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Vollständiger Abdruck der von der Fakultät für Mathematik der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Mathias Drton, Ph.D.
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Abstract

Developments such as low interest rates, high volatility and risk-based regulatory regimes
have increased the need for insurance companies and pension funds to manage their as-
sets and liabilities integratively (Asset Liability Management). An important part is the
choice of an adequate investment strategy which is favorable with respect to risk and
return, but which also ensures that future liabilities can be fulfilled. Two major aspects
which have to be considered in the portfolio optimization process are the inclusion of
stochastic liabilities and the presence of constraints through regulatory regimes such as
Solvency II in Europe. For the optimization with stochastic liabilities, we develop two
portfolio optimization frameworks which take stochastic liabilities into account in differ-
ent ways and derive optimal investment strategies in closed form. First, we maximize the
terminal funding ratio and derive optimal investment strategies for initially well-funded
and underfunded investors in a Cumulative Prospect Theory framework. Second, we
establish a surplus optimization framework using a generalized martingale approach.
The liabilities in this framework may be subject to index- or performance participation
and may include unhedgeable risks. For the optimization with regulatory constraints,
we consider risk constraints, in particular Solvency II-type constraints, which jointly de-
pend on wealth and the investment strategy. We approximate the optimal constrained
investment strategy through an iterative two-step approach for an investor with power
utility. For general wealth-dependent risk constraints and general utility function, we
show that the optimization problem can, under certain conditions, be reduced to an as-
sociate problem with a different utility function and constraints independent of wealth.
The associate problem can be solved using known duality results. Following this ap-
proach, we derive optimal investment strategies in closed form for an investor with
HARA utility. Within numerical studies, we illustrate the economic impact of various
types of stochastic liabilities and the Solvency II constraints.
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Zusammenfassung

Entwicklungen wie die Niedrigzinsphase, hohe Marktvolatilität und risikobasierte Re-
gulierung haben dazu geführt, dass Versicherungen und Pensionsfonds ihre Aktiva und
Verbindlichkeiten integriert steuern müssen (Asset Liability Management). Ein wichtiger
Bestandteil dieser Steuerung ist die Wahl einer geeigneten Kapitalanlagestrategie, die
einerseits im Hinblick auf das Risiko und die Rendite günstig ist, die aber andererseits
sicherstellt, dass die Verbindlichkeiten erfüllt werden können. Zwei bedeutende Aspekte,
die bei der Portfoliooptimierung beachtet werden müssen, sind die Berücksichtigung
stochastischer Verbindlichkeiten und Nebenbedingungen durch regulatorische Vorschrif-
ten, wie Solvency II in Europa. Zur Portfoliooptimierung mit stochastischen Verbindlich-
keiten entwickeln wir zwei Verfahren, in denen stochastische Verbindlichkeiten in un-
terschiedlicher Weise berücksichtigt werden und bei denen wir geschlossene Formeln
für die optimalen Kapitalanlagestrategien erhalten. Zuerst maximieren wir die Fi-
nanzierungsquote und leiten optimale Strategien für ausreichend finanzierte und un-
terfinanzierte Investoren im Kontext der Cumulative Prospect Theory ab. Anschließend
entwickeln wir ein Verfahren zur Optimierung des Überschusses durch Verwendung eines
verallgemeinerten Martingalansatzes. Die Verbindlichkeiten können in diesem Verfahren
an der Entwicklung eines Indexes oder den Kapitalanlagen selbst partizipieren und nicht
replizierbare Risiken enthalten. Zur Optimierung mit regulatorischen Nebenbedingun-
gen betrachten wir risikobasierte Nebenbedingungen, insbesondere wie bei Solvency II,
die gleichzeitig vom Vermögen und von der Kapitalanlagestrategie abhängen. Wir ap-
proximieren die optimale Anlagestrategie durch ein iteratives Verfahren in zwei Schrit-
ten für einen Investor mit isoelastischer Nutzenfunktion. Für allgemeine risikobasierte
Nebenbedingungen, die auch vom Vermögen abhängen und allgemeine Nutzenfunk-
tion zeigen wir, dass das Optimierungsproblem unter geeigneten Voraussetzungen auf
ein verwandtes Optimierungsproblem mit Nebenbedingungen, die nicht vom Vermögen
abhängen und einer anderen Nutzenfunktion, zurückgeführt werden kann. Das ver-
wandte Problem kann mit bekannten Dualitätsmethoden gelöst werden. Mit diesem
Ansatz ermitteln wir geschlossene Lösungen für die optimale Kapitalanlagestrategien
für einen Investor mit HARA-Nutzenfunktion. Mit numerischen Anwendungen veran-
schaulichen wir den ökonomischen Einfluss der stochastichen Verbindlichkeiten und Sol-
vency II-Nebenbedingungen.
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1 Introduction

1.1 Motivation and Literature Overview

Low interest rates, high market volatility and the shift towards risk-based regulatory
regimes such as Solvency II in Europe represent major developments, which increase the
need for insurance companies and pension funds to manage their assets and liabilities
integratively (Asset Liability Management). Besides balancing the expected return and
the risk according to their risk aversion and constructing portfolios such that diversi-
fication effects can be used best, insurance companies have to choose their investment
strategy such that they have enough capital to meet their future liabilities, i.e. payments
to the policy holders. The present value of the liabilities is stochastic as it may depend
on, e.g., the level of interest rates, the value of other financial instruments to which the
insurance policies may be linked, or the performance of the insurance company’s asset
portfolio. As a risk-based regulatory regime, the Solvency II framework for European in-
surance companies aims at protecting policy holders by obliging insurance companies to
manage their risk in a way such that the yearly 99.5%-Value-at-Risk does not exceed the
insurance company’s own funds. As assets contribute to an important part to the risk
of many insurance companies, these rules provide restrictions on the investment strat-
egy. In this thesis, we present results for the following two areas of dynamic portfolio
optimization in continuous time:

• Liability Driven Investment Strategies (LDI): portfolio optimization, which takes
stochastic liabilities into account.

