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In this paper, a novel moving load model for 2D crane systems of which the trolley has two axles is proposed. Based on this model, the
dynamics of a 2D gantry crane, which is modelled as a simply supported Euler–Bernoulli beam carrying a two-axle trolley fromwhich a
single-pendulum payload is suspended, is studied. )e proposed model was verified by comparing with two models in existing papers
and can be considered as an extended version of comparative models.)en, the effect of the trolley’s axle base on the dynamic responses
of the beam is studied. It can be observed that increasing the length of trolley’s axle base will decrease the deflection of the beam, and a
larger initial swing angle will cause a larger deflection of the beam without controlling the swing of the payload.

1. Introduction

Industrial crane systems, which are a class of representative
nonlinear systems, play an important role in modern indus-
tries. )ey can be modelled as a coupled system of moving
payload and flexible beam.Vibration is a serious problem in the
applications of crane systems because the structural flexibility
will certainly affect the behaviour of the controller leading to
precise positioning problems of the trolley and payload [1]. For
instance, in the metallurgical industry, it has not only a high
demand for horizontal positioning accuracy of the crane
transport but also a high demand for height positioning ac-
curacy of the payload. It is well known that a larger span will
cause a larger deflection of the main beam of crane systems
while the cross section and the payload mass keep unchanged.
)erefore, with the increase of crane span, the dynamic re-
sponses of the main beam cannot be neglected.

Many researchers used the assumed mode method to es-
tablish the dynamicmodel of overhead crane systems [2–5] and
quayside container crane systems [6]. It is found that the value
of the beam deflection increases by increasing the total mass of
the trolley and payload [2–4]. In [2], the authors also found that,

for given masses of the trolley and payload, the location and the
value of themaximum beam deflection are dependent upon the
trolley speed. In [4], it is observed that the mass of the driver’s
cabin has little effect on the deflection of the beam, but its
position has obvious effect. In [5], it is found that the swing
response of the payload is not sensitive to the stiffness of the
beam. Some researchers applied the finite element method to
study the transverse and longitudinal vibrations of the flexible
beam of crane systems [7, 8]. In [7], the cable is considered as an
elastic body, and the authors found that increase of trolley speed
and acceleration/deceleration do not have significant influence
for vertical displacements, but have on horizontal displace-
ments. In [8], the author presented a technique to replace the
moving load by an equivalent moving finite element. )ey
demonstrated the effect of the cable length, the trolleymass, and
the velocity of the trolley on the deflection of the beam.

In the aforementioned papers, the trolley is modelled as a
particle/mass point.)at means there is only one contact point
between the trolley and the flexible beam. However, a trolley
has at least four wheels in contact with the flexible beam. If we
consider it as a planar model, it can be reduced to a two-axle
model. In the field of vehicle-bridge coupling system, many

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 3096213, 10 pages
https://doi.org/10.1155/2020/3096213

mailto:rdu@swjtu.edu.cn
https://orcid.org/0000-0002-9574-9481
https://orcid.org/0000-0002-6614-2752
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/3096213


researchers studied the dynamic responses of bridges/beams
subjected to moving vehicles with two axles [9–11]. In these
papers, vehicles are in contact with the beams through two
wheels, and the assumedmodemethod is adopted to derive the
deflections of the beams. Inspired by [9–11], we proposed a
novel moving load model for 2D crane systems of which the
trolley has two axles. )is new model can provide more ac-
curate results of the dynamic responses of the crane beam.

)e rest parts of the paper are structured as follows.
Section 2 presents the new dynamic model of the crane
system. Section 3 validates the accuracy of the mathematical
model by comparing it with several existing models and
analyses the effect of the trolley’s axle base. Section 4 draws
the conclusions of the entire paper.

