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Abstract

In data mining, high-dimensional and data-intensive problems are raising the bar of
what models have to cope with. The runtime of many methods grows exponentially
with the number of dimensions or does not scale well with increasing dataset sizes.
Within the variety of techniques that can cope with both, sparse grids offer reliable error
estimates and traceability of model evaluations. While they have proven to perform
well for moderate dimensionalities, they are in their traditional form not applicable to
problems with several hundreds or even thousands of dimensions.

We accept this challenge by introducing geometry-aware sparse grids. This variant
of sparse grids considers not only the relevance of single dimensions but also takes
into account the interactions between dimensions. The resulting grids span spaces
with thousands of dimensions in which we consider probability density functions.
We discuss how to efficiently compute those density estimations and shift the heavy
computational effort offline while maintaining the flexibility of adapting the model
to the problem at runtime. Exploiting the structure of the established combination
grid scheme, we speed up the learning by several orders of magnitude. To handle big
data problems, the SG++ data mining pipeline is introduced. It includes a batch-wise
parallel density estimation learner that builds up our classifier.

Density estimation forms the basic building block for our Bayes’ classifier. We investi-
gate refinement strategies in the context of classification for (geometry-aware) sparse
grids and introduce a dimensional-adaptive combigrid scheme for image classification.
The performance of this approach with regard to accuracy, runtime and flexibility is
shown at the example of classification of the MNIST and CIFAR datasets, two cases
that could not be tackled with sparse grid methods so far. Whilst we don’t reach the
precisions other techniques such as neural networks achieve, our models offer easy
traceability and transparent insights into the datasets.
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1. Introduction

Machine Learning undertook a rapid development in the last decade. Many problems
thought impossible to solve computationally were tackled successfully using data-
driven algorithms. This went hand in hand with the systematic collection of data in
all areas of life. While some said that “data is the gold of the 21st century” [21], others
stated that “data is the new oil” [70]. All agree that the gathered data is a valuable asset
to economy and society and that modern and efficient algorithms are required to reveal
its potential. In this thesis, we present novel and efficient sparse grid-based techniques
to access this value.

While the idea to employ sparse grids for data-driven problems is not new, it is certainly
fresher than both the sparse grids technique and the development of data-driven
algorithms in general. The former started with the works of Smolyak [91] in the 60s
and was then brought up again by Zenger [106] in the 90s. It stems from numerical
discretization of high-dimensional problems such as partial differential equations. The
curse of dimensionality [7] is the exponential growth of degrees of freedom with the
number of dimensions, when a full grid is chosen to approximate a high-dimensional
function. With the sparse grid technique, this curse of dimensionality is mitigated by
only including the degrees of freedom that are likely to contribute most to the solution.
Applying hierarchical basis functions instead of a nodal basis functions allows for an
a priori graduation of the degrees of freedom by their expected contribution to the
solution.

Sparse grids have already proven to be applicable to many problem classes from
the world of data mining. In [29], they have been applied to regression and binary
classification problems with varying dataset sizes and dimensionalities up to 34. With
the grid structure adapted to the problem via spatial adaptivity, the approximation
results were even better as shown in [79]. Employing sparse grids for density estimation
has been discussed before [78]. It suits as a building block for both clustering [77]
and classification [76]. Much work has been published since and in-between those
mentioned to address specific problem classes, more efficient algorithms and related
techniques (such as the combination grid technique), among them also ideas how to
approach image data [52].

One of the most exciting topics in machine learning is image classification. Training a
model with previously labeled image data, it generalizes the visual attributes. For new
images, the label is then predicted. Neural networks [66] have shown to be applicable
to a wide range of image classification tasks [94]. In this thesis, we research on the
application of sparse grids to image classification and related problems. One of the key
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advantages of sparse grid based data mining is the traceability and transparency of the
learning process. The model parameters we learn directly relate to the problem space
and codify it explicitly. Such methods are currently in high demand as they allow to
formulate robust and legal compliant model accuracies. For example, the European
Parliament recently voted for explainable algorithms in automated decision-making
systems [71].

The formal introduction to hierarchical grid-based function representation is given
in Chap. 2. There, we provide a structured approach to the construction and char-
acteristics of component grids and regular sparse grids. With the data at hand, we
adapt our sparse grid models to the problem. Spatial adaptivity [79] allows for a finer
resolution in certain areas of the problem space, yielding spatially adaptive sparse grids.
Dimensional adaptivity [42] regulates the resolution in each dimension individually,
resulting in dimensional adaptive sparse grids. Based on the grids we define, we then
turn to different choices of hierarchical basis functions with local support. Together,
the grid points and the basis functions span the sparse grid space, which we search
the approximation for. We present the kinked linear basis functions, a novel type of basis
functions derived from the modified linear basis functions in this chapter. It allows us to
perform the high-dimensional image classification tasks with a considerably higher
accuracy than with all other basis functions investigated. Related to the sparse grid
technique, we also show the combination grid technique [39] allowing for an inherent
parallelization scheme based on anisotropic full grids.

How we employ spatially adaptive sparse grids for data-driven problems is presented
in Chap. 3. The mathematical foundations we require to flexibly handle sparse grids in
various settings is laid in this chapter. Starting with the density estimation approach,
we show how to unify both spatial adaptivity and computational speedup using an
offline/online scheme, which becomes only possible by the techniques we present.
Thereby, the offline/online scheme is proven to be applicable as an incremental learn-
ing scheme with spatially adaptive sparse grids. This allows us to shift the heavy
computational effort of acquiring the density estimation to an offline stage by using
matrix decomposition techniques tailored to the linear systems at hand. Based on
the density estimation, we then build up a Bayes classifier [40] allowing multi-class
classification. For this to integrate with spatially adaptive sparse grids, we propose
refinement indicators for classification taking into account one sparse grid per class.

To fully exploit the computational capability of modern hardware, we investigate how
to parallelize the learning algorithms in Chap. 4. A parallelization scheme includ-
ing multiple interlocking layers is proposed. On the first layer, we parallelize over
the batches (data parallelism). Subsequent, the computation is parallelized with the
combination grid technique (model parallelization). To exploit the tensor operations
performed when training the machine learning model, we finally employ ScaLAPACK
[12] (distributed linear algebra). The potentials of those parallelization layers is dis-
cussed and evaluated. In the end, this enables us to both learn big data problems and
increase the model complexity in reasonable computational time.
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Exploiting the geometric properties of image datasets is key when tackling them with
sparse grids. How to use the a priori knowledge of this problem class with geometry-
aware sparse grids is presented in Chap. 5. Employing sparse grids to tackle image
classification problems with more than 1,000 dimensions becomes only possible by
further thinning the sparse grid. We propose approaches to do so for both grayscale im-
ages and color channel images, optionally creating a data hierarchy to take into account
both fine-grained and coarse-grained features of the image data. Consequently, the
application of geometry-aware sparse grids to different image classification benchmark
datasets is discussed.

We finalize the thesis with software aspects in Chap. 6. Making the outcomes from
this publicly funded science accessible to the public and the scientific community in
a user-friendly fashion was of import during this project. The resulting data mining
pipeline is presented from both a user- and developer perspective.
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2. Hierarchical Grid-based Function Representation

For a function f on Ω = [0, 1]d (where d ∈ N is the dimensionality) with f : Ω → R,
a common task in numerics is to find a discrete representation f̃ : Ω → R of f on a
discrete grid G, so that

f (x) ≈ f̃ (x) = ∑
p∈G

αp · φp(x) (2.1)

holds. p ∈ G is called a grid point and φp : Ω → R its corresponding basis function,
which is weighted with αp ∈ R to obtain the discrete approximation.

With the data problems we have in mind, it is essential that we deal with the curse of
dimensionality and choose the degrees of freedom, which form our grid, accordingly.
The resulting sparse grid structure we are about to introduce and the a priori unknown
distribution of the data in Ω brings us to approximation structures that allow to
be spatially adapted to the problem at hand. In turn, this is the reason we employ
hierarchical bases. While a nodal basis could offer computational benefits through the
local support of the corresponding basis functions, it proves unsuitable to deal with
the requirements of spatial adaptivity. Thus, we construct the grids and corresponding
basis functions with the goal to obtain a hierarchical structure.

The algorithms we run on the grids require a structured input. We see how to introduce
grids in one dimension that are of structured form. Each point has a well-defined
support node – grids with unstructured nodes are not used in this thesis. The one-
dimensional structure then leads to multi-dimensional grids via the tensor product
approach.

Most concepts we discuss in this chapter are not new. With grid-based linear interpola-
tion dating back to the ancient Greeks, sparse grids have been discovered by Smolyak
[91] in the 60s and brought back to life by Zenger [106] in the 90s. Notable literature
includes also the 2004 article in Acta Numerica [18] and the dissertation by Dirk Pflüger
[79]. For a complete overview on sparse grids, we refer to the latter two. Our contribu-
tion to approximation theory is limited to the kinked linear basis function presented in
Sec. 2.2.3.

In this chapter, we discuss different hierarchical grid setups for both the one-dimensional
case (d = 1) and the multi-dimensional case (d > 1) in Sec. 2.1. We see how to mitigate
the curse of dimensionality by employing sparse grids, which contain significantly
less points than full grids. Then, we investigate different types of basis functions φ

in Sec. 2.2. The three types we present differ in how the basis function extrapolates
towards the boundary of Ω. Of those three, the kinked linear basis function is a novel
approach to extrapolate towards the boundary. It works well in high-dimensional
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cases when the function value at the boundary cannot assumed to be zero, which
proves valuable in the course of this thesis. Finally, in Sec. 2.3 we show how the grids
and basis functions are combined to construct the function spaces that we search the
approximation for.

2.1. Hierarchical Grids

The grid we use to represent our function consists of the supporting points p for the
interpolant f̃ . In the following, we first discuss one-dimensional subspace grids and
component grids. Then, multi-dimensional grids are discussed, where both full grids
and sparse grids are introduced.

2.1.1. One-dimensional Hierarchical Grids

The one-dimensional problems we consider live on Ω1 := [0, 1]. To construct one-
dimensional grids, we start by defining one-dimensional grid points:

Definition 2.1.1 (One-dimensional grid point)
A one-dimensional grid point p defined via its level l ∈N and index i ∈N (whereas
i < 2l has to hold) is given as a tuple

p := (l, i) (2.2a)

and the set of all one-dimensional grid points is thus

G1 =
{
(l, i) ∈N×N i < 2l

}
. (2.2b)

The absolute coordinate of a grid point coord1 given by

coord1 : G1 → Ω1 ,

(l, i) 7→ i
2l

(2.2c)

is located at the center of its support support1 given by

support1 : G1 → P(Ω1)

(l, i) 7→
[

i− 1
2l ,

i + 1
2l

]
.

(2.2d)

A one-dimensional grid G is then defined as a discrete set of one-dimensional grid
points. For two grid points p1 = (l1, i1) and p2 = (l2, i2) with l1 < l2, we denote p1 as
the coarser grid point and p2 as the finer grid point.

6 2. Hierarchical Grid-based Function Representation



To help with the construction of regular grids, we continue with the smallest building
block of our grids and define the one-dimensional subspace grid:

Definition 2.1.2 (One-dimensional subspace grid)
The one-dimensional subspace grid of level l ∈N is given by

subspaceGrid1
l :=

{
(l, i) ∈ G1 i mod 2 = 1

}
. (2.3)

From now on, we only consider grid points with odd indices as defined in Def. 2.1.2.
Note that all the interiors of the supports of the grid points in each subspace grid are
pairwise disjoint (they only overlap at most at their boundaries) and that the union of
all grid points’ supports cover Ω1:

∀p, q ∈ subspaceGrid1
l with p 6= q :

interior(support1(p)) ∩ interior(support1(p)) = ∅ , (2.4a)

and
Ω1 =

⋃

p∈subspaceGrid1
l

support1(p) . (2.4b)

A hierarchy of the defined subspace grids is inherently obtained, subspace grid of level
l is parent to the subspace grid of level l + 1.

With the help of the subspace grids, we now define one-dimensional hierarchical
grids:

Definition 2.1.3 (One-dimensional hierarchical grid)
The one-dimensional hierarchical grid of level l ∈N is given by

componentGrid1
l :=

⋃

j∈[l]
subspaceGrid1

j . (2.5)

Note that for the one-dimensional case, there is no difference between a component
grid, a full grid or a regular sparse grid. For clarity, we refer to the grids defined in
Def. 2.1.3 as component grids. A visualization of the component grid of level 4 and its
construction through the subspaces is given in Fig. 2.1.

Every grid point except for the root given by

root1 := (1, 1) (2.6)

has a parent grid point, and every grid point has exactly two child grid points.

2.1. Hierarchical Grids 7



componentGrid1
4

0 1

subspaceGrid1
1

(1,1)

subspaceGrid1
2

(2,1) (2,3)

subspaceGrid1
3

(3,1) (3,3) (3,5) (3,7)

subspaceGrid1
4

(4,1) (4,3) (4,5) (4,7) (4,9) (4,11)(4,13) (4,15)

Figure 2.1.: componentGrid1
4 is constructed through the union of the subspaces from level 1 to 4. This

construction is visualized via the dotted arrows connecting the grid points in the subspaces
with the corresponding grid points in componentGrid1

4. In the subspace grids, each grid
point is labeled with its level and index. The continuous arrows denote the parent-child
hierarchy between the grid points of the different subspaces.

Definition 2.1.4 (Parents and ancestors of one-dimensional grid points)
The one-dimensional parent a of grid point (l, i) is given by

parent1 : G1 → G1 ,

(l, i) 7→
{

root1 , (l, i) = root1 ,
(l − 1, parent-index(i)) , else,

(2.7a)

where parent-index is given by

parent-index : N→N ,

i 7→
{

i+1
2 , i mod 4 = 1 ,

i−1
2 , i mod 4 = 3 .

(2.7b)

With parent1
0(p) := p, we then recursively define for k ∈N

parent1
k : G1 → G1 ,

p→ parent1(parent1
k−1(p))

(2.7c)

to end up with

ancestors1 : G1 → P(G1) ,

p→
{

parent1
k(p) k ∈N

} (2.7d)
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and

ancestors1∗ : G1 → P(G1) ,

p→
{

parent1
k(p) k ∈N0

}
.

(2.7e)

parent1
k(p) contains the parents of degree k of p. With p being its own parent of

degree 0, the parents of degree 1 are the intermediate parents, the parents of degree
2 its grandparents and so forth. ancestors1(p) is then the union over all parents
starting from degree 1 and eventually also containing root1. The difference between
ancestors1(p) and ancestors1∗(p) is that the latter also contains p itself whereas the
former does not.

Definition 2.1.5 (Children and descendants of one-dimensional grid points)
Equivalently, the grid point (l, i) has the two children:

left-child1 : G1 → G1 ,
(l, i) 7→ (l + 1, 2i− 1)

(2.8a)

and

right-child1 : G1 → G1 ,
(l, i) 7→ (l + 1, 2i + 1) .

(2.8b)

All children of p are given by

children1 : G1 → P(G1) ,

p 7→
{

left-child1(p), right-child1(p)
}

.
(2.8c)

With children1
0(p) := {p}, we then recursively define for k ∈N

children1
k : G1 → P(G1) ,

p 7→
⋃

q∈children1
k−1(p)

children1(q) . (2.8d)

to end up with

descendants1 : G1 → P(G1) ,

p 7→
⋃

k∈N

children1
k(p) . (2.8e)
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and

descendants1∗ : G1 → P(G1) ,

p 7→
⋃

k∈N0

children1
k(p) . (2.8f)

Similar to the definition of parents and ancestors, children1
k(p) contains all children

of p of degree k. With p being its own child of degree 0, the children of degree 1
are the intermediate children (given by children1(p)), the children of degree 2 are
the grandchildren and so forth. descendants1(p) and descendants1∗(p) contain all
those hierarchical children of degree 1 up to infinity, rendering those sets infinite. The
difference between the two is, that descendants1∗(p) also contains p itself whereas
descendants1(p) does not. The parent-child relations are denoted with continuous
arrows in Fig. 2.1.

Boundary Grid Points Usually, root1 at the center of the domain is the root of the
parent-child tree. However, for some algorithms, it is necessary to define two special
grid points.

Definition 2.1.6 (Boundary grid points)
At the left boundary of Ω1, the virtual grid point left-boundary := (0, 0) with coor-
dinate coord1(left-boundary) = 0 is situated. At the right boundary of Ω1, the vir-
tual grid point right-boundary := (0, 1) with coordinate coord1(right-boundary) =
1 is situated. We set:

right-child1(left-boundary) = right-boundary , (2.9a)

parent1(right-boundary) = left-boundary , (2.9b)

left-child1(right-boundary) = root1 , (2.9c)

parent1(root1) = right-boundary (2.9d)

and
B1 := {left-boundary, right-boundary} . (2.9e)

left-boundary does not have a left child and right-boundary does not have a right
child. Also, left-boundary does not have a parent.

Thus, the boundary points serve as ancestors to the root point. They can be used to
model boundary function values unequal of zero, but the resulting grid structures are
heavily subject to the curse of dimensionality. In this thesis, we do not use boundary
grid points to model non-zero boundaries. Instead, we use them to determine the set
of geometric neighbors of a given grid, as we see later in Alg. 5.
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Neighborhood of Grid Points Two grid points are neighbors of each other, if no other
grid point lies between them. We formalize this by defining the relation neighbor1

as

Definition 2.1.7 (Neighborhood of grid points)
For a grid G ⊂ G1, the relation neighbor1 is given as

neighbor1
G :=

{
(p1, p2) ∈

(
G ∪ B1

)
×
(
G ∪ B1

)
p1 6= p2 ,

@p3 ∈ G :
(

coord1(p1) < coord1(p3) < coord1(p2)

or coord1(p2) < coord1(p3) < coord1(p1)
)}

.

(2.10)

Obviously, the definition of geometric neighbors is different from the parent-child
relationship. Only for a leaf grid point, we know that one of its geometric neighbors is
the direct parent. The other geometric neighbor is not determined so easily. However,
we see in Sec. 3.3.2 that systematically iterating through the parent-child hierarchy
determines the neighborhood of each grid point.

2.1.2. Multi-dimensional Hierarchical Grids

For the d-dimensional case (with d ∈ N), we consider the space Ω = [0, 1]d. All
the multi-dimensional problems we consider live on Ω. We again start by defining
d-dimensional grid points:

Definition 2.1.8 (Grid point)
A d-dimensional grid point p defined via its level l ∈Nd and index i ∈Nd (whereas
ij < 2lj has to hold ∀j ∈ [d]) is given as

p := (l, i) . (2.11a)

The set of all possible d-dimensional grid points Gd is thus

Gd :=
{
(l, i) ∈Nd ×Nd ij < 2lj , ∀j ∈ [d]

}
(2.11b)

and we call a finite G ⊂ Gd a d-dimensional grid. The projection of p ∈ Gd on the
jth dimension proj is the one-dimensional grid point given by

proj : Gd ×N→ G1 ,
((l, i), j) 7→ (lj, ij)

(2.11c)

2.1. Hierarchical Grids 11



which allows us to obtain the absolute coordinate coord of p as

coord : Gd → Ω ,

p 7→×
j∈[d]

coord1(proj(p, j)) (2.11d)

located at the center of its support support given by

support : Gd → P(Ω) ,

p 7→ ∏
j∈[d]

support1(proj(p, j)) . (2.11e)

So, a d-dimensional grid point p can be interpreted as the combination of d one-
dimension grid points pj (j ∈ [d]) whereas the projection of p on dimension j yields
pj.

2.1.2.1. Subspace Grids and Component Grids

To construct the multi-dimensional hierarchical grids, we start by generalizing the
one-dimensional subspace grids to multi-dimensional, general subspace grids:

Definition 2.1.9 (Subspace grid)
In d dimensions, the subspace grid of level l̂ ∈Nd is given by

subspaceGridd,l̂ :=
{

p ∈ Gd ∀j ∈ [d] : proj(p, j) ∈ subspaceGrid1
l̂j

}
. (2.12)

The grid points combined in one subspace are of the same level concerning their
hierarchical structure. All level-vectors of the points in one subspace grid are identical.
The grid points differ only in their indices, were they take any value permitted by
Def. 2.1.2.

Again, we observe what we already saw for the one-dimensional case in Eq. 2.4, that
the interiors of the supports in each subspace grid are pairwise disjoint and that the
union of all grid points’ supports covers Ω:

∀p, q ∈ subspaceGridd,l̂ with p 6= q :

interior(support(p)) ∩ interior(support(q)) = ∅ , (2.13a)

and
Ω =

⋃

p∈subspaceGridd,l̂

support(p) . (2.13b)

We also note that a hierarchy of the subspace grids is inducted by the subspace grids’
level-vectors: For a subspace grid s with level-vector l, we call the subspace grid s′

12 2. Hierarchical Grid-based Function Representation



with level-vector l′ the child in jth dimension of s, if

l′k =

{
lk , k 6= j
lk − 1 , k = j .

∀k ∈ [d] . (2.14)

Obviously, each subspace grid has d children, one in each dimension.

Now, we also define the multi-dimensional component grids:

Definition 2.1.10 (Component grid)
In d dimensions, the component grid of level l̂ ∈Nd is given by

componentGridd,l̂ :=
⋃

l∈Nd

∀j∈[d]: lj∈[l̂j]

subspaceGridd,l . (2.15)

A component grid is also called anisotropic full grid. In each dimension, the distance of
two neighboring grid points is dependent on the level in this dimension. This means
that said distance in dimension j is the same for all pairs of neighbors. Thus, the
resulting grid is of a hyperrectangular form embedded in Ω.

In Fig. 2.2, the construction of the two-dimensional component grid with level-vector
(2, 3) from the subspace scheme is shown. It is now important to distinguish between
the level-vector of a component grid (or subspace grid) and the level-vector of a grid
point. The former denotes the resolution of the component grid in each dimension
whereas the latter denotes the fineness of the point in each dimension.

2.1.2.2. Parent-Child Relations between Grid Points

In contrast to the one-dimensional setting, each multi-dimensional grid point can
have up to d parents. The grid point is already at the root level in a dimension if
the respective entry in the level-vector is one. In this case, there is no parent in that
dimension.

Definition 2.1.11 (Parents and ancestors of a point)
The parent in dimension j (with j ∈ [d]) of a point p = (l, i) with lj > 1 is given by

parent : Gd ×N→ Gd ,

((l, i) , j) 7→





(l, i) , lj = 1 ,((
l1, . . . , lj−1, lj − 1, lj+1, . . . , ld

)
,(

i1, . . . , ij−1, parent-index(ij), ij+1, . . . , id
))

, else.

(2.16a)

2.1. Hierarchical Grids 13
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dimension 1

subspaceGrid2,(1,1)

subspaceGrid2,(1,2)

subspaceGrid2,(1,3)

subspaceGrid2,(2,1)

subspaceGrid2,(2,2)

subspaceGrid2,(2,3)

Figure 2.2.: Construction of componentGrid2,(2,3) via the six two-dimensional subspace grids of level
(1, 1), (1, 2), (1, 3), (2, 1), (2, 2) and (2, 3). In the visualization of the subspaces, the supports
of the grid points are depicted with dotted lines. The arrows link the grid points in the
subspace grids and the corresponding grid points in componentGrid2,(2,3).
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All parents of p are then given by

parents : Gd → P(Gd) ,
p 7→ {parent(p, j) j ∈ [d]} .

(2.16b)

With parents0(p) := {p}, we then recursively define for k ∈N

parentsk : Gd → P(Gd) ,

p 7→
⋃

q∈parentsk−1(p)

parents(q) (2.16c)

to end up with

ancestors : Gd → P(Gd) ,

p 7→
⋃

k∈N

parentsk(p) (2.16d)

and

ancestors∗ : Gd → P(Gd) ,

p 7→
⋃

k∈N0

parentsk(p) . (2.16e)

Similar to Def. 2.1.4, parentsk(p) contains the parents of degree k of p. ancestors(p)
and ancestors∗(p) then contain the parents of all degrees with the ancestors∗(p) also
containing p itself.

Analogously, we define the children of a point. Each d-dimensional grid point has 2d
children, two in each dimension.

Definition 2.1.12 (Children of a point)
The children in dimension j (with j ∈ [d]) of a point p = (l, i) are given by

left-child : Gd ×N→Gd ,
((l, i) , j) 7→

((
l1, . . . , lj−1, lj + 1, lj+1, . . . , ld

)
,

(
i1, . . . , ij−1, 2ij − 1, ij+1, . . . , id

)) (2.17a)

and

right-child : Gd ×N→Gd ,
((l, i) , j) 7→

((
l1, . . . , lj−1, lj + 1, lj+1, . . . , ld

)
,

(
i1, . . . , ij−1, 2ij + 1, ij+1, . . . , id

))
.

(2.17b)

2.1. Hierarchical Grids 15



All children of p are then given by

children : Gd → P(Gd) ,
p 7→ {left-child(p, j), right-child(p, j) j ∈ [d]} .

(2.17c)

With children0(p) := {p}, we then recursively define for k ∈N

childrenk : Gd → P(Gd) ,

p 7→
⋃

q∈childrenk−1(p)

children(q) (2.17d)

to end up with

descendants : Gd → P(Gd) ,

p 7→
⋃

k∈N

childrenk(p) (2.17e)

and

descendants∗ : Gd → P(Gd) ,

p 7→
⋃

k∈N0

childrenk(p) . (2.17f)

Similar to Def. 2.1.5, childrenk(p) contains all children of degree k of p. descendants(p)
and descendants∗(p) then contain the children of all degrees of p with descendants∗(p)
also including p itself. Because the recursive construction of the children always yields
further additional grid points, those two sets are infinite. Thus, we use those sets only
by intersecting them with the grids we are actually working with.

2.1.2.3. Neighborhood of Grid Points

We want to identify the geometrically neighboring grid points. In each dimension,
every grid point p = (l, i) can have a left neighbor and a right neighbor. However, if
no other grid points are aligned left (or right) of p, there is no neighbor in that direction.
In this case, it is important for some algorithms to treat the boundary projections in
those dimensions as virtual neighbors. For a grid point p and dimension j, we thus
define the boundary projections.

Definition 2.1.13 (Boundary projections of a grid point)
For a grid G ⊂ Gd, a point p ∈ Gd and a dimension j (with j ∈ [d]), the boundary
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projections of p in dimension j are given via

boundary-projection-leftG : Gd ×N→N0 ×N0 ,
((l, i) , j) 7→

((
l1, . . . , lj−1, 0, lj+1, . . . , ld

)
,

(
i1, . . . , ij−1, 0, ij+1, . . . , id

))
,

(2.18a)

and

boundary-projection-rightG : Gd ×N→N0 ×N0 ,
((l, i) , j) 7→

((
l1, . . . , lj−1, 0, lj+1, . . . , ld

)
,

(
i1, . . . , ij−1, 1, ij+1, . . . , id

))
.

(2.18b)

The set of all boundary projections for G is then

BG =
{

boundary-projection-leftG(p, j), boundary-projection-rightG(p, j)
p ∈ G, j ∈ [d]} .

(2.18c)

With the boundary projections well defined, for a set of grid points G ⊂ Gd, a point
p ∈ G and a dimension j, we now look at the grid points left-aligned, which are
aligned left of p in dimension j, and right-aligned, which are aligned right of p in
dimension j:

left-alignedG : G ×N→P(G ∪ BG) ,

((l, i) , j) 7→
{(

l′, i′
)
∈ Gd coord1

(
proj(l′,i′),j

)
< coord1

(
proj(l,i),j

)

and ∀k ∈ [d] \ {j} : proj(l,i),k = proj(l′,i′),k
}

∪
{

boundary-projection-leftG ((l, i) , j)
}

(2.19a)

and

right-alignedG : G ×N→P(G ∪ BG) ,

((l, i) , j) 7→
{(

l′, i′
)
∈ Gd coord1

(
proj(l′,i′),j

)
> coord1

(
proj(l,i),j

)

and ∀k ∈ [d] \ {j} : proj(l,i),k = proj(l′,i′),k
}

∪
{

boundary-projection-rightG ((l, i) , j)
}

.
(2.19b)

Ultimately, we are now able to define the neighbors and the neighborhood of a grid
point in the context of a set of grid points.
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Definition 2.1.14 (Neighborhood of grid points)
For a grid G ⊂ Gd and a point p ∈ G, we define the neighbors of p in dimension j
(with j ∈ [d]) as

neighborG : G ×N× {left, right} → G ∪ BG ,

(p, j, y) 7→





arg max
q∈left-alignedG (p,j)

coord1(projq,j) , y = left ,

arg min
q∈right-alignedG (p,j)

coord1(projq,j) , y = right .

(2.20a)

The neighborhood of p is then

neighborhoodG : G →P(G ∪ BG) ,
p 7→

{
neighborG(p, j, y) j ∈ [d] , y ∈ {left, right}

}
.

(2.20b)

We notice that either the point itself or its neighbor is a leaf grid point towards its
partner. Thus, the corresponding child in this dimension and direction is not present in
the grid. Generally, we want to emphasize that the neighbors and the neighborhood of
grid points are only well defined in the context of an actual grid that this point is part
of. While boundary projections of a point are independent of the grid this point is part
of, the geometric neighbors change with the grid, even if the point in question remains
the same.

2.1.2.4. Regular Full Grids and Regular Sparse Grids

The construction of a regular hierarchical full grid results directly from the definition
of a component grid:

Definition 2.1.15 (Regular full grid)
In d dimensions, the regular full grid of level L ∈N is given by

fullGridd,L := componentGridd,l , (2.21)

where lj = L ∀j ∈ [d].

Thus, a regular full grid is a component grid with uniform level-vector.

To construct a regular sparse grid, we refer to the previously defined subspace grids:
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Definition 2.1.16 (Regular sparse grid)
In d dimensions, a regular sparse grid of level L ∈N is given by

sparseGridd,L :=
⋃

l∈Nd

‖l‖1<L+d

subspaceGridd,l . (2.22)

Interestingly, rootd := ((1, . . . , 1) , (1, . . . , 1)) being the d-dimensional root point, it
holds that

sparseGridd,L =
⋃

0≤k≤L−1

childrenk(rootd) . (2.23)

So, the sparse grid is either constructed by aggregating the subspace grids with corre-
sponding levels or by starting with the root point and adding the children up to the
respective degree.

The construction of both a regular full grid and a regular sparse grid of level 3 in
two dimensions from the subspace scheme is depicted in Fig. 2.3. It can be seen that
the subspace grids containing more grid points but with smaller support are added
to the full grid but not to the sparse grid. With increasing level, only those points
are added to the sparse grid that have the next-largest support size, which are those
points that are expected to contribute most to the problem. In [18] it is shown that
the size of sparseGridd,L (which is proportional to the cost of any grid-based function
approximation) is given by

∣∣sparseGridd,L
∣∣ =

L−1

∑
j=0

2j
(

d− 1 + j
d− 1

)
∈ O

(
2LLd−1

)
. (2.24)

which grows much slower in d than the size of a full grid given by

|fullGridd,L| =
(

2L − 1
)d
∈ O

(
2d·L

)
. (2.25)

Thus, the full grid contains more degrees of freedom and thus, approximating an
unknown function with a full grid is more precise than with a sparse grid. However,
the grid points we omit in the sparse grid compared to the full grid are those with small
support, i.e. the points that are expected to contribute less to the solution than the ones
with larger support. Indeed, with increasing level, the grid points that are being added
to the regular sparse grid all have the same support size. In contrast, the points being
added to the full grid are of mixed support size. So, in the context of hierarchical grids,
regular sparse grids offer a systematic approach of constructing an approximation.

2.1.2.5. Adaptive Sparse Grids

After we initially learned a dataset with an a priori grid, we might want to adapt the
grid to the data and redo the learning step. Two categories of adapting the grid exist:
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subspaceGrid2,(1,2)

subspaceGrid2,(1,3)
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(a) The two-dimensional subspace scheme of level 3. All subspace
grids form the full grid (Subfig. b), the subspace grids in blue
form the sparse grid of level 3 (Subfig. c).

fullGrid2,3

(b) The two-dimensional
full grid of level 3. The
grid contains 49 points.

sparseGrid2,3

(c) The two-dimensional
sparse grid of level 3.
The grid contains 17
points.

Figure 2.3.: The two-dimensional subspace scheme in Subfig. a shows, how both the two-dimensional
full grid (Subfig. b) and sparse grid (Subfig. c) of level 3 are constructed.
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Figure 2.4.: A spatially adaptive sparse grid in two dimensions. The parent-child relationships are
depicted as arrows from the parents to their respective children.

With spatial adaptivity [79], we identify grid points that lie in parts of the domain we
want to know more about and refine the grid in the area of those points. In contrast,
with dimensional adaptivity [37] we identify dimensions in which we desire a finer
resolution and then add subspace grids that have a finer level in those dimensions.
Those concepts of spatial and dimensional adaptivity are presented in the following.

2.1.2.5.1 Spatially Adaptive Sparse Grids

When representing a function with an a priori spare grid G, we might want to adapt
the grid to the problem at hand. During this process of adding grid points (refinement)
and removing grid points (coarsening), the grid changes from a regular sparse grid
to a spatially adaptive sparse grid, or in general, just a sparse grid. Let’s give a formal
definition of what we understand as a sparse grid:

Definition 2.1.17 (Sparse grid)
A grid G ∈ Gd that satisfies

∀p ∈ G : ancestors(p) ⊆ G (2.26)

is called a sparse grid.

So, as long as the hierarchical ancestors of all grid points in G are in G as well, the sparse
grid property is fulfilled. It occurs that this also holds for the full grids per Def. 2.1.15.
Indeed, starting with rootd before adding and removing grid points in the convenient
order, an arbitrary full grid can be constructed. So, in order to be as flexible with the
definition as needed, those cases are not explicitly excluded from being a sparse grid
too. An example of a (spatially adaptive) sparse grid is shown in Fig. 2.4 together with
the parent-child relations. Every point in the grid is reached by recursively visiting the
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children, starting with rootd.

To decide which areas in Ω require a finer or a coarser resolution, we develop problem-
based indicators that assign a score to each grid point, which we use to select candidates
for refinement or coarsening.

Refinement When refining a grid point p ∈ G, we add its children and all of their
ancestors to the grid. For this, we define the operator

refineG : G → P(Gd) ,

p 7→ G ∪
⋃

q∈children(p)

ancestors∗(q) . (2.27)

Coarsening Upon coarsening a grid point p ∈ G, we remove it and all of its children
from the grid. This operation is given by the operator

coarsenG : G → P(Gd) ,
p 7→ G \ descendants∗(p) .

(2.28)

When G is a sparse grid per Def. 2.1.17 and p ∈ G, both refineG(p) and coarsenG(p)
return sparse grids too.

The decision which grid points to refine depends on the problem setting at hand. [79]
proposed criteria that work well in the case of function interpolation or quadrature.
However, looking at data mining tasks such as classification requires refinement criteria
tailored to the problem. We propose and discuss such criteria for classification in
Sec. 3.3.2.

2.1.2.5.2 Dimensional Adaptivity

When mining certain datasets, we may desire different resolutions for different dimen-
sions in our grid. To achieve that, we add entire hierarchical subspace grids to the grid.
subspaceGridd,l is allowed to be added to the grid as long as all subspaceGridd,l′ with
l′ < l are also added or present. We use this method especially when employing the
combination grid technique (ref. Sec. 2.3.2).

2.2. Basis Functions

To complete the grid-based function representation, we need to discuss the basis
functions φ from Eq. 2.1. First, we define the atomic building blocks necessary to
construct different basis function types. The three types we look at are the linear basis
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functions (Sec. 2.2.1), the modified linear basis functions (Sec. 2.2.2) and the kinked
linear basis functions (Sec. 2.2.3). We propose the latter type because it allows high-
dimensional approximations to extrapolate towards a non-zero boundary without
oscillation. All of the three basis function types live on the support of their associated
grid points. They only differ on how function values towards the boundary of the
domain are extrapolated. The term “linear” might be misleading, as all the three
types of basis functions are piecewise linear (or the be more precise, piecewise affine).
Because the denomination “linear” is used in the literature, we also stick to it.

To prepare the tools we later need, we also specifically look at the inner product of two
basis functions for all types in their respective sections.

As the most primitive building block, we define the left (augmenting) and right (de-
creasing) part of the standard hat function centered at zero:

ϕl : R→ [0, 1] ,

x 7→
{

x + 1 , x ∈ [−1, 0] ,
0 , else ,

ϕr : R→ [0, 1] ,

x 7→
{
−x + 1 , x ∈ [0, 1] ,
0 , else .

(2.29)

This serves us to define the mother of all hat functions as

ϕ : R→ [0, 1] ,

x 7→
{

1 , x = 0 ,
ϕl(x) + ϕr(x) , else .

(2.30)

Now, we are ready to construct the linear basis functions, the modified linear basis
functions and the kinked linear basis functions.

2.2.1. Linear Basis

To obtain the linear basis function for a grid point p, we center ϕ from Eq. 2.30 at coordp
and scale it to supportp.

Definition 2.2.1 (One-dimensional linear basis function)
Let p = (l, i) be a one-dimensional grid point. The one-dimensional linear basis
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(1, 1)
0
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ϕ1d-linear
(1,1)

(2, 1) (2, 3)
0

1

ϕ1d-linear
(2,1) ϕ1d-linear
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(3, 1) (3, 3) (3, 5) (3, 7)
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1

ϕ1d-linear
(3,1) ϕ1d-linear

(3,3) ϕ1d-linear
(3,5) ϕ1d-linear

(3,7)

Figure 2.5.: One-dimensional linear basis functions up to level 3 constructed to dilatation and shifting of
ϕ. It extrapolates to zero towards the boundary on all levels.

function for p is then given by

ϕ1d-linear
p : Ω1 → [0, 1] ,

x 7→ ϕ(2lx− i) .
(2.31)

A visualization of the one-dimensional linear basis functions for all grid points in
componentGrid1

3 is found in Fig. 2.5. The peak value of ϕ1d-linear
p located at coord1

p is
always 1 and the left and right branch are scaled so that they reach 0 at the boundary
of support1

p. Thus, we use the linear basis function only if we assume that the function
value is zero at all boundaries of Ω.

This definition generalizes straightforward to the multi-dimensional case:

Definition 2.2.2 (Linear basis function)
Let p ∈ Gd be a d-dimensional grid point. The linear basis function for p is then
given by

ϕlinear
p : Ω→ [0, 1] ,

x 7→
d

∏
j=1

ϕ1d-linear
projp,j

(xj) .
(2.32)

A visualization of the two-dimensional linear basis functions for all grid points in
componentGrid2,(2,2) is found in Fig. 2.6. It can be seen that the peaks of the so called
“pagodas” are located directly above the grid points. While this is true for the linear
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Figure 2.6.: Two-dimensional linear basis functions up to level 2. We call the shape of one basis function
pagoda. It is noteworthy that this shape differs from a pyramid. For the pagoda, the cut along
a diagonal is a polynomial of degree d.

basis functions, there are other basis functions (e.g. polynomial basis functions) whose
peaks are dislocated from the grid point. For details we refer to [79].

Inner Product With p1, p2 ∈ Gd, we want to calculate
〈

ϕlinear
p1

, ϕlinear
p2

〉
L2

. It holds

that

〈
ϕlinear

p1
, ϕlinear

p2

〉
L2

=

1∫

0

ϕlinear
p1

(x) · ϕlinear
p2

(x)dx =
d

∏
j=1

1∫

0

ϕ1d-linear
projp1,j

(x) · ϕ1d-linear
projp2,j

(x)dx .

(2.33)
Thus, we are looking at two one-dimensional points q1 = (l1, i1) and q2 = (l2, i2) and
calculate

rlinear
q1,q2

:=
〈

ϕ1d-linear
q1

, ϕ1d-linear
q2

〉
L2

=

1∫

0

ϕ1d-linear
q1

(x) · ϕ1d-linear
q2

(x)dx . (2.34)
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It holds that

rlinear
q1,q2

=





21−l1
3 , q1 = q2 ,

1−2l1
∣∣∣ i2

2l2
− i1

2l1

∣∣∣
2l2

, l1 < l2 and max
{

i1−1
2l1

, i2−1
2l2

}
< min

{
i1+1
2l1

, i2+1
2l2

}
,

1−2l2
∣∣∣ i1

2l1
− i2

2l2

∣∣∣
2l1

, l2 < l1 and max
{

i1−1
2l1

, i2−1
2l2

}
< min

{
i1+1
2l1

, i2+1
2l2

}
,

0 , else .
(2.35)

For the proof, see Sec. A.1.1.