• Portfolio optimization with risk constraints which jointly depend on the investment
strategy and wealth, especially Solvency II constraints.

Both areas, LDI and regulatory constraints, aim at ensuring that the insurance com-
panies and pension funds can meet their liabilities. The LDI frameworks are based on
the insurance company’s own interest to stay solvent and on accounting and regulatory
rules for determining the present value of future liabilities. The regulatory constraints
represent externally imposed constraints by supervising authorities which force the man-
agement of insurance companies to limit their risks in the interest of the policy holder.
With the recent international accounting standards IFRS (especially IAS 19) for pension
funds and the European regulatory requirements Solvency II for insurance companies,
the importance of investment strategies that are adapted to stochastic liabilities and
regulatory constraints, has increased.
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1 Introduction

1.1.1 Literature on Liability Driven Investment Strategies

Whereas the optimization of the utility of terminal wealth and consumption over time,
firstly presented in Merton (1969), is a widely accepted standard in the literature on
intertemporal portfolio choice, liabilities were included in portfolio optimization frame-
works in different ways. An extension of the mean-variance approach for a one-period
setting with static investment strategies is discussed by Sharpe and Tint (1990), who
consider the return of the (partial) terminal surplus (defined as the difference between
assets and liabilities). Inspired by the approach in Sharpe and Tint (1990), Rudolf and
Ziemba (2004) provide a continuous-time surplus optimization approach, but they con-
sider a life-time surplus instead of the terminal surplus. Furthermore, Detemple and
Rindisbacher (2008) directly aim at transforming the surplus optimization from Sharpe
and Tint (1990) to a setting in continuous time with a maximization of the utility from
the excess of liquid wealth over a minimum liability coverage. However, they focus on the
inclusion of various stochastic factors and numerical results obtained from simulations.
Ang et al. (2013) consider the downside risk inherent in the liabilities through an ex-
change option. In several generalizations of CPPI strategies, such as in
Amenc et al. (2004), Kraus et al. (2011) and Bahaji (2014), the stochastic floor can
be interpreted as stochastic liabilities as well. Martellini (2006) maximizes the expected
utility of the terminal funding ratio (defined as the quotient of assets and liabilities).
The author derives optimal investment strategies in a framework in which assets and
liabilities are modeled as geometric Brownian motions. In spite of the increased need for
LDI strategies, the literature overview illustrates that no scientific standard exists how
liabilities should be included in the portfolio optimization. The literature on portfolio
optimization with stochastic liabilities is intertwined with the literature on index-linked
and performance-linked products, especially as insurance products which provide less
guarantees and more performance participation to policy holders (for a detailed descrip-
tion of various types of products, see Korn and Wagner (2018)) become more common.
The impact of different surplus distribution mechanisms on the risk exposure of insur-
ance companies which sell performance-participating life insurance contracts is analyzed
in Kling et al. (2009). As we further develop various existing techniques, our work is also
related to the literature on these methods, which we adapt to LDI settings. In particular,
these include the quantile approach for portfolio optimization in a Cumulative Prospect
Theory (CPT) framework as intrduced in Jin and Zhou (2008) as well as the optimization
with random utility functions and with random endowment. Random utility functions
are used to solve portfolio optimization problems with a positive lower bound on the
terminal wealth (see Korn (2005)), taking deferred capital gains taxes into account (see
Seifried (2010)) or within an optimization, in which the portfolio may include a liq-
uid and an illiquid risky asset as in Desmettre and Seifried (2016). In Hugonnier and
Kramkov (2004) and Hugonnier et al. (2005), expected utility maximization problems
with a random endowment at maturity are considered.
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1 Introduction

1.1.2 Literature on Constrained Portfolio Optimization

As introduced before, risk-based regulatory regimes impose constraints on the investment
strategies. However, these constraints also depend on the own funds of insurance com-
panies and therefore especially on the value of the asset portfolio itself. Consequently,
insurance companies face the problem of how to optimize their investment strategy un-
der these types of constraints. In the mathematical framework, such constraints can be
represented by joint continuous-time restrictions on the investment strategy and on the
wealth process. There is a significant literature devoted to continuous-time constraints
solely on the investment strategy, see Cvitanić and Karatzas (1992), Cuoco (1997) and
Lim and Choi (2009). Cvitanić and Karatzas (1992) present general results in form of a
convex duality theory as well as applications with logarithmic utility and power utility.
They work with constant constraint sets on the investment strategy and state briefly
that the theory can be extended to random constraint sets in general. However, they do
not cover the challenges of constraints depending on wealth which itself is a function of
the investment strategy.
There are also many relevant papers that consider continuous-time constraints solely on
wealth or funding ratio, see Korn and Trautmann (1995) and Korn (2005). Kraft and
Steffensen (2013) study shortfall constraints on the terminal wealth. Examples of settings
for insurance companies or pension funds include Detemple and Rindisbacher (2008) and
Martellini and Milhau (2012). In Detemple and Rindisbacher (2008), a framework for
the optimization of the excess coverage over a stochastic floor is developed. Martellini
and Milhau (2012) consider the utility of the funding ratio and find optimal investment
strategies with a lower bound on the terminal funding ratio as a constraint. More re-
cently, Chen et al. (2019) solve a non-concave utility maximization problem with a fair
pricing constraint, which is essentially a constraint on terminal wealth, too.
Literature on joint continuous-time constraints for the investment strategy and wealth is
very rare. Portfolio optimization with joint constraints is considered in
Zariphopoulou (1994) in a model with one risky asset. The author uses an approach
based on viscosity solutions and obtains a solution for the optimal investment strategy
in feedback form which depends on the value function. However, the value function is
not stated explicitly. Moreno-Bromberg and Pirvu (2013) rely on BSDE and numerical
calculations to tackle dynamic constraints of general type with no closed-form solutions.
In Colwell et al. (2015), the authors deal with wealth-dependent constraints in the con-
text of executive stock option pricing.

