilitate the �nal simulation studies. The following contributions are presented in
the scope of this thesis, references to previous publications of the author are indicated:

• Prosumer Thermal Energy Models:
A linear thermal building model is developed to represent the most important dynam-
ics of a residential single family house equipped with a �oor heating system. The model is
parameterized based on the German building typology and three di�erent energy standards
are implemented to represent the range of thermal behavior from old refurbished to modern
highly insulated buildings. The model is validated against a reference model implemented
in the complex energy simulation software EnergyPlus. The fourth-order model accounts
for conductive, convective and radiative heat transfer mechanisms and predicts the zone
temperature with satisfying accuracy. Furthermore, the dynamic response and the speci�c
energy demand of the model are investigated. A �rst version of the thermal building model
was presented by the author of this thesis in [KJC17a].
A heat pump model based on manufacturer data is developed. The model maintains
linearity of the thermal building model and results in a time-varying coe�cient of perfor-
mance, which depends both on the ambient and the supply temperature.
A domestic hot water demand model is developed based on German time use survey
statistics to model time series for hot water draws taken from a storage.
An internal gains model is introduced to account for internal gains from occupants in
the thermal building model. The same underlying time use survey statistics are used to
achieve consistency in occupancy and user activity dependent time series.
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• Prosumer MPC for Energy Management:
A model predictive controller is designed for a prosumer including the above thermal
models. The convex optimal control problem is formulated to minimize electricity costs
and, if available, integrate local PV generation, while maintaining temperature limits to
guarantee thermal comfort of the occupants. The controller is not aware of distribution
grid constraints and is as such an exemplary implementation for a decentralized control
architecture. A single building MPC design for a di�erent and less complex building model
was presented by the author of this thesis in [KJC16].

• Distribution Grid Model:
A linear power �ow model from the literature is used to model active and reactive
power �ows and bus voltages in distribution grids. The model is parameterized based on
German reference distribution grids and the accuracy of the model is validated against a
non-convex AC power �ow simulation. Furthermore, the sensitivity of line overloading and
undervoltages caused by coincident load behavior is investigated for �ve German reference
distribution grids. The non-�exible residential electricity load is modeled through time
series generated from a model presented in a previous publication of the author in [JKC15].

• Hierarchical Distributed MPC:
A general central MPC problem formulation to coordinate multiple physically coupled
dynamic systems is presented. The central control problem is decomposed based on ADMM
to construct a scalable hierarchical distributed MPC architecture. The problem for-
mulation is then adapted to the setting of a distribution grid hosting multiple prosumers
equipped with heat pumps. Physical coupling exists through the residual loads of the pro-
sumers causing power �ows in the distribution grid. The grid operator functions as the
top level central entity to coordinate the residual loads with respect to the distribution
grid constraints. The �nal algorithm accounts for both local and global objective functions
and constraints. Additional slack variables are introduced for distribution grid and pro-
sumer constraints in order to guarantee feasibility of the overall optimization problem at all
times. Finally, all distribution grid information remains in the domain of the DSO and any
information regarding local prosumer cost functions, models and predictions (occupancy,
temperatures) remains in the private domain of the prosumers. This contribution is an
extension of the previous work of the author presented in [KJC17b].

• Simulation Studies:
Finally, three simulation studies on voltage stability, valley-�lling and community cost
reduction through optimized self-consumption demonstrate the mechanism and e�ective-
ness of the distributed MPC algorithm to coordinate the operation of prosumers or build-
ing energy management systems in a distribution grid online. The distributed hierarchical
MPC algorithm allows prosumers to exploit their �exibility in order to minimize their local
costs, but coordinates the operation when a global cost function has to be minimized or
distribution grid constraints are violated. Closed-loop simulation results of the distributed
MPC algorithm over one week are presented for all three studies including di�erent build-
ing energy standards. A central MPC solution is computed as a benchmark to guarantee
e�ectiveness of the distributed optimization algorithm. The change in costs due to coordi-
nation is investigated in a comparison with the uncoordinated reference operation of the
prosumers. The e�ect of stricter voltage constraints on the required number of iterations
to converge is investigated. A dynamic scaling algorithm for ADMM is applied to the
problem of valley-�lling with di�erent weight factors in order to speed up convergence of
the hierarchical distributed MPC.
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1.6 Structure of the Thesis

Chapter 2 provides an introduction on the German residential building stock and heat pump
scenarios to motivate the use of three di�erent types of insulation standard for the buildings.
Afterwards, the thermal building model is developed and validated, followed by the heat pump,
domestic hot water and internal gains models. The prosumer MPC controller is designed in
Chapter 3. The linearized power �ow model is introduced in Chapter 4, including a short
validation and its application to German reference distribution grids. The hierarchical distributed
MPC algorithm is developed in Chapter 5 and �nally validated in the three simulation studies
of Chapter 6. Chapter 7 concludes the thesis and gives an outlook on future research questions.
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Chapter 2

Building Energy Modeling
The second chapter �rst motivates the use of three di�erent types of insulation standard for the
representative residential building parameterizations used in this thesis. Afterwards a dynamic
thermal building model is developed and validated, followed by the heat pump, domestic hot
water and internal gains models.

2.1 German Building Stock and Typology

This section gives an overview of the German building stock and current regulative e�orts to
manage thermal protection. Possible future heat pump penetration scenarios are investigated
and the shares of systems in buildings of di�erent age analyzed in order to reduce the selection
of representative building parameterizations worth considering in the context of this thesis.

2.1.1 Regulation and Status Quo of Thermal Protection

The European research project Typology Approach for Building Stock Energy Assessment (TAB-
ULA1) investigated the national residential building stocks in Europe with a harmonized ap-
proach to develop a comparable assessment for energy e�ciency measures [LSDB15]. The
typology is organized by age classes and further distinguishes between detached single-family
(SFH), multi-family (MFH), terraced houses (TH) and apartment buildings (AB). A detached
single-family house can contain up to two dwellings by de�nition. The periods of the typology
were chosen with respect to the availability of statistical surveys, historical events and building
regulations of relevance for thermal characteristics. A characterization of the periods is given
in [LDSB12,LSDB15]. The �rst technical post-war regulation was introduced in 1952 with the
norm DIN 4108. The �rst thermal protection ordinance (Wärmeschutzverordnung/WSVO) was
issued in 1977 in response to the oil crisis and was amended twice in 1984 and 1995. The previous
ordinance was replaced by the German Energy Saving Ordinance (EnEV) in 2002 to combine
both the thermal protection and heating system ordinances. The EnEV de�nes the maximum
annual primary energy demand and transmission heat loss for new buildings and refurbishments
in the existing stock. It was updated several times to harmonize the national ordinance with
the European energy e�ciency directives. As a result, constructions built after 2009 must at
least meet the requirements of the EnEV 2009, but may also face stricter requirements of the
EnEV 2014/2016, depending on the year of construction. The new Gebäudeenergiegesetz (GEG)
passed in 2020 combines the Energieeinsparungsgesetz (EnEG), which provides the legal autho-
rization of the EnEV, and the Erneuerbare-Energien-Wärmegesetz (EEWärmeG), which de�nes
requirements for the use of renewable energies for heating in buildings, in a single law to enforce
standards for the so called nearly zero-energy buildings (nZEB). Germany will keep the current

1http://webtool.building-typology.eu
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CHAPTER 2. BUILDING ENERGY MODELING

Figure 2.1: Development of the maximum primary energy demand requirement for energy e�cient con-
struction in Germany. Drawing based on [Hau09].

EnEV 2014/2016 requirements for future new residential buildings. Figure 2.1 shows the de-
crease of the allowed primary energy demand for heating in accordance with the development of
the building regulation.
Figure 2.2 shows the distribution of building types for the German national building stock for
constructions until the end of 2009. Approximately two thirds of all buildings (and the total
residential living space) were constructed before the �rst thermal protection ordinance came into
e�ect and thus were built without any requirement on the heating demand. With almost 10
million buildings out of 18 million in total, detached single-family houses represent 55% of all
residential buildings. Approximately 63% of all SFHs were constructed before 1979, a third of
them were constructed during the active period from 1958 to 1978.
Table 2.1 shows the status of the thermal insulation among German SFHs. Latest survey data
from [CD18]2 reveals that the share of old buildings (before 1979) with a thermal insulation is
below average for all components, with less then 50% of them having an insulated outer wall.
The quarter of new buildings (after 2009) without an outer wall insulation can be explained by
brick insulation, which could not be identi�ed by the survey [CD18]. The values in brackets state
the share of single- and two-family (TFH) houses which received the insulated component after
the construction of the building. Some older buildings were initially equipped with insulated
components which not necessarily resulted in a better thermal insulation compared to construc-
tions of that time. The numbers show how the majority of older buildings with an insulated
component received the update in later years. An exterior insulation is the dominating measure
among insulation options for the outer wall. The quality of the insulation is measured by the
thickness of the insulation layer. The shares of layer thicknesses below 10 cm in buildings before
1979 account for almost two thirds, half of that share is contributed by thicknesses up to 5 cm
only. In contrast, two thirds of the buildings constructed after 2009 have a minimum outer wall
insulation of 14 cm [CD18].
The authors of [CD18] estimate the annual area-weighted refurbishment rates for the German
building stock over the period from 2010 to 2016. The building stock's total area at the end of

2The survey from 2016/2017 was based on questionnaires sent out to building owners and resulted in 17,000
building pro�les.
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Figure 2.2: Distribution of the German national residential building stock based on data from [LSDB15].

2016 is used as a reference and the results represent a total refurbishment rate per year with
generalized weights for the outer wall, roof, ground �oor and windows as 40%, 28%, 23% and
9% respectively.3 The refurbishment rates are approximated as 0.99% per year for the area of all
buildings and 1.43% for buildings constructed before 1979. The German Energy Agency (DENA)
criticizes the low rate and demands a doubling of the refurbishment rate for the whole building
stock to reach the national targets in terms of energy policy. Special emphasis should be put on
buildings constructed before 1979 [DEN18a].

Table 2.1: SFHs/TFHs with thermal insulation, data from [CD18].

Outer wall Roof/upper story ceiling Floor/basement ceiling

Share of SFHs/TFHs with the insulated component
(Share of SFHs/TFHs which received the component's

insulation after construction)

All buildings 49.6% 84.3% 41.1%
(22.8%) (39.0%) (10.8%)

Before 1979 43.8% 76.9% 26.2%
(35.1%) (59.1%) (16.3%)

After 2009 76.6% 97.9% 83.4%

3This rough approximation is used to combine individual component measures, the area-weighting might di�er
within the building groups of di�erent construction periods, see [CD18].
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2.1.2 Residential Heating by Energy Carrier in Germany

The left bar chart in Figure 2.3 shows the shares of energy carriers for residential heating by age
class and the situation for existing SFHs/TFHs. Heating by natural gas dominates in buildings
constructed before 2010, followed by oil. The situation is similar for single- and two-family houses.
The majority of residential buildings constructed after 2009 have natural gas- or electricity-
based heating, followed by biomass and district heating. The high share of electricity-based
heating in new buildings is attributed to electrical heat pumps. In 2015, a third of all new
build SFHs in Germany were equipped with heat pumps [Fed16]. Besides remaining electrical
night storage heaters from the 1950s and 1960s, heat pumps are the most frequently appearing
electro-thermal technology. Electricity-based heating accounts for 6.9% among all single- and
two-family houses, with 3.7% for heat pumps and 3.2% for night storage heaters and other direct
electric heating [CD18].
The right bar chart in Figure 2.3 shows that natural gas also dominates as the energy carrier
chosen after a refurbishment of the heating system in the existing residential building stock.
Still, around a �fth of the buildings constructed before 2010 are upgraded with oil-based heating.
Electricity as an energy carrier for residential heating plays only a minor role in refurbishment
of the heating system in older buildings. The average annual heating system refurbishment rate
of all residential buildings measured over the period from 2010 to 2016 was 3.05%. A similar
rate of 3.09% was found for SFHs and TFHs. Buildings constructed before 1979 were slightly
more likely to receive an upgrade compared to buildings constructed after that period (3.27%
vs. 2.69%) [CD18].

Figure 2.3: Shares of energy carriers in the existing residential building stock and chosen energy carriers
after heating system refurbishment, data from [CD18].

2.1.3 Heat Pump Penetration Scenarios

Based on the statistics of the national building stock and average refurbishment rates, four simple
penetration scenarios for heat pumps are developed to better estimate their possible relevance
for the energy system up to the year 2050.
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Building Stock Update Until 2020

[Fed18b] states 15.7 million residential buildings exist with one or two �ats by the end of 2017.4

New constructions in this category from the period 2010-2017 account for a total of 5%. Assuming
a split of the existing building stock of SFHs constructed before 2010 with a ratio of two to one,
the total distribution in 2017 can be approximated as 63%, 32% and 5% for constructions before
1979, between 1979-2009 and between 2010-2017. Statistics from [Fed16, Fed18a] are used to
adjust the national building stock distribution for single-family houses by new constructions and
demolitions up to 2020. The average annual rate of new constructions is assumed to be 1% of
the residential building stock. Building demolitions are assumed to be 0.1% for the residential
building stock per year and are equally distributed over the oldest buildings constructed before
1979.

Heat Pump Stock Update Until 2020

The study in [Int17] analyses the heat pump sales for space heating applications until 2016 and
estimates that 94% of all systems are installed in residential buildings and a further 96% of those
in SFHs. The resulting cumulated heat pump sales from 1990 to 2017 leads to an estimate of
690.000 systems. Calculating with the upper end of the range of shares of electrical heat pumps
per age category from [CD18] results in 640.000 systems when applied to the building stock
estimation presented above, which is close to the presented sales estimation. The overall share of
heat pumps in SFHs in 2017 results in 4%, which is in proximity to the statistical value of 3.7%
measured for the 2016 survey in [CD18]. The heat pump stock is updated until 2020 under the
assumptions for demolitions and new construction as described above. An annual refurbishment
rate of 1.5% is assumed for buildings constructed before 1979 and a rate of 1% for buildings from
1979-2009 ( [CD18] states 1.43% for old buildings and 0.99% for all buildings).
A building refurbishment is assumed to be required for a heat pump installation since the ma-
jority of old buildings has a poor insulation standard, as was shown in Table 2.1. Older build-
ings usually have relatively high design heat loads together with high supply temperatures as
a consequence and thus fail to meet the requirements of low-temperature systems. According
to [Bru06], common refurbishment options are better thermal insulation, glazing and ventilation
systems with heat recovery, which result in lower required supply temperatures and a possible
utilization of radiators if a new installation of a �oor heating system is not an option. Modern
radiators achieve a higher heat transmission per area compared to older systems from the 70s and
80s. A reduction of the supply temperature from 70 ◦C to 60 ◦C is possible. Buildings from the
90s already have a better insulation standard, and common refurbishment measures are the in-
crease of the heating surface or the installation of a heat recovery system, since ventilation losses
are dominant in well insulated buildings. Finally, air-to-water heat pumps are a popular option
for updates in the existing building stock since they can be installed outside or inside a house
and their installation is often less di�cult and restricted than for water- or ground-source heat
pumps [Bru06]. In a study on heat pump implementation scenarios in Europe, [BOB+13] expect
a growing market for heat pumps in Germany and assume an increasing share of air-to-water
heat pumps to up to 59% of total annual heat pump sales, due to relatively low investment costs
and limited available space for ground-source heat pumps. The German industry association for
heat pumps estimates the share of air-to-water heat pumps to be over 70% in 2030 [Bun15].
[CD18] provides statistics for the percentage of refurbishments per age category and the share
of heat pumps in heating system upgrades per category. To account for the higher share of
heat pumps in a heating system upgrade after a refurbishment of the insulation, 2.5% of the

4In accordance with the federal statisctics, a SFH is de�ned as a residential building with up to two �ats in
the remainder of this section.
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Table 2.2: Heat pump penetration scenarios.

Building stock development [%/a] Chance of HP installation [%]
Demolition Refurbishment New After ref./new
(-1978) (-1978)/(1979-2009) (2020-) (-1978) (1979-2009) (2020-)

Baseline 0.1 1.5/1 1 2.5 5 33
HP 0.1 3/2 1 33 33 50
HP+ 0.1 3/2 1 50 50 100
HP++ 0.1 3/2 1 100 100 100

refurbished buildings before 1979 are assumed to receive a heat pump and 5% of the buildings
from 1979-2009 to match the overall heating system refurbishment statistic. Younger buildings
from that category might allow for a heat pump installation without a refurbishment, but their
share is rather small according to Figure 2.2, which justi�es this assumption. Finally, 33% of all
new buildings (2020-) are assumed to be equipped with a heat pump.

Scenarios 2020-2050

After year 2020, the development in the SFH stock is projected until the year 2050 and examined
every 10 years. From 2020 to 2050, four di�erent scenarios are considered: Baseline, HP, HP+
and HP++. The annual rates for demolitions, refurbishments and new constructions and shares
of heat pump systems remain at the values assumed until 2020 in the baseline scenario. 2020 is
the reference year.
Scenario HP is characterized by an equal share of 33% for both heat pump installations in
buildings after a refurbishment of the building envelope (-1978, 1979-2009). The share in new
constructions (2020-) is assumed to be 50% (44% for 2018 stated by the German industry asso-
ciation for heat pumps [Bun19]). In addition, the refurbishment rate in the old existing building
stock is assumed to increase to 3% and 2% per year. Finally, the scenarios HP+ and HP++
describe an ambitious and an extreme penetration scenario, with heat pumps being chosen in
50% (100%) of the cases for old buildings and 100% (100%) in new buildings. Buildings con-
structed during the period 2010-2020 are assumed to neither be demolished, nor to receive a
refurbishment of the insulation or heating system. Thus, the number of heat pumps from that
period is assumed to remain constant until 2050.
Figure 2.4 shows the development of the stock of SFHs for the scenarios Baseline and HP (equal to
HP+/++, same building stock development). In both scenarios, demolitions lead only to a slow
reduction of the number of old buildings constructed before 1979. New buildings are constructed
according to the nearly zero-energy standard and already outweigh the constructions from 2010-
2020 with a standard complying with the EnEV 2009 or better in year 2030. The relatively high
annual rate of new constructions leads to a net growth in the SFH stock. Buildings constructed
after 2010 account for approximately 30% in 2050. By that time, less than half of the buildings
constructed before 2010 have been refurbished in the Baseline scenario. In contrast, only a small
number of buildings without a refurbishment remains in 2050 in scenarios HP/+/++, due to the
increased refurbishment rates.
The share of heat pumps in SFHs changes with the building stock, as shown in Figure 2.5. The
Baseline scenario leads to a share of heat pumps of 13% in 2050. The majority of the systems
is installed in modern buildings constructed after 2020. The share increases to 35% in 2050
in the scenario HP, where heat pumps in older buildings (-2009) account for almost two thirds
of that share, driven by the increased refurbishment rate and higher share in system choice.
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Figure 2.4: Development of the German SFH building stock in the scenarios Baseline and HP/+/++,
distinguished by shares of refurbished and unrefurbished buildings.

The ambitious scenario HP+ leads to a high share of heat pumps in SFHs with almost 60%.
Both, heat pumps in modern buildings and in old but refurbished buildings dominate the pool
of systems. While a heat pump is installed in every fourth SFH in 2040 in scenario HP, this
share is reached 10 years earlier in scenario HP+. The scenarios show that signi�cant shares of
heat pumps are not likely to occur if the current statistics are assumed for the projections. In
contrast, an extreme heat pump penetration rate of 86% in all SFHs can be achieved in 2050
in scenario HP++, where the system of choice is always a heat pump. In such a scenario, over
two thirds of all heat pumps are located in old refurbished buildings (-2009). The range of heat
pump shares in 2050 is similar to results from the literature.

Figure 2.5: Heat pump penetration in the scenarios Baseline, HP, HP+ and HP++.

The study [HP15] published by Fraunhofer ISE estimates a share of heat pumps in the whole
building sector ranging from two-thirds to 90% in all considered climate policy scenarios for 2050.
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The BDI study in [BDI18] estimates a heat pump share of 70-80% in SFHs in their scenarios.
Figure 2.6 shows the resulting total numbers from the presented scenarios with estimates from
the studies in [Fra17, DEN18b, BDI18] and the 2030 sales estimate of the German industry
association for heat pumps [Bun15]. Values from the literature state heat pumps for the whole
residential building sector or the whole building sector in contrast to the SFH focus of the
scenarios in Table 2.2. All considered studies from the literature achieve a 95% reduction of
the 1990 levels of GHG emissions by year 2050. Feasible scenarios result in a total number
between 7 and 17 million systems in 2050, today's amount of systems increasing nine to twenty-
fold. Even the technology mix scenario (TM95) from [DEN18b], which is an alternative to the
strong electri�cation scenario (EL95), results in a high number of heat pumps compared to today.
The importance of increased refurbishment rates and incentives for heat pump installations is
obvious. Also a substantial amount of heat pump systems must already be installed in year 2030
to maintain the 95% reduction paths with given refurbishment rates, resulting in a four- to a
tenfold increase of the number of systems within the next decade.

Figure 2.6: Projections of the total number of heat pumps in the German building sector from di�erent
studies with a 95% GHG emissions reduction target in 2050. Details of the scenarios Agora,
dena and BDI are given in [Fra17,DEN18b,BDI18].

In summary, scenarios with high penetration rates will only be achieved through higher refurbish-
ment rates and stronger incentives to install a heat pump. Financial incentives can be given by
market incentive programs for subsidies or changes in price structure of di�erent energy carriers.
The German heat pump industry explains the current stagnation in heat pump sales with high
tax-induced prices for electricity compared to the prices for gas and oil [Bun15].

2.1.4 Building Type Selection for Thermal Models

Based on the previous sections, relevant building types are selected from the TABULA typology
to create realistic scenarios of buildings equipped with heat pumps. The typology is used as a
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starting point to generate representative datasets to parameterize the building models used in
this thesis. A representative building description is given for each building type.
In general, each identi�ed building type of the TABULA typology is described in three variants
to account for di�erent levels of refurbishment or standards of construction. All variants specify
exemplary compositions of components of the building envelope (outer walls, �oor, roof, window,
door) and their overall value of thermal transmittance per square meter (U-value). The �rst
variant describes the existing state (1) with respect to the building regulation when the building
was constructed. The variant usual (2) refurbishment re�ects the minimum requirements for
refurbishments according to the regulation of the German Energy Saving Ordinance. This is
currently the EnEV 2009 since the following ordinances did not tighten the requirements for
refurbishments substantially. Finally, variant advanced (3) re�ects ambitious refurbishments or
new buildings to achieve a low energy or passive house standard.
The TABULA study assumes electrical heat pumps as a heating system option in the usual
refurbishment variant for all SFHs constructed before 1995 and as an option in the existing
state for SFHs constructed after 1995. The authors in [TBSH15] argue, that in general only
buildings constructed after 1995 should be considered as realistic candidates for heat pumps to
supply low-temperature �oor heating systems due to otherwise high design heat loads and supply
temperatures. However, the authors consider SFHs from the period 1958-1968 for �oor heating
after a refurbishment to represent old buildings in their analysis.
A selection from the TABULA types and refurbishment variants has been made to limit this thesis
to few representative and meaningful building types. In accordance with the categorization of
the previous section, types to represent buildings constructed before 1979, 2010, 2020 and after
2020 are selected. A possible selection is summarized in Table 2.3 with exemplary space heating
demands from the TABULA typology and resulting U-values of the components. Three out of
the four selected types are chosen in the minimum viable standard for a heat pump with �oor
heating to not underestimate the load impact on the power grid. The generalized modeling
approach for a single zone building equipped with under�oor heating and a heat pump system
is always the same, independent of the building type selected. Details are given in Chapter 2.2.

Table 2.3: Selection of building types and refurbishment variants based on the TABULA typology

Building type
E J K L

SFH.05 SFH.10 SFH.11 SFH.12
Period 1958-1968 2002-2009 2010-2015 2016-

Refurbishment
usual existing state existing state advanced
(2) (1) (1) (3)

Net heating demand
133 80.9 72.8 21.1

[kWh/(m2a)]

U-value [W/(m2K)]

Outer all 0.23 0.30 0.24 0.11
Inner wall 2.33 0.36 0.36 0.36
Floor 0.31 0.28 0.35 0.13
Roof 0.42 0.25 0.22 0.11
Window 1.30 1.40 1.10 0.70
Door 1.31 1.99 1.75 0.80
Thermal bridges 0.1 0.05 0.05 0.02

Building type E in the variant of usual refurbishment is chosen to represent old existing buildings
with improved but not ambitious thermal properties due to additional insulation and replaced
windows. The type can be seen as a conservative, minimum example for measures to be taken
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to meet requirements by a modernization complying with the EnEV 2009. Depending on the
incentivisation for refurbishments in old buildings and the e�ciency of refurbishment measures,
the implemented standard might be better in future years. The authors of the study in [BDI18]
assume a total space heating demand ranging from 45 to 75 kWh/(m2a) for the average refur-
bished SFH in their scenarios until 2050. E(2) is kept as a worst-case implementation for an old
but refurbished SFH.
Types J and K represent newer SFHs constructed before and after the EnEV 2009/2014 which
ful�ll only the required minimum standard. While the space heating demand of a building con-
structed (and calculated) according to the EnEV 2002 should be below 70 kWh/(m2a), typical
implementations from the building praxis can result in the range from 75 to up to 120 kWh/(m2a).
The di�erence mainly results from di�erent boundary conditions assumed for heating and larger
approximated heated areas in the EnEV [Log02]. Since type K (1) has rather similar thermal
properties compared to type J (1), this parameterization is neglected in the upcoming analysis.
Building type L represents new constructions in an advanced standard with an airtight envelope
and a mechanical ventilation system including heat recovery. This building type is comparable
to a nearly zero-energy building. The nearly zero-energy building (nZEB) standard was intro-
duced by the European Union with the directive 2010/31/EU and de�nes a nZEB as a building
that requires (almost) zero energy, largely covered by local production of renewables [The10].
A possible interpretation of the new standard was developed in the European COHERENO5

project. The status of a nZEB can be achieved by refurbishment if the new primary energy
demand is below 40 kWh/(m2a) and the building envelope has a maximum overall transmission
heat loss of 0.28 W/(m2K) [DEN]. Numerical requirements for new constructions are likely to
be de�ned according to the funding standards used by the KfW funding bank to incentivize new
constructions which achieve primary energy demands below the current legislative requirement.
The KfW e�ciency house 40 would be considered a nZEB [LSDB15].6 The next better standard,
not yet de�ned but often considered a passive house, requires a further reduction of the demand
from below 25 kWh/(m2a) for the KfW 40 house to a demand below 15 kWh/(m2a) [BDI18].
Several measurement campaigns carried out by Fraunhofer ISE investigated the performance of
heat pumps in both the older building stock and new buildings. New single-family houses were
mainly equipped with �oor heating systems, older buildings often used radiators or combina-
tions of both systems. Figure 2.7 shows the range of seasonal performance factors (SPF)7 and
space heating demands for a sample of heat pump systems in modern and old buildings moni-
tored in the Fraunhofer projects WP Monitor and WPsmart im Bestand, the majority equipped
with �oor heating. Modern systems (2006-2011) before and after the EnEV 2009 often achieve
speci�c annual space heating demands below 75 kWh/(m2a), while demands in old buildings
(1930-1992) are often above 100 kWh/(m2a) when no or only a partial refurbishment was car-
ried out. The project WP im Bestand measured 73 buildings constructed during the period
1919-1996 in the years 2008/2009 after old oil heating systems were replaced by a heat pump.
A building refurbishment was not a necessary requirement. The average total demand including
space heating and domestic hot water was 177 kWh/(m2a), ranging from 85 to 340 kWh/(m2a)
depending on the standard of insulation. Air-source heat pumps achieved an average SPF of
2.6 compared to a SPF of 3.3 for ground-source systems [RMP+10]. Currently, the measure-
ment campaign WPsmart im Bestand is carried out to reinvestigate the performance in the old
building stock. The projects WP E�zienz and WP Monitor monitored heat pumps installed in

5COHERENO: Collaboration for housing nearly zero energy renovation.
6The KfW grant program incentivizes constructions which outperform the current e�ciency standards. The

e�ciency house 40 has a 60% lower primary energy demand than the reference building. Even though the EnEV
2016 is currently in force, the grant program's reference level of requirement is de�ned by the EnEV 2009.

7The SPF is de�ned as the ratio between heating energy provided by the heating system to the electrical
energy supplied to it.
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Figure 2.7: Seasonal performance factor (SPF) and space heating demand from �eld measurements, data
from [Fra13,Fra18].

the years 2006/2007 and 2010/2011, respectively. The average space heating demand for 90%
of the 87 systems in 2013 was 69 kWh/(m2a), with a range from 29 to 127 kWh/(m2a). Includ-
ing outliers, the average demand increased to 78 kWh/(m2a) with the worst system demanding
202 kWh/(m2a). The SPF for air-source heat pumps was 3.1 (range: 2.3-4.3), with younger
systems achieving a slightly better performance of 3.2 (2.5-4.3) compared to the older systems
3.0 (2.3-3.5). The same was observed for ground-source systems with an average SPF of 4.0
(3.0-5.4), 4.3 (3.5-5.4) for newer and 3.9 (3.0-5.1) for older systems [MGK+11,GML+14].
To conclude, a realistic range of space heating demands in old and new SFHs can be represented
by the selected TABULA types. With the exception of building type K , which has very similar
thermal properties to type J , do the remaining types represent the possible range from rather
weakly refurbished buildings to advanced modern constructions that are not yet de�ned as a
required standard.

2.1.5 Conclusion

Around two thirds of all German SFHs were constructed before the �rst thermal protection
ordinance with no restriction on the space heating demand. In addition, those buildings have
often not or only weakly been refurbished. A doubling of the current annual refurbishment rate
is required to meet the national targets on carbon emissions. While natural gas is �rst choice as
heating system energy carrier in old and refurbished buildings, electricity-based systems like heat
pumps have already a share of over one third in new build SFHs. The investigation of possible
heat pump penetration scenarios in the future shows that an increase of today's less than a million
heat pumps to 7 to 17 million systems is required in scenarios aligned with Germany's carbon
emission targets. Heat pumps in older buildings will have a signi�cant share in all scenarios and
years, except the Baseline scenario. The total share of heat pumps and the age of the supplied
buildings in a local neighborhood will heavily depend on the type of residential area. New areas
of development will lead to high shares of heat pumps in nearly zero-energy buildings, whereas
existing residential areas might face substantial shares of heat pumps to supply old refurbished
buildings.
Representative buildings have been selected from the TABULA typology as a starting point for
the single building parameterization and modeling approach presented in the next section. The
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approach is not restricted to the building types identi�ed in Table 2.3 and can be extended to
any typology as long as the necessary set of parameters is available.

2.2 Thermal Building Model

Single zone resistance and capacitance models are created in this thesis to capture the thermal
dynamics of a single building. The thermal building physics depend on the construction, com-
ponent materials and thermal gains from the heating system, disturbances and occupants. By
modeling the building itself as a dynamic system, one is able to exploit the thermal storage in
the thermal mass of the construction in addition to water-based storage tanks of the heating
system in a control strategy. The low-order model is a compromise between the accurate rep-
resentation of the most important dynamics and the computational costs to solve the system's
progression in time. Due to the limited complexity of a single building, multiple models can
be used to represent an aggregation of buildings in a neighborhood in a bottom-up approach.
The program is implemented in MATLAB8 and a set of ordinary di�erential equations for a
single building is returned for controller design. It is favorable to use a discretized linear system
representation in a convex optimal control problem since convex optimization problems can be
solved e�ciently for global optimal solutions by a range of algorithms [BV04]9. Convexity of the
resulting problem is further motivated by the convexity requirement for convergence of to the
distributed optimization algorithm presented in Chapter 5.1.

2.2.1 Literature Review

A variety of tools exists for the detailed transient simulation of physical processes in building
zones, construction and heating system components. The paper [CHKG05] provides an overview
over key features of twenty major building energy performance simulation programs such as
EnergyPlus10, TRNSYS11 or IDA ICE12, among the possibly hundreds of tools developed over
the last decades. A high level of detail, such as three-dimensional time-dependent tempera-
ture distributions in components, comes at the cost of a high e�ort for parameterization and
computation. The authors of [KR07] classify three main categories of techniques to model the
transient heat transfer in physical models. The techniques di�er in possible spatial and temporal
resolution, necessary input data and computational cost. As the �rst technique, the solution of
the heat transfer equations can be found through methods from computational �uid dynamics,
e.g. �nite di�erence, volume or element methods, often used in software mentioned above. As a
second approach, model reduction techniques reduce the model complexity of reference models
to achieve similar accuracy at less computational cost, but lack generality due to the limitation
to the reference they relate to. In district or city quarter energy simulations a model must be
applicable to a range of instances of buildings with limited information for parameterization.
For such applications, within the third category of so-called simpli�ed models, low-order thermal
network models are �rst choice and a good compromise [KR07,LTF+14]. Composed of thermal
resistances and capacitances (RC), such RC-models result in circuits that represent the thermal
behavior in analogy to electrical circuits. Their use is motivated by

• limited input data requirement for parameterization,

8www.mathworks.com
9A convex optimization problem requires a convex cost function, convex inequality constraint functions and

a�ne equality constraint functions [BV04].
10https://energyplus.net/
11https://trnsys.de
12https://www.equa.se
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• best option for generality,

• su�cient accuracy w.r.t. temperature and energy demand predictions,

• simplicity of the modeling approach (one-dimensional heat transfer) leading to a set of few,
often �rst-order linear di�erential equations and thus

• low computational cost.

Simpli�ed models as such can be further distinguished in white-, grey- and black-box mod-
els [KvS12]. RC-models completely parameterized on physical principles are referred to as white-
box models, since their structure and parameters allow for a physical interpretation. In contrast,
black-box models such as neural networks provide an input-to-output relationship without its
components (e.g. the hidden layer) giving direct physical meaning. No prior system knowledge
is required. Grey-box models lie between white- and black-box models. Their model structure
can be derived from knowledge of physics like in white-box models, but the model parameters
are result of an identi�cation process using measured data, see e.g. [MH95,BCC+11]. The results
allow for direct physical interpretation where parameters have a physically determined counter-
part. Further details on grey-box models as part of hybrid approaches, besides white-box and
purely data-driven approaches, are given in [AH16].
In a review paper from 2012, the authors [KvS12] state a decreased interest in simpli�ed models
due to the rapid increase of computational power allowing for higher model complexity. How-
ever, in the research communities of control and energy system optimization, simpli�ed models
are widely applied to represent thermal systems. Especially grey-box models are used in op-
timal model-based control to achieve su�cient paramterizations from experimental data, see
e.g. [Wim04,Bia06,BCC+11,HGP12a,HGP12b]. Identi�cation processes can be automated and
may require less expert knowledge compared to white-box modeling. This is of particular interest
in model-based control, where projects have shown that the modeling task can take between 55
and 80% of the total time spent on modeling, controller development and communications &
signal processing tasks in practice [CG�+13]. While there might be experimental data available
for single buildings, su�cient data of multiple buildings on district level are usually not available.
The authors of [RDS14] circumvented this issue by creating Modelica13-based emulator models to
generate time-series for later identi�cation of low order grey-box models. The detailed reference
models were partially parameterized from data sets of the Belgian TABULA typology. One of
the low-order models was later replicated with varying user behavior in an aggregation model
to represent 100 buildings performing demand side management with heat pumps [PH14]. In a
further study in [PBA+15] the models were scaled and used to assess demand and supply side
interactions in a national power market model. To conclude, in absence of experimental data
RC-network models can either be directly parameterized from data sheets or derived from more
detailed reference models implemented in simulation environments.
Since multiple thermal zones or walls are often summarized in one representative element in
RC-models to reduce the model's complexity, they are also referred to as lumped parameter
models [RGEC13]. In the maximum reduction case, a lumped model results in a single capaci-
tance model with only one time constant. The grey-box model study in [MH95] suggests at least
two capacities to capture short and long-term variation in the room air of a residential building
supplied by electrical heaters. A similar observation was made in [LMB12] for HVAC supplied
zone models, where a second-order model reproduced the thermal behavior almost as accurately
as the 13th order reference model. A model predictive controller for a single family house sup-
plied by a heat pump was successfully demonstrated with �tted second- and third-order models

13https://www.modelica.org/
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in [Wim04,Bia06]. The authors in [RDS14] concluded that models of similar structure can be
used for di�erent types of SFHs.
Since experimental building data is not available for the range of possible building types intro-
duced in Chapter 2.1.4 and it is not intended to create complex reference simulation models
for each type to generate simulated data, this work uses white-box simpli�ed low-order thermal
network models. The models are parameterized with representative material and construction
data from the TABULA typology. In a second step, the general white-box modeling approach is
validated and re�ned against two exemplary implementations in EnergyPlus.
In a publication from 1972, Rouvel developed representative white-box RC-models for walls and
thermal zones. The simpli�ed models reproduced the thermal behavior with satisfying accuracy,
even for multi-layer, asymmetrically loaded walls exposed to excitations from non-sinusoidal
temperatures or impulse-like heat gains [Rou72]. Similar, well established �rst and second-order
thermal network representations of whole buildings are described in the international standard
ISO 13790 [DIN08] and German guideline VDI 6007 [VDI15b], the latter based on the approach
from [Rou72]. Since the VDI 6007 o�ers a validated approach for transient simulations and has
been successfully applied to works in the �eld of district or urban scale energy analysis (see
e.g. [FLTM12,LTF+14,LBL+14]), the approach in [Rou72] is used as a starting point to model
individual components of the building model in this work. The resulting fourth-order building
model created for this thesis is a compromise between model complexity and the possibility to
validate single component surface temperatures. Especially the �oor heating system in exchange
with it's surrounding can be addressed separately. Obviously, the latter is not possible with
the lumped �rst- or second-order models in [DIN08,Rou72,VDI15b]. In contrast to the solution
procedures applied there, in this thesis a state-space model is derived from the RC-model for
application in a discrete-time optimal control framework.
The �rst implementation of the author's fourth-order model was published in the conference pa-
per [KJC17a]. A �rst validation of the initial model and it's variants against reference simulation
models for types J and L in EnergyPlus was documented in the master's thesis in [Kun17] and
published in [KKL18]. After a short introduction to standard heat transfer modeling approaches
applied here, di�erent variants of the RC-model used in this thesis are de�ned and validated w.r.t.
the accuracy of temperature and heating demand predictions. The temperature predictions are
validated for types J and L in accordance with the available reference data from EnergyPlus
simulations.