2.2.2. Modified Linear Basis

With the linear basis, the assumed value of f at the boundary of Ω is zero. However,
this assumption might not be valid in many settings. One method to model non-
zero values at the boundaries is to introduce grid points at the boundary and define
basis functions anchored there. This technique increases the number of grid points
(thus the model size) significantly with growing d, which is only feasible for lower
dimensional problems. However, the resulting number of grid points is already too
high for moderate dimensionalities which is why we instead use modified linear basis
functions [79] to represent non-zero values at the boundaries.

Definition 2.2.3 (One-dimensional modified linear basis function)
Let p = (l, i) be a one-dimensional grid point. The one-dimensional modified linear
basis function for p is then given by

ϕ1d-modlinear
p : Ω1 → [0, 2] ,

x 7→





1 , (l, i) = (1, 1) ,
2 · ϕr(2l−1x) , l > 1, i = 1 ,
2 · ϕl(2l−1(x− 1)) , l > 1, i = 2l − 1 ,
ϕ1d-linear

p (x) , else.

(2.36)

The modified linear basis for all grid points in componentGrid1
3 is depicted in Fig. 2.7.

On the first level, we model the value at the center of Ω as the base value of f over the
whole domain and use the left-most and right-most grid points at each level to correct
values towards the boundary. All basis functions for grid points from (l, 2) to (l, 2l − 2)
are equipped with the linear basis functions (see Sec. 2.2.1).

The generalization to more dimensions is (as in the linear case) given via the tensor
product approach:
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Figure 2.7.: One-dimensional modified linear basis functions up to level 3. In contrast to the linear basis
functions, the modified linear basis is constant 1 on level 1 and otherwise extrapolates to a
value of 2 at the boundary.

Definition 2.2.4 (Modified linear basis function)
Let p ∈ Gd be a d-dimensional grid point. The modified linear basis function for p
is then given by

ϕmodlinear
p : Ω→ [0, 2d] ,

x 7→
d

∏
j=1

ϕ1d-modlinear
projp,j

(xj) .
(2.37)

A visualization of all two-dimensional modified linear basis functions up to level 3
is given in Fig. 2.8. For a grid point p at a corner (i.e. a grid point (l, i) with lj ≥ 2
and ij = 1 or ij = 2lj − 1 ∀j ∈ [d]), the value towards the respective corner of Ω
extrapolates to 4. In higher dimensionalities d, the value in the multi-dimensional
corner extrapolates to 2d. While this is acceptable for low-dimensional problems, it
might lead to problems in high-dimensional settings. The extrapolated value in the
region close to the corner can explode even for very small values of αp which might
lead to highly oscillating behavior when adding additional grid points via spatial
adaptivity.
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Figure 2.8.: Two-dimensional modified linear basis functions up to level 3. Due to the extrapolation
to level 2 for the one-dimensional case, the modified linear basis extrapolates to 2d in the
corners for the d-dimensional case. The modified linear basis differs only from the linear
basis for the grid points adjacent to the boundary of Ω.
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Inner Product Again, with p1, p2 ∈ Gd, we want to derive a closed form for〈
ϕmodlinear

p1
, ϕmodlinear

p2

〉
L2

. As for the linear case, it holds that

〈
ϕmodlinear

p1
, ϕmodlinear

p2

〉
L2

=
d

∏
j=1

1∫

0

ϕ1d-modlinear
projp1,j

(x) · ϕ1d-modlinear
projp2,j

(x)dx , (2.38)

and we are again looking at two one-dimensional points q1 = (l1, i1) and q2 = (l2, i2)
and calculate

rmodlinear
q1,q2

:=
〈

ϕ1d-modlinear
q1

, ϕ1d-modlinear
q2

〉
L2

=

1∫

0

ϕ1d-modlinear
q1

(x) · ϕ1d-modlinear
q2

(x)dx .

(2.39)
It holds, that,

rmodlinear
q1,q2

=





1 , l1 = l2 = 1 ,
23−l1

3 , q1 = q2, l1 > 1, (i1 = 1 or i1 = 2l1 − 1) ,
21−l2 , l1 = 1, (i2 = 1 or i2 = 2l2 − 1) ,
21−l1 , l2 = 1, (i1 = 1 or i1 = 2l1 − 1) ,
2−l2 , l1 = 1, 1 < i2 < 2l2 − 1 ,
2−l1 , l2 = 1, 1 < i1 < 2l1 − 1 ,
4

2l2

(
1− 1

32l1−l2
)

, l1 < l2,
(
i1 = i2 = 1 or

(
i1 = 2l1 − 1, i2 = 2l2 − 1

))
,

4
2l1

(
1− 1

32l2−l1
)

, l2 < l1,
(
i1 = i2 = 1 or

(
i1 = 2l1 − 1, i2 = 2l2 − 1

))
,

2−2l1−l2 i2
2l2

, l1 < l2,
(

i1 = 1, 1 < i2 < 2l2

2l1

)
,

2−2l2−l1 i1
2l1

, l2 < l1,
(

i2 = 1, 1 < i1 < 2l1

2l2

)
,

2−2l1+2l1−l2 i2
2l2

, l1 < l2, i1 = 2l1 − 1, 2l1+l2−2l2

2l1
< i2 < 2l2 − 1 ,

2−2l2+2l2−l1 i1
2l1

, l2 < l1, i2 = 2l2 − 1, 2l2+l1−2l1

2l2
< i1 < 2l1 − 1 ,

rlinear
q1,q2

, else .
(2.40)

For the proof, see Sec. A.1.2.

2.2.3. Kinked Linear Basis

With the modified linear basis, we are able to approximate boundary function values
unequal to zero. However, the extrapolated values near the boundary might grow high,
because the basis function value of 1 at the position of the grid point is extended to 2
at the boundary. Especially at points that are close to multiple boundaries, this value
might explode. Thus, we propose a new basis function, the kinked linear basis.
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Figure 2.9.: One-dimensional kinked linear basis functions up to level 3. At the boundaries, it extra-
polates to 1, which makes it different from both the linear basis and the modified linear
basis.

Definition 2.2.5 (One-dimensional kinked linear basis function)
Let p = (l, i) be a one-dimensional grid point. The one-dimensional kinked linear
basis function for p is then given by

ϕ1d-kinklinear
p : Ω1 → [0, 1] ,

x 7→





1 , (l, i) = (1, 1) ,

1 ,

(
i = 1 and x < 2−l

)
or(

i = 2l − 1 and x >
(

2l − 1
)
· 2−l

)
,

ϕ1d-linear
p (x) , else.

(2.41)

This definition equals to

ϕ1d-kinklinear
p (x) = min

{
1, ϕ1d-modlinear

p (x)
}

, (2.42)

thus capping the value of the modified linear basis function at 1.

The kinked linear basis for all grid points in componentGrid1
3 is depicted in Fig. 2.9. In

contrast to Fig. 2.7, it can be seen that the value of the kinked linear basis is at most 1,
whereas it grows up to 2 for the modified linear basis.

The generalization to more dimensions is (as in the linear and modified linear case)
given via the tensor product approach:
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Figure 2.10.: Two-dimensional kinked linear basis functions up to level 3. Although is doesn’t extrapolate
to zero at the boundaries, the value in the corners doesn’t grow exponentially with the
dimensionality (in contrast to the modified linear basis).

Definition 2.2.6 (Kinked linear basis function)
Let p ∈ Gd be a d-dimensional grid point. The kinked linear basis function for p is
then given by

ϕkinklinear
p : Ω→ [0, 1] ,

x 7→
d

∏
j=1

ϕ1d-kinklinear
projp,j

(xj) .
(2.43)

The kinked linear basis for all grid points in componentGrid2,(3,3) is depicted in Fig. 2.10.
Again, in contrast to Fig. 2.8 where the value for the two-dimensional modified linear
basis grows up the 4 in the corners, the kinked linear basis reaches values of at most 1,
independent of the number of dimensions.
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Inner Product Again, with p1, p2 ∈ Gd, we want to derive a closed form for〈
ϕkinklinear

p1
, ϕkinklinear

p2

〉
L2

. As for the linear and modified linear case, it holds that

〈
ϕkinklinear

p1
, ϕkinklinear

p2

〉
L2

=
d

∏
j=1

1∫

0

ϕ1d-kinklinear
projp1,j

(x) · ϕ1d-kinklinear
projp2,j

(x)dx , (2.44)

and we are again looking at two one-dimensional points q1 = (l1, i1) and q2 = (l2, i2)
and calculate

rkinklinear
q1,q2

:=
〈

ϕ1d-kinklinear
q1

, ϕ1d-kinklinear
q2

〉
L2

=

1∫

0

ϕ1d-kinklinear
q1

(x) · ϕ1d-kinklinear
q2

(x)dx .

(2.45)

It holds, that,

rkinklinear
q1,q2

=





1 , l1 = l2 = 1 ,
22−l

3 , q1 = q2, l1 > 1, (i1 = 1 or i1 = 2l1 − 1) ,

3 · 2−l1−1 ,

l1 > l2,

((
i2 = 1, i1 <

2l1

2l2

)
or

(
i2 = 2l2 − 1, i1 >

2l1
(
2l2 − 1

)

2l2

))
,

3 · 2−l2−1 ,

l2 > l1,

((
i1 = 1, i2 <

2l2

2l1

)
or

(
i1 = 2l1 − 1, i2 >

2l2
(
2l1 − 1

)

2l1

))
,

rlinear
q1,q2

, else .

(2.46)

For the proof, see Sec. A.1.3.

2.3. Function Spaces and Approximation

Bringing grids and basis functions together, we now discuss how to obtain function
approximations.

2.3.1. Grid-based Function Space and Approximant

For every type of basis function φ and set of grid points G, we construct the correspond-
ing function space Vφ

G :
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Definition 2.3.1 (Function space)
Let G ⊂ Gd be any set of grid points. For p ∈ G and a family of basis functions φ,
φp denotes the basis function at p of this family. The function space Vφ

G is given by

Vφ
G := span

{
φp p ∈ G

}
. (2.47)

If, for example, the task is to find an interpolant of f , there exists a unique solution
f̃ ∈ Vφ

G that satisfies

∀p ∈ G : f̃ (coordp) = f (coordp) (2.48)

and the challenge is to find the hierarchical surpluses αp via the process called hierar-
chization such that

f̃ (x) = ∑
p∈G

αpφp(x) . (2.49)

It has been shown [18] that with certain smoothness assumptions for f , the ratio be-
tween cost (number of grid points) and error (difference of f and f̃ under a specific
norm) is optimal when choosing as G a regular sparse grid and that the curse of dimen-
sionality is mitigated with this choice. Since we need those results only marginally, the
reader is referred to [18] for details.

For the data-driven problems we face, rather than searching for interpolants, we want
to find f̃ ∈ Vφ

G that describes an unknown distribution function (see Eq. 3.4).

Looking back at Eq. 2.1, we now have the tools at hand to construct the approximation
of f .

Definition 2.3.2 (Grid-based approximant)
Let G ⊂ Gd be any set of grid points and φ a family of basis functions well defined
for Gd. A f̃ ∈ Vφ

G is an approximation of f with φ on G if f̃ ≈ f and we write f̃ as

f̃ (x) = ∑
p∈G

αp · φp(x) . (2.50)

For specific grids, the function spaces and the approximations residing in them have
specific names:

Definition 2.3.3 (Full grid and sparse grid approximation)
Let ϕ be either ϕlinear, ϕmodlinear or ϕkinklinear.

• An approximation f d,ϕ
fullgrid,l ∈ V

ϕ
fullGridd,l

of f is called a full grid solution of f .

• An approximation f d,ϕ
sparsegrid,l ∈ V

ϕ
sparseGridd,l

of f is called a sparse grid solution
of f .
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In Chap. 3, we discuss in detail how to construct an approximation of a probability
density estimation for any dataset residing in Ω. Whereas the choice between a full grid
and a sparse grid is of major importance concerning the resulting number of degrees of
freedoms, the methods we present there can be tackled with both techniques.

2.3.2. Combination Grid Technique

Solving problems with the sparse grid method instead of the full grid method requires
application engineers to dive deep into algorithms and data structures that handle
sparse grids appropriately. Full grid solver implementations exist for a long time and
are used by lots of applications, which is why they are very mature and include lots
of features that are time consuming to rebuild when switching to sparse grids. For
example, parallelization on regular sparse grids is not easily done. One way to exploit
both the good cost vs. approximation error ratio of sparse grids and the maturity and
accessibility of full grid solvers is the combination grid technique [39]. If the setting
allows it, the problem is first computed on many component grids separately, which are
then combined together to yield the final solution. The idea for the two-dimensional
case is depicted in Fig. 2.11. Each involved component grid’s solution is weighted with
a factor and the final solution is the sum over all weighted component solutions. We
define the combination grid technique in the following:

Definition 2.3.4 (Combination grid technique)
Let fl(x) ∈ V ϕ

componentGridd,l
be an approximation of f on componentGridd,l, where ϕ

is either ϕlinear, ϕmodlinear or ϕkinklinear. The approximation of f given by

f (x) ≈ f d,ϕ
combi,l(x) =

d−1

∑
q=0

(−1)q
(

d− 1
q

)
∑

‖l′‖1=l+d−1−q
fl′(x) (2.51)

is called the combination grid technique solution of level l of f .

For some problems such as interpolation, it has been shown [39] that

f d,ϕ
combi,l = f d,ϕ

sparsegrid,l (2.52)

holds. In two dimensions, the factor (−1)q (d−1
q ) resolves to weighting the components

on the main diagonal of the component grid scheme with +1 and weighting the
components on the first subdiagonal with −1, as depicted in Fig. 2.11. All other
components receive a factor of 0 and are not required to compute the combination
grid solution. For d dimensions, the factors on the main diagonal (which is a d −
1-dimensional hyperplane) are still weighted with +1, whereas the factors for the
subdiagonals grow more complex. Also, not one subdiagonal but d − 1 additional
subdiagonals (as long as the level is high enough) are required.
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Figure 2.11.: Two-dimensional combination grid technique scheme of level 4. The components in the
level 4 diagonal are weighted with a factor of 1 for the combination grid technique solution,
the components in the level 3 diagonal are weighted with a factor of −1.
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The component’s solutions can be obtained in parallel, because they are independent
of each other. Although the total number of grid points in the combination grid
technique exceeds the number of grid points in the regular sparse grid, this leads to a
computational speedup of which we make use of in Sec. 4.3. In fact, we are going to
show there that we even obtain a computational speedup with the combination grid
technique if we still handle the components in a serial fashion.

The combination grid technique allows for dimensional adaptivity. If we want to
increase the resolution only in certain dimensions, we add the component grids to
the scheme that have a higher level in such a dimension on the condition, that all
predecessors of the additional component grid are already present in the scheme. In
this case, the computation of the factors is more complex and we employ the algorithm
given in [69] to compute them efficiently.
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3. Grid-based Density Estimation and Classification

Density estimation and classification are fundamental data mining tasks. For many
problem settings, they are well-studied and well-understood already. However, for
problems of mediocre to high dimensionality involving large datasets, some traditional
methods suffer from certain drawbacks. First, techniques such as kernel density
estimation [72] are not applicable very well to problems of high dimensionality due
to the curse of dimensionality [93]. Second, evaluating such a density estimator also
grows in linear complexity with the number of training samples, which renders the
application to big data infeasible [36]. Sparse grid-based methods cope with both of
those issues [75], first by mitigating the curse of dimensionality and second by the
model complexity being independent of the training dataset size.

In this chapter, we propose an incremental grid-based batch learning scheme for both
density estimation (unsupervised learning) and classification (supervised learning)
supporting spatial grid adaptivity. With the grid-based approach, we explicitly codify
the problem space. The model is explainable because the learned weights at the grid
nodes directly represent the dataset and thus the problem at hand. This gives an edge
to the grid-based approach which is hard to achieve for many other models, especially
those obtained by deep learning [67, 85].

Fortunately, grid-based density estimation has already been the focus of the research in
[76], where an offline/online scheme has been introduced. This scheme shifts the heavy
computational effort of obtaining the probability density estimation to an offline phase.
Decomposing and storing the system matrix of the problem-corresponding system of
linear equations allows to obtain the density estimation as the solution of this linear
system fast. We adapt this offline/online scheme so that we are also able to modify the
underlying grid to the problem at hand. Also, we show how an incremental learning
scheme is obtained by splitting the dataset into batches.

Sec. 3.2 focuses on density estimation. We propose the mentioned incremental batch-
wise learning scheme. After setting the problem context and preparing the mathe-
matical tools and fundamental techniques, we discuss the challenge of combining
the offline/online scheme and spatial adaptivity. After that, we investigate the linear
system stemming from the grid-based density estimation in detail with attention to
updating this system as a consequence of grid refinement and coarsening. How to
reflect those updates in the matrix decompositions used for the offline/online scheme
is explored in detail. To achieve the desired speed-up during the online phase, we
propose to employ both the Cholesky decomposition and a tridiagonal decomposition
[34] which both make good use of the properties of the linear system. In particular, we

37



show how those two matrix decompositions are updated according to the grid changes
resulting from spatial adaptivity.

In Sec. 3.3, we turn to the task of classification. With the density estimation toolbox
prepared and ready, we discuss how the Bayes classifier builds on top of probability
density estimations of the data separated by class. We then show how the incremental
batch-wise learning scheme from Sec. 3.2 transfers to classification. With the way
cleared for spatial adaptivity in combination with the offline/online scheme, we pro-
pose a grid-refinement strategy for classification. This strategy is tailored to the setup
of the many-grid classification model resulting from the use of the Bayes classifier.
It exploits both the properties of sparse grids and the problem-specific attributes of
many-grid classification.

However, before we start with density estimation, let us first focus on data in general
and what has to be considered when tackling datasets with grid-based methods.

3.1. Data Mining with Sparse Grids: Prerequisites

Before starting any learning task, we first need to check whether the grid-based methods
we have in mind are applicable to the problem. In this section, we characterize the data
we want to work with and discuss the scope of problems we are able to tackle with the
grid-based methods.

Problem Characteristics In the data context, a point in the problem space represents
a data sample. It is attributed by characteristics that we call dimensions, which are the
individual measurable quantities of the observable. For our grid-based methods to be
able to work with the data, we foremost require all dimensions to be real-valued. With
d dimensions at hand, this enables us to map the data to the unit hypercube Ω = [0, 1]d,
which is where the grid points and corresponding basis functions defined in Sec. 2.1
and Sec. 2.2 reside. This data preprocessing step is necessary for most datasets, because
the data we want to get insight on is hardly always already situated in Ω from the
start.

If a dimension consists of discrete values that are subject to a linear order (for example
the income of a person, which is a natural number), we are also able to map it onto
[0, 1]. However, for categorical dimensions (for example the nationality of a person),
we are not able to find a mapping to [0, 1] that coincides with the linear order of [0, 1].
Thus, we cannot tackle such datasets with our grid-based methods (unless we remove
said dimensions from the data).
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Dimensionality A key characteristic of a dataset is the number of dimensions, which
we also call the dimensionality. Although in theory, there are no limitations to it when
tackling the dataset with the grid-based methods we have in mind, we target a certain
range.

On principle, it is possible to apply the grid-based methods we investigate in this thesis
to one-dimensional problems. However, in such cases, we cannot profit from the sparse
grid structure, which is designed to cope with the curse of dimensionality, which only
kicks in at d > 1. Considering an upper bound, sparse grids have been applied to
problems with several hundreds of dimensions in the past [50]. We are going to look
even further than that and apply the methods to problems with dimensionalities in the
thousands. To achieve that, we propose some modifications to standard sparse grids,
which make such high dimensionalities possible. However, even then, there is a limit
to the number of dimensions when using our methods in practice. Where those limits
are situated depends on the problem class and becomes clear with the development of
this thesis.

Big Data The term Big Data is a bit fuzzy, but there are some criteria (the V-criteria
[61]) that apply to problems attributed with it. Speakers and authors differ on how
many V’s should be listed. Validity, value, variety, velocity, veracity, visualization,
volume, volatility and vulnerability are just some of the most mentioned keywords. In
this thesis, the two attributes volume and velocity are of import.

• Volume: The dataset contains many samples.

Sparse grid methods shine, when the number of data points considerably exceeds
the number of grid points. While other methods suffer from exploding runtimes
in the case of many data samples, our grid-based methods are designed such that
the evaluation complexity of the models is always independent of the number of
samples learned.

• Velocity: New data is generated fast.

The algorithms we propose can cope with data streams and we employ online
learning in parallel settings to be able to keep pace with high velocity data
streams.

Notation With Ω = [0, 1]d we denote the problem space. Thus, for the unsupervised
learning problems we look at, a dataset is written as

M =
{

xj j ∈ [M] , xj ∈ Ω
}

. (3.1)

M ∈ N denotes the size of the dataset M with xj (j ∈ [M]) being a sample of M.
Additionally, for the supervised learning problems, we associate a label yj ∈ K to every
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sample xj, yielding

M =
{(

xj, yj
)

j ∈ [M] , xj ∈ Ω, yj ∈ K
}

. (3.2)

During the data mining process, we distinguish three different datasets for our problem:
The training dataset, the validation dataset and the test dataset:

• Training dataset: Denoted withMtrain, this is the data we directly learn on and
train the model to.

• Validation dataset: Denoted withMval, we don’t use this data to directly train
the model with but to validate its quality during the training process. Also,
we use it to find good values for certain hyperparameters during learning. To
evaluate the model quality with previously trained data would not yield honest
and useful results, as the model already knows ground truth about it. Technically,
we split off some portion ofMtrain to beMval before we start training the model,
becauseMval is usually not separately provided within the data problem.

• Test dataset: Denoted withMtest, this dataset is used to score the model quality
objectively. The test dataset and the scores obtained by scoring the model with it
cannot be used (or even known) by the routines training the model as to not raise
doubts about the achieved accuracies.

3.2. Density Estimation

Density Estimation is an important tool in data analysis and statistics [100]. Many
methods exist to estimate the density of a given dataset [103]. It is used as a building
block for other data mining methods such as classification [76] and clustering [77]
and is employed to gain insight into data by sampling and visualization [90]. Given
Ω = [0, 1]d and a countable d-dimensional datasetM⊂ Ω of size |M| = M ∈N, the
goal is to find a probability density function f : Ω 7→ R that indicates for every x ∈ Ω
the relative likelihood that a sample ofM has the value of x. Due to its data-driven
nature, this translates to a optimization problem of finding f in a given function space.
Ideally, f fits to the dataset as well as it is smooth at the same time. An example is
shown in Fig. 3.1.

Histograms [73] have been used to agglomerate data points of similar value in bins.
Their construction is intriguingly simple but they miss some properties such as being
continuous and depending on an initial choice of bins. Nowadays, there exist a wide
variety of binning methods for density estimation [87] that overcome the first drawback
of not being continuous, whereas they either still require some predefined bins or some
heavy computations in order to determine a good choice without expert knowledge of
the dataset. If such a knowledge is already available, parametric methods are a good
choice for density estimation and yield very accurate probability density estimation
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Figure 3.1.: On the right, a density estimation of the dataset on the left is visualized.

functions for lower dimensional problems. However, for real-world data problems,
such knowledge rarely exists prior to analyzing the data. Also, with increasing d,
the number of bins grows exponentially (curse of dimensionality), which makes this
class of methods only feasible for low dimensional problems. Thus, we look at non-
parametric methods [24], a prominent example being kernel density estimation (KDE),
which builds f by summing up kernel functions centered at the data points. A major
drawback of KDE is the linear complexity of O (M) for evaluating f at a given point
x ∈ Ω. As the role of big data problems cannot be overrated in the current data science
world, such methods become infeasible very quickly for large datasets.

The method we want now to focus on is grid-based density estimation. Centering
the basis functions at specific grid points to build up a density estimation offers an
explainable data model. Apart from quickly evaluating every possible point in the
problem space, we can also explain the structure of the density estimation by looking
at the coefficients of the chosen basis. With δx being the Dirac delta function centered
at x, we define a highly overfitted guess of f as fε =

1
M ∑x∈M δx. In [43] a multivariate

spline-smoothing density method has been introduced, which aims to find f in a
function space V as

f = arg min
f̃∈V

∫

Ω

(
f̃ (x)− fε(x)

)
dx + λ ‖Λ f ‖2

L2
. (3.3)

The left summand ensures that f fits to the available data points whereas the right
summands serves as a smoothness constraint for f . Then, the variational equation
associated with Eq. 3.3 for all ψ ∈ V formulates as

∫

Ω

f (x)ψ(x)dx + λ
∫

Ω

Λ f (x) Λψ(x) dx =
1
M ∑

x∈M
ψ(x) . (3.4)
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While the authors in [43] use this method with V being the full grid function space, it
has been applied with a sparse grid function space as well in [78]. Since we want to
both employ sparse grids and the combination technique, we only restrict the choice of
V to a hierarchical function space as defined in Eq. 2.47 where we write the probability
density function f as

f (x) = ∑
k∈V

αk ϕk(x) (3.5)

with the Ritz-Galerkin method [26]. Since the ansatz function space is the same as the
test function space, with N := |V| being the number of grid points and R, C ∈ RN×N,
α, b ∈ RN, Eq. 3.4 translates to

(R + λC)α = b (3.6)

where
Rij :=

〈
ϕi, ϕj

〉
L2

:=
∫

Ω

ϕi(x)ϕj(x)dx (3.7)

denotes the overlap of two basis functions in the grid. The root point has an overlap
with every other point, whereas finer grid points only overlap with few other points.
With growing level of the sparse grid, R gets more sparse. However, R is less sparse
with growing dimension because for high dimensionality, even points on finer levels
still overlap with many other points.

With the term λC we control the regularization in order to limit the growth of the
hierarchical surpluses:

Cij =
〈
Λϕi, Λϕj

〉
L2

. (3.8)

Plugging Eq. 3.5 back into the right summand of Eq. 3.3 as

λ

∥∥∥∥∥Λ ∑
k∈V

αk ϕk(x)

∥∥∥∥∥

2

L2

, (3.9)

we see that, for many problems, it simplifies to

λ ∑
k∈V

α2
k , (3.10)

yielding a variant of Eq. 3.6, where C = I:

(R + λI)α = b . (3.11)

Employing Eq. 3.11 instead of Eq. 3.6 drastically reduces the effort to compute f
and is used in the following to obtain the probability density function. With the
hyperparameter λ, we control how much we want our grid to fit to the data points
versus how smooth the sparse grid function is.

On the right hand side of Eq. 3.11, we add the contributions of all data points for each
basis function:

bi =
1
|M| ∑

x∈M
ϕi(x) . (3.12)
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Figure 3.2.: Incremental batch-learning process. From each batch k, the corresponding right-hand side b̃k
is obtained, which, together with bk−1, yields bk. The solution αk of Eq. 3.11 for all training
data up to batch k is then computed from bk.

The system matrix A ∈ RN×N is also denoted as

A := R + λI . (3.13)

3.2.1. Incremental Batch Learning Process

In case of a large dataset, the learning process is transformed to a batch learning,
mini-batch learning or even a online learning process. Incremental batch-learning has
been proposed for various other density estimation methods [59, 98]. In the sparse
grid context, online learning has been used for regression [53]. After the learning of
each part of the dataset, the obtained model increment is combined with the hitherto
existing state of the model. This process is sketched in Fig. 3.2. It allows us to extend
the learning process with the following features:

• Grid adaptivity. Between or during learning the model increment for a dataset
batch, we analyze the grid to see if we want to adapt it to the problem. An
adaptation is either coarsening the grid by removing points from it or refining the
grid by adding additional points. We discuss how the model is adapted during
learning for those cases in Sec. 3.2.2.

• Concept drift. Depending on how the model increment is incorporated into the
hitherto existing model, we optionally include information about an (implicit)
concept drift, e.g. by weighting the model increment disproportionately high to
the hitherto existing model.

• Limiting the memory consumption. The computation of Eq. 3.12 involves the
evaluation of all basis functions of the grid at all data points. Splitting this
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evaluation into multiple batches allows to only hold a portion of the dataset in
the memory, thus limiting the required resources proportional to the batch size.

• Parallelization over the data. The solution of Eq. 3.11 is optionally run in parallel
for different data batches. After solving Eq. 3.11 for a batch, its partial solution is
incorporated into the central, overall solution. For details, we refer to Chap. 4.

As a side effect, our incremental approach helps the explainability of the model. Not
only is the end result transparent, the continuous improvement of the model towards
its final stage is also traceable via the evolution of the surpluses.

With mk, we denote the data points of batch k and denote Mk as the data points
processed up to batch k:

Mk =
⋃

j∈[k]
mj . (3.14)

b̃k denotes the right-hand side of Eq. 3.11 for the batch k:

b̃ki =
1
|mk| ∑

x∈mk

ϕi(x) . (3.15)

Of course, we are interested in the quantities bk and αk, which denote the right-hand-
side and solution of Eq. 3.11 of all data points up to batch k:

bki =
1
|Mk| ∑

x∈Mk

ϕi(x) , (3.16)

Aαk = bk . (3.17)

In order to implement the incremental batch learning scheme, we show that for k > 1

bk =
|Mk−1|
|Mk|

bk−1 +
|mk|
|Mk|

b̃k (3.18)

holds, per

bki =
1
|Mk| ∑

x∈Mk

ϕi(x)

=
1
|Mk|

(
∑

x∈Mk−1

ϕi(x) + ∑
x∈mk

ϕi(x)

)

=
1
|Mk|

· |Mk−1|
|Mk−1| ∑

x∈Mk−1

ϕi(x) +
1
|Mk|

· |mk|
|mk| ∑

x∈mk

ϕi(x)

=
|Mk−1|
|Mk|

· 1
|Mk−1| ∑

x∈Mk−1

ϕi(x) +
|mk|
|Mk|

· 1
|mk| ∑

x∈mk

ϕi(x)

=
|Mk−1|
|Mk|

bk−1i +
|mk|
|Mk|

b̃ki .

Thus, we construct the correct right-hand side incrementally by processing the data
batches without having to store all hitherto seen training samples.
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Concept Drift The standard batch learning scheme is performed under the assump-
tion that the ordering of the data batches is not important for the solution. However,
in some datasets, the ordering plays a role, e.g. when the data is ordered by time and
the concept of the data changes with time. One example of such a dataset is the daily
average temperature on earth for the last century. More recent data points predict
today’s temperature more accurately due to the increasing average temperature, which
is reflected in the newer data points. Thus, it is desireable to weight new data points
higher than older ones instead of treating them all equally. To this end, we define
β ∈ [0, 1] as the minimal learning rate and alter Eq. 3.18 as

bk = min
(
(1− β)|mk|,

|Mk−1|
|Mk|

)
bk−1 + max

(
1− (1− β)|mk|,

|mk|
|Mk|

)
b̃k . (3.19)

For a value of β = 0, Eq. 3.19 corresponds to Eq. 3.18. If we choose β > 0, every data
point at least weights with a portion of β into the solution whereas the old points only
weight 1− β. In order to make the weighting invariant to the size of the currently
processed batch, the current batch is weighted with 1− (1− β)|mk| and the old batch
with (1− β)|mk|.

Online Learning The batch learning process presented allows for every batch to
contain an arbitrary number of data points. In online learning, the data points are
processed one by one. For our methods, this is not feasible as it introduces too much
overhead. Nevertheless, we want to mention, that it is very well possible to employ a
pure online learning strategy with the presented methods.

3.2.2. Model Adaption during Learning

During the learning process, we adapt the initial model to the dataset at hand. When
performing grid refinement, more points are added to the grid and the matrix R (and
respectively A) is extended by additional rows and columns. For grid coarsening, rows
and columns of R (and respectively A) are deleted. In addition, during the early stages
of learning we might want to optimize the regularization parameter λ.

3.2.2.1. Grid Refinement

In order to adapt the model best to our data, we add points to the grid depending on
where f is not yet a satisfactory estimate for the density estimation. First, we need
to identify grid points that are good candidates to be refined by employing various
refinement indicators. Then, as soon as we know which grid points are to be added
to the grid, we need to adapt the data structures representing our model to reflect the
additions.
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Refinement Indicators We are interested in finding regions in Ω where f is not yet
a good fit toM in order to employ spatial adaptivity in those areas. The hierarchical
parent-child structure of the grid we defined in Sec. 2.1.2 allows us to achieve this spatial
adaptivity [79]. Thereby, we identify current leaf grid points where the approximation
is not yet satisfying and then refine the model by adding their children to the grid.

A simple indicator we use to identify those refinement candidates is the value of the
hierarchical surplus α at the grid point. A high absolute value of α indicates that the
error in this area has not yet converged, so we rank the potential refinement candidates
(those grid points that still have missing children) by absolute value of the surplus. We
refer to this strategy as surplus-based refinement indicator [80] and write it as

sREF-surplus
p =

∣∣αp
∣∣ . (3.20)

However, this indicator is prone to overfitting because newly added child grid points
can build up even higher surpluses than their parents if regularization fails in those
areas. Those children are then ranked high as refinement candidates during the next
refinement step and we keep adding grid points of increasingly finer levels to the
model, all residing in a small area of Ω.

One way out is to penalize finer grid points by multiplying the surpluses with their
respective basis functions’ volume. This strategy, referred to as surplus-volume-based
refinement indicator [80] is given by

sREF-surplus-volume
p =

∣∣αp
∣∣ · supportp . (3.21)

With this indicator, a coarser grid point is refined prior to a finer grid point if they have
the same surplus value and we are no longer in danger of overfitting into small regions
of Ω.

Modifying the Linear System When refining the grid of size Na to a grid of size
Na+1 (Na+1 = Na + na, na > 0, thus adding na points to the grid), the linear system
Eq. 3.11 changes. We look at what happens if only one additional grid point is added.
For multiple new grid points, the steps are performed na times. The index of the new
grid point is Na + 1.

R(Na) ∈ RNa×Na is extended to R(Na+1) ∈ R(Na+1)×(Na+1) as

R(Na+1) =

(
R(Na) r(Na+1)

r(Na+1)T 〈ϕNa+1, ϕNa+1〉L2

)
, (3.22)

whereas r(Na+1) ∈ RNa is the vector containing the inner products of the basis function
of the new grid point with every hitherto existing grid point:

r(Na+1)
i = 〈ϕi, ϕNa+1〉L2

. (3.23)
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Together with the regularization term (I(k) ∈ Rk×k denoting the identity matrix of size
k), A(Na) ∈ RNa×Na is extended to A(Na+1) ∈ R(Na+1)×(Na+1) as

A(Na+1) = R(Na+1) + λI(Na+1)

=

(
R(Na) + λI(Na) r(Na+1)

r(Na+1)T 〈ϕNa+1, ϕNa+1〉L2
+ λ

)

=

(
A(Na) r(Na+1)

r(Na+1)T 〈ϕNa+1, ϕNa+1〉L2
+ λ

)
.

(3.24)

We assume that the grid refinement takes place between the processing of batch l −
1 and batch l. The right-hand-side bl−1 has to be adapted as well after any grid
refinement. First, the size of bl−1 is extended by na new elements. We have no choice
but to initialize them to zero. However, it doesn’t suffice to further treat the newly
added grid points the same way as the hitherto existing grid points in Eq. 3.19 as the
new grid points haven’t “seen” as many data points as the hitherto existing grid points.
Thus, the weighting has to be done individually for each grid point depending on how
many data points have been processed for this particular grid point. For i > Na, we
set

mk,i :=∅ , for k < l ,

Mk,i :=
⋃

j≤k

mj,i , for k > 0 ,

bl−1i :=0 .

To correctly compute the right-hand-side for the new grid points, we alter Eq. 3.19
further for k ≥ l:

bki :=min
(
(1− β)|mk,i|, |Mk−1,i|

|Mk,i|

)
bk−1i

+ max
(

1− (1− β)|mk,i|, |mk,i|
|Mk,i|

)
b̃ki .

(3.25)

3.2.2.2. Grid Coarsening

Opposite to refinement, we can also remove points from the grid in order to reduce
the model size and thus, the cost of computing the probability density estimation. To
this end, we first need to identify grid points that are good candidates for removal and
must then adapt the data structures according to the changes of grid points, similar to
what we have seen for the refinement procedure.

Coarsening Indicators We are interested in finding regions in Ω where we can spare
grid points, because f would be a good fit to the data even without them. For each
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grid point p, the surplus value αp indicates which error is corrected on the probability
density estimation in this specific point. If αp is low, we know that the estimate is still
good in this area even without this point being in the grid. Thus, analogous to the
surplus-based refinement indicator, we define the surplus-based coarsening indicator
[79] as the score that yields us the grid points that currently contribute least to f being
a good fit to the data based on the absolute value of their surpluses:

sCOARS-surplus
p =

∣∣αp
∣∣−1 . (3.26)

However, this indicator disregards that the contribution of a grid point to f also
depends on the volume of its support. Thus, we also take into account this quantity
and define the surplus-volume-based coarsening indicator [79] as

sCOARS-surplus-volume
p =

(∣∣αp
∣∣ · supportp

)−1
. (3.27)

With this indicator, the grid points that currently contribute least to f in terms of
accuracy are scored highest and are thus removed first from the model.

Modifying the Linear System Upon coarsening a grid of size Na to a grid of size
Na+1 (Na+1 = Na − na, na > 0, thus removing na points from the grid), the linear
system Eq. 3.11 changes as well. Similar to the refinement case, we look at what
happens if only one point is removed from the grid. The steps are performed na times
if multiple grid points are to be removed. The index of the removed grid point is
j ∈ [Na].

R(Na) ∈ RNa×Na is shortened to R(Na\j) ∈ R(Na−1)×(Na−1) as

R(Na\j) =


 R(Na)

(1:j−1;1:j−1) R(Na)
(1:j−1;j+1:Na)

R(Na)
(j+1:Na;1:j−1) R(Na)

(j+1:Na;j+1:Na)


 . (3.28)

I(k) being the identity matrix of size k, A(Na) ∈ RNa×Na is shortened to A(Na\j) ∈
R(Na−1)×(Na−1) as

A(Na\j) = R(Na\j) + λI(Na−1) . (3.29)

Again, we assume, that grid coarsening takes place between the processing of batch
l − 1 and batch l. The right-hand-side bk−1 has to be adapted as well after any grid
coarsening. To this end, element j is removed from bl−1

b̂l−1 =

(
bl−1(1:j−1)

bl−1(j+1:Na)

)
. (3.30)
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3.2.2.3. Optimization of λ

Depending on the number of grid points and the number of data points or rather the
relation of both quantities, the regularization parameter λ is optimized in order to
fit the data best to the grid at hand. The larger the size of the training dataset, the
better but as a thumb rule, we like to have at least as many data points as grid points
in the training phase. In Fig. 3.3 the test error is shown for the density estimation of
a two-dimensional artificial dataset generated from the beta distribution [74] using
different basis functions, different levels and different values of λ. Whereas for lower
levels (1 to 5), the test error is minimal if no regularization is applied, the optimal
regularization value λopt is at λopt ≈ 10−2.

Search Strategy N being the number of grid points in the model and M being the
number of training data points, a good initial guess is λ0 = N

M 10−2. From there, we
search for an optimal value of λ, whereas

Isearch =
[
10λ0, 10−4λ0

]
(3.31)

is deemed a good search space. We split off 10% of the training dataset as validation
datasetMval and compute the right-hand side of Eq. 3.11 for bothMval andMtrain
as bval and btrain. Using btrain and a potential value of λ, we then solve Eq. 3.11 for
αλ and compute the quality with

‖Rαλ − bval‖2 , (3.32)

following the proposed method in [75]. We use the Golden-section search [54] to find
the minimum in Isearch most efficiently.

Modifying the Linear System Changing λ to λ̂ affects the linear system Eq. 3.11 as
follows:

Â = A + (λ̂− λ)I . (3.33)

3.2.3. Fitting the Model to the Dataset

Solving Eq. 3.11 directly takes cubic time in the number of grid points. For larger
grids, this is not feasible to compute even on modern hardware, which leaves us two
options: Either choose some iterative solver such as conjugate gradients (CG) [47],
which approximates the solution of the linear system or split the process into an offline
phase and an online phase, which allows us to shift the major computational effort to
the offline phase to be faster during the online phase. After noting upon some helpful
properties of the linear system, we investigate both options.
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(a) Linear basis functions.
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(b) Modified linear basis functions.
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(c) Kinked linear basis functions.

