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Abstract

Power consumption is a significant obstacle in wide deployment of systems with a
large number of antennas. Consequently, it is also a limiting factor for introducing
mmWave technology, where large number of antennas is a necessity. Among all
ideas to reduce power consumption, the one perhaps most covered in the literature is
the hybrid analog-digital architecture of the transceivers. Such approach allows for
a significant reduction of power consumption without a substantial sacrifice of the
data rates.
However, the widely used version of the hybrid analog-digital transceiver, where

the analog circuit is constructed as a phase shifter network connecting all the RF
chains and antennas, is not realizable in practice. A practical simplification of the ar-
chitecture is the subarray partially interconnected analog-digital architecture. There,
the phase shifter network is divided into non-overlapping blocks, where in each block
a subset of RF chains is interconnected with a subset of antennas.
This work covers a significant part of the analysis of a point-to-point subarray

hybrid architecture. Upper bounds for the achievable rate in low- and high-SNR
regions are derived. Moreover, we show why the comparisons between the basic and
subarray architecture in the literature are often not fair and propose how to handle
such a comparison. Lastly, we show how beamforming algorithms can be designed
for the subarray architecture by leveraging the ideas invented for the basic fully-
interconnected architecture and adopting a new perspective which is unique for the
subarray architecture.

xi





1
Introduction

1.1. Thesis overview

Transmission in the 30−300 GHz frequency range dates back to the very beginnings
of wireless systems in the 19th century. However, only recently it has gained a lot of
momentum as the technological advances enabled massive deployment of mmWave
systems. For example, the WirelessHD standard (aimed on wireless video streaming)
proposed transmission in the unlicensed 60 GHz band [3]. Moreover, the IEEE
802.11ad standard specified a Wireless LAN system on mmWave frequencies [2].
For wireless communication systems, it took the publication of [59] to convince the
community about the feasibility of the technology for such application. While signal
processing techniques which allow for more efficient utilization of the traditional
sub-6 GHz frequency bands are constantly developed, the promise of utilizing large
portions of spectrum available in mmWave frequencies is definitely tempting. The
aforementioned WLAN and PAN standards utilize 2 GHz bandwidths and similar is
expected for the cellular communication.
The previously mentioned work from [59] sparked a lot of scientific activity which

is supposed to prepare the ground for successful deployment of mmWave in one of
the upcoming generations of cellular standards. The activity spans a wide area, i.a.,
channel modeling activities [5, 27, 58, 62, 63], hardware design [20, 30, 77], identifying
MAC layer challenges [10,13,16,23,42], and signal processing solutions for the physical
layer [4, 12,18,67,82]. The scope of the thesis lies in the latter category.
In this work, a particular hardware structure which is a possible candidate for

1



2 Chapter 1. Introduction

implementation in mmWave transceivers is considered and theoretical investigation
of its performance is conducted. The subarray partially interconnected architecture
(SPI-HBF), which is the structure in hand, exhibits pronounced hardware simplifica-
tions with respect to the more complicated (and widely considered in the literature)
fully interconnected hybrid beamforming architecture (FI-HBF). The main contribu-
tions in the thesis include:

• theoretical upper bounds for SPI-HBF achievable rate in the low- and high-SNR
region,

• extension of the FI-HBF precoding algorithms to SPI-HBF,

• novel precoding strategies for systems with SPI-HBF,

• analysis how using the consumed power constraint (instead of the usual choice
of the emitted power) influences the performance comparison of SPI-HBF and
FI-HBF along with arguing why such approach is more fair.

The objective of the thesis is to broaden the understanding of the performance of
SPI-HBF. Therefore, the idealistic assumptions of full CSI knowledge at the Tx as
well as ideal operation of hardware elements, are made.

1.2. Thesis structure
The thesis is organized as follows.
In Chapter 2, we start with introducing the basic concepts of communicating with

multiple antennas. We explain the gains that we experience with such communi-
cation. Further, we discuss the capacity of MIMO systems and performance mea-
sures for practical MIMO systems. Finally, we explain the significance of precoding
and combining in MIMO. Moreover, we describe the specifics of communication on
mmWave frequencies. We discuss the propagation characteristics and the influence
on the communication channel thereof. We justify the need of massive antenna arrays
at the mmWave transceivers and present challenges of such requirement. Further, we
discuss how the challenges can be overcome and as a consequence, communication
on mmWave frequency range can be enabled.
In Chapter 3, we explain the system model which we consider in the thesis. We

formulate the input-output relation of the system and discuss its specifics due to the
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operating frequency band. Also, we introduce the performance measure used for the
system. Furthermore, we discuss how the analog stage of SPI-HBF can be modeled
mathematically.
Before proposing practical precoding schemes for SPI-HBF, we show in Chapter 4

that it is possible to derive tighter upper bounds for the achievable rates at low and
high SNR than the ones usually used in the literature. Deriving a tight upper bound
is very important in the process of designing practical algorithms—knowing that the
performance is close to the limit can focus the efforts on other issues like complexity
etc.
In Chapter 5, we present the most common approaches to precoding when HBF

architectures are considered. We show novel, optimal ways of optimizing the digital
precoder in schemes that rely on alternating optimization methods for minimizing the
difference of hybrid precoding and optimal unconstrained precoding. Furthermore,
we propose a greedy precoding scheme which is especially suited for SPI-HBF and is
less complex than other algorithms. Also, we propose a precoding algorithm which
is specifically designed for scenarios with low-SNR.
We finish with a summary of the results in Chapter 6 and an outlook for further

work on the topic.





2
Communication with Multiple
Antennas

The development of digital communication dates back to Shannon [64]. There it
has been shown that transmission with presence of noise may be reliable—if the
transmission rate doesn’t exceed capacity, the error can be made arbitrarily small
with increasing length of the transmission block. A similar breakthrough for multi-
antenna communication has been marked by the Telatar’s and Foschini’s works on
MIMO channel capacity [17, 71] and Alamouti’s publication on transmit diversity
with MIMO [6].
In this chapter, we start with introducing the basic concepts of communicating with

multiple antennas. We explain the gains that we experience with such communica-
tion. Further, we discuss the capacity of MIMO systems and performance measures
for practical MIMO systems. Finally, we explain the significance of precoding and
combining in MIMO.

2.1. Introduction to MIMO
A point-to-point MIMO system consists of a transmitter with Nt ≥ 1 transmit an-
tennas and a receiver with Nr ≥ 1 receive antennas. In a narrowband system (when
the product of the delay spread and the bandwidth is small) the propagation between
each transmit antenna k and receive antenna l is characterized by a complex number
hl,k, called the channel coefficient. Thus, the propagation between all antenna pairs

5



6 Chapter 2. Communication with Multiple Antennas

in the system may be collected in a matrix

H =


h1,1 . . . h1,Nt
... . . . ...

hNr,1 . . . hNr,Nt

 ∈ CNr×Nt (2.1)

called further the channel matrix. Intuitively, it should be possible to benefit from
having at disposal the entire channel matrix H instead of the single channel coeffi-
cient h like in SISO. This is indeed the case. More specifically, MIMO can be utilized
in order to improve reliability and achievable rates of the link.
In order to improve reliability, the same information can be transmitted between

all the NtNr antenna pairs. This may result in up to d = NtNr diversity order of
the link (given statistical independence of the channel coefficients between different
antenna pairs) and the error rate decaying like SNR−d as compared to SNR−1 in a
SISO link [87].
The increase in achievable rates can be achieved by utilizing spatial degrees of

freedom. A MIMO channel may be decomposed into min{Nt, Nr} parallel channels
(given full column- or row-rank of the channel matrix H influenced by, e.g., antenna
spacing, scattering etc.) resulting in a linear increase in capacity at high-SNR. Inde-
pendent transmission of multiple data streams through the MIMO channel is referred
to as multiplexing.
Finally, a trade-off between the two gains is possible, leading to the fundamental

diversity-multiplexing trade-off in MIMO [87]. In general, exploiting the diversity
order of the channel is crucial at low-SNR, when the system is power limited and
exploiting the multiplexing gain is important in the interference limited high-SNR
region.
In the point-to-multipoint scenario the significance of MIMO transceivers becomes

even more pronounced. In addition to improving the reliability and rates within the
system, multiple antennas have become an important tool in managing the interfer-
ence between users transmitting at the same time and frequency resources.

2.2. Capacity in a MIMO system

Let’s assume that xk ∈ C is fed to the kth transmit antenna and yl ∈ C is received
by the lth receive antenna. Assuming that signals from all the transmit antennas are
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superimposed ideally at each receive antenna, we write

yl =
Nt∑
k=1

hl,kxk + ηl. (2.2)

After grouping the transmitted and received signals into vectors

x = [x1, . . . , xNt ]
y = [y1, . . . , yNr ]

and assuming additive noise grouped in a vector η ∈ CNr at the receiver antennas,
the input-output relation is linear and reads

y = Hx+ η. (2.3)

Shannon showed that for a time-invariant channel H , the capacity is equal to the
mutual information between x and y maximized over all the possible distributions
of x

C(H) = max
p(x)

I(x,y;H). (2.4)

Similar notions of capacity can be defined if [17,24,71,74]

• the channel is time-variant but can be tracked and the transmit strategy may
be adapted for each channel realization or

• the channel is rapidly changing such that during transmission of each codeword
every possible channel state is experienced; the transmit strategy does not
adapt to the instantaneous channel. The channel is memoryless.

The ergodic capacity is defined for the first case as

Ce,1 = EH
[
max
p(x)

I(x,y;H)
]

= EH [C(H)] (2.5)

and for the second case as

Ce,2 = max
p(x)

EH [I(x,y;H)] . (2.6)

The first expression is essentially the maximum mutual information averaged over the
distribution of the random variable H . In the second expression, the maximization
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of the (average) mutual information is justified as the channel is memoryless, i.e.,
each channel realization is independent.
However, this holds no longer for very slow varying channels. Then, each codeword

experiences a different subset of possible realizations of the channels (the process is
no longer ergodic). Therefore, the probability that the rate falls below any possible
threshold is nonzero, which leads to the Shannon capacity equal to zero. For this
class of channels the notion of outage capacity is defined as

Cout(ρ) = maxR s.t. pH(R > C(H)) ≤ ρ (2.7)

which is the maximum rate for which the probability of outage (transmission with a
rate exceeding capacity) falls below a given threshold ρ.
In MIMO systems with many users the capacity region is a set of tuples corre-

sponding to all possible rates that can be simultaneously achieved by all users in the
system [24].

2.3. Perfomance Measures
There does not exist a universal performance measure for communication links. The
three most common ones are the achievable rate, frame/bit error ratio [52], and the
mean square error (MSE). While the last one is the least natural, it’s relationship
with the achievable rate makes it a relevant metric.
For a given transmit strategy, i.e., a given distribution p′(x) of the input vector x,

• the achievable rate is the mutual information between x and y with H being
a parameter

R = I(x,y;H)|x∼p′(x), (2.8)

• the MSE is the averaged squared norm of the error between the estimate x̂ of
the transmit vector x and the actual value thereof

MSE = EH
[
‖x̂− x‖2

2

]
|x∼p′(x)

, (2.9)

• the BER/FER quantifies the ratio of bits/frames which were erroneously de-
coded.