2. Dynamic Modelling

2.1. Crane System Description. Figure 1 shows the overview
of a L-type single-beam gantry crane, and Figure 2 shows the
2D schematic of the L-type single-beam gantry crane. In the
2D schematic, the trolley has two wheels in contacting with
the beam. )e full length of the beam is L, the distance
between two legs is L0, and the length of the cantilever is L1.
When the trolley reaches the limit position on the cantilever,
the distance between the centre of the trolley and the centre
line of the supporting leg is L2. )e mass per unit length of
the beam is ρ, the cross-sectional moment of inertia is I, and
Young’s modulus is E.

Figure 3 shows the schematic diagram of the coupling
dynamics modelling of the crane system. O1 and O2 are
support points simplifying for the supported legs. A1 and A2
are the end points of the cantilever. B1 and B2 are the limit
positions of the centre of the trolley.)emass of the trolley is
denoted as mc, the axle base of the trolley is d, the contact
forces between the trolley and the beam are P1 and P2, the
length of the cable is l, the mass of the payload is mp, and the
sway angle of the payload is θ.

2.2. Modelling. )e following assumptions are made before
the modelling:

(1) Compared with the payload’s mass, the mass of the
cable connecting the payload and trolley can be
ignored, and the cable is always in a tight state due to
the effect of the payload. )erefore, the cable is
considered massless and rigid, and the payload sways
as a single pendulum.

(2) )e dynamic responds of the support legs are not
considered, and support points of the main beam are
simplified as pin-pin supports.

(3) )e cantilevers (O1 − A1 and O2 − A2) are consid-
ered as rigid beams because their displacements
subjected to the moving trolley are small. )e part of
the main beam between two legs (O1 − O2) is
modelled as a simply supported Euler–Bernoulli
beam.

(4) )e cross section of the beam is constant.
(5) It is assumed that the trolley is always in contact with

the top beam.)e centre of the trolley has a constant
distance h from the beam top surface. )e rotating
movement around the centre of mass of the trolley is
not considered.

In this paper, based on these assumptions, the part of the
main beam O1 − O2 is considered as simply supported, and
the general solution of its shape function is

ϕ(x) � C1 cos βx + C2 sin βx + C3cosh βx + C4sinh βx, (1)

with pined-pined boundary conditions

ϕ(0) � 0, ϕ″(0) � 0, ϕ L0( 􏼁 � 0, ϕ″ L0( 􏼁 � 0. (2)

)en, the ith model shape function of the simply sup-
ported beam is derived as

ϕi(x) � sin
iπx

L0
􏼠 􏼡. (3)

)e vertical displacement of the beam can be expressed
as

yb � w(x, t) � 􏽘
n

i�1
ϕi(x)qi(t). (4)

)e coordinates of the centre of the trolley are

xc �
1
2

x1 + x2( 􏼁,

yc �
1
2

w x1, t( 􏼁 + w x2, t( 􏼁( 􏼁 + h �
1
2

􏽘

n

i�1
ϕi x1( 􏼁 + ϕi x2( 􏼁( 􏼁qi(t) + h.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

Figure 1: )e overview of a L-type single-beam gantry crane.
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)e horizontal velocity of the centre of the trolley is

_xc � _x1 � _x2. (6)

And the vertical velocity is

_yc �
1
2

dw x1, t( 􏼁

dt
+
dw x2, t( 􏼁

dt
􏼠 􏼡

�
1
2

􏽘

n

i�1
_x1ϕi
′ x1( 􏼁qi + ϕi x1( 􏼁 _qi + _x2ϕi

′ x2( 􏼁qi + ϕi x2( 􏼁 _qi( 􏼁

�
1
2

􏽘

n

i�1
_x1ϕi
′ x1( 􏼁 + _x2ϕi

′ x2( 􏼁( 􏼁qi +
1
2

􏽘

n

i�1
ϕi x1( 􏼁 + ϕi x2( 􏼁( 􏼁 _qi.

