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Abstract—Leveraging autonomous systems in safety-critical
applications requires formal robustness guarantees against un-
certainties. We address this issue by computing safe terminal sets
with corresponding safety-preserving terminal controllers, which
ensure robust constraint satisfaction for an infinite time horizon.
To maximize the region of operation, we also construct as large
as possible safe initial sets that can be safely steered into the safe
terminal set in finite time. We use scalable reachability analysis
and convex optimization to efficiently compute safe sets of
sampled-data systems. These systems are composed of a physical
plant evolving in continuous time and a digital controller being
implemented in discrete time. We further verify the effectiveness
of our robust control approach using a simple double-integrator
system and a vehicle-platooning benchmark.

Index Terms—Robust control, predictive control for linear
systems, sampled-data control.

I. INTRODUCTION

GUARANTEEING safety for an infinite time horizon is
crucial yet challenging to verify when deploying au-

tonomous systems or learning-based control in safety-critical
applications. Thus, the state sets that guarantee robust state
and input constraint satisfaction at all times are widely used
in the robust control synthesis.

For instance, ensuring recursive feasibility in robust model
predictive control can be achieved by using a safe robust in-
variant terminal set with a corresponding terminal penalty [1],
[2]. As soon as the system state enters this set, the safety-
preserving terminal controller guarantees the satisfaction of
the state and input constraints at all times. Recently, safe sets
are also used in safe learning-based control as part of the
supervisory safety filter [3], [4]. This filter accepts only inputs
satisfying the input constraint and causing the state of the
system to stay within the safe set. If the desired control input
is rejected, the safety-preserving backup control is applied
instead.

The largest safe set is known as the discriminating ker-
nel, maximal robust control invariant (RCI) set, or infinite
reachable set [2], [5]. Because of its high relevance in robust
control synthesis, computing the exact discriminating kernel
and approximations thereof has a rich history. The exact set for
discrete-time systems can be obtained by standard set recur-
sion [2], [6]. However, the procedure fails to terminate in finite
time in most cases. Thus, various approaches for computing
approximations have been proposed in the literature.
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Polytopic RCI under- and over-approximations are pre-
sented in [5], where arbitrarily small violations of the state
and input constraints are tolerated in the case of an over-
approximation. To prevent the polytopic representation of an
RCI set from becoming too complex, its desired number
of representing halfspaces can be chosen freely in [7]. To
obtain RCI sets of desired complexity in the case of linear
state feedback control, a sequence of semi-definite programs
is solved. In contrast to explicit representations, RCI sets
are represented implicitly in [8], where the corresponding
safety-preserving control is obtained by solving a convex
optimization problem.

To improve computational complexity when constructing
an under-approximation of the finite-horizon discriminating
kernel, ellipsoids instead of polytopes are used as a set
representation in [9]. However, safety is ensured only for a
finite time horizon. Nevertheless, compared with the expo-
nential complexity of the standard polytopic approach with
respect to the state space dimension, representing reachable
sets by ellipsoids results in increased scalability. As a scalable
alternative, zonotopes are used as a set representation in [10].
Because zonotopes can exactly represent typical axis-aligned
box constraints, zonotopic approximations often produce less
conservative results compared with ellipsoidal ones [10].

In this letter, by using convex optimization, we efficiently
compute zonotopic safe sets with corresponding controllers
that ensure robust constraint satisfaction for an infinite time
horizon. Inspired by [3], we compute a) safe terminal sets
that guarantee robust constraint satisfaction at all times and
b) safe initial sets that are as large as possible and can be
safely steered into a safe terminal set in finite time. Moreover,
we consider systems that are described by sampled-data mod-
els [11], where the physical plant evolves in continuous time,
whereas the digital controller is implemented in discrete time.

The rest of this letter is structured as follows: In Section II,
zonotopes as an efficient set representation are introduced and
the control goal is formulated. Subsequently, our reachability
analysis is presented in Section III, followed by the computa-
tion of safe sets in Section IV. Finally, two numerical examples
are considered in Section V, and conclusions in addition to
suggestions for future work are provided in Section VI.