Apart from these, there exist a large number of performance measures related to
specific requirements of different systems.
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2.4. Precoding and Combining
The usual building blocks of a SISO transmitter consist of the channel/source coder,
interleaver, and symbol mapper. This must be complemented in MIMO transmitters
with two additional blocks—the space-time encoder and space-time precoder [14].
The space-time encoder maps the stream of modulated symbols to Ns spatial data
streams. The space-time precoder distributes the spatial data streams among the
antennas. We denote the output of the space-time encoder—further referred to as
the data vector—with s ∈ CNs .
Precoding is a crucial operation in MIMO systems. It represents the strategy for

using the additional, spatial degree of freedom in MIMO. The designer of the system
may optimize the precoding strategy based on the system requirements—for example
minimize the MSE of the data vector reconstruction, impose conditional unbiasedness
of the data vector reconstruction (a.k.a. zero forcing), or maximize the achievable
data rate.
A large portion of literature analyzes linear precoding strategies (such that x =

Ps). A comprehensive study thereof is presented in [39]. This is not only due
to reduced complexity with respect to non-linear approaches, but also due to near
optimal or even optimal performance in many crucial cases. For example, if the
noise at the receiver follows circularly symmetric complex Gaussian distribution η ∼
NC(0,Rη) and the channel matrix H is known to the transmitter, the capacity-
achieving distribution of x is also circular symmetric complex Gaussian with 0 mean
and covariance matrix Rx

? maximizing the achievable rate [71], i.e.,

Rx
? = arg max

Rx�0
R (2.10)

with

R = I(x,y;H)|x∼NC(0,Rx) = log2 det
(
I +R−1

η HRxH
H
)
. (2.11)

Then, given the data vector is an i.i.d. circular symmetric complex Gaussian variable
s ∼ NC(0, I), the optimal precoding is a linear function x = P ?s such that P ?P ?H =
Rx

?, a decomposition that is possible for any covariance matrix.
The combining operation (often referred to as equalization) is the counterpart of

the precoding at the receiver. It combines the signal y received at the antennas into
ŝ ∈ CNs , which is the reconstruction of the data vector s. Similarly as the precoder,
it may be constructed optimally w.r.t. a chosen performance measure.
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Interestingly, the achievable rate of the link is usually maximized by a large set
of combiners. It is required to preserve in ŝ sufficient statistics of s included in y.
In the case of the Gaussian channel described earlier, the combining function that
maximizes the achievable rate is linear with the form XP HHHR−1

η with X being
any invertible matrix. However, while all such combiners maximize the achievable
rate, they may exhibit different properties. For example, while three most common
combiners—MMSE (Wiener), ZF, and MF are of the required form with1

XMF = I

XZF =
(
P HHHRη

−1HP
)−1

XMMSE =
(
I + P HHHRη

−1HP
)−1

,

they have different properties in terms of the error rates [39].

1We note that the identity matrix in the matched filter and MMSE filter expressions stems from
the assumption that the covariance matrix of s is an identity matrix. Otherwise, the identity
matrix should be replaced by the inverse of the covariance matrix of s.



3
Communication on mmWave
frequencies

3.1. Propagation on mmWave Frequencies
The key to system and algorithm design for mmWave lies in understanding how the
propagation characteristics differ with respect to the lower frequencies. There has
been significant work on this topic which has been summarized, e.g., in [49]. It has
been widely agreed that the propagation is dominated by reflections, with diffrac-
tion playing a negligible role. Moreover, the number of reflections of a path en-
tails increased propagation distance and, consequently, decrease of the path’s power.
Therefore, the propagation is defined by a limited number of paths which experience
low number of reflections. This results in both significant angular selectivity of the
mmWave channel and relatively low delay spread.
Moreover, a common argument that is used for presenting unfavorable propagation

characteristics in the mmWave frequency range is the path loss. However, this should
be taken with a grain of salt, which we explain in the following. The Friis formula
for path gain reads

G = GRxGTx

(
c

4πdf

)2

where GRx/GTx is the gain of the Rx/Tx antenna (array), c is the speed of light, f is
the frequency. This suggests a large pathloss for high frequencies, given the antenna

11



12 Chapter 3. Communication on mmWave frequencies

gains are the same. However, the aperture of antennas with given gain also decreases
quadratically with frequency. Consequently, if both the Tx and Rx antennas have
the same aperture, the path gain actually increases with frequency.
The propagation characteristics influence both the required hardware and the de-

sign of algorithms for mmWave.
First, the number of antennas must be significantly higher than on lower frequencies

in order to maintain the antenna aperture, and in consequence the path gains. A
large number of antennas comes with many challenges from the hardware perspective.
The usual design of transceivers would cause large power consumption—this has been
perceived as a problem already in Massive-MIMO (which involves lower frequencies)
and is even more pronounced on mmWave frequencies due to higher bandwidths of
the signal.
Second, the propagation channel includes only a limited number of individual

paths—the usual assumption of rich scattering does not hold any more. Moreover,
as the channel is selective in the angular domain, beamforming emerges as a necessity.
The high dimensionality of the channel poses also problems in the channel estimation
phase.
In the thesis, we address both challenges. First, we discuss different transceiver

architectures which are eligible as candidates for the mmWave band. Then, we con-
centrate on one of them (the subarray hybrid architecture) and perform a thorough
analysis thereof—we discuss the theoretical performance limits and present novel
algorithmic approaches which outperform the State-of-the-Art (SotA).

3.2. Practical Issues With Large Antenna Arrays
The narrowband fully digital (FD) MIMO system model is often described with the
following equation

y = Hx+ η (3.1)

where x ∈ CNt is a vector of Nt complex inputs to digital-to-analog converters
(DACs) at the Tx and, similarly, y ∈ CNr represents Nr complex outputs from the
analog-to-digital converters (ADCs) at the Rx1. The noise is denoted with η ∈ CNr

and H ∈ CNr×Nt is the channel transfer matrix.
1More specifically, the Tx is equipped with 2Nt DACs where the inputs are the real and complex
parts of x, similarly the Rx is equipped with 2Nr ADCs.
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This representation requires taking a number of assumptions about the operation
of ADCs/DACs, among others

• infinite resolution,

• sampling with Nyquist rate,

• bandwidth larger than the signal bandwidth,

• availability of 2 ADCs/DACs for each Tx/Rx antenna.

The model in (3.1) holds approximately for high resolution (12−15 bit) ADCs/DACs.
However, high-resolution converters fulfilling design parameters required for com-
munication on mmWave frequencies (i.a., bandwidth > 500 MHz, sampling rate
> 1 GHz) become power hungry, especially the ADCs. The most notable ADC archi-
tectures meeting the requirements are the folded-flash, pipeline, and time-interleaved
successive approximation. While the folded-flash architecture is the most power hun-
gry (the power dissipation increases exponentially with the resolution), the power
consumption of the two others is also significant [41,79].
The main trends in current research limits the overall power dissipation by either

decreasing the resolution of the converters [45, 47, 48, 77], or reducing their number.
In the following, we concentrate on the latter.

3.3. Hybrid Transceiver Structure

In order to reduce the number of AD/DA converters, an analog circuit that maps
low-dimensional signals at the outputs of the ADCs to high-dimension signals at the
inputs of the antennas (and vice versa) is required (c.f. Fig. 3.1). There have been
various concepts of such circuits, among them the most widely considered are the
lens antenna structure [20, 83, 84] and the phase shifter network (PSN) [7, 8, 12, 22,
30,35–38,44,53,67,68,75–77,82].
The concept behind the lens antenna is to introduce a fixed time delay network

between N antennas and K ports, where K must be greater than the number of
RF chains NRF (where the RF chains consist, i.a., of the AD/DA converters, up-
/downconverters, bandpass filters). Next, a network of switches connects each RF
chain with one of the K ports. Note that each of the K ports represents a different
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Figure 3.1.. Signal dimensionalities in a system with RF chain reduction

beamforming vector with entries corresponding to the delays between the port and
all the antennas.
The lens antenna architecture has a few drawbacks. Firstly, the flexibility of this

architecture is limited in two ways—the number of available beamformers is fixed
and the freedom of constructing the codebook is limited by physical properties of the
design. Secondly, the lens antennas are typically large [20].
An alternative that potentially allows for more flexibility, is the PSN. There, in

the Rx, the signal from an antenna undergoes a custom phase shift before being fed
into each of the available RF chains (and vice versa in the Tx).

3.4. Partially Interconnected Hybrid
Beamforming

The schematics of the fully interconnected phase shifter network (which we refer to in
the remainder as to fully interconnected hybrid beamforming (FI-HBF)) is depicted
in Fig. 3.2. Such design can significantly reduce the numbers of ADCs but creates a
number of new problems.
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Table 3.1.. Exemplary power consumption of electronic elements used for the construction of PSN

Device Power [mW]
Power Amplifier 40− 250
Low Noise Amplifier 4− 86
Phase Shifter 15− 110
ADC 15− 795
VCO 4− 25

First, implementing a reliable analog part of FI-HBF on mmWave frequencies is a
very big challenge in the design stage, e.g., it requires a lot of effort to keep the PSN
synchronized and to avoid crosstalk, especially with the density of wiring required
for FI-HBF.
Second, although for the sake of theoretical works the PSN is assumed passive, in

fact all the involved elements need power in order to operate. An effort to quantify
the overall power budget required for realizing the circuit has been taken in a few
works, e.g., in [21,30,57,60]. In Table 3.1 we show an exemplary summary presented
in [57] concerning the power consumption of different analog components. We note
that the numbers are not very precise and only to a degree compatible with other
works, e.g., [21, 60]. Therefore, in this work we do not stick to particular power
consumption values and assume that the PSN is passive. We emphasize that this
simplification is beneficial for the FI-HBF architecture over SPI-HBF.
Moreover, the electronic components included in the circuit exhibit non-negligible

power dissipation. Firstly, all components (splitters, power combiners, phase shifters)
have insertion losses determined by their quality. Secondly, the power splitters and
combiners can not be realized as (cascades of) 3 port components, if they should be
lossless, matched, and reciprocal at the same time—the inherent properties of the
S-matrix prohibit 3 port devices from sharing all the properties simultaneously [56].
Consequently, a big portion of power (dependent on the number of inputs) is burnt
in the combiner’s balast resistors [21, 25].
An answer to the aforementioned problems is a simplification of the FI-HBF struc-

ture, namely partially interconnected hybrid beamforming (PI-HBF) where there
exist RF chains without a connection to some of the antennas. Among the class of
PI-HBF architectures, an important subset are the subarray partially interconnected
hybrid beamforming (SPI-HBF) architectures, where disjoint sets of antennas (sub-
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arrays) are connected to disjoint sets of RF chains. Moreover, all antennas within a
subarray are connected to all the RF chains belonging to a given subarray. Such an
architecture is presented in Fig. 3.3 and is the main topic of the publication.

3.5. Subarray Hybrid Beamforming
The analysis of SPI-HBF is important for two reasons. Firstly, it can provide quan-
titative answers regarding the eventual performance loss if SPI-HBF is implemented
instead of FI-HBF. Secondly, it gives an insight into the performance of a transceiver
constructed of cooperating FI-HBF blocks.
We note that a special case of FI-HBF is analog beamforming (AB) where only

one RF chain is connected (with phase shifters in between) to all the antennas (see
Fig. 3.4). Such an architecture has already been successfully implemented in both a
testbed setting [15] and as a commercial product [1]. Moreover, it has become a part
of the 802.11ad wireless standard.
An important SPI-HBF architecture is the one where the analog stage of the HBF

is constructed of multiple analog beamforming blocks, see Fig. 3.5. Moreover, to
the best knowledge of the author, it is the only SPI-HBF variant considered in the
literature apart from the works of the author of the thesis [35,36,38]. The reason for
this is twofold. First, this is the simplest SPI-HBF structure, as it does not require
(at the Tx) any adders. Second, it simplifies to a large degree the design of the analog
precoding.
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Figure 3.2.. Exemplary fully interconnected (FI-HBF) transmitter structure.Nt = 5, NRF
t = 3
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Figure 3.3.. Exemplary subarray partially interconnected (SPI-HBF) transmitter structure. Nt =
5, NRF

t = 3, St = 2, N1
t = 3, N2

t = 2, NRF,1
t = 2, NRF,2

t = 1

Figure 3.4.. Exemplary Analog Beamforming transmitter structure. Nt = 3, NRF
t = 1
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Figure 3.5.. Exemplary SPI-HBF transmitter structure with one RF chain per subarray. Nt =
6, NRF

t = 2, St = 2, N1
t = 3, N2

t = 3, NRF,1
t = 1, NRF,2

t = 1





4
System Model

In this chapter, we explain the system model which we consider in the thesis. We
formulate the input-output relation of the system and discuss its specifics due to the
operating frequency band. Also, we introduce the performance measure used for the
system. Furthermore, we discuss how the analog stage of SPI-HBF can be modeled
mathematically.