With respect to Solvency II, most of the literature focuses on the implementation and
possible shortcomings of the framework (see, e.g., Eling et al. (2007) for an overview on
the Solvency II framework, Gatzert and Wesker (2012) for a comparison to the Basel III
framework for banks as well as Sandström (2007), Pfeifer and Strassburger (2008),
Bauer et al. (2010) and Christiansen and Niemeyer (2014) for an analysis of the structure
of capital requirements imposed by Solvency II). Closer to our objectives, Höring (2012)
compares the market risk capital requirements of Solvency II with the Standard & Poor’s
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1 Introduction

rating model and analyzes the impact on asset allocation. Considering optimal invest-
ment strategies under Solvency II, Braun et al. (2015) investigate static efficient frontiers
for the asset allocation under Solvency II-type constraints. A static optimization prob-
lem under Solvency II-type constraints is also considered in Kouwenberg (2017). The
impact of the calibration of the equity risk module on the investment strategy is studied
in Fischer and Schlütter (2015). Chen and Hieber (2016) study, in the context of con-
stant strategies and continuous Value-at-Risk constraints on wealth, how negative effects
of the regulation on the asset allocation can be overcome by proposing an alternative
regulatory approach. In a continuous-time framework with discrete-time Value-at-Risk
constraints, Shi and Werker (2012) explicitly refer to Solvency II in the context of short-
term regulation for long-term investors.

1.2 Summary of the Results and Contributions to the
Literature

This thesis is based on four research projects, which led to the following publications:

• Brummer, L., Wahl, M. and Zagst, R.: Liability Driven Investments with a Link to
Behavioral Finance, Proceedings of the Innovations in Insurance, Risk- and Asset
Management Conference, p. 275-311, World Scientific, 20181

• Escobar, M., Kriebel, P., Wahl, M. and Zagst, R.: Portfolio Optimization under
Solvency II, Annals of Operations Research, S.I.: Risk in Financial Economics,
Issue 281, p. 193–227, 2019

• Escobar, M., Wahl, M. and Zagst, R.: Portfolio Optimization with Wealth-Dependent
Risk Constraints, submitted to the European Journal of Operational Research, re-
vise and resubmit, 20201

• Desmettre, S., Wahl, M. and Zagst, R.: Dynamic Surplus Optimization with
Performance- and Index-Linked Liabilities, submitted to Insurance: Mathemat-
ics and Economics, under review, https://ssrn.com/abstract=3592323, 20201

Parts of this thesis are identical with or a reproduction with minor changes of these
articles.

The following article was part of the doctoral research of the author, but is not part of
this thesis:

• Engel, J., Wahl, M. and Zagst, R.: Forecasting Turbulence in the Asian and
European Stock Market Using Regime-Switching Models. Quantitative Finance
and Economics, Vol. 2, Issue 2, p. 388-406, 2018

1The author of this thesis is the leading author of the article.
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1 Introduction

1.3 Structure of the Thesis

The thesis is structured in the following way: Mathematical preliminaries, in particular
the introduction of the market model, a presentation of some traditional utility func-
tions and well-known portfolio optimization methods in continuous time are provided in
Chapter 2.
In Chapter 3, we derive optimal investment strategies for funding ratio optimization in
an expected utility and a CPT framework and compare them. Our results extend the
expected utility funding ratio optimization approach from Martellini (2006) to a model
with a CPT utility and distortion function. In detail, our contributions include:

• We embed funding ratio optimization in a CPT framework in a setting in contin-
uous time.

• Within the CPT framework, we introduce an alternative distortion function, given
by a modification of the Wang-distortion. This distortion is for certain parameter
choices reverse S-shaped despite having only two parameters.

• For the CPT distortion functions, we provide an alternative interpretation, which
makes them usable for modeling heavy-tailed returns.

• As the CPT utility function enhances the standard utility function with respect
to risk-seeking behavior for funding levels below the reference point, we also con-
tribute to the literature on underfunded pension plans.

Chapter 4 deals with the dynamic surplus optimization framework. We generalize Sharpe
and Tint (1990) to a setting in continuous time. Furthermore, the consideration of
liabilities generalizes parts of Desmettre and Seifried (2016) to a short position in the
illiquid asset. We also provide closed-form solutions for the investment in the (liquid)
asset, which extends Rudolf and Ziemba (2004) and Desmettre and Seifried (2016). In
particular:

• We establish a general and flexible terminal surplus optimization framework in
continuous time, which allows for dynamic investment strategies and stochastic
liabilities.

• Within this framework, we derive closed-form solutions of the terminal wealth and
the optimal investment strategy for various specific liability models, which may
include unhedgeable risks and which may also be linked to the performance of an
index or the wealth of the insurance company.

• For the different liability models, we study the impact on the optimal investment
strategy and we derive implications for insurance product design. Hence, we also
establish a link between the literature on portfolio optimization with stochastic
liabilities and the literature on insurance product design.

17



1 Introduction

• For the surplus and funding ratio optimization, we compare the optimal investment
strategies.

In Chapter 5, we introduce the general constrained optimization framework, which in-
cludes the case of wealth-dependent constraints and the corresponding auxiliary markets
and therefore extends the setting in Cvitanić and Karatzas (1992). For constraints in-
dependent of wealth, we state the optimal solution for an investor with logarithmic or
power utility function and use these results to construct the iterative two-step approach
and as an associate problem in Chapter 6. With the iterative two-step approach, we
contribute to the literature in the following way:

• We transfer the limitations emerging from the Solvency II regulation to a convex
constraint set for the investment strategy.

• In a continuous-time optimization framework which allows for dynamic investment
strategies, we establish a two-step approach for an investor with power utility who
faces Solvency II-type constraints. This approach can be applied iteratively to
approximate the optimal constrained investment strategy. In a numerical study,
we analyze the impact of the Solvency II constraints on the optimal allocation for
several asset classes.

• For the iterative application of the two-step approach, we illustrate that the in-
vestment strategy converges numerically to the optimal constrained investment
strategy obtained with a Bellman approach on a discrete grid if the intervals of
the iterations converge to zero.