II. PRELIMINARIES

In this section, we introduce zonotopes as an efficient set
representation. Additionally, we recall two approaches for
determining whether a zonotope contains another zonotope.
Finally, we state the control goal.
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A. Set Representation by Zonotopes

A crucial aspect when computing reachable sets is the
choice of set representation. We use zonotopes so that the
computational complexity of our reachability analysis algo-
rithm scales only cubicly with the dimension of the state
space [12]. Moreover, zonotopes can be stored efficiently as
matrices and are closed under Minkowski addition and linear
transformation [13].

A zonotope Z ⊂ Rnz in generator representation is defined
by

Z =
{
z ∈ Rnz

∣∣ z = c+Gλ, ‖λ‖∞ ≤ 1
}
,

where c ∈ Rnz is the center and G ∈ Rnz×η(Z) is the genera-
tor matrix of Z with η(Z) denoting the number of generators.
To obtain a more compact notation, we use Z =

〈
c,G

〉
. The

order of Z is defined by o(Z) = η(Z)
nz

.
According to [13], the Minkowski addition of two zonotopes
Z1 =

〈
c1, G1

〉
and Z2 =

〈
c2, G2

〉
, where c1 and c2 have the

same size, and the multiplication by a matrix M are

Z1 ⊕Z2 =
{
z1 + z2

∣∣ z1 ∈ Z1, z2 ∈ Z2

}

=
〈
c1 + c2,

[
G1 G2

] 〉

MZ1 =
〈
Mc1,MG1

〉
.

Additionally, we introduce the directed Hausdorff distance

d(Z1,Z2) = min
{
δ ∈ R≥0

∣∣ Z1 ⊆ Z2 ⊕ δ
〈
0, I
〉}

(1)

between Z1 and Z2 [14], where
〈
0, I
〉

denotes the unit ball
corresponding to the infinity norm. Thus, d(Z1,Z2) = 0 if and
only if Z1 ⊆ Z2. Moreover, according to [12], the smallest
axis-aligned box enclosure of Z =

〈
c,G

〉
is

boxEnclosure(Z) =
〈
c, diag(|G|1)

〉
, (2)

where the absolute value is applied elementwise, 1 denotes a
vector of ones, and the function diag returns a diagonal matrix
with the input vector as the diagonal.

B. Zonotope Containment

We recall two approaches for determining if a zonotope Z1

is contained within another zonotope Z2, i.e., if Z1 ⊆ Z2

holds. The first approach transforms Z2 from generator to half-
space representation [15]. Then, Z1 =

〈
c1, G1

〉
is contained

in Z2 =
{
z2 ∈ Rnz2

∣∣ H2z2 ≤ h2

}
if and only if

H2c1 +
∣∣H2G1

∣∣1 ≤ h2 (3)

is fulfilled [16], where the inequality is applied elementwise.
The second approach solves a linear feasibility prob-

lem [14]. To determine whether Z1 =
〈
c1, G1

〉
is contained

in Z2 =
〈
c2, G2

〉
, it is checked if a matrix Γ and a vector γ

exist such that

G1 = G2Γ (4a)
c2 − c1 = G2γ (4b)∥∥ [Γ γ
] ∥∥
∞ ≤ 1, (4c)

where the infinity norm is defined as the maximum absolute
row sum. In contrast to (3), (4) is only a sufficient condition

for zonotope containment. Nevertheless, (4) can be solved for
comparably higher-order zonotopes by using efficient convex
optimization algorithms [17].

C. Problem Statement

We consider continuous-time linear time-invariant systems
that evolve according to

ẋ(t) = Ax(t) +Bu(t) + w(t), (5)

where x(t) ∈ Rnx is the system state, u(t) ∈ Rnu is the input,
and w(t) ∈ Rnx is the unknown disturbance at time t ∈ R≥0.
The disturbance trajectory w(·) is bounded by the disturbance
setW ⊂ Rnx , i.e., w(t) ∈ W for all times t. To obtain a more
compact notation, we use w(·) ∈ W . Moreover, the system in
(5) is constrained by

x(·) ∈ X (6a)
u(·) ∈ U , (6b)

where X ⊂ Rnx and U ⊂ Rnu are the state and input
constraint sets, respectively. We assume that X , U , and W
contain the origin. Additionally, X and W are assumed to
be given in generator representation, whereas U is provided in
generator or halfspace representation. Because these three sets
are typically described by axis-aligned boxes, they can easily
be expressed in both representations.