Figure 3.3.: Optimization of λ at the example of a density estimation of a two-dimensional artificial
dataset (400 training data points generated from a strongly skewed beta distribution with
α = β = 2) for different basis functions and levels of the grid. For smaller levels (1 to 5), the
error is lower if λ is low, because there are much more grid points than data points and thus,
no regularization is required. For higher levels (starting with level 6), the optimal value of λ
is λopt ≈ 10−2. For λ < λopt, the model overfits to the training data. In contrast, the model
is over-regularized for when λ > λopt.
Raw data for this figure: Sec. C.1.
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3.2.3.1. Attributes of the Linear System

We show that the matrices R and A are symmetric positive definite (SPD), which helps
us later when factorizing A.

Symmetry Per Eq. 3.7, we show that R is symmetric:

∀ (i, j) ∈ [N]2 : Rij =
〈

ϕi, ϕj
〉

L2
=
∫

Ω

ϕi(x)ϕj(x)dx

=
∫

Ω

ϕj(x)ϕi(x)dx =
〈

ϕj, ϕi
〉

L2
= Rji .

(3.34)

Thus, when explicitly computing R, we only need to compute the entries for i ≥ j and
save almost half of the memory and half of the computing time in contrast to not using
the symmetry.

Adding λI to R does preserve the symmetry since only the diagonal is affected by this
addition. Thus, A is also symmetric.

Positive Definite To show that R and A are positive definite as well, we use the
definition of a Gramian matrix [35]:

Definition 3.2.1 (Gramian matrix)
For a set of vectors v1, . . . vn in an inner product space, the matrix G ∈ Kn×m, Gij =
〈vi, vj〉 is called the Gramian matrix.

Thus, R is the Gramian matrix associated to the L2-inner-product over the basis func-
tions ϕ. With [9] we conclude that R is positive definite. λI only has positive diagonal
entries, which yields that A as the sum of R and λI is positive definite as well.

Sparsity The sparsity of R is depicted in Fig. 3.4 for dimensions from 1 to 10 for
increasing level. We observe a decreasing sparsity with increasing dimension if the level
is fixed. This stems from entries of lower value in the level-vectors of the grid points for
higher dimensions and thus more overlap with of the supports of the corresponding
basis functions with other grid points’ supports. On the other hand, the sparsity
increases with increasing level, because more grid points have a smaller support which
does not overlap with a lot of other grid points. However, these results show, that in
general, we cannot assume R (or A) being sparse enough to justify the research into
sparse matrix methods or investigate other storage schemes. Those would only unfold
their potentials for datasets with low dimensionality and high level, which are only a
corner case in this thesis.
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Figure 3.4.: Sparsity of R for dimensions between 1 and 10 for increasing level. With increasing dimen-
sion, the sparsity decreases when the level is fixed due to more dimensions, in which the
basis functions can overlap. With increasing level, the sparsity increases due to smaller
support of the basis functions which leads to less overlap with other basis functions.
Raw data for this figure: Tab. C.4.

3.2.3.2. Conjugate Gradients

The conjugate gradients (CG) method [47] allows for an iterative approximation of
the solution of a system of linear equations, if the corresponding system matrix is
symmetric and positive-definite. This applies to A as discussed in Sec. 3.2.3.1, so
we employ the scheme to solve Eq. 3.11. In case of a batch learning process, the
convergence is sped up by the fact that αk is a good initial guess for αk+1. Thus, a
good first residuum r ∈ RN is r = bk − Aαk. In each iteration, the algorithm executes
a fixed number of matrix-vector products. With k being the number of iterations, the
computational cost is O

(
k · N2). In-between processing the data batches, all model

updates such as optimization of λ, grid refinement or grid coarsening are performed
by altering A and b directly as discussed in Sec. 3.2.2.

3.2.3.3. Split into Offline and Online Phases

We observe that the right hand side of the linear system Eq. 3.11 depends on the data
points whereas the left hand side only contains information about the grid and the
regularization. This allows us to precompute the system matrix A of the left hand side
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and factorize it during an offline phase at the computation cost of O
(

N3) operations.
Having A already at hand in a decomposed form, we compute the solution of the linear
system in O

(
N2) when the data is actually available. Also, we are able to reuse the

matrix factorizations for all problems with the same characteristics that are given by

• the dimensionality of the data d,

• the initial grid level l, and

• the regularization parameter λ.

So we only need to decompose the system matrix for (d, l, λ) once in order to profit
from it every time we learn a dataset with those parameters. Similar approaches have
been used in online learning settings [5].

During the course of learning the density, we might want to perform grid refinement
or coarsening to adapt the grid to the data at hand. This results in a modified R and
extended I, which then also has to be reflected in the matrix decomposition of A. Also,
in order to find a good balance between fitting the training data and obtaining a smooth
density estimation, we might want optimize λ before we start with grid refinement. The
resulting offline/online scheme is depicted in Fig. 3.5. There are several possibilities

Problem
configuration

(d, l, λ,
decompositionMethod)

Build up
system matrix A

Decompose A with
decompositionMethod

Offline phase

Retreive
data

Update λ?∗

Update
decomposition

of A

Process next
data batch

Solve
linear system

Perform
model

adaptivity∗

Update
decomposition

Yes

No No

Yes

Pre-online phase Online phase

* if supported by decompositionMethod

Figure 3.5.: The flowchart of the offline/online scheme. During the offline phase (violet), A is build
up and decomposed. At the early stages of training in the pre-online phase (cyan), λ is
optimized. During the online phase (blue), the model is trained and adapted to the data.
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of how to factorize A. In [76], the eigendecomposition (Sec. 3.2.3.3.1) and the LU
decomposition were proposed. To better exploit the attributes of A, we propose to
use the Cholesky decomposition (Sec. 3.2.3.3.2) instead of the LU decomposition. This
factorization method also allows us to update the decomposition after the model has
been spatially adapted to the data. The same is true for the tridiagonal decomposition
(Sec. 3.2.3.3.4) with the addition, that we can also optimize λ prior to updating the
decomposition after spatially adapting the model. In problem settings where A is
sparse, the incomplete Cholesky decomposition (Sec. 3.2.3.3.3) speeds up both the
offline and the online phase even more, at the cost of accuracy. We present those
techniques in the following and conclude with their comparison regarding the features
and the runtimes for the different tasks when performing training and testing in
Sec. 3.2.3.3.5.

3.2.3.3.1 Eigendecomposition

In [76], an eigendecomposition of A was introduced as

A = V DVT , (3.35)

with V ∈ RN×N an orthonormal matrix and D ∈ RN×N a diagonal matrix. Such
a factorization exists because A is a Gramian matrix (see Sec. 3.2.3.1) and the basis
functions ϕ are linearly independent.

Offline Phase The factors V and D are obtained using Golub-Kahan bidiagonaliza-
tion and QR-reduction [34] in O

(
N3). Then, the inverse of D is computed in linear

time (O (N)), so that the system is later solved by multiplying b from the right to the
inverse of A.

Online Phase During the online phase, the system of linear equations Eq. 3.11 is
solved for α using the inverse of the eigendecomposition as well as updating the
factorization according to changes to the model. In [76], a method to change λ during
the online phase was presented. However, they did not present an efficient method
to also incorporate changes to the model after grid refinement or coarsening (see
Eq. 3.24 and Eq. 3.29). All algorithms during the online phase need to be inO

(
N2), but

recomputing the factors V and D after an adaption of the grid would require O
(

N3).
Thus, the eigendecomposition is not suitable for scenarios where the a priori grid
without any spatial adaptivity is not sufficient.

Solving the System With this decomposition, due to V−1 = VT, it is straightforward
to solve Eq. 3.11 for α by computing three matrix-vector products as

α = A−1b =
(

V DVT
)−1

b =
(

VT−1
D−1V−1

)
b =

(
V D−1VT

)
b (3.36)
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which is in O
(

N2).

Optimizing λ With the data at hand, λ is tuned to find a good balance between
fidelity and smoothness. The changes reflected in Eq. 3.33 are also applied to the factors
of the eigendecomposition as

Â = A + (λ̂− λ)I

= V DVT + (λ̂− λ)IVVT

= V DVT + V(λ̂− λ)IVT

= V
(

D + (λ̂− λ)I
)

VT ,

(3.37)

so V remains unchanged and all there is left to do, is to compute the inverse of
D̂ = D + (λ̂− λ)I in order to be able to employ Eq. 3.36 again. As D̂ is obviously a
diagonal matrix, computing it’s inverse is in O (N) and the process of optimizing for
λ (assuming that each possible value of λ requires at least one solve of Eq. 3.11) is in
O
(

N2).

Refinement and Coarsening As discussed, in [76] no technique was presented to
incorporate changes to the model into the factors of A. Thus, in the following, we look
at alternative factorizations of A which allow for exactly that.

3.2.3.3.2 Cholesky Decomposition

While in [76], a LU decomposition was proposed, we use the symmetry of A to factorize
it using the Cholesky decomposition. Not only does it save memory, because instead of
two factors for the LU decomposition, only one factor for the Cholesky decomposition
has to be stored, but also is the decomposition twice as fast. So now, we are looking to
factorize the system Matrix A as

A = LLT , (3.38)

whereas L ∈ RN×N is a lower triangular matrix. There exists a unique decomposition
of that form because A is symmetric and positive definite (see Sec. 3.2.3.1). Therefore,
we can compute the Cholesky decomposition for any grid configuration (d, l, λ). The
following methods of factorizing and updating the system matrix using the Cholesky
decomposition were implemented into SG++ in a bachelor project [89].

Offline Phase The construction of L is done stepwise by constructing the Cholesky
factors Lk ∈ Rk×k for Ak := A(1:k;1:k) with Ak ∈ Rk×k so that

Ak = LkLT
k . (3.39)
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A recursive approach is chosen, where Lk is computed using the Cholesky factor Lk−1
of Ak−1. We begin with

L1 =
(√

A11
)

. (3.40)

Obviously, L1 is a unique, invertible, and lower diagonal matrix with only positive
diagonal elements and A1 = L1LT

1 . For the recursive step, we partition Ak and Lk as

Ak =

(
Ak−1 ak

aT
k dk

)
and

Lk =

(
Lk−1 0

lT
k δk

)
.

Comparing the entries in
(

Ak−1 ak
aT

k dk

)
= Ak = LkLT

k =

(
Lk−1 0

lT
k δk

)
·
(

LT
k−1 lk
0 δk

)
=

(
Lk−1LT

k−1 Lk−1lk
lT
k LT

k−1 lT
k lk + δ2

k

)

yields

lk = L−1
k−1ak and (3.41a)

δk =
√

dk − lT
k lk . (3.41b)

Inductively, assuming that Lk−1 is a unique, invertible, and lower diagonal matrix with
only positive diagonal elements, then lk is unique. In order to show that Lk is a unique,
invertible, and lower diagonal matrix with only positive diagonal elements too, all we
need to do is show that δk from Eq. 3.41b is well defined and positive. We use that Ak
is positive definite and take xk ∈ Rk as the solution of LT

k−1xk = −lk to deduce

0 <

(
xk
1

)T
Ak

(
xk
1

)

=
(
xT

k 1
) (Lk−1LT

k−1 Lk−1lk
lT
k LT

k−1 dk

)(
xk
1

)

= xT
k Lk−1LT

k−1xk + xT
k Lk−1lk + lT

k LT
k−1xk + dk

= dk − lT
k lk .

(3.42)

In the end, we set
L := LN . (3.43)

Online Phase The tasks during the online phase are to solve the system of linear
equations Eq. 3.11 for α using the computed Cholesky factor and updating the Cholesky
factor according to the changes to the model. It is not feasible to compute the decom-
position from scratch every time the grid is adapted. Therefore, we need a way to
incorporate the changes directly into the decomposed form of A. While it is easy to
reflect those changes in A, it is not trivial to keep track of them in the decomposed
form A = LLT. All algorithms during the online phase are in O

(
N2).
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Solving the System In order to solve Eq. 3.11 for α, we calculate:

α = A−1b = (LLT)−1b = LT−1
L−1b (3.44)

in two steps:

αfw = L−1b forward substitution, (3.45a)

α = LT−1
αfw backward substitution. (3.45b)

In the serial case, both algorithms are in O
(

N2) which already speeds up the online
phase compared to solving Eq. 3.11 directly. With enough computational power at
hand, they are easily parallelized to achieve a linear runtime complexity (O (N)).

Optimizing λ With data points at hand, we are looking to find a good value for λ.
The changes reflected in Eq. 3.33 should also be applied to L:

Â = A + (λ̂− λ)I = LLT +
N

∑
j=1

vivT
i . (3.46)

The summands vivT
i are the corresponding rank-1 matrices that are added to A. To

reflect those additions in L, N rank-1 updates (for λ̂ > λ) or rank-1 downdates (for
λ̂ < λ) have to be performed, of which each is in O

(
N2). Thus, changing L after a

change of the regularization parameter is in O
(

N3), which is not feasible during the
online phase.

Thus, we need to precompute the Cholesky factorization for multiple values of λ during
the offline phase in order to be able to optimize for λ during the online phase. In [19],
it has already been observed that the factors of the LU decomposition are non-trivial to
derive after a small perturbation such as the optimization of λ presents. We conclude
that this also poses a disadvantage for the Cholesky decomposition compared to the
Eigendecomposition and the later discussed tridiagonal decomposition.

Refinement Adding a point to the grid of size Na extends A(Na) by one row and
one column, as can be seen in Eq. 3.24. We show how to construct the Cholesky
factor L(Na+1) ∈ R(Na+1)×(Na+1) of A(Na+1) directly from the Cholesky factor L(Na) ∈
RNa×Na of A(Na) [92] as:

L(Na+1) =

(
L(Na) 0

vT s

)
, (3.47)

with v ∈ RN
a and s ∈ R. This allows us to not compute the Cholesky decomposition

from scratch which is in O
(

N3
a
)

but to perform the model update in O
(

N2
a
)

for each
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new grid point instead. With Eq. 3.24, It holds that

A(Na+1) =

(
A(Na) r(Na+1)

r(Na+1)T 〈ϕNa+1, ϕNa+1〉L2
+ λ

)

=

(
L(Na) 0

vT s

)(
L(Na)

T
v

0 s

)

=

(
L(Na)L(Na)

T
L(Na)v

vTL(Na)
T

vTv + s2

)
.

(3.48)

From that, we derive:

v = L(Na)
−1

r(Na+1) , (3.49a)

s =
√
〈ϕNa+1, ϕNa+1〉L2

+ λ− vTv

=

√
〈ϕNa+1, ϕNa+1〉L2

+ λ− r(Na+1)TL(Na)
−1T

L(Na)
−1r(Na+1) .

(3.49b)

Eq. 3.49a is valid because L(Na) is invertible and for Eq. 3.49b, we need to show that

〈ϕNa+1, ϕNa+1〉L2
+ λ ≥ r(Na+1)T

L(Na)
−1T

L(Na)
−1

r(Na+1) (3.50)

so that the term under the square root does not become negative. We use Sylvester’s
law of inertia [95] to show that if Eq. 3.50 is violated, A(Na+1) would violate the positive
definite property. Since we know that there exists a Cholesky decomposition for
A(Na+1) (as well as for A(Na)), this cannot be the case and Eq. 3.50 is true.

Computing v is in O
(

N2
a
)

because we need to invert the lower triangular matrix L(Na)

and multiply r(Na+1) to it. Then, computing s is in O (Na). In total, updating the
Cholesky factor after adding one point to the grid of size Na is performed with O

(
N2

a
)

operations.

Coarsening Removing a point from the grid of size Na reduces A(Na) by one row
and one column, as can be seen in Eq. 3.29. The index of the removed grid point is
denoted with j. We show how to construct the Cholesky factor L(Na\j) ∈ R(N−1)×(N−1)

of A(Na\j) ∈ R(N−1)×(N−1) from the Cholesky factor L(Na) of A(Na). To this end, we
either permute the j-th row and column towards the first row and column until they
become the first row and column, or we permute the j-th row and column towards the
last row and column until they become the last row and column. Which direction we
choose is investigated in the following.

When permuting towards the last row/column, we are looking to reconstruct the
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Cholesky factor L(Na\j)
j→last of

A(Na\j)
j→last =




R(Na)
(1:j−1;1:j−1) R(Na)

(1:j−1;j+1:Na)
R(Na)
(1:j−1;j)

R(Na)
(j+1:Na;1:j−1) R(Na)

(j+1:Na;j+1:Na)
R(Na)
(j+1:Na;j)

R(Na)
(j;1:j−1) R(Na)

(j;j+1:Na)
R(Na)
(j;j)


+ λI(Na)

=

(
A(Na\j) v

vT R(Na)
(j;j) + λ

)
(3.51)

from L(Na) (with v =


 R(Na)

(1:j−1;j)

R(Na)
(j+1:Na;j)


). A(Na\j)

j→last is obtained from A(Na) by applying a

permutation matrix Pj→last ∈ {0, 1}Na×Na to it:

A(Na\j)
j→last = PT

j→lastA
(Na)Pj→last . (3.52)

Applying PT
j→last to L(Na) from the left results in (at most) Na− j non-zero entries above

the main diagonal. To get rid of these entries, we apply a series of givens rotations [34]
Ui to the result. Since every Ui is orthogonal, so is the product

U = ∏
i

Ui . (3.53)

We obtain the Cholesky factor L(Na\j)
j→last as

L(Na\j)
j→last = PT

j→lastL
(Na)U . (3.54)

We show, that L(Na\j)
j→last is indeed the Cholesky factor of A(Na\j)

j→last per

L(Na\j)
j→last L(Na\j)

j→last

T
= PT

j→lastL
(Na)U ·UTL(Na)

T
Pj→last

= PT
j→lastL

(Na)L(Na)
T

Pj→last

= PT
j→lastA

(Na)Pj→last

= A(Na\j)
j→last .

Finally, with Eq. 3.51 we obtain L(Na\j) by just deleting the last row and the last column
from L(Na\j)

j→last :

L(Na\j) = L(Na\j)
j→last (1:N−1;1:N−1)

. (3.55)

Alternatively to permuting the j-th row and column to the end, we can also permute it
towards the first row/column. In this case, we are looking to reconstruct the Cholesky
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factor L(Na\j)
j→first of

A(Na\j)
j→first =




R(Na)
(j;j) R(Na)

(j;1:j−1) R(Na)
(j;j+1:Na)

R(Na)
(1:j−1;j) R(Na)

(1:j−1;1:j−1) R(Na)
(1:j−1;j+1:Na)

R(Na)
(j+1:Na;j) R(Na)

(j+1:Na;1:j−1) R(Na)
(j+1:Na;j+1:Na)


+ λI(Na)

=

(
R(Na)
(j;j) + λ vT

v A(Na\j)

)
(3.56)

from L(Na) (with v =


 R(Na)

(1:j−1;j)

R(Na)
(j+1:Na;j)


). Analogous to the procedure above where

L(Na\j)
j→last is constructed with the help of the permutation matrix Pj→last and a series of

givens rotations, L(Na\j) can also be constructed through L(Na\j)
j→first by looking at the

analogous permutation matrix Pj→first and an analogous series of givens rotations.

To obtain L(Na\j), we cannot just delete the first row and first column from L(Na\j)
j→first,

because comparing the entries in
(

R(Na)
(j;j) + λ vT

v A(Na\j)

)
= A(Na\j)

j→first = L(Na\j)
j→firstL

(Na\j)
j→first

T

=

(
s 0

w L(Na\j)

)(
s wT

0 L(Na\j)T

)
=

(
s2 swT

sw wwT + L(Na\j)L(Na\j)T

) (3.57)

with s ∈ R and v, w ∈ RNa−1 yields, that

A(Na\j) = wwT + L(Na\j)L(Na\j)T
, (3.58)

which means so far, we have obtained the Cholesky factor of A(Na\j) −wwT, but not
of A(Na\j).

However, we obtain L(Na\j) by changing L(Na\j) according to what happens when
we perform a rank-1 update on A(Na\j) −wwT by adding wwT to it. We notice, that
finding an orthogonal matrix U ∈ RN×N, so that

(
L(Na\j) w

)
U =

(
L(Na\j) 0

)
(3.59)

suffices, because

L(Na\j)L(Na\j)T
=
(

L(Na\j) 0
)
·
(

L(Na\j)T

0

)

=
(

L(Na\j) w
)

U ·UT
(

L(Na\j)T

wT

)
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=
(

L(Na\j) w
)(

L(Na\j)T

wT

)

= L(Na\j)L(Na\j)T
+ wwT

= A(Na\j) .
(

L(Na\j) w
)

is a lower diagonal matrix with an additional column of non-zero el-

ements appended to it’s right. So, we construct U as a series of givens rotations
that removes those Na non-zero elements one by one. Each such a givens rotation is
expressed as an orthogonal matrix Ui ∈ RNa×Na , so the product

U = ∏
i

Ui (3.60)

is orthogonal too.

The question remains, when it is better to construct L(Na\j) via L(Na\j)
j→last and when to

construct it via L(Na\j)
j→first. In both cases, we need to construct and apply a series of givens

rotations to get rid of the non-zeros above the main diagonal in the permuted Cholesky
factor. For L(Na\j)

j→last , the number of such non-zero entries decreases the closer j is to Na.

For L(Na\j)
j→first, the number of such non-zero entries decreases the closer j is to 1, but we

also need to construct and apply the givens rotations to reflect the above mentioned
rank-1 update. To find out where the break-even point lies, we test both methods on the
example of system matrix stemming from a grid of dimension 5 and level 5 (resulting
in 1,471 grid points) and measure the execution times for coarsening each point of
that grid. For the testing platform we used the workstation specified in Sec. B.1. The
results are shown in Fig. 3.6. The first observation we make is that permuting towards
the end is more expensive for grid points of smaller index than for those of higher
index, whereas the reverse holds for permuting towards the front. Also, we observe,
that permuting towards the end of the matrix is faster independent of the index j of
the grid point in question. We postulate the theory, that this holds not only for this
grid configuration but in general. To validate this claim, we test the executing time
of coarsening the first grid points with both methods on the example of grids with
various size. In Tab. 3.1, we see that indeed, permuting towards the end is always
faster. For grid points of higher index, the execution times differ even more for the two
methods. Thus in total, we conclude that permuting towards the end is to be preferred
for all settings and we choose this technique as the default one from now on.

3.2.3.3.3 Incomplete Cholesky Decomposition

Upon close inspection of R, we note that depending on the dimension and level of the
sparse grid, for a significant number of pairs (i, j) ∈ [N]2:

Rij = 0 . (3.61)
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Figure 3.6.: Runtimes for updating the Cholesky decomposition when coarsening grid points by permut-
ing towards the front (blue curve) vs. permuting towards the end (orange curve). Permuting
towards the end is faster for grid points of all indices.
Raw data for this figure: Tab. C.5.

In fact, it holds that

Rij = 0⇔ The supports of ϕi and ϕj do not overlap . (3.62)

The ratio of zeros in R (and thus in A) grows with increasing level and fixed dimension
but decreases with increasing dimension and fixed level, as depicted in Fig. 3.4. Thus,
for lower dimensional problems, A is called sparse for higher levels of the sparse
grid. We benefit from such a sparse matrix by computing the incomplete Cholesky
decomposition [34] instead of the exact Cholesky decomposition.

To this end, we define the sparsity pattern SM of a positive matrix M ∈ RN×N as:

SM =
{
(i, j) (i, j) ∈ [N]2 , Mij > 0

}
. (3.63)

The incomplete Cholesky factorization approximates A instead of representing it
exactly:

A ≈ L̊L̊T , (3.64)

where L̊ ∈ RN×N is a sparse lower triangular matrix, which we call the incomplete
Cholesky factor. Furthermore, we set

SL̊ = {(i, j) ∈ SA i ≥ j} (3.65)
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Table 3.1.: Runtimes in seconds for updating the Cholesky decomposition when deleting the first grid
point from the grid. Permuting towards the end is always faster than permuting towards the
front for the tested grid sizes.

No. of Grid Points Runtime permuting to front Runtime permuting to end

71 2.6 · 10−5s 1.3 · 10−5s
111 6.8 · 10−5s 2.7 · 10−5s
209 2.9 · 10−4s 1.8 · 10−4s
351 8.9 · 10−4s 5.0 · 10−4s
769 4.9 · 10−3s 2.1 · 10−3s

1,471 0.017s 0.012s
2,561 0.069s 0.038s
4,159 0.14s 0.085s
5,503 0.27s 0.18s

10,625 2.0s 1.3s
18,943 5.1s 3.2s

and enforce exactness for the decomposition only at the elements of the sparsity pattern
as

∀(i, j) ∈ SL̊ : Aij
!
=
(

L̊L̊T
)

ij
=

min (i,j)

∑
k=1

L̊ik L̊jk . (3.66)

Having the sparsity pattern SL̊ already at hand, we could think about not only using it
for decreasing the computational runtime of the decomposition but also to decrease
the storage requirements of L̊ by employing sparse matrix data structures. However,
as we see in Alg. 1 and Alg. 2, a dense matrix data structure allows us to speed up
computations by employing vectorization techniques when solving Eq. 3.11 for α. Thus,
the data structures for both the Cholesky decomposition and the incomplete Cholesky
decomposition are based on dense matrices. The following methods of factorizing
and updating the system matrix using the incomplete Cholesky decomposition were
implemented into SG++ in a student project [64].

Offline Phase To solve Eq. 3.66, a fixed point iteration is employed. We use that due
to construction of SL̊ (Eq. 3.65) it holds that min {i, j} = j. Due to the symmetry of A,
we only consider the case where i ≥ j and Eq. 3.66 yields

Aij =
min{i,j}

∑
k=1

L̊ik L̊jk =
j

∑
k=1

L̊ik L̊jk =

(
j−1

∑
k=1

L̊ik L̊jk

)
+ L̊ij L̊jj . (3.67)

In case of i = j, this breaks down to

L̊ii =

√√√√Aii −
i−1

∑
k=1

L̊2
ik , (3.68a)
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and for i > j

L̊ij =

Aij −
j−1
∑

k=1
L̊ik L̊jk

L̊jj
. (3.68b)

Finally, we write the fix point iteration in p ∈N for i ≥ j as

L̊(0)
ij = Aij , (3.69a)

L̊(p+1)
ij =





√
c , i = j ,

c
L̊(p)

jj

, else,

with c = Aij −
j−1

∑
k=1

L̊(p)
ik L̊(p)

jk .

(3.69b)

Stopping criteria are either a predefined maximum number of iterations, convergence,
or sufficient approximation quality of the density estimation. In one sweep p of the fix
point iteration, the elements L̊(p)

ij can be computed in parallel. If they are computed
sequentially in a row-wise order, the incomplete Cholesky decomposition is obtained
after the first sweep.

In the worst case, the runtime complexity of the incomplete Cholesky factorization is
O
(

N3). Computationally, we only profit from this approach if
∣∣SL̊

∣∣� N2.

Online Phase The tasks during the online phase are solving the system of linear
equations Eq. 3.11 for α using the computed incomplete Cholesky factor and updating
the incomplete Cholesky factor according to model changes. Although it could be com-
putational feasible to compute the incomplete Cholesky decomposition from scratch
every time the grid is adapted, we incorporate the changes reusing the previously
computed incomplete Cholesky factor.

Solving the system To solve Eq. 3.11, we could directly employ Eq. 3.45a and
Eq. 3.45b from the Cholesky decomposition. However, since the factor itself is al-
ready just an approximation, we compute α as an approximation using a parallelized
Jacobi method [10].

For the forward substitution step, we directly use the fact that we want to access
elements of L̊ row-wise. Therefore, we use node-level parallelization as well as SIMD
vectorization as depicted in Alg. 1. In a standard backward substitution routine, the
elements of L̊ would need to be accessed column-wise, which renders the vectorization
inefficient due to the row-wise storage of the elements. Thus, we reorganize the
sequence in which the result of the backward substitution is computed by iterating
over L̊ the same way we did in the forward substitution (ref. Alg. 1) and storing
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Algorithm 1 Forward propagation with an incomplete Cholesky factor

Precondition: N is the current number of grid points
Precondition: sweeps is the number of Jacobi iterations
Precondition: L̊ is the (lower triangular) incomplete Cholesky factor of size N × N
Precondition: b is the right-hand-side of Eq. 3.11 of size N
Precondition: y is a vector of size N (initially containing zeros) were the solution of

the forward propagation is stored into

1 function FORWARDPROPAGATION(N, sweeps, L̊, b)
2 for sweep← 1 to sweeps do
3 parallel for i← 1 to N do . Node-level parallelization
4 s← 0.0
5 vectorized for j← 1 to i do . SIMD vectorization
6 s← s + L̊ij · yi

7 yi ← bi−s
Lii

8 return y

intermediary results in a vector (instead of a scalar value). In a second parallelized
loop, we then compute the final solution α of Eq. 3.11. This algorithm is depicted in
Alg. 2.

Optimizing λ When λ is changed as described in Sec. 3.2.2.3, we take the stale
incomplete Cholesky factor L̊ as an initial guess for the fix point iteration (Eq. 3.69)
[3] of ˜̊L and run it again until convergence or a sufficient accuracy is reached. The
following initialization is used instead of Eq. 3.69a:

˜̊L
(0)
ij = L̊ij . (3.70)

Refinement When adding a point to the grid of size Na per Eq. 3.24, SA(Na) is extended
and thus, so is SL̊(Na) . Now, we could just employ the techniques introduced in
Sec. 3.2.3.3.2 (Eq. 3.49) to compute L̊(Na+1) from L̊(Na). Instead, we compute the
new elements of the incomplete Cholesky factor the same way the old ones were
computed. In order to solve Eq. 3.66, it suffices to apply the fix point iteration Eq. 3.69
to the new elements of SL̊(Na+1) , because the previously computed elements of L̊(Na)

do not depend on the new ones as we see in Eq. 3.68.

Coarsening When removing a point (with index j) from the grid per Eq. 3.29, SA(Na)

is reduced and thus, so is SL̊(Na) . We have two choices:

1. Employ the techniques introduced in Sec. 3.2.3.3.2 (Eq. 3.51 or Eq. 3.56), or
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Algorithm 2 Backward propagation with an incomplete Cholesky factor

Precondition: N is the current number of grid points
Precondition: sweeps is the number of Jacobi iterations
Precondition: L̊ is the (lower triangular) incomplete Cholesky factor of size N × N
Precondition: y is a vector of size N containing the solution of the forward propagation
Precondition: α is a vector of size N (initially containing zeros) were the solution of

the backward propagation is stored into

1 function BACKWARDPROPAGATION(N, sweeps, L̊, y)
2 for sweep← 1 to sweeps do
3 s← {0.0}N . Initialize s as N-dimensional vector containing zeros
4 parallel for i← 1 to N do . Node-level parallelization
5 vectorized for j← 1 to i do . SIMD vectorization
6 sj ← sj + L̊ij · αi

7 parallel for i← 1 to N do . Second (node-level) parallel for-loop
aggregating the results

8 αi ← yi−sk
Lii

9 return α

2. drop all the columns j . . . Na from L̊(Na) and recompute them according to Eq. 3.68
and the new SL̊(Na\j) .

Especially when removing multiple points from the grid, the second option is faster
when we directly remove all the columns from the end up to the smallest j.

3.2.3.3.4 Tridiagonal Decomposition

With the tridiagonal decomposition [34], we are looking to factorize A as

A = QTQT , (3.71)

with Q ∈ RN×N being orthogonal and T ∈ RN×N being a symmetric, tridiago-
nal matrix. Such a decomposition exists for every quadratic and symmetric ma-
trix, A obviously fulfills those criteria. This decomposition is derived from the QR-
decomposition

A = QR , (3.72)

where the Hessenberg-matrix R ∈ RN×N is of upper-triangular form with an additional
sub-diagonal. Due to the symmetry of A, applying Q also from the right (after obtaining
it) conserves the previously obtained zeros on the lower triangular part of the matrix,
yielding T = RQT.

We choose the tridiagonal decomposition, because we desire an easy way to compute
α = A−1b later. Thus, for all steps of the process, we keep in mind that we always
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require an efficient algorithm to obtain A−1. The following methods of factorizing and
updating the system matrix using the tridiagonal decomposition were implemented
into SG++ in a bachelor project [14].

Offline Phase There exist multiple methods to compute the orthogonal factor Q:

1. The Gram-Schmidt process [34],

2. Givens rotations [34],

3. or Householder transformations [48].

We chose the latter one, because it possesses a good numeric stability.

First, the reflection matrix H1 is computed to reflect the first column of A onto a
multiple of a unit vector. In the following, Hi is computed to reflect the ith column of
(Hi−1 . . . H1A)i:N;i:N until i = N − 2. Since all Hi are orthogonal, so is the product

Q :=
N−2

∏
i=1

Hi , (3.73)

and
T := QTAQ . (3.74)

With Q and T at hand, we notice that computing the inverse A−1 is inexpensive:

A−1 =
(

QTQT
)−1

=
(

QT
)−1

T−1Q−1 = QT−1QT , (3.75)

so in order to obtain A−1, we only need to invert T. This is achieved by solving N
equations

Txi = ei ∀i ∈ [N] , (3.76)

whereas xi ∈ RN denotes the ith column of T−1. Due to the symmetric and tridiagonal
properties of T , each Eq. 3.76 takes O (N), so the inverse is obtained in O

(
N2).

Online Phase During the online phase, the system of linear equations Eq. 3.11 is
solved for α using the inverse of the tridiagonal decomposition as well as updating the
factorization according to changes to the model. It is not feasible to compute and invert
the decomposition from scratch every time the grid is adapted. We present a method
that allows us to optimize λ at the beginning of the learning process in the online
phase without having to recompute the factorization from scratch for each possible
value of λ. After that, we are able to perform refinement and coarsening on the grid
by computing additive factors for the inverse of the previously obtained triangular
decomposition. With A−1 always at hand, we are able to solve Eq. 3.11 for α anytime
using matrix-vector product routines. Again, all algorithms during the online phase
are in O

(
N2).
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To help with the notation of the changes to the model, we define A−1
orig→k ∈ Rk×k as

the original inverted system matrix A−1 = QT−1QT of size N × N extended to size
k× k, k ≥ N and filled up with zeros at the additional entries. After na grid points have
been added to the original N grid points and Na = N + na, we are looking to hold the
inverse of A(Na) as

A(Na)
−1

= A−1
orig→Na

+ Bna , (3.77)

whereas Bna ∈ RNa×Na and B0 = 0.

Solving the System With the grid currently consisting of Na = N + na points, to
solve Eq. 3.11 for α, we compute

α =
(

A−1
orig→Na

+ Bna

)
b = A−1

orig→Na
b + Bna b , (3.78)

which consists of several matrix-vector products and is thus in O
(

N2).

Optimizing λ As soon as data points are at hand, λ is tuned to find a good balance
between fitting the model to the data, but not overfitting to it. The changes reflected in
Eq. 3.33 should also be applied to the factors of the tridiagonal decomposition:

Â−1 =
(

A + (λ̂− λ)I
)−1

=
(

QTQT + (λ̂− λ)I
)−1

=
(

QTQT + (λ̂− λ)IQQT
)−1

=
(

QTQT + Q(λ̂− λ)IQT
)−1

=
(

Q
(

T + (λ̂− λ)I
)

QT
)1

=
(

QT
)−1 (

T + (λ̂− λ)I
)−1

Q−1

= Q
(

T + (λ̂− λ)I
)−1

QT .

(3.79)

Thus, the factor Q remains untouched and we only need to modify the diagonal entries
of T as

T̂ := T + (λ̂− λ)I . (3.80)

As T̂ remains a symmetric, tridiagonal matrix, computing it’s inverse is still in O
(

N2)

(ref. Eq. 3.76). In order to evaluate the quality of the new regularization term, Eq. 3.11
is solved for α by computing

α = QT̂−1QTb , (3.81)

which is achieved in O
(

N2) as well. Those steps are repeated as often as necessary
with the total process taking O

(
N2) operations as required for the online phase.
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Refinement Originally having started with a grid of N points, we assume that we
have already added na (with Na = N + na) additional points and are now looking to
add the (na + 1)th point. This new addition extends A(Na) by one row and one column,
as depicted Eq. 3.24. A(Na+1) is expressed as a combination of two rank-1 updates as

A(Na+1) =

(
A(Na) r(Na+1)

r(Na+1)T 〈ϕNa+1, ϕNa+1〉L2
+ λ− 1 + 1

)

=

(
A(Na) 0

0 1

)
+ r′(Na+1)eT

Na+1 + eNa+1r′(Na+1)T
,

(3.82a)

with

r′(Na+1) ∈ RNa+1 ,

r′(Na+1)
i :=





r(Na+1)
i , 1 ≤ i ≤ Na ,
〈ϕNa+1,ϕNa+1〉L2

+λ−1
2 , i = Na + 1 .

(3.82b)

In order to incorporate those two outer product summands into the model, the Sher-
man–Morrison formula [88] is used (twice):

Theorem 3.2.2 (Sherman–Morrison formula)
For M ∈ Rn×n and u, v ∈ Rn,

(
M + uvT) is invertible if and only if 1 + vTM−1u 6=

0. Then, it holds
(

M + uvT
)−1

= M−1 + W (3.83a)

with

W ∈ Rn×n, W := −M−1uvTM−1

1 + vTM−1u
. (3.83b)

So, the factors Bna of Eq. 3.77 are computed inductively with Eq. 3.83 so that Eq. 3.77 al-
ways holds. For the na + 1th additional point, we first obtain B′na+1 ∈ R(N+na+1)×(N+na+1)

from Bna reflecting the first addition in Eq. 3.82a and then obtain Bna+1 from B′na+1
reflecting the second addition in Eq. 3.82a.

M in Eq. 3.83 needs to be invertible, thus we artificially added a 1 at the new diagonal
element of the extended system matrix in Eq. 3.82a and subtract it again via r′(Na+1)

Na+1 in
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Eq. 3.82b. We now look at its inverse:

(
A(Na) 0

0 1

)−1

=

(
A(Na)

−1
0

0 1

)

=




A−1
orig→Na

+ Bna

0
...
0

0 · · · 0 1


 = A−1

orig→Na+1 +

(
Bna 0
0 1

)

︸ ︷︷ ︸
:=B̃na

.
(3.84)

Now, we handle the first of the two additions
(

A(Na) 0
0 1

)
+ r′(Na+1)eT

Na+1 per Eq. 3.83

like
((

A(Na) 0
0 1

)
+ r′(Na+1)eT

Na+1

)−1

=A−1
orig→Na+1 + B̃na −

(
A−1

orig→Na+1 + B̃na

)
r′(Na+1)eT

Na+1

(
A−1

orig→Na+1 + B̃na

)

1 + eT
Na+1

(
A−1

orig→Na+1 + B̃na

)
r′(Na+1)

︸ ︷︷ ︸
:=B′na+1

,

and we write B′na+1 as

B′na+1 = B̃na −

(
A−1

orig→Na+1r′(Na+1) + B̃nar′(Na+1)
)



=0︷ ︸︸ ︷
eT

Na+1A−1
orig→Na+1 +eT

Na+1B̃na




1 + eT
Na+1A−1

orig→Na+1r′(Na+1)

︸ ︷︷ ︸
=0

+eT
Na+1B̃nar′(Na+1)

= B̃na −

(
A−1

orig→Na+1r′(Na+1) + B̃nar′(Na+1)
)

eT
Na+1B̃na

1 + eT
Na+1B̃nar′(Na+1)

. (3.85)

For the second addition
((

A(Na) 0
0 1

)
+ r′(Na+1)eT

Na+1

)
+ eNa+1r′(Na+1)T

of Eq. 3.82a,

we continue with
(((

A(Na) 0
0 1

)
+ r′(Na+1)eT

Na+1

)
+ eNa+1r′(Na+1)T

)−1

=A−1
orig→Na+1 + B′na+1 −

(
A−1

orig→Na+1 + B′na+1

)
eNa+1r′(Na+1)T (

A−1
orig→Na+1 + B′na+1

)

1 + r′(Na+1)T (A−1
orig→Na+1 + B′na+1

)
eNa+1

︸ ︷︷ ︸
:=Bna+1

,
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and we write Bna+1 as

Bna+1 = B′na+1

−




=0︷ ︸︸ ︷
A−1

orig→Na+1eNa+1 +B′na+1eNa+1







=
(

A−1
orig→Na+1r′(Na+1)

)T

︷ ︸︸ ︷
r′(Na+1)T

A−1
orig→Na+1 +r′(Na+1)T

B′na+1




1 + r′(Na+1)T
A−1

orig→Na+1eNa+1
︸ ︷︷ ︸

=0

+r′(Na+1)TB′na+1eNa+1

= B′na+1 −
B′na+1eNa+1

((
A−1

orig→Na+1r′(Na+1)
)T

+ r′(Na+1)T
B′na+1

)

1 + r′(Na+1)TB′na+1eNa+1

. (3.86)

We benefit from the last rearrangement in Eq. 3.86 computationally, because A−1
orig→Na+1 ·

r′(Na+1) has already been computed in Eq. 3.85. Thus, all we need to compute for the

second addition is r′(Na+1)T
B′na+1.

