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Abstract

Based on 24 years of high-level GNSS data analysis, we present a sequence of crustal
deformation models showing the varying surface kinematics in Latin America. The
deformation models are inferred from GNSS station horizontal velocities using a least-
squares collocation approach with empirically determined covariance functions. The
main innovation of this study is the assumption of continuous surface deformation. We
do not introduce rigid microplates, blocks or slivers which enforce constraints on the
deformation model. Our results show that the only stable areas in Latin America are
the Guiana, Brazilian and Atlantic shields; the other tectonic entities, like the Caribbean
plate and the North Andes, Panama and Altiplano blocks are deforming. The present
surface deformation is highly influenced by the effects of seven major earthquakes:
Arequipa (Mw8.4, Jun 2001), Maule (Mw8.8, Feb 2010), Nicoya (Mw7.6, Sep 2012),
Champerico (Mw7.4, Nov 2012), Pisagua (Mw8.2, Apr 2014), Illapel (Mw8.3, Sep 2015),
and Pedernales (Mw7.8, Apr 2016). We see very significant kinematic variations: while
the earthquakes in Champerico and Nicoya have modified the aseismic deformation
regime in Central America by up to 5 and 12 mm/a, respectively, the earthquakes
in the Andes have resulted in changes of up to 35 mm/a. Before the earthquakes,
the deformation vectors are roughly in the direction of plate subduction. After the
earthquakes, the deformation vectors describe a rotation counter-clockwise south of the
epicentres and clockwise north of the epicentres. The deformation model series reveals
that this kinematic pattern slowly disappears with post-seismic relaxation. The numerical
results of this study are available at https://doi.pangaea.de/10.1594/PANGAEA.912349 and
https://doi.pangaea.de/10.1594/PANGAEA.912350.
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1 Introduction

Geodetic reference frames comprise coordinates of station
positions at a certain epoch and constant velocities describing
a secular station motion. In active seismic regions, strong
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earthquakes cause large displacements of station positions
and velocity changes disabling the use of such coordinates
over any time periods. The continuous representation of sta-
tion positions between different epochs requires the compu-
tation of reliable station velocity models. Whit these models,
we can monitor the kinematics of reference frames, deter-
mine transformation parameters between pre-seismic and
post-seismic (deformed) coordinates, and interpolate surface
motions arising from plate tectonics or crustal deformations
in areas where no geodetic stations are established. In the
particular case of Latin America, the reference frame is
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called SIRGAS (Sistema de Referencia Geocéntrico para las
Américas; cf. SIRGAS 1997) and it is a regional densifica-
tion of the global International Terrestrial Reference Frame
(ITRF; Petit and Luzum 2010). The first SIRGAS realisa-
tion was established by a GPS (Global Positioning System)
observation campaign in May 1995 (SIRGAS 1997). It com-
prised 58 stations covering all South America. This network
was measured again in May 2000 and it was extended to
Central and North America including 184 stations (Drewes
et al. 2005). Since 2000, the Latin American geodetic refer-
ence network is materialised (and frequently extended) by
continuously operating GNSS (GPSCGLONASS) stations
(Brunini et al. 2012; Sánchez et al. 2013, 2015; Cioce
et al. 2018). As the western margin of Latin America is
one of the seismically most active regions in the world,
the maintenance of the SIRGAS Reference Frame implies
the frequent computation of present-day (updated) surface
deformation models. Such models were computed in 2003
(Drewes and Heidbach 2005), 2009 (Drewes and Heidbach
2012), 2015 (Sánchez and Drewes 2016), and 2017 (this
paper). Here, we present the computation of the deformation
model 2017 and its comparison with the previous models to
show the very significant variations of the surface kinematics
in Latin America during the past 15 years.