The results extend a portfolio optimization framework under Solvency II constraints in
a one-period model in Braun et al. (2015) to a framework in continuous time. Whereas
the two-step approach is an approximation for an investor with power utility, Chapter 6
deals with exact solutions:

• We develop a solution apporach for a rather general portfolio optimization prob-
lem in continuous time with wealth-dependent constraint set by showing that this
problem can, under sufficient conditions, be reduced to an associate problem with
a different utility function and a constraint set independent of wealth. This as-
sociate problem can then be solved by known convex duality methods in closed
form.

• As an application of this solution approach, we provide closed-form solutions for
the optimal investment strategy and optimal terminal wealth for an investor with
Solvency II-type constraints and HARA utility.

• For the Solvency II constraint set and an investor with HARA utility, we analyze
the impact of the constraints on the optimal investment strategy. We analyze the
loss in utility and the reduction in risk caused by the constraints and we examine
the trade-off between these two.

18



1 Introduction

These results extend the applicability of the convex duality results from Cvitanić and
Karatzas (1992) to the case of wealth-dependent constraint sets and
Zariphopoulou (1994), where the optimal investment strategy under a simple wealth-
dependent constraint set is expressed only in terms of the value function. We conclude
in Chapter 7.
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2 Mathematical Preliminaries

2.1 Market Model

To model the assets and liabilities, we use a probability space (Ω,H,Q), with H = F ∨G
and F and G are independent σ-algebras. We further assume that F=(Ft)t∈[0,T ] is a filtra-
tion in F , generated by a d-dimensional standard Brownian motion W = (W (t))t∈[0,T ],

W (t) = (W1(t), ...,Wd(t))
T , t ∈ [0, T ], where T > 0 denotes the time horizon for the

investment. W is used to model the risky assets and hedgeable liability risks, whereas
G-measurable random variables are used to model the unhedgeable risks.

The introduction of the subsequent framework for the financial market, the wealth pro-
cess and the investment strategy is adapted from Korn (1999), but we do not consider the
possibility of consumption. By M, we denote a financial market including one risk-free
bond and d risky assets with price processes (Pi(t))t∈[0,T ] , i = 0, ..., d given by

dP0(t) = P0(t)r(t)dt,

dPi(t) = Pi(t)

µi(t)dt+
d∑
j=1

σij(t)dWj(t)

 , Pi(0) = 1, i = 0, ..., d,

with deterministic market coefficients r(t), µ(t), σ(t), t ∈ [0, T ]. We assume that r(t) is
non-negative, µ(t) ≥ r(t) and that r(t), µ(t) and σ(t) are bounded on [0, T ]. Further-
more, we assume that there exists a constant δ > 0 such that for all t ∈ [0, T ]

xTσ(t)σ(t)Tx ≥ δ‖x‖2.

In particular, this condition ensures that σ(t)σ(t)T is positive definite, (σ(t)σ(t)T )−1

is bounded and σ(t) is invertible, so the financial market M is complete. The pricing
kernel is given by

dZ̃(t) = −Z̃(t)
(
r(t)dt+ γ(t)TdW (t)

)
, Z̃(0) = 1

and has the explicit representation

Z̃(t) = exp

(
−
∫ t

0
r(s) +

1

2
‖γ(s)‖2ds−

∫ t

0
γ(s)TdW (s)

)
,
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with the market price of risk

γ(t) := σ(t)−1(µ(t)− r(t)1),

1 := (1, ..., 1)T ∈ Rd. With the above assumptions on the market coefficients,
E[Z̃(T )] < ∞. We have for the uniquely determined risk-neutral measure (see Bing-
ham and Kiesel (2004), Chapter 6)

dQ̃
dQ

∣∣∣∣Ft = P0(t)Z̃(t)

and write

Z̃(t, T ) :=
Z̃(T )

Z̃(t)
.

We consider F-adapted investment strategies π = (π1(t), ..., πd(t))t∈[0,T ], with πi(t) de-

noting the fraction of wealth invested in asset i ∈ {1, ..., d}, 1 −
∑d

i=1 πi(t) being the
fraction of wealth invested in the risk-free asset and the corresponding wealth processes
(V π(t))t∈[0,T ] with initial wealth by v0 > 0. To simplify the notation, we sometimes
write V (t) for V π(t). The wealth process evolves according to

dV π(t) = V π(t)
[
πT (t) (µ(t)dt+ σ(t)dW (t)) + (1− πT (t)1)r(t)dt

]
. (2.1)

Definition 2.1.1 (Admissible Investment Strategies (see Korn (1999), p. 24-25)). An
investment strategy π such that (2.1) with initial wealth v0 has a unique solution V (t)
satisfying ∫ T

0
‖π(t)V (t)‖2dt <∞ a.s.

and

V (t) ≥ 0 a.s. for all t ∈ [0, T ]

is called admissible. By Λ(t, v), we denote the set of all admissible investment strategies
on [t, T ] with V (t) = v and we set Λ(v0) := Λ(0, v0).

Remark 2.1.2. The number of asset i in the portfolio is given by

ϕ0(t) :=
(1− π(t)T1)V (t)

P0(t)
, i = 0

and ϕ(t) :=

(
πi(t)V (t)

Pi(t)

)
i=1,...,d

.
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With (2.1),

dV (t) =
d∑
i=0

ϕi(t)dPi(t),

hence ϕ is self-financing.

In our applications, Λ(v0) might be further restricted to investment strategies, which
guarantee that liabilities are hedged to a certain extent (Chapter 4 and Chapter 6) or
which are subject to portfolio constraints (Chapter 5 and Chapter 6).

In cases in which we consider only one risky asset, we denote the Brownian motion, price
process, corresponding parameters, market price of risk and allocation in the asset by
W , P , µ, σ, γ and π instead of W1, P1, µ1, σ1, γ1 and π1 for simplicity.

2.2 Utility Functions

Definition 2.2.1 (Utility Function (adapted from Korn (1999), p. 38)). Let
V = (L,∞), L ≥ 0. A strictly concave, twice continuously differentiable function
U : V→ R satisfying

lim
v↓L

U ′(v) =∞ and lim
v→∞

U ′(v) = 0 (2.2)

is called a utility function.

