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Abstract—This paper presents an approach to describe abilities
of manufacturing resources by a formal description of capabilities
using Semantic Web technologies. A hierarchical ontology archi-
tecture is proposed to represent, publish, and extend knowledge
on capabilities for different application domains and use cases.
Furthermore, the paper describes patterns of how the underlying
formal logic can be used in taxonomy modeling and the inference
of implicit capability facts. The usability and performance of
the approach was validated by formalizing capability knowledge
of related work and evaluated in benchmarking a prototypical
implemented tool for managing and querying catalogs of re-
sources and their capabilities. The proposed concept is intended
to be used as a foundation for a future multi-layered feasibility
checking, which evaluates the compatibility of resources and their
offered skills with the requirements of manufacturing tasks at
symbolic and subsymbolic levels. Extended evaluations might be
based on parameters, analytics, simulation, and other means.

Index Terms—capabilities, skills, ontology, semantic web, man-
ufacturing

I. INTRODUCTION

The landscape of industrial production is in constant change.
For decades, costs and production rates were the most impor-
tant criteria in production. Mass production systems ensured
that economies of scale were achieved. However, as living
standards improve, it becomes increasingly clear that the era
of mass production is being replaced by an era of market
niches [1]. In Europe in particular, the trend towards growing
individualization with equally rising prosperity is reflected
in production characterized by small, fluctuating batch sizes
and quantities, high product variance [2], short product life
cycles [3], and shortened lead times [4].

Future production systems must be able to deal with these
challenges and have to become more flexible [5] [6]. Flexibil-
ity in production accompanies the frequent (re-)configuration
of production systems. This (re-)configuration includes the
assessment, whether a resource is able to execute a specific
production task or not. Nowadays, this check is done by
a human resource, e.g., an experienced production planner.
Facing the trend toward small batch sizes, the production
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Fig. 1. Overview of capability-based production system planning

planning process is getting more time-consuming and cost-
intensive. Depending on the availability of production plan-
ners, bottlenecks could occur that lead to delays in production
and stress its financial viability. As a consequence, tools for
production planning are needed that contain a formal and
structured machine-interpretable description of device data and
knowledge.

It is expected that this envisaged flexibility and change-
ability in production can be facilitated by formally encoding
what a production process is expecting from manufacturing
resources and what each resource can contribute to the pro-
duction system. Based on the work of [7], this paper proposes
a formal encoding of capabilities, which can realize semi-
automated and in the long run even fully automated production
process planning.

Fig. 1 visualizes how the concept of capabilities enables
the hardware-agnostic description of manufacturing applica-
tions and associated tasks. Derived required capabilities can
then be matched with the capabilities offered through skill



implementations provided by manufacturing resources, such
as devices, or even human workers!.

Main use cases for capability-based production planning
include:

1) A manufacturer needs to configure a new production
system or reconfigure an existing production system,
e.g., due to new product requirements or a broken
machine.

2) A component supplier wants to automatically generate
reliable solution proposals for a product catalog and to
optimally match customer requirements.

Capabilities, as defined in this paper, semantically describe
the effects that manufacturing resources can cause in a specific
context. For instance, a drilling machine offers the capa-
bility to create a hole in a suitable material like wood or
metal. Capabilities can be composed of sub-capabilities, e.g.,
the capability pick-and-place consists of the sub-capabilities
grasp, release, and move. As discussed in [7], capabilities
abstract manufacturing resource functionalities to enable the
highest possible degree of changeability and flexibility in
production systems. The matchmaking between required and
offered capabilities shall automate the assessment, whether a
device is able to execute a specific production task or not, as
has been done implicitly or explicitly by human production
planners so far.

