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Abstract

Adversarial Examples represent an imminent security threat to any Machine Learning
system. The present thesis addresses this issue by proposing MP3-compression as a
potential measure to reduce the susceptibility of Automatic Speech Recognition (ASR)
systems to be mislead by Audio Adversarial Examples (AAEs). In essence, we used
the Fast Gradient Sign Method (FGSM) to generate untargeted AAEs in the form of
adversarial noise added to original speech samples. We used a feature inversion pro-
cedure to convert the adversarial examples from the feature into the audio domain.
Different from prior work, we targeted an end-to-end, fully neural ASR system (namely
ESPnet) featuring a hybrid decoder enhanced with both Connectionist Temporal Clas-
sification (CTC) and Attention mechanisms. We found that MP3 compression applied
to adversarial examples indeed reduces the recognition errors when compared to raw,
uncompressed adversarial inputs. This result was validated by experiments with four
ASR models trained on four types of audio data (uncompressed .wav format, as well
as MP3 formats at three compression bitrates - 128, 64 and 24 kbps). Additionally,
when we decoded compressed adversarial examples originating from a different audio
format than the training data, in a train-test mismatch scenario, we observed a further
alleviation in the error rates. In a parallel series of decoding experiments, we found
that MP3 compression applied to speech inputs augmented with non-adversarial noise
triggers an opposite behaviour of the ASR systems, in which more transcription errors
are achieved than for uncompressed noise-augmented inputs. This finding consolidates
the previous ones by suggesting that MP3 encoding is effective in diminishing only the
adversarial noise. Finally, a statistical test performed on the estimated Signal-to-Noise
Ratio (SNR) of adversarial inputs confirmed that MP3-compressed adversarial samples
had higher SNRs (hence less adversarial noise) than uncompressed adversarial inputs.
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Introduction

1.1 Motivation and Problem Statement

In our increasingly digitized world, vocal assistants have easily found their place in many
users’ lives. They are deployed in a wide variety of applications, such as smart-home
systems, conversational devices, humanoid companionship robots, shopping assistants,
call-center answering machines, voice-based search algorithms, videos’ subtitle caption-
ing, real-time dictation and translation software, speech transcription devices for the
deaf, patient monitoring systems - to name just a few. Regardless of their extensive
deployment, there is one feature that all speech recognition systems have in common:
they can seemingly understand any vocal command as if they were another human be-
ing. What made them highly appealing and popular is their ease of operation and
interactivity. These systems have instantiated a new and engaging way of relating with
technology, making it possible for humans to directly communicate, issue commands
and even chat with computers by means of vocal interaction, which comes very natural
to the users. We are thus slowly transitioning from the epoch of everything being at the
touch of a button or one click away, to everything being a vocal command away.

Yet as is the case with any digital technology of major impact and usability, vo-
cal assistants are prone to imminent security threats. In particular, Automatic Speech
Recognition (ASR) systems can be hacked into recognizing hidden voice commands de-
livered on purpose by a malicious external agent. In technical vocabulary, these are
termed audio adversarial examples - they represent voice commands seemingly innocu-
ous to a human listener, but which carry along a hidden message that can be decoded
accordingly by the ASR system, and even passed on to a vocally-triggered execution
system.

For a better exemplification, let us consider the scenario illustrated in Fig.
and suppose that a user wants to shop on Amazon by means of vocal commands with
a smart-home assistant, while the radio/TV is turned on. We also assume that an
adversarial tune which includes a hidden deceptive command (e.g., Activate backdoor
or Transfer X amount of money to the account Y) embedded in the original music is
played over the radio/TV. Depending on the amount of environmental noise and other
nearby sound sources, this command could be picked up and executed by a smart-home
assistant without the user taking notice. This is nothing but an extreme example of
an over-the-air, targeted adversarial attack, in which the attacker wants the system to
recognize a specific adversarial and malicious phrase.
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Speech Recognition

System J

Never gonna
give you up
Never gonna Automatic
give youup

Figure 1.1: An empirical adversarial attack against a commercial ASR system
(adapted from https://adversarial-attacks.net/)

Luckily, such vocal attacks have not been documented outside the research commu-
nity so far. The mere harmful potential of adversarial attacks is enough to drive major
research efforts into extensively studying their nature and characteristics, and to devise
appropriate detection and defense methods, with the goal of improving the robustness
of ASR systems.

1.2 Contribution

This thesis addresses the above-stated security threat by proposing MP3-compression as
a potential measure to reduce ASR systems’ susceptibility to be mislead by adversarial
examples. We eventually aim for more robust ASR systems against adversarial noise.

In essence, we generated untargeted adversarial examples in the form of adversarial
noise added to original speech samples. We used a feature inversion procedure to convert
the adversarial examples from the feature to the audio domain. Different from prior
work, we targeted an end-to-end, fully neural ASR system, namely ESPnet, featuring
a hybrid decoder enhanced with both Connectionist Temporal Classification (CTC)
and Attention mechanisms. Notably, this work did not focus on over-the-air, real-
time attacks, but rather on direct attacks, in which adversarial samples were digitally
presented at the system’s input.

We found that MP3 compression applied to adversarial examples indeed reduces the
recognition errors when compared to raw, uncompressed adversarial inputs. This result
was validated by experiments with four ASR models trained on four types of audio data
(uncompressed .wav format, as well as MP3 formats at three compression bitrates).
Additionally, when we decoded compressed adversarial examples originating from a dif-
ferent audio format than the training data, in a train-test mismatch setting, we observed
a further alleviation in the error rates. In a parallel set of decoding experiments, we
found that MP3 compression applied to speech inputs augmented with non-adversarial
noise triggers an opposite behaviour of the ASR systems, in which more transcription
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errors are achieved than for uncompressed noise-augmented inputs. This finding con-
solidates the previous ones by suggesting that MP3 encoding is effective in diminishing
only the adversarial noise. Finally, a statistical test performed on the estimated SNR
of adversarial inputs confirmed that MP3-compressed adversarial samples had higher
SNRs (hence less adversarial noise) than uncompressed adversarial inputs.

Thesis structure

The thesis is organized in six main chapters. The first (present one) has staged the
context of this research, while the second overviews literature works that created Audio
Adversarial Examples (AAEs) and proposed several defense tactics. The third chapter
dives into the technicalities of end-to-end speech recognition systems, the Fast Gradient
Sign Method (FGSM) for creating adversarial noise, and MP3 compression. The fourth
chapter describes the complete experimental framework, the fifth presents and discusses
the results, while the last one draws several conclusions, outlines this work’s limitations,
as well as future research directions.






Overview of Audio Adversarial
Examples (AAE)

Deep Neural Networks (DNNs) have become nowadays the method of choice when it
comes to any pattern recognition task. In the field of ASR in particular, they are highly
appealing due to their ability to model the acoustics and linguistics of any kind of lan-
guage and to perform speaker-independent and noise-robust speech recognition. Many
present-day marketed devices (e.g., Google Home, Amazon Echo) and their accompa-
nying voice assistant software (e.g., Cortana, Siri, Alexa) function by means of a deep
network architecture. However, their success also comes at a cost - a great number of
network parameters, sometimes on the order of millions, that need to be optimized.
This is not that much of a problem with the availability of powerful computers, but
it opens up a generous playground for possible attackers that purposefully target the
vulnerabilities of these systems. In response to these security concerns, the research field
is very active into staging a wide range of attack scenarios and researching appropriate
defense schemes.

Adversarial examples constitute one of the security threats that is intensely re-
searched, being also the object-of-study of this thesis. In a general sense, adversarial
examples represent inputs that have been specifically designed by an adversary to cause
a Machine Learning (ML) algorithm to produce a misclassification (Qin et al., 2019).
Initial work on adversarial examples focused mainly on the domain of image classifica-
tion. Perhaps the most famous example is the one from |Goodfellow et al.| (2015]), who
demonstrated that an adversarial image can be classified by the neural network as a
gibbon, although to the human eye, it clearly looks like a panda.

Adversarial examples are usually created by adding a carefully crafted noise to an
original input. However, the exact method differs from domain to domain due to their
particularities. For example, in ASR, adversarial examples are harder to construct
because speech is a temporal signal and is processed in a sequential manner, unlike
images, which are static and exhibit spatial instead of temporal dependencies. Further-
more, visual adversarial examples tend to be more imperceptible to a human observer
than Audio Adversarial Examples (AAEs). This in turn makes visual adversarial exam-
ples more effective over-the-air, i.e., in a physical, real-world environment (Qin et al.,
2019). In contrast, the physical characteristics of the environment seem to interfere to
a greater extent with adversarial examples in the audio domain, making the creation of
robust, over-the-air AAEs a more complicated task, in which room characteristics and
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background noises need to be accounted for.

Yet regardless of the target domain, the threat model and attack scenario can take
different forms, depending on the adversary’s background, knowledge, and scope (Hu
et al., 2019). Two types of attacks distinguish themselves based on the adversary’s
knowledge of the target ASR system:

e The white-box attack assumes that the adversary has full knowledge of the target
neural network model, including the model type, model architecture, and values of
all the parameters and training weights. This gives him the privilege to compute
gradients through the model in order to generate the adversarial examples.

e The black-box attack assumes that the adversary has no access to the internal char-
acteristics of the target neural networks, and acts as a normal user who can only
observe the output given by the model. In this more realistic scenario, adversarial
examples are created just by monitoring the system’s output after iteratively and
systematically modifying the input.

Besides, the adversary’s purpose and intentions render two further types of attacks:

e The non-targeted attack aims to cause the neural networks to predict any arbitrary
incorrect transcription for the adversarial example.

e The targeted attack aims to induce the neural networks to assign a specific, desired
transcription for the adversarial example. Such an attack is dangerous since it
could force an ASR system to execute the specified malicious commands.

All in all, adversarial examples are a property of any deeper neural network. Their mere
existence indicates that there are blind spots in the input space of deep learning models,
and this is believed to be a consequence of the models being too linear, rather than
nonlinear, as/Goodfellow et al. (2014) postulate. The misleading capability of adversarial
examples further implies that the models are unsmooth, since a tiny perturbation in input
space can trigger a drastic change in the output space (Sun et al. 2019).

2.1 Prior Work on AAE Generation

Although the topic has come into focus roughly five-six years ago, there is already an
impressive corpus of literature that tackles the creation of AAEs. Most of the works
have set about to pursue one of the two major goals, sometimes succeeding in both:
that their AAEs work over-the-air, and that they are less obviously perceptible. This
section conveys a brief overview of the most outstanding papers that generated AAEs.

Carlini et al.| (2016]) were among the first to tackle the security issues of voice inter-
faces, and introduced the so-called hidden voice commands, demonstrating that targeted
attacks against archetypal ASR systems, solely based on Hidden Markov Models (HMM),
are feasible. They used inverse feature extraction to create obfuscated adversarial au-
dio samples, which sounded like highly distorted speech hidden within noise and were
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hardly understandable by a human. However, these first attempts had an unnatural
robotic tone that could still bring suspicions to the thoughtful listeners. Interestingly,
their examples also represent one of the first documented successful attacks in an over-
the-air setting, targeting the Google Assistant on a mobile phone. Nevertheless, in their
approach, they had to completely synthesize new adversarial audio, while most of the
modern AAEs are created starting from a legitimate, non-adversarial input audio.

With a different approach, [ter et al. (2017) used the WaveNet pre-trained model
to construct adversarial mel-frequency cepstral coefficient (MFCC) features, which they
subsequently inverted back to the audio domain to get the adversarial audio. Their
adversarial perturbations were imperceptible, but did not work over-the-air.