2.2.2 Mechanisms of Heat Transfer

Heat transfer is the transport of thermal energy due to a temperature di�erence between two
thermodynamic systems. Three heat transfer mechanisms are distinguished, namely transfer by
conduction, radiation and convection. The following paragraphs are based on [BS11], where the
heat transfer mechanisms are discussed in detail.
The total heat �ow as the sum of the three heat transfer mechanisms is stated as

Q̇ = Q̇cond + Q̇conv + Q̇rad [W], (2.1)

measured in energy per time.
Conduction is the transport of energy in a conductive material or substance between its molecules
due to a temperature gradient. Fourier's basic law for the conduction of heat is

q̇(t,x) = −λ grad T (t,x) [W/m2]. (2.2)
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q̇ is the vector �eld of the heat �ux (heat �ow per surface area) and T the temperature, both
quantities can depend on the position in the body x and time t. The heat �ux is de�ned over
the heat �ow dQ̇cond = q̇(t,x )n dA through area dA with its normal n. The negative sign in
Equation (2.2) directs the heat �ux from the higher to the lower temperature. The conductiv-
ity λ is a material property14 and is quanti�ed in [W/(mK)]. The heat transfer by conduction
through multi-layered building walls is discussed in the next section.
Convection transfers heat between a surface and a moving �uid through the movement of
molecules. The convective heat �ow between a solid surface with an area A of temperature
Ts (at the surface) and the moving air of temperature Tair can be described as

Q̇conv = αconvA(Tair − Ts). (2.3)

The convective heat transfer coe�cient αconv relates the speci�c heat �ux to the driving tem-
perature di�erence:

αconv :=
q̇conv

Tair − Ts
[W/(m2K)]. (2.4)

The proportional factor de�nes the intensity of the heat transfer in the boundary layer. The
convective heat transfer depends among others on the velocity and direction of the �uid and
the roughness of the surface. αconv is used in this work to model the convective heat transfer
between the building walls or (heated) �oor and the air in the building's zone.
Radiation describes the emission of electromagnetic waves from a body of a certain temperature.
Radiative heat transfer between two bodies of di�erent temperatures results in a heat �ow emitted
from the warmer to the colder body, but the colder body also radiates towards the warmer
body. The total radiative exchange between a radiator with area A of temperature T and the
surrounding of that body which absorbs all radiation15 at temperature Tsur is given by

Q̇rad = Q̇em − Q̇abs = AεσT 4 −AaσT 4
sur. (2.5)

The emissivity ε[−] depends on the temperature, material and roughness of a body. It scales the
emissive power of the body relative to an ideal black body with maximum emissivity. The absorp-
tivity a[−] scales how much radiation from the surrounding is absorbed. σ = 5.67 · 10−8W/(m2K4)
is the Stefan-Boltzmann constant. The surfaces in practical applications are often assumed to
be grey radiators, with 0 < ε < 1 and a constant a = ε. The latter follows from Kircho�'s law of
radiation, the absorptivity of the body equals its emissivity. The radiative net heat �ow of the
grey radiator in the black surrounding then simpli�es to

Q̇rad = Aεσ(T 4 − T 4
sur). (2.6)

This nonlinear relationship complicates the integration of radiative processes in a linear thermal
building model. A common solution is to linearize the radiation's dependency on the temperature
and to de�ne a constant heat transfer coe�cient to account for both radiation and convection.
This is discussed in more detail in Section 2.2.4.

2.2.3 Thermal Electrical Analogy for Conduction

The heat �ow by conduction can be modeled by analogy to an electrical circuit, with voltages
representing temperatures and currents representing heat �ows by conduction. The model for
thermal conduction developed by Beuken in [Beu36] is based on the similar di�erential equations

14For now λ is assumed to be constant.
15The surrounding is assumed to be a black body: An ideal absorber and emitter.
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as for an idealized cable derived from the telegraph equations. The telegraph equations describe
voltage u and current i depending on location x and time t on an electrical transmission line
with resistance R′, conductance G′, inductance L′ and capacitance C ′, all de�ned in per unit
length. For the homogeneous, lossy case, the telegraph equations are [Beu36,Rou72]:

∂

∂x
u(t, x) = −L′ ∂

∂t
i(t, x)−R′i(t, x) (2.7)

∂

∂x
i(t, x) = −C ′ ∂

∂t
u(t, x)−G′u(t, x). (2.8)

Di�erentiating Equation (2.7) with respect to x and Equation (2.8) with respect to t and replacing
leads to

∂2

∂x2
u(t, x) = L′C ′

∂2

∂t2
u(t, x) + (L′G′ +R′C ′)

∂

∂t
u(t, x) +R′G′u(t, x). (2.9)

Neglecting L′ and G′ and rearranging leads to

∂

∂t
u(t, x) =

1

R′C ′
∂2

∂x2
u(t, x), (2.10)

which is of similar form like the temporal and spatial one-dimensional temperature distribution
in a homogeneous wall layer with thermal conductivity λ, speci�c heat capacity c and density ρ
derived from from Equation (2.2):

∂

∂t
T (t, x) =

λ

cρ

∂2

∂x2
T (t, x). (2.11)

No additional heat sources are assumed in this case. x refers to the dimension in direction of
the layer's thickness. Figure 2.8 shows the analogy of the Beuken model for a homogeneous wall
layer with thickness ∆x.

Figure 2.8: Electrical and thermal analogy of Beuken, drawing based on [Rou72].

The Beuken model discretizes a wall in multiple equivalent T-circuits and facilitates modeling a
thermal zone surrounded by multiple walls. The complexity of the total model increases quickly,
since the accuracy depends on the discretization step in the wall layers and thus the total number
of equivalent T-circuits used. Approaches like the Fourier analysis or Laplace transform applied
to the Beuken model to solve for the non-stationary thermal behavior of a wall layer under
dynamic load conditions are discussed in [Rou72]. Rouvel developed further equivalent circuits
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of reduced complexity based on the Beuken analogy to allow a simpli�ed computation of the
dynamic behavior of a multi-layer component for application in climate control. The equivalent
circuits are based on the matrix representation of the thermal two-port network of a single layer
and then extended and further simpli�ed for asymmetrical and symmetrical load conditions of
complete walls. The signi�cantly simpli�ed models allow computation of analytic solutions with
su�cient accuracy at low computational costs.
The relationship between the temperatures and heat �uxes in a slab of �nite thickness is the
starting point of further simpli�cations. With the one-dimensional heat �ux equation in direction
of x

q̇(t, x) = −λ ∂

∂x
T (t, x), (2.12)

and the general solution to the di�erential Equation (2.11), a frequency domain solution can
be derived for the heat �uxes and temperatures of the thermal network for a single layer, see
Appendix A.2. For the periodic excitation case, the one-dimensional distribution of the heat �ux
q̇ and the temperature T in a homogeneous wall layer v for a coordinate x perpendicular to the
wall can then be expressed as (

T (ω, x = 0)
q̇(ω, x = 0)

)
= Av

(
T (ω, x)
q̇(ω, x)

)
, (2.13)

with

Av =

 cosh
(
x
√
jω cρλ

)
1

λ
√
jω cρ

λ

sinh
(
x
√
jω cρλ

)
λ
√
jω cρλ sinh

(
x
√
jω cρλ

)
cosh

(
x
√
jω cρλ

)
 . (2.14)

The real and imaginary parts of the complex coe�cients can be separated and are given in
Appendix A.2. In addition to the �xed material properties the transient response of a wall
layer depends on the angular frequency ω in [rad/s] of the excitation signal applied to a surface.
Frequencies of interest for building components or a thermal zone are usually ω = 0 for the
stationary heat �ow and the ground frequency with a period of 24 hours and the multiples
thereof [Rou72]. Recommendations to parameterize the building components are given in the
next section. The chain matrix allows connection of multiple wall layers in series and further
model reductions are possible to simplify whole building components. Similar to the transfer
function of voltage and current in electrical two-port networks, the analogous model represents
the frequency-dependent temperature and heat �ow distribution in a wall.

2.2.4 Component Model

The building model implemented in this work lumps the main building components such as
walls, the �oor, the roof and windows together to a limited set of components, which results in a
model with few di�erential equations but acceptable accuracy. In the process towards the single
zone model, the individual components are modeled �rst and then lumped together to keep the
number of states in the RC-model low.
The thermal resistance per unit area, heat capacity per unit area and the assumed period of the
layer are inputs for the equations of chain matrix Av. In the case of multiple wall or component
layers (v = 1, . . . , n), matrix Acomp for the entire wall or component can be calculated by matrix
multiplication

Acomp =

n∏
v=1

Av. (2.15)
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The sequence of multiple di�erent material layers must not be changed, since Acomp depends on
the direction. Indexing in this thesis is from the thermal zone towards the outside.
According to the approach in [Rou72], every component of a building can be represented by the
3R2C model depicted in Figure 2.9. The parameters R1, R2, R3, C1, C2 can be directly calculated
from the coe�cients of matrix Acomp and area A of the component. The �nal equations to obtain
the parameters in Figure 2.9 are given in Appendix A.3. Further reductions are possible in the
case of [Rou72]:

• asymmetrically loaded components (outer walls, walls to zones of di�erent temperatures):
2R1C,

• symmetrically loaded walls (inner walls): 1R1C.

Symmetrically loaded walls are assumed to have equal temperatures on both sides of the wall. The
equations to compute the reduced equivalent circuits for the asymmetrically and symmetrically
loaded components again depend on the coe�cients of the component's chain matrix Acomp
and are presented in Appendix A.3. The parameters for a symmetrically loaded component
reduce to just R1 and C̃1 from Figure 2.10. For an asymmetrically loaded component, the
resistances remain and a corrected capacity C̃1 is computed. In the case of asymmetrically
loaded components, the e�ective thermal mass must be carefully chosen to not overestimate
the capacitance of the component model. The authors of [RDS14] suggest to only take into
account the material layers within the insulation barrier as a rule of thumb, since usually only
the �rst centimeters of an envelope wall are excited by a heating system. The study in [Rou72]
distinguishes between thermotechnical thick and thin walls and de�nes a criteria for an assessment
of single layer walls. The length of the thermally active layer is inversely proportional to the
frequency ω of the excitation signal at the surface. Thus the size of the capacity considered in
the equivalent models 3R2C, 2R1C and 1R1C depends on the choice of the frequency assumed.
The guideline VDI 6007 recommends to �x ω = 2π

86400sTP
to the frequency corresponding to a

period of Tp = 7 days for standard components. The modeling approach in this work �nally
follows this practical suggestion.

Figure 2.9: 3R2C model for a wall component from [Rou72].

Figure 2.10: 2R1C and 1R1C model for a wall component based on [Rou72].
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The thermal capacity of the windows is negligible and not considered in the corresponding com-
ponent model. Simple window models are given in [Rou72,VDI15b]. This work �nally uses the
exterior and interior �lm coe�cients from [AKG09] to use equal values in the RC-model and the
reference simulation in EnergyPlus. Details are given in [Kun17].
The work�ow implemented in MATLAB calls a function component(materials, area) for ev-
ery building component presented in the �nal model. The function itself calls a function
layer(material) for every wall layer in the component to create the corresponding chain matrix
Av depending on the density ρ, speci�c heat capacity c, thermal conductivity λ and thickness
x of the material of layer v. The above parameters and wall composition are stored for every
building type and component shown in Table 2.3 in a database. Because the TABULA typology
does not specify the exact building construction, common wall and material compositions are
based on examples from [Aro14,TBSH15] for types J, L and an own parameterization is carried
out for type E based on values from the ISO 10456 [DIN10]. The physical properties of all
material layers and their selection and composition for the building types are stated in Appendix
A.4.

2.2.5 Single Zone Model

The building is represented by a single zone model with a uniform air temperature in the whole
zone. The function building(typology, geometry) generates a parameter set for the �nal low-order
representation of the building. For a given geometry of a building, the function accesses the
typology database and generates components for inner and outer walls, �oors, windows, the
door and the roof as described above. The editable geometry �le includes among others the
ground �oor, outer wall and window areas, number of �oors and �oor height. The �nal structure
of the resulting RC-model is shown in Figure 2.11.
The parameters Rwo,1, Rwo,2 and Cwo are the thermal resistances and capacitance for all outer
walls, obtained from a consecutive parallel connection of the complex impedances of the envelope
walls, roof, windows and door. A period of TP = 5 days is chosen for the parallel connection of
multiple individual components, as recommended in the VDI 6007. Rwi and Cwi represent the
inner walls modeled as a symmetrically loaded component, with an area facing the zone equal
to the outer walls. Rfl,1, Rfl,2 and Cfl represent the �oor connected to the ground temperature
Tg.

Figure 2.11: Default structure for a single zone building model.

The �nal model considers a capacitance of the zone Cz to summarize the heat capacity of the
air volume at the zone temperature Tz. Cz is simply calculated by the volume of the zone Vz in
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m3, the density of air ρair = 1.23 kg
m3 and its speci�c heat capacity cair =1 008 Ws/(kgK) as

Cz = Vzρaircair. (2.16)

Optionally, the capacity can be scaled by a factor of 5 to account for furniture in the zone [RDS14].
Furniture modeling is neglected here to not overestimate the thermal inertia of the zone and to
keep the reference model for the validation simple. In contrast to the VDI 6007, where the �nal
model order has only two capacitances for outer and inner walls, the additional capacitances
of the zone air and �oor of the developed RC-model are kept for simulation and validation
purposes in this thesis. A study in [RDS15] found that due to the low-pass �ltering e�ect of the
high thermal mass, even a single capacitance model can provide a good approximation in the
case of �oor heating systems. In the case of modeling from building typologies and the absence of
dynamic measurements, the presented structure is a reasonable starting point. A similar model
structure to create low-order building models from Belgian typology data was employed in [RS14]
and compared to both a reference and a grey-box model based on parameter �tting. The two
zone model (night and day zone) showed acceptable accuracy.

Thermal Bridges and Ventilation

Thermal bridges are considered for the total envelope area in resistance Rbridges and lumped
together with the ventilation and in�ltration losses in the parameter Rvent. According to [Nie05],
the losses can be calculated as

1

Rvent,loss
= Vzρaircair(ηvent + ηinf + ηmec(1− εhr)), (2.17)

based on the heat capacity of air in the zone and the change rates η in [h−1] for natural ventilation,
in�ltration and, if present, mechanical ventilation with the e�ciency of heat recovery factor εhr.
Equation (2.17) implies that the heat loss due to mechanical ventilation can be approximated
with an equivalent change rate for natural ventilation. The lumped resistance Rvent �nally
becomes

Rvent =
1

1
Rbridges

+ 1
Rvent,loss

. (2.18)

Only 1.4% (2.6%) of all German residential buildings are equipped with a ventilation system
(including heat recovery), but approximately 30% of all new buildings constructed after 2009 are
equipped with an active ventilation and heat recovery system [CD18]. This is often the case for
modern airtight constructions. Table 2.4 shows the parameters assumed for the RC-models in
this work.

Table 2.4: Thermal bridges and ventilation parameters per building type based on TABULA and [Aro14].

Utherm. bridges [ W
m2 K

] ηvent + ηinf [ 1h ] ηmec [ 1h ] εhr [ ]

E 0.1 0.6 / /
J 0.05 0.5 / /
L 0.02 / 0.55 [Aro14] 0.84

Radiation and Convection

All �nal resistances in the RC-model must include surface resistances for convection and, if
modeled, radiation. A wall or �oor at a certain temperature exchanges heat by radiation with
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the other components in the surrounding. In addition, heat is released to the air of the zone
by convection. The two parallel processes are often approximated and aggregated in one total
linearized heat exchange process for simplicity. The total heat �ux from convection and radiation
based on Equations (2.3) and (2.6) is

q̇ = q̇conv + q̇rad = αconv(T − Tz) + εσ(T 4 − T 4
sur). (2.19)

The total heat transfer at the surface of temperature T can be simpli�ed when the surrounding
and air temperatures are assumed to be similar, i.e. Tz ≈ Tsur16 [BS11,DB13] leading to

q̇ = (αconv + αrad)(T − Tz) (2.20)

with

αrad =
q̇rad

(T − Tz)
= εσ

T 4 − T 4
z

(T − Tz)
. (2.21)

Equation (2.21) can be approximated with

T 4 − T 4
z = (T 2 − T 2

z )(T 2 + T 2
z ) (2.22)

= (T − Tz)(T + Tz)(T
2 + T 2

z ) (2.23)

= (T − Tz)(T 3 + T 2Tz + T 2
z T + T 3

z ) (2.24)

= (T − Tz)4T 3
m (2.25)

for small temperature di�erences Tz ≈ T . The coe�cient becomes

αrad = 4εσT 3
m (2.26)

and Tm can be estimated by the mean Tm ≈ T+Tz
2 . αrad is then prede�ned depending on

the operative temperature conditions. The linearization allows the parallel heat transfers by
convection and radiation to be lumped together in one coe�cient α = αconv + αrad, with Tz as
the reference temperature for the total thermal transfer

q̇ = α(T − Tz). (2.27)

The literature provides standard heat transfer coe�cients for radiation and convection at a
component's surfaces towards the inside and outside of a building. Table 2.5 shows exemplary
values. The overall resistance needed in the modeling process can be computed as

Rse/si =
1

αrad + αconv
. (2.28)

16This also includes an approximation of the surrounding areas to a space with similar temperatures, neglecting
view factors between the surfaces from the geometry of the zone. To be exact, resulting Tz in such a model is the
operative perceived or sensation temperature, a combination of the air and radiation temperature.
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Table 2.5: External (se) and internal (si) surface resistances calculated based on [DIN15b,VDI15a] with
indication of the orientation of the convective heat transfer.

αconv[
W

m2 K
] αrad[

W
m2 K

]

Rse = 0.04m2 K
W (vertical and horizontal) 20 4.63

Rsi = 0.13m2 K
W (horizontal) 2.5 5.14

Rsi = 0.083m2 K
W (panel heating) 7 5

The standard external and internal radiative heat transfer coe�cients from [DIN15b] are com-
puted with ε = 0.9 at Tm = 10 ◦C and Tm = 20 ◦C respectively by use of Equation (2.26)17. The
external convective heat transfer coe�cient is computed for a constant speed of wind of 4 m/s.
Since the heat transfer coe�cients are predetermined and correspond to an average operative
temperature, the approach might have limitations when heated surfaces face varying operating
temperatures like a heated �oor.
q̇ = 8.92(T − Tz)1.1 is an empirical function for the maximum system-independent heat transfer
used in the planning of �oor heating systems which exchanges power with its surrounding. It
is also known as the basic characteristic [DIN13]. T is the surface temperature of the �oor and
Tz = 20 ◦C is the room temperature, a combination of both the air and radiative temperature of
the surrounding. The resulting heat transfer for both the empirical model and the calculation
based on Equation (2.19) are depicted in the �rst graph in Figure 2.12. The resulting heat
transfers are close to each other. One observes the strong change in power by change in Kelvin
overtemperature.

Figure 2.12: Heat transfers and heat transfer coe�cients resulting from the Stefan-Boltzmann law (SB)
and the mean (mean) temperature approach compared to the empirical basic characteristic
used in the planning of �oor heating systems. αconv = 5 W/(m2K), ε = 0.9, σ = 5.67 ∗
10−8W/(m2K4).

17International norms often use h instead of α as the heat transfer coe�cient.
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The second graph in Figure 2.12 shows the corresponding heat transfer coe�cients of the mod-
els. αrad,SB is the coe�cient for radiation according to the Stefan-Boltzmann law from Equa-
tion (2.21). The value ranges between 5.2 and 5.4 W/(m2K) for an overtemperature up to
10 K. The maximum allowed temperature of a heated �oor is limited to 29 ◦C in living areas
due to physiological reasons [DIN13]. Adding a constant convective heat transfer coe�cient of
αconv = 5 W/(m2K) results in a total value around 10 W/(m2K) over the overtemperature range.
Using Equation (2.26) is a su�cient approximation for Equation (2.21). The error induced by
predetermining αrad with Tm (indicated as αrad,mean in the �gure) for the case of Tz = 20 ◦C at
an operative point and using it elsewhere is small. A detailed discussion of the approximation
for di�erent panel heating and cooling systems is given in [Glü08].
Finally, the values from Table 2.5 are used in the RC-model when either convection or both
radiation and convection are modeled. Parameters Rsi,wi/wo/fl are used for the total surface
resistance of the areas Awi/wo/fl. The convective and radiative heat transfers are proportional
to the surface area of a component.

Thermal Gains

The short and long-wave radiative heat exchange of the exterior building components with the
outside environment can be taken into account by the introduction of a modi�ed equivalent
ambient temperature at each surface. The equivalent temperature incorporates a relative tem-
perature increase due to the radiation between the surface and the environment. The approach is
used in [VDI15b] and showed su�cient accuracy in a comparison with more sophisticated models
carried out in [LRF+14]. The building model in this thesis neglects the long-wave radiation. The
contribution to the temperature increase by the short-wave radiation on an exterior component
i is weighted by the component's surface area Ai and thermal transmittance Ui. The equivalent
ambient temperature for the lumped outer wall component is computed as

Ta,eq = Ta +
∑
i

UiAi∑
i UiAi

(Idir,i + Idiff,i)
αF
αA

, (2.29)

with ambient temperature Ta, direct and di�use radiation Idir and Idiff on the opaque outer
wall areas, short-wave absorption coe�cient αF = 0.5 and the external heat transfer coe�cient
αA = 1

Rse
at the exterior surfaces. The roof is approximated as a horizontal surface.

According to the ISO 13790 [DIN08] the solar gains ϕsg through windows can be assumed to
have a convective share of 9%, which is added to the zone temperature Tz in this model. The
remaining fraction is initially split up according to an area-weighted distribution to the inner
walls, outer walls and �oor by the factors sz/wi/wo/fl. ϕsg is computed as

ϕsg =
∑
i

(Idir,i + Idiff,i)Awindow,igwindow, (2.30)

based on the radiation through window i with area Awindow,i and the dimensionless window
permeability factor gwindow = 0.6.
Likewise, the distribution of internal gains ϕig from occupants and devices is carried out via the
factors gz/wi/wo/fl with a convective share of 50%. The equations to determine the distribution
factors for the solar and internal gains are given in Appendix A.5
The shares of the heat transfer mechanisms vary and depend on the type of heat emission system
to supply the thermal zone. Convective shares from 50% up to 70% are stated for radiator heating
systems. In contrast, area and especially ceiling and �oor heating systems emit a larger share by
radiation, with typical values for the radiative share up to 70% [RS14,VDI15b]. The heated �oor
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exchanges heat with the other walls in the thermal zone by radiation, which in return partially
transfer heat to other surfaces by radiation and to the zone by convection.
Similar as for the solar and internal gains, the radiative fraction of the heat input ϕh is distributed
among the capacities of the components with the distribution factors fwi, fwo and ffl. It must
be noted that the distribution of the radiative heat transfer directly to the respective capacities
is an approximation and not in line with the physical mechanism. The radiation absorbed
by a component enters at the surface and not within the component. The initial zone model
neglects this to avoid the introduction of additional temperature states. Possible corrections and
extensions to avoid related inaccuracies of the initial RC-model are discussed in the validation
Chapter 2.2.7.

Default RC-model D

Finally, the building function of the work�ow returns an individual set of parameters for the
building components and heating system parameters for the structure in Figure 2.11. Temper-
atures Tz, Twi, Two and Tfl are de�ned at the capacitances. The di�erential equations of the
low-order default RC-model lead to the Equations (2.31)-(2.34):

dTz
dt

=
1

RventCz
(Ta − Tz) +

1

RwiCz
(Twi − Tz) +

1

Rwo,1Cz
(Two − Tz) +

1

Rfl,1Cz
(Tfl − Tz)

(2.31)

+
sz
Cz
ϕsg +

gz
Cz
ϕig +

fz
Cz
ϕh

dTwi
dt

=
1

RwiCwi
(Tz − Twi) +

swi
Cwi

ϕsg +
gwi
Cwi

ϕig +
fwi
Cwi

ϕh (2.32)

dTwo
dt

=
1

Rwo,2Cwo
(Ta,eq − Two) +

1

Rwo,1Cwo
(Tz − Two) +

swo
Cwo

ϕsg +
gwo
Cwo

ϕig +
fwo
Cwo

ϕh (2.33)

dTfl
dt

=
1

Rfl,2Cfl
(Tg − Tfl) +

1

Rfl,1Cfl
(Tz − Tfl) +

sfl
Cfl

ϕsg +
gfl
Cfl

ϕig +
ffl
Cfl

ϕh. (2.34)

The next paragraph discusses limitations of the default model and possible adjustments to en-
hance its accuracy. All discussed re�nements maintain the above low-order model structure of
four states.

Model Limitations and Re�nement

The default single zone model provides a starting point for temperature and energy demand
predictions based on a model with reduced complexity. Obviously, this leads to certain limitations
with respect to the representation of the actual physical processes:

• The long-wave radiation exchange between the building and it's environment is neglected
in both the RC and the EnergyPlus reference validation model for simplicity. Optional lin-
earization approaches can be found in [DIN08] and [VDI15b] and are discussed in [LRF+14].

• The dependency of the convective heat transfer coe�cient on the wind velocity or surface
roughness is not considered. The constant values from Table 2.5 are used in both the
RC-model and the EnergyPlus reference model.

• The magnitude of the solar gains through the windows depends on the time-dependent
incident angle. The solar gains enter the components based on �xed distribution factors in
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the RC-model. The actual internal distribution depends on the incident angle and varies
with time, which is not covered in the one-dimensional RC-model.

• The uniform air and component temperatures result from modeling only one-dimensional
heat transfer. Lumped components like the outer wall comprise individual components like
the external wall, roof, door and windows. Thus, resulting temperatures for the lumped
component must be interpreted as an averaged temperature over multiple components with
di�erent material properties.

• The distribution of the radiative thermal gains at component capacities is just a rough
approximation of the actual radiative heat transfer according to the Stefan-Boltzmann
law. When modeled, the long-wave radiation exchange between the components within the
thermal zone can only be taken into account with linearized heat transfer coe�cients in
the default RC-model.

• Simply adding the heat gains at the component capacities introduces a potential inaccu-
racy with respect to the actual location of entry. The RC-representation of the �oor de�nes
a �oor temperature which must not necessarily match with the position of the hydronic
tube system. The derivation for the wall components assumed no internal heat sources in
Equation (2.11), which disagrees when thermally active components are modeled. Never-
theless, the approximation is kept for the �oor heating system, since su�cient accuracy
was achieved with a similar procedure for panel cooling and heating systems in [Rou16].

Since the radiative heat transfers from thermal gains are only distributed among the components
in the default RC-model, two modi�cations are tested in addition to the initial model to inves-
tigate the heat transfer from the �oor for the case of a �oor heating system. The default model
is abbreviated as model D, the model re�nements are referred to as models F and R.
The default model D neglects the internal long-wave radiation exchange between the surfaces for
simplicity. It is intuitive to start with convective heat transfer coe�cients from Table 2.5 only.
Also Tz remains the pure air temperature in this approach.
The �rst modi�cation of the RC-model substitutes the initial area-weighted distribution factors
fz/wi/wo/fl by �tted values to achieve a better approximation of the zone temperature Tz. An
accurate prediction of the zone temperature is of great importance, since it is closely related to
the comfort of occupants. The quadratic program (2.35)18 to solve over the �tting period is

minimize
fz ,fwi,fwo,ffl

T∑
t=1

(Tz,RC(t)− Tz,E+(t))2

subject to (2.31), (2.32), (2.33), (2.34) ∀t = 1, . . . , T

fwi + fwo + ffl = 1− fz.

(2.35)

Tz,E+ is obtained from the detailed reference simulation in EnergyPlus. The equality constraint
assures that the distributed radiative plus the convective share of the heat gain must be equal to
the total heat input ϕh taken from EnergyPlus. A period of two weeks in February was chosen as
the �tting period. This model is referred to as model F. Model F can be considered a grey-box
model since it partially results from a �tting process based on simulated data.
The second modi�cation of the default model introduces a radiant resistance Rrad,wo−fl between
the �oor and the lumped outer walls:

Rrad,wo−fl =
1

αrad min{Awo, Afl}
. (2.36)

18The continuous-time dynamics in (2.31)-(2.34) are discretized to solve the optimization problem.
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Figure 2.13: The modi�ed RC-model R with a radiative resistance between the �oor and the outer wall.
The radiative heat transfer between the other components is not considered.

Figure 2.13 shows the additional resistance for radiation to explicitly consider the radiative heat
exchange between the �oor and the outer wall. The smaller of the two surfaces is chosen and
the radiative heat transfer coe�cient is set to 5 W/(m2K), in accordance with Table 2.5. The
long-wave radiation between the other components is still neglected. The remaining structure
contains a delta circuit including the radiative and the two convective resistances. A delta-star
transformation can be applied to avoid the introduction of additional temperature nodes, see
also [VDI15b]. The resulting �nal structure is depicted in Figure 2.14. The formulas for the
resistances RstarA/B/C together with a derivation for the model with four temperatures based on
adjustments in Equations (2.31)-(2.34) are given in Appendix A.619. The surface temperatures
Two,s and Tfl,s have to be considered in the derivation, but the �nal model states remain Tz, Twi
Two and Tfl such that the resulting state-space model does not change in complexity.

19It will be referred to Equations (2.31)-(2.34) in the remainder of this chapter for simplicity, keeping in mind
that Equations (A.51)-(A.54) are used whenever model R is used.
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Figure 2.14: The modi�ed RC-model R after the delta-star transformation with R(star)A/B/C .

Both model F and model R work with updated s-factors for the distribution of the solar gains
entering through the windows on the surfaces. The validation of the default model in [Kun17]
revealed inconsistencies between the solar gains on surfaces measured in EnergyPlus and the
resulting gains in model D. Especially the gains on the �oor were underestimated by model D.
The distribution factors swi/wo/fl were optimized such that the resulting solar gains match with
those of the reference simulation in EnergyPlus to overcome the insu�ciency of the area-weighted
initial guess. The parameters were again �tted over the same period and were well applicable
to other weeks of the heating period. Even though an improvement of Tz was not part of the
optimization, the updated factors already lead to a better prediction of the zone temperature.
A detailed discussion can be found in [Kun17]. Table 2.6 shows the distribution factors for solar
gains, internal gains from occupants and the heat gains used in models D, F and R for the
further analysis in this work.

Table 2.6: Thermal gains distribution factors for the RC-models D, F and R by validated building type
(L and J).

Solar gains ϕsg Internal gains ϕig Heat gains ϕh

sz swi swo sfl gz gwi gwo gfl fz fwi fwo ffl

D-J/L 0.09 0.32 0.46 0.13 0.5 0.18 0.25 0.07 0.05 0.33 0.48 0.14
F-J 0.09 0.2 0.21 0.5 0.5 0.18 0.25 0.07 0.0 0.11 0.46 0.43
F-L 0.09 0.2 0.21 0.5 0.5 0.18 0.25 0.07 0.0 0.1 0.43 0.47
R-J/L 0.09 0.2 0.21 0.5 0.5 0.18 0.25 0.07 0 0 0 1

The g-weighting factors for the distribution of the convective and radiative shares from occupants
and appliances remain the same for all three models. In [Kun17] the area-weighted approach led
to satisfying results to model the sensible heat gain.

2.2.6 EnergyPlus Reference Building Model

A reference building model to validate RC-models was created in the master's thesis in [Kun17]
for types J and L. The thesis investigated the e�ects of the ambient temperature, solar radiation,
internal gains and heating system input for the default model in sequential order to distinguish
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the impact of modeling options in EnergyPlus from �aws of the RC-model. As an example, the
�rst analysis investigated the impact of convection and conduction under free-�oating conditions
without any solar or heating gains. The �tting of the s-factors was done before an investigation of
the impact of the �oor heating system to not compensate for modeling errors of the heating input.
This procedure enabled the analysis of di�erent physical phenomena. A graphical representation
of the building with a single zone is given in Figure 2.15. The building geometry used to
parameterize both the RC-models and the EnergyPlus model is given in Table 2.7. In order
to allow for a convenient comparability of the transient behavior and power pro�les of di�erent
energy standards, the building type J geometry was also assumed for building type L.

Table 2.7: Building geometry used in EnergyPlus and the RC-models.

Component Area [m2]

Outer wall 188.9
(N/S/E/W) 54.3/40.1/46.25/48.25
Inner wall 188.9
Floor 79.8
Roof 85.9
Window 28.2
(N/S/E/W) 3.1/17.3/3.9/3.9
Door 2

Figure 2.15: EnergyPlus building geometry. Drawing from [Kun17].

The building components were de�ned with the exact same material layers used in the RC-model
parameterization, based on the material properties stated in Appendix A.4 for either building
type L or J. The thickness of the outer components' insulation layer was corrected to account for
the e�ect of the thermal bridges, since it is not possible to model thermal bridges as a separate
component in EnergyPlus. The dependency of convective heat transfer coe�cients on the speed
of wind is disregarded in EnergyPlus. The coe�cients were set to the constant values used in
the RC-models.
The reference building was equipped with a hydronic under�oor heating system as the heat
emission system. The water circuit is located between the layers of cement screed and the tiles.
Hot water for the tubes is supplied from a bu�er storage tank connected to an air-to-water heat
pump. The simple temperature control in EnergyPlus computes the power input provided to
the �oor to maintain the zone temperature above 19 ◦C. EnergyPlus applies an iterative heat

46



2.2. THERMAL BUILDING MODEL

balance algorithm to compute a solution for the current time step, details can be found in [U.S15].
The dynamic behavior of the heat pump and the bu�er storage are not part of the validation,
since they are not part of the building RC-model considered here. The �oor input power from
EnergyPlus is taken as input ϕh in the simulation of the RC-models.
The simulation period in EnergyPlus covers the months January and February to include the most
challenging weeks of the heating period. Weather data is taken for Munich in the epw weather
format, including the ambient dry bulb temperature and the direct and di�use radiation. The
ground temperature is assumed to be constant 10 ◦C throughout the simulation. The same value
is used in EnergyPlus simulations models in [Lin17], more complex ground models can be found
in [DIN15a].

2.2.7 Thermal Building Model Validation

The thermal building model implemented in EnergyPlus is assumed to represent a realistic ap-
proximation of a heated single family house of a certain typology. A more detailed representation
could consist of a multi-zone building, with some zones equipped with a heat emission system,
maybe even of di�erent type (�oor heating and radiators) and temperature set-points (bathroom
and living room). The scope and conclusions of this work are thus limited to the example build-
ing described in Chapter 2.2.6.
The simulated temperatures from EnergyPlus are taken as a reference output to compare with
the RC-models' output. With the temperature states x, the heating system input ϕh and the
disturbances d, the validation evaluates if the RC-models' dynamics represented in Equations
(2.31)-(2.34) are a su�cient approximation of the EnergyPlus functional fE+:

ẋE+ = fE+(xE+, ϕh, d) ≈ AxRC +Bϕh + Ed = ẋRC . (2.37)

A, B and E are the general system, input and disturbance matrices of the corresponding state-
space model, discussed in detail in Chapter 3. The simulation time step in EnergyPlus is set to 15
minutes and the system matrices of the RC-models are discretized accordingly. The computation
time increases with higher temporal resolutions for a �xed simulation period. [U.S18] recommends
time steps lower than 60 minutes when thermal simulations include HVAC systems, best below
10 minutes to obtain a less damped dynamic response. A temporal resolution of 15 minutes is
a compromise between computation time and accuracy. In addition, a thermal model validated
at 15 minutes time steps �ts well to energy market processes, since they are often settled at 15
minutes intervals.

Figure 2.16: Location of the �oor's surface temperature with respect to the initial parameters.

The RC-models are assessed for xRC = (Tz, Twi,s, Two,s, Tfl,s)
T . Tz,E+ refers to the zone air

temperature from EnergyPlus. While EnergyPlus can provide temperatures at de�ned positions
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in a building component, it is di�cult to estimate the exact position of the temperature in
a building component modeled with the RC-model. Therefore, the surface temperatures are
compared. Equating the heat �ows at Tfl,s in Figure 2.16 leads to

1

Rsi,fl
(Tz − Tfl,s) = − 1

R̃fl,1
(Tfl − Tfl,s) (2.38)

Tfl,s =
Rsi,flTfl + R̃fl,1Tz

Rfl,1
(2.39)

with
R̃fl,1 = Rfl,1 −Rsi,fl. (2.40)

The equations for the computation of all surface temperatures for RC-models D, F and R are
given in Appendix A.7.

Simulation Error

Figure 2.17 shows the temperature trajectories for Tz, Twi,s, Two,s and Tfl,s for the EnergyPlus
simulation of the reference building and the modelsD, F andR for building type J over the period
of February 14-28. The ambient temperature (Ta) and global horizontal solar radiation (IH)
disturbances are shown in the �fth subplot. This particular period was chosen for validation since
it exhibits strongly varying climatic conditions during the heating period. The same heat input ϕh
is used in the EnergyPlus and RC-models. The �rst half of the simulation period is dominated
by cold ambient temperatures reaching below −15 ◦C, followed by slightly milder conditions
between −5 ◦C and 5 ◦C. The cold temperatures are accompanied by clear sky conditions with
stronger solar gains in the �rst half of the simulation period. The peak power of the heating
input increases with colder temperatures and pauses during periods of solar gains during the
day. This can be seen in the charging pattern of the �oor temperature from EnergyPlus, e.g.
during day 5. The �oor's temperature increases over night until the ambient temperature and
solar gains increase again and ϕh remains zero for almost 6 hours.
The default modelD approximates the zone temperature well during times of high solar radiation,
but overestimates the temperature when the �oor heating system is operating at high load. The
surface temperature of the inner walls is overly sensitive to the thermal gains, leading to a steady
overestimation of the temperature compared with the reference from EnergyPlus. The opposite
is the case for the �oor temperature, which is not adequately represented and shows a weak
sensitivity to thermal gains. The typical charging pro�le as seen for the �oor's temperature in
the EnergyPlus reference is lost. It can be concluded that the purely parameterized �rst-guess
model D achieves a tolerable approximation of the zone's air temperature, but fails to explain
the �oor and inner wall temperatures due to the simple area-weighted distribution factors. This
is partially corrected with model F , where the solar gains distribution factors where corrected
with respect to the actual physical solar gains on the inner surfaces and the f -factors were
optimized to minimize the error of Tz. Tz and Twi,s are approximated better, but the approach
still fails to accurately predict the temperature of the �oor. The higher sensitivity of the �oor
to solar gains and heating input (see the change in the distribution factors in Table 2.6) helps
to better explain the zone temperature, but now overestimates the �oor's temperatures due to
the selective optimization. Explicitly modeling the radiative exchange between the outer walls
and the �oor in model R solves this and shows that the applied linearization proves successful.
Tfl,s is accurately reproduced, explaining the temperature increase due to charging of the �oor
heating system well. A similar good result is achieved for the zone temperature.
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Similar observations can be made for building type L in Figure 2.18. Default model D is overly
sensitive with respect to the ambient temperature and solar gains. This can be seen in the
systematic overestimation of Tz, Twi,s and Two,s during an increase in outside temperature and
solar gains, followed by an underestimation when the disturbances decline, e.g. seen during
the free-�oating period from noon of day 7 to day 10. The �oor temperature is less sensitive,
exhibiting weakly pronounced charging peaks. Nevertheless, a better approximation compared
to building type J is achieved. Model F corrects the oversensitivity, especially the inner and
outer walls receive less solar gains in favor of the �oor. Due to the updated distribution factors
in Table 2.6, the heat gains are mainly attributed to the �oor and outer walls and the direct
convective share of the heating input to the zone is reduced to zero when the error of Tz is
optimized. This leads to a better approximation of the zone temperature, but again leads to a
systematic overestimation of Tfl,s.20 Again, the best results with respect to Tz and Tfl,s were
achieved by explicitly modeling the radiative exchange in model R. Still, a slight overestimation
of the �oor's temperature during the second half of the simulation period can be observed. The
�oor's temperature is operated at a lower average value compared to building type J and the
charging peaks are less pronounced due to lower power levels of ϕh. In contrast to building type
J , the larger part of the variation in Tfl,s can be explained by the solar gains. The modern
building standard L results in a higher average zone temperature and less heating demand. The
relatively high temperatures can be explained by the large south-facing window in combination
with the airtight envelope (as seen in Table 2.3, building type L has less than half of the U-values
of type J for the outer wall and roof). Obviously, a ventilation system is highly required in such
a building to manage summer conditions.