4.1. Input-output relation and ergodic rate
The analog circuit in HBF can be modeled as a linear map between the spaces of
dimensions corresponding to the number of RF chains and the number of antennas.
The linear maps are described with the matrices GA ∈ CNRF

r ×Nr and PA ∈ CNRF
t ×Nt

at the Rx and Tx, respectively. Consequently, the system equation for a single link
MIMO system with HBF reads

y = GH
A (HPAx+ η) , (4.1)

where y ∈ CNRF
r is the output vector of the ADCs at the Rx and x ∈ CNRF

t is the
input vector to the DACs at the Tx, H ∈ CNr×Nt is the channel transfer matrix,
and η ∼ NC(0,Rη) represents the Gaussian distributed noise vector with covariance
matrix Rη ∈ CNr×Nr .
Further, we denote the data signal vector with s ∈ CNs . The data signal is precoded

before transmitting with a function p(·), so x = p(s) and, respectively, recovered at
the receiver with a combining function c(·) such that ŝ = c(y). In order to reduce

21
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complexity of the transceivers, we resort to linear precoding and combining and
write p(s) = PDs and ŝ = GH

Dy. From now on, we refer to PD and GD as to digital
precoding and combining matrices, respectively. Finally, we write the recovered data
signal vector as

ŝ = GH
Dy = GH

DG
H
A (HPAPDs+ η) . (4.2)

The performance measure used throughout the work is the ergodic achievable rate
of the system

R = EH [I(s, ŝ)]. (4.3)

We assume i.i.d. proper Gaussian distribution of the data vector s ∼ NC(0, I). We
take the assumption of block fading and perfect knowledge of the channel matrix
H at both the transmitter and receiver in each block. Therefore, for each channel
realization we aim at maximizing RH = I(s, ŝ;H).
Assuming Gaussian signaling, RH takes the following form (c.f. (2.11))

RH = log2 det(I +R−1
η,effG

H
DHAPDP

H
DH

H
AGD), (4.4)

where HA = GH
AHPA ∈ CNRF

r ×NRF
t is the effective channel gain matrix between the

RF chains and Rη,eff = GH
DG

H
ARηGAGD is the covariance matrix of the noise vector

after the combining at the Rx.

4.2. Analog Precoding and Combining Matrices

The operation of PSNs can be modeled by linear operations under the assumption
that the combiners and splitters work ideally (i.e., they sum up/divide the signals
present at their inputs). Then, the (i, j) entry of PA(GA) represents the effect of
the path between the ith Tx(Rx) antenna and jth Tx(Rx) RF chain. This includes,
i.a., the insertion loss and power consumption of the splitters, phase shifters, and
combiners as well as the power dissipation of the combiner (c.f. Sec. 3.4).
In our modeling, we take into account only the latter— this is an unavoidable effect

which is not dependent on the particular hardware selected for the implementation.
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Consequently, the construction of PA and GA for subarrays1 is as follows

|[PA]i,j| =


ξ

(k)
A,TX

iff the ith antenna and jth RF chain
belong to the kth transmit subarray,

0 otherwise,
(4.5a)

|[GA]i,j| =


ξ

(l)
A,RX

iff the ith antenna and jth RF chain
belong to the lth receive subarray,

0 otherwise.
(4.5b)

with

ξ
(k)
A,TX =

(
NRF,k

t Nk
t

)−1/2
,

ξ
(l)
A,RX =

(
NRF,l

r N l
r

)−1/2
, (4.6)

where Nk
t (N l

r) is the number of antennas at the Tx(Rx) subarray with index k(l)
and NRF,k

t (NRF,l
r ) reflects the number of RF chains assigned to the kth Tx (lth Rx)

subarray. We note that the formula in (4.6) is the same for both the Tx and Rx.
In Tx, the splitter has Nk

t outputs and therefore the
√

1
Nk

t
scaling of the signal. For

quantifying the scaling at the combiner, we utilize the model for the Wilkinson power
combiner [21,25] and the scaling

√
1

NRF,k
t

follows. In the Rx, the number of combiners
and splitters are interchanged, but the overall scaling has the same form.
Such a construction results in a power loss in the analog stage which depends on the

coherence of the signals entering the combiner. If the signals are fully coherent (which
requires a targeted construction of the precoding (combining) matrices), the entire
power entering the combiner is preserved in the output. In this thesis, we consider
the general case where no such coherence is enforced. This entails an average loss
of power proportional to the number of the inputs to the combiner. Therefore, we
differ the average consumed power PC = E[PDs] from the average emitted power
PE = E[PAPDs]. They coincide when each subarray is equipped only with one RF
chain. Otherwise, PC < PE and, moreover, the relation between both has a clean
closed form if all the combiners have the same L number of inputs, namely PE = PC

1
L
.

When all the subarrays are equipped with the same number of RF chains, we have
L = NRF

t
St

and consequently

PE = PC
St

NRF
t
. (4.7)

1Note that this construction covers also FI-HBF.
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With PA and GA we denote feasible sets accounting for the restrictions for the
analog precoding and combining matrices as in Eq. (4.5a),(4.5b). Moreover, we
assume without loss of generality that the antennas belonging to the same subarray
have subsequent indices. Consequently, the analog precoding/combining matrices
PA and GA have a block-diagonal structure.
From (4.6) it follows that the power dissipation in SPI-HBF and FI-HBF can

substantially differ. In most works (e.g., [12,18,53]) this is not taken into account and
the emitted power PE serves for the power constraint. In our work, we advocate to use
the consumed power PC as the power constraint. We argue that then the comparison
between FI-HBF and SPI-HBF is more fair because it reflects the complexity vs.
flexibility trade-off.

4.3. mmWave Channel Model
A common agreement on the mmWave statistical channel model is still awaited for.
While a multitude of measurement campaigns has been conducted, they all suffer
from uncertainties that are induced by insufficient channel sounding equipment. Nev-
ertheless, the following assumptions are widely agreed in the community for outdoor
urban propagation scenario (e.g., in [5, 12,62,63,72]):

• The number of paths is significantly lower than for the sub-6GHz frequency
band.

• The paths propagate in space and time clusters.

Therefore, we choose to consider the geometric channel model, which is compati-
ble with aforementioned assumptions. We use the extended Saleh-Valenzuela model
[9, 61] where the MIMO channel sampled at time instance dTs is written as a super-
position of individual, clustered paths as

H [d] = β

√
NrNt

L

Ncl∑
l=1

N l
path∑
r=1

αr,lp(dTs − τl − τr,l)arx(θr,l)aH
tx(φr,l), (4.8)

where Ncl is the number of time-space clusters, N l
path is the number of paths in

the lth cluster, αr,l is the path gain for the rth path in the lth cluster (including the
antenna gain), τl is the delay of the lth cluster, τr,l is the relative delay w.r.t. the
cluster delay of the rth path within the lth cluster. θr,l = [κθr,l, ζθr,l] is the direction of
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arrival (DoA) vector of the rth path within the lth cluster, composed of the elevation
angle κθr,l and the azimuth angle ζθr,l. φr,l = [κφr,l, ζ

φ
r,l] is the direction of departure

(DoD) vector of the rth path within the lth cluster, composed of the elevation angle
κφr,l and the azimuth angle ζφr,l. L expresses the path loss between the transmitter
and the receiver, and β is a normalization factor such that

E
[
D∑
d=0
‖H [d]‖2

F

]
= NrNt.

The contribution of the rth path in the lth cluster for the channel at the time
instance dTs is evaluated by sampling the transfer function p of the pulse-shaping
filter at dTs− τl− τr. The vectors arx and atx are the antenna array response vectors
for the receiver and the transmitter, respectively.
A common choice for the arrangement of antennas are the uniform linear arrays

(ULA). The array response vector for ULA reads as

aULA([κ, ζ]) = 1√
M

[
1, ej 2π

λ
d sin(ζ), . . . , ej(M−1) 2π

λ
d sin(ζ)

]T
(4.9)

whereM denotes the number of antennas, λ the wavelength of the transmitted/received
wave, and d is the spacing of the antenna elements. In our work, we assume half-
wavelength antenna elements spacing d = λ

2 . The response is independent of the
elevation angle κ and depends only on the azimuth angle ζ.
For the multicarrier setup, the channel matrixHk at the kth subcarrier is expressed

as

Hk = 1√
Nsubc

D−1∑
d=0

H [d] exp
(
j2πk
Nsubc

d

)
, (4.10)

where we assume that the number of subcarriers is larger than the number of taps
in the CIR, i.e., Nsubc > D.
In the work it is assumed that the mmWave channel (4.8) is known perfectly to

the transmitter and the receiver. We remark, however, that the problem of channel
estimation itself is a non-trivial one in mmWave systems, due to the large anntenna
arrays which are utilized and the hardware constraints. In [7, 22], some solutions
exploiting specific mmWave channel characteristics (sparsity [7], low rank [22]) are
proposed for narrowband channel estimation.





5
Performance Bounds for SPI-HBF

Before proposing practical precoding schemes for SPI-HBF, we show in this chapter
that it is possible to derive a tighter upper bound for the achievable rate of the link
than the one usually used in the literature (cf. [12,82]). Deriving a tight upper bound
is very important in the process of designing practical algorithms—knowing that the
performance is close to limit can focus the efforts on other issues like complexity,
flexibility etc.

5.1. Preliminaries
The usual approach to upper bounding the performance of hybrid analog-digital
systems is to relax the unit-modulus constraint on the entries of the analog precoding
(combining) matrices PA (GA) (c.f. [12, 19, 82]). This relaxation leaves only the
constraint of the limited number of RF chains. Therefore, the rate of such system is
upper bounded by the constrained capacity CFD (FD standing for full digital) which
is expressed as follows

RH < CFD = max
Rx

log2 det
(
I +R−1

η HRxH
H
)

s.t. tr(Rx) ≤ PTX, rank(Rx) ≤ NRF
t

Rx � 0 (5.1)

where PTX is the maximal value of the power emitted on average. In case the av-
erage emitted power is constrained, PTX = PE. Otherwise if the consumed power is

27
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constrained, the emitted power can be in general upper bounded by PTX = PC, and
moreover by PTX = PC

St
NRF

t
if all the subarrays have the same number of RF chains

(c.f. (4.7)).
The optimization problem in (5.1) is nonconvex due to the rank constraint, but it

yields a closed form solution presented in Appendix A which reads

R?
FD = P ?

FDP
?
FD

H (5.2)

where P ?
FD ∈ CNt×NRF

t = UNRF
t

Σ
1/2
FD is composed of the matrix UNRF

t
consisting of

the NRF
t eigenvectors of HHR−1

η H corresponding to the largest eigenvalues, and
ΣFD which is a diagonal matrix consisting of powers allocated to the NRF

t streams
obtained by the waterfilling algorithm [24,71,74].
The rank constraint accounts only for the reduced number of RF chains, the

remaining constraints are relaxed. Namely, the structure of the analog precod-
ing/combining matrices—the unit-magnitude constraint in the case of FI-HBF and,
additionally, the block-diagonal structure of PA present for SPI-HBF, have not been
considered.
We start by introducing notation that helps with explicitly relating the input-

output system equation to the diagonal blocks of the PA and GA matrices and their
digital counterparts. For this sake we write the analog precoding and combining
matrices as

PA =


P

(1)
A

. . .
P

(St)
A

 ,GA =


G

(1)
A

. . .
G

(Sr)
A

 , (5.3)

the digital precoding and combining matrices as

PD =


P

(1)
D
...

P
(St)
D

 , GD =


G

(1)
D
...

G
(Sr)
D

 , (5.4)

and

H =


H1,1 . . . H1,St
... . . . ...

HSr,1 . . . HSr,St

 =
[
H:,1, . . . ,H:,St

]
(5.5)
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where Sr stands for the number of subarrays at the Rx, and H:,k is the channel
matrix between the kth Tx subarray and all the Rx antennas. The dimensionality
of the blocks in the matrices are determined by the system setup—more specifically,
the number of RF chains and antennas assigned to the subarrays:

P
(k)
A ∈ CNk

t ×N
RF,k
t ,

G
(l)
A ∈ CN l

r×N
RF,l
r ,

P
(k)
D ∈ CNRF,k

t ×Ns ,

G
(l)
D ∈ CNRF,l

r ×Ns ,

Hl,k ∈ CN l
r×Nk

t ,

H:,k ∈ CNr×Nk
t .

We use the introduced notation to rewrite (4.2) as follows

ŝ = GHHPs+GHη = GH
St∑
k=1
H:,kxk +GHη (5.6)

where

G =


G(1)

...
G(Sr)

 ∈ CNr×Ns

G(l) = G
(l)
A G

(l)
D ∈ CN l

r×Ns ,

P =


P (1)

...
P (St)

 ∈ CNt×Ns ,

P (k) = P
(k)
A P

(k)
D ∈ CNk

t ×Ns ,

xk = P (k)s ∈ CNk
t . (5.7)

With the new form of the system equation we gain additional insights into the effects
of block-diagonal analog precoding and combining. The expression in (5.6) suggests
two alternative perspectives of interpreting the structure, namely as

1) point-to-point MIMO system with special structure of linear precoding and
combining matrices,

2) multiple-access channel (MAC) with cooperating transmitters and special struc-
ture of precoding and combining matrices.
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5.2. Low-SNR Upper Bound
We consider the structure of the precoding matrix P . We note that the analysis
for the combining matrix G follows the same arguments. From (5.7) we see that it
is constructed as a vertical concatenation of St matrices P (k). Those submatrices
are constructed as a product of the P (k)

A and P (k)
D matrices: the first one describing

the operation of the analog stage of the subarray and second one of it’s digital
counterpart. As a result, the feasible set for the submatrices is constrained by

• the entries of P (k)
A are unit modulus,

• column rank deficiency of P (k) if NRF,k
t < min{Nk

t , Ns}, where NRF,k
t is the

number of RF chains at the kth subarray ot the transmitter.