Zhang et al.|(2017) proposed the ingenious DolphinAttacks, showing that it was even
possible to completely hide a transcription by leveraging nonlinearities of microphones
to modulate the baseband audio signal with ultrasound higher than 20 kHz. However,
the modulation was highly microphone-dependent, so their attack was restricted to work
only on the microphone for which it was optimized.

While previous works mostly targeted short adversarial phrases, Carlini and Wagner
(2018) constructed adversarial perturbations for designated longer sentences. Similar
to previous adversarial attacks on image classifiers, Carlini’s novel attack was achieved
with a gradient-descent-based minimization, but the loss function was replaced with the
novel CTC-loss, which is optimal for time sequences. On the downside, the constraint
for minimizing the added adversarial noise did not consider the limits and sensitivities of
human auditory perception. Hence, although the introduced perturbations were quiet,
they could still be noticed by a human.

In a parallel line of work, there were successful attempts to hide transcripts within
more complex types of audio signals, like music (Yuan et al., 2018 [Yakura and Sakuma,
2019; Schonherr et al., 2018) or birdsong recordings (Schonherr et al| [2018). [Yuan et al.
(2018)) described CommanderSong, which was able to hide transcripts within music and
was effective over-the-air. However, their approach was only shown to be successful
in music, and did not include noise reduction based on human perception, nor was it
independent from speakers and recording devices, as the attack parameters had to be
specially adjusted for these components.

Schonherr et al.| (2018)) were the first to develop imperceptible attacks by leverag-
ing human psychoacoustics. Specifically, they applied a psychoacoustic hiding model
that manipulates the acoustic signal below the thresholds of human perception. They
attacked the Kaldi ASR system, which is partially based on neural networks but also
uses some traditional components such as a HMMs instead of an RNN for final clas-
sification. In a subsequent publication (Schonherr et all 2019)), they enhanced their
implementation and produced generic adversarial examples, which remained robust in
over-the-air attacks. To this end, they used room impulse responses (RIRs) to simu-
late arbitrary room characteristics and included them in the optimization process, thus
obtaining adversarial examples that are transferable across a wide range of rooms.

In a concurrent work, Qin et al.| (2019)) successfully constructed imperceptible AAEs
(verified by a human study) based on the psychoacoustic principle of auditory masking,
while retaining 100% targeted success rate on arbitrary full-sentence targets. Simul-
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taneously, they also make progress towards developing robust adversarial examples by
constructing perturbations which remain effective even after applying realistic, simu-
lated environmental distortions. The difference to |Schonherr et al| (2019) is that they
target a fully end-to-end ASR system.

2.2 Prior Work on AAE Defenses

Defending against adversarial examples has been primarily investigated in the image
domain. According to the review of Hu et al| (2019), the existing defense strategies
for image adversarial examples can be grossly grouped in two categories: (1) proactive,
aiming to enhance the robustness during the training procedure of the recognition models
themselves, and (2) reactive, aiming to detect the existence of adversarial examples after
the neural networks are trained.

The former approach usually includes network training with adversarial examples,
as well as network distillation, which considers the output of a pre-trained network as
soft labels, thereby using them as targets to train a second network (Papernot et al.,
2016). The latter approach makes use of input transformations (e.g., JPEG compression,
cropping, resizing), with the goal to recover the genuine transcription. In parallel, it
explores adversarial detection methods, which are meant to declare a given input as
adversarial or benign. The defensive measures on images inspired several approaches
to combat the adversarial examples in the sound domain, some of which are reviewed
below.

Yang et al. (2018]) applied some primitive signal processing transformations on audio
data to disrupt the adversarial perturbations without decreasing their quality too much.
Specifically, they tested local smoothing (i.e., replacing each audio sample with the
average value over a surrounding window), down-sampling, and quantization as easy-
to-implement and fast-to-operate input transformations. The outcome was that the
pre-processing defense was more effective for shorter-length adversarial examples.

Rajaratnam et al.| (2018)) likewise explored the effectiveness of audio pre-processing
methods such as band-pass filtering, compression (both MP3 and AAC - Advanced
Audio Coding), but also ventured to complex speech coding algorithms (Speex, Opus)
so as to mitigate the audio adversarial attacks. They experimented with a keyword-
spotting system, optimized for recognizing simple, isolated words like yes, no, up, down
etc., and showed that an ensemble strategy composed of both speech coding and other
form of pre-processing (e.g., compression) makes for a stronger defense against AAEs,
compared to isolated pre-processing defenses.

The authors of CommanderSong (Yuan et al., 2018) put forward two methods for
detecting an adversarial input. The first is based on their observation that noise from the
background or a speaker decreased the success rate of adversarial examples while hav-
ing little impact on the identification of the original, non-adversarial audio commands.
Therefore, they suggested adding some turbulent noise to the input audio and checking
if the perturbed input yields a different recognition result than the original one, which
would mean that the respective input can be classified as an adversarial example. This
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approach, however, could not be applied to over-the-air adversarial examples, for which
the background noise has already been modelled during their generation. Their second
proposal considered down-sampling: if the ASR system outputs different results for a
certain input and its down-sampled version, then the input has a high probability to be
an adversarial example. Experiments meant to evaluate the effectiveness of this second
approach showed it was successful for both directly-presented, as well as over-the-air
AAEs.

Sun et al.| (2019) proposed the training of general noise-robust acoustic models with
two novel methods: adversarial data augmentation and adversarial regularization (also
called adversarial training). In adversarial data augmentation, they create an adversar-
ial version of each mini-batch of data and update the network’s parameters with the
original mini-batch augmented with its adversarial version. In contrast, adversarial reg-
ularization means that the loss function optimizing the network is per se amended by
the loss on adversarial examples, in addition to the loss on the original data. In other
words, adversarial examples are explicitly introduced into the loss function, which makes
the model more robust to minor deviations from the original training data. They vali-
dated their scheme with experiments on Chinese speech datasets and observed that the
proposed strategies improved the robustness of an end-to-end ASR model to datasets
augmented with Musan artificial noise, compared to the model’s performance for the
baseline (clean) dataset. However, they did not test if these approaches were robust
against the adversarial noise itself.

As shown in the previous section, [Schonherr et al. (2018) created their AAEs with
a psychoacoustic model that introduced the adversarial noise below the calculated fre-
quency masking thresholds, which is the sweet spot for the hidden transcriptions. Ac-
cording to the authors, the exact same principle could be used conversely, so as to defend
a system against hidden input. As such, they hypothesize that a perceptual based au-
dio encoder like MP3 could remove exactly those inaudible ranges in the audio, where
the adversarial perturbation lies. MP3 is supposed to clean up the audio files before
they reach the speech recognition system and ideally, the system should be trained on
MP3 data beforehand, so that it can learn its particularities. This will ensure that
recognition performance will not suffer when decoding non-adversarial input that is also
MP3-compressed. The authors speculate that this strategy will not circumvent blind
spots of DNNs completely, but will force the attacker to move their secret messages into
the human hearing range so as to still ¢rick the system. But this could be less danger-
ous since audible AAEs could easily raise the users’ suspicions, making them aware of
the uncovered transmitted message. Notably, the authors included the MP3 scenario in
their future work section, but to date they did not publish any experimental work to
verify it.

Consequently, we borrow this idea and exploit it in the present thesis. Our research
question could be formulated as follows: to what extent can MP3 compression aid
in removing the adversarial noise and thus recover the benign character of the input
(which should transcribe to the original, non-adversarial phrase)?







Technical Background

This chapter introduces the major technical concepts that form the backbone of the
present thesis: the hybrid End-to-End Automatic Speech Recognition paradigm, along
with two of its main architectures - Connectionist Temporal Classification (CTC) and
Attention, the Fast Gradient Sign Method (FGSM) for creating adversarial examples,
and the MP3 compression technique.

3.1 End-to-End ASR

Automatic Speech Recognition can generally be regarded as a sequence-to-sequence
problem: the system has to learn how to generate an output sequence of words Y, called
transcription, from an input sequence of acoustic features X extracted from speech.
ASR models are intrinsically probabilistic, aiming to compute the posterior distribution
p(Y]X), equivalent to the most likely word sequence Y, given the speech feature sequence
X.

The earliest-emerged ASR systems are quite complicated in achieving this task, be-
cause they consist of various separate modules such as acoustic, lexicon, and language
models. More modern systems are based on a hybrid architecture composed of a Hid-
den Markov Model (HMM) and a Deep Neural Network (DNN), which still requires a
multi-stage training procedure to make the components work together (Chorowski et al.,
2015)).

Yet this approach presents several inconveniences, as pointed out by [Watanabe et al.
(2017). Firstly, step-wise refinement is needed to build accurate modules. For instance,
in creating the acoustic models from scratch, one would first need to estimate the HMMs
and Gaussian Mixture Models (GMMs), in order to obtain the state-dependent HMM
structure and phonetic alignments, before the DNN is trained. Secondly, linguistic
information is quite problematic, since it is taken from handcrafted pronunciation dic-
tionaries, which are defined by linguistic rules and are thus prone to human error, which
a fully data-driven system could avoid. Thirdly, the hybrid HMM-DNN ASR systems of-
ten use conditional independence assumptions (especially Markov assumptions) between
output tokens, while this is not necessarily true for real-world data, where pronunciation
of a particular phoneme is heavily influenced by the phonetic context (e.g., the phoneme
e is pronounced differently in the words lead and red). The conditional independence
assumptions can thus lead to high recognition errors, so they should better be avoided.
Another problem is that inference (or decoding) is a complex process, which has to be
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performed by integrating all modules. Finite state transducers were meant to achieve
this, but the implementation of well-optimized transducers is quite complicated. Finally,
all the consisting modules are optimized separately with different objective functions,
which can result in optimization incoherence. This happens because separate optimiza-
tion is oblivious to the desired joint-functionality of all the modules.

End-to-end ASR, on the contrary, aims to simplify this module-based approach into
a single-network architecture within a deep learning framework, which directly estimates
p(Y|X). In an end-to-end model, the multiple modules are merged in one deep network
for joint training. This network realizes the actual mapping of acoustic signals into out-
put label sequences without the carefully-designed intermediate states used previously
in HMM-based models. The joint training achieves globally optimal results as it uses an
objective function that is highly relevant to the final evaluation criteria. Another appeal-
ing feature of end-to-end models is that they use soft alignments, allowing each audio
frame to be mapped to all possible output tokens with a certain probability distribution,
which does not require a forced, explicit correspondence (Wang et al., |2019).

A typical end-to-end speech recognition model would include the following parts: an
encoder, an aligner and a decoder. In short, the encoder maps the input speech fea-
ture sequence into a hidden representation, the alignment block realizes the alignments
between input and output sequences, while the decoder takes in the encoder’s hidden
representation and decodes it to the final transcription. The encoder and decoder net-
works are typically implemented with the same architecture, often made up of Recurrent
Neural Networks (RNNs).

There are two major types of end-to-end architectures for ASR: (1) Connection-
ist Temporal Classification and (2) Attention-based Encoder-Decoder systems, both of
which are thoroughly presented in the following sub-sections.

3.1.1 Connectionist Temporal Classification (CTC)

CTC is a method to get around not knowing the alignment between the input and
the output sequences, hence it is termed alignment-free. In essence, it uses Markov
assumptions to efficiently solve sequential problems by dynamic programming, which
computes all possible hard alignments by calculating different paths, then it achieves
soft alignments by aggregating the hard alignments. CTC assumes that output labels
are independent of each other when enumerating hard alignments. In the following, a
detailed description of CTC functionality is presented, inspired from the excellent visual
material of [Hannun| (2017)) and the overview of Wang et al.| (2019).