20An equally weighted optimization with respect to all states instead of Tz only was tested too, but resulted
only in a minor improvement of the components' state errors and worsening of the error of Tz.
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Figure 2.17: Simulation results for the RC-models D,F , and R compared to the EnergyPlus(E+) reference
for building type J .
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Figure 2.18: Simulation results for the RC-models D,F , and R compared to the EnergyPlus(E+) reference
for building type L.

Figure 2.19 shows the root-mean-square error (RMSE) for the states and RC-models over the
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Figure 2.19: RMSE of the RC-models D,F , and R over the period February 14-28.

simulation period from 14th to 28th of February.

RMSE =

√√√√ 1

N

N∑
i=1

(xi,RC − xi,E+)2 (2.41)

In line with the observations above, model D already achieves a relatively small RMSE below
1 ◦C in Tz for both building types, but leads to higher deviations for Twi,s and Tfl,s for building
type J . Model F results in small improvements for Tz and Twi,s, while deteriorating Two,s for both
buildings and Tfl,s for type J . Despite the inner wall surface temperature, model R outperforms
the other models in all states for both buildings.
The superior accuracy of model R is in general con�rmed when a cross-validation is performed
over di�erent periods of the heating period. Figure 2.20 shows the RMSE of the three models
over periods of 14/15 days in January and February.
Beginning with building type J , the results for each state are slightly more diverse compared
to building type L. While model R achieves the smallest RMSE of Tz during the period from
February 14-28 examined above, this is not the case for the other periods, where model D
achieves the best results for building type J . Twi,s is best approximated by model F throughout
all periods. The errors for Two,s and Tfl,s are smallest with model R for all considered periods.
The good results of model R are even more robust for building type L, where it achieves the
smallest RMSEs in Tz, Two,s and Tfl,s for all periods. The only case in which another model
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accomplishes similar or superior results occurs for Twi,s, where model F achieves slightly better
results for two periods.21

In summary, model R is superior in 9 out of 16 comparisons (four states over four di�erent
periods) for building type J and in 14 out of 16 comparisons for building type L. It achieves a
RMSE below 1 ◦C in all states for all considered periods with the exception of Twi,s in building
type J .

Figure 2.20: RMSEs for the RC-models D, F , and R over di�erent simulation periods for cross-
validation.

The di�erent performances of the models lead to the question, whether some simple adjustments
based on the results of model R can be applied to the default model D to increase it's accuracy
without a further modeling e�ort. The idea is to �nd the best initial guess possible without the
need of further �tting or more complex modeling. The results have shown, that a redistribution
of the heat gains through modi�ed f -factors and the integration of the radiative heat exchange
between the �oor and the outer wall have increased the performance signi�cantly. Model F
did not consider internal radiation, but optimized the f -factors with respect to Tz. Thus it is
the optimal model to approximate Tz without modeling radiation. Figure 2.20 shows that the
results for Tz are only slightly better and the �tted values are not necessarily robust to di�erent
simulation periods (see worse RMSEs of Tz in the other periods for building J with model F

21An alternative measure to compare the RMSEs of two di�erent periods is the standardized RMSE, where
the model's error is divided by the standard deviation of the underlying reference time series. The results are
similar and given in Appendix A.8.
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due to possible over-�tting). An obvious adjustment of model D is to use the f -factors of model
R, i.e. allocating all heat gain on the �oor (ffl = 1). A test showed that for building type J ,
Tz and Twi,s were slightly improved, while Two,s and Tfl,s were considerably worse. The approx-
imation of the dynamic behavior of the �oor was not enhanced. A similar picture was obtained
for building type L, with deteriorated results for Tz in addition. Working with updated solar
radiation factors did not change the results for neither of the buildings.
A second, intuitive approach for model D is to include radiation by using the total heat transfer
coe�cient with αrad from Table 2.5 and the f -factors of model R. Thus, radiation is not mod-
eled explicitly with a separate resistance, but is at least integrated in the components surface
resistances Rsi,wi/wo/fl. As discussed earlier, in this case Tz approximates a combination of the
air and surrounding radiation temperature. This enhanced initial guess model is introduced as
model D+.

Figure 2.21: Simulation results for the RC-models D+ and R compared to the EnergyPlus(E+) reference.

Figure 2.21 shows the temperature trajectories for the models D+ and R for both building types.
The results of model D+ for the component temperatures are signi�cantly improved compared
to model D. The initial solar s-factors were used in model D+ to assume no prior knowledge
and a simple parameterization. Rsi =0.13 (m2K)/W was used for all components in model D+
despite the orientation, to assume the same convective and radiative coe�cients as in model R.
As mentioned earlier, Tz in model D+ includes a radiative zone temperature, therefore a direct
comparison to the air temperature from the EnergyPlus model has limited validity. Thus, it
is not surprising that Tz is estimated higher, especially for building type J . The three surface
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temperatures are approximated with su�cient accuracy and the dynamics are better captured
in contrast to the models D and F .
Figure 2.22 shows the RMSEs of the improved default model D+ in comparison with model D
and R. The improved default mode D+ achieves lower RMSEs for all component temperatures
for both buildings compared to model D. This �nding is robust for all considered simulation
periods. The results are close to those of model R, even partially outperforming them for certain
simulation periods. The RMSEs for Tz improve slightly for type L while they deteriorate for
type J . Tz is overestimated in both cases. As mentioned before, a direct comparison to the air
temperature from EnergyPlus is no longer accurate, since model D+ approximates the operative
temperature. Finally, �ne tuning of model D+ by increasing αconv from 2.5 to 7 W/(m2K) as
stated for panel heating systems in Table 2.5 did not improve the results.
It can be concluded from the additional investigation that a similarly good approximation can
be obtained when radiation is considered in the total heat transfer coe�cients at the component
surfaces and all heating system input ϕh is assigned to the �oor. An area-weighted distribution of
the internal solar gains can remain. The resulting model D+ needs neither �tting nor increased
model complexity and can be used as an initial guess.

Figure 2.22: RMSE of the improved model D+ compared to the models D and R.

Finally, after a visual validation and an assessment of the RMSEs over di�erent simulation
periods, Figure 2.23 shows the box-plots of the errors (xRC − xE+) in all states for all RC-
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Figure 2.23: Box-plots of the errors of the RC-models D, D+, F , and R over the simulation periods P1
(Jan 1-Jan 14), P2 (Jan 15-Jan 29), P3 (Jan 30-Feb 13), P4 (Feb 14-Feb 28) and P5 (Jan
1-Feb 28).
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models. The median of the errors is indicated by the midpoint, the bottom and top edges of the
box indicate the 25th and 75th percentiles and the whiskers reach to the maximum negative and
positive errors. Model R is able to reduce the worst case error range, especially for Tz and Tfl,s
for building type J and for all states for building type L. The low RMSEs of model R in Tz
corresponds to possible maximum errors between −1.15 ◦C and 0.46 ◦C for type J and −0.76 ◦C
and 1.6 ◦C for type L. While single underestimations of Tfl,s to up to −8.8 ◦C are possible with
the default model D for building J , deviations are considerably more limited when using model
R.22 For building type L, the medians indicate that model R is rather balanced between over-
and underestimation of the state temperatures, depending on the simulated period. Although in
a tolerable range, model R for type J tends to systematically underestimate Tz, Twi,s and Two,s.
The enhanced default model D+ leads to an improvement for all temperatures for building type
L, compared to model D. The results are similar to those of model R. The improvement from
D to D+ for building type J is mainly achieved in the �oor and inner wall temperatures.

Error Propagation versus 1-Step Prediction

The previous validation considered the RC-models' errors over longer simulation periods, where
the progression of the temperatures was in part dependent on the previous output of the models.
Based on Equation (2.37), the temperatures for the next time step were computed as

xt+1,RC = Axt,RC +Bϕt,h + Edt. (2.42)

Since the RC-models will be used for the purpose of simulation, a quanti�cation of the errors
including their propagation over the simulation time is justi�ed. In the application of a realistic
operation, one can use the linear RC-model to predict the next time step and then update the
states with the measured values instead of the prediction of the subsequent time step:

xt+1,RC = Axt,E+ +Bϕt,h + Edt. (2.43)

The error-prone simulation procedure based on Equation (2.42) is referred to as the simulation
with error propagation, the prediction based on the actual reference measurements is referred
to as the 1-step prediction (1+). The latter uses the zone and surface temperatures' reference
values from EnergyPlus and recalculates the surface temperatures based on the relationships
in Appendix A.9 to be applied in the RC-models, which de�ne the temperatures in the com-
ponents. An accurate prediction of the next time step is of great importance in predictive
control [VKM+16a], since it is the last chance to adjust the controllable input.
Figure 2.24 shows the simulation results of model D for the zone and �oor temperatures for
both building types. The 1-step prediction achieves a relatively accurate approximation of the
reference values in comparison to the simulation with error-propagation. Especially Tfl,s can be
predicted close to the actual value. The di�erence can be explained by the strong dependency
of the �oor's temperature on it's previous time step's value, expressed by the corresponding
coe�cients in system matrix A of the linear model.

22One might wonder why the extreme values of the full simulation period (P5) are not necessarily determined
by those from the consecutive periods P1-P4. This results from the fact that P1-P4 are each initialized with the
EnergPlus reference values in contrast to P5, which continues with deviating state values from the simulation
with error propagation.
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Figure 2.24: Results for the simulation with error propagation and 1-step prediction (1+) over the period
Feb 14-Feb 28 for default model D.

Table 2.8 states the RMSE and coe�cient of determination R2, here de�ned as

R2 =

∑N
i=1(xi,RC − x̄E+)2∑N
i=1(xi,E+ − x̄E+)2

= 1−
∑N

i=1(xi,RC − xi,E+)2∑N
i=1(xi,E+ − x̄E+)2

(2.44)

for both the simulations with error propagation and 1-step prediction for models D and R. R2

measures the proportion of the variance of the temperatures explained by the RC-models and is
used as a measure to quantify the model �t. The RC-models exhibit a structure like a multiple
linear regression model, but their coe�cients are not result of a least squares regression method.
R2 = 1 means that all variance in the reference data obtained from EnergyPlus can be explained
by the RC-model. R2 < 0 indicates that the RC-model performs worse than using the mean x̄E+

as a predictor.
The 1-step prediction results in lower RMSEs and a higher R2 for all states and models for
both building types compared to the simulation with error propagation. Even the default model
D achieves a relatively low RMSE and high explanatory power for the 1-step prediction. Model
R improves the results further, with all values of R2 above 0.97 for building type J and 0.99 for
type L. The negative results for R2 of some component temperatures underscore the limitation
of the models to accurately track the temperatures when the simulation is carried out with
error propagation. This is in line with the observations made in the previous paragraphs. With
the exception of Twi,s does model R provide the best model �t for the simulation with error
propagation for both building types. The results for model D+ and F are given in Appendix
A.10.
It can be concluded that the temperature errors of the RC-models may reduce signi�cantly
when the prediction horizon is limited to the next step and the model is updated with reference
measurements of the states. Even a simple initial guess model like model D yields a reasonable
approximation, when the linear model exhibits a strong dependency on the states of the previous
time step.
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Table 2.8: Accuracy of the simulation with error propagation (Sim.) versus 1-step prediction error (1+)
of models D and R for building types J and L over the period Feb 14-Feb 28.

D R

RMSE [◦C] R2 [ ] RMSE [◦C] R2 [ ]

Sim. 1+ Sim. 1+ Sim. 1+ Sim. 1+

J

Tz 0.7 0.4 0.083 0.748 0.5 0.1 0.536 0.978
Twi,s 3.0 0.4 -9.529 0.769 1.4 0.2 -1.438 0.973
Two,s 0.7 0.1 -0.465 0.960 0.4 0.0 0.577 0.995
Tfl,s 5.1 0.2 -7.476 0.990 0.3 0.1 0.961 0.998

L

Tz 1.0 0.2 0.727 0.987 0.7 0.2 0.886 0.993
Twi,s 1.9 0.2 0.167 0.991 0.9 0.1 0.814 0.998
Two,s 1.1 0.2 0.684 0.994 0.5 0.1 0.927 0.999
Tfl,s 1.0 0.1 0.495 0.998 0.8 0.1 0.691 0.998

Power and Energy Demand

So far, the temperature trajectories of the RC-models have been simulated with the power input
from EnergyPlus. Finally, the power and energy demand from an optimization with the RC-
models are assessed to quantify the impact of the models on the power pro�les. At each time step
t = 1, . . . , T of the simulation period, the optimization problem (2.45)23, here stated for model
D, is solved to compute the minimum required power ϕh over the next 15 minutes to keep Tz
above the temperature from EnergyPlus. The mean of the zone temperature from EnergyPlus
is above the prede�ned threshold, but the zone temperature falls below the threshold in some
cases due to the rule-based control in EnergyPlus. Thus, the optimization uses the EnergyPlus
reference Tz,E+ rather than a �x minimum temperature to not bias the comparison. The heating
power ϕh is limited to the maximum value observed over the reference simulation in EnergyPlus.
The slack variable s is introduced to guarantee feasibility of the problem with respect to the
temperature constraint and is penalized by the scalar π. A relatively high price of e.g. π = 106

forces the solver to avoid excessive use of the slack variable.

minimize
ϕh,s

ϕh + πs

subject to (2.31), (2.32), (2.33), (2.34)

Tz ≥ Tz,E+ − s
0 ≤ ϕh ≤ ϕh,max,E+

0 ≤ s ≤ smax

(2.45)

Each of the simulations is carried out with error-propagation, thus the temperatures computed
with the RC-model are used to initialize the next time step. Table 2.9 shows the total energy
demand, the relative percentage deviation from the energy demand obtained from EnergyPlus
and the RMSEs of the power and zone temperature over the period Jan 1-Feb 28 for all RC-
models investigated. The total energy demands of the RC-models are close to the demands from
EnergyPlus. Model F for building type J results in the largest deviation of 4.86%, the best
result in terms of energy demand is achieved by model R for type L with an underestimation of
just 1.05%. While the models D (D+) and F tend to overestimate (underestimate) the required

23The continuous-time dynamics in (2.31)-(2.34) are discretized to solve the optimization problem. The dy-
namics in problem (2.45) are adapted for the other models, accordingly.
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energy demand independent of the building type, model R leads to over- or underestimation
depending on the standard. This is con�rmed for the most part when the four shorter simulation
periods P1 to P4 are looked at. D (exception in P4) and F overestimate the demand for both
building types, D+ underestimates. Model R always overestimates for building type J , while
both over- and underestimation occur for type L depending on the period. The varying energy
demands can be explained by the nature of the di�erent modeling approaches of the RC-models,
since they di�er in the distribution of the heating input and the heat transfers between the
components. The zone temperatures obtained from solving (2.45) are close to the reference
values from EnergyPlus, with a slightly higher error for building type L.

Table 2.9: Results for the power simulation over the period Jan 1-Feb 28. ∆t = 0.25 h by discretization.

Energy Demand RMSE∑
ϕh,RC∆t (

∑
ϕh,RC∑
ϕh,E+

− 1)100% ϕh − ϕh,E+ Tz − Tz,E+

[kWh] [%] [kW] [◦C]

J

D 6,129.6 1.82 1.065 0.05
D+ 5,794.3 -3.76 0.944 0.08
F 6,312.8 4.86 1.293 0.17
R 6,267.1 4.1 0.864 0.11

L

D 1,336.0 4.15 0.646 0.58
D+ 1,259.3 -1.83 0.675 0.49
F 1.313.2 2.37 0.558 0.24
R 1.269.3 -1.05 0.800 0.31

Rather high deviations in the range of 0.6−1.3 kW occur in the di�erence between the power
pro�les computed with problem (2.45) and those from EnergyPlus. Especially model R for
building type L exhibits a di�erence similarly large as for building type J , even though the latter
has an almost twice as high maximum power of ϕh. Figure 2.25 shows the zone temperature and
heating power from EnergyPlus and RC-model R over the last 15 days of February to analyze the
power pro�les in more detail. The simulation with problem (2.45) achieves a good approximation
of the temperature reference from EnergyPlus for both building types, with only minor use of the
slack variable to relax the problem. Three observations can be made for ϕh of type J . Firstly, the
operation time resulting from the optimization with the RC-model is very close to the reference.
It covers 98% of the on-time in EnergyPlus, which corresponds to a total time of approximately
12 days. Secondly, the magnitude of ϕh follows the operation in EnergyPlus in general, with the
slight tendency to overestimate the demand. This is in line with the corresponding result from
Table 2.9. Thirdly, the power pro�le of the RC-model is more volatile, with maximum peaks
not always being coincident with those from the reference. This is also observable for building
type L, where the optimization sometimes results in operation where the reference system in
EnergyPlus does not provide power to the �oor. This can be explained with a di�erence in the
propagation of the states due to model errors and the freedom of the solver to correct for a
solution which is both energy minimal and above the zone temperature of the reference.
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Figure 2.25: Results for the power optimization simulated over the period Feb 14-Feb 28 for model R.

Applying problem (2.45) on model R leads to partial overestimations of the peak power. Further
�ne tuning of the optimization can achieve an even closer tracking of the power trajectories
from EnergyPlus, e.g. by use of time speci�c limits on ϕh from EnergyPlus and inter-temporal
constraints and penalties to �atten the resulting pro�les. A model predictive controller o�ers a
convenient approach to account for such restrictions and is introduced in Chapter 3.

Energy Demand vs. TABULA Estimates

Finally, an annual simulation of the RC-model R is carried out for types L, J and also type
E. Even though the latter has not been validated in the previous section, it is assumed that
the validated modeling approach can be applied to other SFH types. The speci�c annual heat
demand is calculated and compared to the TABULA reference values. In order to compare
simulation results with values from the TABULA typology, boundary conditions in the simulation
of the RC-models have been partially changed to approximate those from the standard TABULA
calculation. The one-step optimization has to keep the zone temperature above 20 ◦C, which is the
same comfort temperature used in the TABULA calculation. A heating limit of 12 ◦C is assumed
and the mean of the ambient temperature time-series is shifted to obtain a similar amount of
degree days as used by TABULA. The solar gains through each of the windows are scaled to
the heating period values assumed in TABULA and further reductions through shadowing and
window frames are considered. Internal gains are taken into account with constant 3 W

m2 in
contrast to the time-varying model introduced in Section 2.6, which is used in the remaining
parts of this work. Finally, each of the three building types are geometrically parameterized as
given in the typology, leading to di�erent surface areas, e.g. �oor, outer wall or window areas
per cardinal direction. This is in contrast to the previous validation section, where the geometry
of building J was also assumed for type L for comparability of the modeling approaches.
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Figure 2.26: Annual speci�c space heating demand of RC-model R and the TABULA standard calculation
reference value

For simplicity the single zone RC-modeling approach takes into account the whole volume en-
closed by the envelope for ventilation losses, including the attic volume. This was a reasonable
assumption for the validation against the single zone reference model implemented in Energy-
Plus. In contrast, the TABULA calculation considers only the net living area multiplied with
the standard �oor height. Since the simulation results were rather sensitive to ventilation losses,
the ventilation coe�cients were corrected to assume similar air volumes and system e�ciencies
as used in the TABULA typology. Finally, the annual energy demand values are related to the
reference area from TABULA. Figure 2.26 shows the di�erent energy demands among the three
building types. The RC-model R manages to reproduce the di�erences in energy demand due
to di�erent insulation standards but estimates the demand higher compared to the reference
values from TABULA. Since the static TABULA calculation is a simpli�ed approximation of the
demand itself, there is no �nal answer to which �nal value is more accurate.

2.2.8 Conclusion

The presented single zone model remains a strong simpli�cation of multi-zonal constructions
in real buildings, including e.g. bathrooms with di�erent set-points and highly user-dependent
temperatures. The validation section has shown that it is possible to approximate the transient
simulation of an exemplary single zone SFH based on a set of four �rst-order di�erential equations.
A further model reduction might be possible but was not tested. The validation of the variants
of the RC-model shows the importance of accounting for radiation in the model. Initial model
D showed a reasonable accuracy to predict Tz, but failed to track component temperatures such
as the surface temperature of the �oor. Modeling radiation by either the use of lumped heat
transfer coe�cients at surfaces or an explicit resistance between the �oor and the outer walls
improved the results signi�cantly and allows to simulate the progression of the states with high
accuracy. In a cross-validation over di�erent periods, a RMSE below 1 ◦C was achieved by model
R for all temperature states in building L and all but the inner wall temperature for building J
for all considered simulation periods. Model R shows not only satisfying results for Tz and Tfl,s
but also leads to reasonable close energy demand values and power pro�les. It is used as the
model structure in the remaining chapters. If only the 1-step ahead prediction is considered and
states are continuously updated by measurements from a reference system, even a simple initial
guess model D shows su�cient accuracy since model errors do not propagate with time.
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It is important to note that the validation is restricted to the given temperature, disturbance
and heating input time-series from EnergyPlus compared to a simple model with prede�ned
resistances and capacitances. To completely capture the dynamics of a system including the
active thermal mass, pseudorandom binary excitation signals are commonly used for the heating
system input in experiments to identify the system's response over the full range of frequencies,
see e.g. [MH95, LMB12]. As a consequence, there is no guarantee that the RC-model gives
a correct response to strongly di�erent control signals as they will occur in the coordination
problems analysed in Chapter 5.

2.3 Thermal Model Dynamic Response

Figure 2.27 shows the �nal RC- model parameters obtained from the previously described mod-
eling approach. While the �oor has the largest thermal capacity in modern building L, the older
buildings J and E have a high thermal mass located in the outer walls. The contribution by
the air volume of the zone is small compared to the other capacities. The resistances re�ect
the di�erence in insulation standard. Especially the resistances in direct connection to ambient
disturbances (Rwo,2, Rfl,2 and Rvent) are signi�cantly higher for building L. The lower inward
resistances allow for a higher heat transfer to the capacities of the components. The third subplot
shows the multiple time constants τi = − 1

λi
computed based on the eigenvalues λi of the system

matrix A of each building.24 The values range from below an hour for the zone to over 100 hours
for the outer walls in building L corresponding to both slow and fast dynamics. In contrast to
a �rst-order model with one distinct time constant, the state response of the fourth-order model
results from a weighted sum of exponential components with the corresponding eigenvalues.

Figure 2.27: Parameters of RC-model R.

24All eigenvalues of matrices A for all buildings are real and negative. The systems are asymptotically stable.
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Figure 2.28 shows the transition of the states over 24 hours when all temperatures in the build-
ing are initialized at 22 ◦C and for a case where the �oor is preheated to 29 ◦C. All inputs to
the model (heating, disturbances) are assumed to be zero. While all states cool down in the
�rst case, this happens faster for buildings E and J compared to building type L where the zone
temperature stays above 20 ◦C for almost 6 hours. When the �oor is preheated to 29 ◦C, building
L shows an increase in the zone temperature for the �rst 2.5 hours, followed by a decrease for
12.5 hours to return back to the initial 22 ◦C. One can observe how the direction and change in
temperature per time are governed by di�erent time constants and di�erences between compo-
nent temperatures. Fundamentals of the so-called homogeneous response are given in Appendix
A.11.

Figure 2.28: Transient trajectories with the initial states x(0) = (Tz(0), Twi(0), Two(0), Tfl(0))T for the
cases (22, 22, 22, 22)T and (22, 22, 22, 29)T in ◦C over 24 hours.

Figures 2.29 and 2.30 show the step responses of RC-model R for the three building types for
either a sudden increase from zero to an ambient temperature of Ta = 1 ◦C, solar gains of
ϕsg = 100 W or a heating input of ϕh = 100 W. All states are zero for t = 0 and the scaled
Heaviside step function is assumed at t ≥ 0 for the respective input while the other inputs re-
main zero throughout time. The step responses within the �rst hours in Figure 2.29 show the
fast reaction of Tz to the ambient temperature increase, followed by the other states. A similar
but less pronounced response can be observed for the solar gains input. The step response to
a sudden heating input in the �oor causes a fast reaction in Tfl, followed by the zone and wall
temperatures. Figure 2.30 shows that buildings E and J have a similar behavior with a higher
absolute response to the temperature increase compared to building L. A thermal gain of 100 W
results in a higher �nal steady state for type L due to the better insulation standard. Building
L needs roughly around twice the time to arrive at it's new steady state when the rise (the time
of the step response to rise from 10% to 90% of its �nal value) and peak times are compared to
those of buildings J and E.
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Figure 2.29: Step responses of all states of the continuous-time RC-model R for building type E, J and
L.

Figure 2.30: Step responses of Tz and Tfl of the continuous-time RC-model R for building type E, J and
L.

2.4 Design Heat Load and Heat Pump System

The DIN EN 12831 [DIN14] de�nes methods for the calculation of the design heat load for a
building or a zone. The transmission and ventilation heat losses are computed based on the
envelope areas and total heat transfer coe�cients to quantify the total heat loss to the outside
to be compensated by the heating system. The calculation is carried out for a given zone
air standard temperature of 20 ◦C and a location-speci�c extreme ambient temperature. Solar
radiation and inner thermal gains are neglected. In this thesis, the system of the di�erential
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Equations (A.51)-(A.54) for model R is solved for its steady state

ẋRC = 0 (2.46)

with a �xed set point temperature Tz = 20 ◦C and �xed ambient conditions for the calculation
of the design heat load. The heat load gives a limit for the maximum thermal power of the heat
pump to select. The value of the heat load at the local norm ambient temperature, e.g. −16 ◦C
for Munich, is commonly used to dimension the heating system. Figure 2.31 shows the heat load
for the building types over the ambient temperature Ta with �xed Tg = 10 ◦C and the points of
operation for the annual 1-step simulation. In Munich, systems of 2.9 kW, 9.3 kW and 10.6 kW
would be chosen to cover the space heating demands. The maximum power ϕh,max of the input
is limited to the values speci�ed above. Due to the solar gains, power is not always required at
the heat load de�ned value for a given temperature. Similarly, sudden changes in temperature
may require the heating system to operate above the heat load value. In contrast to types E and
J , building L does not operate at ambient temperatures above 10 ◦C due to it's good insulation.
When temperatures become very cold, type L operates mainly at ϕh,max.

Figure 2.31: 1-step simulation results versus the steady state heat load.

2.4.1 Heat Pump Model

The instantaneous e�ciency of the operation of a heat pump is measured by its coe�cient of
performance η (COP), which is de�ned as the ratio of the heat delivered to a building for space
heating and domestic hot water to the electrical demand of the heat pump. In case of an air-to-
water heat pump, the thermal power provided for heating is the sum of the extracted heat from
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the ambient at the evaporator and the electrical demand of the compressor of the heat pump:

Q̇hp = Q̇amb + Php,el (2.47)

η =
Q̇hp
Php,el

= ξηC . (2.48)

A theoretical upper bound for the COP η of a heat pump working at Carnot e�ciency is given
by

ηC =
Tsupply

Tsupply − Tsource
(2.49)

in absolute temperatures [VDL+12]. The supply and source temperatures are located at the
evaporator and condenser side. Equation (2.49) demonstrates how the e�ciency of a heat pump
increases with a decreasing di�erence between the source and supply temperatures. For a con-
stant supply temperature, the COP decreases for lower ambient temperatures in the winter,
requiring more compressor power to deliver the same amount of thermal power. With increasing
ambient temperatures, both the COP and the heating capacity of the heat pump increase [DB13].
Heat pumps are preferably combined to modern �oor heating systems with relatively low supply
temperatures to maintain e�cient operation in cold climates accordingly. Such systems have
common supply temperatures of 30 − 35 ◦C, but it is possible to e�ciently use heat pumps for
supply temperatures up to 55 ◦C in older buildings [Bru06]. In contrast, domestic hot water
provision and radiators usually require higher supply temperatures.
The COP in real operating conditions deviates from the theoretical upper bound by the loss
factor ξ, resulting from the system dependent losses of the heat pump. The real COP is a non-
linear function of the states of the source and supply temperatures, the compressor frequency
in case modulation is possible and other variables to take the overall losses in the evaporator,
compressor, condenser and expansion valve into account. When the COP from Equation (2.48)
is used in an optimal control problem, the resulting optimization problem becomes non-convex
due to the product of the supply temperature (as a state of the system itself) and the controllable
electrical power. To ensure a convex formulation of the heat pump e�ciency in the optimal con-
trol problem, complex models with numerous additional states within the heat pump are often
avoided and only the most dominant processes considered.
The authors in [Wim04,Bia06] concluded that in the case of an on-o� air-to-water heat pump,
a COP prediction based on the ambient temperature and the heat pump's characteristic curve
of operation for given nominal supply temperatures is su�cient, since the ambient temperature
has the strongest impact on the COP. By neglecting the COP's dependency on the state of the
supply temperature, convexity of the optimal control problem was guaranteed. The COP was
predicted beforehand over the prediction horizon, based on the weather forecast and the �xed
nominal supply temperature. The works in [VDL+12] and [VLvH12] were based on the low-order
building models identi�ed in [Wim04,Bia06] and investigated the impact of di�erent COP for-
mulations on the controller's performance for a variable-speed air-to-water heat pump directly
connected to a �oor heating system. Modulation impacts the COP due to frequency dependent
losses in the compressor and heat exchangers. The most detailed COP formulation in [VLvH12]
considered the nonlinear dependency on the source and supply temperatures and the compressor
frequency based on a �tting on manufacturer data, whereas the most simple formulation was
a constant approximation of the COP over the prediction horizon. The resulting di�erences in
electricity costs and discomfort for each COP formulation were evaluated and compared to a
reference heating curve control. While the nonlinear model resulted in continuous part-load op-
eration, the convexi�ed COP formulations led to stronger power peaks and an increase in energy
consumption ranging between 7%-16%. Nevertheless, similar operational behavior and e�ciency
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could be achieved by additionally penalizing power peaks in the controller's cost function with
a quadratic term, allowing for the use of the convexi�ed COP formulations. Interestingly, even
though all COP formulations were tested in an MPC strategy to make use of the operational
�exibility, only the nonlinear COP formulations could achieve a reduction of the electricity cost
compared to the heating curve operation in an on-o� peak tari� scenario, since the relaxed for-
mulations led to an on-o� operation of the heat pump resulting in deterioration of the real COP.
The authors in [VLOA13] treated the nonlinearity between the supply temperature and heat
pump's power in a single building study by iteratively solving the complete continuous-time dy-
namics at the steady state over the prediction horizon to obtain a current approximation of the
supply temperature. This is not considered here to avoid the additional computational burden
to be carried out at each time instant. A detailed model of a variable-speed air-to-water heat
pump connected to a strati�ed storage was presented in [FBMW17] to test MPC for a multi-
family house supplied by radiators. The COP's dependency on the compressor frequency was
taken into account by the de�nition of two operational ranges and a Taylor linearization of the
COP within these ranges. Variable-speed heat pumps achieve the best COP's during part load
operation. Measurements for di�erent operating conditions of the modulating heat pump showed
an increase of the COP up to the optimal compressor frequency and an almost linear decrease
of the e�ciency beyond the optimal frequency. A convexi�ed model was used and the computed
control signals were forwarded to a detailed reference model to receive the storage temperatures.
Even though a realistic performance of the heat pump could be modeled in a convex optimiza-
tion problem, the linearization and de�nition of operational ranges came at the cost of additional
decision variables.

Figure 2.32: Heat pump heating capacity range and the COPs η for di�erent supply temperatures based
on manufacturer data [Sti17] for two air-to-water heat pumps.

To conclude, the use of convexi�ed COP formulations can lead to an underestimation of the
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energy consumption and higher power peaks, when the latter is not penalized. In order to keep
the number of decision variables per building low, a time-varying, precalculated COP depending
on the ambient temperature and a �xed supply temperature is used here. Figure 2.32 shows the
maximum and minimum thermal capacity characteristics for two variable-speed air-to-water heat
pumps and the COPs from manufacturer data taken from [Sti17]. The manufacturers' COPs
are measured based on the testing procedure of the DIN EN 14511 [DIN18] for certain ambient
temperature points when the supply temperature is �xed at 35 ◦C. The points are used here
for a polynomial �tting and the COP curves for higher supply temperatures are then estimated
based on the relationship between the upper bound and system COP in Equation (2.48). The
�tted COP model at the supply temperature of 35 ◦C is

η35◦C

(
Ta(t)

)
= a1Ta(t)

2 + a2Ta(t) + a3 (2.50)

with the parameters in Table 2.10.

Table 2.10: Polynomial �tting coe�cients for the COP model.

Heat pump a1 a2 a3

WPL7 0.0029 0.1198 3.534
WPL20 0.0015 0.0851 3.811

ξ from Equation (2.48) can now be estimated by dividing η35◦C by ηC,35◦C and the functions for
other supply temperatures are obtained by scaling with ξ accordingly. This assumes the same
systematic e�ciency loss for all supply temperatures. The COP's dependency of the modulation
frequency is neglected. Currently available manufacturer data does not provide information
regarding the COP and the modulation frequency. The maximum heating capacity of the heat
pumps increases with increasing ambient temperatures but is regulated for WPL7. The limits
are similar for di�erent supply temperatures. One can also observe how the EN 14511 test points
are close to the maximum capacity for low ambient temperatures. Thus, the error introduced
with the COP model in Equation (2.50) will be larger for milder, part-load operation conditions
then for cold full-load conditions. As can be seen in Figure 2.32, the COP approaches a value of
2 for cold conditions, which is close to the value of 1.8 used in the study in [BDI18].
Since the minimum heating capacity increases with increasing ambient temperatures, the system
of choice must not be overdimensioned to keep the part-load operation during milder conditions
feasible [Sti17]. The minimum heating capacity for the variable-speed heat pumps is neglected in
the problem formulation since the dead band of operation requires modeling of a semi-continuous
function including a binary decision variable. A fully continuous range of operation from zero to
the maximum ambient temperature dependent value is assumed here for convexity:

0 ≤ Q̇hp(t) ≤ Q̇hp,max(t). (2.51)

Since the simultaneous operation at di�erent supply temperature levels is not possible, systems
in practice prioritize domestic hot water provision Q̇hp,dhw over the supply for space heating
Q̇hp,sh in rule-based control. Again, binary decision variables would be required, see also the
discussion in [PH14]. A hybrid operation to supply water at di�erent temperature levels in
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parallel is assumed here to keep the problem convex:

0 ≤ Q̇hp,sh(t) + Q̇hp,dhw(t) ≤ Q̇hp,max(t) (2.52)

0 ≤ Q̇hp,sh(t) (2.53)

0 ≤ Q̇hp,dhw(t). (2.54)

The relationship to the electrical demands of the heat pump for space heating and domestic hot
water is then given by

Q̇hp,sh(t) = ηsh

(
Ta(t)

)
Php,sh(t) (2.55)

Q̇hp,dhw(t) = η50◦C

(
Ta(t)

)
Php,dhw(t). (2.56)

Delays due to on- and o�-switching were considered in [Wim04] but are neglected here. Such
e�ects occur in the range of seconds to minutes and thus will not be captured by the 15 minutes
discretization intervals used here.
The extreme cold temperatures which de�ne the design heat load for a building occur only
a few times during the heating season. A heat pump dimensioned to supply the demand at
the design temperature is usually overdimensioned for the most time of the year. While on-
o� heat pumps will result in frequent switching, modulating systems might still require a too
high minimum heating capacity and not work e�ciently during part-load conditions. As an
alternative to the monovalent setup, bivalent monoenergetic systems are equipped with a direct
electric back-up heater, located in the heat pump itself or in a bu�er storage. The heat pump is
dimensioned to fully cover the heat load until the so-called bivalence temperature. The back-up
heater then supports at temperatures below the bivalence temperature, usually below −5 ◦C. In
standard rule-based control, the total operating hours of the back-up heater are limited to a few
hours per year to not impair the overall e�ciency of the heating system. See [Sti17] for heat
pump planning principles. Modeling such a constraint is not required for the predictive energy
management strategy developed in Chapter 3, since the controller will decide whether or not the
back-up heater has to be used in the optimal control strategy.
Analogously to the constraints (2.52)-(2.54), it must hold for the back-up heater that

0 ≤ Q̇bh,sh(t) + Q̇bh,dhw(t) ≤ Q̇bh,max(t) (2.57)

0 ≤ Q̇bh,sh(t) (2.58)

0 ≤ Q̇bh,dhw(t). (2.59)

It is assumed that the delivered heat equals the electrical demand:

Q̇bh,sh(t) = Pbh,sh(t) (2.60)

Q̇bh,dhw(t) = Pbh,dhw(t). (2.61)

Finally, heat pump WPL7 is selected for building type L, WPL20 for building types J and
E and the back-up heater is always dimensioned to 8.8 kW. Table 2.11 shows the reference
supply temperatures selected for the computation of the COPs and maximum heating capacities
for each building type. The choice of temperatures for the COP for space heating ηsh can be
considered a conservative estimate, since lower temperatures will be possible most of the time.
Tfl is limited to maximum temperatures of 30, 34 and 37 ◦C for the three building types to limit
the possibility to overheat or pre-charge the �oor. The two older building types require such
high �oor temperatures to maintain Tz above 20 ◦C during very cold days. The resulting surface
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temperature of the �oor25 is never above the limit of 29 ◦C for type L, but exceeds it at certain
times when the two other types are looked at. Especially the high surface temperature for type
E indicates that additional radiators or heating surfaces might be an option to heat the zone on
very cold days, but the �oor heating system model is kept here for simplicity.

Table 2.11: Temperatures selected for the calculation of the heat pump e�ciencies and maximum heating
capacities.