(7)

)e acceleration of trolley is known and expressed as

€xc � €x1 � €x2 � a. (8)

)e kinetic energy of the flexible beam, trolley, and
payload are denoted by Tb, Tc, and Tp, respectively, which
can be calculated as follows:

Tb �
1
2

􏽚
L

0
ρ

zyb

zt
􏼠 􏼡

2

dx

�
1
2

􏽚
L

0
ρ 􏽘

n

i�1
ϕi(x) _qi(t)⎛⎝ ⎞⎠

2

dx

�
1
2

􏽘

n

i�1
􏽘

n

j�1
_qi(t) _qj(t) 􏽚

L

0
ρϕi(x)ϕj(x)dx,

(9)

Tc �
1
2

mc _x
2
c + _y

2
c􏼐 􏼑, (10)

Tp �
1
2

mp _xc + l _θ cos θ􏼐 􏼑
2

+ _yc − l _θ sin θ􏼐 􏼑
2

􏼒 􏼓.(11)

)en, the total kinetic energy of the coupled system can
be obtained:

T � Tb + Tc + Tp. (12)

)e potential energy of the flexible beam, trolley, and
payload are denoted by Vb, Vc, and Vp, respectively, which
can be calculated as follows:

A1 B1
O1

L1

L2

L1

L2

L0

L

O2 A2B2

ρ, E, Iu(t)

x1(t)
x2(t)

y

h

d
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P1P2

mp

l

θ(t)

Figure 3: )e schematic diagram of the coupling dynamics modelling of the crane system.

L0

L2 L2

L1 L1
L

Figure 2: )e 2D schematic diagram of the L-type single-beam gantry crane.
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Vb �
1
2

􏽚
L

0
EI

z2yb

zx2􏼠 􏼡

2

dx

�
1
2

􏽚
L

0
EI 􏽘

n

i�1
ϕi
″(x)qi(t)⎛⎝ ⎞⎠

2

dx

�
1
2

􏽘

n

i�1
􏽘

n

j−1
qi(t)qj(t) 􏽚

L

0
EIϕi
″(x)ϕj
″(x)dx,

(13)

Vc � −mcgyc, (14)

Vp � −mpg yc + l cos θ( 􏼁. (15)

)en, the total potential energy of the coupled system
can be obtained:

V � Vb + Vc + Vp. (16)

By applying the Lagrange equation,
d
dt

zT

z _qi

−
zT

zqi

+
zV

zqi

� 0, i � 1, 2, . . . , n, (17)

one can derive the dynamic equation of the generalized
coordinate qi:

1
4

mc + mp􏼐 􏼑 ϕi x1( 􏼁 + ϕi x2( 􏼁( 􏼁 􏽘

n

j�1
€x1ϕj
′ x1( 􏼁 + _x

2
1ϕj
″ x1( 􏼁 + €x2ϕj

′ x2( 􏼁 + _x
2
2ϕj
″ x2( 􏼁􏼐 􏼑qj

+
1
4

mc + mp􏼐 􏼑 ϕi x1( 􏼁 + ϕi x2( 􏼁( 􏼁 􏽘

n

j�1
2 _x1ϕj
′ x1( 􏼁 + _x2ϕj

′ x2( 􏼁􏼐 􏼑 _qj + ϕj x1( 􏼁 + ϕj x2( 􏼁􏼐 􏼑€qj􏼐 􏼑

+ 􏽘
n

j�1
􏽚

L

0
ρϕi(x)ϕj(x)dx€qj(t) −

1
2
mpl ϕi x1( 􏼁 + ϕi x2( 􏼁( 􏼁

· ( €θ sin θ + _θ
2
cos θ) + 􏽘

n

j�1
􏽚

L

0
EIϕi
″(x)ϕj
″(x)dxqj(t) −

1
2

mc + mp􏼐 􏼑g ϕi x1( 􏼁 + ϕi x2( 􏼁􏼂 􏼃 � 0.

(18)

By applying the Lagrange equation,
d
dt

zT

z _θ
−

zT

zθ
+

zV

zθ
� 0, (19)

one can derive the dynamic equation of the generalized
coordinate θ.