In this paper, we propose an ontology-based capability
description architecture using the Web Ontology Language
(OWL) [8]. OWL is a widely accepted and well-defined
W3C recommendation to encode and manage knowledge.
It is suitable for modelling capabilities for several reasons:
OWL is a formal, hence machine-interpretable knowledge
representation language with a logical underpinning that en-
sures decidability and explainable deductions using expressing
reasoning systems. Thus it is possible to automatically derive
implicit facts from explicitly modeled knowledge. With this
features, capabilities can be automatically composed of other
capabilities or arranged in a hierarchy. Further, the automatic
inference of implicit information minimizes the effort of
describing capabilities by humans. Ontology models are very
applicable in practice for capability descriptions, because they
can be persistently hosted on servers and share capability
descriptions by being accessible and referable via globally
unique Internationalized Resource Identifiers (IRI). This way,
ontologies can be mapped with other existing ontologies and
share capability descriptions among various domains. More-
over, OWL ontologies are extendable by being importable
in other ontologies. This goes along with the monotonicity
of the underlying logic, meaning that knowledge added to
an imported ontology can only create additional inferences
and cannot invalidate previous inferences. This makes any
extension of capability descriptions safe regarding consistency
of inferences.

The following two sections provide a brief overview on the
formal foundations of OWL ontologies and the state of the art

IPlease note that this paper focuses on device-based resources.

in capability descriptions. Subsequently, this paper introduces
its ontology-based capability model Capability For Industry
(C41) and provides an evaluation thereof. The last section
concludes the paper and gives an outlook on future work.

II. FOUNDATIONS

Following the definition of Studer et al. an ontology is
a “formal, explicit specification of a shared conceptualisa-
tion“ [9]. In this definition, conceptualisation refers to a
model of the relevant concepts of a particular domain of
interest. It is formal in terms of being machine readable thus
excluding natural language, and explicit meaning that there are
no hidden assumptions regarding relationships and description
of concepts. The fact that it is shared states that the ontology
represents consensual knowledge.

The Web Ontology Language (OWL) [8] is a W3C rec-
ommendation and a well-known and accepted standard for
modelling ontologies. On the one hand it is based on Web
standards by using IRIs as identifiers and by providing an
RDF/XML serialization. On the other hand it is based on
Description Logics [10] as a logical underpinning allowing
for deductive reasoning.

An OWL ontology? is a set of axioms. An ontology can
import other ontologies, which results in the set union of ax-
ioms from the imported ontologies and the importing ontology.
Axioms represent statements about relationships of entities in
the domain of interest. Entities are described using symbols
from the ontology’s vocabulary. The vocabulary consists of a
set of classes, a set of instances, a set of object properties,
and a set of data properties’. Thereby, an instance represents
an object in the domain of interest. A class represents a set
of instances, an object property represents a binary relation
between two instances, and a data property represents a binary
relation between an instance and a literal, i.e., a data value.
Named classes are classes that are identified by an IRI. A
(complex) class description is an anonymous characterization
of a set of instances. The following class descriptions and
axioms are relevant in the context of this work*.

Let C' and D be classes. The class C'I D denotes the class
of instances that are in both C' and D. The class C'LID denotes
the class of instances that are in C' or in D (or both). Let C' be
a class and p be a property. The class Ip.C describes the class
of instances that have at least one property p to an instance of
class C. The class Vp.C' describes the class of instances, such
that for each instance, if it has a property p, this property p
relates to an instance of class C. Let n € N\ {0}. The class
> np describes the class of instances that have at least n
properties p. The class > n p.C describes the class of instances
that have at least n properties p to instances of class C. The
property expression p~ states the inverse of property p, i.e.,

2In this paper, ontology refers to an OWL ontology unless stated otherwise

3In this paper, property refers to object property, unless stated otherwise

“For the sake of brevity, the ontology notations follow the Description
Logics notation. Refer to Baader et al. [10] for a detailed explanation of this
notation and formal semantics.



iff instance a is related to instance b via p then b is related to
a via p~.

Let C' and D be classes. The subclass (or subsumption)
axiom C' C D states, informally5 , that an instance of class C
is also an instance of class D. The equivalent classes axiom
C = D states that C' and D are equivalent, i.e., C' T D and
C 1 D. Axioms related to the description of classes constitute
the T-Box of the knowledge base. Let a and b be instances.
Let C be a class and r be a property. The assertion axiom
C'(a) states that @ is a member of class C. The axiom r(a, b)
states that a and b are connected via r, thus asserting the tuple
(a,b) to r. These assertional axioms constitute the A-Box of
the knowledge base. Let p and q be properties. The subproperty
axiom p L ¢ states that if two instances are related via p they
are also related via q.