Heat pump ηsh ηdhw Q̇hp,max

L WPL7 30 ◦C 50 ◦C 35 ◦C

J WPL20 35 ◦C 50 ◦C 35 ◦C

E WPL20 40 ◦C 50 ◦C 45 ◦C

2.4.2 Bu�er Storage Model

A bu�er storage enables decoupling of the heat production from the demand. Due to the following
reasons, a bu�er storage is assumed to be optional for the buildings considered in this thesis.
Bu�er storages are often used with on-o� switching heat generation units like older heat pumps
or combined heat and power units. Since monovalent systems are typically dimensioned to
cover extreme ambient conditions, they are oversized for milder, average heating days. To avoid
frequent on-o� switching and premature wearout of the compressor, bu�er storages are used
between the heat pump and the heat emission system. In contrast to radiator systems do �oor
heating systems not need a bu�er due to their own thermal inertia [HM09,Huc15]. An additional
parallel bu�er storage often requires higher operating temperatures, which negatively impacts the
coe�cient of performance. Also can additional mixing valves and the control technology make
a bu�er an expensive investment for a single family house, why storages are either connected
in series to the heating circuit or completely omitted [Wim04]. Especially the variable-speed
inverter technology in modern heat pumps allows to adjust the thermal power of a heat pump
to the current heat load conditions. Due to the possible part load operation, typical on/o�-
cycling is no longer an issue and no bu�er storage is needed [Huc15]. As already discussed in
the heat pump section, for variable-speed heat pumps it is only important to not overdimension
the system due to the minimum thermal output greater zero, which is no issue after the relaxed
range of operation in Equations (2.52)-(2.54).
The simplest, temperature dependent and lossless formulation of a thermal storage model for a
building supplied by a heat pump is given in [RGZ88]. Adapted to a single water storage node
with heat capacity Csto, the uniform temperature Tsto in the storage is heated up by the heat
pump and back-up heater with Q̇hp,sh + Q̇bh,sh and the load of the building is supplied by the
storage with Q̇sto:

CstoṪsto = Q̇hp,sh + Q̇bh,sh − Q̇sto. (2.62)

Adding losses towards the environment with temperature Tenv where the bu�er storage is located
and rearranging leads to the following di�erential equation:

Ṫsto =
Q̇hp,sh
Csto

+
Q̇bh,sh
Csto

− Q̇sto
Csto

− (UA)sto
Csto

(Tsto − Tenv). (2.63)

Both Csto and the heat loss parameter (UA)sto depend on the volume of the bu�er storage. The
thermal transmittance over the surface of the storage is assumed to be 0.3 W

m2 K
. The calculation

25Calculated based on Equation (A.61) in the Appendix.
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of the parameters is carried out as for the domestic hot water storage introduced in Section
2.5.2. The authors in [BDI18] assume a volume of 250 l for a four person SFH in order to
provide enough inertia to switch the heat pump o� for 1-2 hours during winter days. 100 l are
recommended in [Sti17] for the optional bu�er storage setup for the two modulating heat pumps
considered in this thesis. A study in [Huc15] found only a small impact of the thermal inertia
of the building construction on the heat pump performance when a bu�er storage was used.
The uniform temperature model in Equation (2.63) is a strong simpli�cation and might not be
su�cient for larger volumes and strati�cation e�ects. In this thesis it is only used for smaller
volumes and helps to investigate e�ects of additional thermal inertia without the need of further
complex modeling.

2.5 Domestic Hot Water Model

The following two subsections introduce the domestic hot water demand model used for each
building considered in the simulations in Chapter 6. The model consists of a demand model to
relate activities of occupants to hot water draw events and a storage model to couple the demand
to the operation of the heat pump and back-up heater.

2.5.1 Domestic Hot Water Demand Model

The demand model for the domestic hot water consumption generates daily pro�les for draw
events for each household. Stochastic bottom-up models in the literature are based on detailed
�eld study data [Lut08, VKA12], derived from smart meter household records [PMLC09] or
generated based on general time use survey data [FWSWH16]. A commonly used tool to create
user de�ned pro�les for German households was presented in [JV05] based on the previous work
in [JV01]. To achieve consistency with the residential electricity demand pro�les presented in
Section 4.4 based on the author's previous work in [JKC15], a model based on the same time
use survey (TUS) data for Germany from [FDZa,FDZb] was developed.
The daily average domestic hot water demand for a household varies slightly in the literature. The
tool in [JV05] assumes an average daily tapping of 200 l/d for a single family house. [HDR+13]
review country speci�c studies and assume an average draw o� demand for an average single
family house of around 140 l/d provided at 45 ◦C with cold water temperature at 10 ◦C. This
results in an amount of energy of approximately 5.684 kW h/d. Thus, the daily demand per
person breaks down to 1.42 kWh per day and person in a 4 person household. The norm [DIN07]
suggests to assume a demand of 25 l/d or 1.45 kW h/d per person delivered at 60 ◦C for the
dimensioning of heat pump systems when no further speci�cations are available.
Domestic hot water demand can be divided into longer and shorter draw events, triggered by
di�erent occupant activities. The VDI norm 2067 [VDI17] di�erentiates between showering,
bathing, other personal hygiene and the washing of clothes and dishes. In a simple breakdown,
showering and bathing account for events of longer draws with relatively few events per day
while the usage of hot water taps in the kitchen and the bathrooms account for shorter, but
more frequent events. Automated dishwashing and the washing of clothes is considered in the
residential electricity model and thus neglected here. Table 2.12 shows the range of �ow rates,
durations, the frequency per day and supply temperature assumed for the activities showering,
bathing and sink usage for cooking, dishwashing or handwashing and other personal hygiene.
The values are partially taken from [VDI17]. The daily frequencies for showering and bathing
are altered based on survey statistics from [Wag15]. While a daily shower per person was likely,
a bath was taken less than once a week.
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Table 2.12: DHW model parameters, partially based on [VDI17].

Flow V̇ Duration ∆t Frequency Tservice
[ l
min ] [min] [1/d] [◦C]

Shower 6-10 2-6 0.85 40
Bath 10-13 6-10 0.11 40
Sink usage
- Handwash & other hygiene 1-6 1-2 2 40
- Cooking & dishes 1-6 1-2 0.6 50

The �ow rate and duration are assumed to be uniformly distributed between the speci�ed ranges

V̇ ∼ U(V̇min, V̇max) ∆t ∼ U(∆tmin,∆tmax) (2.64)

and the tapped liters and total energy required per event can be computed as

V = V̇∆t (2.65)

Q = V ρwcw(Tservice − Tcold) (2.66)

with V being the drawn volume in liters, ρw ≈ 1 kg
l the density of water and cw = 4 176 J

kgK =

1.16 · 10−3 kWh
kgK the speci�c heat capacity of water. Tservice is the preferred water temperature

of the event.
The domestic hot water draw events are distributed with varying probability over the course
of the day. The events for showering are assumed to be linked to the TUS activities "washing
and dressing", including personal hygiene for children. Bathing events are distributed according
to the same probability density function, but with the restriction of taking place after noon.
The model takes into account the required occupancy of at least one household member and
guarantees that the shower and bathtub are not over-occupied. Even though it is common in
smaller households to �nd the shower integrated in the bathtub, separate devices are assumed
for simplicity. Warm water draws for cooking are assumed to follow the temporal distribution
of the TUS activities "preparation of meals" and "washing dishes, clearing the table". Random
handwash events are assumed to be uniformly distributed during the day, with increasing and
decreasing probabilities in the early morning and late evening hours. The distribution is similar
to the one used in [JV05] for small and medium draws. This distribution is not based on TUS
data but constructed manually, the same distribution is assumed for all households. Figure 2.33
shows the underlying probability density functions in a minute resolution for each household size
and simulated draw events for one, ten and one hundred four person households.
The DHW demand may vary throughout the year, due to seasonal consumer behavior, more va-
cation days taken in the summer and warmer cold water temperatures in the summer [HDR+13].
The model in this work accounts for a varying cold water temperature to re�ect seasonal varia-
tion and applies the formula from [HH07]. Equation (2.67) describes the daily variation of the
cold water temperature Tcold,d on day ddhw as a cosinusoidal function with an amplitude of 3K
around the local mean annual ambient temperature:

Tcold,d = Tamb − 3 cos((ddhw − ddhw,min(Tamb))
2π

365
). (2.67)

ddhw,min(Tamb) is the day of the lowest ambient temperature. The �ow rate of draw events which
require a temperature below 45 ◦C are corrected to account for water mixing.
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Figure 2.33: Left column: Probability density functions per activity for 1 to 5 and more person households.
Right column: DHW �ow rate pro�les simulated for 1 to 100 four person households.
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Figure 2.34 shows the generated results from an annual simulation of 100 four person households
at a location with a mean ambient temperature of 8 ◦C. The mean daily consumption per person
results in 45 l and 1.9 kWh. Compared to the values in [VDI17], this energy estimate is located
at the upper end of the range for a medium daily per person demand.

Figure 2.34: Simulation results for the per person daily DHW demand and drawn liters of 100 four person
households.

2.5.2 Domestic Hot Water Storage Model

The water storage to supply the DHW demand is modeled as a single temperature node due to
the small size of the storage. The thermal capacity Cdhw can be scaled by the volume of the
storage. The temperature of the water Tdhw has to be equal or higher than 45 ◦C to satisfy the
occupants' comfort. DHW storages can usually handle temperatures of up to 90 ◦C [Sti17], but
the maximum storage temperature allowed here is limited by the heat pump's maximum supply
temperature. Q̇hp,dhw is the power delivered to the storage by the heat pump26. Heat losses result
from the demand water draws V̇ and transmission losses over the surface area of the storage to
the environment at temperature Tenv where the device is located. A constant temperature of
15 ◦C is assumed throughout the whole year. The continuous-time heat �ow equation becomes

CdhwṪdhw = Q̇hp,dhw − V̇ ρwcw(Tdhw − Tcold)− (UA)dhw(Tdhw − Tenv). (2.68)

Equation (2.68) results in a time-variant system since the �ow rate disturbance V̇ varies in time
and is multiplied with the state Tdhw. To avoid the additional discretization e�ort at each time
step for each pro�le used in simulations, the power drawn from the storage is approximated to
be supplied at a constant temperature of 45 ◦C:

Q̇dhw = V̇ ρwcw(45 ◦C− Tcold). (2.69)

The pro�le for Q̇dhw is precalculated and treated as a disturbance in the �nal model.
Table 2.13 shows the default storage parameters for a four person household. Based on the
required volume, a storage with an optimal volume to surface area is computed. The thermal
transmittance value matches di�erent insulation materials discussed in [Kan17]. Standard sizing
procedures for the DHW storage double the reference value per person and day in liters at e.g.
60 ◦C and correct the volume for the service temperature set point to match the energy contents,

26Power from the back-up heater for DHW operation is neglegted here for brevity.
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see [Sti17,DIN07]. In this work, a security margin of 25% is added to the mean daily per person
demand in a four person household.

Table 2.13: DHW storage parameters

Volume Capacity Cdhw Transmittance Udhw Surface area Adhw Range Tdhw
[l] [ JK ] [ W

m2 K
] [m2] [◦C]

225 9.4 · 105 0.3 2.05 45-55

The additional required heat pump power for DHW is often estimated with the maximum energy
drawn o� over a short period of time and the remaining time to recharge the storage tank between
two such events, see e.g. [DIN07]. Charging the 225 l storage tank to the minimum temperature
within 8 h leads to additional 1.2 kW. This is su�cient to supply the average demand, but single
extreme events can still require use of a back-up heater, especially when the remaining heat
pump capacity is simultaneously used for space heating. The heat pumps selected in Section
2.4.1 together with the back-up heater are su�ciently dimensioned to provide power for both
space heating and DHW.

2.6 Internal Gains

While the TABULA reference calculation assumed general constant internal gains of 3 W
m2 to

account for possible sources, the model used in this thesis provides a time-varying, occupancy-
dependent internal gains pro�le. The VDI 2078 [VDI15a] states estimates of the human heat
transfer for sedentary and other activities of di�erent intensity. The total internal gains for a
household of H members are calculated as

ϕig(t) = o(t)r(t)

H∑
i=1

ϕig,i(t) (2.70)

with

ϕig,i(t) =

{
∼ U(100, 125)W/person from 6 a.m. to 11 p.m.

80W/person otherwise
(2.71)

and occupancy indicated by

o(t) =

{
1 if at least one person is present

0 otherwise.
(2.72)

r(t) is a stochastic process to randomly vary the occupancy during the day between one and
the maximum number of household members. A more sophisticated approach would take occu-
pancy dependencies between individual household members into account, but since individual
occupancy pro�les are not derivable from the available TUS data sets in [FDZa, FDZb], this
simpli�cation is used. The resulting pro�les lead to a value of 1.8 W

m2 in average for a four person
household. The occupancy pro�le o(t) is consistent with the time-series used in the household
electricity and DHW models. Gains from electrical appliances and lighting are neglected.
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Chapter 3

Prosumer Energy Management

This chapter develops the model predictive controller for the purpose of energy management.
The control strategy allows to minimize energy consumption or energy costs and maximizes
PV self-consumption when local PV generation is available. The �nal dynamic model of the
building and heating system components is introduced and the prediction of the states and the
boundary conditions are de�ned. Finally, the MPC optimal control problem for a single prosumer
is presented.

3.1 Building Energy System Model

The following section rearranges the system matrices of the building structure and the bu�er
and DHW storage units for the design of the predictive controller. The �nal building dynamics
of model R with the heating input to the �oor (see derivation in Appendix A.6) are

Ṫz =
1

RventCz
(Ta − Tz) +

1

RwiCz
(Twi − Tz)

+
1

RstarACz

(
(

1

SRstarA
− 1)Tz +

1

SRwo,1
Two +

1

SRfl,1
Tfl

)
+
sz
Cz
ϕsg +

gz
Cz
ϕig (3.1)

Ṫwi =
1

RwiCwi
(Tz − Twi) +

swi
Cwi

ϕsg +
gwi
Cwi

ϕig (3.2)

Ṫwo =
1

Rwo,2Cwo
(Ta,eq − Two) +

1

Rwo,1Cwo

( 1

SRstarA
Tz + (

1

SRwo,1
− 1)Two +

1

SRfl,1
Tfl

)
+
swo
Cwo

ϕsg +
gwo
Cwo

ϕig (3.3)

Ṫfl =
1

Rfl,2Cfl
(Tg − Tfl) +

1

Rfl,1Cfl

( 1

SRstarA
Tz +

1

SRwo,1
Two + (

1

SRfl,1
− 1)Tfl

)
+
sfl
Cfl

ϕsg +
gfl
Cfl

ϕig +
1

Cfl
(Q̇hp,sh + Q̇bh,sh) (3.4)

for the case that the heat pump and back-up heater power for space heating (Q̇hp,sh+Q̇bh,sh) are
direct input to the �oor. If a bu�er storage is considered, the generated heat is decoupled from
the delivered heat to the �oor Q̇sto and the additional state Tsto in the water storage volume is
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added to the overall dynamics:

(3.1), . . . , (3.3)

Ṫfl =
1

Rfl,2Cfl
(Tg − Tfl) +

1

Rfl,1Cfl

( 1

SRstarA
Tz +

1

SRwo,1
Two + (

1

SRfl,1
− 1)Tfl

)
+
sfl
Cfl

ϕsg +
gfl
Cfl

ϕig +
1

Cfl
Q̇sto (3.5)

Ṫsto =
Q̇hp,sh
Csto

+
Q̇bh,sh
Csto

− Q̇sto
Csto

− (UA)sto
Csto

(Tsto − Tenv). (3.6)

The system matrix ARC−R and the controllable and uncontrollable input matrices BRC−R and
ERC−R are obtained from the rearranged dynamics of the building model with Equations (3.1)-
(3.3),(3.5):

ARC−R =
1
Cz

(− 1
Rvent

− 1
Rwi

+ 1
RstarA

( 1
SRstarA

−1)) 1
RwiCz

1
RstarACz

1
SRwo,1

1
RstarACz

1
SRfl,1

1
RwiCwi

− 1
RwiCwi

0 0

1
Rwo,1Cwo

1
SRstarA

0 1
Cwo

(− 1
Rwo,2

+ 1
Rwo,1

( 1
SRwo,1

−1)) 1
Rwo,1Cwo

1
SRfl,1

1
Rfl,1Cfl

1
SRstarA

0 1
Rfl,1Cfl

1
SRwo,1

1
Cfl

(− 1
Rfl,2

+ 1
Rfl,1

( 1
SRfl,1

−1))



BRC−R =


0
0
0
1
Cfl

 ERC−R =


0 1

RventCz
0 sz

Cz
gz
Cz

0 0 0 swi
Cwi

gwi
Cwi

1
Rwo,2Cwo

0 0 swo
Cwo

gwo
Cwo

0 0 1
Rfl,2Cfl

sfl
Cfl

gfl
Cfl

 .

The corresponding states, controllable input and disturbance inputs are

xRC−R =


Tz
Twi
Two
Tfl

 uRC−R = Q̇sto dRC−R =


Ta,eq
Ta
Tg
ϕsg
ϕig

 .

The system and input matrices, state and inputs for the bu�er storage model in Equation (3.6)
are

Asto,sh = −(UA)sto
Csto

Bsto,sh =
(
− 1
Csto

1
Csto

1
Csto

)
Esto,sh =

(UA)sto
Csto

xsto,sh = Tsto usto,sh =

 Q̇sto
Q̇hp,sh
Q̇bh,sh

 dsto,sh = Tenv.

The dynamics for the domestic hot water storage from Equation (2.68) expanded by the back-up
heater input lead to

Asto,dhw = −(UA)dhw
Cdhw

Bsto,dhw =
(

1
Cdhw

1
Cdhw

)
Esto,dhw =

(
(UA)dhw
Cdhw

− 1
Cdhw

)
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xsto,dhw = Tdhw usto,dhw =

(
Q̇hp,dhw
Q̇bh,dhw

)
dsto,dhw =

(
Tenv
Q̇dhw

)
.

The complete state-space representation of the continuous linear time-invariant dynamic system
composed of the subsystems building, bu�er storage and DHW storage is

ẋ(t) = Acx(t) +Bcu(t) + Ecd(t) (3.7)

y(t) = Cx(t).

Ac ∈ Rnx×nx is the block diagonal matrix of the system matrices of the subsystems:

Ac =

ARC−R Asto,sh
Asto,dhw

 .

Accordingly, matrices Bc ∈ Rnx×nu and Ec ∈ Rnx×nd are composed of the subsystems' input and
disturbance matrices Bsto,sh, Bsto,dhw, Esto,sh, Esto,dhw and appropriately �lled with zeros. nx, nu
and nd are the total number of states, controllable inputs and disturbances. The �nal states,
controllable inputs and disturbances vectors are

x =



Tz
Twi
Two
Tfl
Tsto
Tdhw

 u =


Q̇sto
Q̇hp,sh
Q̇bh,sh
Q̇hp,dhw
Q̇bh,dhw

 d =



Ta,eq
Ta
Tg
ϕsg
ϕig
Tenv
Q̇dhw


.

The states of the system are assumed to be fully observable and known (C = Inx) and the output
y(t) neglected in the further notation. However, this is not the case for real systems in practice,
e.g. the temperatures of the �oor and walls are usually not measured.

3.2 Prediction

The dynamic system in (3.7) is discretized at every t = k∆t, where k ∈ N is the sample number
referring to the MPC time step and ∆t = 15min the sample time. The resulting discrete linear
time-invariant system is

x(k + 1) = Ax(k) +Bu(k) + Ed(k). (3.8)

With the measurement of x(k) = x0 the controller utilizes model (3.8) to compute the predictions
of the states for the next NP time steps of the prediction horizon. The nxNp predicted states
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(x̂(k + 1|k), . . . , x̂(k +NP |k)) computed at time k are:

x̂(k + 1|k) = Ax0 +Bu(k|k) + Ed̂(k|k)

x̂(k + 2|k) = Ax̂(k + 1|k) +Bu(k + 1|k) + Ed̂(k + 1|k)

= A2x0 +ABu(k|k) +Bu(k + 1|k) +AEd̂(k|k) + Ed̂(k + 1|k)

... (3.9)

x̂(k +NP |k) = ANP x0 +ANP−1Bu(k|k) +ANP−2Bu(k + 1|k) + . . .+Bu(k +NP − 1|k)

+ANP−1Ed̂(k|k) +ANP−2Ed̂(k + 1|k) + . . .+ Ed̂(k +NP − 1|k).
(3.10)

Thus, the estimation at every time instant of the prediction horizon j = 1, . . . , NP is given by

x̂(k + j|k) = Ajx0 +

j∑
i=1

Ai−1Bu(k + j − i|k) +

j∑
i=1

Ai−1Ed̂(k + j − i|k) (3.11)

and leads to the compact matrix form of (3.8) over the prediction horizon:

x̂k = Ax0 + Buk + Ed̂k (3.12)

with

A =


A
A2

...
ANP

 (3.13)

B =


B 0 0 . . . 0
AB B 0 . . . 0
A2B AB B . . . 0
...

...
...

. . . 0
ANP−1B ANP−2B ANP−3B . . . B



E =


E 0 0 . . . 0
AE E 0 . . . 0
A2E AE E . . . 0
...

...
...

. . . 0
ANP−1E ANP−2E ANP−3E . . . E


and

x̂k := x̂(k) = (x̂(k + 1|k)T , x̂(k + 2|k)T , . . . , x̂(k +NP |k)T )T (3.14)

uk := u(k) = (u(k|k)T , u(k + 1|k)T , . . . , u(k +NP − 1|k)T )T (3.15)

d̂k := d̂(k) = (d̂(k|k)T , d̂(k + 1|k)T , . . . , d̂(k +NP − 1|k)T )T . (3.16)

The progression of the predicted states is fully explained by the current initial measurement,
the disturbance predictions and the chosen controllable input. Throughout this thesis, perfect
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predictions are assumed, which allows for

d(k) = d̂(k) (3.17)

x(k) = x̂(k). (3.18)

This is also referred to as deterministic or certainty equivalence MPC [OPJ+12]. The addi-
tional indexing to indicate the time of the prediction k is omitted for ease of notation, thus
x(k) = x(k|k) is used in the problem formulation and must not be mistaken for the �nal real-
ization of x at time k.

3.3 System Boundary Constraints

The system's states are limited by possibly time-varying upper and lower bounds to guarantee
thermal comfort. This leads to

xk ≤ xk ≤ xk (3.19)

with

xk := x(k) = (x(k + 1|k)T , x(k + 2|k)T , . . . , x(k +NP |k)T )T (3.20)

xk := x(k) = (x(k + 1|k)T , x(k + 2|k)T , . . . , x(k +NP |k)T )T . (3.21)

The system's inputs are bounded to account for operational limits of the components in the
heating system:

Buk ≤ uk (3.22)

0 ≤ uk. (3.23)

Matrix B couples the inputs to account for the constraints (2.52) and (2.57) on the hybrid
operation of the heat pump and back-up heater with1,2

B =

INP ⊗ (1 0 0 0 0)
INP ⊗ (0 1 0 1 0)
INP ⊗ (0 0 1 0 1)

 , (3.25)

and

uk := u(k) = (Q̇sto,max, . . . , Q̇sto,max, Q̇hp,max(k|k), . . . , Q̇hp,max(k +NP − 1|k), (3.26)

+ Q̇bh,max(k|k), . . . , Q̇bh,max(k +NP − 1|k))T . (3.27)

The constraints allow to include the temperature dependent heating capacity. Standard opera-
tional behavior can be enforced, e.g. the back-up heater must only operate at ambient temper-
atures below −7 ◦C, but also a permanent availability can be investigated.

1Here for the case with bu�er storage.
2⊗ is the Kronecker product:

A⊗B =

a1,1B . . . a1,nB
...

. . .
...

am,1B . . . am,nB

 . (3.24)
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3.4 Coupling to the Power System

The total electric power of the heating system from Equations (2.55),(2.56),(2.60) and (2.61)
becomes

Pel(k) = Php,sh(k) + Pbh,sh(k) + Php,dhw(k) + Pbh,dhw(k) (3.28)

=
Q̇hp,sh(k)

ηsh(Ta(k))
+ Q̇bh,sh(k) +

Q̇hp,dhw(k)

η50◦C(Ta(k))
+ Q̇bh,dhw(k). (3.29)

The COPs are precalculated based on the ambient temperature predictions and a coupling matrix
BC can be de�ned as

BCk =


BC(k)

BC(k + 1)
. . .

BC(k +NP − 1)

 BC(k) =


0

ηsh(Ta(k))−1

1
η50◦C(Ta(k))−1

1


T

(3.30)

to relate the thermal inputs of the heating system to the total electric load of the building energy
system.
The coupling variable in case of the building energy systems connected to the power system is
the total electric load r(k), i.e. the total load seen by the grid. The total load can be computed
based on the controllable inputs u(k) and the �xed electricity load l(k):

r(k) = BC(k)u(k) + l(k). (3.31)

l(k) is the disturbance signal on the coupling variable, representing the non-controllable electrical
appliances in a building. The pro�les used are reviewed in Section 4.4. The heat pump, back-up
heater and electrical appliances are pure power consumers. Thus, in absence of local electricity
generation, the total load will be either zero or positive. For the predictions of the residual load
rk over the prediction horizon in compact form one obtains

rk = BCk uk + lk (3.32)

with

rk := r(k) = (r(k), r(k + 1), . . . , r(k +NP − 1))T

lk := l(k) = (l(k), l(k + 1), . . . , l(k +NP − 1))T

analogously. Note that in contrast to xk, uk and dk, both vectors rk and lk are assumed to be
of dimension RNP , corresponding to a one-dimensional variable per time step.
A prosumer is de�ned as a building energy system equipped with a resource for local electricity
generation like a rooftop PV plant. In this case the prosumer may both consume and produce
power, restricted by the total electrical demand of the building and the availability of solar
irradiation for PV generation g(k). The total load becomes the residual load

r(k) = BC(k)u(k) + l(k)− g(k) (3.33)

and equivalently
rk = BCk uk + lk − gk (3.34)
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over the prediction horizon with

gk := g(k) = (g(k), g(k + 1), . . . , g(k +NP − 1))T . (3.35)

Note that the PV generation enters the residual load as an additional disturbance. Controlla-
bility on gk within the interval [0, gk] might be available if the PV inverter allows curtailment.
Curtailment is not considered in the simulations of this work. In the remaining sections, the
total load is always referred to as the residual load, independent of its sign (whether or not PV
generation is available).

3.5 Cost Functions

The controller of the building energy system tries to minimize the total energy consumption or
energy costs over time. When no local generation is assumed, the resulting cost function f is
de�ned as

f(rk) = cTk rk (3.36)

= cTk (BCk uk + lk), (3.37)

with
ck ∈ RNP = ∆t for energy consumption, (3.38)

or
ck ∈ RNP = ∆tπk for energy costs. (3.39)

∆t is a vector with the discretization time step ∆t in each entry and πk denotes a possibly
time-varying purchasing price for electricity. Since lk is non-controllable, cTk lk is a constant cost
term which cannot be in�uenced by the control policy of the MPC.
The cost function of the prosumer has to be modi�ed when local electricity generation is avail-
able. Assuming that it is economically bene�cial or a regulatory requirement to consume locally
generated electricity �rst, a minimization of energy costs has to re�ect the prioritized usage of
the local PV generation. According to the chosen sign convention, a negative residual load rep-
resents feed-in into the grid, meaning that the local generation outweighs the electrical demand
of the heat pump, back-up heater and appliances. The prosumer's cost function to increase
self-consumption without the option to sell excess electricity would be

f(rk) =

{
cTk rk if rk > 0

0 otherwise.
(3.40)

Excess PV generation is just fed into the grid, causing neither costs nor pro�ts from selling in
this case. The auxiliary variable r+k is introduced to denote the positive part of the residual load
and the above case is enforced through the additional constraints

r+k ≥ 0 (3.41)

r+k ≥ rk (3.42)

which are added to the prosumer's optimization problem. The minimization of r+k in

f(r+k ) = cTk r
+
k (3.43)
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leads to the exact value of the positive part of rk, which in return will be minimized with respect
to an optimal feasible operation. Operational �exibility of the heating system will be used to
integrate as much local PV generation by optimizing uk, the only controllable variable. Thus
the self-consumption of the PV generation is maximized to minimize the net energy demand.
Further cost functions for MPC of building energy systems are possible but not considered in this
thesis. E.g., comfort optimization can be achieved by penalizing the deviation of temperature
trajectories from a reference. The cost term can be added and weighted against economic criteria
as de�ned above in a multi-objective optimization, see [VDL+12,KJC16,ETP+17] for studies on
comfort optimization in predictive control.

3.6 Prosumer MPC Optimization Problem

The �nal optimization problem to be solved at time k can now be stated, including the system
model over the prediction horizon, constraints and the cost function. The optimization problem
solved by the prosumer is composed of (3.44)-(3.51).
To proceed in the receeding horizon fashion of MPC, the controllable inputs u(k|k)∗ for the next
time step, i.e. the �rst entry in the optimal solution u∗k, are applied to the system and problem
(3.44)-(3.51) solved again with new x0 and updated predictions d.

minimize
(u,r,r+)

f(r+k ) (3.44)

subject to xk = Ax0 + Buk + Edk (3.45)

xk ≤ xk ≤ xk (3.46)

Buk ≤ uk (3.47)

uk ≥ 0 (3.48)

rk = BCk uk + lk − gk (3.49)

r+k ≥ rk (3.50)

r+k ≥ 0. (3.51)
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Chapter 4

Power Flow and Distribution Grid

Model
This chapter begins with a review on power �ow models and the linearized model used in this
thesis is introduced. The model is then applied to German reference grids in order to quantify
the approximation error and to investigate the sensitivity to line overloading and undervoltages.
Finally, the residential electricity demand model used for non-controllable household appliances
is brie�y reviewed.

4.1 Power Flow Models

To investigate the impact of loads and renewable generation on the distribution grid, a model to
represent the state of operation of the power system is required. A Power Flow model describes
the state of the system in terms of voltages, currents and phase angles. In the case of optimal
operation with respect to generation costs or system losses, a so-called Optimal Power Flow
problem is solved. The following power �ow models are a balanced single-phase representation
of the system, since unbalanced operation is not considered in this work. However, all models
are extendable to the three-phase unbalanced case. While common household appliances are
usually connected to a single phase1, charging stations for electric vehicles and electri�ed heating
equipment are required to have a three-phase connection when the rated apparent power is > 4.6
kVA [BDE19]. The recommended connection of the inverter heat pump WPL20 is three-phase,
the smaller WPL7 can be connected to a single phase. The 8.8 kW back-up heater is always
connected to three phases [Sti17]. This means, that the impact on the grid might only be
underestimated with respect to single-phase standard electrical household appliances and smaller
heat pumps in better insulated buildings.

4.1.1 AC Power Flow

Consider a power system with |N | buses in set N = {0, 1, . . . , n} and |E| branches in set
E = {1, . . . , e} for distribution lines and transformers. The branch impedance between buses
i and j is Zij = Rij + jXij with resistance Rij , reactance Xij and imaginary unit j =

√
−1. The

branch admittance is Yij = 1
Zij

= Gij + jBij with conductance Gij and susceptance Bij . Let

Ei = Vie
jθi be the complex voltage of bus i with magnitude Vi and voltage angle θi and Ii be

the complex net current injection at i de�ned accordingly. Further, let si be the apparent power
injection at bus i with active power pi = Re(si) and reactive power qi = Im(si).
Based on Kirchho�'s law, the net apparent power injection si at bus i is given as [And12]:

si = pi + jqi = EiI
∗
i (4.1)

1Approximately 70% of all photovoltaic systems are single-phase connected in Germany [WW17].
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si = Vie
jθi
∑
k∈Ω+

i

Vke
−jθk(Gik − jBik). (4.2)

The net injection here refers to local generation minus load. Ω+
i is the set of neighbor buses of

i including bus i itself. The active and reactive power parts of si are obtained by:

pi = Vi
∑
k∈Ω+

i

Vk(Gik cos(θi − θk) +Bik sin(θi − θk)) (4.3)

qi = Vi
∑
k∈Ω+

i

Vk(Gik sin(θi − θk)−Bik cos(θi − θk)). (4.4)

Equations (4.3) and (4.4) state the nonlinear alternating current power �ow (ACPF ) problem
depending on the variables Vi, θi, pi and qi when stated for each bus of N . The system buses
can be of V θ-, pq- or pV -type, denoting which of the variables are speci�ed and which have to be
calculated. V θ-buses serve as reference or slack buses with a �xed voltage and angle. pq-buses are
load or generation buses without voltage control. Since the ACPF cannot be solved analytically
for realistic grid topologies, the solution has to be found with help of iterative approaches like
the Newton-Raphson method, see [And12] for details.

4.1.2 DistFlow

In the case of balanced radial distribution grids, an alternative formulation to the above bus
injection model can be given. The DistFlow model was developed in [BW89a,BW89c] for optimal
capacitor placement in distribution grids and represents the power �ow in a branch �ow model
form. In contrast to the bus injection model, we assume a directed graph G := (N , E) with a tree
structure established between the buses, numbered in increasing order starting from substation
bus 0. A branch (i, j) ∈ E combines two buses in directed form i → j. Accordingly, the active
and reactive power �ows Pij and Qij denote the sending-end �ows on the corresponding branch
pointing to bus j. They are composed of the corresponding losses of branch i → j, the load
served at bus j and the aggregate power leaving bus j to its neighbor buses. The DistFlow
equations are

Pij = Rij
P 2
ij +Q2

ij

Ui
+ pj +

∑
k∈Cj

Pjk ∀j ∈ N+ (4.5)

Qij = Xij

P 2
ij +Q2

ij

Ui
+ qj +

∑
k∈Cj

Qjk ∀j ∈ N+ (4.6)

Uj = Ui − 2(RijPij +XijQij) + (R2
ij +X2

ij)lij ∀i→ j ∈ E (4.7)

lijUi = P 2
ij +Q2

ij ∀i→ j ∈ E . (4.8)

N+ = N \ {0} is the set of buses without the substation bus. Since a tree structure is assumed,
each bus j has a unique parent bus i with a smaller index and a set of child buses, the latter
de�ned as Cj = {k ∈ N+ | k : j → k}. Consequently, Cj = ∅ when j is an end bus. pj and
qj denote the net or residual load at pq-bus j. Rij + jXij is the branch's series impedance.
There are neither �ows pointing at the substation (root) bus, nor are loads considered, thus
Pi0 = Qi0 = 0, p0 = q0 = 0 and the elements are excluded from the enumeration. The substation
bus (primary side of the transformer) is assumed to be the reference bus with a �xed constant
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Figure 4.1: The DistFlow grid model, drawing based on [BW89c].

voltage E0 = V0e
j0, V0 = Vref and the voltage angle neglected. Uj = V 2

j is introduced as the
squared voltage magnitude. lij = |Iij |2 is the squared magnitude of the current �owing from bus
i to j. A drawing of the radial DistFlow grid model is shown in Figure 4.1.
A proof for the general equivalence between the bus injection model and the branch �ow model
is given in [Low14a, Low14b]. In case of a balanced radial grid, Equations (4.5)-(4.8) give an
equivalent representation of the previous AC power �ow model. The bus phase angles can be
omitted in the computation for balanced radial grids and can be uniquely recovered based on
the power �ows and bus voltages. A further extension of the model allows for the application of
the branch �ow model to meshed networks by introducing an additional cycling condition. The
approach and equivalence is shown in [FL13], see [MDS+17] for an overview in power �ow models.
In [BW89a], an iterative nonlinear programming method is used to solve the placement problem
and superior numerical robustness compared to the bus injection model is shown for distribution
grids with typically high R/X ratios. Still, due to Equation (4.8), an optimization using the
DistFlow equations results in a non-convex optimization problem. The authors in [FL13] relax
Equation (4.8) to an inequality constraint and obtain a convex second-order cone program. They
also show exactness of the relaxed OPF.

4.1.3 Linearized DistFlow

Alternatively, a linearized version of the DistFlow, the Linearized DistFlow model can be obtained
by neglecting the losses in (4.5)-(4.7) and setting lij = 0. Hence, the active and reactive power
losses are assumed to be small compared with the power �ows. The LinDistFlow equations are

Pij = pj +
∑
k∈Cj

Pjk ∀j ∈ N+ (4.9)

Qij = qj +
∑
k∈Cj

Qjk ∀j ∈ N+ (4.10)

Uj = Ui − 2(RijPij +XijQij) ∀i→ j ∈ E . (4.11)

The linear approximation was �rst stated in [BW89a, BW89c]. Without the losses taken into
account, the total active and reactive power demand of the grid is underestimated. In contrast
to the DistFlow model, the LinDistFlow equations are linear and can be solved directly. These
favorable properties guarantee computational e�ciency for the optimization problem discussed
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in Chapter 5.
As mentioned earlier, the operation of a power system can be performed with respect to a
certain cost function. Common cost functions for grid operators enforce peak load reduction or
the minimization of power losses. For the case of loss minimization, the DistFlow losses for the
whole grid equal the resistive losses summarized over all branches:

LDistF low =
∑

(i,j)∈E

Rij
P 2
ij +Q2

ij

V 2
i

. (4.12)

Assuming V 2
i ≈ V 2

0 in (4.12), the losses in the LinDistFlow case can be further simpli�ed to
avoid the nonlinearity [BW89b]:

LLinDistF low =
∑

(i,j)∈E

Rij
P 2
ij +Q2

ij

V 2
0

. (4.13)

Another common linear approximation of the ACPF is the DC power �ow method, where only
active power is considered, the line resistances are neglected, voltage angle di�erences are assumed
to be small and the voltage pro�le in the grid is assumed to be �at. Those assumptions are often
used in market applications where voltages are of minor importance [SJA09], but are usually not
justi�ed for applications in distribution grids [MDS+17].
Equations (4.9)-(4.11) result in a system of linear equations of form Ax = b. To simplify the
notation for a more compact expression, the index pair (i, j) for branch �ows and line parameters
is reduced to j if the power �ow and corresponding branch point to bus j, i.e.
(Pij , Qij , Rij , Xij) = (Pj , Qj , Rj , Xj). Thus, all branch �ows are indexed by the set N+. |E| =
|N+| holds in the case of a radial grid, but both sets are kept for an intuitive understanding
of the structure of the following matrices and vectors. The grid topology is stated in form of
connected branch �ows, with sorted vectors P ∈ R|E|, Q ∈ R|E|, U ∈ R|N | of form

P = (P1, P2, . . . , Pe)
T Q = (Q1, Q2, . . . , Qe)

T U = (U0, U1, . . . , Un)T

and the connectivity given by matrices CP , CQ ∈ R|N+|×|E| and CU ∈ R|E|×|N | with rows sorted
by the power �ows:

CP |Q(i, j) =


1 if i = j

−1 if branch �ow i connects with branch �ow j

0 otherwise

(4.14)

CU (i, j) =


−1 if bus j is sending end of �ow i

1 if bus j is receiving end of �ow i

0 otherwise.

(4.15)

The branch resistances and reactances are saved in R ∈ R|E|×|E| and X ∈ R|E|×|E| with

R = diag(R1, R2, . . . , Re) X = diag(X1, X2, . . . , Xe).

The above de�ned matrices lead to a compact expression of the line �ows and bus voltages

CPP = p CQQ = q CUU = 0|E|, (4.16)
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with vectors p ∈ R|N+| and q ∈ R|N+|

p = (p1, p2, . . . , pn)T q = (q1, q2, . . . , qn)T

corresponding to the active and reactive loads at the buses. Depending on the given scenario,
both active and reactive power might be consumed and/or generated at a given bus, leading to

pj = p
(c)
j − p

(g)
j qj = q

(c)
j − q

(g)
j .