The initial state of the system x(0) lies within the initial
state set Zinit =

〈
cinit, Ginit

〉
⊆ X , i.e., it can be expressed by

x(0) = cinit +Ginitλinit, (7)

where a not necessarily unique initial scaling vector λinit ∈
Rη(Zinit) with ‖λinit‖∞ ≤ 1 exists. Based on λinit, the digital
controller provides a piecewise constant control signal only at
periodic sampling time points tk = k∆t with k ∈ Z≥0 and
∆t ∈ R>0. To define a meaningful sampled-data control prob-
lem, we assume that the tuple (AD, BD) with AD = eA∆t and
BD =

( ∫∆t

0
eAτ dτ

)
B is stabilizable. Based on a stabilizing

feedback matrix K ∈ Rnu×nx , we use the simple control law

u(t) = Kx(tk)+cu(tk)+Gu(tk)λinit for t ∈ [tk, tk+1), (8)

where Zu(tk) =
〈
cu(tk), Gu(tk)

〉
with generator matrix

Gu(tk) ∈ Rnu×η(Zinit) is the correction input zonotope at tk.
Thus, in addition to the zonotopic parameterized control used
in [10], our controller in (8) also consists of a state feedback
component.

In this letter, the control goal is to find a large initial state
set Zinit with correction input zonotope sequence Zu(·) such
that the constraints in (6) are satisfied for an infinite time
horizon.

III. REACHABILITY ANALYSIS

In this section, we compute reachable sets for discrete time
points t ∈ [0,∆t). Subsequently, we extend this approach for
the entire time horizon t ∈ R≥0.



A. First Time Interval

To accommodate for the piecewise constant control law in
(8), we augment the state space:

[
ẋ(t)
u̇(t)

]

︸ ︷︷ ︸
˙̃x(t)

=

[
A B
0 0

]

︸ ︷︷ ︸
Ã

[
x(t)
u(t)

]

︸ ︷︷ ︸
x̃(t)

+

[
w(t)
0

]

︸ ︷︷ ︸
w̃(t)

, (9)

where 0 denotes a matrix of zeros. To project a set of
augmented states Z̃ ⊂ Rnx+nu onto the original state and
input space, respectively, we define

Πx

(
Z̃
)

=

{
x ∈ Rnx

∣∣∣∣ u ∈ Rnu ,

[
x
u

]
∈ Z̃

}

Πu

(
Z̃
)

=

{
u ∈ Rnu

∣∣∣∣ x ∈ Rnx ,

[
x
u

]
∈ Z̃

}
.

For instance, the center and generator matrix of the zono-
tope Πu

(〈
c,G

〉)
are obtained by deleting the first nx rows of

c and G, respectively.
The unique solution of (9) at time t ∈ [0,∆t) is denoted

by ξ̃
(
t, x̃(0), w(·)

)
∈ Rnx+nu , where x̃(0) is the augmented

initial state and w(·) is the disturbance trajectory. When
considering the disturbance set W and an augmented initial
state set Z̃init ⊂ Rnx+nu , instead of a single initial state x̃(0),
we obtain the exact reachable set

R̃exact(t, Z̃init) =
{
x̃(t) ∈ Rnx+nu

∣∣ x̃(0) ∈ Z̃init,

w(·) ∈ W, x̃(t) = ξ̃
(
t, x̃(0), w(·)

)}
,

which is the set of augmented states that the system in (9)
can reach at time t ∈ [0,∆t). Because it is impossible to
obtain this set for general systems [18], [19], we settle for tight
zonotopic over-approximations R̃over(t, Z̃init) ⊇ R̃exact(t, Z̃init)
that are computed according to [12], [20].