In total, we showed that the inverse of A(Na) can be partitioned as depicted in Eq. 3.77.
The computations we need to undertake in Eq. 3.85 and Eq. 3.86 are matrix-vector
products, which are computed in O

(
N2

a
)
.

Coarsening Originally having started with a grid of N points, we assume that we
have already added na (with Na = N + na) additional points and are now looking to
remove the grid point with index j. This removal shrinks A(Na) by one row and one
column, as depicted Eq. 3.29. We define A′(Na\j) ∈ RNa×Na as

A′(Na\j) :=




A(Na)
(1:j−1;1:j−1) 0 A(Na)

(1:j−1;j+1:Na)

0 1 0
A(Na)
(j+1:Na;1:j−1) 0 A(Na)

(j+1:Na;j+1:Na)


 (3.87)

and are looking to obtain A(Na\j) via A′(Na\j) per

A(Na\j) =


 A′(Na)

(1:j−1;1:j−1) A′(Na)
(1:j−1;j+1:Na)

A′(Na)
(j+1:Na;1:j−1) A′(Na)

(j+1:Na;j+1:Na)


 . (3.88)

Similar to Eq. 3.82, A′(Na\j) is also expressed as a combination of two rank-1 updates
per

A′(Na\j) = A(Na) − r′(Na\j)eT
j − ejr′(Na\j)T

, (3.89a)
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with

r′(Na\j) ∈ RNa ,

r′(Na\j)
i :=





〈
ϕi, ϕj

〉
L2

, i 6= j ,
〈ϕj,ϕj〉L2

+λ−1

2 , i = j .

(3.89b)

To perform those two subtractions, we are going to use the Sherman-Morrison formula
[88] (twice) again (Eq. 3.83) to reflect the update on the inverse of A(Na) by defining an
additive component Bna\j ∈ RNa×Na such that:

A′(Na\j)−1
= A−1

orig→Na
+ Bna\j . (3.90)

However, a rank-1 update affecting rows and columns in the original system matrix
A is not feasible, as it would require a complete recomputation of the decomposition
of A(Na\j) because A−1 (and A) are only available in decomposed form. Thus, we can
only remove points from the grid, whose information is solely stored in Bna . Those
are points that have been previously added during a refinement step. Points that
have originally been in the grid cannot be coarsened in O

(
N2) when employing the

tridiagonal decomposition. So for now, we require that

j
!
> N . (3.91)

For removing the point with index j, we first obtain B′na\j ∈ RNa×Na from Bna reflecting
the first subtraction in Eq. 3.89a and then obtain Bna\j from B′na\j reflecting the second
subtraction in Eq. 3.89a.

Again, M in Eq. 3.83 needs to be invertible, which is why in the definition of A′(Na\j)

(Eq. 3.87) the value of 1 is forced at the jth diagonal entry, which is then constructed
via the definition of r′(Na\j)

j in Eq. 3.89b.

Let’s first see how to handle the first subtraction of A(Na) − r′(Na\j)eT
j in Eq. 3.89a per

Eq. 3.83, knowing that A(Na)
−1

= A−1
orig→Na

+ Bna holds (Eq. 3.77):

(
A(Na) − r′(Na\j)eT

j

)−1

=A−1
orig→Na

+ Bna +

(
A−1

orig→Na
+ Bna

)
r′(Na\j)eT

j

(
A−1

orig→Na
+ Bna

)

1− eT
j

(
A−1

orig→Na
+ Bna

)
r′(Na\j)

︸ ︷︷ ︸
:=B′na\j

,
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and we write B′na\j as

B′na\j = Bna +

(
A−1

orig→Na
r′(Na\j) + Bnar′(Na\j)

)



=0︷ ︸︸ ︷
eT

j A−1
orig→Na

+eT
j Bna




1− eT
j A−1

orig→Na
r′(Na\j)

︸ ︷︷ ︸
=0

−eT
j Bnar′(Na\j)

= Bna +

(
A−1

orig→Na
r′(Na\j) + Bnar′(Na\j)

)
eT

j Bna

1− eT
j Bnar′(Na\j)

. (3.92)

The second subtraction of
(

A(Na) − r′(Na\j)eT
j

)
− ejr′(Na\j)T

in Eq. 3.89a then follows
as

((
A(Na) − r′(Na\j)eT

j

)
− ejr′(Na\j)T)−1

=A−1
orig→Na

+ B′na\j +

(
A−1

orig→Na
+ B′na\j

)
ejr′(Na\j)T (

A−1
orig→Na

+ B′na\j

)

1− r′(Na\j)T (A−1
orig→Na

+ B′na\j

)
ej

︸ ︷︷ ︸
:=Bna\j

and we write Bna\j as

Bna\j = B′na\j +




=0︷ ︸︸ ︷
A−1

orig→Na
ej +B′na\jej







=
(

A−1
orig→Na r′(Na\j)

)T

︷ ︸︸ ︷
r′(Na\j)T

A−1
orig→Na

+r′(Na\j)T
B′na\j




1− r′(Na\j)T
A−1

orig→Na
ej

︸ ︷︷ ︸
=0

−r′(Na\j)TB′na\jej

= B′na\j +

B′na\jej

((
A−1

orig→Na
r′(Na\j)

)T
+ r′(Na\j)T

B′na\j

)

1− r′(Na\j)TB′na\jej

. (3.93)

We benefit from the last rearrangement in Eq. 3.93 computationally, because A−1
orig→Na

·
r′(Na\j) has already been computed in Eq. 3.92. Thus, all we need to compute for the

second addition is r′(Na\j)T
B′na\j. The computations we need to undertake in Eq. 3.85

and Eq. 3.86 are matrix-vector products, which are obtained in O
(

N2
a
)
.

Bna\j’s jth row and column are now zero except for the jth diagonal element, which is
1. Also, A−1

orig→Na
’s jth row and column are zero in all elements, thus deleting the jth
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row and column from it directly yields A−1
orig→Na−1. So, we construct Bna−1 from Bna\j

by setting

Bna−1 :=

(
Bna\j(1:j−1;1:j−1)

Bna\j(1:j−1;j+1:Na)

Bna\j(j+1:Na;1:j−1)
Bna\j(j+1:Na;j+1:Na)

)
(3.94)

and obtain A(Na\j)−1
as

A(Na\j)−1
= A−1

orig→Na−1 + Bna−1 =: A(Na−1)−1
. (3.95)

For the refinement and coarsening process, it is now irrelevant which kind of model
update (refinement or coarsening) has last been applied. A−1

orig→Na
+ Bna is used

transparently by both methods as stale inverse of the system matrix from which to
perform the update. The partitioning of the inverse of A(Na) as depicted in Eq. 3.77
always holds.

3.2.3.3.5 Comparison of the Matrix Decomposition Methods

When employing the offline/online scheme for grid-based density estimation, the
choice of the matrix decomposition technique depends on the scope of operation as
well as the asymptotic complexity and the concrete runtime of the algorithms. Both
aspects are discussed in the following paragraphs.

Feature Comparison A feature-wise comparison of the introduced matrix decompo-
sition methods is shown in Tab. 3.2. Of the presented matrix decomposition methods,
all allow for a solve of Eq. 3.11 for α in quadratic time, which was the motivation to
factorize A in the first place. In all cases, the solve is optionally parallelized given a
suitable hardware platform.

The factorization of the matrix in the offline phase has cubic complexity for all decompo-
sition techniques except for incomplete Cholesky, which provides the factor in quadratic
time. However, since the incomplete Cholesky decomposition only approximates the
Cholesky factor, subsequently performing forward and backward substitution to obtain
α also yields only an approximation and not the exact solution.

Looking at spatial adaptivity, the eigendecomposition does not allow for the grid to
be changed. Basing the model only on an a priori, dataset independent grid does
not yield good results, which is why this decomposition is not feasible to use in the
context of grid-based density estimation. All other techniques support grid adaptivity,
whereat the coarsening of grid points with the tridiagonal decomposition is limited to
points that have previously been added to the model in a refinement step. Thus, points
from the initial a priori grid cannot be removed from the model when employing the
tridiagonal decomposition.
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Eigen Cholesky
Incomplete
Cholesky

Tridiagonal

Exactness of
Decomposi-

tion
3 3 7 3

Complexity of
Factorization

O
(

N3) O
(

N3) O
(

N2) O
(

N3)

Complexity of
Solve for α

O
(

N2) O
(

N2) O
(

N2) O
(

N2)

Solve for α

parallelizable
3 3 3 3

Complexity of
optimizing λ

O
(

N2) O
(

N3) O
(

N2) O
(

N2)

Complexity of
adding one
point to the

grid

O
(

N3) O
(

N2) O
(

N2) O
(

N2)

Complexity of
removing one
point from the

grid

O
(

N3) O
(

N2) O
(

N2)
O
(

N2) for
points previ-
ously added to
the grid

Table 3.2.: Comparison of the matrix factorization techniques used to handle the batch-wise grid-based
density estimation.
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Figure 3.7.: Runtime comparison for factorizing the system matrix for the presented matrix decompo-
sition techniques. For smaller grids, factorizing the matrix with the incomplete Cholesky
decomposition is slowest, but the contrary is true for larger grids. Due to exploiting the
symmetric and positive definite attributes of the linear system, obtaining the Cholesky
decomposition is faster than obtaining the LU decomposition and obtaining the tridiagonal
decomposition is faster than obtaining the eigendecomposition.
Raw data for this figure: Tab. C.6.

Optimizing the regularization parameter λ is performed in linear time with the eigen-
decomposition, though the quadratic complexity of the tridiagonal and the incomplete
Cholesky decomposition are also acceptable for this step of the online phase. Only
with the Cholesky decomposition, the regularization parameter λ cannot be efficiently
optimized.

Runtime Comparison In the following, we compare the runtimes of the presented
decomposition techniques for the different tasks of factorizing the matrix, solving the
system and modifying the decomposition. All tests were executed on the workstation
platform (ref. Sec. B.1).

Factorizing the Matrix The runtimes for factorizing the matrix with each of the pre-
sented decomposition techniques is shown in Fig. 3.7 for different grid configurations.
For the decomposition itself, only the number of grid points rather than the dimen-
sionality and level are of importance for the runtime. We observe that the Cholesky
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Figure 3.8.: Runtime comparison for solving the linear system. Solving with the incomplete Cholesky
decomposition is slowest for small grid but quickly becomes the fastest methods with
increasing grid size. Among the other techniques, solving with the eigendecomposition is
fastest with the other methods not far behind.
Raw data for this figure: Tab. C.7.

decomposition runs approximately twice as fast than its legacy partner, the LU de-
composition. We already expected this, because with the Cholesky decomposition,
we exploit that the system matrix is symmetric and positive definite which the LU
decomposition does not. Also, we observe that the tridiagonal decomposition is ob-
tained approximately twice as fast than its legacy partner, the eigendecomposition,
which is also the case due to exploiting the symmetry of the matrix. However, we
also see that all those four techniques grow with the same rate. Only the incomplete
Cholesky decomposition grows with a smaller rate. For a small number of grid points,
it performs worse than the counterparts because the iterative scheme introduces some
computational overhead. However, with increasing grid size it quickly becomes faster
than all other techniques, making it a good choice if obtaining a decomposition fast is
the priority.

Solving the System The runtimes for solving the system with the matrix already
factorized is shown in Fig. 3.8. While the runtimes fluctuate for small grids, the asymp-
totic runtime for increasing grid size becomes apparent soon. Again, the incomplete
Cholesky decomposition is slowest for small grids but outperforms the other tech-
niques with increasing grid size as expected. Among the exact methods, solving the
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(a) Varying the number of new grid points.
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(b) Varying the number of initial grid points.

Figure 3.9.: Runtime comparison for matrix decomposition update after refinement. In the first scenario
(Subfig. a), the initial grid consists of 769 grid points and we vary the number of points
being added to the grid. The incomplete Cholesky decomposition is updated fastest, but
the Cholesky decomposition still beats the tridiagonal decomposition by far. The same is
observed in the second scenario (Subfig. b), where we refine grids of different initial size by
adding 103 new points and measuring the runtimes for updating the decompositions again.
Raw data for this figure: Tab. C.8 and Tab. C.9.

system with the eigendecomposition is fastest with the other methods not far behind.
In total, the time spent for solving the system is so small for all implemented decompo-
sition techniques that it is insignificant compared to constructing the right-hand side of
the equation when processing a data batch.

Refinement Runtime measurements for updating the matrix decomposition after
the grid has been refined are shown in Fig. 3.9. Of course, only the three techniques
supporting grid adaptivity are under investigation. We compare two setups: In the
first setup (Fig. 3.9a) the size of the initial grid is fixed (769 grid points) and we vary the
number of grid points that are being added to the grid. In the second setup (Fig. 3.9a)
the number of points being added corresponds to 103 for different initial grid sizes.
We observe that the incomplete Cholesky decomposition is updated fastest, whereas
the Cholesky decomposition comes second before the tridiagonal decomposition. For
all tested grid layouts and decomposition methods, the runtimes are feasible to invest
during the online phase. However, the asymptotic increase of the runtimes raises the
expectation that updating the tridiagonal decomposition is costly to execute for grids
with several thousands of grid points.
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Figure 3.10.: Runtime comparison for matrix decomposition update after coarsening. The size of the
initial grid is fixed to 809 grid points and we vary the number of grid points that are being
removed from the grid. As for refinement, updating the incomplete Cholesky decomposi-
tion is fastest because we only need to delete the according row and column from the factor.
For the exact decompositions, the update for the Cholesky decomposition is significantly
faster than the update to the tridiagonal decomposition.
Raw data for this figure: Tab. C.10.

Coarsening We measure the runtimes of updating the decomposition after removing
various numbers of grid points from a grid of initial size 809 and display them in
Fig. 3.10. Again, the tests are limited to the methods supporting coarsening. The
indices of the points to be coarsened are chosen randomly, but we limit ourselves to
grid points that have previously been added to the grid. Thereby, we can also run the
update for the tridiagonal decomposition, which only supports to coarsen these points.
Updating the incomplete Cholesky decomposition after a refinement means to just
remove the corresponding row and column from the factor which is why this method
is fastest by several orders of magnitude. For the other two, the picture is similar to
the refinement experiments: Updating the Cholesky decomposition is significantly
faster than updating the tridiagonal decomposition. Both methods still achieve feasible
runtimes to be employed during the online phase. For larger grids, updating the
tridiagonal decomposition is expensive and needs to be considered carefully when
configuring the adaptivity settings.
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3.2.4. Conclusions

We proposed an incremental learning scheme that allows to employ spatial adaptivity
in-between learning data batches. Applying this scheme results in explainable models
of the data. Also, we showed how to employ matrix decomposition techniques that
allow to be updated after model adaptions. This enables us to use the offline/online
scheme together with spatial adaptivity. Thus, we successfully removed the crucial
obstacle which prevented the use of the offline/online scheme for problems that require
to be adapted to the model at runtime. Note, that those problems could have been
tackled before by employing the conjugate gradients technique (ref. Sec. 3.2.3.2),
but with far worse runtimes as the comparisons in [76] show. Also, we could have
tackled them with regular sparse grids, whereupon the accuracy would have been
unsatisfactory. Combining spatial adaptivity with the offline/online scheme now
enables us to approximate the density of such datasets with sparse grids both fast and
accurate.

3.3. Classification

Another common task in data mining is classification, where we predict the labels
of previously unseen data points after training with a set of pre-labeled data. For a
discrete set of classes K, the countable training dataset is given by

M⊂ Ω×K (3.96)

where for (x, y) ∈ M, y is denoted the label of x. The classifier we are looking to learn
fromM is

cM : Ω→ K . (3.97)

One of the oldest methods to solve this problem are decision trees, but other methods
have proven to perform well in different scenarios such as support vector machines
[15], logistic regression [101] or kernel estimators [72]. Most notably, neural networks
[66] in various facets have gained huge attention in both science and industry in recent
years. To perform classification, we build up on top of the density estimation discussed
in Sec. 3.2 and employ the Bayes classifier [40]. The idea is to estimate the density of
each class separately and then use the maximum a posteriori rule to pick the class of an
unclassified sample. In itself, this method is independent of the specific technique used
to construct the density estimations. Thus, on the first glance, for the construction of
the classifier as we provide it in Sec. 3.3.1, it is inconsequential that we employ sparse
grids for the density estimation. However, when it comes to adapting the classifier to
the problem, the sparse grid structure is of advantage, as we see in Sec. 3.3.2.
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3.3.1. Density Estimation based Bayes Classifier

For our work, we look at the Bayes classifier [68], which has been proven to minimize
the probability of misclassified data [22]. Therefore, we state Bayes’ theorem:

Theorem 3.3.1 (Bayes’ theorem)
For events A and B, the conditional probability P(A|B) is given by:

P(A|B) = P(B|A)P(A)

P(B)
. (3.98)

This allows us to write the Bayes classifier as

cM(x) = arg max
y∈K

P(y|x) = arg max
y∈K

P(x|y)P(y)
P(x)

. (3.99)

As P(x) is independent of y and we are only interested in the arg max over y, we
simplify Eq. 3.99 further to

cM(x) = arg max
y∈K

P(x|y)P(y) . (3.100)

With the density estimation method presented in Sec. 3.2, the conditional probability
P(x|y) is estimated for each class by separatingM like

My := {x (x, y) ∈ M} (3.101)

into the sub-training datasets for each class y and calculating P(x|y) := fy(x) withMy
as defined in Eq. 3.5. The prior is obtained via P(y) :=

∣∣My
∣∣, so our density based

classification develops from Eq. 3.100 to

cM(x) = arg max
y∈K

fy(x) ·
∣∣My

∣∣ . (3.102)

cM(x) is the class label returned at point x. We call this class also the dominant class at
this point.

We emphasize the many-grid setup of the classifier. For each class y, a separate
grid-based density estimation and thus, a separate grid is constructed. In total, the
classification model consists of |K| grids and for each grid the corresponding system
matrix, its decomposition, the right-hand side, and the sparse grid solution αy.

This many-grid setup is key for our construction of an explainable classifier. We already
discussed that the grid-based density estimations obtained for each class allow for
a transparent data model. With the Bayes classifier building up on that, its result is
explainable on both levels of its structure – the individual classes represented by a
grid-based density estimation for each class and the relation of the classes via the
minimum-risk criterion.
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In order to employ a batch learning scheme, the methods presented in Sec. 3.2.1 are
employed for each fy and the models are then adapted according to Sec. 3.2.2. The entire
learning process for the batch-wise classification is shown in Alg. 3. The evaluation of

Algorithm 3 Batch-wise classification with grid-based density estimation

Precondition: Mk ⊂ Ω×K is the countable, labeled training dataset for batch k

1 function TRAINCLASSIFIER

2 Assemble A from Eq. 3.13 with given a priori grid configuration
3 decomp← Factorize A according to the desired decomposition method
4 for all classes y do
5 decompy ← decomp
6 numSamplesy ← 0

7 for all batches k do
8 RetrieveMk
9 for all classes y ∈ K do

10 Mk,y ←
{

x
∣∣(x, y) ∈ Mk

}

11 if k = 1 then
12 λ← Result of the optimization of the regularization parameter for fy

according to Sec. 3.2.2.3
13 Update Eq. 3.11 according to the new λ

14 bk,y ← Compute the right-hand-side of Eq. 3.11 withMk,y per Eq. 3.25
15 αk,y ← Solution of Eq. 3.11 with bk,y per Sec. 3.2.3
16 numSamplesy ← numSamplesy +

∣∣Mk,y
∣∣

17 Model changes: Identify model changes for all fy under simultaneous con-
sideration of all αk,y . This step is discussed in detail in
Sec. 3.3.2

18 for all classes y do
19 Incorporate model changes into Eq. 3.11 per Sec. 3.2.2
20 Modify decompy according to Sec. 3.2.3.3

a classifier trained this way is depicted in Alg. 4. For class y, the grid associated with it
is denoted with Gy and the surpluses associated with it as αy. py,i is the ith grid point
in Gy and αy,i is the surplus at py,i.

3.3.2. Refinement for Classification

Just as for density estimation, we want the model to adapt to the dataset also in classi-
fication. Whereas we had only one sparse grid as model for building the probability
density estimator, in the classification setting with K classes, the model consists of K
probability density functions, one for each class. Thus, the refinement indicators we
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Algorithm 4 Evaluation of the Bayes classifier

Precondition: K are the class labels
Precondition: x ∈ Ω is the data point to be classified
Precondition: fy is the probability density function for class y
Precondition: numSamplesy are the number of samples processed for each class y

1 function EVALUATECLASSIFIER

2 bestClass← null
3 bestValue←−∞
4 for all classes y ∈ K do
5 classValuey ← fy(x) · numSamplesy
6 if classValuey > bestValue then
7 bestClass← y
8 bestValue← classValuey

return bestClass

employed for density estimation (ref. Sec. 3.2.2.1) are not applicable to the classification
setting.

The goal of refining the model is to increase the classification accuracy, which means,
reducing the number of misclassified points. Thus, we want to search for areas in Ω
where we can improve the accuracy by refining grid points. Those areas are the ones
where Eq. 3.102 yields close values to the dominant class also for other classes, thus
areas where

∃y′ ∈ K with y′ 6= y := cM(x) : fy(x) ·
∣∣My

∣∣ ≈ fy′(x) ·
∣∣∣My′

∣∣∣ , (3.103)

which cover also the areas where the dominant class change, thus small connected
ω ⊂ Ω where

∃x1, x2 ∈ ω : cM(x1) 6= cM(x2) . (3.104)

To obtain refinement candidates, we are looking to score all leaf grid points of all classes.
A leaf grid point is a grid point, whose children are not yet all contained in the grid. As
a result, the grid points with the highest scores are the best refinement candidates.

Collecting Geometric Neighbors The obvious idea to find viable ω from Eq. 3.104
is to directly look at neighboring grid points and check if the dominant class changes
between the two. When the dominant class changes between two neighboring grid
points, to better localize the exact boundary of the class change, we add the grid point
in between those two points. Because the individual grids of the classes may diverge
during the course of our batch learning process, to simplify notation and computation,
we define the union of the grids from all classes:

Gtotal :=
⋃

y∈K
Gy . (3.105)
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Figure 3.11.: Geometric neighbor relations in a two-dimensional spatially adaptive sparse grid. The 18
neighbor relations involving two grid points are marked with continuous arrows, whereas
the 24 relations involving a grid point and a boundary projection point are marked with
dotted arrows.

Every grid point has exactly two neighbors in each dimension. The geometric neighbor
relations at the example of a two-dimensional sparse grid are visualized in Fig. 3.11.
N being the number of grid points implies that the number of neighbor relations is in
O (N · d). If two grid points are neighbors of each other, one of those points is refinable
in the direction of the other but not vice versa. The point that is refinable is called leaf
in this direction. To iterate through all possible neighbor relations, we thus look at the
leaf grid points (those are the ones that are refinable after all) and add their respective
children in directions of dominant class changes. In Alg. 5, the iteration through the
sparse grid and the collection of neighbor relation candidates is depicted.

Algorithm 5 Refinement for classification

Precondition: d ∈N is the dimensionality
Precondition: Gtotal ⊂ Gd is the sparse grid from Eq. 3.105
Precondition: cM is the classifier
Precondition: refinementCandidates[y] is the list of refinement candidates for class y

1 function INITIALIZENEIGHBORS(d)
2 rootLevel← {1}d

3 rootIndex← {1}d

4 initialNeighbors← ∅
5 for j← 1 to d do
6 level← copyOf(rootLevel)
7 level[j]← 0
8 leftIndex← copyOf(rootIndex)
9 leftIndex[j]← 0

10 rightIndex← copyOf(rootIndex)
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11 initialNeighbors(j, left)← (level, leftIndex)
12 initialNeighbors(j, right)← (level, rightIndex)

return initialNeighbors

13 function ADAPTNEIGHBORS(neighbors, j, newLevel, newIndex)
14 newNeighbors← copyOf(neighbors)
15 for all neighbor ∈ newNeighbors do
16 neighbor.level[j]← newLevel
17 neighbor.index[j]← newIndex

return newNeighbors

18 function PROCESSNEIGHBORS(leafPoint, neighborPoint, j, y)
19 classLeaf← cM(coord(leafPoint))
20 classNeighbor← cM(coord(neighborPoint))
21 if classLeaf 6= classNeighbor then
22 score← SCORE(leafPoint, neighborPoint, classLeaf, classNeighbor)
23 refinementCandidates[classLeaf].add(score, leafPoint, j, y)
24 refinementCandidates[classNeighbor].add(score, leafPoint, j, y)

25 function STEPDOWN(d, minDim, gridPoint, neighbors)
26 for j← 1 to d do
27 newLevel← gridPoint.level[j] +1
28 leftIndex← 2 · gridPoint.index[j]− 1
29 rightIndex← 2 · gridPoint.index[j] + 1
30 leftChild← copyOf(gridPoint)
31 leftChild.level[j]← newLevel
32 leftChild.index[j]← leftIndex
33 if leftChild /∈ Gtotal then
34 PROCESSNEIGHBORS(gridPoint, neighbors(j, left), j, ”left”)
35 else if j ≥ minDim then
36 leftNeighbors←ADAPTNEIGHBORS(neighbors, j, newLevel, leftIndex)
37 leftNeighbors(j, right))← gridPoint
38 leftNeighbors(j, left)← neighbors(j, left)
39 STEPDOWN(d, j, leftChild, leftNeighbors)

40 rightChild← copyOf(gridPoint)
41 rightChild.level[j]← newLevel
42 rightChild.index[j]← rightIndex
43 if rightChild /∈ Gtotal then
44 PROCESSNEIGHBORS(gridPoint, neighbors(j, right), j, ”right”)
45 else if j ≥ minDim then
46 rightNeighbors←ADAPTNEIGHBORS(neighbors, j, newLevel, rightIndex)
47 rightNeighbors(j, left))← gridPoint
48 rightNeighbors(j, right)← neighbors(j, right)
49 STEPDOWN(d, j, rightChild, rightNeighbors)
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Figure 3.12.: Iteration through a two-dimensional spatially adaptive sparse grid. Every grid point is
reached via exactly one path starting with root2.

50 function SCOREALLNEIGHBORRELATIONS

51 initialNeighbors← INITIALIZENEIGHBORS(d)
52 rootPoint←

(
{1}d , {1}d

)

53 STEPDOWN(d, 1, rootPoint, initialNeighbors)

The algorithm is started by calling SCOREALLNEIGHBORRELATIONS(). First, the neigh-
bors of the root point are initialized. Those are all virtual grid points, which represent
projections of the root point to the bordering hyperplanes of Ω. We obtain those by
calling INITIALIZENEIGHBORS(d). This function sets up a list of left and right virtual
grid points in each dimension, identified by said dimension and direction. Essentially,
this corresponds to boundary-projections{rootd}. Then, COLLECTALLNEIGHBORRE-
LATIONS() continues with calling STEPDOWN() on rootd.

In STEPDOWN(), we iterate once through the sparse grid by recursively visiting the
children of the current grid point. To make sure that we visit every grid point only
once, minDim is used to specify in which dimensions we are allowed to step down from
a specific grid point. For example, in a two-dimensional sparse grid of level 3, the grid
point p1 = ((2, 2), (1, 1)) has two parents, p2 = ((1, 2), (1, 1)) and p3 = ((2, 1), (1, 1)).
Thus, p1 could be potentially reached by both p2 and p3, but our algorithm ensures that
it is reached only through p3. Through which parents all grid points are recursively
reached is depicted in Fig. 3.12 at the example of a spatially adapted sparse grid.
For each possible child of the current grid point p, we check in every dimension j
(with j ≥ minDim) if the left and right child exist. If a child exists and j ≥ minDim
(which means that we are allowed to step down into that dimension), the neighbors
are adapted and we step down to this child to continue the recursion. Otherwise, p
is a leaf in that dimension and direction, so p and its neighbor in the dimension and
direction are processed by calling PROCESSNEIGHBORS() on them.
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The routine PROCESSNEIGHBORS() evaluates the classifier at both the leaf grid point
and its geometric neighbor. If the dominant class at those two points is not the same,
the score for adding the child (the refinement candidate) in between those two grid
points is calculated by calling SCORE() for the two grid points. Then, the refinement
candidate is added to the list of candidates for both the dominant class at the leaf grid
point and the dominant class at its neighbor. Because Alg. 5 operates on Gtotal, it is
possible that the leaf grid point and/or its neighbor are not already present in the
grid of one or both of the two classes. This is why we need to make certain, that all
hierarchical parents are added to the grid when we decide to add the point in between
the leaf and its neighbor.

Scoring For the score, we look at the values of the class densities (weighted with
the respective priors) fy(x) ·

∣∣My
∣∣. p being the leaf grid point (with level l) and n its

neighbor, dp = cM(p) is the dominant class at p and dn = cM(n) is the dominant class
at n. The score for the neighbor relation between p and n is then given by

score(p, n) =

∣∣∣
(

fdp(p) ·
∣∣∣Mdp

∣∣∣− fdn(p) · |Mdn |
)
−
(

fdp(n) ·
∣∣∣Mdp

∣∣∣− fdn(n) · |Mdn |
)∣∣∣

2‖l‖1
.

(3.106)

The numerator in Eq. 3.106 indicates, how drastic the change of classes between the
two neighbors is. First, it determines the difference of the densities of dp and dn at both
points. Then, it calculates the absolute value of the difference of those two differences.
If this quantity is high, it means that the change between the two class densities is steep,
thus a new grid point in between the neighbors is desireable. To prevent overfitting,
we divide with the L1-norm of the level of p, which is proportional to the size of the
support of p.

Refining the Grids After scoring all neighbor relations, we add the point between
the two neighbors into the respective classes dp and dn. Because we operate on Gtotal
for all classes, p or even coarser ancestors of the new point might be missing in dp or
dn. This is why we need to make sure to not only add the new point, but also all of its
ancestors to the grids as depicted in Alg. 6. There are two things we do differently in
the classification refinement process in contrast to the traditional refinement in other
sparse grids settings. Firstly, the grid points we refine do not necessarily have to be in
the grid. Technically, p is the point that we refine. p stems from Gtotal and might thus
originate from another class than the one we currently target. Thus, the grid of the
class we refine it in might not contain it prior to that. This is why we need to ensure
that p and all of its ancestors are also added to the grid during refinement. Second,
when refining p, we take into account the direction to the neighbor. In the traditional
setting, all 2d children of a refinement candidate (plus all of their respective ancestors)
are added to the grid. With growing level, this can sum up to a lot more than just 2d
new grid points. In our setting, we only add the grid point in-between the refinement
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Algorithm 6 Refining all grids of the classifier

Precondition: Gy is the sparse grid for class y
Precondition: refinementCandidates[y] is the list of refinement candidates for class y

1 function REFINEALLCLASSES

2 for all classes y do
3 refinementCandidates[y].sortByScore()
4 for all top-scored candidates struct in refinementCandidates[y] do
5 (score, leafPoint, j, y)← struct
6 newPoint← copyOf(leafPoint)
7 newPoint.level[j]← newPoint.level[j] + 1
8 if y == ”left” then
9 newPoint.index[j]← 2 · newPoint.index[j]− 1

10 else
11 newPoint.index[j]← 2 · newPoint.index[j] + 1

12 Gy ← Gy ∪ ancestors∗(newPoint)

candidate (the leaf point) and its geometric neighbor, thus reducing the number of new
points we add for one refinement candidate from 2d to one.

Runtime Complexity Analysis In Alg. 5, every grid point of Gtotal is visited once
during the recursion of STEPDOWN(). With Ntotal := |Gtotal|, the complexity of the
pure iteration through all grid points is thus O (Ntotal). After the collection of all
neighboring relations, all class densities are evaluated at every point in Gtotal and all
of the boundary points that are related to a grid point because of the neighboring
relationships. The number of those evaluation points is in O (d · Ntotal). If lmax is the
maximum L1-norm of all points’ levels in Gtotal, each evaluation is in O (lmax). With
k denoting the number of classes, the total complexity of evaluating all points for all
classes isO (k · d · Ntotal · lmax). After that, determining the dominant class for all points
is in O (k · Ntotal) and scoring all relations is in O (d · Ntotal). Finally, inserting the new
points into the grids is in O (d · Ntotal), if we choose to add a certain percentage of
the refinement candidates to the grid and O (1) if we choose a fixed number of new
points. In total, the whole refinement process is dominated by the evaluation of all
class densities at all points, which is in O (k · d · Ntotal · lmax).

Evaluation We first compare the classification refinement to the surplus-based re-
finement by learning a classifier on the two-dimensional artificial two-moons dataset.
Then, we show how the classification accuracy behaves when employing incremental
batch-wise learning on the SDSS DR10 dataset [1] for both refinement indicators.
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(a) Using the novel classification refinement. (b) Using the legacy surplus-based refinement.

Figure 3.13.: Classification with spatial adaptivity (refinement) of the two-moons dataset. The continuous
lines denote the classification boundaries between the two classes. In circles (red), the grid
points are visualized. In case of the surplus-based refinement, the grids of the two classes
diverge which is why we choose to display the grid of the upper class. The data points are
visualized as black squares and triangles for the two classes respectively.

Two-Moons Dataset We evaluate the classification results with the artificial two-
moons dataset consisting of 180 samples with refinement enabled. We start with a
regular sparse grid of level 4 with kinked linear basis functions, learn the density
functions incrementally with batch size 30 and employ spatial adaptivity in-between
by refining five points after processing each batch. The final grid together with the
classification of the test data is visualized in Fig. 3.13. The classification borders are
marked as lines, the grid points in red circles and the data points separated by class
as triangles and squares. Fig. 3.13a shows the results for the classification refinement
we proposed and Fig. 3.13b shows the results for the surplus-based refinement. For
classification refinement, the grid points converge towards the classification borders
which is the behaviour we were looking for. Also, the number of additional grid points
is low, because we only add the hierarchical children in the directions towards the
class boundary. On the other hand, many unnecessary grid points are added with
the surplus-based refinement indicator situated in areas that do not contribute to the
classification accuracy. Therefore, achieving the same accuracy with both methods is
much cheaper with the classification refinement. Not only do we end up with less grid
points, we also need less refinement iterations to detect the relevant new grid points
and the time spent to update the models is also drastically reduced.

Sloan Digital Sky Survey (SDSS) We use the data release 10 from the Sloan digital
sky survey dataset [1] to investigate how the classification accuracy behaves when
employing refinement with both the classification refinement we proposed and the
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Figure 3.14.: Incremental learning the SDSS DR10 dataset with both classification refinement and surplus-
based refinement. On the left, the classification accuracy for both refinement strategies is
displayed. There is small difference between the two methods. However, when taking the
grid sizes into account, we observe that the surplus-based refinement adds much more grid
points than the classification based refinement, resulting in longer runtimes.
Raw data for this figure: Tab. C.11.

surplus-based refinement. The results are shown in Fig. 3.14. This four-dimensional
dataset consists of two classes. We learn 10 batches of 50,000 samples each and configure
a regularization value of 10−3. With both methods, we choose to refine 50 grid points
after each batch. Not counting hierarchical ancestors, this leads to 200 child points
per class-grid being added with surplus refinement in general, whereas it only leads
to 50 child points per class-grid being added for the classification refinement. While
the accuracy of the model is approximately the same after each batch, the resulting
grid sizes show that the surplus refinement is much more costly if we want to achieve
similar accuracies compared to the classification refinement. Those costs show when
updating the matrix decompositions but also when computing the right-hand side
of the linear system. In total, we conclude that the classification refinement is to be
preferred when performing classification.
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4. Parallel Learning

With parallel hardware at hand, we speed up the learning process by distributing the
tasks over the node. Parallelization of sparse grid methods for data mining has been
investigated in various settings [30–32, 44–46], but the incremental learning scheme
together with the offline/online splitting procedures require a targeted analysis of
parallelization potentials.

In this chapter, we discuss aspects concerning parallelism during the training process.
On cluster-systems with a distributed memory architecture, learning is parallelized
using different schemes, which divide the task into independent packages. Both data
parallelism and model parallelism are considered. Also, we see how to apply and
exploit the sparse grid combination technique.

In essence, the parallelization of the density estimation and the classification based on
density estimation is similar. We mainly discuss the classification case, as it is the more
general one. For a parallelization on a pure density estimation, the transformation is
easily done by assuming a problem with only one class.

4.1. Overview

Several starting points for parallelizing the learning process exist. A schematics of the
possibilities we discuss here is depicted in Fig. 4.1. On the highest level, training the
classifier is separated into computing the density estimation of batch k for all classes
y. Just parallelizing over the classes is generally not a balanced scheme, because the
number of training data points differs between the classes. Parallelizing solely over the
batches is a valid approach, but needs the models of all classes present at all distributed
compute units. The scheme we discuss in Sec. 4.2 is to combine both approaches:
parallelizing over the classes and batches at the same time. Thereby, we distribute the
computation of αy,k, which is the solution of Eq. 3.11 for class y and batch k, over the
parallel nodes.

The density estimation for each class relies on a sparse grid. We investigate how the
sparse grid combination technique can be applied instead of regular sparse grids.
This yields computations speedups in both sequential and parallel executions. As the
combination technique is only well-defined for regular sparse grids and dimensional
adaptivity, we do not take into account problems that require spatial adaptivity at this
level. In Sec. 4.3, we also see that not only the online phase but also the offline phase
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Figure 4.1.: Parallel batch learning scheme for density estimation and classification. On the first level,
the data is split into class batches. For each such class-batch, the density is estimated. On the
second level, this estimation is optionally parallelized with the combination grid technique.
Solving the corresponding linear system is then distributed on the third level.
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of the algorithm profits a lot from the partial computation of the solution on smaller,
regular grids.

Depending on the matrix decomposition method used (ref. Sec. 3.2.3.3), the compu-
tation of αy,k breaks down to computing huge matrix vector products. Those multi-
plications are further parallelized by distributing the matrix over multiple nodes. At
this level, we use the ScaLAPACK library [12] to transparently achieve parallel linear
algebra operations and discuss the outcomes in Sec. 4.4.

4.2. Batch Parallelization

The number of grid points in class y is denoted by Ny and the total model size amounts
to ∑y Ny. The runtime of training our density estimation based classifier with k classes,

where M is the dataset size, is then inO
(

M ·∑y N2
y

)
. Thus, the runtime grows linearly

with the dataset size and quadratically with the model size. To learn as fast as possible,
we want to parallelize this training process. The concept we discuss in the following is
a data parallel scheme. First, we differentiate the roles and tasks of the master node and
the worker nodes in Sec. 4.2.1. Then, those tasks are discussed in detail in Sec. 4.2.2
with a special focus on communication. Next, we turn to the scheduling of those tasks
in Sec. 4.2.3 before evaluating the batch parallelization in both strong and weak scaling
settings in Sec. 4.2.4.

4.2.1. Parallel Setup

In the data parallel scheme, we employ a series of worker nodes to solve Eq. 3.11
separately for the class data batches and send their partial solutions to the master node
who is also responsible of performing model adaptions during the learning process
and handling the work scheduling. The schematics are visualized in Fig. 4.2.