The Alignment concept

To get the probability of an output given an input, CTC works by summing over the
probability of all possible alignments between the two sequences. But before diving
deeper into the technicalities of CTC, the concept of alignment has to be clarified.

An alignment represents the mapping between the output tokens (e.g., characters,
sub-word units or words) and the input acoustic frames. In other words, it tells us
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which output token corresponds to each acoustic frame. Alignment is thus an important
concept that has to be tackled by any type of ASR system.

When creating the alignments, it is useful to consider that the input can have frames
of silence, with no corresponding output. Furthermore, some words can comprise se-
quentially repeated letters (e.g., hello), so we would like to have the same output token
for several consecutive input frames, without collapsing them. To solve these issues,
CTC introduces a new token to the set of allowed outputs - the blank token (€), which
does not correspond to any acoustic information in the input and will simply be ignored
in the output.

The alignments allowed by CTC have a few important properties. The valid align-
ments are those that have the same length as the input sequence and map to the final
output sequence Y after merging identical subsequent tokens and discarding the € to-
kens, as shown in Fig. Furthermore, the allowed alignments between the input and
output sequences are monotonic. This means that future frames of the output sequence
cannot align to earlier frames of the input sequence. A third property is that the align-
ment of X to Y is many-to-one: one or more input elements can align to a single output
element but not vice-versa. This in turn implies the last property, that the length of YV
cannot be greater than the length of X.

Valid Alignments Invalid Alignments

corresponds to
€ECCE€at Cl€EC € at y_icat
C Caat t Ccaat_ has length 5
c a HERBR t Cl€ € €|t t  missingthea

Figure 3.1: Valid vs invalid CTC alignments (Hannun, [2017)

CTC training

Concerning the CTC training approach, it can be summarized as follows: for a given
input, the model is trained to maximize the probability it assigns to the right output.
For this, the conditional probability p(Y|X) needs to be efficiently computed and must
also be differentiable, allowing the use of gradient backpropagation. Thus, the CTC-
objective function optimized during training for a single (X, Y') pair is:

p(Y|X) = Z Hpt (@] X) (3.1)

AGAXY t=1

In plain words, the CTC conditional probability p(Y'|X) marginalizes (sums) over
the set of valid alignments A € Axy (taken from the set of all possible alignments
between X and Y'), and computes the probability for a single alignment step-by-step.
Models trained with CTC loss function typically use a recurrent neural network (RNN)
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to estimate the per time-step probabilities, p;(a;|X), i.e., the probability of each output
token at each time step given the input sequence. RNNs usually work well because they
can model the temporal dependencies and thus account for context in the input. The
computation steps of the CTC loss function are depicted in fig

‘ ‘ We start with an input sequence,
like a spectrogram of audio

The input is fed into an RNN,
for example

hh hhhhhhhHh

ele e e e e g g e e The network gives p; (a | X),
a distribution over the outputs

‘ | ‘ ‘ [ ‘ ‘ [ ‘ ‘ {h, &, 1,0, €} for each input step.

¢ 0 0O ¢ 0o 0O 0o 0 00

€ € € € € € € € € €

h € € ‘ | € ‘ ‘ o C With the per time-step output

h h | ‘ E E ‘ E distribution, we compute the

€ o probability of different sequences

Gle|S|I |1 |&G|&Ell|e|le

h e ‘ | o By marginalizing over alignments,
we get a distribution over outputs.

el l]l]@

h e | o

Figure 3.2: Computational steps of CTC-loss (objective function) (Hannun, 2017)

However, the CTC-loss is computationally expensive. A direct approach could be
to compute the score for each alignment and sum them all up on-the-fly. But this can
prove too slow for a vast number of possible alignments. Luckily though, the loss can
be computed much faster by means of a dynamic programming algorithm, using the
following trick: if two alignments collapse to the same output at the same step, they
can be merged.

From eq. [3.1] it is clear that the CTC loss function is differentiable with respect to the
per time-step output probabilities p;(a;|X), since it is made up of their summation and
multiplication. Thus, the gradient of the loss function with respect to the (unnormalized)
output probabilities can be analytically computed, and from there, the backpropagation
through the RNN’s weights is achieved as usual.

CTC decoding

After training the model, it will be used for decoding new, unseen input. This means
finding the most likely Y* given an X, formalized by:

14



3. Technical Background

T
Y* = arg max a; | X 3.2
smax [ (e X) 32

t=1

A regular beam search algorithm is used for this purpose. It computes a new set
of hypotheses at each input step by extending each hypothesis from the previous set
with all possible output characters, and keeps only the top candidates, with the highest
probabilities. In CTC decoding, the standard beam search is modified so that it can
handle multiple alignments mapping to the same output. Thus, instead of keeping a
list of alignments in the beam, only the output prefixes will be stored after collapsing
sequentially repeated tokens and removing the e characters. At each step of the search,
the scores for a given prefix are accumulated based on all the alignments which map to
it. This is illustrated in Fig. [3.3]

T=1 T=2 T=3 T=4
e o T o e e
® ®
® ®
L@ ® ®
® ® ®
o
) ® ®
® ®
®O—Er—@
® ®

Multiple extensions merge
to the same prefix

Figure 3.3: The CTC beam search algorithm with an output alphabet {¢, a, b} and a beam
size of three (Hannun, [2017)

Although CTC is a powerful algorithm that overcomes the data alignment problem,
it still has some shortcomings. One of them is the assumption that every output is
conditionally independent of other outputs given the input, which is actually not valid for
the sequence-to-sequence speech recognition problem, where phonetic context influences
both previous and future utterances. This is also the reason why CTC cannot learn
a Language Model (LM) over the output implicitly, in contrast to models which are
conditionally dependent. A separate LM could be included in the decoding stage to
boost the accuracy, however this would violate the end-to-end principle, considering
that the LM needs to be separately trained. As such, the speech recognition network
trained by CTC objective function should only be treated as an acoustic model. Finally,
for scenarios where the output sequence is longer, CTC is powerless, because it can only
map input sequences to output sequences that are shorter than it.
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3.1.2 Attention-based Encoder-Decoder Models

Another possibility for end-to-end encoder-decoder systems is to enhance the decoder
with an Attention mechanism. It would be interesting to first trace back the roots of
the Attention concept.

The following concrete examples reveal a common approach in the way humans solve
sequential tasks. When translating some text, we intuitively focus on the word we are
presently translating, but at the same time we consider the context and other references
of the current word in the original sentence. When we take notes or transcribe some
audio recording, we listen carefully to the segment we are actively writing down, while
trying to reference it to what was just being said some seconds/minutes ago. Similarly,
if we are asked to describe the room we are in, we will in turn focus on different objects
surrounding us. In a general sense, at every time step of the sequential task, we attend
only to some part of the input information.

Neural networks can achieve the same behavior using an Attention mechanism, i.e.,
they can be trained to focus on a subset of the information they are given as input. For
example, a decoder RNN can attend over the output of another RNN, representing the
encoder (Olah and Carter, 2016]). At every time step, it will focus on different positions
in the encoder’s hidden state sequence h.

The issue with a conventional sequence-to-sequence model is that it has to boil down
the entire input into a single, fixed-size hidden vector, which will only be fed once to
the decoder network. Attention overcomes this by allowing the encoding RNN, which
processes the input, to pass along information from each time step, while the decoding
RNN generates the output by focusing on certain parts of the entire output sequence of
the encoder, deemed relevant by the Attention mechanism. Thus, the Attention-based
decoder takes in all the encoder’s hidden states after the entire input was processed and
creates the relevant context vector at each decoding time step. The step-by-step process
is formalized below.

The encoder network is usually a Bidirectional Long Short Term Memory (BLSTM)
RNN with a pyramidal structure, i.e., the outputs are sub-sampled so as to reduce the
length of the final hidden vector length. Since the input speech signals can be hundreds
of frames long, this sub-sampling is required to reduce the computational complexity
(Chan et al., 2015). But conceptually, the encoder converts the input feature sequence
X into a frame-wise hidden vector h = [hy, ha, ..., hyl:

h = Encoder(X) (3.3)

At each time step i, the Attention mechanism generates a context vector c; as a
weighted representation of all the encoder’s hidden states. The context vector also
carries information from the previous hidden state of the decoder, ¢;_1:

¢; = Attention(h, q;_1) (3.4)

By all means, Attention must also be differentiable, so that the network will learn
where to focus. Thus, the following trick is implemented: the network will be allowed
to focus everywhere, just to different extents.
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There are different types of Attention, e.g., content-based Attention, location-aware
Attention, hybrid Attention (Wang et al., 2019). The location-aware Attention is em-
ployed in this thesis and explained below, with notations borrowed from |Watanabe et al.
(2017)).

Analogous to an alignment model in conventional ASR, the location-aware Atten-
tion attends the encoder’s hidden values h in a recurrent manner (eq. , by carrying
over information from the previous decoder state vector ¢;_; and its previous Attention
weights a1, in order to calculate the Attention weights «;, for the current i-th decod-
ing step. Specifically, at each decoding timestep i, the Attention function will compute
the scalar energy e;;, for each time step ¢ of the encoder. The scalar energy is then
converted into a probability distribution over the encoder’s times steps using a softmax
function, rendering the Attention weights a;; (eq. . The weights are then used to
create the context vector ¢; by linearly blending the encoder’s hidden states from all its
time steps ¢ (eq. [3.8)).

eir = f(gi_1,hs,051,) = g tanh(Lin(g;_;) + Lin(h;) + Lin(f;)) (3.5)
{ft}thl =Kxa;14 (3.6)

o = SOftmaX({em}tT:l) __SXp (eir)

N > exp(eir)
T

C;, = Z Oéi7tht (38>
t=1

(3.7)

In the above equations, g is a learnable vector that reduces the activations of the
inner linear layers of the Attention network to a single scalar, tanh is the hyperbolic
tangent activation function, Lin denotes linear layers with learnable matrix parameters,
* denotes the convolution operator and K the learnable convolution kernel (Kurzinger
et al., 2019).

Finally, at every output step o;, the RNN decoder produces a probability distribution
over the next output label conditioned on all the previous outputs o-; (eq. . The
distribution for the next output label o; is a function of the current decoder state g;,
which in turn is a function of the previous state ¢;_i, the previously emitted output
label 0; 1 and current context ¢; (eq. . The recurrent decoding process runs until
the special End-of-Sequence (EOS) output label is reached. The basic architecture of
an encoder-decoder network with Attention is represented in Fig. [3.4]

P(0;| X, 0<;) = Softmax(Lin(g;)) (3.9)
¢; = RNN(¢i—1,0i-1,¢;) (3.10)

One downside of the temporal Attention mechanism in speech recognition is that it is
too flexible, allowing extremely non-monotonic alignments (Watanabe et al., 2017). This
may be well desired for applications like machine translation, where the input and output
word orders are different (e.g., two adjacent words in the output translated sequence
may correspond to locations far away in the original sequence, while two words that are
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Figure 3.4: Encoder-decoder network with Attention. Computing the value for the decoder’s
current state ¢;41 is based on the previous hidden state g;, the previous output o;, and the
current context vector ¢;11. The context vector is derived from the Attention computation
based on comparing the previous hidden state ¢; to all of the encoder hidden states. Figure
adapted from |Jurafsky and Martin (2013)

far apart in the translated sequence may correspond to adjacent parts of the original
sequence). However, in speech recognition, the feature inputs and corresponding letter
outputs generally proceed in the same order. In particular, if one output label appears
many times in different locations in the transcription, they should be matched to different
parts of the speech input sequence. Nevertheless, using the Attention mechanism, they
are likely to attend to the same part of the input speech. A viable solution for this would
be to use CTC as a regularizer in a hybrid CTC-Attention architecture, as illustrated
in the upcoming Section (3.1.3)).