Besides the general form, we use the following special cases of utility functions. L
represents the value of the liabilities.

Example 2.2.2 (Utility Functions). We consider the following examples for utility func-
tions:

• Shifted logarithmic utility:

U(v) = log(v − L), V = (L,∞), L ≥ 0, (2.3)

with the logarithmic utility

U(v) = log(v), V = (0,∞) (2.4)

as a special case for L = 0.

• HARA utility:

U(v) =
(v − L)α

α
, α < 1, α 6= 0, V = (L,∞), L ≥ 0, (2.5)
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with the power utility

U(v) =
vα

α
, α < 1, α 6= 0, V = (0,∞) (2.6)

as a special case for L = 0.

We also interpret the shifted logarithmic utility as the logarithmic utility applied to the
surplus and the HARA utility as the power utility applied to the surplus.

Definition 2.2.3 (Measures of Risk Aversion (see Korn (1999), p. 39). Let U be a
utility function. We define the Arrow-Pratt measure of relative risk aversion as

RRA(v) = −vU
′′(v)

U ′(v)
.

We also refer to 1
RRA(v) as the risk tolerance.

Example 2.2.4. The relative risk aversion for the utility functions from Example 2.2.2
is given as follows:

• Shifted logarithmic utility (2.3):

RRA(v) =
v

v − L
,

with RRA(v) = 1 for the logarithmic utility (2.4) (L = 0).

• HARA utility (2.5):

RRA(v) = (1− α)
v

v − L
,

with RRA(v) = 1− α for the power utility (2.6) (L = 0).

The logarithmic utility and the power utility exhibit constant relative risk aversion. The
shifted logarithmic (resp. logarithmic) utility can be interpreted as a limit of the HARA
(resp. power) utility for α→ 0.

To be able to maximize the expected utility later, we consider the subset Λ′(v0) ⊂ Λ(v0)
consisting of all π ∈ Λ(v0), satisfying

V π(t)− L(t) ≥ 0, for L(t) := e−
∫ T
t r(s)dsL, t ∈ [0, T ] and E

[
U−(V π(T ))

]
<∞,

with the negative part U−(v) := −min{U(v), 0} of U . By Λ′(t, v), we denote the re-
striction of Λ′(v0) to the interval [t, T ] with V π(t) = v and E [U−(V π(T ))|Ft] <∞.

Corresponding to U , we define the inverse marginal utility

I(y) := (U ′)−1(y), y > 0.
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We always assume that

Ĥ(y) := E
[
Z̃(T )I(yZ̃(T ))

]
<∞ (2.7)

and
E
[
U(I(yZ̃(T ))

]
<∞

for all y > 0. We denote the inverse of Ĥ by Ŷ, which is well-defined (see Korn (1999),
p. 65).

2.3 Methods from Dynamic Portfolio Optimization

The following two solution approaches from the literature provide the basis for most of
the more advanced techniques, which we apply and develop further. At this point, we
consider a basic optimization problem with utility from terminal wealth given by

Φ(v0) := sup
π∈Λ′(v0)

E [U(V π(T ))] . (BP)

Our further optimization problems will be extensions of this problem.

2.3.1 Dynamic Programming Approach

This approach is based on a continuous-time version of the Bellman principle. The
Bellman principle as introduced in Bellman (1957) states that, for an investment strategy
π, which is optimal for the total problem (BP) starting at t = 0, the sub-strategy
starting from a fixed point in time t > 0 onward must be optimal for the corresponding
sub-problem too, independent of the initial states and initial decisions. The continuous-
time version applied to portfolio optimization was introduced in Merton (1969) and
Merton (1971). The following presentation of the approach is based on these publications
and on Korn (1999). The value function is defined as

Φ(t, v) := sup
π∈Λ′(t,v)

E[U(V π(T ))|V π(t) = v], t ∈ [0, T ]. (2.8)

As U is concave, Φ(t, v) is also concave in v. For (BP), the associated Hamilton-Jacobi-
Bellman (HJB) equation is given by

sup
π(t)∈Rd

{
vπ(t)T (µ(t)− r(t)1) Φv(t, v) +

1

2
v2‖πT (t)σ(t)‖2Φvv(t, v)

}
(2.9)

+Φt(t, v) + vr(t)Φv(t, v) = 0

Φ(T, v) = U(v). (2.10)
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The following theorem provides conditions under which the solution to the HJB equation
is actually a solution to (2.8).

Theorem 2.3.1 (Verification Theorem (adapted from Korn (1999), p. 324)). Let
Φ∗ : [0, T ] × V → R be a continuous, polynomially bounded solution to (2.9)-(2.10)
which satisfies Φ∗(t, v) ∈ C1,2([0, T ]× V) . Furthermore, let π∗ ∈ Λ(v0) satisfy

‖π∗(t)‖ ≤ C,

π∗(t) ∈ arg sup
π(t)∈Rd

{
vπ(t)T (µ(t)− r(t)1) Φ∗v(t, v) +

1

2
v2‖πT (t)σ(t)‖2Φ∗vv(t, v)

}
for all t ∈ [0, T ] and a constant C. Then, Φ∗(t, v) is optimal for (2.8) for all t ∈ [0, T ].

Since, in our case, these conditions are always fulfilled for the power utility and HARA
utility for α > 0, we write Φ instead of Φ∗ in the following chapters. The following results
state the optimal investment strategy and value function, which serve as a reference point
for our applications.

Corollary 2.3.2 (Optimal Investment Strategy, Logarithmic Utility). The optimal in-
vestment strategy for an investor with logarithmic utility (2.4) or shifted logarithmic
utility (2.3) is given by

π∗(t) = π∗(t, V π∗(t)) =

(
V π∗(t)− L(t)

V π∗(t)

)(
σ(t)σ(t)T

)−1
(µ(t)− r(t)1)

and the value function is

Φ(t, v) = log(v − L(t))α + ϕ(t),

ϕ(t) =

∫ T

t

1

2
‖γ(s)‖2 + r(s)ds,

with L = 0 for the logarithmic utility.