To obtain a solution of the linear equation system Ax = b from (4.16) with x = (P T , QT , UT )T ,
the voltage at the substation can be �xed to U0 = Uref . This can be achieved by adding an
additional constraint to the system of equations or by deleting the �rst column of CU , removing
U0 from solution vector U and changing the �rst entry in the right-hand side zeros vector to
Uref . From now on, the voltage vector is de�ned as

U = (U1, U2, . . . , Un)T ,∈ R|N
+|. (4.17)

With given loads p and q and the �xed voltage at the substation, the LinDistFlow model deter-
mines a solution for the active and reactive branch �ows and the voltage pro�le of the grid.
Finally, the compact form

Πx = δ (4.18)

of the LinDistFlow model is given with the vectors x ∈ R2|E|+|N+|, δ ∈ R2|N+|+|E| and matrix
Π ∈ R(2|N+|+|E|)×(2|E|+|N+|) as

Π =

 CP 0|N+|×|E| 0|N+|×|N+|
0|N+|×|E| CQ 0|N+|×|N+|

2R 2X CU

 x =

PQ
U

 δ =

 p
q
cu

 , (4.19)

with

cu =

(
Uref
0|E|−1

)
. (4.20)

4.1.4 Operational Constraints

The quadratic cost function (4.13) in combination with the linear equations (4.9)-(4.11) results
in a convex quadratic optimization problem. Further operational constraints for voltages and
line currents can be included in the optimization. Bus voltages are usually operated within a
speci�ed tolerance band V ≤ V ≤ V . Assuming a symmetric tolerance of ±ε for the bus voltage
Vj , the voltage constraint becomes

Vref (1− ε) ≤ Vj ≤ Vref (1 + ε)

V 2
ref (1− ε)2 ≤ Uj ≤ V 2

ref (1 + ε)2 ∀j ∈ N+, (4.21)

with Uj = V 2
j . Typical values for the tolerated deviation from the reference are ±10% [DIN02].

It is important to note that the distribution grid operator might split up the total tolerance band
over both the medium- and low-voltage grids. This can lead to a situation where for example
only 5% of the tolerance band remains for the low-voltage grid due to a strong voltage drop in the
medium-voltage grid. Typical values of the split DSOs use in operation can be found in [Ruf18].
Further operational constraints state that the branch currents must not exceed their ther-
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Table 4.1: Parameters of the radial synthetic low-voltage grids from [LAW+16].

Rural 1 Rural 2 Village 1 Village 2 Suburb

Transformer rating 250 kVA 250 kVA 250 kVA 400 kVA 400 kVA
# buses 36 18 80 74 204
# load buses 17 8 39 36 101

Feeder
# feeders 5 4 4 4 11
longest feeder 664 m 228 m 544 m 520 m 414 m
main type cable overhead line cable cable & cable

overhead line
cross section 150 mm2 70 mm2 150 mm2 70− 150 mm2 & 150 mm2

50− 120 mm2

House connection
length 29 m 4 m 21 m 17 m 18 m
cross-section 50 mm2 35 mm2 50 mm2 35 mm2 35 mm2

mal rating, i.e. lij ≤ Iij . Grid assets state apparent power limits S, which allows to di-
rectly derive operational limits for the power �ows used in the LinDistFlow model. With
S =

√
P 2 +Q2, Q = P tan(ϕ) and a constant power factor pf = cos(ϕ) assumed, the apparent

power can be expressed only depending on the active power �ow S =
√
P 2 + (P tan(ϕ))2 =

P
√

1 + tan2(arccos(pf)). The operational limits on the possibly bidirectional active power �ows
can be derived:

P ≤ P =
S√

1 + tan2(arccos(pf))
(4.22)

P ≥ P = −P . (4.23)

4.2 Distribution Grid Model

Studies on the impact of distributed energy resources on distribution grids are often based on
either strongly simpli�ed grid models or on segments of real grids with limited transferability of
the results as a consequence [LAW+16]. The German research project U − Control classi�ed
real low-voltage grids by the mean geographical distance between households to develop reference
grids to investigate static voltage stability. 358 real distribution grids were classi�ed as a rural,
village or suburban grid. A transformer's apparent power rating was no longer found to be a
useful parameter for classi�cation, since many rural grids have received transformer upgrades
with the expansion of renewable energies [LAW+16].
Table 4.1 shows the characteristics of the �ve residential synthetic reference grids developed in
the project. All grids are radial. Rural Grid 1 is of type cable and has larger cross sections than
Rural Grid 2, which is composed by overhead lines. However, the higher number of load buses
and the longer distances between the households lead to stronger voltage drops compared with
Rural Grid 2.
Figure 4.2 shows the topology of Rural Grid 1, which is primarily used for the simulations
in Chapter 6. In contrast to the grids with more buses, Rural Grid 1 still allows to solve
the central optimization problems introduced in Section 5.4.4 on the local simulation machine
without running into memory issues.
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Figure 4.2: Topology of Rural Grid 1 based on [LAW+16], bus numbers indicated in black, load/prosumer
numbers in blue.

4.3 LinDistFlow Approximation Error

This section investigates at which level of coincident load grid violations occur in the above
introduced distribution grids and how well the LinDistFlow model approximates the reference
solution from the nonlinear ACPF model.
Figure 4.3 shows the per unit bus voltages and branch loadings relative to the apparent power
branch limits S for active power levels varied from 1 to 15 kW at all load buses for Rural Grid
1 from [LAW+16]. The same active load p is assumed at all load buses and a constant power
factor of 0.9 is assumed. The solutions are computed with Newton's method in MATPOWER
from [ZMST11]. Slack bus 0 at the primary side of the transformer remains always at 1 p.u..
Bus 27 is the �rst bus to violate the lower voltage limit of V = 0.9 p.u., followed by the neighbor
buses with decreasing distance to the substation. Due to the high impedance as a result of
the long distance from the substation, the buses at the ends of the feeders are a�ected �rst.
Overloading occurs at a similar power level on branch 1 (transformer), which transfers the grid's
total active and reactive power demands. The next branches to be potentially overloaded when
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the coincident power is further increased would be the ones transferring power to the longest
feeder of the grid, see e.g. branch 12.
The bottom plot in Figure 4.3 shows the approximation error resulting from the implementation
of the LinDistFlow model when compared with the ACPF model. At the critical power level of
12.25 kW, the ACPF model shows undervoltage at bus 27, while the respective bus voltage has
not yet fallen below 0.9 p.u. in the LinDistFlow model. This results from the negligence of the
active and reactive power losses.
The LinDistFlow model becomes slightly less accurate when the reference voltage at bus 0 is
reduced from 1 p.u. to 0.95 p.u. to simulate peak-load conditions in the medium-voltage grid.
The di�erence between the voltages at bus 27 increases from 0.0046 p.u. to 0.0056 p.u.. Increased
currents to serve the same load at a lower voltage level lead to higher losses, which are not
considered in the LinDistFlow model.

Figure 4.3: Top: ACPF voltage pro�les and branch loadings in percentage apparent power for Rural Grid
1 for increasing coincident power levels at all load buses. Bottom: Voltage di�erence between
the ACPF and LindDistFlow solutions for coincident active power of 12.25 kW at all load
buses. Power factor cos(ϕ) = 0.9 assumed.

Table 4.2 shows for which coincident active bus load condition grid violations occur in all of the
test grids from [LAW+16]. The gradual increase in steps of 0.25 kW leads to either a bus voltage
violation, i.e. the voltage falls below 0.9 p.u., or to exceedance of the apparent power limit of a
branch. The table displays the level of active power per bus at which a violation occurs and of
which type the violation is. The second violation is de�ned as the next violation which takes
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Table 4.2: Violation of grid constraints, i.e. bus voltage below 0.9 p.u. or branch �ow above the maximum
apparent power S for the ACPF and LinDistFlow (LDF ) models. The p.u. di�erence between
the voltages at the most critical bus and the relative di�erence of the apparent power �ow
S1 at the transformer are stated for 1st violation conditions in ACPF. Grid parameters from
[LAW+16].

1st violation 2nd violation V LDF − V ACPF

ACPF LDF ACPF LDF SLDF1 −SACPF1

SACPF1

Rural 1 12.25 kW 12.75 kW 12.5 kW 13 kW
-bus 27 27 {27,26,25,24} {27,26,25} 0.0046 p.u.
-branch 1 -6.8%

Rural 2 26.25 kW 28.25 kW 28.5 kW 30 kW
-bus {8,9,14,15} {9,15} 0.0049 p.u.
-branch 1 1 1 1 -7.2%

Village 1 5.5 kW 6 kW 6.75 kW 7 kW
-bus {46-51} {49,51} 0.0034 p.u.
-branch 1 1 1 1 -5.9%

Village 2 9 kW 9.25 kW 9.25 kW 9.5 kW
-bus {40-43} 43 {38-43} {39-43} 0.0047 p.u.
-branch -6.6%

Suburb 3.5 kW 3.75 kW 6 kW 6.5 kW
-bus {155-159} {155-159} 0.0024 p.u.
-branch 1 1 1 1 -4.7%

place at a bus or branch in addition to the �rst violation.
Whether undervoltage or congestion occurs �rst, depends on the type of grid. When looking
at high load scenarios, violations either �rst occur at the buses with longest distance to the
substation or at the transformer due to overloading. The LinDistF low model correctly replicates
the type of violation. The level of coincident active power to trigger the �rst violation is in
the range of 0.25−2 kW higher in the LinDistF low model, since it neglects line losses. The
simpli�cation is also re�ected in the sometimes lower total number of a�ected buses in the
LinDistF low model. As a result, grid violations are detected slightly too late in LinDistF low
model, but the use of a security margin can avoid this. It can be observed how the level of
coincident power to cause a violation is lower for the grids with a higher number of buses. The
coincident maximum operation of heat pumpWPL20 and the back-up heater during cold ambient
temperatures would lead to violations in all grids except Rural Grid 2.

4.4 Residential Electricity Demand Model

This chapter closes with a short review of the model published by the author in [JKC15] to
generate time-varying residential electricity demand pro�les for multi-period simulations. The
random bottom-up model generates power pro�les for a population of households with a speci-
�ed size and annual electricity consumption. The pro�les account for the non-controllable �xed
electricity demand of appliances (lk in Equation (3.49)) and are resampled to a temporal resolu-
tion of 15 minutes. The model was initially based on the occupancy and activity statistics from
the TUS data in [FDZa]. The pro�le statistics were successfully validated against smart meter
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Figure 4.4: Distribution of the annual electricity demand for 1000 4-person households generated with the
REM.

data and the residential electricity demand model (REM) achieves realistic coincident factors.
Figure 4.4 shows the distribution of the annual electricity demand for 1000 4-person households.
The average demand is 4 473 kWh. Pro�les from this population are used for the simulations in
Chapter 6.
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Chapter 5

Hierarchical Distributed MPC of

Prosumers in Distribution Grids

This chapter begins with a review of the ADMM algorithm, followed by the introduction of a
general central MPC problem statement. Thereafter, a decomposition is carried out to facilitate
a distributed hierarchical control architecture. Finally, the coordination problem is adapted
to the setting of a distribution grid hosting multiple prosumers. All MPC cost functions and
constraints are de�ned in this context.

5.1 Review of ADMM

The literature review in Chapter 1 has shown that di�erent methods exist and are used in the
smart grid and control communities to decompose and solve large-scale optimization problems
in a distributed fashion. The methods involve the reformulation and decomposition of the ini-
tial central optimization problem, followed by the execution of a coordination algorithm to �nd
the optimal solution to the initial optimization problem in an iterative and distributed proce-
dure. The alternating direction method of multipliers (ADMM) and dual decomposition are two
methods often applied in the literature reviewed. ADMM has received increased attention in
recent years, signi�cantly caused by the popular review paper on ADMM in [BPC+10]. Appli-
cations of the method beyond smart girds an controls can be found, e.g., in machine learning
and image processing, where optimization problems include large data sets. A detailed review
of ADMM and a discussion of its origin and connection with other decomposition methods is
given in [BPC+10]. The success of ADMM results from its convergence under milder math-
ematical conditions and its better rate of convergence in practice when compared with other
methods. Dual decomposition methods require conditions like strict convexity and �niteness of
local cost functions and are not robust in the sense that a poor parameter selection may lead
to algorithm divergence. In contrast, ADMM converges under milder conditions for any positive
value of its penalty parameter [BPC+10,Kra14,GTSJ15, SL12]. Nevertheless, the choice of the
penalty parameter has a strong impact on the performance of ADMM, i.e., on the �nal number
of iterations and total time needed to converge to a solution of prede�ned accuracy required in
practice. Algorithm tuning and the development of enhanced parameter selection methods is an
ongoing �eld of research in order to speed up ADMM, see [GTSJ15,XFG17]. A more detailed
discussion is given in Section 5.4.5. The remainder of this review gives a brief introduction to the
dual ascent algorithm, the dual decomposition algorithm, the method of multipliers and ADMM
to motivate the development and use of the latter.
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5.1.1 Dual Ascent, Dual Decomposition and the Method of Multipliers

The following section is based on the review of the algorithm in [BPC+10]. Dual ascent is an
optimization algorithm to solve problems of the form

minimize
x

f(x)

subject to Ax = b
(5.1)

with x ∈ Rn, A ∈ Rm×n, b ∈ Rm and f : Rn → R is a convex function. The Lagrangian of
problem (5.1) is

L(x, λ) = f(x) + λT (Ax− b) (5.2)

with the dual variable λ ∈ Rm. The dual ascent method then solves problem (5.1) by iterating
through the following steps until convergence:

x`+1 := argmin
x
L(x, λ`) (5.3)

λ`+1 := λ` + ρ`(Ax`+1 − b). (5.4)

` is the iteration counter and ρ` > 0 is the step size for the update of the dual variable.
The dual ascent method enables a distributed optimization for problems with a separable cost
function. It is assumed that f is separable in a partition of x = (xT1 , x

T
2 , . . . , x

T
N )T with

f(x) =

N∑
i=1

fi(xi) (5.5)

and matrix A is partitioned as A = [A1, . . . , AN ] corresponding to the xi ∈ Rni . The new
Lagrangian becomes

L(x, λ) = f(x) + λT (Ax− b) (5.6)

=

N∑
i=1

fi(xi) +

N∑
i=1

(λTAixi −
1

N
λT b) (5.7)

=
N∑
i=1

(fi(xi) + λTAixi −
1

N
λT b) (5.8)

=

N∑
i=1

Li(xi, λ) (5.9)

and thus is separable itself. This allows for the x-update in (5.3) to be carried out in parallel
for N distributed subproblems. Afterwards, a central entity collects the results and computes
and broadcasts the updated dual variables like in (5.4). The dual ascent method applied to
a separable problem like above is referred to as dual decomposition. The dual decomposition
updates �nally are:

x`+1
i := argmin

xi
Li(xi, λ`) (5.10)

λ`+1 := λ` + ρ`(Ax`+1 − b). (5.11)

Dual decomposition enables a distributed optimization, but convergence requires rather strict
properties of the optimization problem, i.e. f must be strictly convex and convergence depends
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on the choice of the step size ρ`, see [BPC+10,SL12,GTSJ15].
The method of multipliers overcomes those strong assumptions with an additional penalty term,
which provides robustness to the convergence and allows for a broader range of cost functions.
The method of multipliers considers the augmented problem of (5.1), given by

minimize
x

f(x) +
ρ

2
‖Ax− b‖22

subject to Ax = b.
(5.12)

ρ ∈ R>0 is the penalty parameter to penalize equality constraint violations. Problem (5.1) and
(5.12) are equivalent, since the penalty term vanishes for a feasible solution of x. The augmented
Lagrangian is

Lρ(x, λ) = f(x) + λT (Ax− b) +
ρ

2
‖Ax− b‖22 (5.13)

and applying dual ascent leads to the steps of the method of multipliers:

x`+1 := argmin
x
Lρ(x, λ`) (5.14)

λ`+1 := λ` + ρ(Ax`+1 − b). (5.15)

In fact, the cost function f no longer has to be strictly convex or �nite for the algorithm to
converge. Unfortunately, even if the cost function f is separable, the penalty term may lead to
products between the decision variables xi, depending on A. This prevents the x-update to be
separated across subsystems. In this case, a decomposition for a distributed optimization is not
possible with the method of multipliers [BPC+10].

5.1.2 General Form ADMM

The ADMM algorithm �nally blends the decomposability of dual ascent with the superior con-
vergence of the method of multipliers [BPC+10]. The initial problem is slightly changed by
splitting vector x in x and z and by separating the cost function f in f and g. In its standard
variant, ADMM solves optimization problems of the form

minimize
x,z

f(x) + g(z)

subject to Ax+Bz = c
(5.16)

where x ∈ Rn, z ∈ Rm, A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp and f : Rn → R and g : Rm → R are
assumed to be two convex functions. The augmented Lagrangian of problem (5.16) becomes

Lρ(x, z, λ) = f(x) + g(z) + λT (Ax+Bz − c) +
ρ

2
‖Ax+Bz − c‖22 (5.17)

with ρ ∈ R>0 and the dual variable λ. The ADMM iterations are

x`+1 := argmin
x
Lρ(x, z`, λ`) (5.18)

z`+1 := argmin
z
Lρ(x`+1, z, λ`) (5.19)

λ`+1 := λ` + ρ(Ax`+1 +Bz`+1 − c) (5.20)

The sequential evaluation of the augmented Lagrangian at the x- and z-update leads to an
alternating solution scheme. Due to the decomposition in the objective, the primal updates are
carried out separately with respect to their respective cost function and a quadratic term, instead
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of a joint minimization over x and z.
It is convenient to reformulate Lρ(x, z, λ) in order to combine the linear and quadratic terms in
the x- and z-updates. With a = λ

ρ , b = Ax+Bz−c and the help of the identity ‖a+b‖22−‖b‖22 =

2aT b+ ‖a‖22, the Lagrangian in (5.17) can be written as

Lρ(x, z, λ) = f(x) + g(z) +
ρ

2
‖Ax+Bz − c+

λ

ρ
‖22 −

ρ

2
‖λ
ρ
‖22 (5.21)

Lρ(x, z, ν) = f(x) + g(z) +
ρ

2
‖Ax+Bz − c+ ν‖22 −

ρ

2
‖ν‖22, (5.22)

with the scaled dual variable ν = λ
ρ . The scaled form of ADMM is then given by

x`+1 := argmin
x

(
f(x) +

ρ

2
‖Ax+Bz` − c+ ν`‖22

)
(5.23)

z`+1 := argmin
z

(
g(z) +

ρ

2
‖Ax`+1 +Bz − c+ ν`‖22

)
(5.24)

ν`+1 := ν` +Ax`+1 +Bz`+1 − c. (5.25)

Changing problem (5.16) to
minimize
x∈X ,z∈Z

f(x) + g(z)

subject to Ax+Bz = c,
(5.26)

where the decision variables x ∈ X and z ∈ Z are restricted by constrained convex sets, does
not impact the ADMM procedure. The x- and z-updates involve now solving constrained convex
optimization problems:

x`+1 := argmin
x∈X

(
f(x) +

ρ

2
‖Ax+Bz` − c+ ν`‖22

)
(5.27)

z`+1 := argmin
z∈Z

(
g(z) +

ρ

2
‖Ax`+1 +Bz − c+ ν`‖22

)
(5.28)

(5.25).

Convergence to an optimal solution is guaranteed for convex optimization problems, see also the
discussions in [BPC+10,Bra16,BFG+18]. All implementations in this thesis involve constrained
convex optimization problems. We omit such restriction in the following section for clarity, but
introduce constraints in Section 5.3, where the ADMM algorithm is applied to the coordination
problem between the prosumers and the DSO.

5.1.3 Convergence and Stopping Criteria

A convergence proof for ADMM is given in the appendix of [BPC+10], and an in-depth discussion
of the convergence is presented in [EY15]. According to [BPC+10], f and g must be convex
functions for the ADMM algorithm to converge. The corresponding x- and z-updates must be
solvable and a solution to the minimization of the augmented Lagrangian. The ADMM iterations
`→∞ then lead to convergence of

• the residual ∆`
prim = Ax` +Bz` − c to zero: ∆`

prim → 0 (approaching feasibility),

• the objective to its optimal value: f(x`)+g(z`)→ p∗, p∗ = min{f(x)+g(z)|Ax+Bz = c},

• the dual to the optimal dual point: λ` → λ∗.
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Note that the convergence for convex problems does not depend on the value of the penalty
parameter ρ, but the choice of ρ may impact the speed of convergence, i.e. the change in
di�erence between an intermediate solution and the optimal solution after a �nite number of
iterations. The optimal choice of ρ for superior speed of convergence is problem-speci�c and a
near-optimal selection is in general found by trial and error. Looking at the x- and z-updates
in (5.23) and (5.24), one sees that ρ weights feasibility against the cost function, which means
that a large value of ρ may enforce early global feasibility, but the solution may be far from
the optimum. [BPC+10] �nally discusses extensions for the penalty parameter ρ to vary in each
iteration to achieve superior convergence. At the same time it is also argued, that many practical
applications do not need high accuracy solutions, which may require many iterations, but one
may be satis�ed with solutions of modest accuracy found after only few iterations. Based on this
observation, stopping criteria are derived to allow termination of the algorithm for a prede�ned
tolerance. The primal residual ∆`+1

prim and dual residual ∆`+1
dual (the latter derived in [BPC+10]

from the optimality conditions) track the primal and dual feasibility over iterations:

∆`+1
prim = Ax`+1 +Bz`+1 − c (5.29)

∆`+1
dual = ρATB(z`+1 − z`). (5.30)

The quantities approach zero with the number of algorithm iterations. Termination criteria are
then given by su�ciently small residuals

‖∆`+1
prim‖2 ≤ εprim ‖∆`+1

dual‖2 ≤ εdual, (5.31)

where the values of the tolerances εprim > 0 and εdual > 0 can be chosen problem speci�c, see
also the suggestion in [BPC+10].

5.1.4 Block-Separable ADMM

In case of a partition x = (xT1 , x
T
2 , . . . , x

T
N )T of possibly di�erent size xi and a separable cost

function f(x) with respect to that partition, the primal updates of x can be carried out by solving
subproblems over the partitions when matrix ATA is block diagonal [BPC+10]. With

f(x) = f1(x1) + f2(x2) + · · ·+ fN (xN )

the x−update of (5.23) becomes

x`+1 := argmin
x

(
f1(x1) + f2(x2) + · · ·+ fN (xN ) +

ρ

2
‖Ax+ c̃‖22

)
x`+1 := argmin

x

(
f1(x1) + f2(x2) + · · ·+ fN (xN ) +

ρ

2
(‖Ax‖22 + 2c̃TAx+ ‖c̃‖22)

)
, (5.32)

where c̃ = Bz` − c+ ν` is a vector of constants. Since the constant in (5.32) is irrelevant to the
minimization and 2c̃TAx is separable with respect to the partition in x = (xT1 , . . . , x

T
N )T , the

x-update can be split into
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x`+1
1 := argmin

x1

(
f1(x1) +

ρ

2
‖A1x1 + (Bz` − c+ ν`)1‖22

)
...

x`+1
N := argmin

xN

(
fN (xN ) +

ρ

2
‖ANxN + (Bz` − c+ ν`)N‖22

)
,

where (c̃)i refers to the component of the i−th partition of vector c̃. A problem with such a
structure enables the minimizations for the 1 . . . N components to be carried out in parallel.
Thinking of the partition as a structure on the local variables of subproblems, the block di-
agonal structure enables a distributed optimization among the subproblems and preserves the
subproblems' privacy since neither fi nor xi have to be shared with the other subproblems. In
the �rst phase of the algorithm, each subsystem computes its decision variable x`+1

i in parallel
and communicates the solution to a central entity, which then solves for z`+1 and updates the
dual variables in the second phase.
Note that the setting of subsystems in one layer and a central entity in another is a special case
of the multi-block minimization problem. Imagine a setting with a second entity (third block)
in addition to the subsystems (�rst block) and the central entity (second block). Even though a
direct extension of problem (5.16) by a third cost function and a new decision variable leads to
a convenient extension of the algorithm, general convergence depends on the coupling matrices.
The authors in [CHYY16] discuss su�cient convergence properties of such an extension depen-
dent on the coupling matrices. More sophisticated modi�cations of the ADMM algorithm are
presented in [LH15] for the multi-block case.

5.1.5 Sharing ADMM

The so-called sharing problem is another useful variant of the initial problem statement solvable
via the ADMM algorithm. A cost function g(x) depends on the aggregated decision variables
x = (xT1 , x

T
2 , . . . , x

T
N )T of the subsystems. Additionally, the subsystems' cost functions are sepa-

rable, as discussed in the previous section. The total cost minimization of the sharing problem
is stated as in [BPC+10]:

minimize
x

N∑
i=1

fi(xi) + g(

N∑
i=1

xi). (5.33)

The problem is of high relevance to this work, since it represents an optimization problem with
both local costs for subsystems and a global shared cost function taking into account costs arising
from the aggregated decision variable. As an example, one can think of subsystems trying to
both minimize their individual electricity consumption and aggregated load at a transfomer. This
problem must be solved by a central entity provided with full information of the optimization
problem, due to the coupling of the decision variables in the shared cost function g. Decomposi-
tion is achieved by the introduction of an auxiliary variable zi ∈ Rn to create local copies of the
decision variables xi ∈ Rn. The sharing problem solved via ADMM is

minimize
x

N∑
i=1

fi(xi) + g(

N∑
i=1

zi)

subject to xi − zi = 0 ∀i = 1, . . . , N

(5.34)
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The augmented Lagrangian of problem (5.34) becomes

Lρ(x, z, ν) =

N∑
i=1

fi(xi) + g(

N∑
i=1

zi) +
ρ

2

N∑
i=1

‖xi − zi + νi‖22 −
ρ

2

N∑
i=1

νTi νi (5.35)

The primal and dual updates in scaled form become

x`+1
i := argmin

xi

(
fi(xi) +

ρ

2
‖xi − z`i + ν`i ‖22

)
∀i = 1, . . . , N (5.36)

z`+1 := argmin
z

(
g(

N∑
i=1

zi) +
ρ

2

N∑
i=1

‖x`+1
i − zi + ν`i ‖22

)
(5.37)

ν`+1
i := ν`i + x`+1

i − z`+1
i ∀i = 1, . . . , N (5.38)

In each iteration the xi-updates can be parallelized among the subsystems. The resulting decision
variables are sent to a central entity to compute the z-update with respect to the shared cost
function and the error term. The current iteration ends with the update of the scaled dual, which
has to be computed for each subsystem.

5.2 General Central MPC Problem Statement

The following section introduces the complete optimization problem of the central model pre-
dictive controller and derives the decompostion based on the ADMM algorithm to obtain a
distributed MPC. The controller includes the dynamics of prosumers and the grid constraints
resulting from the power �ow approximation. The control-oriented notation is based on [Bra16,
BFG+18], where the ADMM algorithm was applied to general dynamic systems, but without a
power �ow representation. A general form of the central minimization problem including local
system dynamics and global constraints for a given time index k ∈ N can be stated as

minimize
(x,u,z,xg)

I∑
i=1

k+NP−1∑
j=k

Fi(zi(j)) +

k+NP−1∑
j=k

Gs(z(j)) +

k+NP−1∑
j=k

Gg(xg(j)) (5.39)

subject to xi(k) = xi,0 (5.40)

xi(j + 1) = Aixi(j) +Biui(j) + Eidi(j) (5.41)

zi(j) = Dixi(j) +Hiui(j) + Fiei(j) (5.42)

xi(j + 1) ∈ Xi, ui(j) ∈ Ui (5.43)

Dxg(j) = Hz(j) + Feg(j) (5.44)

xg(j) ∈ Xg (5.45)

∀j = k, . . . , k +NP − 1 ∀i = 1, . . . , I.

with Xi ⊂ Rnxi ,Ui ⊂ Rnui ,Xg ⊂ Rnxg , zi(j) ∈ Rnzi , z(j) ∈ R
∑I
i=1 nzi , di(j) ∈ Rndi , ei(j) ∈

Rnei , eg(j) ∈ Rneg and the matrices of appropriate size. The objective function (5.39) is composed
of the running cost Fi : Rnzi → R for each subsystem, shared running costs Gs : R

∑I
i=1 nzi → R

and a separate running cost Gg : Rnxg → R at the global system level. Equation (5.40) initializes
the local systems at time k with the latest measurement. Equation (5.41) states the subsystem
dynamics. The state variables xi depend on the controllable inputs ui and disturbances di. Both
state variables and controllable variables may further be restricted by (possibly) time-dependent
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constraint sets Xi(j),Ui(j). Equation (5.42) de�nes a local coupling variable zi(j), which might
depend on the states, inputs or an additional disturbance signal ei. The vector z(j) stacks the
subsystems' coupling variables zi(j):

z(j) := (z1(j)
T , . . . , zI(j)

T )T (5.46)

and enables coupling of the subsystems in the shared cost function and the global level constraint
(5.44). Thus the global system state variables xg(j) are linearly dependent on the coupling
variables zi(j) and global level disturbances eg(j). The global system state variables might
further be constrained by the set Xg.
The central optimization problem can be solved for a small number of subsystems, but coupling
at the global system level and in the shared cost function might be an obstacle for scalability,
privacy and �exibility [BFG+18]. Speci�cally, the central optimization involves:

• possibly bad scalability due to a large number of subsystems and/or long prediction hori-
zons,

• full disclosure of cost functions and systems dynamics of all subsystems to a central entity
responsible at the global system level,

• predictions of all local and global disturbances carried out by the central entity or at least
communicated to it, knowledge of all measured states of the subsystems at the central
entity,

• adaption of the central optimization problem whenever a subsystem changes its con�gura-
tion (cost function, system dynamics, coupling).

5.3 Distributed MPC

A distributed optimization algorithm using ADMM helps to avoid the drawbacks mentioned
above and maintains the privacy of the subsystems involved. A more compact formulation helps
to prepare problem (5.39)-(5.45) for the decomposition carried out in ADMM. Let the cost
functions fi(zi) : RnziNP → R, gs(z) : R

∑I
i=1 nziNP → R and gg(xg) : RnxgNP → R be the sums

over the running costs over the prediction horizon from (5.39), with vectors zi, z and xg, de�ned
as

zi := zi(k) = (zi(k)T , . . . , zi(k +NP − 1)T )T

z := z(k) = (z(k)T , . . . , z(k +NP − 1)T )T

xg := xg(k) = (xg(k)T , . . . , xg(k +NP − 1)T )T .

The additional sets Pi and D are introduced to simplify the notation further, similar to [BFG+18].
The sets of constraints are expressed with respect to the optimization variables subject to a cost
function. Let Pi be the set of feasible trajectories of subsystem i evaluated at time k:

Pi =

zi ∈ RnziNP

∣∣∣∣∣∣∣∣∣∣
∃xi(j + 1) ∈ Xi, ui(j) ∈ Ui such that
xi(k) = xi,0
xi(j + 1) = Aixi(j) +Biui(j) + Eidi(j)
zi(j) = Dixi(j) +Hiui(j) + Fiei(j)
∀j = k, . . . , k +NP − 1

 . (5.47)
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The set D correspondingly denotes solutions of feasible points of operation at the global system
level for z and xg:

D =

(xg, z) ∈ RnxgNP × R
∑I
i=1 nziNP

∣∣∣∣∣∣
xg(j) ∈ Xg
Dxg(j) = Hz(j) + Feg(j)
∀j = k, . . . , k +NP − 1

 . (5.48)

Problem (5.39)-(5.45) solved at time k can now be rewritten as

minimize
(z,xg)

I∑
i=1

fi(zi) + gs(z) + gg(xg) (5.49)

subject to zi ∈ Pi ∀i = 1, . . . , I (5.50)

(xg, z) ∈ D. (5.51)

The above notation indicates that the function fi(zi) is explicitly optimized over zi instead of
xi,ui and zi. From the de�nition of the set Pi in (5.47) it becomes clear that a given optimal
local solution z∗i can be translated into a local feasible solution x∗i ,u

∗
i for each subsystem. How-

ever, z∗i and the related solution pair (x∗i ,u
∗
i ) are in general not unique [BFG+18]. The above

notation is mainly used for brevity to apply the ADMM algorithm, the actual implementation
for this thesis does not consider an explicit statement of the set Pi, but simultaneously computes
a solution (z∗i ,x

∗
i ,u

∗
i ).

A further remark addresses possible extensions of the sub- and global system cost functions. The
subsystems might include additional local cost functions with respect to local decision variables,
similar is conceivable for the global system. The following procedure holds for such extensions,
as long as the structure between local, global and coupling variables and their associated cost
function is preserved. The implementations presented in Section 5.4.4 consider such functions.
To this point, the subsystems are still coupled in both D and the shared cost function gs(z). Re-
calling the decomposition procedure of ADMM to enable a distributed optimization, the structure
of the sharing ADMM introduced in Section 5.1.5 can be used to separate problem (5.49)-(5.51)
among the subsystems. Decoupling is achieved by introducing auxiliary copies ai ∈ RnziNP for
the variables zi, leading to

minimize
(z,a,xg)

I∑
i=1

fi(zi) + gs(a) + gg(xg) (5.52)

subject to zi ∈ Pi (5.53)

zi − ai = 0 ∀i = 1, . . . , I (5.54)

(xg,a) ∈ D. (5.55)

a ∈ R
∑I
i=1 nziNP has the same stacked structure as z, i.e.:

a := a(k) = (a(k)T , . . . , a(k +NP − 1)T )T ,

with
a(j) := (a1(j)

T , . . . , aI(j)
T )T .

The problem is no longer explicitly coupled in the global system dynamics and the shared cost
function, but coupling is still enforced through the equality constraints in (5.54).
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The augmented Lagrangian of problem (5.52)-(5.55) becomes

Lρ(z,a,ν) =

I∑
i=1

fi(zi) + gs(a) + gg(xg) +
ρ

2

I∑
i=1

‖zi − ai + νi‖22 −
ρ

2

I∑
i=1

νTi νi (5.56)

with scaled dual variable νi = λi
ρ . Equation (5.56) is optimized in a distributed fashion, the

primal and dual ADMM-updates in scaled form become

z`+1
i := argmin

zi∈Pi

(
fi(zi) +

ρ

2
‖zi − a`i + ν`i‖22

)
∀i = 1, . . . , I (5.57)

(a`+1,x`+1
g ) := argmin

(a,xg)∈D

(
gs(a) + gg(xg) +

ρ

2

I∑
i=1

‖z`+1
i − ai + ν`i‖22

)
(5.58)

ν`+1
i := ν`i + z`+1

i − a`+1
i ∀i = 1, . . . , I. (5.59)

The iterative optimization scheme consists of the following steps. After a onetime arbitrary
initialization of a0i ,ν

0
i and a feasible initialization for xi(k) = xi,0, the subsystems compute (5.57)

and communicate their solutions z`+1
i to the central entity. The central entity then computes the

pair (a`+1,x`+1
g ), treating z`+1

i as a �xed parameter in the squared norm summation. Finally
the scaled dual variables ν`+1

i are updated and communicated back to the subsystems, where
the procedure is repeated with updated variables.
The requirements for convergence of the iterative scheme were already given in Section 5.1.3. In
the context of dynamic systems, convergence requires

• feasible solutions for each of the problems solved in (5.57) and (5.58), satisfying the corre-
sponding subsystems and global level constrained convex sets Pi and D,

• existence of zi ∈ Pi ∀i = 1, . . . , I such that there exist local feasible solutions that are also
feasible at the global level, i.e. (z,xg) ∈ D,

Consequently, the algorithm will not converge if no global feasible solution exists. The cost
functions fi, gs and gg are assumed to be convex. With the above assumptions ful�lled, the
iterative scheme converges for `→∞ to a global optimal solution:

• the iteration's residual (z` − a`) converges to zero for `→∞

• (5.52) converges to the optimal value of problem (5.49)-(5.51) for `→∞

• the ν`i converge to the optimal dual values ν∗i for `→∞.

The reader is referred to [BPC+10] and [Bra16] regarding details on the assumptions for convex
optimization problems and the proofs for convergence.
The procedure ensures privacy at the level of the subsystems, since only the coupling variable zi
has to be communicated to the central entity. Private cost functions and systems dynamics are
not disclosed and may be changed during operation, since the internal change in con�guration
will be re�ected in zi. The knowledge of global system constraints and cost functions remains
in the domain of the central entity, since only νi − ai is communicated to the subsystems. A
shared cost function can be managed by the central entity on behalf of the subsystems, who have
to agree to it in advance.
While the central entity has to bear the whole computational burden in the central MPC prob-
lem and the subsystems just receive the controllable input signals for execution in the low-level
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controllers, the hierarchical distributed MPC procedure spreads the computation among all par-
ticipating systems. This maintains privacy but also requires computational capabilities located
at the subsystems. The size of the optimization problem of the central entity in (5.58) depends
on the number of global system variables, constraints, the number of subsystems connected and
the length of the prediction horizon. It is independent of the number of variables of the subsys-
tems. Finally, a bidirectional communication infrastructure must exist for the exchange of the
iterative solutions.

5.4 Prosumer-DSO Coordination

The previously introduced distributed MPC scheme is applied to coordinate the prosumers with
respect to the distribution grid. The central optimization problem is rewritten for the case
of I building energy systems with potential prosumer capabilities. The global system level is
represented by the distribution grid and its operator, the DSO, as the central entity.

5.4.1 Building Energy Systems

The subsystem dynamics in (5.41) correspond to the dynamics of the thermal building models
introduced in Chapter 3.1. In Equation (3.33) the total or residual load ri(j) of one prosumer was
computed based on the controllable inputs ui(j), the �xed electricity load li(j) and the generation
gi(j), which corresponds to the coupling variable zi(j) in Equation (5.42). The constraints in
(5.43) represent the constraints on the buildings' states and controllable inputs, as shown in
(3.19), (3.22) and (3.23).