The special class T, in OWL denoted as owl:Thing
describes the most generic class, that is a superclass of all
other classes. All instances are members of T implicitly. The
class 1, in OWL denoted as owl :Nothing, describes the
most specific class, which is a subclass of all other classes. It
is the empty class and contains no instances by definition.

III. RELATED WORK

Tackling the challenges of quick changeover in lean pro-
duction, the skill-based systems engineering paradigm increas-
ingly gains interest in the research community and manufac-
turing companies alike. Confusion with respect to terminology
seems to arise from the fact that terms are used synonymously
by some, which are attributed with different meanings by oth-
ers. In this paper, we distinguish the terms skill and capability.
Skills represent the parametrizable and executable functionality
of hardware or software components, and capabilities provide
a metalevel description of their effects.

Research mainly focuses on how new skills can be imple-
mented and how a manufacturing task can be programmed
through sequences of skill invocations [11]-[14] or how pro-
duction systems can be changed in order to gain or adjust
skills, or to compensate the failure of parts of the system [15].
These approaches have in common that they are tool-centric.
This means that a manufacturing task is described based on
available hardware and software components.

By contrast, a product-centric paradigm aims at describing
the product and associated production steps independent from
specific production resources [16], [17], [18]. In order to iden-
tify a production resource that complies with the requirements
of a hardware-agnostic task specification, its capabilities [19],
[18] need to be interpreted.

[17] additionally aims at describing capabilities (called
skills in this paper) in a hardware-agnostic way so that their
possible effect in the world is described without naming
or categorizing the solution method. This concept allows
an algorithm-based planning of automated production lines,
which generates a list of suitable resources for each required
production step. However, a prerequisite of this approach is

SFor the formal semantics of these axioms, refer to Baader et al. [10].

the description of the effect(s) that each resource may achieve
— a kind of description that resource manufacturers do not
provide as of now and requires a lot of initial modeling work.
Work that can be considerably reduced for individual resource
manufacturers when relying on already existing standards as
shall be done in this paper.

There has been prior work in the German ReApp project on
the composition of production systems based on a graphical
workbench that combines Robot Operating System (ROS)
components and OWL and Ecore models [20]. OWL ontolo-
gies are used to identify suitable ROS components via the
classification of components based on offered capabilities [21].
The knowledge on how higher-level capabilities can be logi-
cally inferred from the combination of individual components
was not considered.

As part of the efforts of the EU project ReCaM, an ontology-
based approach to capability modeling was developed [22].
It features SPARQL Inference Notation (SPIN) rules for
the orchestration of higher-level capabilities in a hierarchical
fashion and conducts matchmaking queries based on modeled
capabilities. This paper uses a similar approach, but tries to
embed the capability concept in an open ontology architecture
that is based on already available upper level ontologies and is
extensible by third parties. In this approach, knowledge about
the composition of capabilities and their relations is modeled
directly in the ontology and not evaluated in SPARQL queries.

A similar concept of task planning by using capabilities
(here skills) as an abstraction for resource functionalities is ap-
plied in the EU project MOOD2Be. As part of the EU project
RobMoSys, MOOD2Be developed an approach for robot task
planning by describing their capabilities and coordinating the
tasks by behavior tree models [23]. The concept is role-based,
so first the capabilities are getting defined by domain experts
on an abstract level without any association with components
that realize them. At the next step, the component developer
provides a digital data sheet that is generated as a JSON file
for specifying the capability realization. The robotics behavior
developer imports the digital data sheet to the graphical editor
Groot and plans the robot tasks by modeling a behavior tree. A
behavior tree contains the logical sequence of tasks and each
task has an assigned capability with specific parameter values.
The translation between the abstract level of the planned tasks
and the technical level of functionality execution is done by
the executor BehaviorTree.CPP, a software component based
on C++ [24]. MOOS2Be’s and this paper’s approach have in
common that for the aim of more flexibility in task coordi-
nation, an abstraction of functionalities is done by defining
realization-neutral capabilities [25].