Proof. This is a special case of Corollary 6.1.2 with K(t, V (t)) = R, hence
XK(t,V (t)) = {0 ∈ Rd} and λ∗(t) ≡ 0.

Corollary 2.3.3 (Optimal Investment Strategy, HARA Utility). The optimal invest-
ment strategy for an investor with power utility (2.6) or HARA utility (2.5) is given
by

π∗(t) = π∗(t, V π∗(t)) =
1

(1− α)

(
V π∗(t)− L(t)

V π∗(t)

)(
σ(t)σ(t)T

)−1
(µ(t)− r(t)1)
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and the value function is

Φ(t, v) =
(v − L(t))α

α
ϕ(t),

ϕ(t) =e
α
∫ T
t

1
2(1−α)‖γ(s)‖2+r(s)ds

,

with L = 0 for the power utility.

Proof. This is a special case of Corollary 6.1.3 with K(t, V (t)) = R, hence
XK(t,V (t)) = {0 ∈ Rd} and λ∗(t) ≡ 0.

Remark 2.3.4. Note that V π
∗

(t)−L(t)

V π∗ (t)
= 1− L(t)

V π∗ (t)
is bounded for π ∈ Λ′(v0). Since the

market coefficients and (σ(t)σ(t)T )−1 are also bounded, there exists a constant C > 0
with ‖π∗(t)‖ ≤ C and the conditions of Theorem 2.3.1 are satisfied.

The optimal investment strategy can be interpreted as a two-fund separation, with the
performance seeking portfolio (growth optimal portfolio) being defined as

πPS := (σ(t)σ(t)T )−1(µ(t)− r(t)1). (2.11)

The allocation in this portfolio is scaled by the relative risk tolerance of the utility. The
remaining wealth 1− π(t)T1 is allocated in the risk-free asset.

2.3.2 Martingale Approach

Using the martingale approach, the optimization problem (BP) is in solved two steps.
In the first step, the optimal terminal wealth is found. In the second step, the optimal
investment strategy is determined as a strategy which replicates the optimal terminal
wealth. As we also use this decomposition, we present the foundation for this approach
in Theorem 2.3.5 and the optimal terminal wealth in Theorem 2.3.6. In our applications,
the procedure for obtaining the investment strategy is very specific in each case, so we
omit this step here. The following results are adapted from Korn (1999).

Theorem 2.3.5 (Completeness of the Market Model, see Korn (1999), p. 25-26). For
every π ∈ Λ(v0) and corresponding wealth process V π(t), we have

E
[
Z̃(t)V π(t)

]
≤ v0.

Furthermore, for every non-negative, FT -measurable random variable V with

vV := E
[
Z̃(T )V

]
<∞,

27



2 Mathematical Preliminaries

there exists an investment strategy π ∈ Λ(vV ) such that the corresponding wealth process
V π satisfies

V π(T ) = V.

We define a set

V :=
{
V FT -measurable: V ≥ 0, E

[
U(V )−

]
<∞, E

[
Z̃(T )V

]
≤ v0

}
,

on which we search for an optimal terminal wealth. Theorem 2.3.5 guarantees that there
is a corresponding investment strategy, which is then optimal to (BP).

Theorem 2.3.6 (Optimal Terminal Wealth, see Korn (1999), p. 68). The optimal
terminal wealth for (BP) is given by

V ∗(T ) = I(Ŷ(v0)Z̃(T )).
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3 Funding Ratio Optimization

In this chapter, we consider the optimization of the terminal funding ratio. In Section 3.1,
we present a funding ratio optimization framework adapted from Martellini (2006). As
a generalization of this framework, we apply the quantile optimization approach from
Jin and Zhou (2008) to solve a funding ratio optimization problem in a CPT context in
Section 3.2. The results are analyzed and compared in Section 3.3. Large parts of this
chapter coincide with Brummer et al. (2018).

For the market model, we assume constant coefficients µ, σ and r throughout the whole
chapter. We model the liability process Lε, as in Fombellida (2004) and Martellini (2006),
by a geometric Brownian motion following

dLε(t) = Lε(t) (µLdt+ σLdW (t) + σεdWε(t)) ,

with constant Lε(0), constant drift µL, hedgeable risks related to W and non-hedgeable
risks related to a Brownian motion Wε. The liabilities have the explicit representation

Lε(t) = Lε(0) exp

((
µL −

‖σL‖2 + σ2
ε

2

)
t+ σLW (t) + σεW (t)

)
. (3.1)

We assume that the filtration generated by Wε is a filtration in G. In the context of
an insurance company or pension fund, the non-hedgeable risks could represent, e.g.,
actuarial risks like mortality/longevity risk or underwriting risk. If we have σε = 0, all
the liability risks emerge from W and the liabilities can be hedged. The funding ratio is
defined as

F π(t) :=
V π(t)

Lε(t)
, t ∈ [0, T ]

for a corresponding portfolio process π. For ease of notation, we will also write F (t)
instead of F π(t). Applying Itô’s formula,

d

(
1

Lε(t)

)
=− 1

Lε(t)
(µLdt+ σLdW (t) + σεdWε(t)) +

1

Lε(t)

(
σTLσL + σ2

ε

)
dt

=
1

Lε(t)

[
(σTLσL + σ2

ε − µL)dt− σLdW (t)− σεdWε(t)
]
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and applying it again, the SDE of the funding ratio can be written with (2.1) as

dF π(t) =d

(
V π(t)

Lε(t)

)
=

1

Lε(t)
dV π(t) + V π(t)d

(
1

Lε(t)

)
− V π(t)

Lε(t)
σLσ

Tπ(t)dt

=
V π(t)

Lε(t)

[
πT (t) (µdt+ σdW (t)) + (1− πT (t)1)rdt

]
+
V π(t)

Lε(t)

[
(σTLσL + σ2

ε − µL)dt− σLdW (t)− σεdWε(t)
]
− V π(t)

Lε(t)
σLσ

Tπ(t)dt

=F π(t)
[
µπF (t)dt+ (π(t)Tσ − σL)dW (t)− σεdWε(t)

]
, (3.2)

with

µπF (t) :=r + π(t)T (µ− r1) + σLσ
T
L + σ2

ε − µL − σLσTπ(t).