Master Node The master node is the central process of the parallel scheme. Its tasks
are:

1. Preparing the models

2. Holding available the current solution of the classifier (or the density estimation)
for evaluation.

3. Distributing the class batch learning to all available worker nodes.

4. Triggering model adaption concurrent to the learning process.

5. Performing/Distributing model updates based on the model adaptations.

If the master is idling, it assigns work to itself and treats itself as a worker node.
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Figure 4.2.: Parallel batch learning sequence diagram with two worker nodes. In blue, the communi-
cation and learning of class batches is depicted. The model adaption communication and
computations are colored in red, the model update communication and computations in
green. The broadcast and subsequent merge of the model updates to the workers is colored
in orange.
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Worker Node A worker receives work packages from the master and sends back the
results. Work packages are:

1. Obtain the solution of class batch (k, y) by computing αy,k.

2. Execute model adaptations.

3. Update the model of class y based on model adaptions.

4.2.2. Tasks

The tasks listed in Sec. 4.2.1 are discussed regarding what communication takes place
and how the task is executed.

Master Node Workflow The master node is responsible of splitting all data batches
into the class batches and distributing those onto the worker nodes. As soon as a
worker node finishes the processing of one class batch, the master assigns it another
one. Concurrently to the computation of the solution of class batches, the master
also triggers the model adaption process as soon as at least one class batch has been
processed and its solution is incorporated into the model. As soon as one model
adaption step is completed, the next one is triggered immediately afterwards (if in
the meantime, more solutions of class batches have been computed). Also, after each
model adaption step, the master assigns the model update work packages to worker
nodes and subsequently handles the communication of the results to all nodes.

Preparing the Models During the initialization phase, the master process sets up
the models. It loads the decomposition of the system matrix of Eq. 3.11 dependent
on the dimensionality, the configured initial grid level and the chosen decomposition
method. Then, it broadcasts the initial empty classification model (the initial grid and
the corresponding system matrix decomposition) to the worker nodes. Note that the
initial grids of all classes are identical. Thus, only one grid and decomposition has to
be broadcasted and then replicated internally by the workers for each class.

Computing the Solution of a Class Batch The batch learning process introduced
in Sec. 3.2.1 provides an inherent way to split the problem into work packages. For
each data batch, assembling the right-hand side of the linear system via Eq. 3.18 is
independent of other batches. Furthermore, it is possible to adapt the process of how
and when to integrate the results of the different batches. In Eq. 3.17, the right-hand
side vectors of all batches are agglomerated into an overall right-hand side, which then
serves to solve Eq. 3.11 for α. We change this process now and first solve Eq. 3.11 for
α for each batch separately and then agglomerate the resulting solutions similar to
Eq. 3.25.
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b̃k still denotes the right-hand side of Eq. 3.11 for batch k. The solution of Eq. 3.11 for
batch k is denoted by α̃k and is obtained by solving

Aα̃k = b̃k . (4.1)

To obtain the solution of Eq. 3.11 up to batch k, we obtain αk as

αki :=min
(
(1− β)|mk,i|, |Mk−1,i|

|Mk,i|

)
αk−1i

+ max
(

1− (1− β)|mk,i|, |mk,i|
|Mk,i|

)
α̃ki .

(4.2)

With this scheme, we can distribute the dataset to an arbitrary number of workers.

Communication All workers hold A or the discussed decompositions. The master
sends the data points corresponding of class batch (k, y) to the worker, who then
computes b̃k for class y. Upon solving the system Eq. 4.2, the worker sends its partial
solution α̃k back to the master process who then computes the overall αk with Eq. 4.2.

Adapting the Model The master is also responsible for triggering the adaptation of
the model. This is done in parallel to the computation of the class batches. In case of
a pure density estimation setting, the state of the model is represented by the current
grid Gr and corresponding αk. The adapted grid Gr+1 is then obtained via refinement
and coarsening as discussed in Sec. 3.2.2. In case of density based classification, the
state of the model is represented by the current class grids Gy,r and the corresponding
αy,k. There, the adapted grids Gy,r+1 are obtained via refinement and coarsening as
discussed in Sec. 3.3.2.

Communication All grids Gy,r and all surplus vectors αy,k need to be sent from the
master to the worker node, which executes the model adaptation before the process is
started. After the execution, the worker sends Gy,r+1 back to the master for all classes y.
Here, depending on the number of grid points added and removed, it might be faster
to only communicate the indices of grid points that are added and removed from the
respective class grids. Also, the master might choose to execute the model adaption
itself, in which case no communication is required at this stage. Note however that
after adapting the model, the data structures of the model has to be updated, which
again involves communication.

Model Consistency Due to concurrent computation of class batch solutions and
model adaptations, it might happen that a worker sends some α̃y,k′ as a result from
computing a class batch to the master that refers to Gy,r′ , whereas the master already
holds Gy,r with r > r′. Thus, there might both be points missing from Gy,r that have
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previously been in Gy,r′ and new points in Gy,r that were not included in Gy,r′ . In the
first case, the corresponding surplus values in α̃y,k′ are silently dropped. In the second
case, α̃y,k′ is extended by as many corresponding entries as needed, which are all set to
0. Then, α̃y,k′ is safely combined with αy,k−1 to form αy,k.

Updating the Model after Model Adaption As soon as the new grids Gy,r+1 are
compiled, the corresponding decompositions are updated (ref. Sec. 3.2.3.3). This is
done independently for each class, thus a work package for a worker node is to update
the model of a specific class.

Communication The master sends the new class grid Gy,r+1 to the worker. After
completion of the model update, the worker sends back the whole decomposition back
to the master. Afterwards, the master broadcasts this new decomposition to all workers
together with Gy,r+1, such that all worker nodes compute future solutions of batches
for class y.

4.2.3. Scheduling

Due to the concurrent procedure of training class batches, adapting the class models,
and updating the decompositions, we need to think about the priority of working
off tasks if multiple work packages wait to be completed. Thereby, it is important
to balance the progression of the training through Mtrain and the adaption of the
class models to the data. To that end, the master schedules the work packages for the
workers such that priority packages are sent out first. Also, the workers schedule the
work assigned to them by first processing priority packages, even if other packages
have been waiting longer.

The computation of solutions for class batches is most valuable on models adapted to
the data. In order to complete a model adaption phase, the model update packages
have to be processed. This is why model update work packages are of highest priority
as soon as they are packed and they get scheduled before all other work packages.

Next, the scheduler needs to ensure that a new model adaption process is started as
soon as the previous one finished, because out of the tasks presented in Sec. 4.2.2, this
is the most compute intensive one. Also, a model adaption work package cannot be
distributed to multiple workers as this task is not parallelized in itself so far.

Finally, the scheduler lets all class batches of data batch k be processed before any
class batches of data batch k + 1. This way, the model stays in sync as well as possible
over all classes and the model adaption process is able to operate on a model state as
consistently as possible.
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Figure 4.3.: Strong scaling test for the parallel batch learning setting is executed with the checkerboard
dataset (Subfig. a). 50 batches of 300,000 data points each are trained on up to eight nodes.
The runtimes visualized in Subfig. b show the strong scaling behaviour of the scheme.
Adapted from [13].
Raw data for this figure: Tab. C.12.

4.2.4. Evaluation

We are interested in the speedup, the presented class batch parallelization scheme
offers. The parallel batch learning scheme was implemented into SG++ in a bachelor
project [13], where the strong scaling and the weak scaling was investigated. The tests
were executed on the LRZ Linux Cluster (ref. Sec. B.2).

Strong Scaling For the strong scaling test, we choose the artificial checkerboard
dataset [56] (visualized in Fig. 4.3a), which allows us to generate as many samples as
we like. We generate 50 batches of 300,000 data points each. In the first run, we do not
trigger model adaptions. The results are shown in Fig. 4.3b. The figure shows a good
strong scaling behaviour. This is to be expected due to the minimal and asynchronous
communication required in this case. With the data batches distributed to the workers,
all they need to do is send their results back to the master who then computes the total
solution.

When refinement is enabled, the performance of the parallel learner depends a lot
on the refinement settings. For large grids and many refinements, the time spent for
refining grows (ref. Sec. 3.2.3.3.5). Since the refinement procedures themselves are not
parallelized, a large dataset or iterating over many epochs is required to balance out
the relative long runtime of the model adaption and update procedures. More research
into the parallelization of the model adaption and model update packages is necessary
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Figure 4.4.: Weak scaling test for the parallel batch learning setting is executed with the checkerboard
dataset (Fig. 4.3a). For the 2 node setup, the efficiency is not ideal due to the master not
acting as a worker too is this case. Adapted from [13].
Raw data for this figure: Tab. C.12.

to obtain good strong scaling behaviour with refinement enabled too. Therefore, we
leave the detailed investigation of this case to the next generation of researchers.

Weak Scaling Keeping the number of data points fixed for each node, we run the
test again. Ideally, the time to solution is almost identical independent of the number
of nodes involved. The results for the weak scaling test are shown in Fig. 4.4. In
this setting, the master node is not working off tasks as well. However, weak scaling
requires us to choose the dataset size dependent on the number of nodes involved.
Thus, in the test with two nodes, only one worker is tackling the packages meant for
two. Extending the setup to even more nodes, the runtime approaches a constant value.
This shows that the parallel learning scales well for a sufficient number of computing
nodes.

4.3. Employing the Combination Grid Technique

In Sec. 2.3.2, the combination grid technique was presented. It has been applied to
data-driven problems before, see [27]. In general, the combination technique solution
and the sparse grid solution are not the same, but the accuracy is of the same order.

We want to use this technique to speed up the density estimation in several ways.
The first and obvious possibility to exploit the combination technique is to parallelize
the computation of the solutions over the involved component grids. This introduces
another level of parallelism, additional to the one presented in Sec. 4.2.1. The effort
to implement this scheme into the SG++ data mining pipeline (ref. Chap. 6) has been
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undertaken during a bachelor project [82]. The second possibility to exploit the combi-
nation technique, which also enfolds its potential when approximating the probability
density estimation in a non-parallel setting, stems out of the cubic complexity of the
system matrix factorization and the resulting quadratic complexity of solving Eq. 3.11
for α.

The first approach has been investigated many times in similar settings (e.g. [28, 38, 58]).
With the computation of the partial solutions of the components being independent
of each other, distributing and parallelizing those partial solutions is straightforward.
This scheme is also applicable to parallelize the computation of the solution of one
class batch. In addition to the parallelization of the components, we investigate the
computational gain that results from the mere split of the model from a regular sparse
grid to multiple components grids. This computational gain also occurs if the compo-
nents are processed sequentially, as we see in Sec. 4.3.1. An evaluation of the runtimes
of processing a regular sparse grid vs. an ensemble of component grids stemming from
the combination grid technique is given in Sec. 4.3.2.

4.3.1. Speeding Up the Offline/Online Scheme

For a regular sparse grid of dimension d and level l (resulting in Nregular
d,l grid points),

we obtain a system matrix of size Nregular
d,l × Nregular

d,l . It needs to be factorized in

O
(

Nregular
d,l

3
)

during the offline phase so that the online phase runs in O
(

Nregular
d,l

2
)

.

When employing the combination technique, we obtain a set of smaller system matri-
ces. The number of components numCompd,l involved in the combination technique of
dimension d and level l is given by

numCompd,l =
d−1

∑
q=0

(
l − q
d− 1

)
=

(l + 1)( l
d−1) + (d− l − 1)( l−d

d−1)

d
. (4.3a)

The number of grid points in componentGridd,l is given by

numCompPointsd,l =
d

∏
i=1

2li − 1 . (4.3b)

We call the sum of the grid points of all involved components Ncombi
d,l . Ncombi

d,l exceeds

Nregular
d,l , because grid points of level l′ < l are contained in multiple components. The

ratio of both quantities for dimensions 1 to 10 and level 1 to 10 is visualized in Fig. 4.5a.
The ratio grows moderately with growing level and dimension.

On the other hand, we want to compare the size of the system matrix for the regular

sparse grid case (which is Nregular
d,l

2
) with the combined sizes of the system matrices of
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Figure 4.5 (previous page): In Subfig. a, the ratio of Ncombi
d,l over Nregular

d,l for dimensionalities and levels
from 1 to 10 is depicted. It can be seen that the total number of grid points
in the combination grid technique exceeds the number of grid points for the
corresponding regular sparse grid. However, the ratio of the sum of the
squared number of grid points of each component in the combination grid

technique of dimension d and level l over Nregular
d,l

2
as depicted in Subfig. b on

a logarithmic scale is in favor of the combination grid technique even for low
dimensions or coarse levels. For high dimensions or fine levels, the resource
gain in both runtime and memory during the online phase is noticeable even
if working off the components sequentially. This becomes even more so for
the ratio of the sum of the cubed number of grid points of each component

in the combination grid technique of dimension d and level l over Nregular
d,l

3

as depicted in Subfig. c on a logarithmic scale. Even for lower dimensions or
coarser levels, the resource gain when using the combination grid technique
positively impacts runtime and memory consumption. For high dimensions
or fine levels, the resource gain in both runtime and memory during the offline
phase is several orders of magnitude, making the offline phase feasible to
compute directly before the online phase if necessary.
Raw data for this figure: Sec. C.7.

the combination grid technique. The ratio of both quantities for the same dimension-
level pairs is shown in Fig. 4.5b. This ratio is also a good approximation for the speedup
during the online phase, if the combination grid technique is employed in contrast
to the regular sparse grid. To complete the picture, we also show the ratio N3 to the
summed up cubic values for all involved components grids of the combination grid
technique in Fig. 4.5c. Note, that both Fig. 4.5b and Fig. 4.5c are logarithmic on the
y-axis. It is obvious that the runtimes of both the offline and the online phase as well as
the memory consumed by the involved system matrices is in favor of the combination
grid technique. This especially holds for the offline phase, where several orders of
magnitude in speedup are possible. The sum of all components’ runtimes is lower than
the runtime for the regular sparse grid case, even if the components are worked off
sequentially. Consequently, by employing the combination grid technique, we not only
profit from the possibility to distribute the components on the parallel architecture at
hand, but also from a sequential processing of the components.

4.3.2. Evaluation

We compare the time spent in the offline phase between employing a regular sparse
grid and the combination grid technique for different dimensionalities and grid levels,
resulting in the runtimes depicted in Fig. 4.6. The assumption that the time spent in the
offline phase for the regular sparse grid is much longer than for the component grids
from the combination grid technique combined proves true. However, depending on
the dataset, the accuracy might be lower for the combination grid technique. Some
datasets such as the chess dataset are well suited to be tackled with the combination
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Figure 4.6.: Runtimes regular sparse grid vs. combination grid technique during the offline phase at the
example of the Cholesky decomposition. With the combination grid technique, the matrices
are factorized much faster than for the regular sparse grid. The tests were executed on the
workstation (ref. Sec. B.1).
Raw data for this figure: Tab. C.16.

grid technique, while others don’t achieve as good results as with the regular sparse
grid technique as investigated in a bachelor project [82]. Also, the combination grid
technique might profit from an optimized assembly of b (the right-hand side of Eq. 3.11).
In the current setup, b is assembled once for each component. Since many grid points
exist in multiple components, assembling b for all possible grid points once before
extracting the relevant subset for each component will speed up the training phase
further. Due to our focus on the offline/online scheme, we did not implement this
concept of globally assembling b in this thesis.

4.4. Parallel Linear Algebra

For this section, we assume that we want to solve Eq. 3.11 for α, be it either in a pure
density estimation setting or in the classification setting to obtain the solution for a
class batch and either for a regular sparse grid or a component grid when employing
the combination grid technique. In all cases, the computation of α is parallelized for
distributed memory architectures using parallel linear algebra routines. We choose
ScaLAPACK [11] for this task, because it already provides a well-tested framework. The
effort of implementing this scheme into the SG++ data mining pipeline (ref. Chap. 6)
has been tackled during a bachelor project [86].
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4.4.1. Matrix Decompositions

From the choices of matrix decompositions discussed in Sec. 3.2.3.3, we limit ourselves
to the Cholesky decomposition (ref. Sec. 3.2.3.3.2) and the tridiagonal decomposition
(ref. Sec. 3.2.3.3.4), because we want to test and use the parallel scheme in combination
with spatial adaptivity.

Cholesky Decomposition In the former case, we target the parallelization of Eq. 3.44.
The Cholesky factor L has to be distributed and we employ a parallel version of the
forward and backward substitution scheme. This is achieved with ScaLAPACK.

Tridiagonal Decomposition In the latter case, we target the solution of Eq. 3.78.
There, we find the classic case of a multiplication of a dense matrix to a vector (BLAS
level 2). The matrices Q, T and B need to be distributed in this case. Then, the parallel
routines to perform dense matrix-vector multiplications (BLAS level 2) are employed.

4.4.2. Distribution of Data Structures in ScaLAPACK

ScaLAPACK forms a rectangular process grid with the available distributed nodes
at hand. The process grid consists of pr rows and pc columns. We distribute either
matrices or vectors over this process grid, whereas a vector behaves as a matrix with
just one column. It is, thus, sufficient to illustrate the distribution of a general matrix
M ∈ Rmr×mc :

1. Division into blocks: M is divided into blocks of size sr × sc, forming a block
grid. If mr

sr
/∈N or mc

sc
/∈N, this division also yields blocks of smaller size at the

right or bottom border of the matrix.

2. Assignment of blocks to processes: The block grid is overlayed consecutively
with the process grid, thereby assigning the block at position (br, bc) to the process
at (br mod pr, bc mod pc). This might result in the assignment of at most three
more blocks to processes with smaller row-index or column-index than to other
processes with higher indices. However, the resulting imbalance evens out for
large matrices, if the block size is chosen such that each process is assigned a
multiplicity of blocks.

3. Storage of the blocks at the distributed nodes: Each node stores the blocks
assigned to it contiguously in memory. This enables the BLACS operations,
which are applied to the data, to take advantage of the hierarchical memory
architecture at the node, e.g. by always trying to avoid cache reloads and keeping
the data stored in the vector registers and high-speed caches [11].
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4.4.3. Tailoring ScaLAPACK

It is important to determine good configurations for the process grid layout as well as
the block sizes. We investigate both in the context of the grid-based density estima-
tion.

Process Grid Layout We want to distribute both matrices and vectors to the processes.
Because a vector is only distributed to processes in the first column, we choose a process
grid of size p× 1, where p is the number of available processes. Validating this choice
experimentally confirms this choice. Executing the splitting with different process grid
layouts ranging from pc = 1 to quadratically to pr = 1 shows that the layout with
pc = 1 performs best for both Cholesky and tridiagonal decomposition.

Matrix Block Size The matrix block size should not be too large as to retain a well
balanced distribution of the problem over the processes. Also, it should not be too
small as this could negatively affect the efficiency of the computations as well as lead
to a higher communication overhead. The results of the experiments we conducted for
several choices suggest, that a good choice for the block size is 64× 64.

4.4.4. Evaluation

For evaluation, we are using the SDSS dataset [1], which was already used in Sec. 3.3.2
to evaluate the refinement for classification. The LRZ Linux Cluster (ref. Sec. B.2) was
used to run the tests.

Strong Scaling With a fixed number of data points and increasing task count, we
investigate the strong scaling behaviour. The results shown in Fig. 4.7 indicate that
without spatial adaptivity enabled, the methods scale well with increasing number
of MPI tasks, when the problem size is fixed. This does not hold if spatial adaptivity
is enabled. In this case, the (serial) refinement procedures dominate the runtimes,
especially in the case of the tridiagonal decomposition. A decrease of the runtime
with increasing number of tasks up to 16 tasks is observed, but the runtime increases
again for 32 tasks due to higher communication overhead. If spatial adaptivity is not
enabled (regular sparse grid) or not possible (combination grid technique), the parallel
scheme is efficient. To obtain similar results for problems with spatial adaptivity, those
methods would need to be parallelized too.
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(a) Spatial adaptivity disabled.
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Figure 4.7.: Strong scaling results for the parallel linear algebra scheme for both the Cholesky decom-
position and the tridiagonal decomposition with (Subfig. b) and without (Subfig. a) spatial
adaptivity. With reference, we denote the execution without ScaLAPACK enabled. In the
case without spatial adaptivity, the Cholesky decomposition performs slightly better. Both
techniques have a good scaling with a low number of MPI tasks, but the efficiency decreases
with increasing task count due to the smaller problem sizes and the resulting overhead per
task. With spatial adaptivity enabled, we observe a drastic increase in runtime due to the
serial refinement and coarsening algorithms. For the Cholesky decomposition, this leads to
roughly twice the runtime for a small number of tasks and a mitigated scaling behaviour.
The tridiagonal decomposition performs even worse, the scheme does not scale well with
increasing number of tasks. Eventually, the runtime even increases (from 16 tasks to 32 tasks)
due to a larger communication overhead but smaller work packages for each task.
Raw data for this figure: Tab. C.17.

Weak Scaling For the weak scaling test, we choose a dataset size of 20,000 data
points per task. The results for increasing number of tasks is shown in Fig. 4.8. If
no spatial adaptivity is enabled, the problem setting is well defined. Due to varying
communication overhead, we observe a slight variance of the runtimes between the
different tasks counts. When spatial adaptivity is employed, the decision of where and
how much the model is adapted depends on the local quality of the model. Because
this is not a setting for which the workload is per se scalable with the number of
cores, the weak scaling test is not well defined for problems with spatial adaptivity
enabled. Nevertheless, we test the learning with fixed training dataset size per task and
spatial adaptivity enabled as for the strong scaling test. The results shown in Fig. 4.8b
show, that the overall runtime is again dominated by the refinement and coarsening
procedures. For both the tridiagonal and the Cholesky decomposition, the runtimes
vary a lot for different task counts and a qualified statement about the weak scaling
behaviour of the scheme with spatial adaptivity enabled is not possible.
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(b) Spatial adaptivity enabled.

Figure 4.8.: Weak scaling results for the parallel linear algebra scheme for both the Cholesky decom-
position and the tridiagonal decomposition with (Subfig. b) and without (Subfig. a) spatial
adaptivity. With reference, we denote the execution without ScaLAPACK enabled. In the case
without spatial adaptivity, the runtimes are not constant independent of the number of tasks
due to varying communication overhead depending on the process grid layout. However,
the variance is slight. In the case with spatial adaptivity, the runtimes are again dominated
by the refinement and coarsening procedures and the runtimes vary a lot between different
task counts. Again, the tridiagonal decomposition performs worse than the Cholesky de-
composition.
Raw data for this figure: Tab. C.18.

4.5. Summary and Outlook

We presented three layers allowing for distributed computing: Parallelizing over
the class-batches, employing the combination grid technique, and distributing the
linear algebra routines with ScaLAPACK. With each of those layers, the hardware
architecture of a distributed memory system is exploited to speed up the training of both
density estimation and classification. Two challenges remain for the future. First, the
parallelization of the grid refinement routines and subsequent model updates would
lead to better scaling behaviour, if spatial adaptivity is enabled. Second, combining
the layers into an holistic parallelization approach might lead to even faster execution
times on large distributed systems. Currently, the layers work on their own but do
not interact or are even aware of each other. As to work in accordance (e.g. not steal
resources from each other), a task scheduler needs to be designed and implemented,
which takes into account all parallelization layers. Only then will the parallelized
training enfold its full potential.
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5. Geometry-aware Sparse Grids

With sparse grids, problems of dimensionalities between 2 and around 100 can be
tackled. In extreme cases, they have been applied to even higher dimensional problems
(to our knowledge, 166 dimensions is the record so far), but there is a limit even to
that. For example, a 200-dimensional sparse grid of level 3 already consists of 80,801
grid points and results in a system matrix of > 6 · 109 entries for the density estimation
method presented in Sec. 3.2. Even with modern hardware, we cannot handle such
large matrices, not to mention problems with dimensionalities of > 1,000 at which we
aim. For example, the CIFAR-10 dataset [60] (at which we take a closer look in Sec. 5.5)
consists of colored images with 32× 32 pixels, thus having 3,072 dimensions.

In this chapter, we present an approach of how to tackle very high-dimensional data
such as images with sparse grids. The problem class we look at is constrained in
terms that we need knowledge about the geometric relations of the individual di-
mensions. How the dimensions need to be related such that the problem can be
tackled with geometry-aware sparse grids is discussed in Sec. 5.1. The construction
of geometry-aware sparse grids via the application of stencils for different kinds of
datasets (grayscale images, color channel images, videos, etc.) is presented in Sec. 5.2.
Spatially adapting the resulting grids requires tailored routines, which are proposed
in Sec. 5.3. Geometry-aware sparse grids also allow to be integrated into a dimen-
sional adaptive setting such as the combination grid technique. We propose a scheme
that combines geometry-aware sparse grids and the combination grid technique and
show how it is sped up in Sec. 5.4. Finally, we present and discuss the application of
geometry-aware sparse grids at the example of several image classification benchmark
datasets in Sec. 5.5.

5.1. Geometric Relations in Datasets

Geometric relations between dimensions are present in various kinds of datasets. In
image data, pixels are arranged in a regular grid specified by the resolution of each
frame. Going the next step to video data, additional to the arrangement of the pixels,
there is the chronology of the frames. Geophysical and meteorological datasets often
stem from a multitude of measuring stations for which the distance between them
implicates a geometric relation of the resulting dimensions. In all of those cases, we can
and should use available knowledge about those geometric relations of the dimensions
when learning the data. For sparse grids, this means taking this knowledge into account
when discretizing the space spanned by the dimensions. We know that any regular
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sparse grid with a level higher than 2 is infeasible for most of those problems. Thus, in
order to decrease the number of grid points, we only include grid points that encode
information about the geometric relations, or the interactions, of the dimensions.

Formally, we introduce the concept of interactions between dimensions as follows.

Definition 5.1.1 (Interactions)
For a d-dimensional problem, we call I ⊆ [d] an interaction between those dimen-
sions. A set of interactions I with I :⊂ P([d]) is valid, if

∀I ∈ I ⇒
(

I′ ⊂ I ⇒ I′ ∈ I
)

holds. The valid hull I∗ of I is the smallest valid set of interactions containing I
per

I∗ =
{

I′ ⊆ I I ∈ I
}

. (5.1)

Following the analysis of variance (ANOVA), a grid point p of level l encodes informa-
tion between the group of all dimensions j, for which lj > 1. Thus, we define Ip as the
interaction this grid point corresponds to per

Ip :=
{

j ∈ [d] lj > 1
}

. (5.2)

This leads us to the definition of geometry-aware sparse grids:

Definition 5.1.2 (Geometry-aware sparse grid)
Let G be a sparse grid per Def. 2.1.17 and I a set of valid interactions per Def. 5.1.1.
Then, the geometry-aware sparse grid (GaSG) GI is given by

GI :=
{

p ∈ G Ip ∈ I
}

. (5.3)

So, a grid point p is included in the GaSG GI , if the interaction Ip corresponding to p is
included in I . Thus, which grid points we thereby include (and exclude) is controlled
by I . Different systematic approaches how to construct I from a problem definition
are proposed in Sec. 5.2. Note that every geometry-aware sparse grid is also a sparse
grid, because for every interaction in I , all of its subsets are also included in I which
in turn pulls all the hierarchical parents into the geometry-aware sparse grid.

Cost per Interaction The concept of the interaction corresponding to a grid point
from Eq. 5.2 can be transferred to subspace grids and component grids as well. For
such a grid G with level-vector l we set IG as the interaction this grid corresponds to
per

IG :=
{

j ∈ [d] lj > 1
}

. (5.4)

The cost of an interaction cn
I ∈ N is the number of grid points that are added to the

initial grid of level n because of it. Let sI ∈ N be the number of dimensions in I per
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sI := |I|. We want to count the number of subspaces corresponding to I ∈ I per Eq. 5.4
that are part of

(
sparseGridd,n

)
I (the geometry-aware regular sparse grid of level n).

For l < n, the subspaces with level-vector l′ such that ‖l′‖1− d+ 1 = l are added to the
grid. Firstly, only for l ≥ sI + 1, subspaces corresponding to I are added. Further, for
l ≥ sI + 1 there are l − sI − 1 (not differentiable) levels that are freely distributed onto
the sI (differentiable) dimensions. To do so, we have (l−I−1+sI−1

l−sI−1 ) = ( l−2
l−sI−1) = ( l−2

sI−1)

possibilities. Each of those subspaces consists of 2l−1 grid points. Thus we obtain:

cn
I =

n

∑
l=sI+1

2l−1
(

l − 2
sI − 1

)
. (5.5)

In total, the size of
(
sparseGridd,n

)
I is

cn
I :=

∣∣(sparseGridd,n
)
I
∣∣ = ∑

I∈I
cn

I . (5.6)

5.2. Image Stencils

In this section, we look at how to build up the interactions for image classification
problems via stencils that iterate over the image. Many of the discussed stencils have
been applied for a long time in cellular automata theory [97] or in image processing
concerning pixel connectivity [84]. We first look at grayscale images in Sec. 5.2.1. Then,
we consider how to build up interactions when each data point represents a series of a
iteratively coarsened image in Sec. 5.2.2. Next, we turn to colored images in Sec. 5.2.3.
Lastly, we look at how to crop the resulting sparse grids by cutting off points that are
not mandatory in Sec. 5.2.4.

5.2.1. Grayscale Images

Interpreting an image dataset consisting of images with r pixels as any r-dimensional
dataset does not consider the nature of the dataset, namely the images. A better ap-
proach is to take the resolution in each spatial dimension ax, ay ∈ N with ax · ay = d
into account. Grouping the dimensions as the corresponding rectangle of width ax and
height ay already reveals further information about the relation of individual dimen-
sions. Obviously, some pixels are neighbors of each other but farther away from other
pixels. We want to include the interactions of the pixels that are in the neighborhood of
each other into the geometry-aware sparse grid. Different concepts of neighborhood
are presented in the following. In essence, they differ in two characteristics:

1. How far away are pixels allowed to be in order to count as neighbors, and

2. how many pixels are grouped together in a single interaction.
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(a) Visualization of the DN sten-
cil depicting all interac-
tions of a 5× 5 image.

(b) Visualization of the DDN
stencil depicting all inter-
actions of a 5× 5 image.

(c) Visualization of the DBP-2
stencil depicting all interac-
tions of the gray pixel with
other pixels.

Figure 5.1.: Several examples of pairwise stencils in a 5× 5 image.

Allowing longer distances or larger groups ultimately leads to larger grids. Thus, we
present various options such that a choice can be made according to the problem size
and the computational power at hand.

5.2.1.1. Pairwise Stencils

The pairwise stencils we are about to introduce group at most two pixels together.
They only vary in how far two pixels are allowed to be from each other in order to be
grouped in an interaction. We start with stencils for image datasets and then generalize
to stencils applicable to video data or data of even higher number of spatial orders 1.

Direct Neighbor Stencil The direct neighbor stencil (abbreviated DN) includes pair-wise
interactions of pixels that are direct neighbors (horizontal or vertical) of each other in
the image. It is derived from the von Neumann neighborhood [96]. For an image of
size ax × ay (thus, d = ax · ay) and the position of each pixel j given by

(
jx, jy

)
, the set

of interactions IDN is then given by

IDN :=
{{

j, j′
}
⊆ [d]

∣∣jx − j′x
∣∣+
∣∣∣jy − j′y

∣∣∣ = 1
}∗

. (5.7)

In Fig. 5.1a, this is visualized at the example of a 5× 5 image. The number of the
pairwise interactions between the pixels contained in IDN is (ax − 1)ay + ax(ay − 1) =
2axay −

(
ax + ay

)
∈ O (d). Remember that the number of pairwise interactions alone

contained in a (non-geometry-aware) regular sparse grid is (d
2) ∈ O

(
d2). Due to

1We intentionally refrain from using the term dimensions again in this context, as it is already reserved
for the number of pixels.
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building the hull of those interactions per Def. 5.1.1, the trivial interactions of ∅ and [d]
are also contained in IDN. The size cn

IDN of the resulting geometry-aware regular sparse
grid of level n ≥ 3 with the direct neighbor stencil then is given by

cn
IDN =1 + d (2n − 2) +

(
2axay −

(
ax + ay

))
·

n

∑
l=3

2l−1 (l − 2)

=1 + d (2n − 2) +
(
2d−

(
ax + ay

))
· (2nn− 3 · 2n + 4) .

While the number of grid points in the regular sparse grid
∣∣sparseGridd,n

∣∣ is in
O
(
2nnd−1) (ref. Eq. 2.24), the number of grid points in the geometry-aware regu-

lar sparse grid with the direct neighbor stencil cn
IDN is in O (2n · d · n) which is only

linear in the dimension d. This is a drastic reduction of the cost and opens a way to
employ sparse grid for the mentioned high-dimensional data problems.

Direct and Diagonal Neighbor Stencil The direct and diagonal neighbor stencil (abbre-
viated DDN) contains not only the direct horizontal and vertical neighbors of each pixel,
but also its direct diagonal neighbors:

IDDN :=
{{

j, j′
}
⊆ [d]

∣∣jx − j′x
∣∣ ≤ 1 and

∣∣∣jy − j′y
∣∣∣ ≤ 1

}∗
. (5.8)

It is derived from the Moore neighborhood of radius 1 [55]. We visualize this sten-
cil again at the example of a 5 × 5 image in Fig. 5.1b. The number of the pair-
wise interactions between the pixels contained in IDDN is (ax − 1)ay + ax(ay − 1) +
2 (ax − 1)

(
ay − 1

)
= 4axay − 3

(
ax + ay

)
+ 2 ∈ O (d). Again, the trivial interactions ∅

and [d] are also contained in IDDN because we construct the stencil via the valid hull.
Then, the size cn

IDDN of the resulting geometry-aware regular sparse grid of level n ≥ 3
with the direct and diagonal neighbor stencil then is given by

cn
IDDN =1 + d (2n − 2) +

(
4axay − 3

(
ax + ay

)
+ 2
)
·

n

∑
l=3

2l−1 (l − 2)

=1 + d (2n − 2) +
(
4d− 3

(
ax + ay

)
+ 2
)
· (2nn− 3 · 2n + 4) . (5.9)

As for the asymptotic growth of cn
IDDN , we get cn

IDDN ∈ O (2n · d · n), which again is only
linear in d.

Generalization to Distance-bounded Pairwise Stencil With the geometric distance
between two pixels j and j′ given by

dist2D : [d]2 → R ,

(j, j′) 7→
√
|jx − j′x|2 +

∣∣∣jy − j′y
∣∣∣
2

,
(5.10)

we look at the direct neighbor stencil as all pairwise interactions with dist2D(j, j′) ≤
1 and at the direct and diagonal neighbor stencil as all pairwise interactions with
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dist2D(j, j′) ≤
√

2. This generalizes to the distance-bounded pairwise stencil with distance
r (abbreviated DBP-r):

IDBP-r :=
{{

j, j′
}
⊆ [d] dist2D(j, j′) ≤ r

}∗
. (5.11)

For each pixel j, the number of other pixels j′ with dist2D(j, j′) ≤ r grows quadratically
with r, i.e. |IDBP-r| ∈ O

(
d · r2). This implies that cn

IDBP-r ∈ O
(
2n · d · n · r2) is still linear

in the dimension d. Special cases of the DBP-r are the DN stencil (r = 1) and the DDN
stencil (r =

√
2). Those two and the DBP-2 stencil are visualized in Fig. 5.1.

Generalization to 3D and Beyond The image stencil DBP-r (ref. Eq. 5.11) further
generalizes to a stencil for video data or even a stencil for data of arbitrary high number
of spatial orders. Let e ∈ N be that number of spatial orders, such that e = 2 for a
(grayscale) image and e = 3 for a (grayscale) video. The number of dimensions d is

derived from the resolution ai in the ith spatial order as d =
e

∏
i=1

ai and the position of

each e-xel (in other literature [16, 99] referred to as hyper-voxel) j (for e = 2 a pixel, for
e = 3 a voxel) is given by a e-dimensional vector (j1, . . . , je). Then, with the geometric
distance between two e-xels j and j′ given by

diste-D : [d]2 → R ,

(j, j′) 7→
√

e

∑
i=1

∣∣ji − j′i
∣∣2 ,

(5.12)

the e-ordered distance-bounded pairwise stencil with distance r (abbreviated e-DBP-r) is
given by

I e-DBP-r :=
{{

j, j′
}
⊆ [d] diste-D(j, j′) ≤ r

}∗
. (5.13)

For each e-xel j, the number of other e-xels j′ that are contained in the hypersphere of
radius r around j (which is related to the Delannoy number [6]) grows polynomially
with degree e in r, thus: |I e-DBP-r| ∈ O (d · re). It follows, that cn

I e-DBP-r ∈ O (2n · d · n · re)
is also linear in the number of dimensions d.

5.2.1.2. Tupled Stencils

So far, we only looked at stencils that generate interactions of at most two dimensions.
The next step is to build up stencils that contain also interactions of more than two
dimensions.
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Figure 5.2.: The SQ stencil groups together four pixels sharing a corner into one interaction. The four
pixels colored in green (top left) form such an interaction. All subgroups of size three of the
original four pixels are also pulled into the ISQ. The four possible combinations are depicted
with dark blue-colored pixels at the top. Also, all subgroups of size two are pulled into ISQ,
resulting in the six possible combinations depicted at the bottom with light blue-colored
pixels.

Square Stencil For image data, taking into account the combination of four pixels
forming a square is the most basic structure if we look at interactions with more than
two dimensions. We define the square stencil (abbreviated SQ) as

ISQ :=
{{

j(1), j(2), j(3), j(4)
}
⊆ [d]

(
j(1)x , j(1)y

)
=
(

j(2)x − 1, j(2)y

)

=
(

j(3)x , j(3)y − 1
)
=
(

j(4)x − 1, j(4)y − 1
)}∗

.
(5.14)

which includes all quadruples of pixels sharing a corner. The stencil for one corner and
the resulting subgroups are shown in Fig. 5.2. Because we define the interactions via
the hull (see Def. 5.1.1), all possible subsets of all interactions are also contained in ISQ.
In contrast to the pairwise stencils defined in Sec. 5.2.1.1, those are not only the trivial
interactions ∅ and [d] but also all tree-tuples of pixels sharing a corner and all pairs of
pixels sharing a corner (which correspond to the DDN stencil). Those non-trivial subsets
are visualized in Fig. 5.2 at the example of one interaction of four pixels.

To calculate the size cn
ISQ of the geometry-aware regular sparse grid with the square

stencil, we first count the interactions of size four. This quantity corresponds to the
number of inner corners in the image, which is (ax − 1) ∗ (ay − 1) = axay − (ax +
ay) + 1 = d− (ax + ay) + 1. For each of those interactions of size four, there are four
subsets of size three which are added. Thus, the number of interactions of size three is
4d− 4(ax + ay) + 4. For the remaining interactions of size smaller than three, we refer
to cn
IDDN from Eq. 5.9. For an interaction of size four to be present in the geometry-aware

sparse grid, the level has to be at least 5. In total, with Eq. 5.5 we get

cn
ISQ =cn

IDDN +
(
4d− 4(ax + ay) + 4

)
·

n

∑
l=4

2l−1
(

l − 2
2

)

+
(
d− (ax + ay) + 1

)
·

n

∑
l=5

2l−1
(

l − 2
3

)

=1 + d (2n − 2) +
(
4d− 3

(
ax + ay

)
+ 2
)
· (2nn− 3 · 2n + 4)
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+
(
4d− 4(ax + ay) + 4

)
·
(

2n−1n2 − 7 · 2n−1n + 7 · 2n − 8
)

+
(
d− (ax + ay) + 1

)
· 1

6

(
2nn3 − 3 · 2n+2n2 + 53 · 2nn− 45 · 2n+1 + 96

)

=1 + d (2n − 2) +
(
4d− 3

(
ax + ay

)
+ 2
)
· (2nn− 3 · 2n + 4)

+
(
d− (ax + ay) + 1

)
· 1

6

(
2nn3 − 31 · 2nn + 39 · 2n+1 − 96

)
. (5.15)

In total, cn
ISQ ∈ O

(
2n · d · n3).

Generalization to Corner-centered Stencil for e-xels The square stencil includes all
four-tuples of pixels sharing the same corner. We generalize this in two ways:

1. Group even more pixels in one interaction by specifying in which radius r pixels
around the pixel corner are allowed to be.

2. Generalize from image data, which has two spatial orders, to data of arbitrary
high number of spatial orders e containing e-xels.