2 Surface-Kinematics Modelling Based
on GNSS Multi-Year Solutions

Spatial continuous surface deformation may be inferred from
pointwise velocities applying geophysical models or geode-
tic methods based on mathematical interpolation approaches.
The approach used in the present study is the least-squares
collocation (LSC, e.g., Moritz 1973; Drewes 1978). Previous
studies applied also the finite element method used with
geophysical models (e.g., Heidbach and Drewes 2003). It
has been demonstrated that for the sole representation of
the horizontal Earth surface kinematics, the results of both
methods are very similar (e.g., Drewes and Heidbach 2005).
The vertical deformation is not considered in this work
because the station height variations are highly influenced by
local effects, and the station distribution (Fig. 1) is too sparse
to apply correlations between neighbouring stations. In the
modelling of the surface kinematics, we distinguish two
components: the velocity field and the deformation model.
In the latter one, a secular motion inferred from plate motion
estimates (Fig. 1) is removed from the station velocities, and
the pointwise residual velocities are interpolated to a regular
grid.

The least-squares collocation method is based on the
analysis of the correlation of physical quantities between
neighbouring points. The vector of the observations (in this
case the station velocities) is divided into a systematic part

(trend) and two independent random parts: the signal and
the observation error (or noise). The parameters describing
the systematic component and the stochastically correlated
signals are estimated by minimising the noise. The spatial
signal correlation is usually assumed as a function depend-
ing on the distance d and, presuming isotropy after trend
removal, independent of the direction. The basic LSC for-
mula is given by (Drewes and Heidbach 2005, 2012):

vpred D CT
new .Cobs � Cnn/�1 vobs (1)

vobs contains the station velocities obtained from the GNSS
observations at the geodetic stations. vpred represents the
velocities to be predicted at the grid points. Cobs is the
correlation matrix between the observed velocities. Cnew

is the correlation matrix between predicted and observed
velocities. Cnn is the noise covariance matrix (it contains
the uncertainty of the station velocities obtained within the
multi-year solutions). The correlation between the observed
velocities vi, vk at the (adjacent) geodetic stations i, k is
determined under the stationarity condition over a defined
domain by

Cobs .dik/ D E fvi � vkg ; (2)

E is the statistical expectation and dik is the distance between
stations i and k. The Cobs values are classified in �dj class
intervals and the respective cross-covariance Cobs(�dj) and
auto-covariance Cobs(d D 0) D C0 are determined using:

Cobs

�
�dj

� D 1
nj

jP

i<k

vi � vk I Cobs .d D 0/ D C0 D 1
n

nP

iD1

v2
i ;

(3)

n stands for the number of stations available at the defined
domain, while nj represents the number of stations available
at each class interval �dj. After estimating the discrete
empirical covariance values with Eq. (3), they are approx-
imated by a continuous function C(dik), which here is the
exponential function:

C .dik/ D a e�b�dik (4)

The function parameters a and b are estimated by a least-
squares adjustment. Cobs is symmetrical and its main diag-
onal (i D k) contains the values C0. Fulfilling the station-
arity condition, the elements of Cnew are computed using
the same Eq. (4) as a function of the distance between
the grid node to be interpolated and the geodetic stations.
To satisfy the isotropy condition, we estimate a common
rotation vector and remove this horizontal motion trend from
all station velocities located in the same domain defined
by d. Afterwards, we restore the removed trend to the
velocities vpred predicted at the grid points (cf. Drewes 1982,
2009).
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3 Existing Velocity Models for SIRGAS
(VEMOS)

The first velocity model for SIRGAS (VEMOS) was released
in 2003. It is based on the position differences between the
two SIRGAS campaigns of 1995 and 2000, 48 velocities
derived from the SIRGAS multi-year solution DGF01P01
(Seemüller et al. 2002), and 231 velocities from several
geodynamic projects based on episodic GPS campaigns (cf.
Drewes and Heidbach 2005). The different data sets were
transformed to a common kinematic frame by deriving the
rotation vector of the South American plate from the respec-
tive station motions located in the rigid part of South Amer-
ica, and reducing these plate motions from the particular
data sets. The resulting residual motions were modelled to
a continuous deformation field applying the finite element
method and LSC approach as described in the previous
section. The comparison of the results of both methods shows
an agreement in the mm/a level. VEMOS2003 covers the
South American area between the latitudes 45ıS and 12ıN.