−
1
2
mpl sin θ · 􏽘

n

j�1
€x1ϕj
′ x1( 􏼁 + _x

2
1ϕj
″ x1( 􏼁 + €x2ϕj

′ x2( 􏼁 + _x
2
2ϕj
″ x2( 􏼁􏼐 􏼑qj

−
1
2
mpl sin θ · 􏽘

n

j�1
2 _x1ϕj
′ x1( 􏼁 + _x2ϕj

′ x2( 􏼁􏼐 􏼑 _qj + ϕj x1( 􏼁 + ϕj x2( 􏼁􏼐 􏼑€qj􏼐 􏼑

+ mpl €xc cos θ + l€θ) + mpgl1 sin θ � 0.􏼐

(20)

Equations (18) and (20) compose the dynamic equation
of the coupled system.

3. Simulation Results and Discussion

In this paper, Newmark-β method was used to solve the
numerical solution of the dynamic models (18) and (20).)e
integration time step was 0.001 s. )e initial position of the
trolley is x1 � 0 and x2 � −d (see Figure 3), and the trolley
stops at position x1 � L0 + d and x2 � L0. All parameters are
listed in Table 1.

3.1. Validation of the Proposed Model. To validate the pro-
posed model, a moving mass model (without payload) [4]
and a moving trolley model (the trolley is simplified as a
particle/mass point) [12] were adopted.

3.1.1. Results Compared with [4]. If the payload swing and
the axle base of the trolley are equal to 0, i.e., θ, d � 0,
equation (18) describes a simply supported beam subjected to
a moving mass. For the system parameters, refer to Case A in
Table 1. )e velocity of the moving load is constant and its
value is 3.34m/s.)e simulation results are shown in Figure 4.
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Figure 4 shows the time histories of the midspan de-
flections of the simply supported beam. )e assumed mode
method is used to solve the deflections of the beam in both
[4] and this paper. As can be seen from Figure 4, the
maximum deflection of the midspan is 0.0694m, and the
calculation results of the proposed model are consistent with
those of [4].

3.1.2. Results Compared with [12]. If the axle base of the
trolley is equal to 0, i.e., d � 0, equations (18) and (20)
describe a simply supported beam subjected to a moving
trolley suspended with a single-pendulum payload. In this
case, the trolley is simplified as a mass point. For the system
parameters, refer to Case B in Table 1. )e simulation results
are shown in Figure 5. For Figures 5(a)–5(c), the initial
velocities of the trolley are 0, while the accelerations are 1, 2,
and 3m/s2, respectively.

It can be observed that the values of the maximum
midspan deflection of the beam in Figures 5(a)–5(c) are
0.0751, 0.0762, and 0.0862m, respectively. )at means the
maximum midspan deflection of the beam will increase as
the acceleration of the trolley increases. It can be also found
that the calculation results of the proposed model are
consistent with those of [12].

In summary, it can be easily found from Figures 4 and 5
that the simulation results of this paper are quite consistent
with that of [4, 12].)erefore, the dynamic model developed
in this paper is considered as an acceptable model for cal-
culating the dynamic responses of a crane system. Besides,
the trolley’s axle base is equal to 0 in [4, 12] and the payload
swing angle is also equal to 0 in [4], so the proposed model
can be considered as an extended version of the models in
[4, 12]. In other words, the proposed model is downward
compatible with those in [4, 12].

3.2. Effect of the Trolley’s Axle Base. In this section, we study
the effect of the trolley’s axle base under zero initial swing
angle condition and nonzero initial swing angle condition.
At the beginning of the simulation, the initial velocity of
the trolley is 0. )e trolley accelerates at a constant ac-
celeration of 0.15m/s2. )en, it runs at a constant speed at
the maximum speed. Finally, it uniformly decelerates to a
standstill. )e acceleration and deceleration time are both

6.67 s. For the system parameters, refer to Case C in
Table 1.