To sum up, Attention can be regarded as an auto-regressive neural network that
can generate sequences. The next output character is computed as a function of all the
input audio data, the previous decoder state and the previous output character decision.
Notably, Attention-based models do away with conditional independence assumptions.
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3.1.3 Hybrid CTC-Attention Models

Hybrid CTC-Attention models for speech recognition combine the advantages of both
paradigms in both model training and inference. On the one hand, the Attention mech-
anism is data-driven and directly outputs a character sequence, while CTC imposes the
necessary monotonic constraints on the alignments (Watanabe et al. 2017). These two
concepts can be mathematically merged in a weighted fashion within the multi-objective
training function:

Losspypria = alogpere (Y| X) + (1 — a) log pastention(Y|X), « € [0,1] (3.11)

The parameter a controls how much of the CTC-objective is allowed. Networks trained
with @ = 0 and a = 1 consist of an Attention-only and CTC-only architecture, respec-
tively, whereas networks trained with o € (0,1) are designated as hybrid models.

In the inference (decoding) stage, the most probable letter sequence hypothesis Y*
is found via the joint one-pass decoding beam search. This is nothing but an extended
version of the regular beam search (Fig. from Section that iteratively builds
up a list of letter sequences, i.e., partial hypotheses Y ordered by their probability, until
the EOS token is detected. The joint beam search has the particularity of combining
both CTC and Attention posterior probabilities and optionally embed an LM (eq. [3.13)).
The LM can account for out-of-vocabulary word sequences, i.e., word pairs occurrences
that are not present in the training set. The LM weight in decoding is parametrized by
5. Notably, the A parameter controls the amount of CTC in decoding, and can take a
different value from the o used above for model training.

Y™ = arg max ppypria(Y]X) (3.12)
Y
pHybrid(Y|X> = )‘ longTC(YIX) + (1 - /\) logpAttention(Y’X> + BpLM(Y|X) (313)

The effectiveness of the hybrid CTC-Attention end-to-end architecture was demon-
strated, among others, by (Watanabe et al.| [2017)) on various ASR tasks (English, spon-
taneous Japanese and Mandarin Chinese), and by |[Kiirzinger et al.| (2019) on the English
TEDLIUM-2 corpus. The recognition performance is comparable to the state-of-the-
art conventional DNN-HMM systems, leading Watanabe and colleagues to develop the
widely-adopted speech recognition framework called ESPnet (Watanabe et al., 2018).
This toolkit was also used in the present thesis to implement the experiments described
in Chapter 5]

3.2 Fast Gradient Sign Method (FGSM)

The threat model assumed in this thesis aims to create untargeted AAEs by means of the
Fast Gradient Sign Method (FGSM), in a white-boz scenario, where the network model
and its parameters are fully known. This is in fact one of the most simplistic methods
documented in the literature, initially developed for the image domain by |Goodfellow
et al. (2015)), and subsequently adapted to the audio domain. It should be pointed
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out that creating adversarial examples is just an intermediate step, and the focus of
the thesis is not to develop highly optimized and powerful adversarial examples, but
to explore ways to improve ASR models’ robustness to general adversarial noise. This
section formalizes the definition of AAEs and the FGSM method utilized in creating
them.

Firstly, we must ascertain that a neural network is a parameterized function, f(z,0),
where z is the input (multi-dimensional feature vector) and 6 represents the model
parameters, which are iteratively optimized during the training stage. The trained
model f(x,#), with optimal, fixed-parameters, will then be used in the inference stage
to predict the output sequence y corresponding to the input x. In this context, for an
adversarial input z, the following relations hold:

P=x+40 (3.14)
[0]] << [|] (3.15)
y# [(2,0) (3.16)

d is called the adversarial perturbation (noise) and is added to the original input x in
order to trigger the network to output a wrong transcription, different from the ground
truth y. Ideally, this perturbation should be much lower in amplitude than the original
input x, so as to keep it unnoticeable to a human listener, but at the same time just
high enough to push the system into misclassification. In this thesis, ¢ is computed via
a gradient-based approach, namely the FGSM method, proposed by |Goodfellow et al.
(2015):

drasm = esgn(V,J(x,y,0)) (3.17)

J(z,y,0) is the so-called loss or objective function, which serves as the cost measure
between the network’s output and the true label y for the input x. The model optimiza-
tion procedure aims to minimize this cost, with methods such as Stochastic Gradient
Descent (SGD), which computes the gradients of the loss with regard to the network’s
parameters #. Cross Entropy is often used as loss function for classification tasks.

According to the definition of adversarial examples, the goal is to generate a new
example Z(~ x) which increases the value of the cost function. Since the input
has to be changed to become adversarial, this time the derivative of the loss with
respect to the input x must be calculated, with 6 being the freezed parameters of
the already trained network. The sign of the gradient and the additional tunable
constant € are used to control the amount of noise and thus satisfy the constraint of
eq. [3.15] In other words, by climbing up against the direction of gradient, FGSM
finds the adversarial noise that will maximize the cost function, as illustrated in Fig.
3.5
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Figure 3.5: finds the worst perturbation ¢ that maximizes the cost function J, by computing
the gradient of the loss with regard to the input . (Source: [Sun et al|(2019))

FGSM generates AAEs starting from any audio input in a supervised way, since it
requires the true label y and maximizes the cost with regard to it. Also, it is to be
noted that x does not represent the audio input, but the features that were extracted
on a frame-by-frame basis from the audio. Consequently, this method will create ad-
versarial features x by adding the adversarial noise § in a point-wise manner to the
original, non-adversarial features. To obtain the adversarial audio waveform, one needs
to either backpropagate the gradients of the loss through the feature extraction stage,
or alternatively, to reverse the adversarial features in the audio domain with the help of
inverse operations. Since the former approach is more computationally demanding, we
choose the later, further described in Section [£.3]

3.3 MP3 Compression in ASR Context

Audio compression generally aims to reduce the storage space requirements for audio
data, which is tremendously useful for a wide palette of applications, such as Internet au-
dio streaming, digital audio broadcasting, digital television and portable audio devices.
For this, low-bitrate audio coding is a key requirement, and there are many popular
audio formats (e.g., MP3, MPEG-4 AAC, Vorbis OGG, Dolby AC-3) that implement it
by exploiting the characteristics of the human sound perception. Correspondingly, they
produce a minimal digital representation of the input audio, which is perceptually very
similar to the original when decoded, thus achieving high compression rates (Sirum and
Sanches|, 2004)).

MP3 in particular refers to Layer 3 of the MPEG /audio algorithm, which was the first
international standard for a high-fidelity digital-audio compression algorithm adopted by
ISO in 1992 (Brandenburg, (1999)). It uses a lossy, perceptual audio coding scheme based
on a psychoacoustic model of human hearing, which considers hearing thresholds, as well
as temporal and spectral masking phenomena. Since the standard itself is defined as
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open, its specifications are available to anyone for free. But like for any basic perceptual
audio coding system, the implementations of MP3 encoders must consist of three basic
blocks: a filter bank block, a perceptual model block and a quantization/coding block.
In a nutshell, their functionality can be summarized as follows: the analysis filter bank
first decomposes the audio data into its spectral components. The perceptual model,
following rules from psychoacoustics, estimates the just noticeable noise levels for each
sub-band of the filter bank. Finally, in the quantizantion stage, the individual spectral
components are quantized and coded with the aim of keeping the quantization noise
below the level given by the perceptual model so as to meet the bitrate requirements
(Sirum and Sanches, [2004]).

Despite its widespread popularity and usage, MP3 has its own shortcomings. The
encoding method is lossy by nature and introduces audible distortions, which can easily
be identified using spectral analysis. The two main factors that cause signal degradation
are the low-pass filtering effect and the introduction of unnatural spectral gaps, which
are spectrum bins with a very low energy (Borsky et al.l |[2017)). Moreover, being a lossy
codec means that when an MP3 file is decompressed, it is not possible to retrieve all
information lost during the compression, so the original signal cannot be fully recovered.

In speech recognition, the MP3’s shortcomings become relevant because ASR models
require massive amounts of data, and MP3 datasets are often preferred due to the low
disk space they consume. Considering that the acoustic processing front-end of most
ASR systems heavily relies on spectral features, the MP3’s spectral distortions raised
concerns over their impact on speech recognition performance. It has been shown that
training traditional HMM-GMM systems on MP3 data at very low bitrates (< 24 kbps)
significantly impairs the recognition performance (Sirum and Sanches| |2004; Nouza et al.,
2013)), because the MFCC features used by these systems are substantially affected
by compression. Some compensation measures like additive noise to fill the spectral
gaps have also been proposed (Borsky et al., [2017). In comparison, hybrid HMM-DNN
systems show higher robustness when dealing with the unnatural spectral sparseness of
low-bitrate compressed signals (Seps et al., 2014). As for end-to-end ASR systems, they
are usually trained on huge corpora of MP3 data like TED-LIUM (Hernandez et al.,
2018) or Mozilla CommonVoice (Ardila et al., |2019) and still achieve state-of-the-art
results. What possibly makes them so robust to MP3 compression is that most of the
modern ASR corpora of MP3 format are of very high quality, being compressed at
high bitrates, with negligible spectral artifacts. Moreover, end-to-end systems are solely
based on neural networks, which are more versatile in dealing with any type of data,
provided the training set is big enough. Consequently, they are also able to learn the
intrinsic patterns of MP3 audio.

Another issue to consider when using compressed datasets is to match the training
and testing conditions. This means that it would be most appropriate to train the
ASR system with data of the same format as the one used for decoding, otherwise the
performance of both HMM and DNN-based ASR systems can drop, as shown by |[Borsky
et al.| (2017).
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With regard to our research question on adversarial examples, it has been hypothe-
sized that MP3 can actually turn into a robust countermeasure, potentially discard-
ing the adversarial noise that is placed in the frequency bins inaudible to humans.
The effectiveness of MP3 compression to strip the adversarial examples off their
malicious character is precisely the main point of investigation in this thesis.
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Experimental Setup

This section thoroughly describes the practical steps that have been performed in the
quest to validate the research hypothesis, which assumes MP3 compression’s suitability
as a measure to decrease the effectiveness of adversarial noise, and hence to enhance
ASR systems’ robustness.

The general experimental workflow is portrayed in the following schematic:

Original test
sets

A

Adversarial
feature sets

po— . Feature : | TrainedASR | | T : Feature —_—
= - > model . % f : - 4 ecode
training sets. | ; extraction : (ESPnet) { Jhophme: Inversk 3 2 TERUACHON, |

Reconstructed
adversarial
audio

: (128,64, 24 [16 kbps)

Compressed
adversarial
audio

Figure 4.1: Thesis experimental workflow: various ESPnet ASR models are trained with
the Voxforge audio training data and subsequently employed to decode four different test sets:
the original, non-adversarial VoxForge test set, followed by an adversarial feature set created
from the original one with the Fast Gradient Sign Method (FGSM), a test set of adversarial
reconstructed audio, and finally test sets of MP3-compressed adversarial audio at various
bitrates.
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The upcoming sections elaborate on each step in the block diagram.