The second VEMOS model was released in 2009 (Drewes
and Heidbach 2012). It considers 496 station velocities;
95 of them corresponding to the SIRGAS multi-year
solution SIR09P01 (Seemüller et al. 2011) and the others
derived from repetitive GPS campaigns. It covers the Latin
American area between the latitudes 56ıS and 20ıN and
the time-span from January 2, 2000 to June 30, 2009. The
continuous surface velocity field was derived applying the
same strategies as in VEMOS2003. The main advantages
of VEMOS2009 with respect to VEMOS2003 are the
increased number of input velocities, the better quality of
measurements (due to an increase of continuously operating
GNSS stations), and the extension of the velocity field
to the Caribbean and the southernmost part of Chile and
Argentina. The mean uncertainty of VEMOS2009 is about
˙1.5 mm/a.

After the Maule earthquake in Feb 2010, the station
velocities in the area between latitudes 30ıS and 40ıS
changed dramatically (Sánchez and Drewes 2016). However,
we could not compute a new VEMOS model immediately,
because we required 5 years of observations after the earth-
quake in order to improve the modelling of the strong
post-seismic decay signals detected at the affected SIRGAS
stations. Consequently, a new VEMOS model was com-
puted in 2015 using the LSC method with station velocities
based on GNSS observations captured from March 2010
to March 2015 (VEMOS2015, Sánchez and Drewes 2016).
VEMOS2015 is based on continuously operating GNSS
stations only; it does not include episodic GPS campaigns.
It covers the region from 110ıW, 55ıS to 35ıW, 32ıN
with a spatial resolution of 1ı � 1ı. The average predic-
tion uncertainty is ˙0.6 mm/a in the north-south direction
and ˙1.2 mm/a in the east-west direction. The maximum

uncertainty (˙9 mm/a) occurs in the Maule deformation
zone (Chile), while the minimum (˙0.1 mm/a) appears in
the stable eastern part of the South American plate.

4 Present-Day Deformation Model
and Velocity Field for Latin America
(VEMOS2017)

The present study concentrates on the computation of a
deformation model based on a set of 515 station velocities
inferred from GNSS observations gained from January 2014
to January 2017 (Fig. 2). Station positions and velocities are
defined at epoch 2015.0 and refer to the IGS14 Reference
Frame (Rebischung 2016), which is based on the latest
ITRF solution, the ITRF2014 (Altamimi et al. 2016). The
estimated precision is ˙1.2 mm (horizontal) and ˙2.5 mm
(vertical) for the station positions at the reference epoch, and
˙0.7 mm/a (horizontal) and ˙1.1 mm/a (vertical) for the
velocities (Fig. 2). More details about the processing strategy
for the determination of the station positions and velocities
can be found in Sánchez and Drewes (2016) and Sánchez
et al. (2015).