IV. THE CAPABILITY FOR INDUSTRY ONTOLOGY (C4I)

This section introduces a metamodel to define how capa-
bilities of components can be formally described. It follows
an ontology-based approach using OWL as its modelling
language. Furthermore, it will be shown how the OWL-based
approach allows for using this metamodel as an upper-level
ontology module. To this end, modeling patterns describe best



practices to define custom capabilities. This extension can be
done in a modular way in the form of domain ontologies
to describe concrete industry-specific or manufacturer-specific
capabilities. The C41 meta ontology is available under its IRI:
https://www.w3id.org/basyx/c4i.

A. Capability Metamodel

There are many possibilities to model a domain of inter-
est using the description language provided by OWL. The
presented metamodel follows a T-Box-based approach for the
following two reasons:

1) Reasoning: The possibilities of T-Box reasoning suit the

demands and expectations of capability inference (cf.
Sec. D).

2) Modeling granularity: Capabilities are typically associ-
ated with hardware and software component types. If
required in a later stage, single component instances
can be associated with instances of the capability class,
allowing for additional property assertions.

Following the T-Box modeling approach, a capability is rep-
resented as an OWL class.

Capability T T (1)

In order to relate any component with capability concepts, an
object property is defined as follows:

associatedWithCapability T owl:topObject Property
2
T C VassociatedWithCapability.Capability 3)

This relation can be indirect, e.g., a component is as-
sociated with the capability of one of its subcomponents,
although this capability might not be provided directly
by the component itself. Equation 3 defines the range of
associatedWithCapability to be class Capability.

A stronger relation between components and capabilities is
given by the object property

hasCapability T associatedWithCapability “4)

This property describes a direct relation between a component
and a capability.

B. Using the Metamodel

Any specific capability model based on the metamodel
defined in Sect. IV-A can define its own concrete capabil-
ities. The modeling approach allows for building capability
hierarchies originating from the C'apability class. To this end,
capabilities can be modeled in a specialization hierarchy using
the subclass axiom.

Pattern 1 (Capability Specialization): Let D be a known
capability that is (directly or indirectly) a specialization of
Capability. Let C be a new specialized capability. The axiom
C C D states that C' is a more specific capability than D. For
components relating to this capability, this means that if a
component is relating to C' it is (implicitly) relating to D.

Pattern 2 (Capability Generalization): Let C be a known
specific capability. Let D be a new capability that is more

generic than C. The axiom C' T D states that D is a more
generic capability than C'. If this generalization is done, it is
not inferred that D is in fact also a capability, so an additional
axiom D C Capability must be added at the same time.

Note, that the subclass relation and hence modeling pat-
terns 1 and 2 do not necessarily constitute a tree, but more
generically a partially ordered set of capabilities. As an exam-
ple, consider a robot’s capability relations MoveOnPath C
Move, MoveToPos C Move, MoveLin C MoveOnPath,
and MoveLin T MoveToPos. While MoveOnPath and
MoveT oPos are both specializations of Move, MoveLin is
a specialization of both MoveOnPath and MoveToPos.

In addition to capability hierarchies, capability composition
can be modeled using the associatedWithCapability and
hasCapability properties.

Pattern 3 (Specific  Capability Composition):  Let
Ci,...,C, be capabilities that are provided by a component.
Let D be a capability said component also provides due to
the fact that it provides C; € {C1,...,C,}. This relation can
be expressed using the axiom

(3hasCapability.Cy) N
(FhasCapability.Ce) 1
oo N
(3hasCapability.Cl,)
C JhasCapability.D) (5)

Modeling pattern 3 can be used to describe higher-level
capabilities that are based on more fine-grained capabilities
provided by the same component. For example, a gripper that
provides the capabilities Hold and Release also provides the
capability Grasp.

Pattern 4 (General Capability Composition): Let
Ci,...,C, be capabilities that are associated with a
component, e.g., they are capabilities provided by subsystems
of that component. Let D be a capability said component
provides due to the association with each C; € {C4,...,C,}.
This relation can be expressed using the axiom

(JassociatedWithCapability.Cy) M
(JassociatedW ithCapability.Cy) N
oo M
(FassociatedWithCapability.C,)
C JhasCapability.D) (6)
Modelling pattern 4 has a typical use case when describing
composite components. For example, a robot system composed
of a manipulator and a gripper is associated with the capabil-
ities MoveToPos and Grasp, resp., and thus provides the
capability PickAndPlace.
C. Modularization Concept

A component-independent and overarching capability model
can bring added value best, if it is widely accepted, easy to
share and reuse, easy to extend and maintain, as well as easy to
integrate with further existing domain models. The proposed
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modeling approach fulfils all these requirements by facilitating
a modular ontology model.