The corners of a d-dimensional dataset containing e-xels with d =
e

∏
i=1

ai are given by

K = {(x1 + 0.5, x2 + 0.5, · · · , xe + 0.5) xi ∈ [ai − 1]}. With the distance from an
e-xel j to a corner k ∈ K obtained via

diste-D
corner : K× [d]→ R ,

(k, j) 7→
√

e

∑
i=1
|ki − ji|2 ,

(5.16)

the e-ordered corner-centered distance-bounded stencil with distance r (abbreviated e-CCDB-r)
is then given by

I e-CCDB-r :=
{

E ⊆ [d] ∃k ∈ K : ∀j ∈ E : diste-D
corner(k, j) ≤ r

}∗
. (5.17)

The square stencil is the special case 2-CCDB-
√

2
2 , another example with e = 2 and

r = 2 is visualized in Fig. 5.3. To estimate the number of grid points in the resulting
geometry-aware sparse grid, we need to know the maximum size of an interaction,
i.e. the number of e-xels which are at most contained in the hypersphere of radius r
around any corner. We call this number se,r ∈N, whereas we know that se,r ∈ O (re).
A geometry-aware sparse grid using this stencil has to be at least of level se,r + 1 to take
into account all interactions obtained by the stencil. Further, the number of corners is
in O (d) and in particular independent of r. With the sum over the binomial coefficient
from Eq. 5.5, we know that in total, cn

I e-CCDB-r ∈ O
(
2n · d · nse,r−1). We see that with

growing se,r, the size of the geometry-aware sparse grid resulting from this stencil
easily grows out of hand.
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Figure 5.3.: The 2-CCDB-2 stencil groups together 10 pixels around one corner into one interaction. This
also results in 4,082 possible subgroups of size > 1 of which most are not redundant with
subgroups generated from other corners.

Figure 5.4.: On the left, the 2-XCDB-r stencil is visualized grouping together five pixels. On the right,
2-XCDB-

√
2 is grouping together nine pixels.

e-xel-centered Stencil Instead of centering the stencil at a corner, we can also center
it at an e-xel. This yields a slightly different structure than the e-CCDB-r stencil and
gives us the e-ordered e-xel-centered distance-bounded stencil with distance r (abbreviated
e-XCDB-r):

I e-XCDB-r :=
{

E ⊆ [d] ∃j′ ∈ [d] : ∀j ∈ E : diste-D(j, j′) ≤ r
}∗

. (5.18)

A visualization for e = 2 and different values of r is shown in Fig. 5.4. With this stencil,
for each e-xel j, we group together all e-xels j′ that are contained in the hypersphere
of radius r around j. The maximum size of the generated interactions is denoted by
s′e,r ∈N. We draw the same conclusions as with the e-CCDB-r stencil: s′e,r ∈ O (re) and

cn
I e-XCDB-r ∈ O

(
2n · d · ns′e,r−1

)
.

5.2.1.3. Comparison of Grayscale Stencils

In Fig. 5.5, the number of points in the regular sparse grid is compared to the number of
points of the geometry-aware sparse grid resulting from different stencils for a dataset
consisting of 28× 28 grayscale images. The number of points in the regular sparse grid
surpasses 106 already at level 3, rendering it infeasible for such problems. In contrast,
the number of points in the geometry-aware sparse grid is smaller by a factor in the
order of 103 for level 3, containing between 10,753 and 22,409 grid points for the chosen
stencils. However, larger stencils such as the 2-XCDB-1 are also difficult to apply to
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Figure 5.5.: Comparison of the number of grid points in a regular sparse grid vs. geometry-aware sparse
grids for a 28× 28 grayscale image dataset with different stencils. After level 2, the number of
points in the regular sparse grid is not feasible to handle anymore while the number of points
in the geometry-aware sparse grids is growing much slower. Among the geometry-aware
sparse grids, those with smaller stencils grow slowest.
Raw data for this figure: Tab. C.19.
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such high-dimensional problems, as the number of grid points in level 6 (which is the
first level for which this stencil unfolds its full potential) is already at 2.93 · 106 grid
points. Due to those numbers, treating the geometry-aware sparse grids in a monolithic
fashion is not suitable. We discuss how to apply the combination grid technique in
Sec. 5.4

5.2.2. Multilayer Stencils

A lesson to take away from deep learning [4] is that when learning an image dataset,
it is best to project the hierarchy of the data to a hierarchy in the model. For example,
to recognize a human face, it is good to know that a face consists of two eyes, a nose
and a mouth. Further, an eye can be partitioned to eyelashes, the eyeball, the pupil and
so on. Important is that we model the coarse structures as well as the details. With
increasing resolution of an image (or the spatially ordered dataset of order e), two
neighboring pixels (or e-xels) differ less and less. Thus, just looking at the relations
of pixels in the vicinity of each other as we have proposed so far does not suffice to
model the coarser structures of the dataset. In order to incorporate those structures,
we artificially coarsen the images in the dataset recursively and append the resulting
dimensions to the original dataset as discussed in Sec. 5.2.2.1. Then, we investigate
how to connect the layers with stencils heeding the layer hierarchy in Sec. 5.2.2.2 before
comparing the stencils in Sec. 5.2.2.3. Some of the stencils presented in this section
have been implemented in SG++ during a bachelor project [104].

5.2.2.1. Data Preprocessing

We start again with a dataset with e spatial orders and resolution ai in order i and are
aiming to construct a set of k + 1 layers

L =
{

l(0), l(1), . . . , l(k)
}

(5.19)

by iteratively coarsening the image to the next layer. Thereby, layer 0 corresponds to
the original image and thus has the finest resolution whereas layer h + 1 is coarser
than layer h. The resolution at layer h in the ith spatial order is then given by a(h)i ,

thus the number of dimensions in layer h is d(h) =
e

∏
i=1

a(h)i . Concatenating those

dimensions together, we extend each original data point of dimension d(0) to a data

point of dimension d(total) =
k
∑

h=0
d(h). Each layer contains the indices of the dimensions

associated to it, i.e. l(0) =
[
d(0)

]
and l(h) =

{
d(h−1) + 1, . . . , d(h)

}
∀h ∈ [k].

An example of iteratively coarsening an image of original size 28× 28 is shown in
Fig. 5.6. The images are downscaled using bicubic interpolation [51].
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(a) 28× 28 (b) 14× 14 (c) 7× 7 (d) 4× 4 (e) 2× 2 (f) 1× 1

Figure 5.6.: Iteratively coarsening an image of original size 28× 28.

For the coarsening factor, the most natural choice is to divide the resolution by 2 in each
spatial order from layer h + 1 to layer h. If for the ith spatial order, the corresponding

a(h+1)
i is not divisible by 2, we round the result up: a(h)i =

⌈
a(h+1)

i
2

⌉
. In this case, the

original resolution in every spatial order is 2r with r ∈N and the resulting dimension
is

d(total) =
r

∑
h=0

1
2h·e d(0) = d(0)

2e − 2−e·r

2e − 1
. (5.20)

In general, the number of total dimensions d(total) is in O
(

d(0) ·max
i∈[e]

a(0)i

)
.

5.2.2.2. Stencils for the Layer Hierarchy

We now look at stencils that connect the dimensions of different layers by grouping
them in interactions of various size. Apart from connecting the layers, we also apply a
stencil s to each layer individually, whereas s is any of the previously presented stencils.

No Interactions between Layers The first possibility so treat the layers is to not
connect them at all. This stencil is called the no layer interaction stencil (abbreviated
NoLay). With cn

I s
lh

denoting the number of grid points resulting from applying stencil s

to layer h, the number of grid points for the NoLay stencil is then given by

cn
I s+NoLay = −k +

k

∑
h=0

cn
I s

lh
. (5.21)

This corresponds (except for the summand−k) to the sum when applying s to a dataset
containing only layer h for each h.

Neighboring Layers Pairwise Connecting Stencil We want to group an e-xel j from
layer h together with an e-xel j′ from layer h + 1 if j′ contains information from j. To this

end, we define the relation P ⊆
[
d(total)

]2
, which specifies if two e-xels of two different

120 5. Geometry-aware Sparse Grids



Layer 4
Resolution: 1× 1

Layer 3
Resolution: 2× 2

Layer 2
Resolution: 3× 3

Layer 1
Resolution: 5× 5

Layer 0
Resolution: 10× 10

Figure 5.7.: Coarsening an image with initial resolution 10× 10 leads to the four additional layers 5× 5,
3× 3, 2× 2 and 1× 1. The arrows denote possible pairwise interactions between pixels of
different layers. If the NoLay stencil is chosen, none of those interactions are taken. Some
example arrows in red depict interactions that are added via the NPLay stencil. Other example
arrows in shades of blue depict interactions that are added via the APLay stencil. Adapted
from [104].
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layers are overlapping as

PL =

{(
j, j′
)
∈
[
d(total)

]2
∃h, h′ ∈ [k] : h < h′ ∧ j ∈ l(h) ∧ j′ ∈ l(h

′) ∧ ∃i ∈ [e] :
((

j′i − 1

a(h
′)

i

≤ ji − 1

a(h)i

<
j′i

a(h
′)

i

)
∨
(

j′i − 1

a(h
′)

i

<
ji

a(h)i

≤ j′i
a(h
′)

i

))}
.

(5.22)

Then, we obtain the neighboring layers pairwise connecting stencil (abbreviated NPLay)
as

INPLay :=
{{

j, j′
}
⊂
[
d(total)

]
∃h ∈ [k] : j ∈ l(h) ∧ j′ ∈ l(h+1) ∧

(
j, j′
)
∈ PL

}∗
.

(5.23)
In Fig. 5.7, the red arrows depict some of the interactions pulled in via the NPLay stencil
at the example of a five-layered problem. Each e-xel j of layer h is part of exactly one
such pair from h to h + 1 only if for each spatial order i, the resolution a(h)i is divisible

by a(h+1)
i . In this case, the number of total pairs is d(total) − 1. In general, if there are

spatial orders i for which a(h)i is not divisible by a(h+1)
i , the number of pairs pNPLay is

given by

pNPLay =
k−1

∑
h=0

e

∏
i=1


a(h)i +


 a(h+1)

i

gcd
{

a(h)i , a(h+1)
i

} − 1


 · a(h)i

gcd
{

a(h)i , a(h+1)
i

}


 . (5.24)

In the worst case, p is only slightly less than 2ed(total). However, this case only occurs for
a very slow image coarsening rate and awkward image resolutions. With appropriate
data preprocessing and a reasonable coarsening rate (of e.g. 2), the best case of p =
d(total) is well achievable. However, for the general case, the resulting number of grid
points cn

INPLay , which are added to the geometry aware sparse grid of level n with the

NPLay stencil, is in O
(

2n · 2e · d(total) · n
)

.

All Layers Pairwise Connecting Stencil Instead of only connecting neighboring
layers, we can also connect all layers with each other with the same idea behind of
grouping together e-xels that contain information from each other. The all layers pairwise
connecting stencil (abbreviated APLay) is given by

IAPLay :=
{{

j, j′
}
⊂
[
d(total)

] (
j, j′
)
∈ PL

}∗
. (5.25)

Analogous to the NPLay stencil, the number of pairs pAPLay is

pAPLay =
k−1

∑
h=0

k

∑
h′=h+1

e

∏
i=1


a(h)i +


 a(h

′)
i

gcd
{

a(h)i , a(h
′)

i

} − 1


 · a(h)i

gcd
{

a(h)i , a(h
′)

i

}


 (5.26)
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and cn
IAPLay ∈ O

(
2n · 2e · k · d(total) · n

)
. In Fig. 5.7, the blue shaded arrows depict some

of the interactions pulled in via the APLay stencil at the example of a five-layered
problem.

All Layers Full Connecting Stencil We generalize the APLay stencil to not only in-
clude pairwise interactions of overlapping e-xels but to also include groups of those if
they all share a common information through the coarsening process. This leads us to
the all layers full connecting stencil (abbreviated AFLay) as

IAFLay :=
{

E ⊂
[
d(total)

]
∀j, j′ ∈ E :

(
j, j′
)
∈ PL ∨

(
j′, j
)
∈ PL

}∗
. (5.27)

The number of interactions of size k + 1 is given by d(0) only if for each spatial or-
der i, the resolution a(0)i is a power of 2. Otherwise, the number of those interac-

tions is in O
(

d(0)ke
)

in the worst case. For the number of points cn
IAFLay , which are

added to the geometry-aware sparse grid with the AFLay stencil, holds: cn
IAFLay ∈

O
(

2n · ke · k · d(total) · nk
)

. Even for lower spatial orders e and a moderate number of
additional layers k, this is not feasible to handle on current hardware. Not only do we
have lots of interaction groups of size k + 1 but also do they pull in an even higher
number of interaction groups of slightly lower size resulting a huge number of grid
points. In Fig. 5.8, the AFLay is visualized at the example with e = 1 and d(0) = 10. A
coarsening factor of 2 results in four additional layers. The e-xels overlap such that 12
unique interaction groups of five e-xels (one from each layer) are generated with the
AFLay stencil.

5.2.2.3. Comparison of Layer Stencils

In Fig. 5.9, the number of points in the regular sparse grid of both the original dimen-
sionality (784) and the extended dimensionality (1,050) is compared to the number
of points of the geometry-aware sparse grid resulting from DN together with different
multilayer stencils for a dataset consisting of 28× 28 grayscale images. Choosing a
coarsening factor of 2, the resulting additional layers have a resolution of 14× 14, 7× 7,
4× 4, 2× 2 and 1× 1. Thus, the interactions added via the AFLay stencil have a size
of six, which are taken fully into account starting at a grid of level 7. The number of
grid points of the corresponding geometry-aware sparse grid (together with the DN) is
3.21 · 107, which renders this stencil infeasible for such problems on the hardware we
have at hand. However, the other multilayer stencil offer a viable option to incorporate
the relations between coarse and fine structures into the model.
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Layer 0
Resolution: 10

Layer 1
Resolution: 5

Layer 2
Resolution: 3

Layer 3
Resolution: 2

Layer 4
Resolution: 1

1 2 3 4 5 6 7 8 9 10 11 12

Figure 5.8.: The initial 10 e-xels of the only spatial order are coarsened to four additional layers with
resolutions of 5, 3, 2 and 1. This results in 12 unique interactions of size five, each containing
an e-xel from each of the five layers.
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Figure 5.9.: Comparison of the number of grid points in a regular sparse grid vs. geometry-aware
sparse grids for a 28× 28 image dataset extended to a total of five layers resulting in 1,050
dimensions with different multilayer stencils. After level 2, the number of points in the
regular sparse grid is not feasible to handle anymore while the number of points in the
geometry-aware sparse grids is growing much slower.
Raw data for this figure: Tab. C.20.
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5.2.3. Colored Datasets

A colored image or video consists of the three channels red (R), green (G) and blue
(B). Between those channels, there exists no order, so we should not treat those colors
just as another spatial order. Otherwise, we would need to define a ”left” channel, a
”center” channel and a ”right” channel. Then, when employing a DBP-r stencil with
r < 2 (e.g. the DN stencil or the DDN stencil), the center channel would be connected to
the other two but the left and the right channel would not be connected. Obviously,
this would be inconsistent behaviour, which is why we don’t treat the colors as another
spatial order but in a different fashion.

With e spatial orders, the resolution in the ith spatial order is given by ai. With the three
color channels, the dimensionality d is thus given by

d = 3 ·
e

∏
i=1

ai , (5.28)

whereas for an e-xel j, the color channel values are given by Rj, Gj and Bj respectively.
Whilst feasible, we define the color stencils as upgrades to the grayscale (multilayer)
stencils. When referring to such a stencil s that we apply to each channel, the interac-
tions in each channel are then denoted as cn

I s
gray

, whereas the internal dimensionality of

this channel is of course only d
3 =

e
∏
i=1

ai.

This section is structured as follows. First, we look at a stencil that does not take
into account any interactions between different color channels in the next paragraph.
Then, we define stencils that take into account the interactions between different color
channels of an e-xel in Sec. 5.2.3.1 before looking at stencils that also model interactions
between different color channels of different e-xels in Sec. 5.2.3.2. In the end, the sizes
of different color stencils are compared in Sec. 5.2.3.3

No Interactions between Color Channels The first possibility is to apply the desired
stencil from Sec. 5.2.1 or Sec. 5.2.2 to each channel individually without modelling
interactions between the different channels. Treating the color channels this way is
called the no color interactions stencil (abbreviated NoCol). Let s be the stencil we want
to apply, then the number of grid points for the combined stencil s+NoColis given by

cn
I s+NoCol = 3

(
cn
I s

gray
− 1
)
+ 1 = 3cn

I s
gray
− 2 . (5.29)

Thus, comparing a dataset with colored images to a dataset with grayscale images
but both of the same resolution, this effectively increases the number of grid points
by a factor of three independent of the stencil used. None of the magenta and orange
connections, but only the black connections between the same channels of the e-xels
depicted in Fig. 5.10 are allowed to be included with the NoCol stencil.
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5.2.3.1. Color Interactions Limited to each e-xel

Taking into account relations between different color channels, the first possibility is to
only group color channels of an individual e-xel together. We present two such options
in the following paragraphs.

Pairwise Interactions between Color Channels of each e-xel To include interactions
between the channels of an e-xel j, the first approach is to include pairwise interactions{

Rj, Gj
}

,
{

Rj, Bj
}

,
{

Gj, Bj
}

. We call this the pairwise color interactions per e-xel stencil
(abbreviated PairCol). The number of those pairwise interactions is d. Thus, for
the grayscale stencil s we want to apply, the number of grid points in the resulting
geometry-aware sparse grid is

cn
I s+PairCol = cn

I s+NoCol + d · (2nn− 3 · 2n + 4) = 3cn
I s

gray
− 2 + d · (2nn− 3 · 2n + 4) .

(5.30)
As with the grayscale distance-bounded pairwise stencil, the additional number of grid
points is in O (2n · d · n), which renders this a feasible option to take into account the
relation between the color channels of one e-xel. The magenta connections in Fig. 5.10
depict the interactions of the PairCol stencil.

Full Interactions between Color Channels of each e-xel Additional to the pairwise
interactions of the channels of each e-xel j, we can also include the interaction containing
all three channels

{
Rj, Gj, Bj

}
. This is called the full color interactions per e-xel stencil

(abbreviated FullCol). The number of those triple interactions is d
3 , so for a grayscale

stencil s we apply to each color channel, the number of grid points in the resulting
geometry-aware sparse grid is

cn
I s+FullCol =cn

I s+PairCol +
d
3
·
(

2n−1n2 − 7 · 2n−1n + 7 · 2n − 8
)

=3cn
I s

gray
− 2 + d · (2nn− 3 · 2n + 4) +

d
3
·
(

2n−1n2 − 7 · 2n−1n + 7 · 2n − 8
)

=3cn
I s

gray
− 2 +

d
3
·
(

2n−1n2 − 2n−1n− 2n+1 + 4
)

. (5.31)

In contrast to PairCol, the rate of growth of the number of grid points for FullCol
is in O

(
2n · d · n2), which is also an acceptable approach to deal with color images.

Grouping together each set fully connected with magenta lines in Fig. 5.10 would result
in the FullCol stencil.

5.2.3.2. Color-Interactions between Different e-xels

Instead of limiting the grouped color channels to the same e-xels, we can also group
together different color channels of different e-xels. We present several such stencils in
the following.
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Figure 5.10.: For three e-xels j(0), j(1), and j(2) with three color channels each, different color channel
stencils are shown. The lines in magenta denote the pairwise interactions from the PairCol
stencil. With the FullCol stencil, the groups connected in magenta would form interactions
of size three. If NoCol is chosen, the black lines connect the e-xels inside of the channels via
some pairwise stencil s. The orange lines are included within the PCPSof(s)Col stencil.

Pairwise Cross-interactions between Color Channels for Pairwise Stencils So far,
we only considered to include the interactions between different color channels if
they belong to the same e-xel. Now, we also want to include interactions between
different color channels of related e-xels. To this end, we extend pairwise stencils s
such as the e-DBP-r stencil or the APLay stencil to colors by defining the pairwise color
cross-interactions for pairwise stencil s stencil (abbreviated PCPSof(s)Col) as

IPCPSof(s)Col :=
{{

C(1)
j , C(2)

j′

}
(j, j) ∈ [d]2 ,

(
C(1), C(2)

)
∈ {R, G, B}2 ,

{
j, j′
}
∈ I s

}∗
.

(5.32)

For each pair of e-xels j and j′ that are grouped together in a grayscale image with
the stencil s, there are now nine possible pairs of color channels, which are grouped
together in the PCPSof(s)Col stencil. Additionally, the pairs from the PairCol stencil
are also included in the PCPSof(s)Col stencil. The number of grid points cn

IPCPSof(s)Col is
thus estimated as

cn
IPCPSof(s)Col ≈ 9 · cn

I sgray + cn
INone+PairCol , (5.33)

which implies cn
IPCPSof(s)Col ∈ O

(
cn
I s

)
. Whether it is feasible to employ this stencil in

practice of course depends on the problem. s = e-DBP-r with moderate e and r (such
as in the special cases (e, r) = (2, 1) which corresponds to DN for grayscale images or
(e, r) = (2,

√
2) which corresponds to DDN for grayscale images) is a viable option to

treat a color image. In Fig. 5.10, the orange lines denote the interactions taken in, if the
e-xels are connected via the pairwise stencil s resulting in the connections drawn in
black.
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Full Cross-interactions between Color Channels for Pairwise Stencils As a last
step, we group together all three color channels of a pair of related e-xels in a pairwise
stencil s. Although we only consider pairs of related e-xels, this already implies an
initial level of at least 7 to initially have the effect of the resulting interaction present
in the model. The number of grid points at this level is not only large because of the
interactions of size six. It also grows due to all the partial interactions generated by
the subsets of all larger interactions, which are pulled in to form a valid interaction
set. However, for the sake of completeness, we define the full color cross-interactions for
pairwise stencil s stencil (abbreviated FCPSof(s)Col) as

IFCPSof(s)Col :=
{{

Rj, Gj, Bj, Rj′ , Gj′ , Bj′
}

(j, j) ∈ [d]2 ,
{

j, j′
}
∈ I s

}∗
. (5.34)

and make note, that cn
IFCPSof(s)Col ∈ O

(
cn
I s · n4).

Further Stencils for Color Images Going even further than the PCPSof(s)Col stencil
would mean to group together all color channels from a set of related e-xels e.g. given
by the e-CCDB-r stencil, the e-XCDB-r stencil, or the AFLay stencil. However, grouping
together all three color channels of k e-xels results in an interaction of size 3k. In order
for this interaction to be present in the geometry-aware sparse grid, the initial level
needs to be at least 3k + 1. Each subspace added to such an interaction is of size 23k.
Those numbers illustrate, that we need not bother with interactions of this size because
the resulting geometry-aware sparse grids are too large to handle.

Instead, if one wishes to apply a tupled grayscale stencil on color image data, it is of
course possible to still model the relations between different channels of different e-xels
additionally with one of the color stencils presented above. The resulting geometry-
aware sparse grid is then given by the union of the applied stencils.

5.2.3.3. Comparison of Color Stencils

In Fig. 5.11, the number of points in the regular sparse grid is compared to the number of
points of the geometry-aware sparse grid resulting from DN together with different color
stencils for a dataset consisting of 32× 32 color channel images. With a total number
of 1.89 · 107 grid points at level 3, the regular sparse grid is obviously not feasible to
employ. The stencils including interactions of at most two e-xels are of 42,241 grid
points (NoCol), 54,529 grid points (PairCol) and 102,145 grid points (PCPSof(DN)Col) at
level 3, which can be handled with enough computational power on modern machines.
However, we also notice that FCPSof(DN)Col consists already of 7.15 · 107 grid points
at level 7, which is the minimum level where the interactions of size six are fully taken
into account. We are not able to employ this stencil with the computational power we
have at hand.

5.2. Image Stencils 129



1

100

10000

1× 106

1× 108

1× 1010

1× 1012

1× 1014

1× 1016

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
gr

id
po

in
ts

Sparse grid level

Regular Sparse Grid
GaSG with DN+NoCol

GaSG with DN+PairCol
GaSG with DN+FullCol

GaSG with PCPSof(DN)Col
GaSG with FCPSof(DN)Col

Figure 5.11.: Comparison of the number of grid points in a regular sparse grid vs. geometry-aware
sparse grids for a 32× 32 color image dataset with different color stencils. After level 2,
the number of points in the regular sparse grid is not feasible to handle anymore while the
number of points in the geometry-aware sparse grids is growing much slower.
Raw data for this figure: Tab. C.21.
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Figure 5.12.: In the two-dimensional case and a target interaction size of two, the subspace grids colored
in green are omitted in the cropped version of the geometry-aware sparse grid because they
are not required as ancestors for any of the points in the target interaction subspace grids
(colored in dark blue). Above, this is depicted for both level 3 and level 4.

5.2.4. Cropping the Grid

We already discussed that to initially have the effect of an interaction of size t in the
model, the sparse grid requires at least a level of t + 1. Only then is the subspace grid
present that has a level of 2 at the dimensions from said interaction (and 1 at the rest of
the dimensions). However, such a level also pulls in lots of subspace grids of the same
level-vector sum that do not necessarily contain ancestral grid points for the subspaces
we really want to be part of the grid. For example, a geometry-aware sparse grid with
the FCPSof(s)Col stencil requires a level of at least 7. This also results of subspaces with
level-vectors such as (7, 1, . . . , 1), (1, 7, . . . 1) and so forth to be pulled in the grid. None
of those subspaces contains hierarchical ancestors for the larger interactions, which
is why they are not mandatory to be present in the final grid. Truly, the subspaces
where only one level-entry is higher than 1 are not even the major problem, but more
so those where the level is higher than 1 at multiple level-entries because there exist a
huge number of such subspaces. To further coarsen the grid, we omit those subspaces,
and only pull them in as soon as they are required to serve as ancestors for grid points
pulled in by the target interactions of size t. This concept is visualized in Fig. 5.12 for a
two-dimensional problem with a grid of level 3 and 4.

Formally, we define the cropped geometry-aware sparse grid as follows:
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Definition 5.2.1
Let sparseGridd,n be the regular sparse grid of dimension d and level n and I be a
set of valid interactions. The maximum size of an interaction I ∈ I is denoted as tI
via

tI := max {|I| I ∈ I} . (5.35)

Then, the cropped geometry-aware sparse (CGaSG) grid of level n denoted as(
sparseGridd,n

)crop
I is given by

(
sparseGridd,n

)crop
I :=

{
(l, i) ∈

(
sparseGridd,n

)
I

∀j ∈ [d] : lj ≤ max {1, 1 + n− tI}
}

.
(5.36)

This implies that until level tI ,
(
sparseGridd,n

)crop
I only consists of rootd. Starting

with level tI + 1, it then contains the subspaces encoding the target interactions and the
necessary ancestors. In Tab. 5.1, the number of grid points in the GaSG vs. the number
of grid points in the CGaSG for several grayscale stencils at the respective level tI + 1
is compared. With the cropping technique, especially stencils containing interactions

Table 5.1.: Exemplary numbers comparing the grid sizes for level tI + 1 of an geometry-aware sparse
grid with and without cropping for several stencils at hand of an 28× 28 grayscale image
dataset. For the pairwise stencils DN, DDN and DBP-2, the gain is marginal. For SQ at the first
level tI + 1 = 5, we omit about 88% of the grid points and for 2-XCDB-1 at level tI + 1 = 6,
the omission is at about 95% making this stencil a feasible option again.

Stencil Initial level GaSG size CGaSG size
DN 3 10,753 7,617

DDN 3 16,585 13,449
DBP-2 3 22,409 19,273

SQ 5 400,441 48,441
2-XCDB-1 6 2,934,697 148,265

of size higher than 2 become worthwhile again due to a drastic reduction of the grid
points.

5.3. Spatial Adaptivity

When spatially refining a sparse grid, the most common strategy is to add all 2 · d
hierarchical children of a refinement candidate and all of their hierarchical ancestors to
the grid. In the context of geometry-aware sparse grids, we propose a strategy, which
decreases the number of grid points that are added for each refinement candidate.
Namely, for a geometry-aware sparse grid GI and a refinement candidate p ∈ GI ,
we only add the children q ∈ children(p) and their hierarchical ancestors, for which
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holds: Iq ∈ I . As a consequence, the number of children that are added via refinement
is

2 ·
∣∣Ip
∣∣+ 2 ·

∣∣{I ∈ I Ip ⊂ I ∧ |I| =
∣∣Ip
∣∣+ 1

}∣∣ (5.37)

(not counting the hierarchical ancestors if some of those are still missing). In the special
case where Ip is already a target interaction in I , this simplifies to 2 ·

∣∣Ip
∣∣. The number

of dimensions j, in which hierarchical ancestors of the child q = (l, i) may need to be
added to the grid as well is limited by

∣∣Iq
∣∣− 1, namely all dimensions in Iq except for

the one in which q is the child of p. The number of missing ancestors then depends on
the levels lj in said dimensions j of q (and p) and is at most −1 + ∏

j
lj.

For example, in case of the pairwise stencil DN, if Ip is already a pairwise interaction
(
∣∣Ip
∣∣ = 2), the number of children per Eq. 5.37 is four. If

∣∣Ip
∣∣ = 1, it is at most 10, due

to a maximum of four other pixels connected to Ip. We want to emphasize that those
numbers are constant for all stencils (with potential parameters fixed as in parameter
dependent stencils such as e-DBP-r and others), independent of the dimensionality of
the problem. Thus, with this proposed refinement strategy, the growth of the grid size
upon refining one grid point is no longer 2 · d but constant.

For grid coarsening, we employ the same strategies for GaSG as for regular sparse
grids. Only grid points with none of their children present in the current grid are
allowed to be removed from it. As long as this is the case, there is no further limitation
to the coarsening process.

5.4. Dimensional Adaptive Combigrid Scheme

The grid points we omit in a GaSG (or a CGaSG) compared to a regular sparse grid
are all related to entire subspace grids that are omitted. It cannot be the case, that
some grid points from a specific subspace grid are contained in a GaSG but other grid
points from the same subspace grid are not contained. Thus, we can construct every
GaSG as the union of certain subspace grids. This leads us to the combination grid
technique, because we relate the subspace grid subspaceGridd,l to the component grid
of the same level-vector componentGridd,l. The combination grid technique solution,
which involves all component grids (possibly with coefficient 0) that are thus related to
the subspace grids contained in the GaSG, is what interests us here.

This section is structured as follows: First, we investigate the components and their
coefficients that are contained in the combination grid technique solution related to
the GaSG in Sec. 5.4.1. Then, we investigate how dimensional adaptivity is employed
specifically for GaSG in Sec. 5.4.2. Finally, we discuss how the similarity between many
of the involved components of a GaSG is exploited to speed up the offline/online
scheme in Sec. 5.4.3.

5.4. Dimensional Adaptive Combigrid Scheme 133



5.4.1. Components and their Coefficients

As formalized in Eq. 5.4, each component grid componentGridd,l is related to the interac-
tion IcomponentGridd,l . If for an GaSG

(
sparseGridd,n

)
I , it holds that IcomponentGridd,l ∈ I

and n > ‖l‖1 − d, we include componentGridd,l in the combination grid technique
scheme. The set of component grids Cn

I that are included in the combination grid
technique related to the GaSG

(
sparseGridd,n

)
I is thus formalized as

Cd,n
I :=

{
componentGridd,l IcomponentGridd,l ∈ I ∧ n > ‖l‖1 − d

}
. (5.38)

With the component grids related to the regular sparse grid of same level and dimen-
sionality given by Cd,n

reg :=
{

componentGridd,l n > ‖l‖1 − d
}

, the set Cn
I is just a

small subset of Cd,n
reg for the problems we are interested in (high dimensionality and

stencils presented in Sec. 5.2).

This has also an impact on the coefficients for each component grid. Because Cn
I is

not regular, the coefficients provided in Eq. 2.51 are not applicable anymore. Instead,
we obtain the coefficients via the method presented in [69]. For example, in the case
of a pairwise stencil, the coefficient for componentGridd,l with

∣∣{lj lj > 1
}∣∣ = 2, is

either 1, −1 or 0. Only for components with
∣∣{lj lj > 1

}∣∣ ≤ 1 are there coefficients
of higher absolute value than 1.

5.4.2. Dimensional Adaptivity

With the combination grid technique at hand, we have a green light to employ di-
mensional adaptivity as well. Depending on the score assigned to each (refinable)
component grid in the set of components currently indexed, we choose the components
we want to refine. This score is obtained via refinement indicators, which inherently
depend on the problem class we are tackling. Then, we add the components that
have higher resolutions in certain dimensions. Which dimensions we want to resolve
higher depends on the refinement strategy. Starting with Cn

I , we want to extend this set
with more components. Since the result is not regular anymore, we call it CI , whereas
Cn
I ⊆ CI holds.

Refinement Indicators Refinement indicators for density estimation estimate the er-
ror of each singular component grid solution by computing the l2-norm of all surpluses
of grid points at the finest level in that component grid. Higher values indicate, that
the solution at this component has not converged yet.

For classification based on density estimation, we instead look at the Bayes classifier
built up by the same components from all classes. Then, we compute the classification
accuracy for each component and refine those that perform worst.
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Refinement Strategy The refinement strategy consists of determining the refinable
components, choosing the components we want to refine based on the employed refine-
ment indicator and then adding the higher-resolved components in those dimensions
we are interested in.

For componentGridd,l already included in CI , the higher-resolved components we are
interested in are given by

candidatesI
(
componentGridd,l

)
:=
{

componentGridd,l′(
∃j ∈ [d] : l′j = lj + 1∧

(
∀j′ ∈ [d] : j = j′ ∨ l′j = lj

))
∧ IcomponentGridd,l′ ∈ I

}
.

(5.39)

componentGridd,l is refinable, if candidatesI
(
componentGridd,l

)
6⊂ CI . For all re-

finable components, the score is calculated via the refinement indicator. To deter-
mine which components to actually refine, we take a fixed number of components
or a percentage of the included components based on the components’ ranking by
the score from the refinement indicator. Alternatively, we take the components ex-
ceeding a certain threshold of the score. For a component, we want to refine, we
add candidatesI

(
componentGridd,l

)
\ CI to CI . Also, we need to ensure that all of

their coarser-resolved predecessors are also indexed in CI . For componentGridd,l′ ∈
candidatesI

(
componentGridd,l

)
, those predecessors are given by

{
componentGridd,l∗ l∗ 6= l′ ∧ ∀j ∈ [d] : l∗j ∈

[
l′j
]}

. (5.40)

Similar to Eq. 5.37, the maximum number of component grids that are added when
refining componentGridd,l (not counting missing predecessors) is given by

∣∣candidatesI
(
componentGridd,l

)∣∣ =∣∣∣IcomponentGridd,l

∣∣∣+
∣∣∣
{

I ∈ I IcomponentGridd,l ⊂ I ∧ |I| =
∣∣Ip
∣∣+ 1

}∣∣∣
(5.41)

and for each componentGridd,l′ that is added to increase the resolution of componentGridd,l
in dimension j, the number of missing predecessors is at most −1 + ∏

j′ 6=j
l′j′ .

5.4.3. Fast Offline Phase

When employing the combination grid technique with GaSG for the problems we
have in mind, still lots of different components (differentiable by their level-vectors)
are involved. For all of those, we want to obtain the matrix decomposition related to
Eq. 3.11 as discussed in Sec. 3.2.3.3. However, the number of possibilities of component-
grid vectors formed by different dimensionalities and distribution of the levels over
the dimensions is quickly getting out of hand for the high dimensionalities we are
looking at. This is why, in this section, we develop a method to derive the matrix
decompositions of component grids with very large level-vectors from other component
grids with much smaller level-vectors. The implementation of these concepts into SG++
have been the topic of a bachelor project [33].
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(a) The two-dimensional grid
componentGrid2,(3,1)

(b) The one-dimensional grid
componentGrid1,(3)

Figure 5.13.: Embedding componentGrid2,(3,1) into a one-dimensional space by removing the 1 from its
level-vector yields componentGrid1,(3).

5.4.3.1. Embedding Grids into Lower Dimensionality

The level-vectors of the components in CI are of length d. Lots of their entries
are ones. Adding a 1 to a level-vector l = (l1, . . . ld) as l′ = (l1, . . . , ld, 1) embeds
componentGridd,l into the d + 1-dimensional space. Then, in this new dimension d + 1,
the level of all grid points of componentGridd+1,l′ is 1, and there are no grid points with
a different level in this dimension. In reverse, we can also reduce the dimensional-
ity by deleting a 1 from a level-vector. This is shown at the example of embedding
componentGrid1,(3) into a second dimension by extending it to componentGrid2,(3,1) in
Fig. 5.13. We now investigate what happens to A and the matrix decompositions of A
presented in Sec. 3.2.3.3, when we do this.

In this section, we consider A without the regularization, thus A = R. We remember
from Eq. 3.7, that Rij =

∫
Ω ϕi(x)ϕj(x)dx. For the linear, modified linear and kinked

linear basis functions (ref. Sec. 2.2), it holds:

Rij =
d

∏
k=1

1∫

0

ϕ1d
proji,k

(x) · ϕ1d
projj,k

(x)dx , (5.42)

whereas ϕ1d stands for the one-dimensional basis function of the respective type (linear,
modlinear or kinklinear). Now, when adding a 1 to the level-vector and thereby
extending the dimensionality from d to d + 1, Eq. 5.42 becomes

Rij =
d+1

∏
k=1

1∫

0

ϕ1d
proji,k

(x) · ϕ1d
projj,k

(x)dx

=




1∫

0

ϕ1d
proji,d+1

(x) · ϕ1d
projj,d+1

(x)dx


 ·

d

∏
k=1

1∫

0

ϕ1d
proji,k

(x) · ϕ1d
projj,k

(x)dx .

Per definition of dimension d + 1, the projection of any point p via projp,d+1 to dimen-
sion 1 is the one-dimensional root root1. The value of this specific inner product is
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known per Eq. 2.35, Eq. 2.40 and Eq. 2.46:

r := rtype
root1,root1 =





1
3 , type = linear ,
1 , type = modlinear ,
1 , type = kinklinear .

(5.43)

This means, when extending the dimensionality from d to d + 1 by adding a 1 to the
level-vector of the grid, each entry in A has to be multiplied with r to obtain the system
matrix of the new grid A′. Going one step further and extending the dimensionality
from d to d + d′ by adding d′ 1s to the level-vector of the grid, each entry in A has to be
multiplied with rd′ . We write this as

A′ = rd′ · A . (5.44)

Note, that for the modified linear and the kinked linear basis functions, it holds that
A′ = A and thus, no computation is required. For the linear case, we now look at
how the factor rd′ = 3−d′ translates to the Cholesky decomposition and the tridiagonal
decomposition.

Cholesky Decomposition With A = LLT, we write:

A′ = rd′ · A = 3−d′ · LLT =

(
3−

d′
2 L
)
·
(

3−
d′
2 L
)T

. (5.45)

The scalar multiplication retains the triangular form. Thus, the Cholesky factor L′ of A′

is obtained from L via L′ = 3−
d′
2 L which means that we multiply every element of the

Cholesky factor L with 3−
d′
2 to obtain L′. However, as discussed in Sec. 3.2.3.3.2, it is

not computationally feasible to update the regularization parameter λ once A has been
factorized to the Cholesky factor. Since we are still operating on A = R, this technique
is only applicable with the Cholesky decomposition as long as λ = 0.

Tridiagonal Decomposition With A = QTQT, we write:

A′ = rd′ · A = 3−d′ ·QTQT = Q
(

3−d′ · T
)

QT . (5.46)

Thus, the tridiagonal decomposition Q′ and T ′ is obtained from Q and T via Q′ = Q
and T ′ = 3−d′ · T . To obtain T ′, we multiply every element of the tridiagonal matrix T
with 3−d′ . This is valid, because the scalar multiplication retains the tridiagonal form.
Other possibilities would be feasible too, we could for example also incorporate the
factor into Q as well or split it over both factors. All of those possibilities are valid, but
we choose to only incorporate it into T because accessing its elements is cheaper than
accessing the elements from Q. In contrast to the Cholesky decomposition, it is of no
consequence that λ = 0 in A so far, because at this stage, we are still able to add λ to T
and follow the procedure described in Sec. 3.2.3.3.4 to optimize the regularization term.
Even if A would have already contained a λ 6= 0, we can subtract it from T before
applying the factor of 3−d′ to each element and subsequently adding λ again.
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componentGrid2,(2,3) componentGrid2,(3,2)

Figure 5.14.: Symmetry between the components componentGrid2,(2,3) and componentGrid2,(3,2). Exem-
plary, some source points and their permuted targets are connected via arrows.