The complex on-going crustal deformation in the western
margin of Latin America and the Caribbean has been stud-
ied intensively. Recent research concentrates on geophysi-
cal syntheses including geodetic constraints inferred from
GNSS positioning to model tectonic evolution and associated
geodynamic processes in this region. Most of these studies
assume a segmentation of the Earth’s crust and describe the
surface kinematics by means of tectonic blocks or slivers
rotating individually; see e.g., Brooks et al. (2011), Calais
et al. (2016), Franco et al. (2012), McFarland et al. (2017),
Mendoza et al. (2015), Nocquet et al. (2014), Symithe et al.
(2015), Weiss et al. (2016), and references herein. This paper
presents two main innovations with respect to the above-
mentioned publications: Firstly, we compute a deformation
model for the entire Latin American and Caribbean region
and not for isolated areas only. Secondly, we assume a
continuous lithosphere deforming under certain kinematic
boundary conditions (as suggested by Flesch et al. 2000;
Vergnolle et al. 2007; or Copley 2008), without introducing
small lithospheric blocks or slivers, which would enforce
constraints on the kinematic model. For the collocation pro-
cedure, we consider the main tectonic plates South America
(SA), Caribbean (CA), and North America (NA) (Fig. 1)
according to the tectonic plate boundary model PB2002 (Bird
2003). Based on the velocities obtained in this study for the
stations located on the stable part of the plates, we estimate
plate rotation vectors following the strategy presented by
Drewes (1982, 2009). These plate motions are removed
from the pointwise velocities to get the residual velocities,
which are interpolated to a continuous deformation model
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Fig. 2 Horizontal station velocities referring to the IGS14 (ITRF2014). Black labels identify the fiducial stations

using Eqs. (1)–(4). The residual velocities with respect to
the Caribbean plate are used for the LSC prediction in
Mexico, Central America and the Caribbean (Fig. 3), while
the residual velocities with respect to the South American
plate are used in South America (Fig. 4). The collocation
domain at every grid node is created by selecting the stations
located up to a distance of 200 km. If no stations are available
at this distance, the LSC is computed using the three nearest
stations. In total 2,233 grid points are predicted. Once the
LSC prediction is performed, the previously reduced trends
(plate rotations) are restored to the interpolated residual

velocities at the grid nodes to generate a continuous velocity
field referring to the IGS14 (ITRF2014). The average predic-
tion uncertainty is ˙1.0 mm/a in the north-south direction
and ˙1.7 mm/a in the east-west direction. The maximum
uncertainty values (up to ˙15 mm/a) occur at the zones
affected by recent strong earthquakes, not only in the Maule
area but also in the northern part of Chile, Ecuador and Costa
Rica. The best uncertainty values (about ˙0.1 mm/a) are
evident in the stable eastern part of the South American plate.
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Fig. 3 (a) Surface deformation model VEMOS 2017 relative to the
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2016) and VEMOS2017 (this study). Stars represent earthquakes with
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5 Discussion

The deformation model with respect to the Caribbean plate
(Fig. 3a) shows an inhomogeneous surface kinematics.
While the deformation vectors in Puerto Rico and the Lesser
Antilles show small (less than 0.5 mm/a) relative motions,
the direction of the deformation vectors in Hispaniola
describes a southward rotation starting with an orientation of
S70ıW in the northern part and reaching a south orientation
in the southernmost part of the island. The magnitude of
the vectors also decreases with this rotation: the averaged
deformation is about 12 mm/a in the North and less than
1 mm/a in the South. These deformation patterns are in
agreement with the GPS results published in earlier studies,
e.g.; Benford et al. (2012), Symithe et al. (2015), Calais et
al. (2016). In the southern area of Central America (Panama
block), we observe horizontal deformations in the range
5–15 mm/a relative to the Caribbean plate. These large
magnitudes are dominated in the West by the north-eastward
motion of the Cocos plate towards Central America (see Fig.
3a around longitude 84ıW) and in the East by the eastern
motion of the Nazca plate towards South America (see
Fig. 3a around longitude 78ıW). A progressive westward
rotation of the deformation vectors toward the North
American plate is detected over Nicaragua and Honduras
(longitudes from 85ıW to 90ıW), where the very small
magnitudes of the deformation vectors suggest that this
region moves homogeneously with the Caribbean plate.