We define

σπF (t) :=
(
‖π(t)Tσ − σL‖2 + σ2

ε

) 1
2

as well as a Brownian motion W̄ by

σπF (t)W̄ (t) =
(
π(t)Tσ − σL

)
W (t)− σεWε(t).

Then, (3.2) can be written as

dF π(t) = F π(t)
[
µπF (t)dt+ σπF (t)dW̄ (t)

]
,

We see that the liability hedging portfolio, as introduced in Martellini (2006)

πLH := (σT )−1σTL (3.3)

minimizes the volatility of the funding ratio by eliminating all hedgeable risks.

3.1 Funding Ratio Optimization in an Expected Utility
Framework

In this section, we consider a standard expected utility framework, in which we want
to maximize the expected utility of the terminal funding ratio instead of the terminal
wealth. We solve the expected utility funding ratio optimization problem

sup
π∈Λ′(v0)

E [U (F π(T ))] (EUFP)

30



3 Funding Ratio Optimization

for a general utility function U and Λ′(v0) consisting of all π ∈ Λ(v0) satisfying
E [U−(F π(T ))] < ∞. For the application of the HJB approach, we define the value
function in terms of the funding ratio here, i.e.

Φ(t, v) := sup
π∈Λ′(t,v)

E[U(F π(T ))|F π(t) = v]. (3.4)

The solution to this problem is presented in the following theorem, which can be found
in Martellini (2006).

Theorem 3.1.1 (Three-Fund Separation, Expected Utility Theory). The optimal in-
vestment strategy π∗ to (EUFP) is given by

π∗(t, F (t)) =
(
1− λEU (t, F (t))

)
πLH + λEU (t, F (t))πPS

with λEU (t, F (t)) given by the relative risk tolerance of Φ(t, F (t))

λEU (t, F (t)) := − Φv(t, F (t))

F (t)Φvv(t, F (t))
,

the liability hedging portfolio as in (3.3) and the performance seeking portfolio from
(2.11). The remaining fraction of wealth 1 − π∗(t, F (t))T1 is invested in the risk-free
asset.

Proof. See Appendix A.1.

As in Martellini (2006), the optimal investment strategy can be interpreted as a three-
fund separation, with the funds being the performance seeking portfolio, liability hedging
portfolio and risk-free asset. In the following corollary, we specify the utility function to
get an explicit expression for the value function and consequently the optimal investment
strategy. This result can also be found in Martellini (2006).

Corollary 3.1.2 (Three-Fund Separation, Power Utility). For the power utility, we get

λEU (t, F (t)) = − Φv(t, F (t))

F (t)Φvv(t, F (t))
=

1

1− α
.

Proof. The proof can be found in Appendix A.1.

Remark 3.1.3. Although we consider unhedgeable risks associated with σε, they do not
have an impact on the optimal investment strategy for the example with power utility.
To cover these risks, an additional capital buffer would have to be used. Therefore, we
assume in the following that a certain part of the wealth is used for this purpose and we
only deal with the hedgeable risks, i.e. σε = 0 in the following section.
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3.2 Funding Ratio Optimization in a CPT Framework

In this section, we generalize the funding ratio optimization to Cumulative Prospect
Theory (CPT) by applying the approach from Jin and Zhou (2008) to the terminal
funding ratio. Similar to the martingale approach, the optimal terminal funding ratio is
determined first in this approach and the replicating strategy is calculated later. Thus, a
complete market is required. So we choose, supported by the reasoning in Remark 3.1.3,
σε = 0 in the whole section and denote the corresponding liability process by L := Lε.
We further assume that the discounted liability process L

P0
is a Q̃-martingale. Then,

we can change the numéraire from the risk-free asset to the liability process L. By QL,
we denote the risk-neutral measure under the numéraire L. Then, F π(t) = V π(t)

L(t) is a

QL-martingale and the pricing kernel with respect to the new numéraire is given by (see
Bingham and Kiesel (2004), p. 239)

ZL(t) :=
dQL

dQ

∣∣∣∣Ft =
dQ̃
dQ

dQL

dQ̃

∣∣∣∣Ft =
L(t)

L(0)P0(t)

dQ̃
dQ

∣∣∣∣Ft = Z̃(t)
L(t)

L(0)

= exp

((
µL −

1

2
‖σL‖2

)
t+ σLW (t)

)
exp

(
−
(
r +

1

2
‖γ‖2

)
t− γTW (t)

)
= exp

((
µL − r −

1

2

(
‖σL‖2 + ‖γ‖2

))
t+ (σL − γT )W (t)

)
.

Since Z̃(t) L(t)
L(0) is a Q-martingale, we have

ZL(t) = exp

(
−1

2
‖σL − γT ‖2t+ (σL − γT )W (t)

)
. (3.5)

For z ∈ (0,∞),

ZL(t) ≤ z

⇔ exp

(
−1

2
‖σL − γT ‖2t+ (σL − γT )W (t)

)
≤ z

⇔ (σL − γT )W (t) ≤ log(z) +
1

2
‖σL − γT ‖2t.

Hence, the distribution function of ZL(t) is given by

QZL(t)(z) := Q(ZL(t) ≤ z) = Φ

(
log(z) + 1

2‖σL − γ
T ‖2t

‖σL − γT ‖
√
t

)
(3.6)

and the quantile function by

qZL(t)(p) = exp

(
−1

2
‖σL − γT ‖2t+ ‖σL − γT ‖

√
tΦ−1(p)

)
,
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with Φ and Φ−1 denoting the distribution function and the quantile of the standard
normal distribution. For the rest of the chapter, we only work with this pricing kernel.
For ease of notation, we write Z := ZL(T ) as well as QZ for QZL(T ) and qZ for qZL(T ).