5.4.3.2. Exploiting Component Grid Symmetries

Apart from embedding grids into lower dimensional spaces to derive them from one
another, we also exploit symmetries of the component grids, which transfer from
their level-vectors to the points in the grid. For example, the symmetry between
componentGrid2,(2,3) and componentGrid2,(3,2) is visualized in Fig. 5.14. In general, if
π : [d]→ [d] is a permutation on the level-vector lcomp1 of a component grid such that
∀j ∈ [d] : lcomp2

j = π
(

lcomp1
j

)
, then there is a symmetry between the grid points of

componentGridd,lcomp1 and componentGridd,lcomp2 as well. To simplify the notation, we
define a function that permutes the level and index vectors of a grid point directly, as

πpoint : Gd → Gd ,
(l, i) 7→ ((π (l1) , . . . π (ld)) , (π (i1) , . . . π (id))) ,

(5.47)

so the point p ∈ componentGridd,lcomp1 corresponds to πpoint (p) ∈ componentGridd,lcomp2 .

We are now aiming at transferring this permutation to the system matrices A(1) of
componentGridd,lcomp1 and A(2) of componentGridd,lcomp2 . For that, we need to know
how the N grid points of a specific d-dimensional component grid with given level-
vector l are serialized to [N]. We denote this serialization function as sd,l : Gd → [N],
which maps a grid point to its serialized index. Obviously, sd,l is implementation
specific and can be chosen arbitrarily (as long as it’s deterministic). This is the case
for SG++ where we implemented this technique. With sd,l at hand (and thus also its
inverse s−1

d,l ), we construct a permutation matrix P ∈ {0, 1}N×N such that

A(2) = PA(1)PT (5.48)

with

Pij =

{
1 , s−1

d,l (j) = πpoint
(

s−1
d,l (i)

)
,

0 , else .
(5.49)

We now investigate how this translates to the Cholesky decomposition and to the
tridiagonal decomposition.
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Cholesky Decomposition For A(1) = L(1)L(1)T
, we obtain with Eq. 5.48:

A(2) = PL(1)L(1)T
PT =

(
PL(1)

)
·
(

PL(1)
)T

. (5.50)

Unfortunately, PL(1) is not of lower triangular form anymore. Instead, the applied
permutation results in O

(
N2) non-zeros above the main diagonal in the worst case.

Transforming this result back to lower triangular form with givens rotations costs
O
(

N3) operations, which is why we cannot benefit from the symmetric grid property
when employing the Cholesky decomposition.

Tridiagonal Decomposition For A(1) = Q(1)T(1)Q(1)T
, we obtain with Eq. 5.48:

A(2) = PQ(1)T(1)Q(1)T
PT =

(
PQ(1)

)
· T(1) ·

(
PQ(1)

)T
. (5.51)

Being a permutation matrix, P is orthogonal and the product PQ(1) is orthogonal too.
Thus, we obtain the factors Q(2) and T(2) of A(2) via Q(2) = PQ(1) and T(2) = T(1).
Note, that in contrast to Sec. 5.4.3.1, the regularization parameter λ is allowed to
be incorporated in A via A(1) = R(1) + λI, because permuting both the rows and
the columns in A(1) keeps all diagonal entries of A(1) also on the diagonal of A(2).
However, since we employ this technique only with the tridiagonal decomposition, it
doesn’t hurt to factorize A(1) with λ = 0 in both the lower dimensional embedding
and the grid symmetry case, because the desired λ can still be incorporated efficiently
into the decomposition at the early stages of training as discussed in Sec. 3.2.3.3.4.

5.4.3.3. Equivalence Classes of Component Grids

With the techniques presented in Sec. 5.4.3.1 and Sec. 5.4.3.2, we now define equivalence
classes of component grids, whose decompositions are efficiently derived from each
other. Let the set of valid level-vectors L be given by

L :=
{
(l1, . . . , ld) d ∈N∧ ∀j ∈ [d] : lj ∈N

}
. (5.52)

Two operations on a level-vector retain the equivalence class:

1. Adding and removing levels of 1 at arbitrary positions in the level-vector.

2. Permuting the elements of the level-vector.

This leads us to the set of equivalence class representatives Lrep as

Lrep := {(1)}
∪
{
(l1, . . . , ld) ∈ L (∀i ∈ [d] : li 6= 1) ∧

(
∀i, j ∈ [d] : i < j⇒ li ≤ lj

)}
.

(5.53)
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The special equivalence class [(1)] is then given by

[(1)] := {(l1, . . . , ld) ∈ L ∀i ∈ [d] : li = 1} . (5.54)

For all other elements of L, let stripOnes : L \ [(1)] → L \ [(1)] be the function that
removes all 1s from a level-vector. Then, the equivalence class for (l1, . . . ld) ∈ Lrep \
{(1)} is given by

[(l1, . . . ld)] :=
{

l̂ ∈ L \ [(1)]
(
l′1, . . . l′d

)
= stripOnes

(
l̂
)

∧∃ permutation π : [d]→ [d] : ∀j ∈ [d] : lj = l′j
}

.
(5.55)

The equivalence class representatives are chosen so that they don’t contain 1s and
their entries are sorted in ascending order. With the techniques presented in this
section, it is now sufficient to decompose A only for the component grids in Lrep (but
separately for each basis function type). This drastically reduces the number of matrix
decompositions we have to perform and save in order to profit from the offline/online
scheme in the context of the combination grid technique for geometry-aware sparse
grids.

5.5. Applications in Image Classification

To evaluate the performance of the geometry-aware sparse grids, we employ them
for several image classification benchmark datasets: MNIST [62], CIFAR-10 [60] and
Fashion-MNIST [105]. The choice of those datasets allows us to cover all the variants of
stencils we discussed: grayscale, multilayer and color. An overview of the datasets is
given in Tab. 5.2. MNIST and Fashion-MNIST are quite similar in their characteristics.

Table 5.2.: Characteristics of the image classification benchmark datasets under investigation.

Dataset Channels Resolution Dim. #classes |Mtrain| |Mtest|
MNIST grayscale 28× 28 784 10 60,000 10,000

Fashion-MNIST grayscale 28× 28 784 10 60,000 10,000
CIFAR-10 RBG 32× 32 3,072 10 50,000 10,000

While MNIST consists of images of handwritten digits, Fashion-MNIST consists of
images of clothes such as shirts or pants. With MNIST being the standard image classi-
fication benchmark dataset, Fashion-MNIST is somewhat less known but addresses
some shortcomings of MNIST [20]. CIFAR-10 consists of colored images of different
objects such as birds or ships. Due to it’s high dimensionality, it represents a greater
challenge to most image classification techniques than MNIST.

We now discuss the results of training MNIST (Sec. 5.5.1), Fashion-MNIST (Sec. 5.5.2)
and CIFAR-10 (Sec. 5.5.3).
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Figure 5.15.: One example data point from MNIST per class.

5.5.1. MNIST

One example data point from MNIST [62] per class is shown in Fig. 5.15. Before we
show the numerical results for training MNIST with GaSG, we first investigate several
aspects of how the geometry-aware sparse grids should generally be configured for
image classification problems.

5.5.1.1. Parameter Tuning

The parameters we take a closer look at are the choice of the basis functions, the training
dataset size and the regularization parameter λ.

Choice of the Basis Function Linear basis function do not perform well for problems
with dimensionalities as we encounter them in image classification. The “pagoda”-
shape of the linear basis function degenerates with increasing dimensionality. Its value
is close to 0 for the majority of its support and only adopts the values close to 1 for
evaluation points that are close to the supports’ center in most of the dimensions.
This is problematic, because the weights of the basis functions are less hierarchical
increments than they already represent the function value at those points. The effect is,
the weights alternate faster, leading faster to overfitting.

An equally problematic attribute of linear basis functions is the fact that they are not
trivial in every dimension, independent of their level. The modified linear and the
kinked linear basis functions are always constant on level 1 at the value of 1. This
simplifies the evaluation drastically compared to the linear basis, as we only need to
consider the evaluation in dimensions, where the level of the basis is higher than 1.

Between the modified linear basis functions and the kinked linear basis functions, there
is no such different from a computational point of view, as both basis types are constant
on level 1. However, although the modified linear basis functions do not degenerate
with growing dimensionality per se, they are problematic for the grid points closest
to the boundary, if those points are at least at level 2 in multiple dimensions. Then,
the extrapolating branch of the modified linear basis adapts high values, leading to
extreme function approximations near the boundaries.

When looking at the first numerical results for the classification of MNIST, we immedi-
ately see how this effects the classification accuracy.
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Training Dataset Size vs. Grid Size MNIST consists of approximately the same
number of training samples as the other datasets we investigate. We have already
seen that the geometry-aware sparse grids easily grow to more than 10,000 points.
Estimating a density with ≈ 6,000 data points on a grid of size > 10,000 quickly leads
to overfitting. This is why we employ data augmentation techniques to increase the
size ofMtrain. By slightly shifting, rotating, scaling, and sometimes even mirroring
an image, the object on it is still recognizable. However for the algorithm, such a
transformation results in a completely different data point. Thus, we can increase the
training dataset size at will by applying those transformation to samples from the
original training datasets.

Tuning the Regularization Parameter λ Even when employing data augmentation,
the ratio between the number of grid points and the number of data points generally
indicates that regularization is important. A study of the parameter λ, which was done
during a bachelor project [102], shows, that the value of λ = 1 is generally a good
choice. Due to computational limitations of the hardware we have at hand, we did not
investigate whether the need for regularization might be mitigated by generating an
augmented dataset with a size of a high multiple of the original dataset.

5.5.1.2. Training

Naively training the dataset with geometry-aware sparse grids (but also with regular
sparse grids, for that matter) yields unsatisfactory results as the classification accuracy
with the DN stencil and a regularization value of λ = 1 is merely at 45.16% when
employing kinked linear basis functions (30.28% with modified linear basis functions).
An investigation done in a bachelor project [102] revealed that the class of digit 1 is
largely dominating the domain, so that many test samples are wrongly classified as 1.
Consecutively, the digits with the lowermost variance always dominate the classifier in
the order of 1, 9, 7, 4, 6, 8, 3, 5, 2, and 0. This insight was easily obtained because of the
explainable structure of the data model, generated via grid-based density estimations
building up a Bayes classifier. We emphasize that the deep insight into the domination
effect and its explanation via the surpluses at the basis functions would not have been
easily possible with most other methods competing in image classification.

Taking into account only digits with similar variance leads to better results. If, for
example, we limit the classes to the digits 6 and 8, we obtain a classification accuracy
of 95.44% when employing the DN stencil with kinked linear basis functions (94.82%
with the modified linear basis). Interestingly, this accuracy decreases when a larger
stencil is chosen. For example, the accuracy with the DDN stencil (which increases the
grid size to 16,585 grid points) is only at 93.98%. Similar results are observed, when the
dataset is coarsened to an image resolution of 16× 16 or 8× 8, where we can employ
even larger stencils such as the SQ stencil. While the classification accuracy generally
decreases with decreasing image resolution, it also decreases with a larger grid.
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Figure 5.16.: One exemplary data point from Fashion-MNIST for each of the classes t-shirt, trouser,
pullover, dress, coat, sandal, shirt, sneaker, bag, and ankle boot.

Although limiting the classes like that does not give us a classifier for the whole dataset,
it still shows the general applicability of GaSG for image classification.

5.5.2. Fashion-MNIST

At the example of Fashion-MNIST [105], we want to take the multilayer stencils pre-
sented in Sec. 5.2.2 to the test. One example data point from Fashion-MNIST per class
is shown in Fig. 5.16. In order to be able to apply a multilayer stencil, we iteratively
coarsen the images and append the resulting coarser data points to the original ones,
in order of decreasing resolution. Starting with images of resolution 28× 28, we obtain
the resolutions 14× 14, 7× 7, 4× 4, 2× 2, and 1× 1. Appending all those pixels yields
a total dimensionality of 1,050. The results are shown in Tab. 5.3. The classification

Table 5.3.: Classification results of Fashion-MNIST with different configurations

Stencil Resolution Dim. Classes Classification accuracy
DN 28× 28 784 all 47.73%

APLay 28× 28, 14× 14, 7× 7, 4× 4, 2×, 1× 1 1050 all 50.01%
NPLay 28× 28, 14× 14, 7× 7, 4× 4, 2×, 1× 1 1050 all 48.99%

accuracy is a better than with MNIST, but still far away from the rates that other tech-
niques such as convolutional neural networks achieve on this dataset. Employing the
data hierarchy with the multilayer approach increases the classification accuracy a bit,
but only in the range of some percent. At least, there is not one class that dominates the
problem as it was the case with MNIST. Falsely classified samples from the test dataset
are present in all classes. This indicates that GaSG could model the dataset better, if the
training dataset size is larger. Whether data augmentation is a solution for this dataset
remains to be investigated.

As a concluding remark for the Fashion-MNIST dataset, we want to point out that to
our knowledge, this is the first time that sparse grids have been successfully applied
to problems with more than 1,000 dimensions. While the classification accuracy is
far from away from being satisfying, it still shows that we are to some extent able to
model this data and that sparse grids are generally applicable to problems of such high
dimensionality.
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Figure 5.17.: One example data point from CIFAR-10 for each of the classes airplane, automobile, bird,
cat, deer, dog, frog, horse, ship, and truck.

5.5.3. CIFAR-10

With the CIFAR- dataset [60], we test the color stencils. One example data point from
CIFAR-10 per class is shown in Fig. 5.17. The results are shown in Tab. 5.4. First, we

Table 5.4.: Classification results of CIFAR-10 with different configurations

Stencil Classification accuracy
NoCol+DN 41.71%

PairCol+DN 44.51%
FullCol+DN 45.95%

want to mention that for CIFAR-10, as for Fashion-MNIST, there is not one class that
dominates the classifier. The falsely classified samples are distributed evenly over
the confusion matrix. Next, we observe that including the interactions between the
channels increases the classification accuracy. Whereas 45.95% is not a good result
compared to other classification methods, it also shows that we are able to handle
sparse grids in such high dimensionalities.
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6. Data Mining Pipeline

The SG++ project [79] offers state-of-the-art sparse grid methods as a software library.
Started more than 10 years ago by Dirk Pflüger at Technical University of Munich, it is
nowadays developed by contributors from multiple universities and institutions. It
offers several numerical methods based on sparse grids, such as function interpolation,
quadrature, and the approximation of partial differential equations. It also consists
of a data-driven module targeting all data related problems. In this module, density
estimation, classification, regression, and clustering are implemented.

As a SG++ spin-off, the offline/online scheme discussed in Sec. 3.2.3.3 has been imple-
mented in a library called libtool (not to be confused with GNU Libtool) by Benjamin
Peherstorfer, together with the front-end clustc. From a software engineering per-
spective, one of the first steps for this thesis was to port the offline/online scheme
algorithms from libtool to the SG++ data-driven module to have all relevant code under
one roof. In this course, the ported algorithms also profit from the algorithmic and
architectural improvements of SG++. The structure of the data-driven module was
then as follows:

• Algorithms: The mathematical data structures and algorithms such as matrix
factorizations, computation of the right-hand side and solving of Eq. 3.11 are
located in the algorithms/ folder. This is where most of the code from the former
libtool library was ported to.

• Applications: The implementation of learners in many different variants for
density estimation, classification, regression, and clustering was located in the
applications/ folder. Due to a wild growth of methods without a vision from a
software engineering perspective, many tasks such as data preprocessing, setting
up the model, cross-validation and visualization were implemented in many of
the applications independently. This led to long and obfuscated code as well
as lots of code duplication. Application developers spent long times (re-)imple-
menting concepts that were already present elsewhere but could not be used
in other applications. One major drawback of this structure was, that it made
the applications and data mining concepts unflexible to use in similar settings
without again performing lots of code duplication.

• Examples: The interfaces for users of the applications were implemented as
executables in the examples/ folder. Usually, there existed one example for each
application, which was setting up the application model by instantiating the
corresponding class from the applications/ folder. Then, the learning process
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would be started with subsequent evaluation of the learner quality based on the
configured test dataset.

Our next step was to encapsulate the software contributions resulting from this thesis
as well as to address the problems of the structure in the data-driven module. Therefore,
the data mining pipeline was designed as a component in the data-driven module of
SG++. Over the years, the implementation of various components and models into the
data mining pipeline has been the topic of multiple student projects [2, 14, 25, 33, 57,
64, 82, 86, 104]. As a final step, this pipeline is now in transition to a standalone library
in the context of SG++.

In the following, the paradigms and concepts of the data mining pipeline are presented
in Sec. 6.1. The components of the pipeline are the data source, the scorer, the fitter, the
visualizer, and the hyperparameter optimizer. Those are discussed in detail in Sec. 6.2.
Finally, the models implemented in the fitter component are subject of Sec. 6.3.

6.1. Paradigms

The pipeline is designed to be easy to use for users and developers. Users directly
start to use the methods without having to write lots of configurations or even code.
However, if they choose to, they have full control over the methods by specifying all
desired configuration options. Developers focus on their task by encapsulated and well
defined scopes for the different code parts. Optional vertical features can be included if
desired.

6.1.1. User View

Our publicly funded research implies that the results of this dissertation project are
made accessible for the public in a barrier-free manner. From that, we derived the main
goal for the user perspective: To provide an interface to sparse grid-based learning
without the users depending on domain knowledge of sparse grids and without the
users having to program before executing the methods. Therefore, the data mining
pipeline is run by specifying the problem in JavaScript Object Notation (JSON) format.
The only mandatory arguments are the filename of the dataset from which to learn
and the data mining problem class that should be applied (regression, classification,
etc.) A short but functional example for such a JSON configuration is shown in Fig. 6.1.
All arguments that are not specified are set to reasonable default values. That way,
the user doesn’t need to configure a whole lot of options unfamiliar with. However, if
he chooses so, he can configure all components of the data mining pipeline in detail
to fine-grainedly control its behaviour. As a result, the interface is both simple and
flexible, depending on the expertise of the user.
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1 {
2 " dataSource ": {
3 " filePath ": "../ datasets / exampleTrain .arff",
4 " batchSize ": 500,
5 "epochs": 10
6 },
7 "fitter": {
8 "type": " classification ",
9 " gridConfig ": {

10 " gridType ": " kinklinear ",
11 "level": "4"
12 },
13 " regularizationConfig ": {
14 "lambda": "1e-03"
15 },
16 " densityEstimationConfig ": {
17 " densityEstimationType ": " decomposition ",
18 " matrixDecompositionType ": "chol"
19 }
20 }
21 }

Figure 6.1.: Example of a data mining pipeline JSON configuration file. This configuration trains the spec-
ified dataset over 10 epochs, splitting the data into batches of 500 samples each. Classification
specified as the target method, the underlying sparse grid is of level 4 with kinked linear
basis functions. As regularization parameter, 10−3 is chosen and the density estimation for
each class is tackled with the offline/online scheme involving the Cholesky decomposition.
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Alternatively to executing the data mining pipeline through JSON configurations,
its components are also accessible as a library in C++, Python, Java or Matlab. The
function signatures are exported automatically with swig from C++ definitions to
library wrappers in the other listed languages. Since those signatures are available
for the whole range from high-level calls to the pipeline down to the atomic methods
and classes, the user can plug the parts together at need and also use them in foreign
software projects.

6.1.2. Developer View

From a developer perspective, the data mining pipeline is designed for the ability
to focus on the specific task at hand. The developer doesn’t have to bother with
components currently not of interest. For writing fitters, the developer can focus
on the model specifics without worrying about data input, parameter optimization,
visualization etc. To this end, global tasks such as preprocessing and hyperparameter
optimization are implemented generically so that they are applicable to all use cases of
the data mining pipeline.

6.2. Components

Control of the data mining process is handled by the SparseGridMiner class, which
is usually initiated through a MinerFactory. The miner initializes the required com-
ponents and then runs the main program loop. This loop feeds the data batch-wise
to the fitter and controls when to refine the model (possibly based on the output of
the scorer). At user-defined intervals, evaluations or visualizations of the model are
triggered by calls to the visualizer.

A dataset can be looped over several times by specifying multiple epochs in the
configuration. During each epoch,Mtrain is read in batch-wise. After fitting a batch
of data points to the model, the refinement process is triggered via the refinement
monitor. It takes into account the scores of the model onMval and the current progress
of the mining process. At the end of the learning phase, the final score ofMtest can be
evaluated.

The individual components of the data mining pipeline are sketched in Fig. 6.2 and
explained in the following. Those are the data source (Sec. 6.2.1), the fitter (Sec. 6.2.2), the
scorer (Sec. 6.2.3), the visualizer (Sec. 6.2.4) and the hyperparameter optimizer (Sec. 6.2.5).

6.2.1. Data Source

The data source component handles the data input and preprocessing. It consists of
methods to provide data, shuffle it, split it and transform it.
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Figure 6.2.: Data mining pipeline components and the interactions between them.

Sample Provider To provide the data on a basic level, the Sample Provider abstracts
reading in data from a specific file format or another data source. Whether the data
originates from a file, a database or a stream does not matter after this point. Also the
support for compressed data sources is implemented.

Data Shuffling Feeding the sorted data to the fitter might lead to problems such
as lack of generalization. To prevent that, the order how the data is read in can be
configured to random shuffling.

Data Splitting Before fitting the model to the data, we usually split off a validation
datasetMval from the training datasetMtrain. This is done by splitting off a fixed
(relative) portion, such that the validation score is always calculated with the same
validation dataset. Alternatively, one can configure a rotating validation dataset, which
is for example useful for k-fold cross-validation. There, the training dataset is split into
k parts and we take k turns with training the model. In each turn, a different part is used
to validate the model whereas the data is fit to the remaining k− 1 parts. Variables such
as the regularization parameter λ can be varied across the turns to optimize them.

Data Transformation Before feeding the data to the fitter, the user can choose to
apply certain transformations. The sparse grid methods require all data to reside in the
unit hypercube [0, 1]d. For each dimension, in which the data exceeds this interval, a
mapping to [0, 1] should be configured.

Optionally, the data is scaled to optimally cover [0, 1]d using the Rosenblatt transforma-
tion [83]. The advantage of such scaled data is the better initial distribution of the grid
points in the area covered by the data points.

6.2.2. Fitter

The fitter component is the heart of the data mining pipeline. Here, the data is fitted
to the model. On a basic level, the fitters are divided into single-grid models and
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many-grid models. A single-grid model is for example a least squares regression and a
many-grid model is a density estimation based classification.

Before the actual fitting is started, the grid is initialized by the fitter. To support multiple
grid types concerning the basis function type and the grid layout, the Grid Factory
creates the grid points based on the configuration provided by the user. For some
models the combination grid technique is implemented, introducing an additional
level in the fitter class hierarchy.

A model implementation mainly provides the methods fit() and refine(). A call
to fit() fits a batch of data points to the model. Calling refine() performs a model
adaption using the refinement method configured by the user.

6.2.3. Scorer

In the scorer component, the methods to score models and compute the metrics for
the validation and test datasets are implemented. Available measures are the mean
squared error, negative log likelihood, accuracy (for classification problems) and the
residual score (for evaluating density estimation). The component definition demands
that lower scores indicate better model quality than higher scores.

Based on these scores, model adaptivity is controlled. As long as the model quality is
still improving when learning more batches, no action needs to be taken. As soon as
the score converges, a new iteration of refinement and coarsening is triggered.

6.2.4. Visualizer

Producing graphical output for the results is out of the scope of the data mining
pipeline. The visualizer component rather generates output that allows to be fed into
standalone visualization tools such as Matplotlib [49] or PGF/TikZ.

On a basic level, the techniques are divided into two-dimensional visualization and
higher-dimensional visualization. For the two-dimensional case, available options
are to generate continuous heat maps (e.g. useful for density estimation) or discrete
heat maps (e.g. useful for classification). The corresponding grid points and data
points can be overlapped with the heat maps to provider further insight into the
results of the mining. For higher-dimensional cases, two fundamental approaches exist:
Generating two-dimensional cuts and visualizing them with the previously discussed
two-dimensional techniques or performing dimensionality reduction for the output
data and visualizing it in the reduced space.

For the latter, the tSNE algorithm has been implemented in a student project [2] and
we refer to [65] for details. For the former, out of a total of d dimensions, two can be
chosen to be free, whereas values of the remaining d− 2 need to be fixed. Per default,
a value of 0.5 (the middle of Ω1) is chosen for the fixed dimensions. However, other
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positions for cuts can be chosen. If k different values are configured, a total of kd−2× (d
2)

two-dimensional cuts are generated. Thus, for high dimensions, k = 1 is the only
reasonable choice as to not encounter the curse of dimensionality.

6.2.5. Hyperparameter Optimizer

The hyperparameter optimization [8] (HPO) component is responsible to automatically
find the best set of values for a given set of parameters. It was implemented into the
SG++ data mining pipeline during a bachelor project [57].

Parameter Classes Several classes of parameters exist:

• Continuous parameters ranging on a real-valued scale. Examples for such a
parameter is λ or the threshold t for the value of the score of a model that indicates
whether to keep learning and refining or if convergence has been reached.

• Discrete parameters usually ranging on the natural numbers. Examples are the
initial sparse grid level or the number of grid points to refine in each model
adaption step.

• Categorical parameters. Examples are the basis function type or the refinement
indicator.

The difference between discrete and categorical parameters is, that only for the former,
an ordering is defined.

Optimization Strategies The parameter space that encompasses all possible com-
binations of parameters. In it, we search for an optimal parameter configuration in
relation to a specific score, which is our target function. Two optimization strategies
are implemented: Bayesian optimization and Harmonica [41].

Bayesian Optimization With Bayesian optimization [23], we treat the target func-
tion as a black box. Interpreting the function evaluations as data, we apply Bayesian
statistics to construct a posterior probability, which we use as a predictor for unknown
function values. Modelling the target function as a Gaussian process, we sequentially
choose the next best guess in the parameter space, which in turn sharpens our knowl-
edge about the unknown model score. For a detailed explanation about Gaussian
process, we refer to [81]. Let it be known that we use the squared exponential kernel
in the Gaussian process and use Automatic Relevance Determination to deal with
the internal hyperparameters of this kernel. For the acquisition function, expected
improvement [17] is used.

6.2. Components 151



Harmonica Harmonica is a relatively new approach to hyperparameter optimization
introduced in [41]. It operates on a Boolean representation of the hyperparameter
space. The continuous hyperparameters are discretized and represented as a set of
Boolean variables whereas the number of Boolean variables determines the resolution
of the hyperparameter in question. The value ranges of the discrete and categorical
parameters are mapped onto a set of Boolean variables as well. Starting with a high
number of possible Boolean assignments, a set of randomly chosen initial hyperparam-
eter configurations is evaluated with the chosen target score. Then, the search space
is iteratively reduced. Therefore, in each round, one or multiple Boolean variables
are set to a constant value or made dependent on one or multiple other Boolean vari-
ables. Then, the next round of randomly chosen configurations is drawn, only varying
Boolean variables that are still free.

Discussion and Evaluation Harmonica requires lots of samples from the hyperpa-
rameter search space to draw good conclusions about correlations between hyperpa-
rameters and reducing the search space. However, multiple parameter configurations
can be drawn and processed independent of each other. Thus, Harmonica is easily par-
allelized using any parallel architecture. In contrast, Bayesian optimization computes
the score for one parameter configuration at a time. Ideas to parallelize it exist, but are
not straightforward to implement and don’t offer abstractions as with Harmonica. Still,
our experiments show that Bayesian optimization convergences fast. To summarize,
there are learning problems that highlight the strengths of both approaches and we
cannot conclude that one is superior to the other.

6.3. Models

In the fitter component, single-grid models and many-grid models are implemented.
We give an overview over the implementations for density estimation, classification,
regression, and clustering.

Density Estimation The density estimation method discussed in Sec. 3.2 is imple-
mented in the data mining pipeline. The linear system Eq. 3.11 is solved either using
the CG method [47] or offline/online scheme using the matrix factorizations. To adapt
the model to the data, surplus volume refinement is the recommended strategy. For
the offline/online scheme, a parallel fitter has been implemented following Chap. 4.

Classification Classification building up on grid-based density estimation as pre-
sented in Sec. 3.3 is implemented as a many-grid model using the functionalities of the
density estimation models. Thus, the classification routines profit from all features that
are also available in the density estimation implementation such as choice of solver,
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parallel execution or exploitation of the combi-grid technique. For model adaption, the
recommended refinement technique is the classification refinement strategy presented
in Sec. 3.3.2.

Regression The supervised learning task of regression is implemented, following the
sparse grid-based approach by [29]. The least-squares method is used to fit the model
to the data. Iteratively, the sparse grid approximation is obtained via the CG method,
similar to the CG method implemented for density estimation. To adapt the model to
the data, the surplus refinement strategy is employed.

Clustering Similar to classification, the unsupervised learning task of clustering can
be built up on grid-based density estimation as well [77]. This approach is implemented
in the data mining pipeline, with surplus volume refinement as the recommended strat-
egy to perform model adaptions. Also, hierarchical clustering using sliding thresholds
is supported, as well as treating the result of the clustering as a classification model.

6.4. Summary and Outlook for the Data Mining Pipeline

The data mining pipeline paves the way for the utilization of sparse grid-based data
mining methods for a broad range of users. Due to the flexible yet powerful JSON
configuration interface, it is suited for both sparse grid laymen and experts. Also,
the extension with more features, components and models is made easy by the well-
thought software design. The next step for the pipeline is to become a related, yet
independent project of SG++. Also, an integration to modern data mining frameworks
such as scikit-learn or R is desirable. Development continues and currently heads into
this direction with a growing user base hopefully to establish soon.
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7. Conclusion

The offline/online splitting combined with spatial adaptivity offers a flexible tool to
tackle problems, where the model needs to be adapted to the data. We showed how
matrix decompositions are updated according to grid points being added or removed
from the grid. This process allows us now to combine the strengths of both spatial
adaptivity and the offline/online scheme: Reaching higher accuracies by adapting the
model to the data and being fast doing so. Of course, meaningful refinement criteria are
indispensable which is why we proposed a refinement strategy tailored to many-grid-
based classification. With this strategy, we target specifically the areas where the result
of the classifier fluctuates and we exploit the sparse grid structure doing so. This allows
us to reach higher classification accuracies investing far less points than with naive
refinement strategies such as surplus-based refinement. Furthermore, we discussed
how both the grid-based density estimation technique as well as the employment of
the Bayes classifier yield explainable data models. By investigating their surpluses, the
models become transparent and traceable.

We discussed several possibilities to parallelize the learning of grid-based density
estimation and classification. Those parallelization schemes scale well in both strong
and weak scaling tests when working with regular sparse grids. However, spatial
adaptivity procedures tend to dominate the problems and they are not subject to
parallelization (yet) internally. Breaking up the spatial adaptivity and model update
procedures in order to split them into parallelizable tasks would result in better scaling
behaviour if we mean to refine and coarsen the grids. To tackle this, further research is
necessary on how to design and implement such a scheme.

With geometry-aware sparse grids, we introduced an methodical approach on how
to exploit the interactions between dimensions in problems where dimensions are
varyingly related to one another, e.g. image classification. Several methods on how to
incorporate those relations into a sparse grid-based model depending on the problem
size and the computational power at hand have been proposed for datasets with an
arbitrary number of channels. Our experiments with benchmark image classification
datasets show that we are generally able to grasp the structure of the data in the model
even in more than 1,000 dimensions. However, the model accuracies are still far away
from what other methods in this field achieve. By employing techniques such as data
augmentation and representing the hierarchy of the data in the model, we are able to
gain a bit, but not enough to be competitive.

We made the results of this (publicly-funded) research are available to the public by
designing and implementing the data mining pipeline based on SG++, which allows
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users to employ sparse grids for data driven problems. With an easy-to-use but
highly configurable interface, this product is accessible for both sparse grids laymen
and experts. In order to establish sparse grids-based methods in the data science
community, further work should be undertaken to make the routines directly available
in frameworks such as scikit-learn or R.
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Appendix A.

Proofs

A.1. Inner Product of Basis Functions

A.1.1. Linear Basis Functions

Let q1 = (l1, i1) and q2 = (l2, i2) be two one-dimensional grid points. We proof that
Eq. 2.35 is correct. For each case, we start with

rlinear
q1,q2

=

1∫

0

ϕ1d-linear
q1

(x) · ϕ1d-linear
q2

(x)dx .

Note that in case of l1 = l2, we also use l := l1 as level variable and in case of i1 = i2,
we also use i := i1 as index variable.

• q1 = q2:

We show that in this case, rlinear
q1,q2

= 21−l

3 . The value of i is irrelevant, because
ϕlinear is translation invariant. Thus, we look at the case of i = 1. The support of
q1 is

[
0, 2−l+1], whereas the left half and the right half of the basis function are

identical. Therefore, we compute the solution for the left part only and multiply
it by 2. The integral we calculate is:

rlinear
q1,q2

=2 ·
2−l∫

0

ϕr(2lx− 1)2dx

=2 ·
2−l∫

0

(
2lx
)2

dx

=22l+1
2l−1∫

0

x2dx

=22l+1
[

1
3

x3
]2−l

0

=22l+1 1
3

2−3l
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=
21−l

3
.

• l1 < l2 and max
{

i1−1
2l1

, i2−1
2l2

}
< min

{
i1+1
2l1

, i2+1
2l2

}
:

We show that in this case, rlinear
q1,q2

=
1−2l1

∣∣∣ i2
2l2
− i1

2l1

∣∣∣
2l2

. Since l1 < l2, the supports of q1
and q2 only overlap, if q1 is an ancestor of q2. With Eq. 2.2d, this is the case, if
i1+1
2l1
≤ i2−1

2l2
or if i2+1

2l2
≤ i1−1

2l1
, which transforms to

max
{

i1 − 1
2l1

,
i2 − 1

2l2

}
< min

{
i1 + 1

2l1
,

i2 + 1
2l2

}
. (A.1)

If q2 is one of the left descendants (the left child or one of the left child’s descen-
dants), the support of q2 overlaps only with the left half of the support of q1
(equivalently for the right side). In this case, we need to calculate

rlinear
q1,q2

=

i2+1

2l2∫

i2−1

2l2

ϕ1d-linear
p1

(x) · ϕ1d-linear
p2

(x)dx

=

i2+1

2l2∫

i2−1

2l2

ϕl(2
l1 x− i1) · ϕ1d-linear

p2
(x)dx

=

i2+1

2l2∫

i2−1

2l2

(
2l1 x− i1 + 1

)
· ϕ(2l2 x− i2)dx

=

i2+1

2l2∫

i2−1

2l2

(
2l1 x− i1 + 1

)
·
(

ϕl(2
l2 x− i2) + ϕr(2l2 x− i2)

)
dx

=

i2+1

2l2∫

i2−1

2l2

(
2l1 x− i1 + 1

)
· ϕl(2

l2 x− i2)dx

+

i2+1

2l2∫

i2−1

2l2

(
2l1 x− i1 + 1

)
· ϕr(2l2 x− i2)dx
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=

i2
2l2∫

i2−1

2l2

(
2l1 x− i1 + 1

)
·
(

2l2 x− i2 + 1
)

dx

+

i2+1

2l2∫

i2
2l2

(
2l1 x− i1 + 1

)
·
(
−2l2 x + i2 + 1

)
dx

=

i2
2l2∫

i2−1

2l2

(
2l1+l2 x2 +

(
−2l2 i1 + 2l2 − 2l1 i2 + 2l1

)
x + (1− i2)(1− i1)

)
dx

+

i2+1

2l2∫

i2
2l2

(
−2l1+l2 x2 +

(
2l2 i1 − 2l2 + 2l1 i2 + 2l1

)
x + (1 + i2)(1− i1)

)
dx

=

[
2l1+l2

3
x3 +

−2l2 i1 + 2l2 − 2l1 i2 + 2l1

2
x2 + (1− i2)(1− i1)x

] i2
2l2

i2−1

2l2

+

[
−2l1+l2

3
x3 +

2l2 i1 − 2l2 + 2l1 i2 + 2l1

2
x2 + (1 + i2)(1− i1)x

] i2+1

2l2

i2
2l2

=
2l1+l2

3

(
i2
2l2

)3

+
−2l2 i1 + 2l2 − 2l1 i2 + 2l1

2

(
i2
2l2

)2

+ (1− i2)(1− i1)
(

i2
2l2

)

− 2l1+l2

3

(
i2 − 1

2l2

)3

− −2l2 i1 + 2l2 − 2l1 i2 + 2l1

2

(
i2 − 1

2l2

)2

− (1− i2)(1− i1)
(

i2 − 1
2l2

)

+
−2l1+l2

3

(
i2 + 1

2l2

)3

+
2l2 i1 − 2l2 + 2l1 i2 + 2l1

2

(
i2 + 1

2l2

)2

+ (1 + i2)(1− i1)
(

i2 + 1
2l2

)

− −2l1+l2

3

(
i2
2l2

)3

− 2l2 i1 − 2l2 + 2l1 i2 + 2l1

2

(
i2
2l2

)2

− (1 + i2)(1− i1)
(

i2
2l2

)

=− 2l1−2l2+1i2 + 2−l2 i1 − 2−l2 + 2l1−2l2 i2 + 2l1−2l2+1i2 + 2−l2+1 − 2−l2+1i1
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=2−l2 − 2−l2 i1 + 2l1−2l2 i2

=
1− i1 + 2l1−l2 i2

2l2
=

1− 2l1
(

i1
2l1
− i2

2l2

)

2l2
. (A.2)

If the support of q2 is located only under the right part of the support of q1, we
obtain:

rlinear
q1,q2

=

i2+1

2l2∫

i2−1

2l2

ϕ1d-linear
p1

(x) · ϕ1d-linear
p2

(x)dx

=

i2+1

2l2∫

i2−1

2l2

ϕr(2l1 x− i1) · ϕ1d-linear
p2

(x)dx

=

i2+1

2l2∫

i2−1

2l2

(
−2l1 x + i1 + 1

)
· ϕ(2l2 x− i2)dx

=

i2+1

2l2∫

i2−1

2l2

(
−2l1 x + i1 + 1

)
·
(

ϕl(2
l2 x− i2) + ϕr(2l2 x− i2)

)
dx

=

i2+1

2l2∫

i2−1

2l2

(
−2l1 x + i1 + 1

)
· ϕl(2

l2 x− i2)dx

+

i2+1

2l2∫

i2−1

2l2

(
−2l1 x + i1 + 1

)
· ϕr(2l2 x− i2)dx

=

i2
2l2∫

i2−1

2l2

(
−2l1 x + i1 + 1

)
·
(

2l2 x− i2 + 1
)

dx

+

i2+1

2l2∫

i2
2l2

(
−2l1 x + i1 + 1

)
·
(
−2l2 x + i2 + 1

)
dx
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=

i2
2l2∫

i2−1

2l2

(
−2l1+l2 x2 +

(
2l2 i1 + 2l2 + 2l1 i2 − 2l1

)
x + (1− i2)(1 + i1)

)
dx

+

i2+1

2l2∫

i2
2l2

(
2l1+l2 x2 +

(
−2l2 i1 − 2l2 − 2l1 i2 − 2l1

)
x + (1 + i2)(1 + i1)

)
dx

=

[
−2l1+l2

3
x3 +

2l2 i1 + 2l2 + 2l1 i2 − 2l1

2
x2 + (1− i2)(1 + i1)x

] i2
2l2

i2−1

2l2

+

[
2l1+l2

3
x3 +

−2l2 i1 − 2l2 − 2l1 i2 − 2l1

2
x2 + (1 + i2)(1 + i1)x

] i2+1

2l2

i2
2l2

=
−2l1+l2

3

(
i2
2l2

)3

+
2l2 i1 + 2l2 + 2l1 i2 − 2l1

2

(
i2
2l2

)2

+ (1− i2)(1 + i1)
(

i2
2l2

)

− −2l1+l2

3

(
i2 − 1

2l2

)3

− 2l2 i1 + 2l2 + 2l1 i2 − 2l1

2

(
i2 − 1

2l2

)2

− (1− i2)(1 + i1)
(

i2 − 1
2l2

)

+
2l1+l2

3

(
i2 + 1

2l2

)3

+
−2l2 i1 − 2l2 − 2l1 i2 − 2l1

2

(
i2 + 1

2l2

)2

+ (1 + i2)(1 + i1)
(

i2 + 1
2l2

)

− 2l1+l2

3

(
i2
2l2

)3

− −2l2 i1 − 2l2 − 2l1 i2 − 2l1

2

(
i2
2l2

)2

− (1 + i2)(1 + i1)
(

i2
2l2

)

=2l1−2l2+1i2 − 2−l2 i1 − 2−l2 − 2l1−2l2 i2 − 2l1−2l2+1i2 + 2−l2+1 + 2−l2+1i1
=2−l2 i1 + 2−l2 − 2l1−2l2 i2
=2−l2 + 2−l2 i1 − 2l1−2l2 i2

=
1 + i1 − 2l1−l2 i2

2l2
=

1− 2l1
(

i2
2l2
− i1

2l1

)

2l2
. (A.3)
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Both Eq. A.2 and Eq. A.3 are expressed as

rlinear
q1,q2

=
1− 2l1

∣∣∣ i2
2l2
− i1

2l1

∣∣∣
2l2

.