3.2.1. Zero Initial Swing Angle Condition. For comparison
study, we choose three control groups as follows:

Case C-I: d� 4m and θ � 0 rad

Case C-II: d� 2m and θ � 0 rad

Case C-III: d� 0m and θ� 0 rad

)e simulation results are shown in Figures 6 and 7.
Figure 6 shows the midspan deflections with regard to time.
From Figure 6, it can be easily found that the maximum
midspan deflection in Case C-II (0.0946m) is slightly
smaller than that in Case C-III (0.0947m), and the maxi-
mum midspan deflection in Case C-I (0.0940m) is the
minimum among three cases. Figure 7 shows the rela-
tionship between the vertical displacements of the centre of
the trolley and the position of the centre of the trolley.
Suppose that the initial displacement of the trolley is 0. Due
to the different axle bases, the midspan deflections and
displacements of the trolley were quite different among three
cases at the initial and final phases of the simulation. It can
be easily found that the larger the axle base, the smaller the
displacement of the trolley.

3.2.2. Nonzero Initial Swing Angle Condition. In previous
research studies, the effect of the initial swing angle is not
considered, i.e., at the beginning of the simulation, the swing
angle is set to 0. In practice, a large swing angle should be
avoided as much as possible because there is a risk of
dangerous accidents.

Table 1: System parameters.

Parameters Case A Case B Case C
E(N/m2) 2.07 × 1011 2.15 × 1011 2.06 × 1011
I(m4) 1.04 × 10− 6 0.8 0.0643
ρ(kg/m) 7.04 1.53 × 103 599.64
L0(m) 10 100 50
L1(m) 0 0 10
L2(m) 0 0 0
mc(kg) 70 3.06 × 104 13.165 × 103
mp(kg) 0 3.06 × 104 36 × 103
l(m) 0 5 5
g(m/s2) 9.8 9.8 9.8

Time (s)

0
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0.04

0.06

0.08

 D
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le
ct

io
n 

(m
)

0 1 2 3

This paper
[4]

Figure 4: )e midspan deflections of the beam compared with [4].
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For comprehensive understanding of initial swing angle
effects, we choose the following three nonzero initial swing
angle cases for comparison study:

Case C-IV: d� 4m and θ� 0.1 rad

Case C-V: d� 2m and θ� 0.1 rad

Case C-VI: d� 0m and θ� 0.1 rad

)e simulation results are shown in Figures 8 and 9.
From Figure 8, it can be easily found that, regarding the
maximummidspan deflection, Case C-VI has the maximum
value (0.0958m), following Case C-V (0.0954m), and Case
C-IV has theminimum value (0.0949m). From Figure 9, one
can obtain that the larger the axle base, the smaller the
vertical displacement of the trolley, too.

To further study the effect of the initial swing angle of the
payload on the midspan deflection of the beam, the fol-
lowing two cases were added:

Case C-VII: d� 4m and θ� 0.2 rad
Case C-VIII: d� 4m and θ� 0.3 rad

From Figure 10, one can observe that Case C-I has the
minimum value of the maximum midspan deflection of the
beam (0.0940m), following Case C-IV (0.0949m) and Case
VII (0.0977m), and Case C-VIII has the maximum value
(0.1018m).

)us, as the initial swing angle increased, the maximum
midspan deflection of the beam increased. As shown in
Figure 11, the vertical displacement of the centre of the
trolley increased as the initial swing angle increased.
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Figure 5: )e midspan deflections of the beam compared with [12].
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4. Conclusions

A novel moving load model for 2D crane systems of which
the trolley has two axles was proposed in this paper. By
comparing with existing papers, the proposed model was
verified and can be considered as an extended version of
comparative models. After the validation, the dynamics of a
gantry crane system with a two-axle trolley were studied. On
the basis of the forgoing analyses, one can draw the
conclusions:

(1) )ere is small amplitude vibration of the beam under
the action of the two-axle trolley. )us, the dynamic
responses of the beam subjected to a two-axle trolley
is more accurate than that to a single-axle trolley.

(2) If the system parameters keep unchanged, the larger
the axle base of the trolley, the smaller the maximum
midspan deflection. )erefore, with a large total
mass of the trolley and payload, increasing the length
of trolley’s axle base will decrease the maximum
midspan deflection.

(3) )e greater swing angle coincides with the greater
midspan deflection. In order to avoid impact on the
flexible beam, the swing angle should be controlled
as small as possible.
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