5.4.2 Distribution System Operator

The DSO takes the role of the central entity in the present coordination problem, contributing its
own cost function and the global system constraints. Constraints (5.44)-(5.45) correspond to the
operational limits of the distribution grid, represented by the LinDistFlow model introduced in
Section 4.1.3. An extended multi-period power �ow based on the LinDistFlow approximation is
derived for the optimization problem to integrate coordination. Recalling the compact de�nition
of the LinDistFlow model from (4.18), the instantaneous power �ow can be determined by the
system of equations

Πxg = δ, (5.60)

with the matrices and vectors from (4.19):

Π =

 CP 0|N+|×|E| 0|N+|×|N+|
0|N+|×|E| CQ 0|N+|×|N+|

2R 2X CU

 xg =

PQ
U

 δ =

 p
q
cu

 , (5.61)

with

cu =

(
Uref
0|E|−1

)
. (5.62)

The static power �ow equations of the LinDistFlow model are extended to distinguish partic-
ipating and non-participating buses. We de�ne the set N

�c
for static, non-participating load

buses and the set Nc for participating buses in addition to the set N+ of all buses excluding
the reference bus. A bus might serve as a static load or just serve as a point of connection
between branches. The load at such a bus cannot be manipulated for coordination in this case.
In contrast, other buses might o�er a certain degree of participation, e.g., when a prosumer has
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agreed to participate in a coordination program with the DSO. This leads to the relation of the
subsets N

�c
⊂ N+, Nc ⊂ N+, Nc∩N�c

= ∅ and Nc∪N�c
= N+. The number of buses in the set of

participating buses is equal to the number of prosumers who have consented to coordination with
the DSO, i.e., |Nc| = I. The scenario-dependent matrix CI speci�es to which bus a participating
prosumer or building energy system is connected to:

CI(i, j) ∈ R|N
+|×I =

{
1 if bus i hosts participating prosumer j,

0 otherwise.
(5.63)

Then, the simple summation over CI with CI1I ∈ R|N+| leads to the participation vector with
entries i

(CI1I)(i) =

{
1 if i ∈ Nc,
0 if i ∈ N

�c
,

(5.64)

which speci�es participation at each bus. In the next step, the power �ow equations are extended
by aggregation of the prosumers over the participating buses in the coupling variable r ∈ RI

r(j) := (r1(j), . . . , rI(j))
T

to separate the participating from non-participating buses.1 Written for all time steps of the
prediction horizon, this leads to the extended version of (5.60):

Πxg(j) = Π̃r(j) + δ(j) ∀j = k, . . . , k +NP − 1, (5.65)

with updated

δ(j) =

p(j) = (1|N+| − CI1I) ◦ (l(j)− g(j))

q(j)
cu(j)

 .2 (5.66)

The active power variable p(j) of the LinDistFlow model is replaced by l(j)− g(j), a vector over
all buses. In case of participation, the corresponding active power entry in δ becomes zero. In
case of non-participation, l(j) − g(j) can be the residual load of all non-participating electrical
systems connected to a bus, but might also be zero in case no system is present. Since the focus
is on active power control, a further distinction for reactive power is possible, but not required
here. It is assumed that the DSO is capable to predict the reactive power at each bus. Since
no detailed reactive power models are used in this thesis, a constant power factor is applied to
derive the reactive power demand based on the active power.
Π̃ ∈ R(2|N+|+|E|)×I �nally relates the participating buses to the nodal balance and voltage equa-
tions based on CI and is expanded by appropriately dimensioned zero matrices for the remaining
reactive power and voltage equality constraints:

Π̃ =

 CI
0|N+|×I
0|E|×I

 . (5.67)

Note that Equation (5.65) is the manifestation of the general dependency between the global
system variables, coupling variables and disturbances in equation (5.44).

1Note that the entries in r(j) are one-dimensional, i.e. nzi = 1 for the zi in z(j) in (5.46).
2Hadamard product or element-wise multiplication of two matrices

A = (aij) ∈ Rm×n and B = (bij) ∈ Rm×n: (A ◦B)ij = (aij · bij).
Using r, l and g here as vectors over multiple buses involves a slight abuse of notation, since the variables where
previously introduced in Chapter 3 on the single prosumer level.
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Finally, Equation (5.65) in compact notation is the multi-period power �ow over the prediction
horizon of length NP

Πxg,k − Π̃rk = δk, (5.68)

with matrices and vectors

Π = INP ⊗Π Π̃ = INP ⊗ Π̃,

xg,k : = xg(k) = (xg(k)T , xg(k + 1)T , . . . , xg(k +NP − 1)T )T

=

P (k)
Q(k)
U(k)

T

,

P (k + 1)
Q(k + 1)
U(k + 1)

T

, . . . ,

P (k +NP − 1)
Q(k +NP − 1)
U(k +NP − 1)

TT

rk : = r(k) = (r(k)T , r(k + 1)T , . . . , r(k +NP − 1)T )T

δk : = δ(k) = (δ(k)T , δ(k + 1)T , . . . , δ(k +NP − 1)T )T .

of dimension Π ∈ RNP (2|N+|+|E|)×NP (2|E|+|N+|), Π̃ ∈ RNP (2|N+|+|E|)×NP I , xg,k ∈ RNP (2|E|+|N+|),
rk ∈ RNP I , δk ∈ RNP (2|N+|+|E|). The power �ows and voltages of two consecutive time steps are
assumed to be independent of each other and thus decoupled in time.
The global variable constraint (5.45) corresponds to the voltage and thermal restrictions during
grid operation. Inequality (4.21) leads to compact inequality equations

1NP |N+|V
2
ref (1− ε)2 ≤ Uk ≤ 1NP |N+|V

2
ref (1 + ε)2 (5.69)

U ≤ Uk ≤ U (5.70)

to consider bus voltage constraints. For brevity, only the bus voltage limits are considered in the
set Xg in this example. For now the active and reactive line �ows face no operational limits, but
this can be easily changed by adding constraints based on the inequalities (4.22)-(4.23).

5.4.3 DSO Cost Functions

The shared and global system cost functions gs(r) and gg(xg) from (5.49) can be used for peak-
shaving/valley-�lling and loss minimizaion in the distribution grid. Not all of the presented cost
functions are typical objectives of a DSO, but in the hierarchical setting assumed here the DSO
is the entity to handle such cost functions.

Valley-Filling

In case of peak-shaving/valley-�lling, the aggregated residual load is �attened to avoid power
peaks during operation. In practice, this could be the objective of an aggregator or the DSO
who tries to limit the volatility of the active power �ow over the transformer. This is equivalent
to the aggregation over the residual loads at each bus using LinDistFlow, where the active and
reactive line losses are neglected in the nodal balance equations. From the power �ow equations
in (4.16), the active power �ow P1 over the transformer can be obtained by solving

P1 = C−1P (1)p = 1T|E|p =

|N+|∑
i=1

pi, (5.71)
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where C−1P (j) denotes row j of matrix C−1P . Clearly, C−1P (1) is a vector of ones, since all loads are
served via the power �ow over the �rst line. Recalling the separation for participation in vector
δ, the �nal cost function quanti�es both the residual load of participating and non-participating
buses such that the prosumers operation is adjusted with respect to the total un�exible load and
generation. With pk = (p(k)T , . . . , p(k+NP − 1)T )T the valley-�lling cost function is de�ned as

gs(rk) = ‖HIrk +HN+pk‖22 (5.72)

with matrices HI ∈ RNP×NP I and HN+ ∈ RNP×NP |N+| to aggregate the prosumers' residual
loads and the non-participating residual loads at each time instant:

HI = INP ⊗ 1TI HN+ = INP ⊗ 1T|N+|. (5.73)

Depending on the weighting with respect to remaining cost functions, the above cost function
can have a strong impact on the operation of the prosumers. The DSO could alternatively limit
P1 with an additional constraint to enforce that the tranformer's power �ow never exceeds its
maximum capacity. This would not a�ect the volatility of the aggregated residual load in a
comparable way. Such a procedure is less invasive, since the operation of the prosumers is only
adapted when global system constraints are active.

Loss Minimization

Minimization of the grid losses is achieved by rewriting (4.13) over the prediction horizon:

gg(P k,Qk) =
1

V 2
0

(P T
kRP k +QT

kRQk). (5.74)

R ∈ RNP |E|×NP |E| is the block diagonal matrix of the line resistance matrix R:

R = INP ⊗R. (5.75)

Community Self-Consumption

Another goal could be to minimize the imported electricity and to cover the local demand as
much as possible by local PV generation. This could be formulated as a shared goal of the
prosumers, but it is here assumed that the DSO handles the objective and formulates it with
respect to a global level variable. Therefore, the power �ow over the transformer P 1,k is selected
and costs only associated to the positive parts of the line �ow, i.e. no community-generated
PV can be sold. Excess is fed back into the grid without compensation, which is similar to the
prosumer costs as de�ned in Equation (3.43). The additional variable P+

1,k is de�ned for the
global-level optimization with

P+
1,k ≥ 0, (5.76)

P+
1,k ≥ P 1,k, (5.77)

and the cost function
gg(P

+
1,k) = cTkP

+
1,k. (5.78)

Increasing self-consumption is not a typical task of a DSO, but rather the operational goal
of a community aggregator who is authorised to coordinate the prosumers to maximize self-
consumption.
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5.4.4 Decoupling of the Central Optimization Problem

The central optimization problem for the optimal prosumer-DSO coordination at time k based
on the general problem formulation (5.49)-(5.51) becomes3

minimize
(u,r,r+,P ,Q,U)

I∑
i=1

fi(r
+
i,k) + gs(rk) + gg(P k,Qk) (5.79)

subject to xi,k = Aixi,0 + Biui,k + Eidi,k (5.80)

xi,k ≤ xi,k ≤ xi,k (5.81)

Biui,k ≤ ui,k (5.82)

ui,k ≥ 0 (5.83)

ri,k = BCi,kui,k + li,k − gi,k (5.84)

r+i,k ≥ 0 (5.85)

r+i,k ≥ ri,k ∀i = 1, . . . , I, (5.86)

Πxg,k − Π̃rk = δk (5.87)

U ≤ Uk ≤ U . (5.88)

Feasibility of central problem (5.79)-(5.88) has to be given to ensure the existence of a solution
of the central optimization and to guarantee convergence of the ADMM algorithm to a global
optimal feasible solution. The hard constraints on the states of the building energy systems in
(5.81) and the voltage limits in (5.88) are relaxed with the introduction of the slack variables
si ∈ Rnxi≥0 and sg ∈ R|N

+|
≥0 to allow for violation of temperature and voltage limits at very high

associated costs

fi,f (si,k) = Mi1
T
NPnxi

si,k ∀i = 1, . . . , I (5.89)

gf (sg,k) = Mg1
T
NP |N+|sg,k (5.90)

for the prosumers and the DSO respectively. Su�ciently large values for the scalarsMi,Mg ∈ R>0

are chosen to avoid violations of constraints under standard operation conditions. The relaxed
central optimization problem becomes

minimize
(u,r,r+,s,P ,Q,U ,sg)

I∑
i=1

fi(r
+
i,k) + fi,f (si,k) + gs(rk) + gg(P k,Qk) + gf (sg,k) (5.91)

subject to (5.80), (5.82), (5.83), (5.84), (5.85), (5.86)

xi,k − si,k ≤ xi,k ≤ xi,k + si,k (5.92)

si,k ≥ 0nxiNP ∀i = 1, . . . , I (5.93)

(5.87)

U − sg,k ≤ Uk ≤ U + sg,k. (5.94)

sg,k ≥ 0NP |N+| (5.95)

3The explicit prosumer states xi,k are kept in the problem formulation for illustration, but can be disregarded
in the implementation of the optimization by substitution of the variable in (5.81) by the right-hand side of
Equation (5.80).
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The sets Pi and D from Section 5.3 are de�ned analogously to separate the prosumer and DSO
constraints and to reduce the notation to the variables relevant to the optimization. The set
Pi of a prosumer's feasible solutions of the residual load trajectories and slack variable over the
prediction horizon is given by

Pi =


(ri,k, r

+
i,k, si,k) ∈ RNP × RNP≥0 × RnxiNP≥0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xi,k = Aixi,0 + Biui,k + Eidi,k
xi,k − si,k ≤ xi,k ≤ xi,k + si,k
Biui,k ≤ ui,k
ui,k ≥ 0
ri,k = BCi,kui,k + li,k − gi,k
r+i,k ≥ ri,k
r+i,k ≥ 0


. (5.96)

Equivalently, the DSO's constraint set expressed in the optimization variables subject to a cost
function is

D =



P k

Qk

rk
sg,k


T

∈ RNP |N
+| × RNP |N

+| × RINP × RNP |N
+|

≥0

∣∣∣∣∣∣∣∣∣
Πxg,k − Π̃rk = δk
U − sg,k ≤ Uk ≤ U + sg,k

 .

(5.97)

The complete central optimization problem can be stated as

minimize
(r,r+,s,P ,Q,sg)

I∑
i=1

fi(r
+
i,k) + fi,f (si,k) + gs(rk) + gg(P k,Qk) + gf (sg,k) (5.98)

subject to (ri,k, r
+
i,k, si,k) ∈ Pi ∀i = 1, . . . , I (5.99)

(P k,Qk, rk, sg,k) ∈ D. (5.100)

As outlined in Section 5.3, coupling exists via the prosumers' residual load rk in the shared cost
function gs and in the LinDistFlow representation in the set D. Again, decoupling is achieved
with the introduction of copies of the prosumers' residual load vectors and application of the
optimization steps of the ADMM. Introducing the auxiliary variable ak leads to the following
problem:

minimize
(r,r+,s,P ,Q,a,sg)

I∑
i=1

fi(r
+
i,k) + fi,f (si,k) + gs(ak) + gg(P k,Qk) + gf (sg,k) (5.101)

subject to (ri,k, r
+
i,k, si,k) ∈ Pi ∀i = 1, . . . , I (5.102)

ri,k − ai,k = 0 ∀i = 1, . . . , I (5.103)

(P k,Qk,ak, sg,k) ∈ D. (5.104)

The complete cost function F with new variable ak

F :=

I∑
i=1

fi(r
+
i,k) + fi,f (si,k) + gs(ak) + gg(P k,Qk) + gf (sg,k) (5.105)

is introduced to further simplify notation. According to (5.56) the augmented Lagrangian can
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be written as

Lρ(r, r+, s,P ,Q, sg,a,ν) = F +
ρ

2

I∑
i=1

‖ri,k − ai,k + νi,k‖22 −
ρ

2

I∑
i=1

νTi,kνi,k, (5.106)

and the computation steps per ADMM iteration become

(r`+1
i,k , r

+,`+1
i,k , s`+1

i,k ) := argmin
(ri,r

+
i ,si)∈Pi

(
fi(r

+
i,k) + fi,f (si,k) +

ρ

2
‖ri,k − a`i,k + ν`i,k‖22

)
(5.107)

∀i = 1, . . . , I

(a`+1
k ,P `+1

k ,Q`+1
k , s`+1

g,k ) := argmin
(a,P ,Q,sg)∈D

(
gs(ak) + gg(P k,Qk) + gf (sg,k)

+
ρ

2

I∑
i=1

‖r`+1
i,k − ai,k + ν`i,k‖22

)
(5.108)

ν`+1
i,k := ν`i,k + r`+1

i,k − a
`+1
i,k ∀i = 1, . . . , I. (5.109)

The optimization in (5.107) can be carried out in parallel among all participating prosumers
and only the solutions r`+1

i,k ∀i = 1, . . . , I are communicated to the DSO, keeping the other
internal optimization variables private. The DSO carries out the optimization in (5.108), the
suggested residual loads from the prosumers enter the cost function as constant vectors. After
the computation of a`+1

k , the scaled dual variable ν`+1
i,k is updated in (5.109) by the di�erence

between the suggested residual load of the prosumers and the DSO for each prosumer individually
and broadcasted to each participant to repeat the procedure until consensus between the residual
load schedules is achieved. The communication between the prosumers and the DSO during one
ADMM iteration is depicted in Figure 5.1 for an example in Rural Grid 1.

Figure 5.1: Exchange of communication variables between 17 prosumers and the DSO for one ADMM
iteration of the DMPC algorithm.
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DISTRIBUTION GRIDS

The distributed MPC (DMPC) algorithm consists of three phases and is summarized below. The
result obtained after convergence of ADMM at time step k is referred to as the open-loop result
in the remainder of the thesis. Closed-loop then refers to the DMPC algorithm performed over
multiple time steps, including the application of the optimal controllable inputs to the systems
in phase 3, new states measurements, updated predictions and the re-execution of ADMM until
convergence. Initializing a0i,k,ν

0
i,k not with zeros or arbitrary values, but with the corresponding

entries of a`
∗
i,k−1,ν

`∗
i,k−1 (here �lled with zeros for the new time step in the prediction horizon)

from the converged solution of the previous time step is referred to as warm-starting. The general
idea of warm-starting is that the optimal solutions obtained at k and k− 1 are not too di�erent
from each other, since only a new measurement of the states and predictions shifted by one time
step enter the new optimal control problem. Warm-starting might then lead to faster convergence
of ADMM, see also [Bra16] for a discussion of warm-starting in predictive control.

Algorithm DMPC

At time step k during DMPC operation:
Phase (1): Initialization

Prosumers i = 1, . . . , I

• de�ne fi and fi,f , measure xi,0
• predict disturbances

di,k := di(k) = (di(k)T , di(k + 1)T , . . . , di(k +NP − 1)T )T

gi,k := gi(k) = (gi(k), gi(k + 1), . . . , gi(k +NP − 1))T

li,k := li(k) = (li(k), li(k + 1), . . . , li(k +NP − 1))T

DSO

• de�ne gs, gg and gf
• predict active and reactive residual loads for buses of N

�c
in

δk := δ(k) = (δ(k)T , δ(k + 1)T , . . . , δ(k +NP − 1)T )T

Phase (2): ADMM

Initialize a0i,k,ν
0
i,k, ` = 0

while ` ≤ ` (or other stopping criteria)

• Prosumers i = 1, . . . , I compute r`+1
i,k with (5.107) and communicate to DSO

• DSO compute a`+1
i,k with (5.108)

• DSO update ν`+1
i,k with (5.109) and communicate (a`+1

i,k ,ν
`+1
i,k ) back to prosumers

i = 1, . . . , I

`← `+ 1

Phase (3): Execution

Prosumers i = 1, . . . , I extract u∗i,k from r∗i,k and apply inputs u∗i (k) to system i

k ← k + 1
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5.4.5 Stopping Criteria

Robust stopping criteria for ADMM are crucial for multi-period DMPC simulations to reduce the
computational time whilst ensuring global feasible and close-to-optimal solutions. The authors
in [CSZ+12] tested dual decomposition and ADMM as distributed optimization methods in MPC
and found that a higher coupling strength (the connectivity) of the network topology between
the participating dynamic systems led to an increase of necessary ADMM iterations. Moreover,
the methods were relatively insensitive to the initial states of the systems. The authors found
ADMM to consistently require a lower number of iterations than dual decomposition and pointed
out that ADMM can be further tuned in speed by varying the penalty parameter ρ. Two update
schemes for a varying ρ are introduced here besides keeping the value constant as assumed in
the standard ADMM algorithm.
The primal and dual residuals from Equations (5.29) and (5.30) were introduced in Section
5.1.3 to track ADMM's progression towards convergence. The algorithm is stopped when the
quantities fall below their problem-speci�c thresholds. The standard termination criteria applied
to the DMPC algorithm are4

‖∆`+1
prim‖2 = ‖r`+1

k − a`+1
k ‖2 ≤ εprim (5.110)

‖∆`+1
dual‖2 = ‖−ρ(a`+1

k − a`k)‖2 ≤ εdual. (5.111)

εprim and εdual have to be chosen to account for the absolute and relative tolerance allowed,
see [BPC+10].

Residual Balancing and Adaptive ADMM

Whether the choice of ρ leads to a good rate of convergence is problem speci�c. While ADMM
is said to achieve approximate solutions within few iterations, a high number of iterations may
be required for high accuracy solutions [BPC+10]. Slow convergence can be avoided by tuning
ρ during progression of the algorithm. A good choice of ρ has to balance the tradeo� between a
higher weight of the penalty terms in the cost functions in (5.107) and (5.108) and the increase
in the dual residual in (5.111). A standard approach to tune ρ online for faster convergence
is suggested in [BPC+10] and has been applied to a distributed power system optimization
in [BG16]. Penalty ρ`+1 in ADMM's next iteration is de�ned as

ρ`+1 :=


τρ` if ‖∆`

prim‖2 > µ‖∆`
dual‖2

τ−1ρ` if ‖∆`
dual‖2 > µ‖∆`

prim‖2
ρ` otherwise,

(5.112)

to balance the residuals. Parameters τ = 2 and µ = 10 are suggested in [BPC+10]. The online
variation of ρ requires to rescale the quadratic and linear terms resulting from the squared norm
penalty terms in the cost functions in (5.107) and (5.108). Convergence is only guaranteed when
ρ is no longer changed after a certain number of iterations [HYW00].
While it might be di�cult to make a good choice for a �xed ρ, standard adaptive parameter
scaling with residual balancing might perform poorly when ρ0 is close to the optimal value but
τ is too coarse for a proper increase, or many iterations might be required when τ is small
and ρ0 a bad initial choice. Another general �aw of residual balancing is its sensitivity to
problem scaling, since the residuals might be of very di�erent magnitude and thus commonly

4The primal and dual residuals in standard ADMM notation from Section 5.1.3 are ∆`+1
prim = Ax`+1+Bz`+1−c

and ∆`+1
dual = ρATB(z`+1− z`). The residuals for algorithm DMPC are obtained with A = INP I , B = −INP I and

c = 0NP I .
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chosen parameters arbitrary. Several contributions in the literature address those issues. The
penalty parameter update scheme in [Woh17] is formulated based on relative residuals to avoid
compensation for problem scaling. The adaptive ADMM algorithm introduced in [XFG17] is
automated to speed up ADMM and has proven to be fairly insensitive to initial ρ0 and problem
scaling, and outperformed other variants of ADMM in benchmark experiments. In [XTL+17]
adaptive ADMM is further improved for consensus problems.
Adaptive ADMM is used in the simulation study in Section 6.3 to identify the optimal ρ in an
open-loop optimization to be later used as a �xed parameter in a closed-loop simulation over
multiple days. It is assumed that the ρ which was identi�ed in the single optimization for the
speci�c problem structure on a sample day is not far away from the optimal values corresponding
to other time steps during a simulated week. The update scheme of adaptive ADMM applied to
the DMPC problem of this thesis is given in Appendix A.12.
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Chapter 6

Simulation Results
This chapter demonstrates the functionality of the hierarchical distributed MPC algorithm on the
basis of three simulation studies. The �rst study investigates the coordination of the prosumers
in a distribution grid to maintain voltage stability. The second study investigates valley-�lling as
a shared cost function to �atten the aggregated power demand and to avoid possible transformer
overloading. The third study demonstrates how the distributed MPC algorithm can be utilized
to reduce total costs and increase the PV self-consumption within the community.

6.1 Simulation Setup

The simulation environment and coordination algorithms of each study are implemented in
MATLAB 2017b. All optimizations are solved with Gurobi 8.0.0.1 The computer used for a
single MPC iteration is equipped with an Intel Xeon E3-1270 3.5 GHz CPU and 16 GB memory.
The computer used for closed-loop simulations and the test of larger problems is equipped with
an Intel i7-7700 CPU at 3.6 GHz and 32 GB RAM. The prosumer updates in Equation (5.107)
are parallelized in the implementation with the parfor command to distribute the i = 1, . . . , I
optimizations on the available number of workers. The simulation computer o�ers a maximum
of four workers, which is lower than any of the total number of prosumers considered in this
chapter. Nevertheless, parallelizing reduces the computation time for larger grids compared to a
serial implementation, i.e. a simple for-loop to carry out prosumer updates.

Central MPC Optimization Problem

The simulation studies on voltage stability and valley-�lling di�er only in the cost functions and
are based on the same central optimization problem (5.91)-(5.95) solved at each time step during
closed-loop operation. The prosumers minimize local costs for energy and the costs associated
with a violation of the temperature limits:

fi(r
+
i,k) = cTk r

+
i,k = ∆tπ

T
k r

+
i,k fi,f (si,k) = Mi1

Tsi,k. (6.1)

∆t = 0.25h due to the discretization step, πk is a scenario-dependent price. The DSO minimizes
the shared costs of valley-�lling and the costs of a voltage band violation to guarantee feasible
distribution grid operation:

gs(rk) = ‖HIrk +HN+pk‖22 gf (sg,k) = Mg1
Tsg,k. (6.2)

Parameter ω is introduced in the total cost function of the following complete optimization
problem and is used as a weighting factor for the shared cost function gs against the local

1www.gurobi.com
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prosumer cost functions. ω = 0 switches the shared cost function o�. Mg = Mi = 105 is set to
a high value to ensure that the slack variables are only used when feasibility cannot be achieved
with the operational �exibility of the prosumers. The complete central optimization problem
can be stated as:

minimize
(u,r,r+,s,P ,Q,U ,sg)

I∑
i=1

∆tπ
T
k r

+
i,k +Mi1

Tsi,k + ω‖HIrk +HN+pk‖22 +Mg1
Tsg,k (6.3)

subject to xi,k = Aixi,0 + Biui,k + Eidi,k (6.4)

xi,k − si,k ≤ xi,k ≤ xi,k + si,k (6.5)

si,k ≥ 0 (6.6)

Biui,k ≤ ui,k (6.7)

ui,k ≥ 0 (6.8)

ri,k = BCi,kui,k + li,k − gi,k (6.9)

r+i,k ≥ 0 (6.10)

r+i,k ≥ ri,k ∀i = 1, . . . , I, (6.11)

Πxg,k − Π̃rk = δk (6.12)

P ≤ P k ≤ P (6.13)

Q ≤ Qk ≤ Q (6.14)

U − sg,k ≤ Uk ≤ U + sg,k (6.15)

sg,k ≥ 0. (6.16)

Note that constraints (6.13) and (6.14) on the active and reactive power line �ows are added to
the �nal problem. Allowing a violation of constraints through slack variables was only required
for the voltages in order to test stricter voltage scenarios. The central optimization problem
is slightly changed for the study on community PV self-consumption and separately stated in
Section 6.4 to not complicate notation.
Table 6.1 shows the standard temperatures limits chosen per building type to guarantee thermal
comfort. The maximum temperature for type L is sightly higher than for J and E to avoid ex-
cessive use of local slack variables when overheating results from stronger solar gains which leads
to higher temperatures due to the strong insulation standard. In the simulations, the constraint
of the maximum zone temperature was never active during overheating by the heating system
since the maximum �oor temperature was usually reached earlier. In the following sections, slack
variable costs are excluded from the total costs presented to keep the results interpretable.

Table 6.1: Standard temperature limits used in the simulation studies.

T z − T z T fl T sto − T sto T dhw − T dhw
L 20−27 ◦C 30 ◦C 25−30 ◦C 45−55 ◦C

J 20−25 ◦C 34 ◦C 30−35 ◦C 45−55 ◦C

E 20−25 ◦C 37 ◦C 35−40 ◦C 45−55 ◦C

The same meteorological time series which was used for the validation of the thermal building
models in Section 2.2.7 is used for all simulations presented in this section. The ground temper-
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Figure 6.1: Price scenarios considered in the study on voltage stability.

ature is �xed at Tg = 10◦C. If available, the bu�er storage is located in the basement, which is
assumed to have a constant surrounding temperature of Tenv = 15◦C.

Reference Operation

A reference operation is de�ned here as a benchmark to investigate the change in operation
when coordination is required, e.g. due to a violation of the distribution grid constraints. The
reference operation is de�ned as the optimal schedule of each prosumer with respect to its local
constraints and cost functions, neglecting its impact on the distribution grid and the operation
of other prosumers. The reference operation is obtained by solving only the i-indexed parts of
the central optimization problem, i.e. Problem (6.3)-(6.11) for each prosumer consecutively. The
result is the reference operation of each prosumer to minimize his costs in a sel�sh, uncoordinated
and completely decentralized setting.

6.2 Voltage Stability

The �rst simulation study demonstrates how the operational �exibility of the prosumers can be
utilized to avoid undervoltages during peak load times. Central problem (6.3)-(6.16) is solved
by the DMPC algorithm when coordination is investigated. Only the linear cost terms are
considered, i.e. ω = 0 and the DSO costs consist only of costs associated with slack variable use
for voltage feasibility in constraint (6.15). It is assumed that a prosumer is connected at each
load bus and no PV generation is available to investigate low voltage conditions, i.e. gi,k = 0
for all prosumers. The following examples consider the operation of the prosumers with both
a constant �at price over time and a scenario which has a price of zero for two hours between
6 and 8 pm on cold winter days in February. Figure 6.1 shows the price for both scenarios.
The time-varying price scenario is motivated by a situation where an arbitrary (price) signal
incentivises shifting electricity demand to a certain time of the day, e.g. due to strong wind
production which leads to low market prices. Such a price signal could come from the spot
market or be communicated by an aggregator. The zero cost evening hours are chosen here to
coincide with lower heat pump e�ciencies and relatively high electricity demands of consumer
appliances, which potentially leads to a violation of the operational limits of the distribution
grid. The price signal causes a high coincidence of the residual load of the prosumers.
Simulations for the coldest week of the year show that independent of the building type assumed,
neither in Rural Grid 1 nor in Rural Grid 2 violations of the grid limits occur when a �at price
is considered, not even if the reference voltage is lowered to V0 = 0.95 p.u.. The time-varying
price scenario and zero back-up heater capacity does not lead to violations of the grid limits
either. Voltage violations start to occur in Rural Grid 1 for the time-varying price, full back-up
heater capacity and all prosumers of building type E and J with V0 = 1 p.u.. Building type
L leads to violations for the same assumptions but at a lower reference voltage, e.g. V0 = 0.95

117



CHAPTER 6. SIMULATION RESULTS

Table 6.2: Occurrence of violations of grid limits for the coldest week of the year. All buildings with fully
available back-up heater capacity and without bu�er storage.

Rural Grid 1 Rural Grid 2
�at price time-varying price �at price time-varying price

L / voltage violation for V0 = 0.95 p.u. / /
J / voltage violation for V0 = 1 p.u. / /
E / voltage violation for V0 = 1 p.u. / /

p.u.. Table 6.2 summarizes these results. The �rst conclusion is that only speci�c building, price
and reference voltage scenarios lead to voltage violations. The other distribution grids discussed
in Section 4.3 will potentially lead to violations for a �at price scenario. Since the larger grids
would add unnecessary complexity to the analysis and require higher computational cost2, the
following section is limited to Rural Grid 1.
The simulation results are presented in the following order to demonstrate the e�ectiveness of
the DMPC algorithm in a comprehensive way, but also to provide insight into the response of
the thermal systems: First, the open-loop results for the uncoordinated reference operation are
shown to investigate the reaction of the prosumers to the time-varying price and the e�ect on
voltage stability for one day. Afterwards, the e�ect of coordination with the DMPC algorithm is
shown and resulting energy and cost statistics presented. Section 6.2.2 then presents the closed-
loop results of the DMPC algorithm and con�rms the open-loop observations. An analysis of the
resulting cost increase per prosumer and the e�ect of additional bu�er storage volumes follows.
The section ends with an analysis of the number of iterations required to converge.

6.2.1 Open-loop Solutions for a Winter Day

A total of 17 prosumers are assumed to be connected to all load buses. Figures 6.2 and
6.3 show the open-loop solutions of the optimal reference operations of all buildings of either
type L or E, computed in the beginning of an exemplary day (February 10) of the cold-
est week and both price scenarios. The temperatures of all prosumers are initialized with
x0 = (23◦C, 22◦C, 22◦C, 23◦C, 50◦C)T for type L and x0 = (24◦C, 22◦C, 22◦C, 24◦C, 50◦C)T for
type E, no bu�er storages are assumed. The prediction horizon is 24 h and the systems are
discretized at 15 minutes time steps. The voltage at the slack bus is �xed at V0 = 1 p.u..
For type L, the zone temperatures fall slowly towards the lower limit of 20 ◦C and the individual
trajectories start to di�er slightly when the occupants of the four-person households begin to
carry out di�erent activities leading to di�erent internal gains. While the heat pumps start to
operate for space heating around noon in the �at price scenario, signi�cant heating takes place
between 6 and 8 pm when the time-varying price is available. Moderate early preheating allows
to reschedule the remaining heating demand of the day in such a way that the operation can
partially be shifted to the cheap hours. The aggregated residual load

∑I
i=1 ri shows a distinct

increase during the zero price hours. The lower plots in Figure 6.2 show the resulting voltage
pro�le over all buses in the grid at each quarter-hour of the day. While the �at price scenario
leads to a rather �at voltage pro�le, the time-varying price scenario leads to a stronger but not
critical voltage drop during the eight quarter-hours when the price is zero.

2The size of the matrices generated in the central optimization as a benchmark for ADMM exceeds the available
amount of computer memory.
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Figure 6.2: Uncoordinated reference operation of 17 prosumers with building type L for both price sce-
narios in Rural Grid 1. Red dashed lines indicate the closest operational limit, i.e. 20 ◦C for
Tz, transformer limit P 1 = 225 kW and the lower voltage limit. The gray area indicates zero
price hours.

In contrast, the lower voltage limit is violated in the time-varying price scenario when all pro-
sumers are of building type E, as can be seen in Figure 6.3. The aggregated residual load
also exceeds the transformer limit P 1, which re�ects the sensitivity of Rural Grid 1 observed
in Section 4.3. The zone and �oor temperatures show an increase before and during the zero
price hours. The price advantage is exploited in such a way that the temperatures of the �oors
are increased until their maximum temperature limit. The zone temperatures show signi�cantly
more variation in time, which stands in contrast to the energy e�cient operation close to the
lower zone temperature limit in the �at price scenario3. The temperatures in the domestic hot
water storages remain always in the required range from 45-55 ◦C. They are operated in such a
way that a part of the charging can take place when the price is zero. This can be seen in the

3The internal gains from occupants are almost not recognizable in Tz for type E compared to building type
L, due to the higher heat loss.
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low temperatures just before the end of the zero price period, allowing for charging at zero cost.
In the �at price scenario, charging mainly takes place when the COPs of the heat pumps reach
a peak in the afternoon around 4 pm.
The above investigation of the reference operation for di�erent prices and building types shows
that a violation of the grid constraints is scenario dependent.

Figure 6.3: Uncoordinated reference operation of 17 prosumers with building type E for both price sce-
narios in Rural Grid 1. Red dashed lines indicate the closest operational limit, i.e. 20 ◦C for
Tz, 37 ◦C for Tfl, transformer limit P 1 = 225 kW and lower voltage limit. The gray area
indicates zero price hours.

The following simulation results demonstrate how the DMPC algorithm can now be used to
coordinate the prosumers in such a way that they can still bene�t from zero price hours without
jeopardizing voltage stability. Full participation of the 17 prosumers is assumed for coordination.
Figure 6.4 shows the open-loop simulation results for the type E prosumers after 100 ADMM
iterations, the penalty parameter was set to ρ = 0.01. The results are shown for the case of
V0 = 1 p.u. and the more restrictive case of V0 = 0.95 p.u.. The fourth row in Figure 6.4 shows
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both the aggregated residual load computed with ADMM and the solution obtained by solving
the central optimization (CO) for comparison. The power pro�les are very similar and result in
the same values of the objective function when evaluated at the optimal solution.

Figure 6.4: Results for the coordination of 17 prosumers of type E in Rural Grid 1 via the distributed
MPC algorithm based on ADMM. 100 Iterations, ρ = 0.01, central optimization (CO) pro�le
for comparison.

Only a small change in operation is required in the case of V0 = 1 p.u., since only a relatively
small undervoltage occurred in the uncoordinated case. A di�erence is hardly noticeable when
compared with the reference operation with the time-varying price in Figure 6.3. A larger change
in operation is required when the reference voltage is set to 0.95 p.u.. The temperatures in the
zone and �oor di�er among the prosumers as a result of di�erent operational schedules. While
some participants can still increase the �oor temperature to its maximum value to bene�t from
the reduced price, prosumers located at buses with critically low voltages have to change their
operation to maintain voltage stability. This concerns mainly the prosumers located at the long
feeder number 3 in Figure 4.2. The change in operation is primarily achieved through a reduction
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of the back-up heater power, which was initially increased to exploit low prices. This results in
a decreased aggregated residual load and a feasible voltage pro�le in the distribution grid.
Table 6.3 shows the aggregated electricity demands, costs, performance factors and extreme
values of the active power �ows, voltages and zone temperatures for the considered scenarios in
Rural Grid 1 for type E. The performance factor (PF) is derived from the seasonal performance
factor to quantify the average e�ciency of all heating systems over the prediction horizon:

PF =
1Tuk

1T (rk − lk)
=

∑I
i=1

∑NP−1
j=0 Q̇hp,sh,i(j) + Q̇bh,sh,i(j) + Q̇hp,dhw,i(j) + Q̇bh,dhw,i(j)∑I

i=1

∑NP−1
j=0 ri(j)− li(j)

.

(6.17)
The time-varying price scenario without coordination results in a higher total electricity demand
when compared with the �at price scenario. This is in part caused by an additional back-up
heater operation, which reduces the performance factor from 3.26 to 2.57. The lower costs4

are achieved due to the zero price hours. The aggregate costs increase when coordination takes
place to maintain voltage stability. While the cost increase is negligible for V0 = 1p.u., an
increase of 3.6% occurs for the more challenging scenario with V0 = 0.95 p.u.. The back-up
heater operation is reduced by over 50%, which also leads to a better performance factor. The
total electricity demand is reduced by around 10% and the maximum power �ow (occurs at
P1 over the transformer) is reduced by over a third. Finally, the distributed MPC algorithm
converges to the correct value of the objective function, the costs computed with the central
optimization match those obtained after the 100 ADMM iterations.

Table 6.3: Aggregated electricity demands, costs, performance factor and maximum values for all pro-
sumers of type E over the scenarios. The �rst two cost entries for �at price and time-varying
price without coordination result from the reference operation. Percentage change based on
scenario time-varying price without coordination.

Flat price Time-varying price
Coordination No No Yes Yes
V0 [p.u.] 1 1 1 0.95

residual load [kWh] 907.2 1109.7 1114 (+0.4%) 994 (-10.4%)
heat pump [kWh] 652.2 590.8 586.6 (-0.7%) 623.4 (+5.5%)
back-up heater [kWh] 0 263.9 272.4 (+3.2%) 115.7 (-56.2%)
�xed demand [kWh] 255 255 255 255

Costs [kWh] 907.2 703 703.3 (+0.0%) 728.2 (+3.6%)
Costs CO [kWh] 703.3 728.2

PF 3.26 2.57 2.55 2.91

max (P ) [kW] 68.2 230.9 218.6 (-5.3%) 149.6 (-35.2%)
min (V ) [p.u.] 0.9685 0.8868 0.9 0.9
max (T z) [◦C] 20.6 21.6 21.6 21.5

The total increase in costs due to coordination for scenarios of undervoltage is unequally dis-
tributed among the individual prosumers participating in the DMPC scheme. While the total
costs of all participants increase only by 3.6% for V0 = 0.95 p.u., prosumers located at feeder 3
(includes prosumers {6, 7, 8, 9, 10, 11, 12, 13}) face cost increases above this value, except for
prosumer 6. Prosumer 13 located at bus 27, where undervoltage was found to occur �rst in the

4Costs are expressed in kWh since π is assumed dimensionless.
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analysis in Section 4.3, faces a cost increase by 13.6% in the scenario with V0 = 0.95 p.u..
The results for Rural Grid 1 and prosumer buildings of type J are similar to those of type E. The
total costs increase by 2.3% when compared with the uncoordinated time-varying price scenario
and V0 = 0.95 p.u.. The complete results for type J are provided in Table B.1 in the Appendix.
The aggregated results for type L are shown in Table 6.4, signi�cant changes in operation of the
back-up heaters and heat pumps are required when coordination takes place in the challenging
scenario with V0 = 0.95 p.u. (no voltage limit was violated for V0 = 1 p.u.). The solution
obtained after 100 ADMM iterations is only 0.04% higher than the cost obtained from the CO
and could be further improved with more iterations. The increase in costs of 0.3% is relatively
small when the total costs of all prosumers are considered. Flexible operation allows the systems
to maintain voltage stability at low costs.