Figure 3b presents the differences between this model
(VEMOS2017) and the previous one (VEMOS2015). The
largest differences in magnitude (about 12 mm/a) are
a consequence of post-seismic displacement and station
velocity changes caused by the strong earthquake of Nicoya
(Mw 7.6, Sep 5, 2012), Costa Rica, (marked with B in Fig.
3b). This earthquake produced co-seismic displacements
up to 30 cm at the GNSS stations located in the Peninsula
Nicoya (see Fig. 9 in Sánchez and Drewes 2016). The post-
seismic relaxation process induces pre- and post-seismic
station velocity differences up to 30 mm/a. Another relevant
discrepancy between VEMOS2017 and VEMOS2015 is
observed in Guatemala (marked with A in Fig. 4). In this
case, the difference in the deformation magnitude (about
5 mm/a) is mainly caused by the Champerico earthquake
(Mw 7.4, Nov 11, 2012).

The deformation model with respect to the South Amer-
ican plate (Fig. 4a) clearly defines the stable area belonging
to the Guiana, Brazilian and Atlantic shields. Indeed, the
present VEMOS2017 and the previous model VEMOS2015
are practically identical in this area (Fig. 4b). In contrast,
the deformation vectors predicted in the Andean region
are characterized by magnitudes up to 30 mm/a. These

vectors are roughly parallel to the plate subduction direction
and their magnitudes diminish with the distance from the
subduction front as already stated by previous publications
like Bevis et al. (2001), Brooks et al. (2011), Chlieh et al.
(2011), Khazaradze and Klotz (2003) and references herein.
However, we observe three zones with anomalous vector
directions (oriented to the NW): the western part of Ecuador
around latitude zero, the north of Chile around latitude 20ıS,
and the Maule region (around 38ıS). As in the case of
Central America, these abnormalities are also caused by
recent strong earthquakes and post-seismic relaxations (Fig.
4b).

The surface deformation predicted for the North Andes
(ND) block is characterized by two different kinematic pat-
terns: a north-eastward motion with increasing magnitudes
of about 9 mm/a in the southern part of Colombia (latitude
3ıN) to 15 mm/a in the northern border area with Venezuela
(72ıW, 12ıN); and opposite oriented deformation vectors in
Ecuador (south of latitude 3ıS). The latter is a consequence
of the strong earthquake occurred in Pedernales (Mw 7.8) on
Apr 16, 2016. This earthquake produced co-seismic station
displacements up to 80 cm and station velocity changes
of about 40 mm/a (see Fig. 4b, mark A). The differences
between VEMOS2017 and VEMOS2015 in this area come
up to 22 mm/a. South of this region, the poor station coverage
in central Peru (latitudes 5ıS to 12ıS) prevents concluding
statements about the deformation pattern in this area; how-
ever, our model agrees quite well with the findings published
by Nocquet et al. (2014) and Villegas-Lanza (2014). Based
on about 100 GNSS stations covering the area between
latitudes 12ıS and 4.6ıN, they conclude that the southern
Ecuadorian Andes and northern Peru (between latitudes 5ıS
and 10ıS) move coherently 5–6 mm/a with an orientation of
about S70ıE. They also suggest that the internal deformation
in this area is negligible (see Fig. 2a in Nocquet et al.
2014).