4.1 The VoxForge Speech Corpus as Audio Input

All the performed experiments are based on the VoxForge dataset[l] which is a relatively
small open-source speech database consisting of short, simple sentences uttered by var-
ious volunteer contributors in 17 languages. Because the audio setup and recording
microphone vary from user to user, the quality of the recordings is not always top-
notch, but is overall acceptable. Clogged voices or noisy recordings are not uncommon,
however this introduces more variety, which is desired in recognition tasks so that the
models learn to generalize well over a variety of inputs.

The English share of the dataset was used in the present thesis. Audio files are
originally in .wav format and have the following specifications: single channel (mono),
16-bit signed integer PCM (Pulse Code Modulation) values, sampling rate of 16 kHz,
bitrate of 256 kbps. The entire set of English audio recordings amounts to ~130.1 hours
collected from 1,234 speakers with various English accents, making it a relatively small
speech corpus, compared to others used in the speech recognition community. However,
its choice in our experiments was motivated by the fact that it was the only open-source
dataset recorded and released in an uncompressed format, which allowed for further
compression and thus, for the exploration of our research question.

The original VoxForge dataset is split in three partitions, corresponding to the data
for training (80%), validation (10%) and testing (10%) the ASR models.

4.1.1 MP3 Compression using Lame encoder

Essentially, MP3 compression was applied to the original VoxForge dataset splits at
three bitrates (128, 64 and 24 kbps), thus creating three compressed versions of the
original dataset. Lamd? was the chosen MP3 encoder and command line tool for batch
compression. A volume downscale factor of 0.7 was set so as to reduce the volume of
the input audio to 70% of its original amplitude and thus avoid clipping effects during
compression, which can cause additional unwanted spectral artifacts. Subsequently,
the compressed audio files were converted back to .wav format at 256 kbps, as this is
the native input format for the employed ASR system (described later in Section [4.2)).
Notably, this de-compression does not bring further audio quality impairment to the
already compressed MP3 files.

To visually explore the effects of MP3 compression, we computed the spectrograms
for an audio sample that transcribes to the phrase They were deep in the primeval forest,
as well as for its MP3-compressed variants at the three bitrates (Fig. . An open-
source command line tool called sozﬂ was used for creating the spectrograms. The plain
visual inspection reveals the two main spectral effects introduced by MP3 compression:

WoxForge dataset (downloaded on 15.11.2019) - http://www.voxforge.org/home/downloads
2LAME Ain’t an MP3 Encoder - https://lame.sourceforge.io/about.php
3sox (Sound eXchange, the Swiss Army knife of audio manipulation) - http://sox.sourceforge.net
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(1) high-frequency band limitation and (2) the unnatural spectral valleys, which are
regions of very low energy in the mid-frequencies range. It is clearly visible that with

minimizing the compression bitrate, i.e., applying more aggressive compression, both
these effects become highly prominent.
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0 02 04 0B 08 4 12 14 15 L6 9 22 24 25 26 3 32 34 36 BB 4 42 4 46

5

Freauency (Kie)

(a) Original, uncompressed audio (b) MP3 compressed audio (128 kbps)

O 02 0 0B 08 1 12 14 16 18 2 20 24 25 26 3 32 34 35 HE 4 42 4k 46 0 02 o4 0

08 1 42 14 15 18 9 20 24 25 28 3 32 34 3B B 4 42 4k 46

Freauency (ki)
&
Freauency (ki)

Ic
© 02 04 06 08 1 12 14 L6 L8 2 22 24 26 28 3 32 34 35 38 4 42 4d 45

o 02 o4 06 0

Tine (5)
Created by SoK Created by SoX

Tire (5)

(c) MP3 compressed audio (64 kbps) (d) MP3 compressed audio (24 kbps)

Figure 4.2: Spectral effects of MP3-compression on the speech signal (z and y represent the

time and frequency axis, respectively, while the color represents the intensity of the spectral
magnitude).

4.1.2 Feature Extraction

Like in any machine learning task, representative features need to be extracted from raw
data in order to create a dense representation of the input content. Learning the core
information, ideally without any noise, is crucial to train systems that will make correct
inferences on new, unseen data. For the ASR task in this thesis, mel filterbank features
(abbreviated mel fbanks) were extracted by Librosa toolbox (McFee et al., 2015)), with
the exact steps being illustrated in Fig. and the extraction parameters summarized
in Table [4.1]

Initially, a sliding window of ~32 ms traverses the entire input signal, with an overlap
of 10 ms, in order to capture the dynamics between frames and hence, the speech
phonetic context. The standard Hann window (Oppenheim) [1999) is then point-wisely
multiplied with each extracted audio frame. The rationale for using this window is that
its amplitude gradually drops off near the edges of a frame, thus avoiding an abrupt
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Figure 4.3: Computation pipeline of log mel filterbank features (mel fbanks)

Table 4.1: Feature extraction parameters

Parameter Value
Sampling frequency 16 kHz
Window type Hann
Window size 512 samples
Window overlap 160 samples
# of FF'T points 512 samples
# of mel freq. bins 80
Minimum mel-scale frequency 80 Hz

Maximum mel-scale frequency 7800 Hz

cutoff at the start and end of each frame, which would cause the occurrence of side
frequency lobes, i.e., noise, in the spectral domain. The Discrete Fourier Transform
(DFT) is thereafter applied on each windowed audio frame via the Short-Time Fourier
Transform (STFT) algorithm, generating the spectro-temporal representation of the
signal, i.e., the so-called spectrogram. The absolute values of the spectrogram are then
squared to generate the power spectrum, which is subsequently filtered by the mel-scale
filterbank.

The mel filterbank (Fig. consists of a set of triangular band-pass filters which
mimic the frequency selectivity of the basilar membrane in the human ear, thus being
psychoacoustically-motivated. The triangular filter bands are increasingly wider at the
higher frequencies, reflecting that human hearing is less sensitive in that range. The mel
scale amplitudes are calculated with the formula shown in Fig. above.

After the mel fbank is applied to each time frame in the spectrogram, the energies
in each triangular band are summed up and logarithmized, in order to account for the
non-linear loudness perception in humans. Finally, for each acoustic frame, the feature
vector consists of 80 values, corresponding to each bin in the log mel fbank.

Notably, log mel fbanks are quite simplistic features, and some other common pre-
processing steps such as signal pre-emphasis, dithering, DC-offset removal, mean and
variance normalization were deliberately avoided, in order to make the features easier
to invert back into the audio domain, as described below in Section [£.3] In ASR, it is
also common-practice to append pitch-related features to the mel fbank feature vector.
However, decoding trials with and without pitch features did not render a significant
difference in recognition accuracy, so we decided not to include them in our feature
vectors, thus also avoiding additional complexity in the feature inversion process.
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Figure 4.4: Mel filterbank illustration
(source: lecture slides in Automatic Speech Recognition, Bell| (2018))

A further distinction should be made - the mel fbank features have been favoured
against the other popular ASR features called Mel Frequency Cepstral Coefficients
(MFCC) for the following reasons. Firstly, MFCC computation requires to further
process the mel fbanks and decorrelate them via the Discrete Cosine Transform (DCT),
which produces the cepstrum. The dimension of the final feature vector would then be
further diminished by selecting only the first N desired cepstral coefficients. These extra
steps were initially motivated by certain limitations of the old-fashioned HMM-GMM
recognition systems, namely that they were making independence assumptions on their
inputs, thus being unable to fit correlated data. The decorrelated MFCCs were thus the
ideal input of the traditional HMM-GMM systems.

Neural networks, on the other hand, do not make any independence assumptions,
so they can smoothly handle correlated input. In fact, it has been shown that neural-
based ASR systems work better in conjunction with correlated fbank features than with
MFCCs (Abdel-rahman, 2014)). Some preliminary test decodings we performed on both
MFCCs and mel fbank feature inputs have confirmed that our ASR systems performed
worse, in terms of ~2-3% higher error rates, when MFCCs were given as input. In
light of these results, mel fbanks represented the most reasonable choice for the feature
vector.

By and large, mel fbank features were fed as input to the ASR systems in both the
training and decoding stages.
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4.2 The Targeted ASR System

An end-to-end, fully neural model with hybrid CTC and Attention mechanism is em-
ployed for performing the speech recognition experiments on the VoxForge dataset. The
CTC, Attention, as well as the hybrid CTC-Attention concept have been explained in
detail in the Technical Background chapter (Section .

In short, Attention is an effective methodology to perform sequence-to-sequence
training, but it suffers from some limitations when it comes to monotonic alignment.
This is why CTC loss is used in parallel to aid the Attention mechanism in both training
and decoding steps. The multi-objective learning framework unifies the Attention-loss
and CTC-loss with a linear interpolation weight (the o parameter from eq. in
Section , which is set to 0.3 in our experiments, allowing Attention to dominate
over CTC.

The two main blocks of our end-to-end network are the shared encoder and the joint
CTC-Attention decoder (Fig. [4.5). The model parameters are listed altogether in Table
4.2

P A
1 Joint

|

; decoder

Encoder

Figure 4.5: Block diagram of the hybrid, end-to-end ESPnet model with joint CTC-Attention
decoder (Zhu and Chengj, 2020))
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The encoder block consists of initial convolutional layers from the VGGnet archi-
tecture (Simonyan and Zisserman|, 2014), followed by stacked layers of bidirectional
Long-Short Term Memory cells with projections (BLSTMp) (Chan et al., [2015). The
bidirectionality implies that a particular BLSTM cell receives inputs from both the pre-
vious, as well as the subsequent LSTM cells, thus modelling both the past and future
context of the current step. The projections are implemented in a pyramidal structure,
such that the sequence output lengths of the second and third pyramidal BLSTM layers
are reduced by a factor of 2. Considering the input feature sequence is usually hundreds
or thousands of frames long, this layer output sub-sampling is effective in achieving
faster convergence.

The joint decoder consists of a single layer with 300 LSTM cells, where a location-
based Attention mechanism is present, in conjunction with CTC. The CTC weight in
decoding (A from eq. was also set to 0.3, as in the training stage. A Language
Model was not available for the VoxForge corpus, so decoding was performed without
it, which also kept the computation time shorter.

The AdaDelta algorithm was used as training optimizer. Many trials of network
training were run for different hyperparameter sets, until the optimal one was settled
upon (the one depicted in Table [4.2). Each training session took & 7-12 hours on a
NVIDIA Titan Xp graphics carepending on the model’s complexity. The ASR
system operates on a character-level, outputting sequences of characters, taken from a
pre-defined dictionary. Model training and decoding were implemented with the ESPnet
end-to-end speech processing toolkit (Watanabe et al. 2018)), which is in turn based on
the Kaldi ASR toolkit (Povey et all 2011)) for the data preparation stages.

Eventually, from the entire pool of trained networks, there were only four major
ESPnet models chosen for performing the decoding experiments of interest. These four
models were trained with the same configuration from Table [£.2] but with different
input data, listed in Table 4.3 These are training sets of the English VoxForge corpus
in four different audio formats: (#1) the original (uncompressed) .wav format and (#2
- #4) three MP3 formats compressed at the bitrates of 128, 64 and 24 kbps. When a
particular ESPnet model is mentioned in Chapter (b)) (Evaluation), it is important to
keep in mind the audio format of the data it was trained with (uncompressed or MP3
format).