• l2 < l1 and max
{

i1−1
2l1

, i2−1
2l2

}
< min

{
i1+1
2l1

, i2+1
2l2

}
:

We show that in this case, rlinear
q1,q2

=
1−2l2

∣∣∣ i1
2l1
− i2

2l2

∣∣∣
2l1

. This case is similar to the previ-

ous one (l1 < l2 and max
{

i1−1
2l1

, i2−1
2l2

}
< min

{
i1+1
2l1

, i2+1
2l2

}
) only with exchanged

q1 and q2. Thus, by also exchanging l1 and l2 as well as i1 and i2, the result follows
as

rlinear
q1,q2

=
1− 2l2

∣∣∣ i1
2l1
− i2

2l2

∣∣∣
2l1

.

• All other cases:

If l1 = l2, but i1 6= i2, the supports of q1 and q2 do not overlap and the integral
simplifies to zero. The same happens when l1 6= l2 and Eq. A.1 does not hold.
Thus, in all remaining cases we obtain:

rlinear
q1,q2

= 0 .

A.1.2. Modified Linear Basis Functions

Let q1 = (l1, i1) and q2 = (l2, i2) be two one-dimensional grid points. We proof that
Eq. 2.40 is correct. For each case, we start with

rmodlinear
q1,q2

=

1∫

0

ϕ1d-modlinear
q1

(x) · ϕ1d-modlinear
q2

(x)dx .

Note that in case of l1 = l2, we also use l := l1 as level variable and in case of i1 = i2,
we also use i := i1 as index variable.

• l1 = l2 = 1:

We show that in this case, rmodlinear
q1,q2

= 1:

rmodlinear
q1,q2

=

1∫

0

1 · 1dx = 1 .
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• q1 = q2 and l > 1 and (i = 1 or i = 2l − 1):

We show that in this case, rmodlinear
q1,q2

= 23−l

3 . The two cases i = 1 and i = 2l − 1 are
symmetric and identical. Thus, we only need to show the result for i = 1.

The support of q1 is
[
0, 2−l+1], thus the integral we calculate is:

rmodlinear
q1,q2

=

2−l+1∫

0

(
2 · ϕr(2l−1x)

)2
dx

=4
2−l+1∫

0

(
−2l−1x + 1

)2
dx

=4
2−l+1∫

0

(
22l−2x2 − 2lx + 1

)
dx

=4
[

1
3

22l−2x3 − 2l−1x2 + x
]2−l+1

0

=4
(

1
3

22l−2 · 2−3l+3 − 2l−1 · 2−2l+2 + 2−l+1
)

=
2−l+3

3
− 2−l+3 + 2−l+3

=
2−l+3

3
.

• l1 = 1 and (i2 = 1 or i2 = 2l2 − 1):

We show that in this case, rmodlinear
q1,q2

= 21−l2 . The two cases i = 1 and i = 2l − 1
are symmetric and identical. Thus, we only need to show the result for i = 1.

The support of q2 is
[
0, 2−l2+1], thus the integral we calculate is:

rmodlinear
q1,q2

=

2−l2+1∫

0

1 · 2 · ϕr(2l2−1x)dx

=2 ·
2−l2+1∫

0

(
−2l2−1x + 1

)
dx

=2
[
−2l2−2x2 + x

]2−l2+1

0

=2
(
−2l2−2 · 2−2l2+2 + 2−l2+1

)

=− 2−l2+1 + 2 · 2−l2+1

=21−l2 .
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• l2 = 1 and (i1 = 1 or i1 = 2l1 − 1):

We show that in this case, rmodlinear
q1,q2

= 21−l1 . This case is similar to the previous
one (l1 = 1 and (i2 = 1 or i2 = 2l2 − 1)), only with exchanged q1 and q2. Thus, by
also exchanging l1 and l2, the result follows as

rmodlinear
q1,q2

= 21−l1 .

• l1 = 1, 1 < i2 < 2l2 − 1:

We show that in this case, rmodlinear
q1,q2

= 2−l2 . For 1 < i2 < 2l2 − 1, all basis
functions are of the same shape and the concrete value of i2 does not matter,
because ϕ1d-modlinear

q1
= 1, which is constant. We choose to calculate it for i2 = 3.

Also, we know that ϕ1d-modlinear
q2

is zero outside of the support of q2. Furthermore,
we use the fact that the integral value under the first half of ϕ1d-modlinear

q2
is the

same as under the second half. In total, we calculate:

rmodlinear
q1,q2

=2 ·
3·2−l2∫

2−l2+1

1 · ϕl(2
l2 x− 3)dx

=2 ·
3·2−l2∫

2−l2+1

(
2l2 x− 2

)
dx

=2 ·
[
2l2−1x2 − 2x

]3·2−l2

2−l2+1

=9 · 2−l2 − 3 · 2−l2+2 − 2−l2+2 + 2−l2+3

=9 · 2−l2 − 12 · 2−l2 − 4 · 2−l2 + 8 · 2−l2

=2−l2 .

• l2 = 1, 1 < i1 < 2l1 − 1:

We show that in this case, rmodlinear
q1,q2

= 2−l1 . This case is similar to the previous
one (l1 = 1, 1 < i2 < 2l2 − 1), only with exchanged q1 and q2. Thus, by also
exchanging l1 and l2, the result follows as

rmodlinear
q1,q2

= 2−l1 .

• l1 < l2 and
(
i1 = i2 = 1 or

(
i1 = 2l1 − 1 and i2 = 2l2 − 1

))
:

We show that in this case, rmodlinear
q1,q2

= 4
2l2

(
1− 1

32l1−l2
)

. The two cases i1 = 1, i2 =

1 and i1 = 2l1 − 1, i2 = 2l2 − 1 are symmetric and identical. Thus, we only need to
show the result for i = 1.
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The support of q2 is
[
0, 2−l2+1], thus the integral we calculate is:

rmodlinear
q1,q2

=

2−l2+1∫

0

2ϕr(2l1−1x) · 2ϕr(2l2−1x)dx

=4 ·
2−l2+1∫

0

(
−2l1−1x + 1

)
·
(
−2l2−1x + 1

)
dx

=4 ·
2−l2+1∫

0

(
2l1+l2−2x2 −

(
2l1−1 + 2l2−1

)
x + 1

)
dx

=4 ·
[

1
3

2l1+l2−2x3 −
(

2l1−2 + 2l2−2
)

x2 + x
]2−l2+1

0

=4 ·
(

1
3

2l1−2l2+1 − 2l1−2l2 − 2−l2 + 2−l2+1
)

=4 ·
(
−1

3
2l1−2l2 + 2−l2

)

=
4

2l2

(
1− 1

3
2l1−l2

)
.

• l2 < l1 and
(
i1 = i2 = 1 or

(
i1 = 2l1 − 1 and i2 = 2l2 − 1

))
:

We show that in this case, rmodlinear
q1,q2

= 4
2l1

(
1− 1

32l2−l1
)

. This case is similar to the

previous one (l1 < l2 and
(
i1 = i2 = 1 or

(
i1 = 2l1 − 1 and i2 = 2l2 − 1

))
), only

with exchanged q1 and q2. Thus, by also exchanging l1 and l2, the result follows
as

rmodlinear
q1,q2

=
4

2l1

(
1− 1

3
2l2−l1

)
.

• l1 < l2 and
(

i1 = 1 and 1 < i2 < 2l2

2l1

)
:

We show that in this case, rmodlinear
q1,q2

= 2−2l1−l2 i2
2l2

. With i1 = 1 and i2 < 2l2

2l1
, we

know that 1d-supportq2
⊂ 1d-supportq1

. Thus, the integral we calculate is:

rmodlinear
q1,q2

=

i2
2l2∫

i2−1

2l2

2ϕr(2l1−1x) · ϕl(2
l2 x− i2)dx +

i2+1

2l2∫

i2
2l2

2ϕr(2l1−1x) · ϕr(2l2 x− i2)dx

=

i2
2l2∫

i2−1

2l2

2
(
−2l1−1x + 1

)
·
(

2l2 x− i2 + 1
)

dx
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+

i2+1

2l2∫

i2
2l2

2
(
−2l1−1x + 1

)
·
(
−2l2 x + i2 + 1

)
dx

=

i2
2l2∫

i2−1

2l2

(
−2l1+l2 x2 +

(
2l1 i2 − 2l1 + 2l2+1

)
x + (2− 2i2)

)
dx

+

i2+1

2l2∫

i2
2l2

(
2l1+l2 x2 +

(
−2l1 i2 − 2l1 − 2l2+1

)
x + (2 + 2i2)

)
dx

=

[
−1

3
2l1+l2 x3 +

(
2l1−1i2 − 2l1−1 + 2l2

)
x2 + (2− 2i2)x

] i2
2l2

i2−1

2l2

+

[
1
3

2l1+l2 x3 +
(
−2l1−1i2 − 2l1−1 − 2l2

)
x2 + (2 + 2i2)x

] i2+1

2l2

i2
2l2

=− 1
3

2l1+l2
(

i2
2l2

)3

+
(

2l1−1i2 − 2l1−1 + 2l2
)( i2

2l2

)2

+ (2− 2i2)
(

i2
2l2

)

+
1
3

2l1+l2
(

i2 − 1
2l2

)3

−
(

2l1−1i2 − 2l1−1 + 2l2
)( i2 − 1

2l2

)2

− (2− 2i2)
(

i2 − 1
2l2

)

+
1
3

2l1+l2
(

i2 + 1
2l2

)3

+
(
−2l1−1i2 − 2l1−1 − 2l2

)( i2 + 1
2l2

)2

+ (2 + 2i2)
(

i2 + 1
2l2

)

− 1
3

2l1+l2
(

i2
2l2

)3

−
(
−2l1−1i2 − 2l1−1 − 2l2

)( i2
2l2

)2

− (2 + 2i2)
(

i2
2l2

)

=2l1−2l2+1i2 − 2l1−2l2 i2 − 2l1−2l2+1i2 − 2−l2+1 + 2−l2+1

=− 2l1−2l2 i2 + 2−l2+1

=
2− 2l1−l2 i2

2l2
.

• l2 < l1 and
(

i2 = 1 and 1 < i1 < 2l1

2l2

)
:
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We show that in this case, rmodlinear
q1,q2

= 2−2l2−l1 i1
2l1

. This case is similar to the previous

one (l1 < l2 and
(

i1 = 1 and 1 < i2 < 2l2

2l1

)
) only with exchanged q1 and q2. Thus,

by also exchanging l1 and l2 as well as i1 and i2, the result follows as

rmodlinear
q1,q2

=
2− 2l2−l1 i1

2l1
.

• l1 < l2 and
(

i1 = 2l1 − 1 and 2l1+l2−2l2

2l1
< i2 < 2l2 − 1

)
:

We show that in this case, rmodlinear
q1,q2

= 2−2l1+2l1−l2 i2
2l2

. This case is similar to the

penultimate one (l1 < l2 and
(

i1 = 1 and 1 < i2 < 2l2

2l1

)
) only that q1 and q2 are

mirrored at 1
2 . Thus, by substituting i2 with 2l2 − i2 , the result follows as

rmodlinear
q1,q2

=
2− 2l1−l2

(
2l2 − i2

)

2l2
=

2− 2l1 + 2l1−l2 i2
2l2

.

• l2 < l1 and
(

i2 = 2l2 − 1 and 2l2+l1−2l1

2l2
< i1 < 2l1 − 1

)
:

We show that in this case, rmodlinear
q1,q2

= 2−2l2+2l2−l1 i1
2l1

. This case is similar to the

previous one (l1 < l2 and
(

i1 = 2l1 − 1 and 2l1+l2−2l2

2l1
< i2 < 2l2 − 1

)
) only with

exchanged q1 and q2. Thus, by also exchanging l1 and l2 as well as i1 and i2, the
result follows as

rmodlinear
q1,q2

=
2− 2l2 + 2l2−l1 i1

2l1
.

• All other cases:

In all other cases, either the supports do not overlap (thus, the result is zero) or
we are in the case of the linear basis function. Since the first case (the supports do
not overlap) is also covered in rlinear

q1,q2
, we write for all remaining cases, that

rmodlinear
q1,q2

= rlinear
q1,q2

.

A.1.3. Kinked Linear Basis Functions

Let q1 = (l1, i1) and q2 = (l2, i2) be two one-dimensional grid points. We proof that
Eq. 2.46 is correct. For each case, we start with

rkinklinear
q1,q2

=

1∫

0

ϕ1d-kinklinear
q1

(x) · ϕ1d-kinklinear
q2

(x)dx .

Note that in case of l1 = l2, we also use l := l1 as level variable and in case of i1 = i2,
we also use i := i1 as index variable.
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• l1 = l2 = 1:

We show that in this case, rkinklinear
q1,q2

= 1:

rkinklinear
q1,q2

=

1∫

0

1 · 1dx = 1 .

• q1 = q2 and l > 1 and (i = 1 or i = 2l − 1):

We show that in this case, rkinklinear
q1,q2

= 22−l

3 . The two cases i = 1 and i = 2l − 1 are
symmetric and identical. Thus, we only need to show the result for i = 1.

The support of q1 is
[
0, 2−l+1], thus the integral we calculate is:

rkinklinear
q1,q2

=

2−l∫

0

12dx +

2−l+1∫

2−l

(
ϕr(2lx− 1)

)2
dx

= [x]2
−l

0 +

2−l+1∫

2−l

(
2− 2lx

)2
dx

=2−l +

2−l+1∫

2−l

(
4− 2l+2x + 22lx2

)
dx

=2−l +

[
4x− 2l+1x2 +

1
3

22lx3
]2−l+1

2−l

=2−l + 23−l − 23−l +
1
3

23−l − 22−l + 21−l − 1
3

2−l

=2−l
(

1 +
8
3
− 4 + 2− 1

3

)

=2−l 4
3

=
22−l

3
.

• l1 > l2 and
((

i2 = 1 and i1 < 2l1

2l2

)
or
(

i2 = 2l2 − 1 and i1 >
2l1(2l2−1)

2l2

))
:

We show that in this case, rkinklinear
q1,q2

= 3 · 2−l1−1. The two cases
(

i2 = 1 and i1 < 2l1

2l2

)

and
(

i2 = 2l2 − 1 and i1 >
2l1(2l2−1)

2l2

)
are symmetric and identical. Thus, we only

need to show the result for
(

i2 = 1 and i1 < 2l1

2l2

)
. In this case, in support1(q1), it
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holds that ϕ1d-kinklinear
q2

(x) = 1. Without loss of generality, we assume that i1 = 1,
because rkinklinear

q1,q2
is translation invariant due to the constant value of ϕ1d-kinklinear

q2
.

The support of q1 is
[
0, 2−l+1], thus the integral we calculate is:

rkinklinear
q1,q2

=

2−l∫

0

1 · 1dx +

2−l+1∫

2−l

1 · ϕr(2lx− 1)dx

= [x]2
−l

0 +

2−l+1∫

2−l

(
2− 2lx

)
dx

=2−l +
[
2x− 2l−1x2

]2−l+1

2−l

=2−l + 22−l − 21−l − 21−l + 2−l−1

=2−l
(

1 + 4− 2− 2 +
1
2

)

=3 · 2−l−1 .

• l2 > l1 and
((

i1 = 1 and i2 < 2l2

2l1

)
or
(

i1 = 2l1 − 1 and i2 >
2l2(2l1−1)

2l1

))
:

We show that in this case, rkinklinear
q1,q2

= 3 · 2−l2−1. This case is similar to the previous

one (l1 > l2 and
((

i2 = 1 and i1 < 2l1

2l2

)
or
(

i2 = 2l2 − 1 and i1 >
2l1(2l2−1)

2l2

))
),

only with exchanged q1 and q2. Thus, by also exchanging l1 and l2, the result
follows as

rkinklinear
q1,q2

= 3 · 2−l2−1 .

• All other cases:

In all other cases, either the supports do not overlap (thus, the result is zero) or
we are in the case of the linear basis function. Since the first case (the supports do
not overlap) is also covered in rlinear

q1,q2
, we write for all remaining cases, that

rkinklinear
q1,q2

= rlinear
q1,q2

.
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Appendix B.

Testing Environment

B.1. Workstation

Most serial tests were run on the workstation provided by the TUM Department of
Informatics:

Type Personal Computer

CPU Type Intel® Core™ i7-4770

Hardware threads 8

Core Frequency 3.40GHz

Memory 16GB

Compiler GCC (version 8.3.0)

Table B.1.: Workstation specification

B.2. Linux Cluster

The parallel tests were executed on the LRZ Linux Cluster CoolMUC-2 [63]:

Type Cluster Computer

Max. number of nodes 812

CPU Type Intel® Xeon® E5-2690 v3

Hardware threads per node 56

Core Frequency 2.60GHz

Memory per node 64GB

Compiler ICC (version TODO)

Table B.2.: Linux Cluster specification
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Appendix C.

Raw Data

C.1. Optimizing λ (Sec. 3.2.2.3)

Table C.1.: Raw data for Fig. 3.3a.

Level
λ

10−6 10−5 10−4 10−3 10−2 10−1 100

1 0.00399381 0.00399379 0.00399319 0.00399319 0.00405334 0.00473121 0.00573947
2 0.00287775 0.00287781 0.00287836 0.00288535 0.00302031 0.00412208 0.00559591
3 0.00170443 0.00170451 0.00170589 0.00175670 0.00241823 0.00390102 0.00552704
4 0.00114618 0.00114368 0.00112223 0.00113156 0.00220765 0.00382974 0.00546687
5 0.00184365 0.00183308 0.00174408 0.00148587 0.00214403 0.00365791 0.00542166
6 0.00285691 0.00282868 0.00262104 0.00199680 0.00200525 0.00357847 0.00539224
7 0.00448266 0.00437229 0.00375927 0.00248373 0.00196103 0.00352228 0.00537290
8 0.00690990 0.00661896 0.00528091 0.00305691 0.00198765 0.00348490 0.00536062

Table C.2.: Raw data for Fig. 3.3b.

Level
λ

10−6 10−5 10−4 10−3 10−2 10−1 100

1 0.00441082 0.00441082 0.00441088 0.00441148 0.00441930 0.00452496 0.00499410
2 0.00387174 0.00387174 0.00387174 0.00387267 0.00392797 0.00438048 0.00500445
3 0.00277828 0.00277830 0.00277853 0.00278499 0.00292542 0.00369954 0.00494938
4 0.00158018 0.00158108 0.00159137 0.00173282 0.00258600 0.00357825 0.00477395
5 0.00186800 0.00186529 0.00185041 0.00197700 0.00254740 0.00341661 0.00469452
6 0.00265659 0.00263286 0.00249864 0.00231304 0.00239156 0.00331838 0.00465299
7 0.00410038 0.00397985 0.00354415 0.00282178 0.00237743 0.00324434 0.00463021
8 0.00631679 0.00605244 0.00513247 0.00351472 0.00243565 0.00320289 0.00461700
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Table C.3.: Raw data for Fig. 3.3c.

Level
λ

10−6 10−5 10−4 10−3 10−2 10−1 100

1 0.00431819 0.00431819 0.00431822 0.00431857 0.00432672 0.00445286 0.00503899
2 0.00420697 0.00420700 0.00420729 0.00421125 0.00426244 0.00446390 0.00496074
3 0.00411630 0.00411627 0.00411602 0.00411582 0.00414701 0.00433460 0.00486337
4 0.00173159 0.00173277 0.00174614 0.00187192 0.00243554 0.00361145 0.00479485
5 0.00202501 0.00201884 0.00198060 0.00210346 0.00244883 0.00342035 0.00473851
6 0.00279683 0.00276282 0.00258057 0.00225875 0.00234419 0.00331228 0.00470482
7 0.00425843 0.00413131 0.00361882 0.00280294 0.00231503 0.00324562 0.00468400
8 0.00649266 0.00623455 0.00519046 0.00345118 0.00236068 0.00320680 0.00467133

C.2. Sparsity of R (Fig. 3.4)

Table C.4.: Raw data for Fig. 3.4.

Dim.
Level

1 2 3 4 5 6 7 8 9 10

1 1 0.77778 0.55102 0.36889 0.23621 0.14588 0.08748 0.05123 0.02942 0.01664
2 1 0.84 0.64014 0.47689 0.35437 0.26530 0.20131 0.15536 0.12213 0.09782
3 1 0.87755 0.69407 0.53332 0.40671 0.31069 0.23891 0.18542 0.14546 0.11541
4 1 0.90124 0.73344 0.57583 0.44602 0.34428 0.26621 0.20682 0.16173 0.12742
5 1 0.91736 0.76394 0.61080 0.47947 0.37348 0.29035 0.22604 0.17659 0.13862
6 1 0.92899 0.78829 0.64046 0.50901 0.40006 0.31287 0.24438 0.19109 0.14981
7 1 0.93778 0.80817 0.66603 0.53550 0.42464 0.33422 0.26215
8 1 0.94464 0.82470 0.68831 0.55943 0.44749 0.35456
9 1 0.95014 0.83864 0.70789 0.58116 0.46879 0.37396
10 1 0.95465 0.85055 0.72523 0.60096 0.48870 0.39246
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C.3. Permutation (front vs end) for Cholesky coarsening Fig. 3.6

Table C.5.: Selected raw data points for Fig. 3.6. Runtimes in microseconds.

Grid point index
Permutation Direction

Front End

0 16983.4 12350
1 16838 12077.2
2 16983.8 12494
4 16874 12248.8
8 17114.2 12911.2

16 17824 12260.6
32 17160 11909.6
64 17573.4 12141.2
128 18173.2 10931.8
256 19174.6 10018.8
512 20789.6 7905

1024 23634.2 6013.4
1470 26548.2 5353.4

C.4. Comparison of the Matrix Decomposition Methods
(Sec. 3.2.3.3.5)

Table C.6.: Raw data for Fig. 3.7. Runtimes in microseconds.

# grid points
Decomposition Method

Cholesky LU Eigen Tridiagonal Incomplete Cholesky

5 0.000000e+00 0.000000e+00 1.250000e+00 1.600000e+00 1.949000e+02
7 1.000000e−01 0.000000e+00 2.200000e+00 3.850000e+00 4.370000e+01
9 2.000000e−01 0.000000e+00 3.500000e+00 4.150000e+00 6.380000e+01
11 2.000000e−01 0.000000e+00 3.600000e+00 4.200000e+00 1.763000e+02
17 1.750000e+00 1.600000e+00 2.440000e+01 1.430000e+01 1.090000e+02
31 7.900000e+00 1.115000e+01 9.790000e+01 6.250000e+01 2.379000e+02
49 1.872500e+01 3.460000e+01 2.597500e+02 1.528250e+02 5.787000e+02
71 5.080000e+01 9.200000e+01 6.107000e+02 3.997000e+02 1.376900e+03

111 1.733000e+02 3.181000e+02 2.498600e+03 1.379550e+03 1.807200e+03
129 2.639000e+02 4.827000e+02 4.265700e+03 2.161200e+03 1.833300e+03
209 1.160250e+03 1.923550e+03 1.567910e+04 8.787900e+03 2.834700e+03
351 5.823400e+03 8.574800e+03 8.602485e+04 5.077895e+04 5.691950e+03
769 6.098630e+04 8.461840e+04 1.159442e+06 6.459414e+05 2.349560e+04

1471 4.233507e+05 8.081081e+05 4.361430e+07 3.125739e+07 1.285340e+05
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Table C.7.: Raw data for Fig. 3.8. Runtimes in microseconds.

# grid points
Decomposition Method

Cholesky LU Eigen Tridiagonal Incomplete Cholesky

5 0.2500000 0.1000000 0.4500000 0.1000000 11.1111111
7 0.0500000 0.0500000 0.0500000 0.0000000 8.4444444
9 0.0500000 0.0500000 0.1000000 0.0500000 9.1111111

11 0.1000000 0.0500000 0.1000000 0.0500000 9.8888889
17 1.0500000 1.0000000 1.0500000 1.0500000 16.4000000
31 2.0000000 2.0000000 1.1500000 2.0000000 14.2000000
49 6.7500000 6.6250000 3.6500000 4.6750000 20.3333333
71 11.3000000 11.3000000 7.0500000 11.0500000 22.5555556

111 28.2000000 28.1000000 16.8500000 25.7000000 33.0000000
129 38.2777778 38.5500000 23.4000000 33.9500000 38.5555556
209 102.3000000 101.5000000 57.9500000 88.9500000 73.8000000
351 288.8750000 295.5750000 163.5750000 255.9250000 130.3888889
769 1400.2000000 1404.3500000 804.8000000 1382.0500000 452.0000000
1471 7339.5500000 5341.9500000 3253.2500000 6485.5500000 1559.4285714

Table C.8.: Selected raw data points for Fig. 3.9a. Runtimes in microseconds.

# initial grid points
Decomposition Method

Cholesky Tridiagonal Incomplete Cholesky

8 6.835000e+03 2.994530e+04 4.142600e+03
16 9.375900e+03 5.897330e+04 5.228800e+03
32 1.387410e+04 1.173523e+05 1.064620e+04
64 2.313920e+04 2.441599e+05 1.405460e+04

134 4.509580e+04 2.441599e+05 1.727680e+04
260 9.417770e+04 1.141447e+06 2.212710e+04
513 2.420015e+05 2.802620e+06 5.118250e+04
682 3.924279e+05 4.194174e+06 7.817160e+04

Table C.9.: Raw data for Fig. 3.9b. Runtimes in microseconds.

# new grid points
Decomposition Method

Cholesky Tridiagonal Incomplete Cholesky

129 3.074400e-03 1.599350e-02 1.998200e-03
351 1.020330e-02 8.083340e-02 2.430300e-03
769 3.494880e-02 3.945665e-01 1.651010e-02
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Table C.10.: Selected raw data points for Fig. 3.10. Runtimes in microseconds.

# removed grid points
Decomposition Method

Cholesky Tridiagonal Incomplete Cholesky

2 2.449000e+03 7.961000e+03 4.000000e+00
4 2.557000e+03 1.306100e+04 4.000000e+00
8 2.539000e+03 2.356400e+04 6.000000e+00

20 5.782000e+03 5.491500e+04 1.400000e+01
32 7.825000e+03 8.982750e+04 2.350000e+01
63 1.126900e+04 1.686353e+05 3.850000e+01
88 1.523700e+04 2.360090e+05 5.250000e+01

C.5. Classification Refinement (Sec. 3.3.2)

Table C.11.: Raw data for Fig. 3.14.

Batch
Classification Refinement Surplus-based Refinement

Accuracy # grid points Accuracy # grid points

1 0.804094 2561 0.804094 2561
2 0.820504 2609 0.836358 2863
3 0.850649 2673 0.858323 3405
4 0.879035 2736 0.870861 3959
5 0.884182 2799 0.885275 4719
6 0.885257 2861 0.886183 5617
7 0.886079 2926 0.886338 6613
8 0.887683 2990 0.885843 7746
9 0.889473 3054 0.885616 8948
10 0.888117 3118 0.885348 10344
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C.6. Batch Parallelization (Sec. 4.2)

Table C.12.: Raw data for Fig. 4.3b and Fig. 4.4. Runtimes in seconds.

Setup Runtime for strong scaling Runtime for weak scaling

Reference 84.3 4.82
2 nodes 61.5 7.04
3 nodes 31.2 5.16
4 nodes 21.6 4.35
5 nodes 17.6 4.17
6 nodes 14.8 4.13
7 nodes 12.9 4.10
8 nodes 12.5 4.12

C.7. Employing the Combination Grid Technique (Sec. 4.3)

Table C.13.: Raw data for Fig. 4.5a.

Dim.
Level

1 2 3 4 5 6 7 8 9 10

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.40 1.71 1.94 2.12 2.25 2.36 2.44 2.51 2.56
3 1.00 1.43 1.87 2.30 2.69 3.04 3.37 3.65 3.90 4.12
4 1.00 1.44 1.94 2.46 3.00 3.54 4.06 4.57 5.05 5.50
5 1.00 1.45 1.99 2.58 3.23 3.91 4.61 5.33 6.05 6.76
6 1.00 1.46 2.02 2.67 3.41 4.21 5.08 6.00 6.95 7.94
7 1.00 1.47 2.05 2.74 3.55 4.47 5.50 6.60 7.80 9.06
8 1.00 1.47 2.07 2.80 3.68 4.69 5.85 7.15 8.58 10.14
9 1.00 1.47 2.09 2.85 3.78 4.89 6.18 7.65 9.31 11.15

10 1.00 1.48 2.10 2.89 3.87 5.06 6.46 8.10 9.98 12.12
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Table C.14.: Raw data for Fig. 4.5b.

Dim.

Level

1 2 3 4 5 6 7 8 9 10

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 1.00 7.60e−1 6.81e−1 6.29e−1 5.83e−1 5.40e−1 5.00e−1 4.64e−1 4.30e−1 4.01e−1

3 1.00 5.71e−1 4.35e−1 3.63e−1 3.13e−1 2.75e−1 2.43e−1 2.16e−1 1.93e−1 1.73e−1

4 1.00 4.57e−1 2.99e−1 2.25e−1 1.80e−1 1.49e−1 1.26e−1 1.08e−1 9.32e−2 8.09e−2

5 1.00 3.80e−1 2.18e−1 1.49e−1 1.11e−1 8.66e−2 6.98e−2 5.75e−2 4.80e−2 4.05e−2

6 1.00 3.25e−1 1.66e−1 1.03e−1 7.16e−2 5.29e−2 4.07e−2 3.22e−2 2.60e−2 2.13e−2

7 1.00 2.84e−1 1.31e−1 7.47e−2 4.83e−2 3.38e−2 2.48e−2 1.89e−2 1.47e−2 1.17e−2

8 1.00 2.53e−1 1.05e−1 5.57e−2 3.38e−2 2.23e−2 1.57e−2 1.15e−2 8.65e−3 6.68e−3

9 1.00 2.27e−1 8.68e−2 4.27e−2 2.43e−2 1.53e−2 1.02e−2 7.20e−3 5.25e−3 3.94e−3

10 1.00 2.06e−1 7.28e−2 3.34e−2 1.79e−2 1.07e−2 6.87e−3 4.65e−3 3.28e−3 2.39e−3

Table C.15.: Raw data for Fig. 4.5c.

Dim.

Level

1 2 3 4 5 6 7 8 9 10

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 1.00 4.40e−1 2.99e−1 2.27e−1 1.79e−1 1.45e−1 1.18e−1 9.82e−2 8.23e−2 6.97e−2

3 1.00 2.39e−1 1.11e−1 6.48e−2 4.23e−2 2.92e−2 2.09e−2 1.54e−2 1.15e−2 8.76e−3

4 1.00 1.50e−1 4.98e−2 2.29e−2 1.24e−2 7.43e−3 4.72e−3 3.12e−3 2.13e−3 1.48e−3

5 1.00 1.02e−1 2.55e−2 9.44e−3 4.31e−3 2.24e−3 1.26e−3 7.55e−4 4.71e−4 3.04e−4

6 1.00 7.42e−2 1.44e−2 4.35e−3 1.69e−3 7.65e−4 3.86e−4 2.09e−4 1.20e−4 7.17e−5

7 1.00 5.63e−2 8.74e−3 2.19e−3 7.30e−4 2.91e−4 1.31e−4 6.46e−5 3.40e−5 1.89e−5

8 1.00 4.42e−2 5.60e−3 1.19e−3 3.41e−4 1.20e−4 4.87e−5 2.18e−5 1.06e−5 5.46e−6

9 1.00 3.56e−2 3.75e−3 6.79e−4 1.71e−4 5.33e−5 1.95e−5 7.98e−6 3.57e−6 1.71e−6

10 1.00 2.93e−2 2.61e−3 4.08e−4 9.01e−5 2.52e−5 8.32e−6 3.12e−6 1.29e−6 5.75e−7

Table C.16.: Raw data for Fig. 4.6. Runtimes in seconds.

# grid points Regular sparse grid Combination grid technique

2561 2.88 1.32
4159 11.35 2.39
5503 24.91 3.18
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C.8. Parallel Linear Algebra (Sec. 4.4)

Table C.17.: Raw data for Fig. 4.7. Runtimes in seconds.

Setup
Spatial adaptivity disabled Spatial adaptivity enabled

Tridiagonal Cholesky Tridiagonal Cholesky

Reference 111.81 107.5 465.66 213.72
1 rank 119.01 113.34 487.19 219.60
2 ranks 73.17 69.83 426.81 156.32
4 ranks 43.02 39.90 391.36 120.55
8 ranks 26.15 24.70 369.18 96.66

16 ranks 19.54 18.41 359.22 82.69
32 ranks 18.72 16.27 437.96 89.16

Table C.18.: Raw data for Fig. 4.8. Runtimes in seconds.

Setup
Spatial adaptivity disabled Spatial adaptivity enabled

Tridiagonal Cholesky Tridiagonal Cholesky

Reference 7.18 8.13 319.86 41.49
1 rank 15.57 10.74 340.13 46.91
2 ranks 14.90 9.39 355.80 27.53
4 ranks 13.19 11.70 185.17 73.45
8 ranks 12.23 10.94 186.31 70.29

16 ranks 13.50 11.16 190.71 76.63
32 ranks 16.33 14.58 236.40 143.11
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C.9. Geometry-aware Sparse Grids (Chap. 5)

Table C.19.: Raw data for Fig. 5.5.

Level
Grid type

Reg. SG GaSG w. DN GaSG w. DDN GaSG w. DBP-2 GaSG w. SQ GaSG w. 2-XCDB-1

1 1 1 1 1 1 1
2 1.569e+03 1.569e+03 1.569e+03 1.569e+03 1.569e+03 1.569e+03
3 1.232e+06 1.075e+04 1.659e+04 2.241e+04 1.659e+04 1.659e+04
4 6.462e+08 4.122e+04 7.038e+04 9.950e+04 9.371e+04 1.278e+05
5 2.544e+11 1.263e+05 2.255e+05 3.245e+05 4.004e+05 6.833e+05
6 2.544e+11 3.450e+05 6.307e+05 9.161e+05 1.459e+06 2.935e+06
7 2.112e+16 8.790e+05 1.631e+06 2.383e+06 4.792e+06 1.098e+07
8 4.770e+18 2.141e+06 4.013e+06 5.882e+06 1.464e+07 3.736e+07
9 9.439e+20 5.051e+06 9.536e+06 1.401e+07 4.237e+07 1.188e+08

10 1.662e+23 1.165e+07 2.210e+07 3.254e+07 1.176e+08 3.584e+08

Table C.20.: Raw data for Fig. 5.9.

Level
Grid type

Reg. SG a Reg. SG b GaSG a GaSG b GaSG c GaSG d

1 1 1 1 1 1 1
2 1.569e+03 2.101e+03 2.101e+03 2.101e+03 2.101e+03 2.101e+03
3 1.232e+06 2.209e+06 1.425e+04 1.865e+04 4.251e+04 6.129e+04
4 6.462e+08 1.550e+09 5.446e+04 7.646e+04 1.957e+05 4.151e+05
5 2.544e+11 8.165e+11 1.667e+05 2.415e+05 6.470e+05 2.033e+06
6 2.544e+11 3.444e+14 4.547e+05 6.703e+05 1.839e+06 8.492e+06
7 2.112e+16 1.212e+17 1.158e+06 1.726e+06 4.802e+06 3.208e+07
8 4.770e+18 3.658e+19 2.819e+06 4.232e+06 1.189e+07 1.126e+08
9 9.439e+20 9.670e+21 6.651e+06 1.003e+07 2.838e+07 3.735e+08

10 1.662e+23 2.275e+24 1.533e+07 2.322e+07 6.599e+07 1.183e+09

• Reg. SG a: Regular Sparse Grid of original dim 784

• Reg. SG b: Regular Sparse Grid of extended dim 1,050

• GaSG a: GaSG with DN+NoLay

• GaSG b: GaSG with DN+NPLay

• GaSG c: GaSG with DN+APLay

• GaSG d: GaSG with DN+AFLay
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Table C.21.: Raw data for Fig. 5.11.

Level
Grid type

Reg. SG GaSG a GaSG b GaSG c GaSG d GaSG e

1 1 1 1 1 1 1
2 6.145e+03 6.145e+03 6.145e+03 6.145e+03 6.145e+03 6.145e+03
3 1.889e+07 4.224e+04 5.453e+04 5.453e+04 1.021e+05 1.021e+05
4 3.871e+10 1.620e+05 2.235e+05 2.317e+05 4.616e+05 7.555e+05
5 5.953e+13 4.969e+05 7.058e+05 7.631e+05 1.515e+06 4.049e+06
6 7.326e+16 1.357e+06 1.959e+06 2.213e+06 4.292e+06 1.807e+07
7 7.515e+19 3.458e+06 5.043e+06 5.953e+06 1.119e+07 7.146e+07
8 6.610e+22 8.423e+06 1.237e+07 1.524e+07 2.765e+07 2.590e+08
9 5.089e+25 1.988e+07 2.932e+07 3.770e+07 6.594e+07 8.788e+08
10 3.484e+28 4.583e+07 6.786e+07 9.092e+07 1.532e+08 2.830e+09

• GaSG a: GaSG with DN+NoCol

• GaSG b: GaSG with DN+PairCol

• GaSG c: GaSG with DN+FullCol

• GaSG d: GaSG with PCPSof(DN)Col

• GaSG e: GaSG with FCPSof(DN)Col
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Abbildungen und Matrizen. Gießen: Springer, 2014.

[10] Bisseling, R. H. Parallel Scientific Computation: A Structured Approach Using BSP
and MPI. New York, NY, USA: Oxford University Press, Inc., 2004.

[11] Blackford, L. S. et al. ScaLAPACK User’s Guide. Ed. by Dongarra, J. J. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 1997.

[12] Blackford, L. S. et al. ScaLAPACK Users’ Guide. Philadelphia, PA: Society for
Industrial and Applied Mathematics, 1997.

[13] Bode, V. “Parallelization of a Sparse Grids Batch Classifier”. Bachelor’s thesis.
Technical University of Munich, Sept. 2017.

187



[14] Boschko, D. “Orthogonal Matrix Decomposition for Adaptive Sparse Grid
Density Estimation Methods”. Bachelor’s thesis. Technical University of Munich,
Sept. 2017.

[15] Boser, B. E., Guyon, I. M., and Vapnik, V. N. “A Training Algorithm for Optimal
Margin Classifiers”. In: Proceedings of the Fifth Annual Workshop on Computational
Learning Theory. COLT ’92. Pittsburgh, Pennsylvania, USA: Association for
Computing Machinery, 1992, pp. 144–152.

[16] Brimkov, V. E., Moroni, D., and Barneva, R. “Combinatorial relations for digital
pictures”. In: International Conference on Discrete Geometry for Computer Imagery.
Springer. 2006, pp. 189–198.

[17] Brochu, E., Cora, V. M., and Freitas, N. de. “A Tutorial on Bayesian Optimization
of Expensive Cost Functions, with Application to Active User Modeling and
Hierarchical Reinforcement Learning”. In: CoRR abs/1012.2599 (2010). arXiv:
1012.2599.

[18] Bungartz, H.-J. and Griebel, M. “Sparse Grids”. In: Acta Numerica 13 (May 2004),
pp. 147–269.
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