• the power constraint ‖P ‖2
F ≤ PTX.

To summarize, this means that the effective precoding matrix P is constructed as a
concatenation of possibly column rank deficient matrices, each lying in an intricate
non-convex set. Moreover, a power constraint limits the Frobenius norm of the
matrix.
While the first constraint is common for both FI-HBF and SPI-HBF, the second

one is SPI-HBF specific. Therefore, we expect the upper bound CFD which proved to
be tight for FI-HBF to work poorly with SPI-HBF as it ignores the second constraint.
A special case emerges in the low-SNR regime. Below a certain SNR, the optimal

number of independent streams N?
s becomes smaller than the number of RF chains

at any of the subarrays both at the Tx and Rx:

N?
s ≤ min{NRF,1

t , . . . , NRF,St
t , NRF,1

r , . . . , NRF,Sr
r }.

In such case, all the submatrices P (k) and G(l) have full column rank and the unit-
modulus constraint is the only remaining constraint. Therefore, the achievable rate
of the system can be upper-bounded by the point-to-point MIMO capacity with the
number of streams limited to min{NRF,1

t , . . . , NRF,Sr
r }:

RH,Low ≤ CH,Low = max
RL

log2 det
(
I +R−1

η HRLH
H
)

s.t. tr(RL) ≤ PTX, RL � 0,
rank(RL) ≤ min{NRF,1

t , . . . , NRF,Sr
r } (5.8)
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where RL is the transmit covariance matrix optimal for the MIMO channel H given
the number of streams limited by min{NRF,1

r , . . . , NRF,St
r } and PTX is like in (5.1).

The solution to the problem is outlined in Appendix A. Moreover, we write

CLow = EH [CH,Low] . (5.9)

5.3. High-SNR Upper Bound
The second expression in (5.6) relates the system to a MAC scenario with cooperation
and user’s input distributions within parametric families

{pxk(xk;θ) = NC (xk; 0,θ) |θ ∈ Θk}

Θk =
P (k)

A P
(k)
D P

(k)
D

HP
(k)
A

H|P (k)
A ∈ PA, P (k)

D ∈ CNRF,k
t ×Ns

‖ΓPD‖2
F ≤ PTX


where NC (x;µ,Σ) denotes the multivariate Gaussian density of argument x with
mean µ and covariance matrix Σ. Moreover, (Γ, PTX) = (I, PC) if consumed power
is constrained and (Γ, PTX) = (PA, PE) if emitted power is constrained. Moreover, at
the receiver the combining matrix G in general does not preserve sufficient statistics
about the signal vector s.
The cooperative MAC has a similar structure as a regular MAC scenario, but

with transmitters sharing the power budget and coordinating to jointly code the
information.1 The rate region for cooperative MAC is a simplex described as follows
[80]:

RCM =
{

(R1, . . . , RSt) ∈ RSt

∣∣∣∣ St∑
k=1

Rk ≤ CH , Rk ≥ 0 ∀k
}

with Rk corresponding to the rate of the kth user and

CH = max
{pxk (·;θ)}

RH = max
{pxk (·;θ)}

I(x1x2, . . . ,xSt , ŝ)

being the capacity of the point-to-point channelH given the constraints imposed on
the feasible set of distributions of xk. In general, the value of CH remains unknown.

1The analogous cooperative BC is described in [78]
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In the following, we show that in high SNR the described MAC setup may be consid-
ered as a regular MAC (uncooperative) and based on this observation we show how
to tightly upper-bound CH .
At high SNR, all the available spatial degrees of freedom are exploited, i.e., DoF =

Ns. In a hybrid system,

DoFHBF = rank(GH
AHPA). (5.10)

If DoFHBF = NRF
t , which is the case if NRF

t ≤ min{NRF
r , rank(H)}, the optimal

digital precoding matrix is square and for SNR→∞ also unitary PDP H
D = P H

DPD =
I. Therefore, there exists a finite SNR value for which P (k1)

D P
(k2)
D

H
= 0 (which is a

weaker condition than PD being unitary). This entails E[xk1x
H
k2 ] = 0, ∀k1 6= k2, i.e.,

that the data transmitted by different subarrays is uncorrelated.
This allows writing RH as the sum rate of a virtual uncooperative MAC system

with user k precoding with P (k) precoding matrix and the receiver using G as the
combiner

RH,High = − log2 det(Rη,eff)+

log2 det
(
Rη,eff +

St∑
k=1
GHH:,kP

(k)P (k)HHH
:,kG

)
(5.11)

where Rη,eff defined as in (4.4). We upper bound this expression with the capacity
of the MAC channel with limited multiplexing capabilities2 (as P (k) are in the usual
case rank deficient) and a sum power constraint

RH,High ≤ CHigh(H) = max
P (1),...,P (St)

{− log2 det(Rη)+

log2 det
(
Rη +

St∑
k=1
H:,kP

(k)P (k)HHH
:,k

)}

s.t. rank(P (k)) ≤ NRF,k
t ∀k

St∑
k=1

tr(P (k)P (k)H) ≤ PTX (5.12)

In Algorithm 1, we present the solution from [32], which is suited to determine the
capacity expression from (5.12).

2Limited multiplexing capabilities refers to a limit imposed on the number of transmitted streams,
which is more restrictive than the number of available antennas
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Algorithm 1 MAC capacity with limited multiplexing capabilities [32]
Require: H:,k, Rη, PTX

1: Choose s0, s′ = 1
2: T (k) ←

[
INRF,k

t
0N

RF,k
t ×Nk

t −N
RF,k
t

]T
3: Q(k) ← PTX

St
T (k)T (k)H ∀k

4: Σ← Rη +∑St
k=1H:,kQ

(k)HH
:,k

5: C last
H,High ← log2 det(Σ)

6: repeat
7: δT (k) ←H:,kΣ

−1H:,k
HT (k)

8: λ←
√

PTX∑St
k=1 ‖δT

(k)‖2
F

9: repeat
10: T (k)′ ← T (k) + s0

s′ λδT
(k) ∀k

11: T (k)′ ← T (k)′
√

PTX∑St
k=1 ‖T

(k)′‖2
F
∀k

12: Σ′ ← Rη +∑St
k=1H:,kT

(k)′T (k)′HH:,k
H

13: Cnew
H,High ← log2 det(Σ′)

14: if Cnew
H,High ≤ C last

H,High then
15: s′ ← s′ + 1
16: end if
17: until Cnew

H,High > C last
H,High

18: T (k) ← T (k)′, Σ← Σ′, C last
H,High ← Cnew

H,High

19: until convergence
20: return Cnew

H,High

We further note that in a point-to-point link, a rate of transmission in one direction
can be always achieved with proper precoding also in a reverse link. We exploit that
in order to tighten the bound CHigh(H), which does not account for the subarray
structure at the receiver. From

RH,High ≤ CHigh(H), RHH,High ≤ CHigh(HH)

and the aforementioned fact, we get

RH,High ≤ min{CHigh(H), CHigh(HH)} := CH,High

and we denote the bound averaged over the channel realizations as CHigh = EH [CH,High] .
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5.4. Discussion
We note that additional argumentation should be formulated in order to convince
the reader that the novel bound from (5.12) is tighter compared to the constrained
capacity CFD from (5.1). The usual intuition tells that in high-SNR a MIMO point-to-
point link performs equally as a MIMO MAC setup in terms of the (sum) capacity—
independent coding of information across the antennas is optimal. Nevertheless, this
argumentation is incomplete if the number of degrees-of-freedom is lower than the
number of antennas—then the information transmitted by the antennas is not any
more independent. This is the case if the number of RF chains is constrained, like in
(5.1).
A different situation is highlighted by the arguments presented in this section.

Here, the subarray data streams xk are uncorrelated. This implies that, while sim-
ilarly as above, the information is not independent throughout all the antennas,
there exists some structure—the information transmitted by antennas of different
subarrays is uncorrelated. The existence of this particular inter-antenna correlation
structure enforces CFD ≥ CHigh.

5.5. Numerical results
We consider a scenario with a non-symmetric Tx-Rx pair. Namely, the Tx is a base
station with significantly more antennas than the Rx, which is considered to be a
device with lower complexity. In all simulations, we consider ideal knowledge about
the CSI at the Tx. Therefore, the rate is identical in both forward and reverse links
and we do not duplicate the simulations.
The Tx and Rx are equipped with 128 and 32 antennas, respectively. All devices

are equipped with NRF = 8 RF chains. Without loss of generality, we assume always
that all subarrays are identically configured. I.e., each has the same number of RF
chains NRF,k

t (NRF,l
r ) and antennas Nk

t (N l
r).

In the simulations, we assume a geometric narrowband channel model

H =
√√√√ NrNt∑Ncl

c=1N
c
path

Ncl∑
c=1

Nc
path∑
r=1

αr,caRX(θRX
r,c )aH

TX(θTX
r,c ) (5.13)

where the subarrays together form a uniform linear array (ULA) with half-wavelength
antenna spacing. In the simulations, we assume Ncl = 8 clusters each containing
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N l
path = 10 paths. The angles of arrival/departure are drawn from Laplacian dis-

tribution with the central angle uniformly distributed over the [0, 2π] interval and
spread of 7.5◦. We generate 1000 independent channel realizations.
In our plots, we assume that the noise variance at the Rx is uncorrelated across

the antennas with Rη = I [mW] and that there is no path loss. We note, that in
such case the emitted power coincides with the Rx SNR.
We show how the novel upper bounds (for the low- and high-SNR region) compare

with the constrained capacity (5.1). We examine the results in Figs. 5.1-5.4 for
consumed power constraint and 5.5 for emitted power constraint. We conclude,
that with increasing number of subarrays, the bounds diverge from the constrained
capacity. This is a desired trend and the results provide an insight into the inevitable
performance loss due to the hardware simplification. We follow with an observation
that the slope of the high-SNR upper bounds curves (corresponding to the degrees-
of-freedom) changes only slightly. This is attributed to the sparse nature of the
mmWave channel. However, for more comprehensive evaluation of the usefulness of
the upper bounds, a comparison with the achievable rates is required. We cover this
in the next chapter.
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Figure 5.1.. Comparison between the constrained capacity and the novel upper bounds: high SNR
upper bound CHigh and low SNR upper bound CLow. The setup considers St = 1, Sr = 1
subarray configuration, i.e., a FI-HBF setup, with 128 Tx antennas, 32 Rx antennas,
and 8 RF chains at the Tx and Rx. The consumed power is constrained. In this case,
all three curves coincide.
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Figure 5.2.. Comparison between the constrained capacity and the novel upper bounds: high SNR
upper bound CHigh and low SNR upper bound CLow. The setup considers St = 2, Sr = 2
subarray configuration with 128 Tx antennas, 32 Rx antennas, and 8 RF chains at the
Tx and Rx.
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Figure 5.3.. Comparison between the constrained capacity and the novel upper bounds: high SNR
upper bound CHigh and low SNR upper bound CLow. The setup considers St = 4, Sr = 4
subarray configuration with 128 Tx antennas, 32 Rx antennas, and 8 RF chains at the
Tx and Rx.
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Figure 5.4.. Comparison between the constrained capacity and the novel upper bounds: high SNR
upper bound CHigh and low SNR upper bound CLow. The plot considers St = 8, Sr = 8
subarray configuration with 128 Tx antennas, 32 Rx antennas, and 8 RF chains at the
Tx and Rx.
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Figure 5.5.. Comparison between the constrained capacity and the novel upper bounds: high SNR
upper bound and low SNR upper bound. The curves consider different Tx subarray
configurations. The setup considers 128 Tx antennas, 32 Rx antennas, 8 RF chains at
the Tx and Rx.



6
Precoding for SPI-HBF

In this chapter, we present the most common approaches to precoding for HBF
architectures. We show novel, optimal ways of optimizing the digital precoder in
schemes that rely on alternate optimization, minimizing the difference of the hybrid
precoding and optimal unconstrained precoding. Furthermore, we propose a greedy
precoding scheme which is specially suited for SPI-HBF. Also, we propose a precoding
algorithm which is specially designed for scenarios with low-SNR.
In general, the derivation of precoding schemes for SPI-HBF can be divided into

two groups. First, there exists significant work on precoding for FI-HBF which can
be directly applied to SPI-HBF.
Second, we showed in the previous chapter how the SPI-HBF relates to a (virtual)

multiuser system. Such perspective can be utilized in the precoder design. We
present solutions that follow this path and provide not only good performance, but
also desirable properties from the system perspective.