Table 6.4: Aggregated electricity demands, costs, performance factor and maximum values for all pro-
sumers of type L in the scenario V0 = 0.95 p.u. where coordination is required. The �rst two
cost entries for �at price and time-varying price without coordination result from the reference
operation. Percentage change based on scenario time-varying price without coordination.

Flat price Time-varying price
Coordination No No Yes
V0 [p.u.] 1 1 0.95

residual load [kWh] 353.6 532.3 447.6 (-15.9%)
heat pump [kWh] 96.4 31.7 61.1 (+92.7%)
back-up heater [kWh] 2.2 245.7 131.5 (-46.5%)
�xed demand [kWh] 255 255 255

Costs [kWh] 353.6 248.6 249.4 (+0.3%)
Costs CO [kWh] 249.3

PF 3.12 1.18 1.69

max (P ) [kW] 33.8 173.9 102.5 (-41.1%)
min (V ) [p.u.] 0.9837 0.9157 0.9
max (T z) [◦C] 22.2 22.2 22.2

6.2.2 Closed-loop Simulation for a Week in Winter

The following section demonstrates the functionality of the DMPC algorithm for coordination
during winter time from February 9 to February 15. The second day of the 7 days was used for
the demonstration of the single-shot open-loop results investigated in the previous section. This
procedure is now repeated at each time step to simulate realistic operation over a longer period
of time.
Figure 6.5 shows the simulation results for the 7 days closed-loop DMPC operation of the 17
prosumers of type L without a bu�er storage in Rural Grid 1. The distributed optimization
has been carried out at each time instant to coordinate the operation for the time-varying price
and V0 = 0.95 p.u.. At each time instant the ADMM iterations were stopped when both the
Euclidean norms of the primal and dual residuals in Equations (5.110) and (5.111) were below

εprim = εdual = 10−3
√
NPI = 10−3

√
96× 17 = 0.0404. (6.18)

123



CHAPTER 6. SIMULATION RESULTS

As an example, this threshold corresponds to a maximum disagreement between the residual
load pro�les of the DSO and the prosumers of 40 W in a single entry of the vector (a`k − r`k), i.e.
for a single instant of time and prosumer when the disagreement is zero for all other times and
prosumers. A maximum number of ` = 100 iterations is set as a second termination criterion
to avoid lengthy simulation time when the �rst criterion has not been reached yet. Independent
of whether or not the algorithm's latest solution has reached the above stated accuracy, after
100 iterations the DMPC algorithm will proceed to the next time step and the latest solution is
applied to the prosumers' building systems. After either of the termination criteria is met, the
algorithm proceeds 15 minutes in time and ADMM begins to iterate to a new solution for the
updated 24 hours prediction window. Warm-start is used for initialization.
The �rst diagram shows the ambient temperature and solar gains input over the 7 days. After
three days of temperatures around 0 ◦C, the temperature drops to a record low. This is accom-
panied by clear sky conditions which lead to relatively high solar gains during the day. The
zone and �oor temperatures show how overheating is carried out by some prosumers during the
�rst days during zero price hours, leading to recognizable peak loads in the aggregated residual
load pro�le. The tight insulation of building type L allows to optimally integrate the daily solar
gains, which primarily enter through the large south-facing window. The inertia of the system
was already identi�ed in Section 2.3 and allows for almost no space heating operation during
days �ve and six. The remaining residual load covers mainly the domestic hot water demand
and �xed electricity load during this time. The zone and �oor temperatures show similarity
among the prosumers since they are dominated by either coincident inactivity in the night or
solar gains during the day. The �fth diagram shows the sum of the residual loads of all prosumers
for the uncoordinated case, the central optimization result and the DMPC result computed with
ADMM at each time instant. Load peaks are reduced to maintain global feasible operation when
compared with the uncoordinated reference operation. ADMM achieves a very similar aggre-
gated operation compared with the central optimization result, especially during times when the
voltage constraints are active. The last diagram shows how the voltage is always kept between
0.9 and 0.95 p.u.. Coordination allows the voltage at the worst buses to drop to 0.9 p.u. to
maximize the bene�t from reduced prices.
Table 6.5 shows the corresponding aggregated results for the simulation over 7 days with build-
ings of type L. The results are calculated with the realized operation over the full simulation
period, in contrast to the open-loop single 24 hours prediction analyzed in the previous sec-
tion. The peak load is more than quadrupled for the uncoordinated time-varying price scenario
compared with the �at reference operation, even exceeding the maximum value of the previous
open-loop result. Like in the open-loop simulation, the back-up heater operation has to be re-
duced drastically to maintain voltage stability for V0 = 0.95 p.u.. The costs increase by 3.4%. In
the coordinated case, back-up heater reduction leads to limitation of the transformer peak load
by around a �fth.

124



6.2. VOLTAGE STABILITY

Figure 6.5: Closed-loop results for the coordination of 17 prosumers of type L in Rural Grid 1 via the
distributed MPC algorithm based on ADMM with ρ = 0.01. Uncoordinated reference operation
(Uncoord.) and central optimization (CO) pro�le for comparison.
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Table 6.5: Aggregated electricity demands, costs, performance factor and maximum values for all pro-
sumers of type L over the scenarios in closed-loop simulation. The �rst two cost entries for
�at price and time-varying price without coordination result from the reference operation. Per-
centage change based on scenario time-varying price without coordination.

Flat price Time-varying price
Coordination No No Yes
V0 [p.u.] 1 1 0.95

residual load [kWh] 2587.4 3850.8 3237.6 (-15.9%)
heat pump [kWh] 913.6 546.4 641.8 (+17.5%)
back-up heater [kWh] 26.3 1656.9 948.3 (-42.8%)
�xed demand [kWh] 1647.5 1647.5 1647.5

Costs [kWh] 2587.4 1832.6 1894.8 (+3.4%)
Costs CO [kWh] 1895.9

PF 3.06 1.5 1.82

max (P ) [kW] 39.6 190.5 148 (-22.3%)
min (V ) [p.u.] 0.9815 0.9062 0.9
max (T z) [◦C] 27.1 27.1 27.2

Figure 6.6 shows the results for the same setting but building type E (no bu�er storage). Similar
to the observations made in Figure 6.4, coordination requires primarily the prosumers of the
long feeder 3 to limit the heat pump and back-up heater operation during zero price hours to
maintain voltage stability. This can be seen in the partially weaker increase in the �oor and
zone temperatures during the �rst two days. The high solar gains lead to an increase of the zone
temperature during days 4, 5, and 6. In contrast to building L, space heating must be provided
during the night when the temperature drops severely due to the weaker insulation. The heat
pumps then often operate at maximum capacity to keep the �oor temperature at a high level to
maintain the zone temperature above 20 ◦C. The �fth diagram shows how the solutions of the
ADMM algorithm have converged to an aggregated residual load pro�le very similar to the one
obtained from the central optimization. The residual load peaks are clearly reduced compared
with the uncoordinated reference operation, which at times leads to transformer overloading (see
peak above 225 kW in the aggregated residual load during zero price hours on day two). The
voltages never drop below 0.9 p.u.. The lowest voltages regularly occur at buses 11 and 27, at
the ends of the feeders 2 and 3.
Figure 6.7 shows the change in the residual load when the uncoordinated reference operation is
compared with the coordinated operation for V0 = 0.95 p.u. The residual load is again mainly
reduced by prosumers 7−13 at feeder 3 during zero price hours, but also prosumer 5 at the end of
feeder 2 is a�ected. The change in operation is often accompanied by an increase of the residual
load during the hours right before the low price and another reduction just before that time.
The pattern is well recognizable for 6 out of the 7 days and demonstrates how the operational
�exibility allows to redistribute the residual load to maintain feasible distribution grid operation.
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Figure 6.6: Closed-loop results for the coordination of 17 prosumers of type E in Rural Grid 1 via the
distributed MPC algorithm based on ADMM with ρ = 0.01. Uncoordinated reference operation
(Uncoord.) and central optimization (CO) pro�le for comparison.

Table 6.6 shows the aggregated results for the simulation over 7 days with buildings of type
E. The operation in the �at price scenario achieves the highest energy e�ciency by exploiting
times of a high COP, the back-up heater operation is limited to few instances when it is used to
maintain domestic hot water comfort. This operation leads to the highest performance factor.
The change in operation to maintain voltage stability is similar to the previous results. The
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Figure 6.7: Change in the residual load in kW for all prosumers of type E compared with the uncoordinated
operation for V0 = 0.95 p.u.

increase in total electricity demand due to the time-varying price has to be reduced by 7.7% in
the restrictive case of V0 = 0.95 p.u., mainly caused by a 50% reduction of the demand of the
back-up heaters. This also increases the overall performance factor. The active power �ow over
the transformer exceeds its line �ow limit in the uncoordinated case and is reduced by 3.9% and
33.4% in the coordination scenarios. The maximum zone temperatures are now determined by
the solar gains input over the sunny days. The aggregated costs over all prosumers are very close
to those obtained from the central optimization. The relative increase in total costs of 3.8% for
V0 = 0.95 p.u. is in the order of the previous open-loop result of 3.6%.

Table 6.6: Aggregated electricity demands, costs, performance factor and maximum values for all pro-
sumers of type E over the scenarios in closed-loop simulation. The �rst two cost entries for
�at price and time-varying price without coordination are the result of the reference operation.
Percentage change based on scenario time-varying price without coordination.

Flat price Time-varying price
Coordination No No Yes Yes
V0 [p.u.] 1 1 1 0.95

residual load [kWh] 7815.8 9208.3 9238.7 (+0.3%) 8495.4 (-7.7%)
heat pump [kWh] 6164.1 5590.3 5571.4 (-0.3%) 5861.4 (+4.8%)
back-up heater [kWh] 4.2 1970.6 2019.9 (+2.5%) 986.5 (-49.9%)
�xed demand [kWh] 1647.5 1647.5 1647.5 1647.5

Costs [kWh] 7815.8 6265.9 6270.4 (+0.1%) 6502.6 (+3.8%)
Costs CO [kWh] 6269.7 6502.4

PF 2.93 2.42 2.41 2.65

max (P ) [kW] 80.5 230.9 222 (-3.9%) 153.7 (-33.4%)
min (V ) [p.u.] 0.9631 0.8868 0.9 0.9
max (T z) [◦C] 24 24 24 24
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Figure 6.8: Percentage increase in costs per prosumer of building type E over the 7 days for di�erent
bu�er storage volumes from 0 l to 250 l in Rural Grid 1 when coordination is required for
time-varying prices and V0 = 1 p.u. or V0 = 0.95 p.u.. Cost increases are calculated relative
to the uncoordinated case without any bu�er volume (left) and relative to the uncoordinated
case with the respective bu�er volume (right).

Cost Increase Per Prosumer and Additional Bu�er Volume

Figure 6.8 shows the relative increase in costs per prosumer of type E due to coordination
in the closed-loop simulation for di�erent bu�er storage volumes. Storage losses lead to an
increase in costs for both volumes and for all prosumers for V0 = 1p.u. when compared with
the uncoordinated operation without a bu�er (left diagram). The larger bu�er storage leads
to higher losses, but the additional volume allows the prosumers to operate at slightly lower
costs. The more restrictive scenario with V0 = 0.95 p.u. leads to an increase in costs of 11.4%
for prosumer 13 over the simulation period when no bu�er storage is used. The increase can be
reduced by around 25% when a 100 l volume is used. Mainly prosumer 5 at the end of feeder 2
and prosumers 7-13 along feeder 3 face increased costs for V0 = 0.95 p.u. when no bu�er storage
is available. Prosumers 11, 12 and 13 do not bene�t from more storage volume. Since their
operation during zero price hours is strongly limited to maintain voltage stability, additional
volume cannot be utilized to reduce costs further and additional losses dominate the result.
Coordination for V0 = 1p.u. does only lead to marginal increases in costs below 1% when
compared with the costs of the reference operation with the respective volume (right diagram).
It must be noted that the uncoordinated reference operation with a bu�er storage results in
less back-up heater operation during zero prices and fewer voltage violations per se, but the
lower voltage limit was still violated at certain times in all cases. The relative cost increase
for V0 = 0.95 p.u. is only 2% for prosumer 13 and even lower for the other participants when
they are equipped with a small volume of 100 l. The results indicate that a small bu�er volume
allows to adapt operation at a low increase of costs for the scenario investigated here. The
bene�t of additional bu�er storage volume depends on the location in the distribution grid. An
uneven distribution of bu�er volumes among the prosumers might be optimal from a planning
perspective and a DSO could incentivize speci�c participants to invest in additional storage to
support voltage stability.
The simulation results for building type J are not shown since they are similar to those of type
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E, although at a lower level of demand due to the better insulation standard. The aggregated
results are provided in Table B.2 in the Appendix.

Figure 6.9: Ratio of the objective values from ADMM (F`∗) and the central optimization (F∗) at each
time step over the simulation period of 7 days for building type E without the bu�er and
V0 = 0.95 p.u. (top). `∗ denotes the iteration when either of the termination criteria are met.
The bottom diagram shows the corresponding number of iterations required at each time step
(bottom). ρ = 0.01 in all cases.

Convergence

The top diagram in Figure 6.9 shows the ratio of the cost function evaluated at the last ADMM
iteration and the optimal solution obtained from the central optimization at each time step over
the simulated week for type E. F `∗ denotes the objective value of cost function (6.3) obtained
via ADMM after `∗ iterations, F∗ is the objective value at the optimal solution of the central
optimization. The stopping criteria with εprim = εdual = 10−3

√
NPI and maximum iterations

` = 100 leads to costs very close to those of the central optimization, the DMPC solutions
are within the range ±1%. The small remaining di�erence to the central optimization can be
attributed to either suboptimality or global infeasibility5 of the last solution `∗, or remaining
numerical errors.
The bottom diagram shows the corresponding number of iterations required at each time step to
meet the termination criteria. The scenario of V0 = 0.95 p.u. requires substantial coordination,
i.e. the uncoordinated residual load schedules of some prosumers have to be signi�cantly altered
to enable a global feasible operation. This is re�ected in the relatively high number of iterations

5Since the stopping criterion requires only limited consensus between a`k and r`k, the last solution might not
be exactly global feasible.
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Table 6.7: Total number of iterations, average number of iterations per time step and the highest number
of iterations for coordination scenarios in Rural Grid 1 and type E buildings. ρ = 0.01 in all
simulations.

Iterations
total number average maximum

V0 = 0.95 p.u., ` = 200 55,733 82.94 193
V0 = 0.95 p.u., ` = 100 51,831 77.13 100
V0 = 0.95 p.u., ` = 100, Cold-Start 53,117 79.04 100
V0 = 1p.u., ` = 100 15,776 23.48 100
V0 = 0.95 p.u., ` = 100, 100 l 11,514 17.13 100

required: the maximum number of iterations ` = 100 is reached in 33% of all time steps.6

At certain times, more iterations have to be carried out to achieve the required accuracy, as
can be seen in the result for the case when the maximum iterations limit is relaxed to 200
iterations. The less restrictive scenario with V0 = 1 p.u. requires fewer iterations most of the
time. A similar situation is observed for the stricter scenario but with a 100 l bu�er storage.
The uncoordinated reference operation with the bu�er volume already leads to almost 50 % less
incidents of undervoltage7 when compared to the scenario without a bu�er. This is likely to
impact the number of iterations required for coordination.
Table 6.7 shows the total number of iterations, the average and maximum number per time step
for the di�erent simulations carried out for coordination. Increasing the maximum number of
iterations to 200 allows the algorithm to always reach the required accuracy within this limit, but
it also results in slightly more iterations on average. Warm-starting has a positive but relatively
small e�ect, the total number of iterations can be reduced by 2.4% for the simulated week. The
average number of iterations is reduced by approximately two iterations. It is important to note
that dynamic scaling of ρ can further improve the rate of convergence at each time step. Since
the optimal penalty parameter may change for each time step, �xing it to a certain value will not
necessarily result in the fastest implementation. Even though the 17 prosumer updates would
be completely parallelized in a real-world setting, improving the speed is crucial for practical
implementations. An obvious time limit is given by the control horizon, which de�nes for how
many time steps ahead the last computed controllable inputs are used. Since only the �rst
solution is used in the closed-loop simulation here, 15 minutes would be the maximum time
window to convergence to a feasible solution.

6A maximum of 100 iterations per time step leads in the setting of 17 prosumers and one DSO to a worst case
of (17 + 1)× 100× 96× 7 = 1.209.600 optimizations to be carried out over one week with a discretization of 15
minutes.

7A single bus voltage violation at one time instant is counted as one incident.
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6.3 Valley-Filling

The following section demonstrates the functionality of the DMPC algorithm to achieve valley-
�lling. The sum over the squared aggregated residual load is minimized in addition to the
individual cost functions, i.e. ω in the total cost function (6.3) is no longer zero. As a result,
the aggregate residual load is �attened out depending on the weighting scaled by ω. The price
π for electricity is assumed to be �at. The price for usage of the temperature slack variable
is increased to Mi = 106 to avoid comfort violations for a �atter pro�le with large ω. No PV
generation is available. Results are not discussed for type J since they were similar to type E.

6.3.1 Open-loop Solutions for a Winter Day

Figure 6.10 shows the open-loop simulation results of February 10 for ω = 10−3 and ω = 1 for
17 prosumers of type E and L in Rural Grid 1. The �rst row shows the sum of the �xed loads,
the heat pumps and back-up heaters and the residual loads over all prosumers after 50 ADMM
iterations. As expected, there is a strong di�erence between the aggregated residual load after
coordination compared with the uncoordinated case. A larger ω results in a �atter pro�le. Op-
eration is rescheduled to optimally add to the in�exible �xed load to avoid peak loads in the
aggregated pro�le. This is especially well noticeable for type L, where the electricity demand for
heating perfectly adds to the �xed demand without causing new peaks. The aggregated residual
load after 50 ADMM iterations matches well the pro�le obtained from the central optimiza-
tion. The second row in Figure 6.10 shows the zone temperatures of the prosumers. Stronger
overheating is noticeable for building type E and ω = 1 when compared with the temperature
trajectories for ω = 10−3. The third and fourth row show the progression of the residuals over
the iterations, the ratio of the total cost compared with the central optimization and the updated
penalty parameter ρ. The adaptive ADMM penalty parameter scheme from [XFG17] allows to
tune ρ in every other iteration and approaches its optimal value relatively fast. With arbitrary
chosen ρ0 = 0.01 from the previous section, the �nal values ρ50 di�er depending on the problem
scaling with ω. A period of a fast decrease of the residuals is followed by slower progress after
a certain amount of iterations. The residuals when ρ remains �xed at 0.01 are also shown. The
adaptive scheme is highly bene�cial when the initial value of ρ is far away from the optimal value,
see e.g. the very slow progress in the primal residuals for both building types with ω = 1. The
objective value F ` obtained via ADMM approaches quickly the total costs F∗ of the solution
obtained from the central optimization.
Any feasible deviation from the uncoordinated reference operation causes increased energy costs,
since it is the benchmark for the lowest total energy consumption in the �at-price scenario. Thus,
rescheduling the heating system for the shared goal of a �atter aggregated pro�le results in in-
creased energy demands and costs of the prosumers. Figure 6.11 shows the objective values of
the prosumer and shared cost functions, mean and standard deviation of the aggregated residual
load and mean of each prosumer's zone temperature for di�erent ω and building types E and L
without a bu�er. The open-loop results are obtained after 50 ADMM iterations with adaptive
penalty parameter ρ. The total costs (here energy demands) over all prosumers increase with in-
creasing ω but also saturate for a larger weighting factor. The increase in total electricity demand
in kWh is below 1% for both building types when the case ω = 102 is compared with the refer-
ence operation (ω = 0). The largest increases in the prosumers' individual demands are 1.12%
for type E and 0.46% for type L. As a larger ω puts more emphasis on minimizing the squared
aggregated residual load pro�le, the associated objective value of cost function gs decreases for a
larger weighting factor. The second row of Figure 6.11 shows the mean and standard deviation
of the aggregated pro�le

∑I
i=1 ri. The standard deviation is reduced by over 50% for type E

and by over two thirds for type L for ω = 102, the mean of the aggregated residual load remains
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almost unchanged. The operational �exibility to deviate from the reference schedule leads to a
small increase below 0.5 ◦C of the mean temperatures of all prosumers when ω is increased for a
�atter pro�le. A similar increase was observed for the �oor temperature.

Figure 6.10: Open-loop results for valley-�lling with ω = 10−3 and ω = 1 for 17 prosumer of type E and
L. ADMM initialized with ρ = 0.01.
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Figure 6.11: Change in the aggregate prosumer and shared cost funtions (top), mean and standard devia-
tion of the aggregated residual load (middle) and mean of each prosumers zone temperature
for di�erent ω and building types E and L without a bu�er.

6.3.2 Closed-loop Simulation for a Week in Winter

A closed-loop simulation run is carried out for the same week in winter as was used for the
analysis on voltage stability. The simulations for both building types E and L are carried out
for ω = 1 and the penalty parameter is �xed to ρ = 31 and ρ = 20.5 respectively for the building
types based on the values identi�ed in Figure 6.10. The maximum number of iterations is set
to ` = 50 and the stopping criteria is set to εprim = 10−2

√
NPI and εdual = 10−2ρ

√
NPI.

This guarantees su�cient accuracy since the coordinated operation results in line �ows and bus
voltages with good distance to the operational limits.
Table 6.8 shows the aggregated results of the closed-loop simulation for the reference operation
with a constant �at-price and the coordinated operation for valley-�lling with ω = 1. The
electricity demand (and thus costs) of the aggregated residual load increases only slightly to
achieve a �attened pro�le, i.e. +1.1% for type E and +0.3% for type L. The heat pumps demand
slightly more electricity, but the performance factors remain almost unchanged. The objective
value of the shared cost function over the realized operation8 decreases for both building types,
which con�rms the open-loop results. The objective values of the coordinated operation with
ω = 1 increase strongly due to the quadratic term in cost function (6.3). Inserting the realized
operational schedules from the DMPC operation with ADMM and the central optimization in
the total cost function yields the total costs. The objective values from ADMM are very close to
those obtained from the central optimization. Valley-�lling has a strong impact on the maximum
and standard deviation of the aggregated residual load, e.g. the maximum peak caused by the

8Stated as gs in the table with a slight abuse of notation.
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prosumers of building type L is reduced by over a quarter. The resulting bus voltages are not
critical and the increase in the mean temperature is moderate.
The dynamic simulation results for valley-�lling for the two building types are shown in Figure
6.12 and Figure 6.13. The operation of the heat pumps is to a certain extent a mirror image
of the predicted �xed load, i.e. the heat pumps are mainly operating when the �xed load is
low and vice versa. It is well recognizable for building type L how the operation of the heating
systems does almost not create new peaks in the aggregated residual load pro�le. The resulting
pro�le is strongly �attened out when compared with the more volatile uncoordinated operation.
In summary, the aggregated load at the transformer can be signi�cantly altered in shape and
volatility with only a marginal increase in the operational costs and a marginal impact on the
comfort of the participants.

Table 6.8: Aggregated electricity demands, costs, performance factor and system metrics for the uncoor-
dinated reference operation with a �at price and for coordination of valley-�lling with ω = 1
for the seven days closed-loop simulation. With a slight abuse of notation, the shared costs gs
are here computed by the realized residual load schedules of the closed-loop simulation and are
stated to show the composition of the total costs. Function gs is also evaluated for the scenario
when no coordination takes place (values in brackets).

Building type E Building type L
Coordination No ω = 1 No ω = 1
V0 [p.u.] 1 1 1 1

residual load [kWh] 7815.8 7900.3 (+1.1%) 2587.4 2595.7 (+0.3%)
heat pump [kWh] 6164.1 6249.3 (+1.4%) 913.6 921.9 (+0.9%)
back-up heater [kWh] 4.2 3.5 (-16.7%) 26.3 26.3 (+0.0%)
�xed demand [kWh] 1647.5 1647.5 1647.5 1647.5

gs (1,673,949.6) 1,550,579 (-7.4%) (208,948) 170,019.8 (-18.6%)
Costs 7815.8 1,558,479.3 2587.4 172,615.5
Costs CO 1,558,246.4 172,495.8

PF 2.93 2.93 3.06 2.96

max (
∑I

i=1 ri) [kW] 80.5 69.7 (-13.4%) 39.6 29.4 (-25.8%)
σ(
∑I

i=1 ri) [kW] 18.1 9.8 (-45.9%) 8.6 3.8 (-55.8%)
µ(
∑I

i=1 ri) [kW] 46.5 47 (+1.1%) 15.4 15.5 (+0.6%)
min (V ) [p.u.] 0.9631 0.9685 0.9815 0.9834
µ(T z) [◦C] 20.5 20.7 21.9 22
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Figure 6.12: Closed-loop results for valley-�lling coordination of 17 prosumers of type E in Rural Grid 1
via the distributed MPC algorithm based on ADMM with ρ = 31. Uncoordinated reference
operation (Uncoord.) and central optimization (CO) pro�le for comparison.
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Figure 6.13: Closed-loop results for valley-�lling coordination of 17 prosumers of type L in Rural Grid 1
via the distributed MPC algorithm based on ADMM with ρ = 20.5. Uncoordinated reference
operation (Uncoord.) and central optimization (CO) pro�le for comparison.
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6.4 Community Self-Consumption

The last study demonstrates the ability of the DMPC implementation to increase the consump-
tion of local PV generation on the community level. The reference operation assumed for the
study on community self-consumption remains the same as it was in the previous two studies,
i.e. the reference operation is obtained by solving only the i-indexed parts in (6.3)-(6.11) consec-
utively to optimize individual prosumer energy costs while maintaining local feasible operation.
This is achieved by each prosumer with a PV plant by consuming as much local generation
as possible since PV feed-in is assumed to not be compensated. Buildings without generation
minimize their individual costs by operating the heating system in the most energy e�cient way.
The central optimization problem for coordination to achieve minimum costs on the community
level is changed to the cost function from (5.78) and extended in the constraints by (5.76)-(5.77)
to account for the new optimization variable P+

1 :

minimize
(u,r,r+,s,P ,P+

1 ,Q,U ,sg)
∆tπ

T
kP

+
1,k +Mg1

Tsg,k +
I∑
i=1

Mi1
Tsi,k (6.19)

subject to (6.4)− (6.16) (6.20)

P+
1,k ≥ 0 (6.21)

P+
1,k ≥ P 1,k. (6.22)

A �at price is assumed and the community has to pay for the positive parts of the aggregated
residual load transfer over the transformer, i.e. P+

1 . The prosumers {1, 4, 5, 12, 13, 15, 16, 17}
located at the ends of the feeders in Figure 4.2 of Rural Grid 1 are assumed to be equipped with
PV panels of roughly 7 kW installed capacity per roof.9 The stopping criteria from Section 6.2.2
are also used here to abort ADMM iterations.
Figure 6.14 shows the closed-loop simulation results for the seven days in winter. All buildings
and prosumers participate in the coordination and are of building type E without a bu�er
storage. The zone and �oor temperatures are kept within their limits. The �oor temperatures
are increased during the severe temperature drop over the night from the third to the forth
day which also involves an increase in the zone temperatures. The increase in the temperatures
during the following days are caused by both heating system operation and higher solar gains.
The fourth plot shows how parts of the aggregated heat pump operation are located at times
when PV generation occurs to reduce the community's energy costs. Back-up heaters are rarely
used. The �fth subplot shows the resulting aggregated residual load pro�le (equivalent to P 1

over the transformer) resulting from the DMPC simulation. Two further aggregated residual
load pro�les are plotted to demonstrate the impact of coordination. The �rst additional pro�le
results from the uncoordinated reference operation without anticipation of the PV generation,
i.e. buildings with a PV plant do not predict their local generation in the predictive controller
and only optimize the heating system in an energy e�cient way. The residual load of the
prosumers is then just the post-operation subtraction of the local generation from the local total
electricity demand. Local generation is only consumed when it naturally coincides in time with
the local electricity demand (no PV prediction, Uncoord.). The second additional aggregated
pro�le shows the result for the uncoordinated reference operation when local PV generation is

9The PV panels are south-facing and have a tilt angle of 30◦. A module e�ciency of 15% and a system
performance ratio of 85% is assumed. The earlier chapters referred to all buildings as prosumers due to the
general problem formulation introduced earlier to account for local generation, despite PV availability in the
simulation scenarios. In the following a distinction is made between buildings with PV (prosumers) and those
without (buildings).
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predicted within each prosumer's MPC and the heating system operation can be adjusted with
respect to the additional information (Uncoord.).

Figure 6.14: Closed-loop results for the coordinated community cost optimization with type E buildings
in Rural Grid 1 via the DMPC algorithm based on ADMM with ρ = 0.1. 8 buildings are
equipped with a PV plant. Aggregated residual load pro�les for the uncoordinated reference
operation without (no PV prediction, Uncoord.) and with PV prediction (Uncoord.) for
comparison.
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The resulting aggregated pro�les have more spikes when the operation is not coordinated. Local
anticipation of the PV prediction reduces the individual costs of the prosumers and in this case
the negative residual load when compared with the aggregated residual load from the reference
operation without PV prediction. The coordinated DMPC operation achieves almost always a
non-negative residual load throughout the simulation by placing the heat pump operation at
times of high PV generation. The bus voltages are never critical, they drop during peak load
times and increase slightly at midday when PV generation peaks.
Figure 6.15 shows for day six how the operation of the individual building energy systems is
adjusted to lower the aggregated costs by a better utilization of the available PV generation.
Prosumer 13 is equipped with a PV plant. When no coordination takes place (Uncoord.), its
heat pump operation follows the local available PV generation for the �rst hours until the �oor
temperature reaches its operational maximum for a second time. When coordination takes place,
the heat pump operation is rescheduled and, especially during the �rst hours when PV generation
is available, reduced. At the same time, building 11 without PV generation increases its heat
pump operation to coincide with the PV generation of the prosumers.

Figure 6.15: Closed-loop simulation results for prosumer 13 equipped with PV and building 11 without PV
for day six. Operation of the heat pumps from the reference operation with PV prediction
(Uncoord.) and the coordinated operation via the DMPC algorithm.

In the following, a closer look at the per building level demonstrates the impact of the three
di�erent strategies of operation: uncoordinated reference operation without PV prediction, un-
coordinated reference operation with PV prediction and �nally coordinated operation with PV
prediction to minimize community costs. The plots in the left column of Figure 6.16 show the
di�erences in the zone, �oor, domestic hot water storage temperatures and the residual loads
of each building and prosumer when the results of the uncoordinated reference operation with-
out PV prediction are subtracted from the uncoordinated operation with PV prediction. The
di�erences are well recognizable for days four to seven, when larger amounts of PV generation

140



6.4. COMMUNITY SELF-CONSUMPTION

are available. The prosumers equipped with a PV plant change their individual operation in
order to minimize costs. Their residual loads are increased when PV generation starts and are
reduced when the generation peak has been passed. Changed heating has a similar e�ect on
the zone, �oor and domestic hot water temperatures, which are increased when PV generation
occurs. Obviously, operational changes only occur for buildings equipped with PV systems since
no aggregated coordination takes place. This is changed in the right column of Figure 6.16,
where the calculated di�erences result from subtracting the temperatures and residual loads of
the reference operation with local PV prediction from the coordinated operation obtained from
the DMPC algorithm. In order to optimize the community's aggregate costs by increasing the
overall PV consumption, buildings without a PV plant increase their heating system operation
during times when PV is available. Coordination leads to increased residual loads and temper-
atures when PV is available, especially well recognizable for days �ve and six. The prosumers
with PV deviate from their individual optimal reference operation and reduce their operation
during those times, which leads to the opposite e�ect on the temperatures and residual loads.
Table 6.9 shows the aggregated results for the community in Rural Grid 1 for the seven days
closed-loop simulation. The results are shown for building types E and L, the community's
self-consumption over the simulation period T is computed as

Ω = 1−
∑T

t=1|min(P1(t), 0)|∑T
t=1

∑I
i=1 gi(t)

. (6.23)

The �rst columns for type E and L each show the results of the uncoordinated reference operation
when PV generation is not predicted by the prosumers. Predicting local generation helps the
prosumers with a PV plant to alter their operation to achieve lower costs. In this case, also the
total costs measured at the transformer are reduced by 1.69% for the type E buildings (second
column). The level of the community's self-consumption Ω is increased from 71% when PV is not
predicted to 90% when those buildings with a PV plant predict their local generation. This can
be further enhanced to a 100% self-consumption of all local PV generation when coordination is
carried out with the DMPC algorithm. The costs are reduced by 2.3%. The minimum residual
load peak over the transformer is drastically reduced when coordination takes place.
The community's costs can be reduced by 5.2% when type L buildings with a lower heating
demand are coordinated. This indicates the high �exibility of the systems to alter operation.
The additional back-up heater operation is used for both space-heating and domestic hot water
and results in a lowered performance factor. The community's self-consumption is increased
from 65% to 83%, leaving some remaining PV generation which cannot be integrated due to
the overall lower heating demands of the buildings. In contrast to the case of building type E,
coordination has no e�ect on the minimum residual load peak over the transformer.
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Figure 6.16: Per time step di�erences between the temperatures and residual loads of the uncoordinated
reference operation with and without PV prediction (left column) and the coordinated DMPC
operation and the uncoordinated reference operation with PV prediction (right column) over
all buildings and prosumers over the seven simulated days.
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Table 6.9: Aggregated electricity demands, costs, performance factors, levels of self-consumption and sys-
tem metrics for the uncoordinated reference operation without PV prediction, with PV pre-
diction and for coordination to achieve minimum costs of the community by increasing self-
consumption for the seven days closed-loop simulation. Percentage change with respect to the
case without coordination and with PV prediction. All costs measured at the transformer.

Building type E Building type L
Coordination No No Yes No No Yes
PV prediction No Yes Yes No Yes Yes

cum. demand [kWh] 6742.9 6828.6 6773.1(-0.8%) 1514.6 1622.4 1709.4(+5.4%)
heat pump [kWh] 6164.1 6165.3 6194.6(+0.5%) 913.6 858 829.9(-3.3%)
back-up heat. [kWh] 4.2 88.7 3.9(-95.6%) 26.3 189.8 304.9(+60.6%)
�xed demand [kWh] 1647.5 1647.5 1647.5 1647.5 1647.5 1647.5
PV [kWh] 1072.9 1072.9 1072.9 1072.9 1072.9 1072.9

Costs 7052.1 6932.6 6773.2(-2.3%) 1931.1 1995.5 1891.6(-5.2%)
Costs CO 6769.9 1906.8

PF 2.93 2.9 2.93 3.06 2.76 2.58
Ω 0.71 0.9 1 0.61 0.65 0.83

max (P 1) [kW] 75.4 75.4 73.3 39.2 40.5 38.9
min (P 1) [kW] -34.3 -24.3 -0.1 -33.4 -33.4 -33.4
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6.5 Conclusion

The three simulation studies on voltage stability, valley-�lling and community cost reduction
through optimized PV self-consumption have demonstrated the mechanism and e�ectiveness of
the DMPC algorithm to coordinate the operation of prosumers or building energy management
systems in distribution grids. Medium sized Rural Grid 1 was chosen to simplify the analysis of
the simulation results.
A time-varying price scenario was introduced to cause undervoltages in the study on voltage sta-
bility. While the uncoordinated reference operation of 17 older and weaker insulated buildings
of type E already caused undervoltages below 0.9 p.u. for a slack bus voltage of V0 = 1 p.u.
during the zero price hours, modern buildings of type L caused undervoltages only for a lower
slack bus voltage level such as V0 = 0.95 p.u.. The DMPC algorithm managed to reschedule the
operation of the prosumers to avoid voltages below 0.9 p.u., while it maintained individual tem-
perature bounds and operational limits of the heating systems of all participants. The open-loop
solutions computed with the distributed optimization of ADMM matched those obtained from a
reference central optimization. The closed-loop simulation results showed that coordination to
maintain voltage stability led to a minimal to moderate increase of the total costs, i.e. +3.8% for
type E and +3.4% for type L in the restrictive scenario with V0 = 0.95 p.u.. The per prosumer
cost increase was signi�cantly higher for those participants connected to the most critical buses
and feeder, i.e. where the residual load pro�les had to be altered most to prevent undervolt-
age. As an example, DMPC coordination for feasible distribution grid operation led to a cost
increase of 11.4% over the simulated week for the prosumer located at the end of the longest
feeder. The use of additional bu�er storage volumes led to an increase in costs per prosumer
for the less restrictive scenario of V0 = 1 p.u., due to the fact that additional storage losses
overcompensated bene�ts of additional operational �exibility. In contrast, prosumers who faced
the strongest undervoltages bene�tted the most from a bu�er storage volume in the stricter sce-
nario with V0 = 0.95 p.u.. The worst cost increase among the prosumers was reduced by 25%
in the closed-loop simulation. The results indicate that bu�er storages might be a reasonable
investment to support voltage stability at the end of long feeders when older buildings dominate
the distribution grid.
The number of necessary iterations to meet speci�c stopping criteria in order to guarantee feasi-
ble and close to global optimal solutions in the closed-loop DMPC simulations varied depending
on the scenario and required accuracy. A smaller voltage band required more coordination and
thus signi�cantly more iterations to meet the stopping criteria, i.e. a tripling from V0 = 1 p.u.
to V0 = 0.95 p.u.. The type E prosumers and DSO had to solve their optimization problems
and exchange the communication variables for 77 times on average at each time step in the latter
scenario.
The second study demonstrated how the DMPC algorithm coordinates the operation of the pro-
sumers towards a �atter aggregate residual load, which results in a less volatile power �ow over
the transformer. In a single shot open-loop simulation, the standard deviation of the aggregated
residual load decreased with an increasing weighting factor ω, while both the total electricity
costs of the prosumers and the mean zone temperatures increased moderately. The operation of
the heating systems deviated from the energy e�cient uncoordinated reference operation in order
to optimally add the heat pump and back-up heater loads to the non-�exible �xed electricity
demand to �atten out the aggregated residual load. The total cost increase for ω = 102 compared
to the uncoordinated scenario was below 1% for both building types E and L, while the standard
deviation of the aggregated residual load was reduced by over 50% and over two thirds, respec-
tively. A closed-loop simulation over seven days with ω = 1 con�rmed the moderate increase
in electricity costs observed in the open-loop results. The peak load over the transformer was
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reduced by 13.4% (25.8%) and the standard deviation of the aggregated residual load reduced
by 45.9% (55.8%) for type E (L). To conclude, a community's aggregated residual load pro�le
can be modi�ed signi�cantly at a relatively low cost increase.
The third study on optimization of community costs by better self-consumption of local PV gen-
eration showed the e�ectiveness of the DMPC algorithm to coordinate the operation of buildings
without PV together with prosumers equipped with a PV plant. While only the prosumers op-
timized their operation with respect to their local PV generation in the uncoordinated scenario,
the DMPC coordination rescheduled buildings and prosumers based on the communicated resid-
ual loads so that the joint operational costs at the transformer were minimal. The total costs of
the building type E community were reduced by 2.3% compared to the uncoordinated scenario.
The aggregate residual load, i.e. the power �ow over the transformer, was almost always larger or
equal zero. Assuming buildings of type L resulted in a cost reduction of 5.2%. The community's
self-consumption was increased from 90% to 100% for the type E scenario and from 65% to 83%
for the type L scenario. In the latter case the maximum self-consumption was limited by the low
heating demand of the buildings.
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Chapter 7

Conclusion and Outlook
This chapter summarizes the main contributions of this thesis and draws a conclusion based
on the presented models and simulation studies. An outlook provides input for future research
directions based on the limitations of this work.