Fach of these models is thereafter used to make predictions (inferences) on four
different test sets, listed in Table 4.4 A point to note is that all test sets decoded by a
particular model originate from the same audio format (uncompressed or MP3) as the
one used for training the respective model. The different test sets were represented with
different blocks in the experimental workflow scheme (Fig. [4.1)). Each test set consisted
of ~8000 utterances and the decoding process lasted for about 40 minutes per test set,
with the decoding configuration presented in Table [4.2]

4Full specifications of NVIDIA Titan Xp graphics card are available at this link
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Table 4.2: Optimal ESPnet configuration for the ASR VoxForge English task

Category Parameter Value
Encoder type VGG-BLSTM
# of encoder layers 4
Encoder related | # of encoder units/layer 320
# of encoder projections/layer 320
Subsampling (skip every n-th frame from input) 12211
# of decoder layers 1
# of encoder units/layer 300
Decoding beam size 10
Decoder related CTC-weight ()) 0.3
Batch size 25
Language Model Not used
Scheduled sampling probability 0.5
Attention type Location-aware
. Attention dimension 300
Attention related # of Attention convolutional channels 10
# of Attention filters 100
Multi-task learning weight («) 0.3
.. Optimizer name AdaDelta
Training related # of training epochs 25
Batch size 35

Table 4.3: Overview of the main four ESPnet models

Model index ‘ Train data
#1 VoxForge uncompressed (original)
#2 VoxForge 128 kbps - MP3
#3 VoxForge 64 kbps - MP3
#4 VoxForge 24 kbps - MP3

Table 4.4: Test datasets to be decoded by each trained ESPnet model

Test data for each trained ESPnet model

(1) original test set (non-adversarial)

(2) adversarial features created from (1)

(3) reconstructed adversarial audio created from (2)
(4) compressed adversarial audio created from (3)
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4.3 Adversarial Audio Generation

The four ESPnet networks are subsequently integrated with the FGSM algorithm to
generate an adversarial instance for each utterance of the four original, non-adversarial
test sets (in the four audio formats mentioned above). FGSM, described in more detail
in Section [3.2] creates customized, input-dependent adversarial noise, based on the one-
step back-propagation from eq. [3.17 Since only the sign of the gradient is considered,
the adversarial noise added point-wise to the original speech input is effectively reduced
to €. As a reminder, € is the parameter that controls the level of adversarial noise and
it was set to 0.3 in our experiments.

It should be pointed out that FGSM is not optimized for psychoacoustic impercepti-
bility, so there is no guarantee that the adversarial noise created with this method could
not be eventually perceived by a human. However, despite being audible, the FGSM
adversarial noise is not obfuscated, unlike the noise created by |Carlini et al. (2016).
Their obfuscated adversarial examples sound like heavily distorted speech, but which
can still be deciphered by a very attentive listener (audio samples are available at this
linkED. In contrast, the FGSM noise sounds more like short bursts or cracks intertwined
with the original voice, which fortunately does not give the slightest hint with regard to
the embedded hidden transcription.

Because the networks take acoustic feature vectors as input, FGSM originally cre-
ates adversarial examples in the feature domain. Yet in order to evaluate our research
hypothesis, we needed adversarial examples in the audio domain, so we proceeded to
invert the adversarial features and thus artificially reconstruct the adversarial audio.
The exact inversion steps are illustrated in Fig. [4.6

Input speech
signal

Mel filterbank lo
(fbank) 910

Windowing STFT > | X]?

Features

[ [
i FGSM i 3
@ Adversarial

Features

Reconstructed .
X iSTFT W Mel fbank
l@ D adziﬁiir'al B (Griffin Lim) [ pseudo-inverse pow10 |«

Figure 4.6: Pipeline of adversarial audio reconstruction by means of feature inversion

Practically, every step from the forward feature extraction pipeline is reversed. The
power of 10 and pseudo-inverse are applied to reverse the effects of the logarithm and mel-
filterbank, respectively. The inverse STFT (iSTFT) was implemented with the Griffin
Lim algorithm (Perraudin et al. [2013), which takes in the STFT magnitude matrix

Obfuscated adversarial audio by Carlini et al. (2016) - https://www.hiddenvoicecommands.com /black-|
box
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and randomly initializes the phase estimates. It will then reconstruct a real-valued
time-domain signal by alternating forward- and inverse-STFT operations. Analogous
to feature extraction, all feature inversion steps were implemented with functions from
Librosa toolbox (McFee et al., 2015)) in Python.

It is important to point out that mel fbank features are a lossy representation of the
original audio input, because they lack the phase information of the spectrum, which in
turn renders a highly accurate audio reconstruction simply not feasible. Indeed, listening
tests revealed that it is relatively easy for a human to distinguish the reconstruction
artefacts when comparing pairs of original (non-adversarial) audio samples with their
reconstructed versions by means of this method.

Nevertheless, we were mainly interested in the impact of the reconstruction process
on the speech recognition accuracy, from the perspective of the ASR system. Thus,
we performed the following sanity check: we used the ESPnet model #1 (trained on
uncompressed audio files) to decode both the original (uncompressed, non-adversarial)
test set and its reconstructed counterpart. We observed just a mild 1.3% absolute in-
crease in the Character Error Rate (CER) for the reconstructed set, which implies that
the relevant acoustic features are preserved even after audio reconstruction. This vali-
dation experiment overall confirms that speech recognition accuracy for non-adversarial
reconstructed inputs is not considerably impaired by the implemented reconstruction
method.

Although still imperfect and flawed by audible artefacts, the adversarial audio re-
construction was strictly necessary for being able to proceed with the next experimental
step, which consists in applying MP3 compression on the adversarial inputs.

The whole adversarial creation process (including the FGSM and the audio recon-
struction step) lasted for ~20 hours for each test set, using the same NVIDIA Titan Xp
GPU. This was a lengthy procedure because the input utterances were processed one at
a time, and backpropagating the gradients in the FGSM step posed the strongest com-
putational load. The reconstructed adversarial audio sets were then compressed with
MP3 and provided again for the inference stage to the corresponding ASR systems.

Several samples of reconstructed adversarial audio, along with the original audio files
and their MP3 versions can be retrieved from this GitHub repository[’}

4.4 Data Augmentation with non-Adversarial Noise

It must be acknowledged that adversarial noise is not the only type of noise that can
curb the performance of ASR systems. Environmental noise from background sound
sources or electrical noise which is intrinsic to the recording equipment have been the
primary types of noises explored in the ASR context. Therefore, it would be adequate
to assess the effects of MP3 compression on audio that is corrupted by non-adversarial
noise as well, so as to have a reference for the behaviour of the ASR system when

Shttps://github.com /iustinaabc/Masters-Thesis-MP3-compression-effects-on-adversarial-inputs-in-
ASR
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exposed to common types of noise. This would offer a wider perspective in which we
can then interpret the behaviour of the same system when exposed to adversarial noise.

For this complementary analysis, we augmented the four original test sets with four
types of non-adversarial noise, namely white, pink, brown and babble noise, boasting
diverse spectral characteristics (Fig. |4.7). The white and pink noise are commonly
occurring in electrical equipment, brown noise is a deep sound-wave dominated by low
frequency content, while babble noise is a type of ambient sound consisting of simulta-
neous talking voices coming from different spatial directions, which creates the babble
impression to the listener. From all these noises, the babble noise is the one with the
spectral characteristics most close to human speech, and is thus expected to induce the
highest impairment of speech recognition accuracy.
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Figure 4.7: Spectrograms of the four non-adversarial noises used in data augmentation (cre-
ated with soz command line tool). x and y represent the time and frequency axis, respectively,
while the color represents the intensity of the spectral magnitude

Aiming for a comprehensive analysis, we experimented with six different Signal-to-
Noise (SNR) ratios, namely 30, 10, 5, 0, -5 and -10 dB, on each noise. The positive SNR
denotes that the overall level of the signal, in our case the speech utterance, is greater
than the level of the noise, while the vice-versa holds for the negative SNR. The noise-
augmented samples and their MP3-compressed versions are then fed as input to the
decoding stage of the corresponding ASR system, i.e., the one that was trained on audio
data of the same format as the test data. Mind that all the four ASR systems were
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trained on the original, noise-free and non-adversarial data. Consequently, decoding

noisy inputs is expected to cause more transcription errors than for clean data.

The general workflow of the noise augmentation experiments is depicted in Fig. 4.8
Augmenting the original VoxForge test sets with four types of non-adversarial noise
at six SNRs will render 24 noise-augmented test sets for each ESPnet model, totalling
96 datasets for all the four models. The audio format of the newly noise-augmented
datasets corresponds to the format of the original test sets of the respective models.
All these datasets will then be compressed with MP3 at 24 kbps, rendering a second
pool of 96 noise-augmented test sets in MP3 format, which will also be decoded by the

corresponding ESPnet models.

3

Original test Non-adversarial
data Noise
24 Noise-
+ » augmented
,))) datasets

white
pink
brown
babble

SNRs: 30, 10, 5, 0, -5, -10

Figure 4.8: Experimental workflow for noise-augmented inputs decoded by a single ESPnet

model
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Evaluation

ASR systems’ performance is commonly quantified with the Levenshtein distance metric
(Navarro, [2001)). It measures the difference between two text sequences by counting
the minimum number of operations required to transform one string into the other.
Practically, this distance is calculated between the ground truth transcription and the
ASR system’s output transcription for every input utterance, then averaged across all
utterances and reported as Character or Word Error Rate (CER and WER, respectively).
WER and CER scores are computed in a dynamic programming fashion by summing up
the number of substituted (S), inserted (I) and deleted (D) units (characters or words),
referenced to the total number of units in the ground truth transcription (N):

S+I1+D

WER/CER =
/ N

(5.1)

When testing ASR systems under highly unfavourable conditions, such as very noisy
inputs, the output sequence predicted by the ASR system can have many errors and
even be longer than the original, in which case CER and WER can exceed 100%.

The following sections report the CER and WER scores for the experiments we
undertook by decoding different test sets with the already trained ESPnet models, de-
scribed in Section [4.2] The test datasets used in the inference stage of each ESPnet
model were listed in Table 4.4

5.1 Baseline Results for Original, non-Adversarial
Input

Table conveys the results of the most basic experiment, that of decoding the original,
non-adversarial input utterances with the four ESPnet models. In the following, we will
refer to them as baseline results. For each model, the input test data was of the same
audio format as the training data, thus complying with the train-test format matching
prerequisite.

37



5. Evaluation

Table 5.1: Baseline ASR results for original, non-adversarial test data

ESPnet model Test data format CER [%] WER [%]

#1 uncompressed (raw) 17.8 41.4
#2 128 kbps MP3 18.8 43.5
#3 64 kbps MP3 18.6 43

#4 24 kbps MP3 20.2 45.5

The first striking observation is that the WER score is more than double of the CER
score for all the four cases, implying that the ASR systems transcribed many words
with relatively few intra-word spelling errors (on the character level), as reflected by
the transcription examples from Table [5.2] This is in line with the fact that Attention
is dominant in our decoding setup, as it was previously demonstrated that Attention is
capable of spelling words quite accurately (hence the low CER), but fails more readily
at handling word sequences correctly (high WER) (Kiirzinger et al., 2019).

Table 5.2: Example transcriptions decoded by ESPnet model #1. REF denotes the reference
or ground truth, while HYP is the model hypothesis or prediction. The capital letters denote
incorrectly transcribed words, while * symbolizes letters and words inserted by the model, but
nonexistent in the reference transcription.