6.1. State-of-the-Art Overview
The literature on precoding for hybrid beamforming can be separated into a number
of overlapping categories, some of which we highlight in the following.
First, in terms of the considered frequency band—hybrid beamforming (under the

term of soft antenna selection) has been introduced in [86] for lower frequencies and
a few publications followed this idea [70, 77]. Hybrid beamforming for mmWave
frequencies is much wider considered, e.g., in [2, 4, 11, 12, 18, 28, 29, 31, 33, 34, 43, 46,

39
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50,51,54,55,65,66,68,69,81,82,89].

The solutions proposed for mmWaves differ in terms of the degree of being implementation-
ready, ranging from practical (and not complex from the theoretical point of view)
solutions proposed for the WirelessHD and IEEE 802.11ad [2] standards, through
theoretical works which emphasize the practicality of the proposed solutions (c.f.,
[4, 19, 65, 70]) to works with often idealistic assumptions which provide information
about the performance limits of the technology (c.f., [12, 54,67,68,76,82]).

The next differentiation comes from the specific hybrid architecture considered,
starting from the simplest analog beamforming structure (c.f., [2, 77]), through sub-
array hybrid beamforming structures with one RF chain per subarray (c.f., [11,19,28,
29, 53, 82]) and subarray structures allowing for subarrays with multiple RF chains
(c.f. [35, 36,38]) to solutions for fully interconnected structures (c.f. [4, 12, 31,76]).

Moreover, there are three main paths of approaching the precoding problem. The
first is the codebook beam training approach. There, the goal is to design a pro-
tocol which determines the best transmitter-receiver beam pair (where the beams
are predefined and form a beam codebook). This approach is adopted in the IEEE
802.11ad standard [2] and covered in a number of publications, e.g., [7, 73, 88]. An
approach which seeks for a more optimal solution attempts to find the most accurate
approximation of the unconstrained (digital) precoder. This approach forms basis
for e.g., [12,22,34,53,82]. Moreover, some works attempt direct maximization of the
rate expression (c.f. [35, 67,68]).

Finally, there is a number of system assumptions that differentiate the works.
This includes the wideband/narrowband assumption, single-/multiuser systems, con-
straints on the operation of phase shifters (quantized/continuous phase), the degree
of making realistic assumptions while modeling the analog elements, etc. The large
matrix of assumptions which differentiate the works is expected as hybrid precoding
in its core has been designed as a practical solution to a problem. Therefore, introduc-
ing additional practical issues is natural. Unfortunately, this also makes comparison
between different ideas difficult and often impossible. In the following, we identify
the most successful approaches, expand on them and use them as a benchmark to
verify the proposed solutions.
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6.2. Decomposition of the Unconstrained
Precoder

We note that in this section, we concentrate solely on the precoding part. For
combining, the problem can be formulated in the same way, except for the power
constraint. Any scaling of the combining matrix cannot change the achievable rate
of the system, as both the signal and noise part are equally scaled.
A common heuristic approach for maximizing the rate of a hybrid system involves

the decomposition of the unconstrained optimal precoder P ?
FD into the analog and

digital part. It has been proposed in [12] to use the Frobenius norm of the approxi-
mation error as the measure of the decomposition accuracy

d0(PA,PD;P ?
FD) = ‖P ?

FD − PAPD‖2
F (6.1)

and to minimize the metric by choosing PA and PD accordingly

{P ?,0
A ,P ?,0

D } = arg min
PA,PD

d0(PA,PD;P ?
FD),

s.t. ‖ΓPD‖2
F ≤ PTX

PA ∈ PA. (6.2)

We note that we defined earlier (Γ, PTX) = (I, PC) if the consumed power is con-
strained and (Γ, PTX) = (PA, PE) if the emitted power is constrained.
Such approach is justified by arguing that d0(PA,PD;P ?

FD) represents the chordal
distance between the subspaces represented by the columnspaces of P ?

FD and PAPD,
given the matrix columns are orthogonal. The authors in [12] observe that this is
approximately met if the number of antennas at the transmitter is large.
An interesting extension to this approach has been presented in [34]. It has been

noticed that any precoding matrix of the form P ?
FDΨ is also optimal (both in the

sense of maximizing the rate and minimizing the MSE) given Ψ is an unitary matrix.
Consequently, a more general form of the measure d0 has been proposed

d1(PA,PD,Ψ;P ?
FD) = ‖P ?

FDΨ− PAPD‖2
F (6.3)

and an extension to the optimization problem with an additional optimization vari-
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able followed

{P ?,1
A ,P ?,1

D ,Ψ?} = arg min
PA,PD,Ψ

d1(PA,PD,Ψ;P ?
FD),

s.t. PA ∈ PA, Ψ ∈ UNs

‖ΓPD‖2
F ≤ PTX (6.4)

with UNs representing the set of all Ns ×Ns unitary matrices.
In other words, minimizing d1 results not only in finding PA and PD which

approximate most accurately one of the optimal unconstrained precoding matri-
ces. Moreover, it searches also for an optimal unconstrained precoding matrix
which can be best approximated given the constraints. Consequently, we note that
d1(P ?,1

A ,P ?,1
D ,Ψ?;P ?

FD) ≤ d0(P ?,0
A ,P ?,0

D ;P ?
FD), with equality if Ψ? = I.

In the following, we concentrate on the optimization problem (6.2) and note that
the extension to (6.4) follows with the method described in [34].
The optimization problem (6.2) is usually tackled via alternating optimization

methods, i.e., updating one of the optimization variables while keeping the other one
fixed. In the following, we sketch some of the approaches reported in the literature.
A codebook-based solution has been proposed in [12]. In each alternating step, a

subsequent column of the analog precoding matrix PA is selected from a predefined
codebook using the orthogonal matching pursuit (OMP) algorithm. The digital
precoding matrix PD is updated such that the unconstrained objective is minimized
PD = P †AP

?
FD. In the end, PD is scaled with α, where α =

√
PE

‖PDPA‖F
is a scaling factor

ensuring that the emitted power constraint is fulfilled. We summarize the algorithm
in Algorithm 2.
In [22], an approach inspired by the block coordinate descent (BCD) algorithm has

been proposed. In each alternating step the analog precoding matrix PA is updated
via Euclidian projection of the optimal solution P †DP ?

FD onto the feasible set PA. The
digital precoding matrix PD is updated like in [12]. We summarize the algorithm in
Algorithm 3.
Another alternating approach has been reported in [82]. There, the authors notice

that the set of feasible analog precoding matrices (PA) defines a Riemannian mani-
fold. In each alternating step they move along the steepest gradient on the tangent
space of the manifold and update the analog precoding matrix PA by retracting back
onto the manifold. The digital precoding matrix PD is updated like in [12]. Com-
pared to the previous approaches, this one is the most computationally expensive,
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Algorithm 2 The OMP precoding algorithm
Require: P ?

FD, D (Dictionary)
1: Pres = P ?

FD, PA = Null
2: for i ≤ NRF

t do
3: Ψ = DHPres

4: k = arg maxj
[
ΨΨH

]
(j,j)

5: PA =
[
PA|D(:,k)

]
6: PD = P †AP

?
FD

7: Pres = P ?FD−PAPD
‖P ?FD−PAPD‖F

8: end for
9: PD =

√
PE

‖PDPA‖F
PD

10: return PA,PD

Algorithm 3 The BCD algorithm
Require: P ?

FD

1: Randomly initialize PA
2: while not convergence do
3: PD = P †AP

?
FD

4: PA = ΠA

(
P ?

FDP
†
D

)
where ΠA(·) is an orthogonal projection into PA

5: end while
6: PD =

√
PE

‖PDPA‖F
PD

7: return PA,PD

but provides the best results.
It is also worth noticing that it has been shown in [85] and [67] how to construct

PA and PD such that d0 = 0, given NRF
t ≥ 2Ns. In other words, hybrid precoding

can perform identically as the unconstrained precoding given sufficient numbers of
RF chains are available.

6.2.1. Digital Precoding Matrix Update

In the above works, the update of PA in the alternating steps has been dominating
the discussion. The update of PD has been either not elaborated on (cf. [12]) or
bounds quantifying the non-optimal update of PD have been derived (cf. [82]). In
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the following, we show how to optimally update PD, so that the power constraint is
satisfied.
First, we observe that the optimization problem

min
PD
‖P ?

FD − PAPD‖2
F, s.t. ‖ΓPD‖2

F ≤ PTX (6.5)

is a least-squares problem with a quadratic constraint. For sake of presentation, we
rewrite it to a common form

min
pD
‖p?FD −KApD‖2

2, s.t. ‖Γ1pD‖2
2 ≤ PTX (6.6)

where p?FD = vec(P ?
FD), pD = vec(PD), and KA = INs ⊗ PA where ⊗ stands for

the Kronecker product. If the emitted power is constrained, (Γ1, PTX) = (KA, PE)
and (Γ1, PTX) = (I, PC) for the constraint on the consumed power. The optimal
value of the optimization variable is denoted with P ?

D and its vectorized version as
p?D = vec(P ?

D). The optimization problem is convex, therefore Karush-Kuhn-Tucker
(KKT) conditions are sufficient to find the global optimum. After reformulations,
they read

p?D =
(
KH

AKA + λΓH
1 Γ1

)−1
KH

Ap
?
FD Stationarity

‖Γ1p
?
D‖2

2 ≤ PTX Primal feasibility
λ ≥ 0 Dual feasibility
λ(‖Γ1p

?
D‖2

2 − PTX) = 0 Complementary
Slackness (6.7)

This set of equations can be solved in two steps. First, we check whether the
unconstrained solution (corresponding to λ = 0) is within the feasible set, i.e., if
‖Γ1K

†
Ap

?
FD‖2

2 ≤ PTX. If so, p?D = K†Ap
?
FD (translating to P ?

D = P †AP
?
FD) is the

optimal solution. If this is not the case, the constraint is active, i.e., ‖Γ1p
?
D‖2

2 = PTX.
We continue by treating separately the two power constraints. For the emitted

power constraint we have PTX = PE and Γ1 = KA. From the stationarity constraint,
we have therefore

p?D = 1
1 + λ

K†Ap
?
FD.

This solution is therefore a scaled version of the unconstrained solutionK†Ap?FD. The
scaling must be such that the constraint is met with equality, i.e.,

‖KAp
?
D‖2

2 = PE.
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From this, we derive the scaling of the unconstrained precoder 1
1+λ as follows

1
1 + λ

‖KAK
†
Ap

?
FD‖2 =

√
PE

1
1 + λ

=
√
PE

‖PAP †AP ?
FD‖F

.

Finally, when we introduce P ?′
D = P †AP

?
FD for the optimal unconstrained digital

precoder, we have

P ?
D =

√
PE

‖PAP ?′
D ‖F

P ?′

D .

We conclude that the solution for PD in, e.g., [12, 34, 37, 82] is optimal w.r.t. to
minimizing the objective function.
In the case when the consumed power PC is constrained, we have the following

system of equations


p?D =

(
KH

AKA + λI
)−1

KH
Ap

?
FD

‖p?D‖2
2 = PC

λ > 0
. (6.8)

A closed-form solution for λ is not available. However, we observe that ‖p?D‖2
2 is

monotonically decreasing with λ. Consequently, (6.8) may be solved, e.g., by means
of the bisection method.

6.2.2. Decomposition of the Unconstrained Precoding
Matrix for SPI-HBF

In the following, we show how to use the aforementioned algorithms, initially devel-
oped for FI-HBF transceivers, in the SPI-HBF scenario.
Let’s extend to the notation from the previous subsection (5.7) with

P ?
FD =

[
P
?,(1),T
FD , . . . ,P

?,(St),T
FD

]T
∈ CNt×Ns .
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Then, we rewrite d0(PA,PD;P ?
FD) in terms of P (k)

A P
(k)
D

d0

([
P

(k)
A

]St

k=1
,
[
P

(k)
D

]St

k=1
;
[
P
?,(k)
FD

]St

k=1

)
=∥∥∥∥∥∥∥∥∥


P
?,(1)
FD
...