B. Entire Time Horizon

Based on the reachability analysis for [0,∆t), we present
Alg. 1 to compute reachable sets R̃hybrid

(
t,Zinit,Zu(·)

)
for

any time point t ∈ R≥0. Its inputs are the specified time t,
the initial state set Zinit =

〈
cinit, Ginit

〉
, and the correction

input zonotope sequence Zu(·) =
〈
cu(·), Gu(·)

〉
. Essentially,

to accommodate for the piecewise constant control law in (8),
Alg. 1 computes reachable sets for consecutive time steps of
size ∆t until the specified time t is reached.

In line 4 of Alg. 1, we initialize the augmented initial state
set Z̃init based on the control law in (8) and the augmented
system in (9). In lines 5 to 10, we compute reachable sets for
consecutive time steps of size ∆t until the specified time t
is bigger than tk+1 for some k. In line 9, we horizontally
concatenate Gu(tk) and a matrix of zeros to account for the
Minkowski addition in line 6 resulting from the disturbance
set W . Finally, the reachable set for the specified time t is
obtained in line 11 of Alg. 1.

To obtain a more compact notation, we use

Rx
(
t,Zinit,Zu(·)

)
= Πx

(
R̃hybrid

(
t,Zinit,Zu(·)

))

Ru
(
t,Zinit,Zu(·)

)
= Πu

(
R̃hybrid

(
t,Zinit,Zu(·)

))

Algorithm 1 Computing R̃hybrid
(
t,Zinit,Zu(·)

)

Input: t,
〈
cinit, Ginit

〉
,
〈
cu(·), Gu(·)

〉

Output: Z̃t
1: k ← 0

2: c̃init ←
[

cinit
Kcinit + cu(tk)

]

3: G̃init ←
[

Ginit
KGinit +Gu(tk)

]

4: Z̃init ←
〈
c̃init, G̃init

〉

5: while tk+1 < t do
6:

〈
cx, Gx

〉
← Πx

(
R̃over(∆t, Z̃init)

)

7: k ← k + 1

8: c̃init ←
[

cx
Kcx + cu(tk)

]

9: G̃init ←
[

Gx
KGx +

[
Gu(tk) 0

]
]

10: Z̃init ←
〈
c̃init, G̃init

〉

11: Z̃t ← R̃over(t− tk, Z̃init)

to denote the projections of the reachable set onto the original
state and input space, respectively. Up to now, we have
only performed reachability analysis for discrete time points.
Nevertheless, the state and input constraints in (6) must be
satisfied not only at but also between sampling times. Thus,
we also compute reachable sets

R̃hybrid
(
τk,Zinit,Zu(·)

)
=
⋃

t∈τk

R̃hybrid
(
t,Zinit,Zu(·)

)

for time intervals τk = [tk, tk+1) according to [12], [20].
In summary, we can efficiently compute reachable sets

for arbitrary time points and time intervals. In the following
section, we use the presented reachable set computations to
construct safe sets.

IV. SAFE SETS

In this section, we compute safe terminal sets with corre-
sponding terminal controllers that guarantee robust constraint
satisfaction for an infinite time horizon. Additionally, to in-
crease the region of operation, we maximize the size of an
initial state set while ensuring that all initial states can be
safely steered into a safe terminal set.

A. Safe Terminal Set

We call a set Zter ⊆ X a safe terminal set with the
corresponding stabilizing terminal controller

u(t) = Kx(tk) for t ∈ τk, (10)

i.e., cu(·) and Gu(·) are 0 in (8), if there exists some terminal
time step kter ∈ Z>0 such that

Rx
(
tkter ,Zter, {0}

)
⊆ Zter (11a)

Rx
(
τk,Zter, {0}

)
⊆ X for k ∈ {0, 1, 2, . . . , kter} (11b)

Ru
(
τk,Zter, {0}

)
⊆ U for k ∈ {0, 1, 2, . . . , kter} (11c)

holds [21]. Thus, in contrast to invariant sets, the state of the
system might leave Zter during (0, tkter). Nevertheless, during



this time, the state and input constraints in (6) are always
fulfilled. Consequently, robust constraint satisfaction can be
achieved for an infinite time horizon when the initial state lies
within Zter.