REF: beyond DISPUTE corry HUTCHINSON had married MABEL HOLMES
HYP: beyond DISPEPED corry HARGENSON had married MABLE HOMES

REF: the VERY thing ernest * AGREED
HYP: the FERRY thing ernest A GREET

REF: A CONTROVERSIAL FOUR HUNDRED and fifty *** MILLION dollar project
HYP: THE CONTRIVERSAL FULL HNDER and fifty MEN IN dollar project

Since VoxForge is quite an old dataset, it has decreased in popularity within the
research community, which made it relatively difficult to find other documented results
and compare our systems’ performance. To the best of our knowledge, the only place
where results for the VoxForge dataset are still published and frequently updated is the
ESPnet GitHub repository, since ESPnet is under continuous development and tested
on most of the available speech corpora. The ESPnet developers recently reported that
an ESPnet system trained with highly similar configuration as ours (VGG-BLSTMp
architecture with the same number of network layers and units/layer as our models)
achieved 11.6% CER and 42.2% WER on the Italian share of the VoxForge dataset]]
However, because they used a different language, it is difficult to directly relate this
result to ours. The only difference was that they used a beam size of 20 in decoding,
while ours was 10. However, experimenting with a beam size of 20 did not bring much
improvement (only 0.1% reduction in CER and WER scores) on our English VoxForge

'Kamo Naoyuki. VoxForge results, February 2020.
https://github.com/kamo-naoyuki/espnet /tree/186bddf5cfceadcf04fccf04e620730804fbafab/egs2 /voxforge /asrl
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test dataset. Consequently, in subsequent experiments, we preferred to use the beam
size of 10 for faster decoding.

Another notable trend in Table is the slightly higher percent of errors for MP3
compressed test data, in comparison to the errors for the raw, uncompressed audio (the
original VoxForge format). This can be safely justified by the spectral information loss
that occurs when applying more aggressive MP3 compression, i.e., at smaller bitrates.
However, based on both CER and WER, the reduction in recognition performance
to compressed data is not very substantial. The poorest result of 20.2% CER was
produced for MP3 input at 24 kbps, being only 2.4% above the lowest CER of 17.8%,
for uncompressed input.

5.2 Results for Adversarial Input

The results for decoding various adversarial test sets with the four trained ESPnet
systems are presented in Table [5.3

Table 5.3: CER results for decoding adversarial input (marked as [2], [3] and [4]). Note:
each line in the table represents decoding results for various test sets that originate from the
same audio format as the training data, reported in the very first column. The last column
indicates a relative CER score difference, calculated as % - 100(%). The baseline CER
results from Table hereby marked by [1], are depicted again for comparison purposes. The
term Adversarial is abbreviated as Adv.

ESPnet model Relative CER

Input test data

(source format of 1] 2] 3] [4] difference (%)
train & test inputs in Original Adv. Reconstructed Compressed Adv. between [2] and [4]
[, 121, [31, [4]) audio features  Adv. audio audio (24 kbps)
#1 17.8 70.5 62.2 57.4 -18.58
(uncompressed)
#2
(128 kbps-MP3) 18.8 723 64 58.4 19.93
#3
(64 kbps-MP3) 18.6 1.8 63.1 56.5 -21.31
#4
(24 kbps-MP3) 20.2 69 60.5 55.3 -19.86

One can first notice that adversarial inputs in the feature domain (column [2] in
Table achieve the desired effect of increasing the error rate (by an absolute mean
value of +52.05% over all models) compared to the baseline errors (column [1]), thus
validating FGSM method as effective in creating adversarial features from input data of
any audio format (uncompressed, as well as MP3-compressed).

The error scores for reconstructed adversarial audio created from adversarial features
(as described in Section are listed in column [3] of Table It is easily noticeable
that these error rates are also higher than the baseline (column [1]), but interestingly,
lower than the CER scores for the adversarial features themselves (column [2]). This
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suggests that our reconstruction method makes the adversarial audio less powerful in
misleading the model, which on the other hand is beneficial for the system’s robustness
to adversarial noise.

When we further compress the adversarial audio with MP3 at the bitrate of 24 kbps,
we observe an additional decline in the Character Error Rates (column [4] in Table
, thus indicating that MP3 compression might be favourable in reducing the attack
effectiveness of the adversarial input. However, these CER values are still much higher
than the baseline (column [1]), by a mean absolute difference of +38.05%, across all
ESPnet models.

The overall relative decrease in CER between the crude adversarial feature inputs
(column [2]), considered most powerful based on the highest error rates, and the com-
pressed adversarial audio (column [4]) is shown in the last column of Table 5.3 The
strongest reduction effect (-21.31%) can be observed in the case of adversarial com-
pressed input (24 kbps) originating from 64 kbps compressed data.

Explicit Error Patterns to Adversarial Input

It would be interesting to take a more in-depth look at the error patterns caused by
the adversarial inputs. We thus enclose within Table [5.4] the detailed errors in terms of
percentage of Inserted, Deleted and Substituted units (i.e., words or characters), which
emerged when decoding with ESPnet model #1.

Table 5.4: Explicit error patterns for various test inputs decoded by ESPnet model #1.
These results were obtained by branching out the numbers of the first row of previous Table
. The first reported values represent the percentage of character Substitutions, Deletions
or Insertions (% CER), while the value in parenthesis is analogous on the word level (% WER).
The last row represents the summation of the corresponding values from the first three rows
and is equivalent to the first row of Table

[1] [2] [3] [4]
Original Adv. Reconstructed Compressed Adv.
audio features Adv. audio Audio (24 kbps)
% CER (WER)
Substitutions 8.6 (33.6) 317 (77.2) 29.4 (75.5) 28.8 (73.8)
% CER (WER)
Insertions 3.8 (4.4) 30.6 (24.1) 24.4 (20.8) 19.1 (16.3)
% CER (WER)
Deletions 5.3 (34) 8.3 (3.8) 8.7 (3.8) 9.7 (4.4)
Total % CER
(WER) 17.8 (41.4) 70.5 (105.1) 62.2 (100.1) 57.4 (94.5)

In view of this table, a couple of remarks can be made:

e As seen previously in Table [5.3] for adversarial inputs (columns [2]-[4] in Table
5.4), all the error values are higher than for the original, non-adversarial input
(column [1]).
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e On the character level (corresponding to the first values reported in the table), one
can ascertain that most prevalent are the Substitutions, followed by Insertions, and
ultimately by Deletion errors. The only case that deviates from this trend is the
original, non-adversarial input (column [1]), for which slightly more Deletions were
achieved than Insertions. On average, the three adversarial inputs yielded 30%
character Substitutions, 24.7% character Insertions and 9% character Deletions.

e On the word level (corresponding to the value in parenthesis), we can observe a
similar trend, but the amount of Deletions, Substitutions and Insertions seems
more disproportionate. As such, across the three adversarial inputs (columns [2]-
[4]), there were on average 75.5% word Substitutions, 20.4% word Insertions and
only 4% word Deletions.

From these error patterns, we can overall conclude that adversarial inputs are most
detrimental for Substitutions and Insertions at the word level, since they have the highest
number of occurrences. Adversarial inputs impact the Deletions quota as well, but to a
smaller extent (when compared to the non-adversarial input in column [1]) and mostly
on the character level, with almost no effect on the word level.

Taken altogether, the results presented in this section show that MP3 compression
diminishes to some degree the severity of the untargeted adversarial attack, reflected
by the smaller error rates in column [4] when compared to columns [2] and [3] in
Tables [5.3] and [5.4] Yet even after adversarial audio inputs were compressed, the
models were not completely able to recover the correct transcriptions, since the
error values in column [4] are still higher than the baseline (column [1]), regardless
of the ESPnet model employed or the source format of the data. We could thus
conclude that MP3 compression manages to only partially reduce the error rates to
adversarial inputs.

5.3 Results for Adversarial Input in Train-Test Mis-
match Setting

Next, we assessed a scenario of train-test mismatch, in which the test data comes from
another type of audio format than the train data. This means that the model trained on
uncompressed data has to decode adversarial input originating from compressed data,
and vice versa for the model trained on compressed data. Table reports the results
for decoding adversarial audio in such a train-test mismatch scenario, with two of our
ESPnet models, one trained on uncompressed data (#1) and the other trained on MP3-
compressed data at 64 kbps (#3).

These results reveal that both ASR models, when presented with adversarial input
originating from the opposite audio format than the one of the training data, achieve
lower CER scores than in the train-test match case (represented by the asterisk values
in columns [1] and [3] of Table [5.5]). Additionally, if those adversarial inputs are sub-
sequently compressed by MP3, a further reduction in the error rate occurs (columns
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Table 5.5: CER results for decoding adversarial audio with two ESPnet models (#1 and
#3) in a train-test mismatch scenario. The values with (*) are also present in Table and
denote the CER scores obtained for test data that originated from the same audio format
as the training data (uncompressed for model #1, and 64 kbps MP3 for model #3), hence
no mismatch, while all the other values are obtained for the train-test mismatch case. The
bold values are the lowest CER scores obtained by the respective models (note that they both
belong to the mismatch case).

Test sets decoded with Test sets decoded with

Source format ESPnet model #1 ESPnet model #3

of test data [1] Reconstructed [2] 24 kbps MP3 | [3] Reconstructed [4] 24 kbps MP3

adv. audio adv. audio adv. audio adv. audio

uncompressed 62.2% 5T.4% 49.5 47.5

128 kbps-MP3 51.7 47.5 57.6 53.4

64 kbps-MP3 50.7 46.5 63.1* 56.5*

24 kbps-MP3 53.8 49.3 61 54.5

[2] and [4]). Specifically, the ESPnet model trained on uncompresssed data (#1) de-
codes with least amount of errors (46.5%) compressed adversarial inputs originating
from 64 kbps MP3-compressed data. Likewise, the ESPnet model trained on 64 kbps
MP3-compresssed data (#3) decodes with least amount of errors (47.5%) compressed
adversarial inputs originating from uncompressed data.

Consequently, even though train-test mismatch is generally avoided in ASR tasks,
in combination with MP3 compression applied to the input speech, it appears to
cause a further decline in the error rates. However, these raw results can not tell
us what is the individual impact of the train-test mismatch or MP3 compression
alone. The analysis should be supplemented by decoding experiments in the train-
test mismatch case performed on non-adversarial input, and then have the results
subjected to statistical tests in order to find significant trends. Though imperative
for making significant claims on the effects of MP3 compression, this is a laborious
analysis that would have exceeded the available time-span of this thesis.

5.4 Results for Input Augmented with non-Adversarial
Noise

In a final set of decoding trials, we experimented with speech inputs augmented with
non-adversarial noise, which provide a comparison reference for the systems’ behaviour
to adversarial noise, as described in Section [4.4] These results are presented in Table
5.0l

Based on the CER values, one can overall observe that irrespective of the noise type,
the lower the SNR (or the higher level of noise that is added to the input), the more
error-prone the ASR system is. This trend is somewhat predictable, because more noise
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Table 5.6: CER scores of ESPnet model #1 for decoding test sets augmented with four types
of non-adversarial noise (white, pink, brown and babble noise) and their MP3-compressed
versions.

Test sets augmented with: ‘ SNR [dB]
/30 10 5 0 -5 -10
[1] white noise 19.1 327 419 53.7 66.2 782
& MP3 compressed (24kbps) | 29.1 51.2 61.7 71.2 787 86
[2] pink noise 18.5 29.1 381 51.7 674 821
& MP3 compr. (24kbps) 269 425 53 664 79.8 89.9
[3] brown noise 179 197 219 26.1 34.1 478
& MP3 compr. (24kbps) 253 29 325 38 473 60.6
[4] babble noise 183 358 534 774 89 936
& MP3 compr. (24kbps) 25.8 482 66 836 93.1 954

is always detrimental to speech recognition. The most adverse effect seems to be in the
case of white and babble noise (rows [1] and [4]), which also happen to have the richest
spectral content, imminently interfering with the original speech.