South of latitude 15ıS the deformation model (Fig. 4a)
and its comparison with the previous one (Fig. 4b) are highly
influenced by three major earthquakes: Pisagua (Mw8.2)
on Apr 1, 2014, Illapel (Mw8.3) on Sep 16, 2015, and
Maule (Mw8.8) on Feb 27, 2010. Before the Pisagua earth-
quake, the GNSS stations moved about 27 mm/a N45ıE;
after the earthquake, they are moving 5 mm/a to the North
(see ITRF-related station velocities in Fig. 2). This pro-
duces an apparent smaller deformation with respect to the
South American plate and the differences between both
VEMOS models reach magnitudes up to 20 mm/a (mark B in
Fig. 4b). In the area Illapel (mark C in Fig. 4b), the post-
seismic effects of the 2015 earthquake superimpose the
post-seismic effects of the 2010 Maule earthquake (mark
D in Fig. 4b). Thus, it is not possible to distinguish their
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individual contributions to the deformation. As a matter of
fact, the complex kinematic pattern south of latitude 25ıS
described by Sánchez and Drewes (2016, Fig. 18) persists.
A large counter clockwise rotation around a point south
of the 2010 epicentre (35.9ıS, 72.7ıW) and a clockwise
rotation north of the epicentre are further observed (Fig.
4a). However, magnitude and direction of the deformation
vectors considerably differ from those obtained in the pre-
vious model VEMOS2015. This is probably a consequence
of the post-seismic relaxation process that is bringing the
uppermost crust layer to the aseismic NE motion in this
zone as suggested by e.g., Bedford et al. (2016), Klein et
al. (2016) and Li et al. (2017). The surface kinematics shown
in Fig. 4a again makes evident that the deformation regime
imposed by the Maule earthquake reaches the Atlantic coast
in Argentina. The comparison of the present deformation
model with VEMOS2015 in the Maule surroundings presents
discrepancies up to 25 mm/a (marks C and D in Fig. 4b).
To provide an integrated view of the changing surface-
kinematics in the Andean Region, Fig. 5 presents an extract
of the models VEMOS2003, VEMOS2009, VEMOS2015
and VEMOS2017.

6 Conclusions and Outlook

This paper presents the surface velocity and deformation
models of the entire Latin American and Caribbean region
over the time-span 2014–2017 and describes the evolution
of the models from previous studies. The effects of the
extreme changes in the surface kinematics complicate the
long-term stability expected in any reference frame. There-
fore, a major recommendation is to materialise the geodetic
reference frames by means of a dense network of contin-
uously operating stations and to repeat the velocity com-
putations frequently. This ensures a permanent monitoring
of possible reference frame deformations. Nevertheless, a
reliable deformation modelling is not yet guaranteed. Some
authors suggest the implementation of geodynamic models
to predict the pointwise coordinate changes caused by co-
seismic and post-seismic effects (see e.g., Snay et al. 2013;
Bevis and Brown 2014; Gómez et al. 2015). Since these
models rely on hypotheses about the physical properties of
the upper Earth crust, different hypotheses produce different
results as demonstrated by e.g., Li et al. (2017). We based
our analyses on the least-squares collocation as this approach
respects the consistency of the geodetic observations and
ensures a better agreement with the actual deformation. A
problem in the geodetic use of pointwise velocities derived

from multi-year solutions is their inconsistency after seismic
events, i.e. their short-term validity. In the Andes region,
like in any active seismic region of the Earth, there are
large discontinuities in the station coordinate time series and
considerable variations in the station velocities caused by
strong earthquakes. The consequence is that the respective
reference frames (e.g., ITRF) cannot be used or have to be
frequently updated for geodetic purposes (like SIRGAS).
An alternative of using multi-year solutions with station
velocities is the release of frequent reference frames (e.g.,
every week or month). Our recommendation for the SIRGAS
national reference frames in seismic active regions is to use
the SIRGAS weekly coordinate solutions instead of veloc-
ities after seismic events. To consider discontinuities in the
coordinates of non-permanently observed points, one has to
interpolate them from the coordinate differences in reference
stations. In any case, we shall continue the computation of
short-period velocity and deformation models for the next
future in order to enable the use of coordinates in close
alignment with to the IGS reference frames.

7 Supplementary Data

In the preparation of the GNSS data solutions used in this
study, we computed a new SIRGAS reference frame solution
following the same procedure described in Sánchez and
Drewes (2016). This solution, called SIR17P01, covers the
time-span from April 17, 2011 to January 28, 2017, contains
345 SIRGAS stations with 502 occupations and is aligned to
IGS14, epoch 2015.0. The SIR17P01 station positions and
velocities as well as the VEMOS2017 model (velocity and
deformation fields) are available at https://doi.pangaea.de/
10.1594/PANGAEA.912349 and https://doi.pangaea.de/10.
1594/PANGAEA.912350, respectively.
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