P
?,(St)
FD

−

P

(1)
A P

(1)
D

...
P

(St)
A P

(St)
D


∥∥∥∥∥∥∥∥∥

2

F

=

St∑
k=1
‖P ?,(k)

FD − P (k)
A P

(k)
D ‖2

F. (6.9)

Consequently, we write the optimization problem (6.2) as{[
P

(k),?,0
A

]St

k=1
,
[
P

(k),?,0
D

]St

k=1

}
=

arg min[
P

(k)
A

]St

k=1
,

[
P

(k)
D

]St

k=1

St∑
k=1
‖P ?,(k)

FD − P (k)
A P

(k)
D ‖2

F

s.t.
St∑
k=1
‖ΓP (k)

D ‖2
F ≤ PTX

P
(k)
A ∈ PA ∀k ∈ {1, . . . , St}. (6.10)

We observe the following:

• The update of the analog precoders can be performed independently for each
subarray k as

min[
P

(k)
A

]St

k=1
∈PA

St∑
k=1
‖P ?,(k)

FD − P (k)
A P

(k)
D ‖2

F =

St∑
k=1

min
P

(k)
A ∈PA

‖P ?,(k)
FD − P (k)

A P
(k)
D ‖2

F

• The power budget constraint introduces dependencies between the digital pre-
coding matrices P (k)

D . Therefore, the update of the entire PD matrix should,
in general, be performed as in the FI-HBF case.

Let’s comment more extensively on the second point. This statement holds for the
case, when the power constraint is taken into account in each alternating step. Note
that in, e.g., [12,22,34] the projection of PD onto the feasible set takes effect only after
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the algorithm converges. In such case, the optimization w.r.t. PD is unconstrained
and can be also parallelized into St independent optimization problems

min[
P

(k)
D

]St

k=1

St∑
k=1
‖P ?,(k)

FD − P (k)
A P

(k)
D ‖2

F =

St∑
k=1

min
P

(k)
D

‖P ?,(k)
FD − P (k)

A P
(k)
D ‖2

F. (6.11)

We summarize the decomposition procedure for SPI-HBF in Algorithm 4.

6.3. Precoding With the Multiuser Perspective

The analysis of the performance bounds for SPI-HBF suggests another perspective
in the discussion about subarray systems. The equivalence between SPI-HBF and a
cooperative multiuser system, where transceivers have limited multiplexing abilities,
has been shown. We utilize this novel perspective to propose heuristic precoding
schemes which emerge from the field of research related to multiuser precoding.
In the following, we propose to design the analog and digital precoding in two

separate steps.
First, we treat all the subarrays at the Tx as non-cooperative agents in a multiuser

system, while the Rx subarrays can cooperate in order to jointly decode informa-
tion. Moreover, the Tx and Rx agents have limited multiplexing abilities—each can
transmit (receive) less independent data streams than the number of available anten-
nas. For such scenario, we develop transmit and receive strategies—the precoding
(combining) matrices P (k)

A

(
G

(l)
A

)
.

In the second step, we introduce cooperation between the transmitters. For sake
of maximizing the performance of the system, we design digital precoding and com-
bining matrices (PD and GD).
This procedure reflects itself in reformulation of the general rate optimization prob-

lem which reads

CH = max
PD,PA,GD,GA

RH s.t. ‖ΓPD‖2
F ≤ PTX, PA ∈ PA (6.12)

into one step of alternating optimization between the analog precoders (combiners)
PA (GA) and the digital ones: PD and GD. First, we initialize PD = I and GD = I
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and solve the optimization problem with respect to the analog stage matrices

{P ?
A,G

?
A} = arg max

PA,GA

log2 det
(
I +R−1

η G
H
AHPAP

H
AH

HGA

)
s.t. PA ∈ PA, GA ∈ GA (6.13)

and subsequently with respect to the digital stage matrices

{P ?
D,G

?
D} = arg max

PD,GD

log2 det
(
I +R−1

η,GG
H
DH

?
APDP

H
DH

?,H
A GD

)
s.t. ‖ΓPD‖2

F ≤ PTX. (6.14)

whereH?
A = G?,H

A HP ?
A and Rη,G = G?,H

A RηG
?
A. We denote the rate achievable with

such strategy as

RH,MU = log2 det(I +R?,−1
η G?H

D G
?H
A HP

?
AP

?
DP

?H
D P ?H

A HHG?H
A G

?H
D ) (6.15)

where R?
η = G?H

D G
?H
A RηG

?
AG

?
D.

Clearly, separating the optimization problem variables results in a non-optimal
solution RH,MU ≤ CH . However, attaining the global optimum of (6.12) is not
guaranteed with methods available in the literature1; not only the non-convex unity-
modulus constraint, but also the coupling of the optimization variables is problematic.
We show that by separating the problem as in (6.13) and (6.14), we get two prob-

lems which are easier to solve. We tackle the first problem by adapting algorithms
developed for multiuser linear precoding scenarios. The second problem is to deter-
mine the capacity of a point-to-point MIMO setup with deterministic channel which
is solved, e.g., in [24, 71].
We note that there exists a substantial number of linear precoding methods for mul-

tiuser MIMO. A significant portion of them can be adopted for solving the problem
in question. In this work, we develop an algorithm inspired by the LISA algorithm
which has been shown in [26] for a fully digital scenario. We motivate choosing this
approach with high flexibility of the algorithm and that it converges, for particular
subarray setups, to other algorithms which were shown to attain very good results,
namely the Hybrid-LISA algorithm in [76] and the precoding presented in [18].
In the following, we explain the details of the algorithm. We note that it has been

previously presented in [36]. In this work, we provide more details and discussion on
the proposed method.

1A local optimum can be determined, e.g., by means of the ADMM algorithm [75], although
convergence is not guaranteed.
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6.3.1. The SGSGP Algorithm Description

In (5.5), we introduced a decomposition of H into StSr submatrices Hl,k, each cor-
responding to a channel transfer matrix between the lth Rx subarray and kth Tx
subarray. The row- and null-spaces of the submatrices govern how information may
propagate between the subarrays. For example, let p ∈ rowspace(Hl,k) and the
transmit vector x = ps be transmitted by the kth subarray. The symbol s might be
then recovered by each subarray l, for which p /∈ nullspace(Hl,k).
The subarray l may then decide to either receive the symbol by combining the re-

ceived vectorHl,kps with a vector gT /∈ nullspace(Hl,kp), such that ŝ = gTHl,kps 6=
0 or neglect it by setting gT ∈ nullspace(Hl,kp). In our algorithm we keep these facts
in mind. We iteratively assign streams to a pair of transmit and receive subarrays—
we assign to them precoding vectors p that lie in the rowspace of the corresponding
channel. We control the interference to the previously assigned symbols by sepa-
rating the precoding vectors from the previous ones by slicing the rowspace into
subspaces corresponding to different symbols. At the receiver side, we may avoid the
interference from previously allocated streams if we receive in the nullspace of the
space occupied by them. In the following, we formalize this approach, which we call
Spatial Greedy Subarray Hybrid Precoding (SGSHP).
In the first step of the algorithm, we search for a pair of subarrays (l1, k1) that

maximizes the gain of the allocated stream

{l1, k1, g1,p1} = arg max
k,l,g,p

|gHHl,kp|

s.t. g ∈ GA, p ∈ PA. (6.16)

We notice that for any g, the objective is maximized if

p(g) = ξ
(k)
A,TX exp(j∠(HH

l,kg)). (6.17)

As

|gHHl,kξ
(k)
A,TX exp(j∠(Hl,k

Hg))| = ξ
(k)
A,TX

∑
i

∣∣∣[gHHl,k

]
i

∣∣∣
= ξ

(k)
A,TX‖gHHl,k‖1 (6.18)

we rewrite the problem only as a function of g as

{k1, l1, g1} = arg max
k,l,g

ξ
(k)
A,TX‖gHHl,k‖1

s.t. g ∈ GA. (6.19)
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This problem qualitatively corresponds to the L1-norm principal component analysis
(PCA-L1) problem formulated in [40] with the additional constraint on the entries
of g. We therefore propose to relax the constraint from (6.19) to the l2 constraint
‖g′‖2 ≤

√
Nk

r ξ
(l)
A,RX and consequently solve a following problem

{k1, l1, g
′
1} = arg max

k,l,g′
ξ

(k)
A,TX‖g′

H
Hl,k‖1

s.t. ‖g′‖2 ≤
√
Nk

r ξ
(l)
A,RX. (6.20)

utilizing the greedy optimization algorithm from [40]2. Afterwards, we project the
vector g′1 back into the nearest, in the Euclidean sense, element of GA, i.e., [g1]n =
[g′

1]n
|[g′

1]n|ξ
(l)
A,RX [22]. Finally, we determine p1 as

p1 = ξ
(k)
A,TX exp(j∠(HH

l,kg1)). (6.21)

Starting from the second step of the algorithm, we limit the interference caused to
the already allocated streams by controlling the subspace in which the next stream is
allocated. To this end, we introduce a set of projection matrices Ξ

(i)
k and choose the

precoding vector within the subspace spanned by the columns of Ξ
(i)
k H

T
:,k. Moreover,

we limit the interference from the already allocated streams by receiving only within
the subspace (Π(i)

l Hl,:)T, where Π
(i)
l is a projection matrix (construction of which

we discuss further). For this sake, we write the precoding and combining vectors as
p = Ξ

(i)
k m, g = Π

(i)
l t and formulate the following optimization problem

{ki, li, ti,mi} = arg max
k,l,t,m

|tHΠ
(i)
l Hl,kΞ

(i)
k m|

s.t. tHΠ
(i)
l ∈ GA, Ξ

(i)
k m ∈ PA, (6.22)

The introduction of the projection matrices into the constraints have complicated
the solution comparing to (6.16). The problem is non-convex (the function to be
maximized is convex and the constraints are non-convex) and not tractable analyt-
ically. We propose to relax both constraints and project the unconstrained solution
onto the feasible set. For this sake, we first solve

{k′i, l′i, t′i,m′i} = arg max
k,l,t,m

|tHΠ
(i)
l Hl,kΞ

(i)
k m|

s.t. ‖t‖2 = 1, ‖m‖2 = 1. (6.23)
2We note that a simple extension to the algorithm, where in each iterative step the solution would
have been projected into GA would lack convergence properties proven in [40].
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This problem has a closed form solution—t′i,m′i are left and right singular vectors
of Π

(i)
l Hl,kΞ

(i)
k corresponding to the largest singular value of all the StSr possible

matrices. As our actual interest are the precoding and combining vectors pi and qi
we write p′i = Ξ

(i)
k′
i
m′i, g

′
i = Π

(i)
l′i
t′i and project those onto the closest (in the Euclidean

sense) elements of the feasible sets

pi := [pi]n = [p′i]n
|[p′i]n|

ξ
(k)
A,TX

gi := [gi]n = [g′i]n
|[g′i]n|

ξ
(l)
A,RX (6.24)

and assign k′i := k, l′i := l.
In the following, we discuss in detail the possible construction of the projection

matrices.
We note that complete inter-stream interference mitigation means enforcing

∀i 6= j =⇒ gH
i Hli,kjpj = 0

This would be possible by updating the projectors in the i-th step as follows

∀(l, k) ∈ {1, . . . , Sr} × {1, . . . , St}
tHk = gH

i Hli,kΞ
(i)
k

rl = Π
(i)
l Hl,kipi

Ξ
(1)
k = I ∀k, Ξ

(i+1)
k = Ξ

(i)
k − tk(tHk tk)−1tHk

= Ξ
(i)
k −

tkt
H
k

‖tk‖2
2
,

Π
(1)
l = I ∀l, Π

(i+1)
l = Π

(i)
l −

rlr
H
l

‖rl‖2
2
. (6.25)

and solving (6.22) optimally. The projectors orthogonally project out the space
corresponding to the currently allocated stream, both at the Rx and Tx.
Such conservative zero-forcing approach can often be a wrong choice as it signif-

icantly reduces the degrees of freedom (in this case, the remaining subspace) for
allocating the consecutive streams. This is expected to be especially pronounced in
the mmWave frequencies, where the channel is in general low-rank.
On the other hand, a significant portion of interference is suppressed given that in
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the i-th step only Ξ
(i)
ki

and Π
(i)
li

are updated, which can be written as following

tH = gH
i Hli,kiΞ

(i)
ki

= σtp
H
i

rH = Ξ
(i)
li
Hli,kipi = σrgi

Ξ
(1)
k = I ∀k, Ξ

(i+1)
ki

= Ξ
(i)
ki
− t(tHt)−1tH

= Ξ
(i)
ki
− pipH

i

Π
(1)
l = I ∀l, Π

(i+1)
li

= Π
(i)
li
− r(rHr)−1rH

= Π
(i)
li
− gigH

i . (6.26)

It can be verified that with such construction, following is enforced

j > i ∧ lj = li =⇒ gH
j Hlj ,kipi = 0 (6.27)

j > i ∧ kj = ki =⇒ gH
i Hli,kjpj = 0 (6.28)

In other words, the already allocated streams do not interfere other streams allocated
later to the same Rx subarray (6.27) and do not experience interference from streams
later allocated to the same Tx subarray (6.28).
The details of the solutions are presented in Algorithm 5. We note that the con-

struction of the projection matrices has not been specified, as the best choice can
vary depending on the particular setup.