A common practice in the Semantic Web is the division
into upper-level, domain-level, and application-level knowl-
edge. Upper-level ontologies capture general relationships and
axioms that are necessary to describe domain knowledge.
The ontology containing the metamodel defined in Sect. [V-A
is such an upper-level ontology in the context of capability
modeling.

Ontologies that subsequently model knowledge from a
certain area of a domain use the specifications from the
upper-level ontology, typically through OWL’s import axiom.
Knowledge from several ontologies, which adhere to the
definitions of an upper-level ontology, can thus be combined
and reused more easily. In the context of capability modeling,
this adherence is achieved by following the modeling patterns
as described in Sect. IV-B. The different ontology modules
facilitate the separation of concerns and responsibilities, as
the modules can be authored and maintained by different
organisations, associations, component providers, etc.

Fig. 2 shows an example of such a modularized ontology
model using the ontology import mechanism. The upper-
level ontology C4I contains the metamodel as described in
Sect. IV-A. As an example, domain ontologies for the as-
sembly and handling domain (based on the VDI2860 guide-
line [26]), and the robotics domain are shown, as well as
a specific domain context (here, the BaSys project), which
reuses knowledge from both the VDI2860 and the robotics
domain. On demand, the model can also be extended on an
application-specific level.

D. Mapping to Existing Ontologies

Motivated by the paradigm of the Semantic Web, exist-
ing ontologies should be used or extended where possible,
resulting in a higher degree of maturity and promoting greater
acceptance.

The Semantic Sensor Network Ontology (SSN) [27] has
been identified to cover a domain of interest related to the

domain addressed in this work. SSN itself includes the concept
of capabilities of systems, but has a focus on systems and
sensors. This makes it an ideal candidate to be reused and
extended by the capability model presented in this approach.
However, instead of importing SSN, a different mapping
approach was taken, similar to the mapping from SSN to the
upper-level ontology Dolce UltraLight (DUL) [28].

In this way of mapping, the SSN ontology is not directly
imported by the C41 ontology, but a separate mapping ontology
is provided instead. This mapping ontology imports both C4I
and SSN and adds specific mapping axioms to describe the
relationships between concepts from C41 and SSN.

The advantage of this approach is to avoid a large overhead
of only remotely related SSN terms in applications in which
these are not required, as is the case in most capability
matching scenarios. However, if there is a demand to include
SSN concepts, an application ontology can additionally import
the mapping ontology and the SSN ontology, as depicted in
Fig. 2. In this case, the relation to SSN concepts will be
implicitly given for all capabilities provided by any domain
ontology in the application ontology’s import closure.

V. VALIDATION

The patterns presented in Sect. IV are a result of a iterative
process of design and validation. This section focuses on the
validation of the C41 ontology.

To validate a novel approach it is reasonable to take existing
state of the art into account. For the definition of capabilities
in industry, the VDI standard 2860 [26] was already used (see
[22]). The VDI 2860 standard defines common handling tasks
in industry on an abstract symbolic level. Furthermore, tasks
are also separated into elementary tasks, tasks that can be
derived from elementary ones, or combinations of tasks. In
the following, it is shown how VDI2860 statements can be
formalized following the C41 metamodel.

First, a domain ontology to hold the VDI 2860 definitions is
created by following the modularization concept of Sect. IV-C.
Therefore, the C4I upper ontology is imported. Next, a capa-
bility hierarchy as proposed in Sect. IV-A is set up for every
task defined in VDI 2860. Finally, following the patterns from
Sect. IV-B, dependencies between tasks are formalized.

For example, the dependency between “Hold” and “Ten-
sion” can be modeled as part of creating a capability hierarchy
using pattern 1, stating that “Tension” is a specialization
of ”Hold”, which is itself (indirectly) a specialization of
Capability:

Tension € Hold @)

given that
Hold C ... C Capability ®)

This modeling can be reapplied in a top-down or bottom-up
manner to build a capability hierarchy for a specific domain.
However, it must be ensured that the most general capability
(or capabilities) must directly or indirectly be a subclass (or
subclasses, resp.) of Capability.