We present Alg. 2 to compute a safe terminal set Zter with
a corresponding terminal time step kter. Its input ε ∈ R>0

denotes the convergence tolerance, which is typically chosen
close to 0. Essentially, Alg. 2 proceeds in two steps. First, two
zonotope sequences are computed that converge to an over-
approximation of the discrete-time minimal robust positively
invariant (mRPI) set [11]. Second, the zonotope order of
this over-approximation is reduced as much as possible while
ensuring that the constraints in (11b) and (11c) are satisfied.

Algorithm 2 Safe terminal set

Input: ε
Output: Zter, kter

1: k ← 1
2: Z{0}(tk)← Rx

(
tk, {0}, {0}

)

3: ZX (tk)← Rx
(
tk,X , {0}

)

4: while ε ≤ d
(
ZX (tk), boxEnclosure

(
Z{0}(tk)

))
do

5: k ← k + 1
6: Z{0}(tk)← Rx

(
tk, {0}, {0}

)

7: ZX (tk)← Rx
(
tk,X , {0}

)

8: kter ← k
9: oter ← 0

10: while oter < o
(
ZX (tkter)

)
do

11: oter ← oter + 1
12: Zter ← over-approx. of ZX (tkter) having order oter
13: if (11b) and (11c) are satisfied for Zter, kter then
14: break
15: else
16: Zter ← ∅

In lines 1 to 7 of Alg. 2, we compute the set of reach-
able states for consecutive time steps corresponding to the
following two initial state sets, namely, the origin {0} and the
state constraint set X . We denote these zonotope sequences by
Z{0}(·) and ZX (·). Because the feedback matrix K in (10) is
stabilizing, Z{0}(·) and ZX (·) would converge to the discrete-
time mRPI set [11], if no over-approximation of reachable
sets to reduce computational complexity was used. To achieve
low computation times, we use a simple convergence criterion
in line 4 based on the directed Hausdorff distance in (1).
Instead of computing d

(
ZX (tk),Z{0}(tk)

)
using (4), we use

box enclosures because they can be efficiently obtained by (2)
and transformed to halfspace representation such that (3) can
be applied.

To reduce the complexity of the computations in Sec-
tion IV-B, we want the safe terminal set Zter ⊇ ZX (tkter) to
have a reduced zonotope order compared with ZX (tkter) [22],
[23]. Thus, in lines 10 to 16 of Alg. 2, we increment this
zonotope order starting from 1 until the constraints in (11b)
and (11c) are satisfied. However, if these constraints are even
violated for the tight over-approximation ZX (tkter) of the
discrete-time mRPI set, Alg. 2 returns an empty set.

Proposition 1: If the first output Zter of Alg. 2 is a
nonempty set, then Zter is a safe terminal set with the second
output kter being the corresponding terminal time step.

Proof: Because Zter is a nonempty set, we know that the
check in line 13 of Alg. 2 was passed successfully. Thus, the
constraints in (11b) and (11c) are fulfilled for Zter and kter.
Because (11b) is satisfied, it follows that

Zter ⊆ Rx
(
τ0,Zter, {0}

)
⊆ X ,

which results in

Rx
(
tkter ,Zter, {0}

)
⊆ Rx

(
tkter ,X , {0}

) line 12 of Alg. 2
⊆ Zter,

implying the satisfaction of (11a).

B. Safe Initial Set

If the initial state lies within a safe terminal set Zter, the
terminal controller in (10) ensures the satisfaction of the
constraints in (6) for an infinite time horizon. Thus, we could
use this safe set, e.g., as a terminal set in robust model
predictive control. Nevertheless, we want to obtain a state set
that guarantees robust constraint satisfaction at all times while
being as large as possible to maximize the region of operation.
One way to achieve this goal is to construct a large initial state
set that can be safely steered into Zter in finite time. We call
such a set a safe initial set. Subsequently, we compute under-
approximations of the largest safe initial set, which is known
as the robust sampled-data capture basin [3].