6.4. Low-SNR precoding
In the low-SNR region, noise is the factor limiting a MIMO link. Therefore, the
optimal strategy is to trade multiplexing gain for power gain. Consequently, the
optimal number of streams becomes lower as the SNR decreases.
We exploit this fact in our proposal of a precoding strategy for the low-SNR re-

gion. We realize that the number of available spatial degrees-of-freedom (given usual
conditions, equal to the number of RF chains) in SPI-HBF may exceed the demand.
In the following, we formulate a theorem showing that under certain conditions, a
SPI-HBF architecture with more RF chains can exactly mimic a FI-HBF with less
RF chains. As a consequence of this fact, we may reuse well established FI-HBF
algorithms for SPI-HBF beamforming and achieve good performance, given the low
number of FI-HBF RF chains is sufficient compared to the stream number require-
ment.
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Theorem 1. Any precoding realized by a FI-HBF Tx with NRF RF chains may be
realized by a SPI-HBF Tx with equal number of antennas given NRF ≤ mink{NRF,k

t },
where NRF,k

t is the number of RF chains of the kth SPI-HBF subarray.

Proof. In the following, the FI-HBF transmitter is equipped with N ′RF RF chains
and Nt

′ antennas. The SPI-HBF is equipped with N ′′RF RF chains and Nt
′′ antennas.

We denote the FI-HBF analog precoding matrix as P ′A and the digital precoding
matrix with P ′D. Similarly, let the SPI-HBF analog and digital precoding matrix
read P ′′A and P ′′D, respectively. In the following, we first provide a proof considering a
special case for illustration purposes. The proof of the general case follows afterwards.

Case 1. In the first case, we consider a SPI-HBF setup with K subarrays, each
having equal number of RF chains

NRF,1
t = · · · = NRF,K

t = N ′′RF
K

(6.29)

and the FI-HBF has N ′RF = N ′′
RF
K

RF chains in total such that all K inequalities
N ′RF ≤ NRF,k

t ∀k are met with equality N ′RF = NRF,k
t ∀k. The number of antennas at

the subarrays (Nk
t for the kth subarray) may differ and only the following must hold

K∑
k=1

Nk
t = Nt

′′ = Nt
′ (6.30)

Subsequently, we write the FI-HBF analog precoding matrix P ′A as a concatenation
of K matrices P (1)

A ∈ CN1
t ×N ′

RF , . . . ,P
(K)
A ∈ CNK

t ×N ′
RF

P ′A =


P

(1)
A
...

P
(K)
A


Then if we construct the SPI-HBF analog and digital precoding matrices as following

P ′′A =


s1

1P
(1)
A

. . .
sK1 P

(K)
A



P ′′D =


1
s1

1
P ′D
...

1
sK1
P ′D


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we have P ′′AP ′′D = P ′AP
′
D, therefore the equality of the FI-HBF and SPI-HBF effective

precoding matrix. The scaling with sk1 =
√

Nt′

Nk
t
ensures that P ′′A ∈ PA.

Case 2. Here, a more general case is considered. The inequalities no longer need to
be met with equality, i.e., we let the subarrays to have more RF chains available than
the FI-HBF. We then complement the presented construction with introduction of
“dummy” matricesM k ∈ CNk

t ×(NRF,k
t −N ′

RF) such that
∣∣∣[M k]i,j

∣∣∣ = ξ
(k)
A,TX and write the

SPI-HBF precoding matrix as

P ′′A =


[
s1

2P
(1)
A ,M 1

]
. . . [

sK2 P
(K)
A ,MK

]
 ,

P ′′D =



1
s1

2
P ′D

0(NRF,1
t −N ′

RF)×N ′
s...

1
sK2
P ′D

0(NRF,K
t −N ′

RF)×N ′
s


and achieve equality of the FI-HBF and SPI-HBF effective precoding matrices P ′′AP ′′D =
P ′AP

′
D. The scaling with sk2 =

√
Nt′N ′

RF
Nk

t N
RF,k
t

ensures that P ′′A ∈ PA.

The proof shows that the precoding of a FI-HBF Tx with N ′RF RF chains may be
replicated by a SPI-HBF Tx with equal number of antennas given NRF,k

t ≥ N ′RF ∀k.
We note that the maximum number of streams that may be encoded is limited by
N ′RF, a number lower than the number of SPI-HBF RF chains (lower bounded by
StN

′
RF). Therefore, the approach is reasonable in the low-SNR region, where the

optimal number of streams is low (in the range of 1 to min{NRF,1
t , . . . , NRF,St

t }). We
summarize the procedure in Algorithm 6.

6.5. Realizing Fully-Digital Beamforming with
SPI-HBF

From Theorem 1 we yield that a SPI architecture can realize the same precoding as a
FI architecture with min{NRF,k

t } of RF chains. Moreover, it has been shown in [67]
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that for FI-HBF, the full digital beamforming can be perfectly reconstructed given
2Ns ≤ NRF

t . Consequently, we formulate a following theorem

Theorem 2. A SPI-HBF precoding architecture can realize fully-digital beamform-
ing given 2Ns ≤ min{NRF,1

t , . . . , NRF,St
t }.

Proof. The proof follows as a straightforward corollary from the Proposition 2 from
[67] and Theorem 1.
From Theorem 1 we have that given Ns ≤ min{NRF,1

t , . . . , NRF,St
t }, a SPI-HBF

transmitter is equivalent to a FI-HBF transmitter withNRF
t = min{NRF,1

t , . . . , NRF,St
t }.

Moreover, from Proposition 2 from [67] we have that full digital precoding can be
realized given 2Ns ≤ NRF

t . Consequently, a SPI-HBF with subarrays equipped with
NRF,1

t , . . . , NRF,St
t RF chains can realize full digital beamforming given

2Ns ≤ min{NRF,1
t , . . . , NRF,St

t }.

We note that this observation guarantees that in low SNR regimes, where the
optimal number of streams is lower or equal to⌊1

2 min
{
NRF,1

t , . . . , NRF,St
t

}⌋
,

the capacity is achievable with SPI-HBF.

6.6. Numerical results
In this section, we concentrate on three different aspects. The first one continues the
analysis of the new upper bounds—we show in which setups the precoding algorithms
perform close to the newly derived limits. The second one investigates how different
power constraints affect the comparison between SPI-HBF and FI-HBF. Finally, we
compare the newly derived precoding method SGSHP with other existing algorithms.
Depending on the setup considered, the novel upper bounds provide a different

degree of insight into SPI-HBF performance. In cases where the analog stage at the
Rx or Tx is fully connected, we expect the bound to be tight at high-SNR. This
might be not anymore the case when the structure of both Rx or Tx consists of
multiple subarrays—the high-SNR bound does not take into account the joint sub-
array configuration of Tx and Rx, only the one more affecting the rate. Additionally,
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Figure 6.1.. Rate achievable with SGSHP for St = 8, Sr = 8, related to the novel high-SNR upper
bound CHigh and the constrained capacity CFD. The antenna setup is asymmetrical,
with 128 Tx antennas, 32 Rx antennas, and 8 RF chains at the Tx and Rx.

the high-SNR upper bound should prove its usefulness with multiple Tx/Rx subar-
rays, when the constrained capacity is expected to be an especially loose bound. In
Figs. 6.1-6.3 we show three examples where the new upper bound provides little,
moderate, and substantial insight into the performance of the precoding algorithm
(we use SGSHP for sake of presentation). We note that CFD changes in each of the
plots as PC is constrained, so the emitted power budget changes with the number of
transmit subarrays as in (4.7).
In Fig. 6.1 we consider 8 subarrays at the Tx and 8 subarrays at the Rx. As

can be seen, the new bound is loose with respect to the SGSHP rate and does not
provide much new information compared to the constrained capacity. In Fig. 6.2
we decrease the number of subarrays at the Rx to 2 and remain with 8 subarrays
at the Tx. Although the bound is still not tight, it is significantly closer than the
constrained capacity. Finally, in Fig. 6.3 we present results for 8 subarrays at the Tx
and 1 subarray at the Rx (corresponding to a FI-HBF). Here the bound is tight for
the SGSHP precoding, which is a very useful insight—it proves that for such setup
the room of improvement is very limited, while the comparison with the constrained
capacity suggests something contrary.
In the next step, we compare the precoding performance (for sake of presentation,
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Figure 6.2.. Rate achievable with SGSHP for St = 8, Sr = 2, related to the novel high-SNR upper
bound CHigh and the constrained capacity CFD. The antenna setup is asymmetrical,
with 128 Tx antennas, 32 Rx antennas, and 8 RF chains at the Tx and Rx.

−30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30
0

20

40

60

80

100

PC[dBm]

R
at
e
[b
p
s/
H
z]

CFD

CHigh

SGSHP

Figure 6.3.. Rate achievable with SGSHP for St = 8, Sr = 1, related to the novel high-SNR upper
bound CHigh and the constrained capacity CFD. The antenna setup is asymmetrical,
with 128 Tx antennas, 32 Rx antennas, and 8 RF chains at the Tx and Rx.
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Figure 6.4.. The rate achievable with SGSHP for different subarray setups with the emitted power
constraint. The antenna setup is asymmetrical, with 128 Tx antennas, 32 Rx antennas,
and 8 RF chains at the Tx and Rx.

we consider SGSHP) for different power constraints, i.e., for emitted and consumed
power constraint. The latter promotes structures with multiple subarrays at the
Tx—as the losses within the structure are lower, more power is emitted which in
turn shifts the achievable rate curves horizontally.
In Fig. 6.4, rates achieved with different subarray setups are compared, all with

equal emitted power. The results we observe are intuitive—with increasing number of
subarrays, either at the Tx or the Rx, the performance drops. The inference becomes
less straightforward when the consumed power is constrained. There, two effects
counteract. On the one hand, more subarrays (either at the Tx or Rx) reduce the
degrees of freedom for precoder design and thus negatively affect the performance.
On the other hand, transmitters with more subarrays experience less power loss,
which in turn results in more emitted power. In Fig. 6.5 we show a few examples
when the performance of FI-HBF can be exceeded with SPI-HBF (for 2 Tx subarrays
with FI-HBF Rx, for 4 Tx subarrays with 2 Rx subarrays, and for 8 Tx subarrays
already with 4 Rx subarrays) and a case when the power gain is not sufficient to
counteract the loss of degrees of freedom (for 2 Tx subarrays and 8 Rx subarrays).
In the following, we compare different precoding methods for SPI-HBF. We con-

sider following approaches:
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Figure 6.5.. The rate achievable with SGSHP for different subarray setups with the consumed power
constraint. The antenna setup is asymmetrical, with 128 Tx antennas, 32 Rx antennas,
and 8 RF chains at the Tx and Rx.

• the OMP precoding tailored for SPI-HBF [12],

• the BCD approach tailored for SPI-HBF [22],

• the MO-AltMin algorithm [82],

• the SGSHP algorithm described in this thesis,

• the low-SNR approach described in this thesis.