Pattern 4 can be used to state dependencies of combinations
of atomic capabilities. The task “Slew” can be defined as
overlay of ”Shift” and ”Turn”, which was formalized in C4I
by the following axiom:

(JassociatedWithCapability.Shift) M
(JassociatedWithCapability. Turn)
C JhasCapability.Slew) )

For validation purposes, besides the VDI2860 ontology,
further domain ontologies were created, as shown in Fig. 2.
The domain ontology “BaSys” reuses definitions from both
domains "VDI2860” and “Robots”. By using pattern 3 the
capability to ”Grasp” is defined as®

(3hasCapability.vdi2860: Hold) M
(FhasCapability.vdi2860: Release)

C JhasCapability.basys: Grasp (10)

Pattern 3 was used in this case, as the capability to grasp can
not be fulfilled by two different components — one providing
”Hold” while the other provides “Release”. Both capabilities
have to be provided by a single component.

Also the mapping ontology C4I2SSN shown in Fig. 2
and described by Sect. IV-D was validated by creating a
catalog ontology (Fig. 2 "MyCatalog”) holding components
with their capabilities. Via the SSN ”subSystem” property also
sub component dependencies could be modeled. While first
application ontologies were created manually, a software tool
was implemented for managing component catalogs modeled
with C4I and SSN.

In order to validate the usage of the capability mondel, a
capability checker service was implemented using the Java™
Spring™ microservice framework. The service, accessible via
a REST API shown in Fig. 3, holds multiple catalogs of
components which are organized and persisted via the Spring
session mechanisms. The single catalogs or sessions can be
identified and accessed by an X-Auth-Token.

The checker utilizes ontology reasoning to check whether
capabilities are compatible, infer implicit capabilities of com-
ponents, or find components offering a specific capability.
For example, a request to get all components from a catalog
that have a certain capability, implicit knowledge is needed.
Therefore, inference is done via the OWL API [29] at request
time.

VI. EVALUATION

Besides validating the concepts of the C4I modeling ap-
proach, a first run time evaluation was conducted to assess the
performance under real application conditions. The already
introduced checker service presented in Sect.V was used to
perform the tests as a representative service that consumes the
capability model.

SFor clarification, the namespaces vdi2860: and basys: were added in
equation 10
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Fig. 3. capability checker service REST API

The evaluation comprises run time measurements of typical
functionalities of the checker service. Of particular interest is
the effect of capability complexity per component and number
of components per catalog on the run time performance.

From a theoretical point of view, reasoning on the proposed
ontologies can be done in polynomial time complexity, as
the C4I patterns and the C4I2SSN mapping axioms can be
expressed in the tractable OWL 2 EL profile. Hence, efficient
reasoners, such as ELK [30] can be used.

On the practical side, a first performance study was con-
ducted as follows. To reduce disturbances due to the Java™
execution environment, an OpenJDK™ -jmh benchmark ap-
plication was implemented to set up the test catalogs, execute
warm up and measurement iterations. As an evaluation result,
the average execution time of a service function was recorded.

The diagram in Fig. 4 shows the average execution time
for a request to get all components of a catalog (see Fig. 3
”({(Get))get ()" function for Components). This function
returns explicit and implicit information about the components
of a catalog, hence execution includes reasoning.

The retrieval of all components of a catalog is equivalent to
a data export and thus does not provide the intended function
of the checker to answer individual capability requests. Nev-
ertheless, this benchmark shows which loads can be expected
and have to be handled in the worst case.

The number of components of a catalog was increased from
10 to 1000 using a step size of 200. This was repeated for
multiple capability assignments per component with varying
complexity. The first data series ("No Cap.“) shows the results
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without any assigned capabilities and therefore was taken as
a base line reference.

For the next series ("Slew®), two capabilities “Shift” and
“Turn” leading to ”Slew” were assigned’

Shift ANTurn — Slew

The capability to order can be achieved by different com-
binations of elementary capabilities. The first possibility (1.
Order*) has the same complexity as ”Slew®, here, ”Position”
and “Orient” leading to ”Order.