7.1 Conclusion

In order to demonstrate how the operational �exibility of prosumers can be exploited to achieve
minimum costs of operation while guaranteeing feasible distribution grid operation, a thermal
building model was developed to represent the dynamics of residential SFHs. Chapter 2 �rst
provided an introductory overview of the German residential building stock and potential future
heat pump penetration scenarios in order to reduce the selection of representative building pa-
rameterizations for the subsequent modeling tasks. While heat pumps already have a high share
in new built SFHs, gas-based heating systems dominate in older buildings with usually poor
thermal insulation. An investigation of di�erent penetration scenarios has shown that in addi-
tion to installations in modern buildings, heat pumps in older buildings will have a signi�cant
share in all scenarios and years until 2050, assuming current refurbishment rates and investment
choices change. The three building types E, J and L with thermal characteristics de�ned in the
TABULA typology were selected to represent the possible range from rather weakly refurbished
buildings (E) to advanced modern constructions (L). It was further assumed that all variants
could be heated by a heat pump and a �oor heating system. The three di�erent types were not
only selected to be able to test the worst and best case impact on a distribution grid, but also
to verify the transferability of the generalized thermal building model for di�erent parameteri-
zations.
A single zone RC-modeling approach proved to be su�ciently accurate to predict the zone tem-
perature, the most important state of the thermal building model in order to track thermal
comfort. Di�erent linear fourth-order models of varying complexity were validated for types J
and L against a dynamic reference simulation in EnergyPlus. While the zone temperature was
already well approximated with the simplest model, accurate tracking of temperatures of com-
ponents of the structural thermal mass required to model the radiative heat transfer between
the heated �oor and outer walls. In a cross-validation over di�erent simulation periods, a RMSE
below 1 ◦C was achieved with such a model for all temperature states in building L and all but
the inner wall temperature for building J for all considered simulation periods. The �nal model
chosen did not only have a high accuracy to approximate the zone and �oor temperatures based
on a given heating system power pro�le and disturbances, but the model also led to reasonable
close power pro�le and energy demand predictions when used for that purpose. The thermal
building model was then extended by a heat pump model, parameterized for each of the three
building types, a back-up heater and an optional bu�er storage model. A DHW model and an
internal gains model were the �nal contributions in order to represent the whole range of thermal
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systems and disturbances relevant for the residential prosumer model. In Chapter 3 all models
and disturbances were brought together and a model predictive controller for prosumer energy
management designed. The chosen modeling approach results in two convenient features: Firstly,
the complete low-order thermal model approximates the most important dynamics of the struc-
tural thermal mass and the water storages and includes the dominant disturbances a�ecting the
thermal processes. This is achieved with a model of low complexity, which requires a relatively
low parameterization e�ort from the user and allows to use the model to upscale to aggregations
of prosumers considered in neighborhood and distribution grid studies. Secondly, the model is
well applicable in the distributed control studies of this thesis, since it is linear and results in a
convex optimization problem. The problem can be solved e�ciently with standard solvers and
is usable in distributed optimization without loosing guarantee of convergence.
In line with this, a relaxed linear power �ow approximation was reviewed in Chapter 4 to approx-
imate the non-convex AC power �ow equations. A validation study for �ve German reference
distribution grids showed acceptable bus voltage errors below 0.005 p.u. when the coincident
demand at all load buses was increased to the �rst violation of grid constraints. Depending on
the distribution grid, a too high coincident demand led to either a voltage violation at the longest
feeder or to exceedance of the apparent power �ow limit at the transformer. Larger grids, i.e.
grids with more load buses and longer feeders showed violations for a lower level of coincident
demand.
A distributed model predictive controller for the optimal coordination of prosumers in distribu-
tion grids was designed based on ADMM for the decomposition and distributed optimization of
the central optimization problem in Chapter 5. After an initial problem formulation for cou-
pled linear time-invariant dynamic systems, the formulation was adapted to the context of this
thesis and the above thermal and electrical models combined. The formulation was further ex-
tended to guarantee global feasibility of the problem in order to make the algorithm robust for
multi-period simulations with varying boundary conditions. The hierarchical DMPC algorithm
coordinates consensus between prosumers and a DSO while preserving data privacy. The ex-
change of information is limited to the sharing of predicted and desired residual load pro�les
and dual variables. Local cost functions and local system knowledge of the prosumers is not
shared with the DSO. Cost functions handled by the DSO and the distribution grid model are
not revealed to the prosumers. The DSO's optimization problem grows only with respect to
the incorporation of an additional residual load vector for a prosumer in his problem statement,
otherwise it is independent of subsystem complexity and internal changes. ADMM was chosen
for the distributed optimization since it is guaranteed to converge to a global optimal solution
for convex problems and does not depend on the choice of the penalty parameter. Even though
ADMM is often claimed to progress fast to approximate solutions, high accuracy solutions may
require many iterations. The choice of the penalty parameter has a signi�cant impact on the al-
gorithm's speed and a dynamic scaling procedure from the literature was applied to the problem
and selectively used in the later simulation studies. This helped to identify a good choice of the
penalty parameter in order to speed up simulations.
Three simulation studies were carried out in Chapter 6 to demonstrate the e�ectiveness of the
DMPC algorithm to coordinate the utilization of operational �exibility o�ered by the prosumers.
Simulation studies on voltage stability, valley-�lling and community PV self-consumption in a
rural grid of moderate size were carried out over winter days for the di�erent building types
assuming perfect predictions. A time-varying price scenario was introduced to cause undervolt-
ages during two zero price hours per day in the study on voltage stability, since a �at price
scenario did not result in voltage violations. While the uncoordinated reference operation of 17
weaker insulated type E and type J buildings caused undervoltages below 0.9 p.u. for a slack
bus voltage of V0 = 1 p.u., modern buildings of type L caused undervoltages only in a more
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restrictive scenario with V0 = 0.95 p.u.. The main reason for undervoltages was the use of back-
up heaters to exploit low prices. The DMPC algorithm managed to reschedule the operation
of the prosumers to avoid the undervoltages and simultaneously maintained individual comfort
temperature bounds and operational limits of the heating systems of all participants. Results of
the closed-loop simulation over one week indicated a minimal to moderate increase of the total
costs, i.e. +3.8% for type E and +3.4% for type L in the restrictive scenario V0 = 0.95 p.u..
Participants connected to the most critical buses and feeder, i.e. where the residual load pro�les
had to be altered the most to prevent undervoltages, faced an above average per prosumer cost
increase. Those prosumers could reduce the required cost increase with additional bu�er stor-
age volume in the restrictive scenario. The number of necessary iterations to meet the problem
speci�c stopping criteria in order to guarantee feasible and close to global optimal solutions in
the closed-loop DMPC simulations varied depending on the scenario and required accuracy. A
smaller voltage band required more coordination and thus signi�cantly more iterations.
The second simulation study demonstrated how the DMPC algorithm coordinates the operation
of the prosumers towards valley-�lling in order to achieve a less volatile aggregated electricity
demand pro�le. During coordination with DMPC the operation of the heating systems deviated
from the energy e�cient uncoordinated reference operation in order to optimally add the heat
pump and back-up heater loads to the non-�exible �xed electricity demand. The resulting total
cost increase due to e�ciency losses was low for a prede�ned weighting of the shared cost func-
tion against the local cost functions of the prosumers. A closed-loop simulation over seven days
showed that the peak load over the transformer was reduced by 13.4% (25.8%), the standard
deviation of the aggregated load reduced by 45.9% (55.8%), while the total cost increased by
1.1% (0.3%) for type E (L). The community's aggregated residual load pro�le was modi�ed
signi�cantly at a relatively low cost increase.
The last study applied the DMPC algorithm to coordinate a community cost minimization
through optimized self-consumption of local PV generation. While prosumers equipped with PV
plants only optimized their operation with respect to their local PV generation in the uncoordi-
nated scenario, the DMPC coordination rescheduled buildings without PV and prosumers based
on the communicated residual loads so that the joint costs were minimal. This led to a total cost
reduction by 2.3% for a building type E community and a reduction by 5.2% for type L build-
ings in a closed-loop DMPC simulation over seven days. The community's self-consumption was
increased from 90% to 100% for type E scenario and from 65% to 83% for the type L scenario.
The low heating demand of type L limited higher rates of self-consumption.

7.2 Outlook

An outlook for future directions of research is given with respect to possible improvements in
modeling, the extension of studies and contributions to enable integration with electricity market
processes.

7.2.1 Model Limitations

Every model developed in the course of this thesis is a simpli�cation of the respective process or
system in order to reduce complexity and to maintain certain mathematical properties for appli-
cation in convex optimization. A strong simpli�cation is involved in the representation of on- and
o�-switching systems as systems with a continuous operational range in order to avoid binary
decision variables. This concerns back-up heaters and minimum power constraints of modulating
heat pumps. Rounding procedures are a simple way to derive control signals from the solutions
of the relaxed problem but may jeopardize feasibility on both the local and global system level.
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One could also formulate the prosumer problems as mixed-integer quadratic problems and just
observe how ADMM behaves. ADMM can be applied to non-convex problems but convergence
is no longer guaranteed.
Improved modeling techniques might also be useful for the water storages. DHW and bu�er
storages were modeled each by a uniform temperature distribution via a single ordinary di�er-
ential equation. Modeling multiple temperature layers seems necessary for larger volumes and
might be of great importance in studies were the focus is on the �exible operation of water
storages. Multi-layer formulations lead to bilinear terms of decision variables and require special
treatment. McCormick envelopes have already been applied by the author in a separate study
in order to relax the nonlinearity, validation of the approach requires simulation of a nonlinear
reference model and is beyond the scope of this thesis.
Finally, an extension to a three-phase distribution grid model will be helpful to understand the
impact of heat pumps in unbalanced grids. A lossy power �ow model might be a reasonable
extension to put the often moderate cost increase of the prosumers in perspective to the change
in grid losses.

7.2.2 Extension of Studies and Testing

All simulation studies assumed perfect predictions, but real-world grid operation faces multiple
sources of uncertainty. This concerns electricity demand predictions for small aggregations of
households and prosumers will only have limited capabilities to accurately predict their electrical
load, occupancy and domestic hot water demand. This motivates the application of methods to
robustify the coordinated dispatch. Studies on voltage stability should further investigate how
advanced reactive power control of PV inverters can be utilized to provide voltage support in
combination with DSM. The previous studies have shown that DSM with thermal systems a�ects
energy consumption and thermal comfort. Even though the e�ects might be small, DSM has
to compete against options of nearly cost-free inverter control. Finally, a further extension of a
DMPC algorithm should incorporate electric vehicle charging as another threat to grid operation.
In order to facilitate the use of distributed control concepts in future energy systems, algorithms
have to be adapted and tested on real systems. This concerns a proper identi�cation of all sys-
tems involved, since their models are a key ingredient in MPC. In the context of this thesis, it
is worth repeating that the simpli�ed thermal building models have been validated for standard
operation. Whether the models provide an accurate response of the systems over the full range
of possible control signal frequencies requires further system identi�cation with the help of mea-
surements.
Experimental tests of the distributed control strategy in a laboratory environment will pro-
vide insight into how the algorithm can be applied on real systems with possibly even stronger
hardware restrictions. This concerns communication delays in iterative schemes of distributed
optimization, limited processor and memory capabilities of (micro)controllers and thus speci�c
solving techniques for convex optimization problems on embedded systems. A �rst version of
the DMPC algorithm of this thesis was successfully tested on a network of three Raspberry Pis
in a master's thesis project in preparation for possible further applications in TUM's Center for
Combined Smart Energy Systems (CoSES). In the end, a rather complex solution like the DMPC
algorithm has to compete with simpler and completely decentralized solutions, which also might
be capable to solve speci�c coordination problems.

7.2.3 Market Process Integration

A two-way communication infrastructure between the prosumers and the DSO is required in
order to enable a DMPC procedure, i.e. smart meter gateways must process and communicate
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communication variables. This goes beyond the capabilities de�ned in the German "Smart Grid
Ready Label" for heat pumps.
Coordination with respect to distribution grid limits might not be required at each time step
during operation, depending on the type of grid and level of electric heat pump and vehicle
penetration. Since the MPC solutions of two consecutive time steps will often not di�er too
much from one another, it might be possible to limit the coordination to a day-ahead procedure
with security margins, followed by uncoordinated operation of the prosumers with respect to
previously de�ned limits.
A further aspect addresses the integration of coordination schemes like presented in this thesis
with existing competitive market processes. The DMPC algorithm is a cooperative mechanism
which requires exact implementation and execution of the procedure of ADMM at the prosumer
and DSO levels in order to �nd the optimal solution jointly. Compliance with the ADMM updates
and truthful communication of the local temporary solutions is necessary to converge to a global
optimal feasible solution and must be ensured or incentivised. On the other hand, local grid
congestion and voltage band violations might not be solvable in a competitive market setting,
since often only few participants can e�ectively mitigate the issues, leaving little bargaining
power to the DSO. In order to guarantee safe grid operation, the DSO should be given a right
to enforce feasible operation as a last resort.
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Appendix A

Modeling and Validation

A.1 Convex Optimization

An introduction to convex optimization is given in [BV04]. Throughout the thesis optimization
problems of the form

min
x∈Rn

f(x) (A.1)

subject to x ∈ D

with cost function f : Rn → R, decision variable x ∈ Rn and constraint set D ⊂ Rn resulting
from equality and inequality constraints occur. The above problem is called convex when f is a
convex function and D is a convex set.
Convex set: The set D is convex if for all x1, x2 ∈ D and for all θ ∈ (0, 1)

θx1 + (1− θ)x2 ∈ D (A.2)

holds.
Convex function: The function f : D → R de�ned on a convex set D is called convex if for all
x1, x2 ∈ D,x1 6= x2 and for all θ ∈ (0, 1)

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2) (A.3)

holds. A function is strictly convex if the above de�nition holds for the strict inequality.

A.2 Thermal Response of a Component and Chain Matrix

The derivation of the matrix representation of the thermal two-port network for a homogeneous
material layer in the frequency domain can be found in [Pip57, Rou72, Dav94, LCRA95]. The
ordinary di�erential Equation (2.11) after applying the Fourier transformation on the quantities
on both sides has the general solution

T (ω, x) = F1(ω) cosh

(
x

√
jω
cρ

λ

)
+ F2(ω) sinh

(
x

√
jω
cρ

λ

)
. (A.4)

With the boundary conditions at T (ω, x = 0) and Equation (2.12) one obtains

F1(ω) = T (ω, x = 0) (A.5)
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and

q̇(ω, x) = −λ ∂

∂x
T (ω, x) (A.6)

= −λ
(
F1(ω)

√
jω
cρ

λ
sinh

(
x

√
jω
cρ

λ

)
+ F2(ω)

√
jω
cρ

λ
cosh

(
x

√
jω
cρ

λ

))
, (A.7)

evaluated at x = 0 leads to

q̇(ω, x = 0) = −λF2(ω)

√
jω
cρ

λ
(A.8)

−q̇(ω, x = 0)
1

λ
√
jω cρλ

= F2(ω). (A.9)

Thus T (ω, x) and q̇(ω, x) become

T (ω, x) = T (ω, x = 0) cosh

(
x

√
jω
cρ

λ

)
− q̇(ω, x = 0)

1

λ
√
jω cρλ

sinh

(
x

√
jω
cρ

λ

)
(A.10)

q̇(ω, x) = −T (ω, x = 0)λ

√
jω
cρ

λ
sinh

(
x

√
jω
cρ

λ

)
+ q̇(ω, x = 0) cosh

(
x

√
jω
cρ

λ

)
(A.11)

and rearranging for matrix form results in

(
T (ω, x = 0)
q̇(ω, x = 0)

)
=

 cosh
(
x
√
jω cρλ

)
1

λ
√
jω cρ

λ

sinh
(
x
√
jω cρλ

)
λ
√
jω cρλ sinh

(
x
√
jω cρλ

)
cosh

(
x
√
jω cρλ

)
(T (ω, x)

q̇(ω, x)

)
. (A.12)

With R = x
λ in [m2K/W] and C = ρcx in [J/(m2K)] the matrix in Equation (A.12) can be

rewritten as(
T (ω, x = 0)
q̇(ω, x = 0)

)
=

(
cosh

(√
jωRC

)
R√
jωRC

sinh
(√
jωRC

)
√
jωRC
R sinh

(√
jωRC

)
cosh

(√
jωRC

) )(
T (ω, x)
q̇(ω, x)

)
. (A.13)

The real and imaginary parts of the matrix entries
( a11 a12
a21 a22

)
can be further separated with√

j = 1√
2
(1 + j) and addition theorems with complex arguments to obtain the representation
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in [Rou72]:

Re(a11) = Re(a22) = cosh

√
1

2
ωRC cos

√
1

2
ωRC (A.14)

Im(a11) = Im(a22) = sinh

√
1

2
ωRC sin

√
1

2
ωRC (A.15)

Re(a12) = R

√
1

2ωRC

(
cosh

√
1

2
ωRC sin

√
1

2
ωRC + sinh

√
1

2
ωRC cos

√
1

2
ωRC

)
(A.16)

Im(a12) = R

√
1

2ωRC

(
cosh

√
1

2
ωRC sin

√
1

2
ωRC − sinh

√
1

2
ωRC cos

√
1

2
ωRC

)
(A.17)

Re(a21) = − 1

R

√
1

2
ωRC

(
cosh

√
1

2
ωRC sin

√
1

2
ωRC − sinh

√
1

2
ωRC cos

√
1

2
ωRC

)
(A.18)

Im(a21) =
1

R

√
1

2
ωRC

(
cosh

√
1

2
ωRC sin

√
1

2
ωRC + sinh

√
1

2
ωRC cos

√
1

2
ωRC

)
(A.19)

A.3 3R2C, 2R1C and 1R1C Parameters

The equations are derived in [Rou72] and [RZ04] and are used in the VDI guidelines [VDI15b,
VDI16]:
3R2C

R1 =
1

A

(Re(a22)− 1) Re(a12) + Im(a22) Im(a12)

(Re(a22)− 1)2 + Im(a22)
2

[K/W] (A.20)

R2 =
1

A

(Re(a11)− 1) Re(a12) + Im(a11) Im(a12)

(Re(a11)− 1)2 + Im(a11)
2

[K/W] (A.21)

R3 =

(
1

A

n∑
v=1

xv
λv

)
−R1 −R2 [K/W] (A.22)

C1 =
A

ω

(Re(a22)− 1)2 + Im(a22)
2

(Re(a12) Im(a22)− (Re(a22)− 1) Im(a12)
[J/K] (A.23)

C2 =
A

ω

(Re(a11)− 1)2 + Im(a11)
2

(Re(a12) Im(a11)− (Re(a11)− 1) Im(a12)
[J/K] (A.24)

2R1C

Rw = R1 +R2 +R3 [K/W] (A.25)

R̃2 = R2 +R3 [K/W] (A.26)

C̃1 =
1

ωR1

RwA− Re(a12) Re(a22)− Im(a12) Im(a22)

Re(a22) Im(a12)− (Re a12) Im(a22)
[J/K] (A.27)

1R1C

R1 =
1

A

(Re(a22)− 1) Re(a12) + Im(a22) Im(a12)

(Re(a22)− 1)2 + Im(a22)
2

[K/W] (A.28)

C̃1 =
1

ωR1

RwA− Re(a12) Re(a22)− Im(a12) Im(a22)

Re(a22) Im(a12)− (Re a12) Im(a22)
[J/K] (A.29)
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A.4 Material Compositions

Table A.1: Component composition based on the TABULA typology and own selection with [DIN10]

Building type E
density ρ spec. heat capacity c conductivity λ thickness

kg
m3 Ws/(kgK) W/(mK) m

Outer wall

Plaster 1400 1000 0.7 0.02
Vert. perforated brick 600 1000 0.4 0.25
Therm. insulation 035 80 840 0.035 0.12
Lime mortar 1800 1000 0.87 0.02

Inner wall

Lightweight concrete 1200 1000 0.4 0.12
Floor

Tile 2000 1000 1 0.02
Cement screed 2000 1000 1.4 0.04
Therm. insulation 035 80 840 0.035 0.1
Concrete 1800 1000 1.15 0.24
Plaster 1200 1000 0.35 0.01

Roof

OSB-Plate 900 1000 0.21 0.015
Polystyrene 60 1000 0.04 0.075
Roo�ng tile 530 900 0.14 0.04

Door

Maplewood 600 2100 0.1 0.012
Foam glass granulate 200 1000 0.08 0.025
Maplewood 600 2100 0.1 0.016

Windows
g-value U-value

[ ] W/(m2K)

0.6 1.3
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Table A.2: Component composition based on the TABULA typology and [TBSH15]

Building type J
density ρ spec. heat capacity c conductivity λ thickness

kg
m3 Ws/(kgK) W/(mK) m

Outer wall

Plaster 1200 1000 0.35 0.015
Vert. perforated brick 1500 1000 0.5 0.14
Polystyrene 15 1250 0.04 0.1
Vert. perforated brick 1500 1000 0.5 0.14
Plaster 1200 1000 0.35 0.015

Inner wall

Plaster 900 1000 0.21 0.013
Mineral rock wool 60 1000 0.04 0.1
Plaster 900 1000 0.21 0.013

Floor

Tile 2000 1000 1 0.01
Cement screed 2000 1000 1.2 0.045
Polystyrene 15 1250 0.03 0.1
Reinforced concrete 2400 840 2.2 0.14
Plaster 1200 1000 0.35 0.01

Roof

OSB board 600 1880 0.13 0.015
Polystyrene 15 1250 0.045 0.16
Vapor barrier 700 1000 0.13 0.02
Roo�ng tile 530 900 0.5 0.04

Door

Maplewood 700 1600 0.185 0.011
Foam glass granulate 200 1000 0.08 0.015
Maplewood 700 1600 0.185 0.016

Windows
g-value U-value

[ ] W/(m2K)

0.6 1.4
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Table A.3: Component composition based on the TABULA typology and [Aro14]

Building type L
density ρ spec. heat capacity c conductivity λ thickness

kg
m3 Ws/(kgK) W/(mK) m

Outer wall

Plasterboard 900 1000 0.21 0.015
Mineral rock wool 60 1000 0.04 0.08
Mineral rock wool 60 1000 0.04 0.22
Wood 600 2100 0.1 0.1

Inner wall

Plasterboard 900 1000 0.21 0.015
Mineral rock wool 60 1000 0.04 0.1
Plasterboard 900 1000 0.21 0.015

Floor

Tile 2000 1000 1 0.02
Cement screed 2000 1000 1.4 0.12
Polystyrene 15 1250 0.03 0.22
Reinforced concrete 2400 840 2.2 0.2
Plaster 1200 1000 0.35 0.01

Roof

OSB board 650 1880 0.13 0.015
Polystyrene 15 1250 0.04 0.35
Vapor barrier 700 1000 0.13 0.02
Roo�ng tile 530 900 0.14 0.04

Door

Maplewood 600 2100 0.1 0.015
Foam glass granulate 200 1000 0.08 0.055
Maplewood 600 2100 0.1 0.025

Windows
g-value U-value

[ ] W/(m2K)

0.6 0.7

A.5 Distribution Factors

Note that the area Awo contains both the outer wall and the roof areas.
Initial area-weighted s-factors

swi = (1− sz)
Awi

Awi +Awo +Afl
(A.30)

swo = (1− sz)
Awo

Awi +Awo +Afl
(A.31)

sfl = (1− sz)
Afl

Awi +Awo +Afl
(A.32)
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Area-weighted g-factors

gwi = (1− gz)
Awi

Awi +Awo +Afl
(A.33)

gwo = (1− gz)
Awo

Awi +Awo +Afl
(A.34)

gfl = (1− gz)
Afl

Awi +Awo +Afl
(A.35)

Initial area-weighted f -factors

fwi = (1− fz)
Awi

Awi +Awo +Afl
(A.36)

fwo = (1− fz)
Awo

Awi +Awo +Afl
(A.37)

ffl = (1− fz)
Afl

Awi +Awo +Afl
(A.38)

A.6 Delta-Star Transformation

Computation of the resistances RstarA/B/C :

RstarA =
Rconv,woRconv,fl

Rconv,wo +Rconv,fl +Rrad,wo−fl
(A.39)

RstarB =
Rconv,woRrad,wo−fl

Rconv,wo +Rconv,fl +Rrad,wo−fl
(A.40)

RstarC =
Rconv,flRrad,wo−fl

Rconv,wo +Rconv,fl +Rrad,wo−fl
. (A.41)

The di�erential equations for the RC-model from Figure 2.14 are

dTz
dt

=
1

RventCz
(Ta − Tz) +

1

RwiCz
(Twi − Tz) +

1

RstarACz
(Tstar − Tz) (A.42)

+
sz
Cz
ϕsg +

gz
Cz
ϕig +

fz
Cz
ϕh

dTwi
dt

=
1

RwiCwi
(Tz − Twi) +

swi
Cwi

ϕsg +
gwi
Cwi

ϕig +
fwi
Cwi

ϕh (A.43)

dTwo
dt

=
1

Rwo,2Cwo
(Ta,eq − Two) +

1

Rwo,1Cwo
(Tstar − Two) +

swo
Cwo

ϕsg +
gwo
Cwo

ϕig +
fwo
Cwo

ϕh

(A.44)
dTfl
dt

=
1

Rfl,2Cfl
(Tg − Tfl) +

1

Rfl,1Cfl
(Tstar − Tfl) +

sfl
Cfl

ϕsg +
gfl
Cfl

ϕig +
ffl
Cfl

ϕh (A.45)

with

Rwo,1 = R̃wo,1 +RstarB (A.46)

Rfl,1 = R̃fl,1 +RstarC . (A.47)
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The heat �ow balance at Tstar leads to

0 =
1

RstarA
(Tz − Tstar) +

1

Rwo,1
(Two − Tstar) +

1

Rfl,1
(Tfl − Tstar) (A.48)

Tstar =
1

SRstarA
Tz +

1

SRwo,1
Two +

1

SRfl,1
Tfl (A.49)

with

S =
1

RstarA
+

1

Rwo,1
+

1

Rfl,1
. (A.50)

Inserting in Equations (A.42)-(A.45) results in

dTz
dt

=
1

RventCz
(Ta − Tz) +

1

RwiCz
(Twi − Tz) (A.51)

+
1

RstarACz

(
(

1

SRstarA
− 1)Tz +

1

SRwo,1
Two +

1

SRfl,1
Tfl

)
+
sz
Cz
ϕsg +

gz
Cz
ϕig +

fz
Cz
ϕh

dTwi
dt

=
1

RwiCwi
(Tz − Twi) +

swi
Cwi

ϕsg +
gwi
Cwi

ϕig +
fwi
Cwi

ϕh (A.52)

dTwo
dt

=
1

Rwo,2Cwo
(Ta,eq − Two) +

1

Rwo,1Cwo

( 1

SRstarA
Tz + (

1

SRwo,1
− 1)Two +

1

SRfl,1
Tfl

)
+
swo
Cwo

ϕsg +
gwo
Cwo

ϕig +
fwo
Cwo

ϕh (A.53)

dTfl
dt

=
1

Rfl,2Cfl
(Tg − Tfl) +

1

Rfl,1Cfl

( 1

SRstarA
Tz +

1

SRwo,1
Two + (

1

SRfl,1
− 1)Tfl

)
+
sfl
Cfl

ϕsg +
gfl
Cfl

ϕig +
ffl
Cfl

ϕh (A.54)

A.7 Computation of the Surface Temperatures

The surface temperatures are computed based on the RC-model output for a comparison with
the EnergyPlus values. Derived like the surface temperature of the �oor in Equations (2.38) and
(2.39), the inner and outer wall temperatures for the models D and F are

Twi,s =
Rsi,wiTwi + R̃wi,1Tz

Rwi,1
(A.55)

Two,s =
Rsi,woTwo + R̃wo,1Tz

Rwo,1
(A.56)

with

R̃wi,1 = Rwi,1 −Rsi,wi (A.57)

R̃wo,1 = Rwo,1 −Rsi,wo. (A.58)
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Model R

Twi,s =
Rsi,wiTwi + R̃wi,1Tz

Rwi,1
(A.59)

Two,s =
RstarBTwo + R̃wo,1Tstar

R̃wo,1 +RstarB
(A.60)

Tfl,s =
RstarCTfl + R̃fl,1Tstar

R̃fl,1 +RstarC
(A.61)

with R̃wi,1 and R̃wo,1 as de�ned in Equations (A.57) and (A.46).

183



APPENDIX A. MODELING AND VALIDATION

A.8 Cross Validation with sRMSE

sRMSE =

√√√√ 1

Nσ2xE+

N∑
i=1

(xi,RC − xi,E+)2 (A.62)

Figure A.1: Standardized RMSE for the RC-models D,F , and R compared to the EnergyPlus(E+) refer-
ence for building type J and L.
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A.9. BACK-CALCULATION OF ENERGYPLUS TEMPERATURES FOR 1-STEP
PREDICTION

A.9 Back-Calculation of EnergyPlus Temperatures for 1-Step Pre-

diction

Models D and F : The relationship from Equation (2.39) can be used to compute temperatures
based on the EnergyPlus surface temperatures Twi,E+, Two,E+, Tfl,E+ for application in the RC-
model to update the state for the 1-step prediction:

Twi =
Rwi,1
Rsi,wi

Twi,E+ −
R̃wi,1
Rsi,wi

Tz,E+ (A.63)

Two =
Rwo,1
Rsi,wo

Two,E+ −
R̃wo,1
Rsi,wo

Tz,E+ (A.64)

Tfl =
Rfl,1
Rsi,fl

Tfl,E+ −
R̃fl,1
Rsi,fl

Tz,E+. (A.65)

Model R: Applying the heat balance equations on the extended model leads to the following
temperatures:

Twi =
Rwi,1
Rsi,wi

Twi,E+ −
R̃wi,1
Rsi,wi

Tz,E+ (A.66)

Two =
Rwo,1
RstarB

Two,E+ −
R̃wo,1
RstarB

Tstar (A.67)

Tfl =
Rfl,1
RstarC

Tfl,E+ −
R̃fl,1
RstarC

Tstar. (A.68)

Twi can be directly computed. Inserting Equation (A.49) with (A.50) in Equations (A.67) and
(A.68) allows to solve the equation system for the outer wall and �oor temperatures after some
basic algebra.

A.10 R2 Model D+ and F

Table A.4: Accuracy of the simulation with error propagation (Sim.) versus 1-step prediction error (1+)
of models D+ and F for building types J and L over the period Feb 14-Feb 28.

D+ F

RMSE [◦C] R2 [ ] RMSE [◦C] R2 [ ]

Sim. 1+ Sim. 1+ Sim. 1+ Sim. 1+

J

Tz 1.4 1.8 -2.939 -5.459 0.6 0.1 0.255 0.968
Twi,s 0.6 0.5 0.581 0.737 0.7 0.1 0.351 0.993
Two,s 0.5 1.0 0.233 -2.557 1.3 0.0 -5.020 0.996
Tfl,s 1.1 0.3 0.631 0.969 3.0 0.2 -1.864 0.992

L

Tz 0.9 0.6 0.797 0.898 0.7 0.2 0.869 0.993
Twi,s 0.9 0.2 0.803 0.986 0.8 0.1 0.837 0.998
Two,s 0.7 0.5 0.870 0.935 1.2 0.1 0.632 0.998
Tfl,s 0.5 0.2 0.886 0.990 2.4 0.1 -1.779 0.998
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A.11 Homogeneous Solution and State Trajectories

The following paragraph de�nes the time constants and state transition of the state-space model
and is based on [MH95,Row02]. The scalar di�erential equation

ẋ(t) = ax(t) + bu(t) + ed(t) (A.69)

has the homogeneous response
x(t) = eatx(0) = e−

t
τ x(0) (A.70)

with time constant τ = − 1
a . The homogeneous response is de�ned as the state response of

the system with zero input u(t) = 0, d(t) = 0 for an arbitrary initial condition x(0). The
homogeneous solution to the n-th order linear system

ẋ(t) = Ax(t) +Bu(t) + Ed(t) (A.71)

is then
x(t) = eAtx(0) (A.72)

with the matrix exponential eAt = (I + At + A2t2

2! + A3t3

3! . . .) and A ∈ Rn×n. Since each entry
in eAt is a sum of scalar exponential terms, so is the homogeneous response of the states. This
leads to the approach

xi(t) =
n∑
j=1

vije
λjt (A.73)

of each state xi being a weighted sum with coe�cients vij , which depend on the system's structure
and inital values x(0) [Row02]. With the derivate of Equation (A.73) and ẋ = Ax one can show
that it must hold that [Row02]

λivi = Avi ∀i = 1, ..., n. (A.74)

λi and vi are the i-th eigenvalue and corresponding eigenvector of system matrix A. Like in
[MH95], the time constants in Figure 2.27 are then de�ned as

τi = − 1

λi
∀i = 1, ..., n. (A.75)

V = [v1|v2| . . . |vn] is the matrix composed of the system's n eigenvectors in it's columns. In case
of distinct eigenvalues, the homogeneous response of the states can be computed as [Row02]:

x(t) = V

e
λ1t

. . .
eλnt

V −1x(0) (A.76)

and is as such a linear combination of the n modal components eλit.

A.12 Adaptive ADMM

The motivation and derivation of adaptive ADMM can be found in [XFG17]. The nomenclature
of the paper is kept to avoid confusion and the steps of calculation are just repeated. The
equations in (A.79)-(A.81) are adapted to the variables of the DMPC problem formulated in
this thesis. The penalty parameter ρ`+1 of the next ADMM iteration is updated in every other
iteration (as suggested by the authors in [XFG17]) based on the results of iteration `, according
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to the following scheme:

ρ`+1 :=



√
α̂`β̂` if αcor` > εcorand βcor` > εcor

α̂` if αcor` > εcorand βcor` ≤ εcor

β̂` if αcor` ≤ εcorand βcor` > εcor

ρ` otherwise.

(A.77)

εcor = 0.2 is suggested. αcor` and βcor` are computed as

αcor` =
〈∆Ĥ`,∆λ̂`〉
‖∆Ĥ`‖‖∆λ̂`‖

βcor` =
〈∆Ĝ`,∆λ`〉
‖∆Ĝ`‖‖∆λ`‖

(A.78)

with

∆Ĥ` = INP I(r
`
k − r

`0
k ) ∆λ̂` = λ̂` − λ̂`0 (A.79)

∆Ĝ` = −INP I(a
`
k − a

`0
k ) ∆λ` = ν`kρ

` − ν`0k ρ
`0 (A.80)

and
λ̂` = (ν`k + r`k − a`−1k )ρ`. (A.81)

`0 denotes an older iteration, i.e. `0 < `. Candidate penalty parameters α̂` and β̂` are computed
as follows:

α̂` :=

{
α̂MG
` if 2α̂MG

` > α̂SD`
α̂SD` − α̂MG

` /2 otherwise,
(A.82)

β̂` :=

{
β̂MG
` if 2β̂MG

` > β̂SD`
β̂SD` − β̂MG

` /2 otherwise,
(A.83)

α̂SD` =
〈∆λ̂`,∆λ̂`〉
〈∆Ĥ`,∆λ̂`〉

α̂MG
` =

〈∆Ĥ`,∆λ̂`〉
〈∆Ĥ`,∆Ĥ`〉

, (A.84)

β̂SD` =
〈∆λ`,∆λ`〉
〈∆Ĝ`,∆λ`〉

β̂MG
` =

〈∆Ĝ`,∆λ`〉
〈∆Ĝ`,∆Ĝ`〉

. (A.85)

Note that the iteration index ` is placed as a subscript in the new variables for readability.
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Appendix B

DMPC Simulation Results

B.1 Voltage Stability Results Type J

Table B.1: Aggregated electricity demands, costs, performance factor and maximum values for all pro-
sumers of type J over the scenarios. The �rst two cost entries for �at price and time-varying
price without coordination are the result of the reference operation. Percentage change based
on scenario time-varying price without coordination.

Flat price Time-varying price
Coordination No No Yes Yes
V0 [p.u.] 1 1 1 0.95

residual load [kWh] 732.4 921.9 928.7 (+0.7%) 817.9 (-11.3%)
heat pump [kWh] 477.4 422.3 422.9 (+0.1%) 453.4 (+7.4%)
back-up heater [kWh] 0 244.6 250.8 (+2.5%) 109.5 (-55.2%)
�xed demand [kWh] 255 255 255 255

Costs [kWh] 732.4 556.7 556.9 (+0.0%) 569.6 (+2.3%)
Costs CO [kWh] 556.9 569.6

PF 3.59 2.66 2.64 3.1

max (P ) [kW] 64.4 224.4 215.4 (-4%) 135.3 (-39.7%)
min (V ) [p.u.] 0.9715 0.8901 0.9 0.9
max (T z) [◦C] 20.8 21.6 21.6 21.6

189



APPENDIX B. DMPC SIMULATION RESULTS

Table B.2: Aggregated electricity demands, costs, performance factor and maximum values for all pro-
sumers of type J over the scenarios in closed-loop simulation.

Flat price Time-varying price
Coordination No No Yes Yes
V0 [p.u.] 1 1 1 0.95

residual load [kWh] 6304 7528.3 7804.4 (+3.7%) 6980 (-7.3%)
heat pump [kWh] 4653.7 4212.3 4091.6 (-2.9%) 4397.1 (+4.4%)
back-up heater [kWh] 2.8 1668.6 2065.3 (+23.8%) 935.4 (-43.9%)
�xed demand [kWh] 1647.5 1647.5 1647.5 1647.5

Costs [kWh] 6304 4999.7 4999 (-0.0%) 5117.7 (+2.4%)
Costs CO [kWh] 4999.9 5118.4

PF 3.26 2.61 2.49 2.86

max (P ) [kW] 79.5 224.5 216.2 (-3.7%) 154 (-31.4%)
min (V ) [p.u.] 0.9625 0.89 0.9 0.9
max (T z) [◦C] 24.1 24.2 24.2 24.2
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