Ideally, we want to maximize the volume of the safe initial
set Zinit. However, computing the volume of a general zono-
tope is combinatorially complex with respect to the number
of columns of the generator matrix [24]. Nevertheless, in the
special case of Zinit being a parallelotope, maximizing the
determinant of the generator matrix results in the maximum
volume. When constraining this generator matrix to be positive
definite, the maximization can be cast and efficiently solved
as a convex optimization problem [17]. However, restricting
Zinit to be a parallelotope can be conservative.

Instead of maximizing the actual volume, we use a heuristic
based on generator scaling [10]. To obtain a large safe initial
set Zinit with correction input zonotope sequence Zu(·), we
solve the following convex optimization problem:

max
φ,cinit,Zu(·)

JZinit(φ) (12a)

s. t. Zinit =
〈
cinit, Guser diag(φ)

〉
(12b)

Rx
(
tkinit ,Zinit,Zu(·)

)
⊆ Zter (12c)

for k ∈ {0, 1, 2, . . . , kinit} :

Rx
(
τk,Zinit,Zu(·)

)
⊆ X (12d)

Ru
(
τk,Zinit,Zu(·)

)
⊆ U , (12e)

where JZinit is a concave cost function, φ ∈ Rη(Zinit)
≥0 is a

generator scaling vector, Guser ∈ Rnx×η(Zinit) is a user-defined
generator matrix, and kinit ∈ Z>0 is the initial time step.
To check for zonotope containment, we use the approaches
presented in Section II-B, resulting in the maximization of a
concave cost function subject to linear constraints.



A reasonable cost function JZinit in (12a) is the geometric
mean or the sum of the input vector elements. The user-
defined generator matrix Guser can be chosen as the generator
matrix of the obtained safe terminal set Zter. Alternatively,
we can uniformly sample from the unit hypersphere and use
the obtained points as columns of Guser. Because uniform
sampling in high-dimensional spaces is a complex task, it is
beneficial to examine the sparsity of the system matrix [10].
The initial time step kinit corresponds to the time the safe
terminal set Zter is reached. Thus, this parameter is used to
balance between accuracy and computational complexity.

To explicitly obtain the control law in (8) for t ∈ [0, tkinit),
we must compute the not necessarily unique initial scaling
vector λinit in (7) at time 0. This can be achieved by solving
the following convex optimization problem:

min
λinit

Jλinit(λinit) (13a)

s. t. x(0) = cinit +Ginitλinit (13b)
‖λinit‖∞ ≤ 1, (13c)

where Jλinit is a convex cost function. In the special case
of Zinit being a parallelotope, we can invert the optimized
generator matrix Ginit = Guser diag(φ) to obtain the unique
scaling vector λinit = G−1

init

(
x(0)− cinit

)
.

In summary, we propose a dual-mode control approach.
During [0, tkinit), we safely steer the initial state x(0) ∈ Zinit
based on the control law in (8) into Zter and switch to the
terminal controller in (10) at tkinit . Thus, we are able to satisfy
the state and input constraints in (6) for an infinite time horizon
while providing a large region of operation.

V. NUMERICAL EXAMPLES

In this section, we demonstrate the effectiveness of our ro-
bust control approach using a simple double-integrator system
and a vehicle-platooning benchmark. For both numerical ex-
amples, the sampling time is ∆t = 0.1 s, and the convergence
tolerance used in Alg. 2 is ε = 0.01.

For the reachability analysis computations, we use the open-
source tool CORA [20]. All optimization problems are mod-
eled using YALMIP [25] with parameter ‘allownonconvex’ set
to 0 and solved using MOSEK [26] with default parameters.
Our computations are conducted on a laptop equipped with an
Intel Core i7-7820HQ and 32 GB of RAM.

A. Double-Integrator System

We consider the simple double-integrator system

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t) + w(t)

with disturbance set W = [−0.1, 0.1]2 and state and input
constraint sets X = [−1, 1]2 and U = [−1, 1], respectively.
The stabilizing feedback matrix K is obtained using LQR-
based controller synthesis, where the state and input weighting
matrices are identity matrices. The columns of the user-defined
generator matrix Guser in (12b) are chosen as 10 uniformly
distributed points around the top half unit circle. Because

we use the linear cost JZinit = 1Tφ in (12a), the convex
optimization problem in (12) is a linear program [17].