Position A Orient — Order

The series 2. Order* adds more complexity by first infer-
ring “’Position” and ~’Orient” from the following 4 capabilities
as shown below.

Shift A CheckPosition — Position
Turn N CheckOrientation — Orient

Series ”3. Order” also infers ”Order” from 4 assigned
capabilities but without intermediate capabilities.

CheckOrientation A Branch A Guide N Convey — Order

The last series (“4. Order™) increases the complexity by
adding inference for "Branch” and ”Guide” from series 3. Or-
der” and combines it with approach of series ”2. Order®. In
the end 7 capabilities are assigned to one component giving 8
inferred implicit capabilities.

Turn A\ Shift
Pass A\ Divide —  Branch
Pass AN Hold — Guide

—  Pass

"For the sake of brevity, ontological axioms to express relationships
between capabilities, such as in Eq. (9), are presented in simplified notation.

By investigating the resulting data it could be seen, that
the number of components had a non linear, approximately
quadratic, influence on the execution time. This behaviour
could be explained by the implementation of the service, as
for every component a query to the reasoner, to get inferred
capabilities, was executed. Therefore, the impact of increasing
the number of components on the reasoning time is multiplied
by the number of components.

To overcome this behaviour, it is advisable to materialize
the implicit capabilities of the components at creation time. A
later retrieval is then equivalent to a normal database lookup.

Comparing the curves of the data series, it could be clearly
observed, that the execution time increases for capability
reasoning. This influence was mainly attributed to the assigned
number of capabilities per component. On the other hand, it
could not yet be confirmed that different modelling approaches
for the allocation of capabilities have a main influence.

This becomes noticeable when comparing series 2. Order”
and 3. Order”, which assign the same number of capabilities
but for series 2. Order”, “Position” and “Orient” have to
be inferred themselves. It can be observed, that there is a
slightly different behaviour after 400 components. However, it
cannot be ensured that this is clearly affected by the capability
modelling choices and motivates further performance studies
as part of future research.

Overall the results show that performance for some func-
tions can be further optimized by materialization at creation
time, but also imply that reasoning at request time still is
feasible and required. For example the request to get a hint,
which components of a catalog to combine to achieve a certain
capability (see Fig. 3 ”({(Get))get (cap, num)” for path
”/components/hint”), would need the materialization of
every possible combination, following the C4I patterns, of all
components of a catalog. Therefore, future focus will be on
reasoning performance for such use cases.

VII. CONCLUSION

This paper introduces the concept of ontology-based ca-
pability matching for production resources. It shows that the
formal representation of ontologies is a suitable technology to
encode knowledge that previously was often described in an
unstructured way or even not at all. Through a distinctive sep-
aration from programming language-specific implementations,
ontology models can be more easily maintained and reused.
The specification of capabilities based on a standardized
vocabulary enables the seamless substitution and interplay of
resources from different manufacturers.

As a purely symbolic matching of a task’s requirements with
a production resource’s capabilities cannot consider complex
real-world properties, e.g., friction coefficients or temperature
influences, adding additional subsymbolic layers of compat-
ibility checks enables the knowledge-based production sys-
tem to increase the level of confidence for its compatibility
predictions. In order to limit the extra effort caused by the
additional checks, the symbolic evaluation is used to filter
possible candidates, i.e., to reduce the search space of possible



solutions. Based on a risk assessment of particular production
steps, a certain confidence level of assumed compatibility
could be demanded.

Composing capabilities allows to build up complex systems
from scratch or based on preexisting resources. Similarly,
decomposing capabilities could be used to perform tasks with
resources that can do more than the task at hand. Therefore
those mechanisms are of high value in plug-and-produce or
interchangeability scenarios. There are two ways to build up
such compositions: either rule-based or learned. In both cases,
one has to rely on a publicly known taxonomy of capabilities.
A prerequisite of composing and decomposing resources is to
have a mechanism to formally represent resources including
their composition or decomposition structure. This can be done
in various ways. By expressing it in an ontology as well, it
can be automatically reasoned upon. A potential mechanism
to integrate this approach into production systems is to use
the Asset Administration Shell in the Industry 4.0 context and
introduce a new reference that carries a semantic ID, which
links to concepts of the ontology presented in this paper.
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