Yet of utmost interest here is what happens when we apply the same treatment used
for adversarial inputs to these novel speech inputs enhanced with non-adversarial noise,
namely MP3 compression. These results are illustrated every second row in Table [5.6]
We can remark that the errors are always higher for MP3-compressed inputs, than for
non-compressed inputs, regardless of noise type or SNR. The relative difference between
all pairs of CER values in Table 5.6 corresponding to uncompressed and compressed
inputs augmented with noise are illustrated in Fig.

The main take from this figure is that the relative CER difference, although SNR-
dependent, is always positive, reflecting the impact of MP3 compression in amplifying
the error rates for speech samples augmented with non-adversarial noise. The graph
shows that MP3 compression has less effect for negative SNRs, where the %CER rel-
ative increase is almost insignificant (close to 0), but a considerable effect at high and
mid-range SNRs, where the CER difference fluctuates between 10% and 50%. Presum-
ably, this can be accounted by the fact that high and mid-range SNRs correspond to
small levels of added noise, and if these samples are subjected to MP3 compression,
the encoding algorithm will remove not only the noise, but also relevant parts from the
original speech signal, which determines the drop in recognition performance. Similar
behaviour was observed for the other three ESPnet models (#2, #3 and #4) when
presented with original and compressed noise-augmented inputs created from the corre-
sponding audio format (see Appendix [A.1)).

Nevertheless, when comparing the results we obtained for adversarial and non-
adversarial noise, we must keep in mind that the same pattern of white, pink, brown and
babble noise was added point-wise to every input utterance, while adversarial noise was
originally customized for each utterance, and was partly determined by the adversarial
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Figure 5.1: Relative CER difference (%) between uncompressed test sets augmented with
non-adversarial noise and their MP3-compressed version (24 kbps) decoded by ESPnet model

#1

audio reconstruction process. In rough lines, this means that non-adversarial noise is
independent of the input utterance, while adversarial noise is utterance-dependent.

On the big picture, we can conclude from the error values that for non-adversarial
noise, MP3 compression has the inverse effect compared to what was observed
for adversarial noise. In other words, MP3 compression was capable to trigger a
reduction in the amount of errors returned by the ASR systems to adversarial input,
while failing to do so for non-adversarial noise. On the contrary, MP3 compression
increased the amount of errors for inputs augmented with non-adversarial noise,
especially at high and mid-range SNRs. This could entail that MP3 compression
has the desired effect of partially reducing only adversarial perturbations, whereas
deteriorating the non-adversarial noise.

5.5 Adversarial SNR Estimation

A comparison between adversarial and non-adversarial noise would not be complete un-
less we also estimate the amount of adversarial noise in terms of SNR. Ultimately, we
would like to assess how does MP3 encoding impact the SNR of the adversarial samples.
As it is relatively difficult to quantify the SNR in the original domain of the adversarial
noise (the feature domain), we attempted to estimate the SNR of the adversarial recon-
structed utterances, in both uncompressed and MP3 formats. We computed the SNR
for each adversarial utterance as:
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signal power

adversarial noise power

power of the reconstructed speech (non-adversarial)

power of the adversarial reconstructed noise (5:3)

For both the uncompressed and MP3 adversarial utterances, we calculated the SNR
with reference to the same signal: the reconstructed version of the original speech ut-
terance, so as to introduce the same artefacts that were obtained when reconstructing
the adversarial audio, and thus have a more accurate SNR estimation. As expected,
we obtained different SNRs for each adversarial audio, because adversarial noise varies
with the speech input. Moreover, the SNR values differed before and after MP3 com-
pression for each adversarial sample. The SNRs were in the range [-5, +25] dB for the
reconstructed adversarial utterances (uncompressed), and between [-5, +35] dB for their
MP3 version, as the top histograms in Fig. [5.2] show.

It is interesting to observe, especially from the close-up plots (the normalized his-
tograms (c) and (d) in Fig. [5.2)), that most of the SNR values of reconstructed adversarial
utterances (uncompressed) are negative, suggesting that the added adversarial noise has
high levels and is therefore audible. However, after MP3 compression (Histograms (b)
and (d)), most adversarial samples acquire positive SNRs, implying that the adversarial
noise was diminished due to MP3 encoding.

To validate this, we applied the non-parametric, two-sided Kolmogorov-Smirnov
(KS) statistical test (Berger and Zhou, 2014) and evaluated whether the bin counts
from the normalized SNR histograms of adversarial samples before and after MP3 com-
pression (plots (c¢) and (d)) come from the same underlying distribution. We obtained
a p-value of 0.039, smaller than the critical o threshold of 0.05, legitimizing the claim
that the observed difference between the underlying distributions of the two histograms
is statistically significant.

When applying the one-sided version of the same test, we obtained a more significant
result, corresponding to a p-value of 0.019. This leads to the approval of the alternative
hypothesis which originally assumed that the empirical cumulative distribution function
of the SNR values before MP3 compression is smaller than the empirical cumulative
distribution function of the SNR values after MP3 compression.

Conclusively, this analysis confirms that MP3 compression has a significant effect
in increasing the SNR values of adversarial samples, which essentially means that
MP3 reduces the adversarial noise.
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Figure 5.2: Histograms for SNR estimation of adversarial inputs: uncompressed (left plots)
and MP3 at 24 kbps (right plots). (a) and (b) represent the original histograms on the full
range of SNRs. (Note: because of the y axis scaling, the relatively few counts of extreme
positive or negative SNR values are not visible in the histograms, despite being registered).
For a better vizualization, (c¢) and (d) are normalized histograms on a narrower SNR range
[-5, +10] dB. Number of histogram bins was set to 50 for all the plots.
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6.1 General Findings

Adversarial Examples are special input instances intended to induce misclassification in
Machine Learning systems, thus exposing their security vulnerabilities. Aligned with
contemporary efforts and attempts to overcome these issues, the main scope of this
thesis was to investigate a defense strategy that could potentially improve the robustness
of ASR systems to adversarial inputs. Specifically, we explored the potential of MP3
compression as a countermeasure to mitigate the effect of adversarial noise compromising
speech inputs.

To this end, we trained several end-to-end ASR models with hybrid CTC-Attention
architecture on different types of audio formats and engaged them in decoding sev-
eral test datasets: original inputs, adversarial features, reconstructed adversarial audio,
compressed adversarial audio, and finally, inputs augmented with non-adversarial noise.
Moreover, the models were evaluated in two general scenarios: train-test match and
mismatch, the latter referring to the case when the decoded test sets originated from a
different audio format than the training data.

The adversarial feature inputs were built with the Fast Gradient Sign Method in
an untargeted fashion, i.e., they were meant to be transcribed by the models to any
incorrect phrase, deviating from the ground truth transcription. The adversarial fea-
tures were then mapped back into the audio domain by using inverse feature extraction
operations. The resulting adversarial audio (denoted as reconstructed) was thereafter
MP3-compressed and presented to the models’ input.

On the whole, four key findings emerged from our experiments:

1. In a train-test data matching scenario, both the adversarial audio reconstruction
procedure, as well as MP3 compression of the reconstructed audio were beneficial in
reducing the error rates, compared to the raw adversarial feature inputs. Nonethe-
less, the error reduction did not equal the baseline performance for non-adversarial
input, which is a sign that the correct transcriptions were not completely recovered,
even after applying MP3-compression to adversarial inputs.

2. In a train-test data mismatch scenario, it was found that compressing adversar-
ial examples originating from a particular audio format and decoding them with
models trained on another audio format, brings a further alleviation and reduction
in the error rates.
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3. When applied to speech inputs augmented with non-adversarial noise, MP3 com-
pression triggered a reverse effect of the systems’ response, mirrored by the recog-
nition performance. Specifically, in the train-test match setting, presenting noise-
augmented inputs in an MP3-compressed format led to more transcription errors
than when those inputs were uncompressed. This finding backs up the first two
by suggesting that MP3 compression would be beneficial only in mitigating adver-
sarial noise, while deteriorating the results to non-adversarial noise.

4. Finally, we performed an assessment of the effect of MP3 compression on the
estimated SNR values of adversarial samples. The analysis yielded a statistically
significant result, supporting the bare observation that MP3 compression increased
the SNR values of adversarial samples. Since SNR increase is directly associated
with noise level reduction, we can infer that MP3 partially eliminates the adver-
sarial noise.

6.2 Limitations

Inevitably, there are a number of limitations with our experimental setup. In the first
place, neural networks are known to be data-hungry systems, and failing to provide suf-
ficient data usually results in a high amount of errors. We believe this is the reason why
our systems did not achieve state-of-the-art performance (<15% CER) for the baseline
condition, i.e., for the original, uncompressed VoxForge dataset. We assume that the
insufficient amount of training data (only ~105 hours of speech), coupled with the lack
of a Language Model in decoding, rendered the sub-optimal results. Unfortunately, we
were constrained to use VoxForge corpus because we did not have the financial means to
purchase a more extensive dataset in uncompressed format, like the Wall Street Journal.

Additionally, our reconstruction method for adversarial audio is quite rudimentary
and introduces audible artefacts due to the random phase estimation in the process of
STFT inversion. It is thus not unreasonable to think that the reconstruction process
itself has to some degree corrupted the original adversarial noise computed in the feature
domain. More accurate methods for audio reconstruction, or alternative ways to obtain
the adversarial audio (for instance, by means of gradient backpropagation through the
entire feature extraction stage) could also be considered in future developments, but at
the cost of more computational complexity.

Ultimately, our research hypothesis claiming the MP3 compression’s efficiency in
mitigating adversarial attacks can be fully validated or declined only by subjecting
the ASR performance results to an extensive statistical analysis. However, in order to
draw significant conclusions, statistical tests require a high amount of data instances. In
consequence, we would have needed more decoding experiments so as to apply statistical
tests. Due to time constraints, this was unfortunately not achievable.

All things considered, MP3 compression is only a basic defensive measure against
adversarial noise, if compared to others documented in the literature. It mainly aims
at direct manipulation of the networks’ input, while other defense paradigms aim at
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modifying the ASR systems themselves, by means of special training strategies, e.g.,
adversarial training. If an attacker would know that MP3 is used as a defense measure,
he could possibly use this knowledge to create adversarial examples to overcome the
compression (for instance, by backpropagating the gradients through the compression
stage).

Overall, the research community is very dynamic and has already embarked on the
path to design more powerful adversarial attacks that bypass the current defensive mea-
sures, which in turn are expected to prompt the development of more efficient defenses.

6.3 Future Prospects

This work lays a foundation for future research and development of effective defenses
against adversarial examples targeting ASR systems. One of the possible future di-
rections would be to test MP3 compression against more powerful adversarial attacks,
created with complex, e.g., for targeted and truly inaudible adversarial examples, cre-
ated based on a psychoacoustic model and verified by standard listening tests. A new
research question could arise: if perturbations are inaudible from the beginning, would
MP3 algorithm still be effective in removing them?

The project could also be extended by eventually testing the same research hypothe-
sis in a black-box attack scenario, where adversarial examples are created without knowl-
edge of the ASR system, but by iteratively presenting different inputs and manipulating
them solely based on the systems’ response. Finally, future research should address the
practicability of audio adversarial examples and explore defensive approaches against
over-the-air adversarial attacks, which are optimized to work in the real world.
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Supplementary Results

A.1 ASR Results for Input Augmented with non-
Adversarial Noise and decoded by ESPnet mod-|
els #2, #3 and #4

Relative CER difference (%) between original (128 kbps MP3) and MP3-compressed data (24 kbps)
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Relative CER difference (%) between original (64 kbps MP3) and MP3-compressed data (24 kbps)
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