In Fig. 1, we visualize the zonotopes that are obtained
during the execution of Alg. 2. Running this algorithm to
obtain the safe terminal set Zter takes 0.2 s.

−1.5 −1 −0.5 0 0.5 1 1.5
−1
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Figure 1. Zonotopes obtained during the execution of Alg. 2. The safe
terminal set Zter is shown in red. Additionally, the zonotope sequences ZX (·)
and Z{0}(·) are plotted in blue and black, respectively.

In Fig. 2a, we present the optimization results for the initial
time step kinit = 30, i.e., an initial time horizon of 3 s is
considered. Solving this linear program takes 0.5 s. To obtain
the initial scaling vector λinit for the control law in (8), we use
the convex cost Jλinit = ‖λinit‖∞ in (13a).
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(a) The reachable sets for time intervals
and tkinit = 3 s are shown in blue and
orange, respectively. Additionally, 50 ran-
dom trajectories for t ∈ [0, tkinit ] are
plotted in black.
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(b) The safe initial sets for all kinit ∈
{1, 2, . . . , 30} are shown, where a
lighter gray tone corresponds to a higher
value of kinit. Additionally, a tight invariant
under-approximation of the discrete-time
maximal RCI set is plotted in blue.

Figure 2. The safe initial set Zinit for the initial time step kinit = 30 and the
safe terminal set Zter are visualized in green and red, respectively.

In Fig. 2b, we show the optimized safe initial sets for all
initial time steps kinit ∈ {1, 2, . . . , 30}. When increasing kinit
beyond 30, the terminal constraint in (12c) becomes inactive
and the safe initial sets are the same. To demonstrate that
our approach is not overly conservative, we also show a tight
invariant under-approximation of the discrete-time maximal
RCI set, which is computed according to [5]. In contrast to
this under-approximation, our safe initial sets guarantee robust
constraint satisfaction not only at but also between sampling
times.

B. Vehicle-Platooning Benchmark

To demonstrate the applicability of our approach to larger
systems, we consider a vehicle-platooning benchmark with



nine states and three inputs [27]. The dynamics corresponding
to the ith following vehicle with i ∈ {1, 2, 3} is

ëi = ai−1 − ai
ȧi = − 1

T
ai +

1

T
ui,

where T = 0.5 s. The acceleration of the leading vehicle is
modeled as disturbance a0 ∈ [−2, 2] m

s2
. The state and input

constraints for i ∈ {1, 2, 3} are as follows: ei ∈ [−10, 10] m,
ėi ∈ [5, 5] m

s , ai ∈ [−8, 8] m
s2

, and ui ∈ [−8, 8] m
s2

. The given
stabilizing feedback matrix K is obtained using an LMI-based
controller synthesis [27].

The user-defined generator matrix Guser in (12b) is chosen
as the generator matrix of Zter. In (12), we use the geometric
mean of the input vector as cost JZinit and choose kinit = 40.
Solving the resulting convex optimization problem takes less
than 30 s, whereas executing Alg. 2 to obtain Zter takes
1 s. In Fig. 3, we show two-dimensional projections of the
optimization results.
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Figure 3. Two-dimensional projections of zonotopes. The safe initial set Zinit
and the safe terminal set Zter are plotted in green and red, respectively.
Additionally, the reachable sets for time intervals and tkinit are shown in blue
and orange, respectively.

VI. CONCLUSIONS AND FUTURE WORK

We have presented an efficient approach for computing
safe sets of linear sampled-data systems subject to additive
disturbances. First, we construct safe terminal sets, which are
over-approximations of the discrete-time mRPI set. Second,
we solve a convex optimization problem for obtaining large
safe initial sets to maximize the region of operation. Because
we use zonotopes as an efficient set representation, our robust
control approach is suitable for ensuring the safety of large
systems, as shown in the vehicle-platooning benchmark. In
the future, we intend to deploy the obtained safe sets as part
of a scalable supervisory safety filter that mediates between
safety and performance.
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