The OMP, BCD, and MO-AltMin algorithms show good performance and are com-
monly considered as State-of-the-Art (SotA). We show when the proposed approaches
outperform the SotA and when they do not provide any gains.
We focus on comparing different precoding schemes and we therefore present the

results only with the emitted power constraint.
The results shown in Figs. 6.6-6.10 provide some interesting insights. One thing

to notice is the performance of the introduced SGSHP scheme. In each case (also in
other subarray configurations, not presented in the thesis) the performance is better
or equal to the best results from the SotA—BCD or MO-AltMin. Here we stress
that both BCD and SGSHP are of much lower computational complexity than the
MO-AltMIN, which exhibits exponential complexity with the number of antennas.
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Figure 6.6.. The rates achievable with different precoding techniques with FI-HBF transmitter and
receiver with 2 subarrays. The antenna setup is asymmetrical, with 128 Tx antennas,
32 Rx antennas, and 8 RF chains at the Tx and Rx. Here, CFD coincides with CHigh.
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Figure 6.7.. The rates achievable with different precoding techniques with FI-HBF transmitter and
receiver with 8 subarrays. The antenna setup is asymmetrical, with 128 Tx antennas,
32 Rx antennas, and 8 RF chains at the Tx and Rx. Here, CFD coincides with CHigh.
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Figure 6.8.. The rates achievable with different precoding techniques with 4 subarrays at the trans-
mitter and 4 at the receiver. The antenna setup is asymmetrical, with 128 Tx antennas,
32 Rx antennas, and 8 RF chains at the Tx and Rx.
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Figure 6.9.. The rates achievable with different precoding techniques with 8 subarrays at the trans-
mitter and FI-HBF receiver. The antenna setup is asymmetrical, with 128 Tx antennas,
32 Rx antennas, and 8 RF chains at the Tx and Rx.
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Figure 6.10.. The rates achievable with different precoding techniques with 2 subarrays at the trans-
mitter and FI-HBF receiver. The antenna setup is asymmetrical, with 128 Tx anten-
nas, 32 Rx antennas, and 8 RF chains at the Tx and Rx.

We notice that the performance of the OMP algorithm is always inferior, which was
reported, e.g., in [82]. The reason why SGSHP is sometimes better and sometimes
equal to the SotA is not fully understood. It is also interesting, why very different
algorithms happen to perform exactly the same.

Next, we take a closer look on the details of the SGSHP algorithms. In the de-
scription in Section 6.3.1 we pointed out that the algorithm may be tuned in order
to match different system requirements or scenarios. More specifically, the tun-
ing is achieved by designing the update of the projection matrices in each step of
the algorithm—this, in turn, governs the channel subspace allocated to subsequent
streams. Here, we show how the channel model may affect the choice. For this sake,
we compare two proposals for the design of the projection matrices—the update of
the projectors that assures no interference between the subsequent allocated streams
(6.25) and the less conservative update (6.26). In the simulations, we consider two
different channel models, namely the mmWave channel model which is described in
Section 4.3 and the Rayleigh channel model. The Rayleigh channel model is the
usual assumption for a non-line-of-sight channel at lower frequencies, a scenario that
exhibits rich scattering and omnidirectivity. The results follow the expectation. For
the spatially-sparse mmWave channel, the strict requirement regarding inter-stream
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Figure 6.11.. Comparison between projection matrix update strategies for SGSHP and the Rayleigh
channel. The “no-interference” label corresponds to the update like in (6.25) and “less
conservative” to (6.26). The Tx is equipped with 128 antennas and 8 RF chains. The
Rx is equipped with 32 antennas and 8 RF chains.

interference results in severe achievable rate drop, as presented in Fig. 6.12. This
is attributed to the fact that the mmWave channel’s number of significant singular
values is low and the associated subspaces are occupied in the first steps of the algo-
rithm. Consequently, the subsequent streams are assigned to non-relevant subspaces.
The situation is different when the channel matrix is well conditioned (the singular
values do not vary much). This is the case for the Rayleigh channel which models
a rich scattering environment. There, the rates achieved with SGSHP using either
of the updates do not differ much, as can be seen in Fig. 6.11. Nevertheless, the no-
interference approach is still inferior in terms of the achievable rate. This behavior
is not surprising taken into account that the achievable rate expression assumes op-
timal decoding at the receiver—a strategy that separates the streams in the receiver
is not needed and will very likely negatively affect the performance. We note that
this would change in the multiuser downlink scenario (not considered in this work),
where the receivers do not cooperate during the decoding of the information.

In the end, we provide some results for low-SNR regime. We relate the performance
of the aforementioned algorithms, including the novel low-SNR precoding scheme to
the constrained capacity and novel low-SNR upper bound. The results in Figs. 6.13-
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Figure 6.12.. Comparison between projection matrix update strategies for SGSHP and the mmWave
channel. The “no-interference” label corresponds to the update like in (6.25) and “less
conservative” to (6.26). The Tx is equipped with 128 antennas and 8 RF chains. The
Rx is equipped with 32 antennas and 8 RF chains.

6.17 indicate superior operation of the low-SNR algorithm compared to the remaining
SotA algorithms, with exclusion of the configuration where St = 1, Sr = 2. The
SGSHP algorithm provides equal or slightly superior results in comparison to the
SotA.
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Figure 6.13.. The rates achievable at low SNR with different precoding techniques with FI-HBF
transmitter and receiver with 2 subarrays. The antenna setup is asymmetrical, with
128 Tx antennas, 32 Rx antennas, and 8 RF chains at the Tx and Rx.
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Figure 6.14.. The rates achievable at low SNR with different precoding techniques with FI-HBF
transmitter and receiver with 8 subarrays. The antenna setup is asymmetrical, with
128 Tx antennas, 32 Rx antennas, and 8 RF chains at the Tx and Rx.
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Figure 6.15.. The rates achievable at low SNR with different precoding techniques with 4 subarrays
at the transmitter and 4 at the receiver. The antenna setup is asymmetrical, with 128
Tx antennas, 32 Rx antennas, and 8 RF chains at the Tx and Rx.
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Figure 6.16.. The rates achievable at low SNR with different precoding techniques with 8 subarrays
at the transmitter and FI-HBF receiver. The antenna setup is asymmetrical, with 128
Tx antennas, 32 Rx antennas, and 8 RF chains at the Tx and Rx.
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Figure 6.17.. The rates achievable at low SNR with different precoding techniques with 2 subarrays
at the transmitter and FI-HBF receiver. The antenna setup is asymmetrical, with 128
Tx antennas, 32 Rx antennas, and 8 RF chains at the Tx and Rx.



68 Chapter 6. Precoding for SPI-HBF

Algorithm 4 Decomposition of the Optimal Fully Digital Precoder for SPI-HBF
Require: P ?

FD,Γ, PTX

1: Initialize
[
P

(k),?,0
A

]St

k=1
,
[
P

(k),?,0
D

]St

k=1
2: repeat
3: Update P (k)

A independently for each k using any FI-HBF algorithm.

Update P (k)
D :

4: if Unconstrained update as in, e.g., [12, 22,34] (Γ = 0) then
5: P

(k)
D = P

(k)
A

†
P
?,(k)
FD ∀k

6: else if emitted power constraint (Γ = KA, PTX = PE) then
7: P

(k)
D = P

(k)
A

†
P
?,(k)
FD ∀k

8: α =
√

PE∑St
k=1 ‖P

(k)
A P

(k)
D ‖

2
F

9: P
(k)
D = αP

(k)
D ∀k

10: else if consumed power constraint (Γ = I, PTX = PC) then
11: PA = diag(

[
P

(k)
A

]St

k=1
)

12: Update PD like in (6.8)
13: Decompose PD into P (1)

D , . . . ,P
(St)
D

14: end if
15: until convergence

16: if Unconstrained update as in, e.g., [12, 22,34] then
17: α =

√
PE∑St

k=1 ‖P
(k)
A P

(k)
D ‖

2
F

18: P
(k)
D = αP

(k)
D ∀k

19: end if
20: return P (k)

A ,P
(k)
D ∀k ∈ {1, . . . , St}
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Algorithm 5 SGSHP algorithm
1: Inputs:

Hl,k ∀k, l
2: Initialize:

∀l ∈ {1, . . . , Sr}, k ∈ {1, . . . , St}
G

(l)
A ← Null, P (k)

A ← Null
Ξ

(1)
k ← I, Π

(1)
l ← I ∀k, l

3: for i = 1, . . . , NRF do
4: if i == 1 then
5: Get {k1, l1,p1, g1} from solving (6.16)
6: else
7: Get {ki, li,pi, gi} from solving (6.23)
8: end if

9: G
(li)
A =

[
G

(li)
A gi

]
, P

(ki)
A =

[
P

(ki)
A pi

]
10: Update Ξ

(i)
k , Π

(i)
l ∀k, l

11: end for
12: GA = diag

(
G

(1)
A , . . . ,G

(Sr)
A

)
13: PA = diag

(
P

(1)
A , . . . ,P

(St)
A

)
return PA,GA

Algorithm 6 Low-SNR precoding
Require: H , NRF,k

t ∀k

1: N ′RF ← mink{NRF,k
t }

2: Determine P ′A and P ′D for FI-HBF with N ′RF RF chains. Utilize a well-established
algorithm (e.g., BCD, OMP, MO-AltMin)

3: Determine P ′′A and P ′′D as presented in Theorem 1.
4: PA ← P ′′A, PD ← P ′′D
5: return PA,PD





7
Summary

In this work, we performed a thorough analysis of the subarray hybrid architectures.
First, we derived new upper bounds for the achievable rates. Using them, we were
able to show that in certain setups the available precoding techniques perform close
to the limit.
Furthermore, we proposed new precoding techniques: the SGSHP and low-SNR

precoding. SGSHP was shown to outperform the SotA algorithms in many subarray
setups and to perform comparably in others. The low-SNR precoding has been shown
to outperform the SotA algorithms in any investigated setup. We also showed under
which conditions capacity is achievable with subarray hybrid architecture.
Moreover, we addressed the issue of updating the digital precoding matrix, if an

alternating optimization of analog and digital matrices is employed. We showed that
in many cases the scaling of the unconstrained solution with a constant (perceived
as suboptimal) is actually optimal.
Finally, we advocate in our work for fair comparisons between the FI-HBF and

SPI-HBF structures. For this sake, we proposed to use the consumed power as the
power constraint, instead of the emitted power. This resulted in an advantage for the
SPI-HBF structures, as less power is dissipated in their analog stages. While this may
be not the only (or the most accurate) way of introducing fairness into comparing
very complex FI-HBF structures to simpler SPI-HBF transceivers, it stresses the
necessity of taking the issue into account, which is often neglected.
In our work we did not consider many important topics in mmWave precoding—

e.g., the difficulties in obtaining the full channel information or imperfections of the
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analog stage. Instead, we concentrated on discussing the limits of the SPI-HBF
architectures and showing that with a fair comparison, there is no performance loss
with respect to the FI-HBF architectures.



A
MIMO Capacity with Reduced
Number of Streams

Theorem 3. The capacity CK of a Gaussian MIMO point-to-point channel with
number of streams not exceeding K, M transmit and N receive antennas, average
power not exceeding P and known effective channel matrix H ′ = R−1/2

η H , where
Rη is the noise covariance matrix, reads

log2 det
(
I +H ′HH ′R?

)
(A.1)

with R? = U:,1:KLU
H
:,1:K , where U:,1:K is a matrix consisting of K eigenvectors of

H ′HH ′ corresponding to the K largest eigenvalues of the matrix, and L is a diagonal
power allocation matrix obtained through the waterfilling algorithm on the K largest
eigenvalues of H ′HH ′.

Proof. The channel’s capacity can be obtained through solving an optimization prob-
lem that reads

CK = max
R

log2 det
(
I +H ′HH ′R

)
s.t. tr(R) ≤ P, rank(R) ≤ K

R � 0. (A.2)

Further, we write the eigenvalue decomposition of H ′HH ′ and R as H ′HH ′ =
UΞUH and R = V ΛV H, respectively. The diagonal entries of Ξ and Λ are ar-
ranged in non-increasing order, i.e., ξ1 ≥ ξ2 ≥ · · · ≥ ξM and λ1 ≥ λ2 ≥ · · · ≥ λM .
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In order to account for the rank constraint, only K of the diagonal entries of Λ are
nonzero. Consequently, we write (A.2) equivalently as

CK = max
U ,Λ

log2 det
(
I +UΞUHV ΛV H

)
s.t. tr(Λ) ≤ P, ‖ diag(Λ)‖0 ≤ K (A.3)

From Hadamard inequality we know that if A is positive semidefinite then det(A) ≤∏
Ai,i with equality if A is diagonal. Therefore we get V ? = U and (A.2) is equiva-

lent to a convenient scalar form:

CK = max
{λ}

min{rank(H′),K}∑
i=1

log(1 + ξiλi) (A.4)

Such problem can be solved by means of the waterfilling algorithm [24, 71, 74] and
the solution reads

λi =
(
µ− 1

ξi

)+

(A.5)

where x+ = max(x, 0) and µ is such that ∑i λi = P . Finally, we write the optimal
signal covariance matrix as R? = UΛ?UH. We know from the design parameters
that λK+1 = · · · = λM = 0 and therefore we can reduce the expression to R? =
U:,1:KΛ1:K,1:KU

H
:,1:K = U:,1:KLU

H
:,1:K .

We note that the theorem is a straightforward corollary of the MIMO capacity
derivation from [71] and the proof follows similar arguments.
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