3.2.1 Introduction to CPT

Introduced in Kahneman and Tversky (1979) and Tversky and Kahneman (1992), CPT
extends expected utility theory with respect to the following aspects:

• gains and losses are treated differently with respect to the utility and

• probabilities are distorted.

Motivated by experiments in Kahneman and Tversky (1979), which exhibit that people
are risk-averse with respect to gains, but risk-seeking with respect to losses, different
utility functions are used for gains and losses. They are separated by a reference point.
To model this behavior, a concave utility function is applied to gains and a convex utility
function is applied to losses. Applied to our funding ratio setting, which is a perspective
predominantly taken by institutional investors such as insurance companies or pension
funds, an alternative interpretation is also possible: In the case of underfunding, the
management of the pension plan might be willing to take more risk than in the case
of well-funding to achieve a better funding status on the long run. Especially within
low interest-rate environments, pension funds might have to take more risk in trying
to generate an adequate return. For the probability distortion, which was originally
introduced to model the observed behavior that people tend to overestimate small prob-
abilities and underestimate large probabilities (which is an irrational bias), an alternative
interpretation is also possible. Through the distortion of the probabilities, heavier tails
in the distribution of asset returns, which are not captured in the Black-Scholes market
model, can be included. In this case, the probability distortion could even be fitted us-
ing market data. Since typical distortion functions (see Tversky and Kahneman (1992)
and Prelec (1998)) cannot be used for the quantile optimization approach presented in
Jin and Zhou (2008), Jin and Zhou (2008) introduce their own probability function.
As this probability function has many parameters which would have to be fitted, we
introduce a modification of the distortion function presented in Wang (2000). Our
distortion function can be reverse-S shaped, has only two parameters and is suitable
for the quantile optimization approach. In the following sections, we present the CPT
optimization problem and apply the approach from Jin and Zhou (2008) to a funding
ratio optimization.

3.2.2 CPT Funding Ratio Optimization Problem

We consider the funding ratio compared to a constant reference point B and introduce
the CPT utility and probability distortion functions.
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Definition 3.2.1 (CPT Utility Function). A CPT utility function U : R → R is a
function of the form

U(v) := U+((v −B)+)1v≥B(v)− U−((v −B)−)1v<B(v), (3.7)

with the positive and negative parts

(v)+ := max{v, 0}, (v)− := −min{v, 0}

and U+, U− : V = [0,∞)→ [0,∞) are functions which satisfy the conditions of standard
utility functions and additionally

U+(0) = U−(0) = 0 and U ′−(v) > U ′+(v), v ∈ V.

The reference point B represents the funding ratio, for which the pension plan is consid-
ered to be adequately funded. A natural example would be B = 1, representing a fully
funded status.

Definition 3.2.2 (Probability Distortion Function). A probability distortion function is
a strictly increasing, twice differentiable function w : [0, 1]→ [0, 1] with

w(0) = 0, w(1) = 1, w′ > 0.

By w+ (resp. w−), we denote distortion functions applied to gains (resp. losses).

We assume that the following monotonicity condition holds:

qZ(y)

w′+(y)
is non-decreasing for y ∈ (0, 1]. (M)

The distortion function we use later satisfies this condition, as shown in Lemma (3.2.5).
As we maximize the expected distorted utility, we define a value function with the CPT
utility function from Definition 3.2.1 and the distortion function from Definition 3.2.2
as

U(F̄ ) := U+((F̄ )+)− U−((F̄ )−),

with F̄ := F (T )−B,

U+(F̄ ) :=

∫ ∞
0

w+(Q(U+(F̄ ) > x))dx =

∫ ∞
0

w+(1−QF̄ (U−1
+ (x)))dx

=

∫ ∞
0

∫ ∞
U−1
+ (x)

d(−w+(1−QF̄ (y)))dx

=

∫ ∞
0

U+(y)d(−w+(1−QF̄ (y))) = E
[
U+(F̄ )w′+(1−QF̄ (F̄ ))

]
,
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where QF̄ denotes the distribution function of F̄ and

U−(F̄ ) :=

∫ ∞
0

w−(Q(U−(F̄ ) > x))dx = E
[
U−(F̄ )w′−(1−QF̄ (F̄ ))

]
.

The CPT optimization problem is defined as

sup
F̄

U(F̄ )

s.t. E[ZF̄ ] =
V (0)

L(0)
−B (CPTOP)

F̄ is FT -measurable and bounded from below.

With the utility function being concave only above the reference point, usual portfolio
optimization methods such as the martingale approach are not applicable anymore. To
overcome this problem, Jin and Zhou (2008) introduce a CPT optimization approach,
which we apply to the funding ratio optimization in the following section.

3.2.3 CPT Optimization Method

Jin and Zhou (2008) propose a solution approach by splitting the problem into a Gains
Problem and a Loss Problem. Both problems can, under sufficient conditions, be solved
separately. The solutions depend on parameters c and v+. In a so-called Gluing Problem,
the optimal values for c and v+ are determined. Theorem 3.2.3 ensures that this solution
approach is equivalent to solving the original problem.

We consider the part of the terminal funding ratio which exceeds or falls short of the
reference point B, i.e. F̄ = (F̄ )+ − (F̄ )−. (F̄ )+ only influences U+ and (F̄ )− only
influences U−. We define the set where F̄ exceeds the reference point as

A := {F̄ ≥ 0}.

Further, we denote the initial funding ratio needed to replicate (F̄ )+ by v+, i.e.

v+ := E[Z(F̄ )+].

With F (T ) = (F̄ )+−(F̄ )−+B and E [ZF (T )] = V (0)
L(0) , the budget in terms of the funding

ratio for (F̄ )− is given by E[Z(F̄ )−] = v+ −
(
V (0)
L(0) −B

)
.

In the Gains Problem (GP), we optimize (F̄ )+ with given initial funding ratio v+, i.e.
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we solve

sup
F̄

U+((F̄ )+)

s.t. E[Z(F̄ )+] = v+, (GP)

F̄ is FT -measurable and lower-bounded.

The shortfall of the terminal funding ratio (F̄ )− is different from zero on Ac = {F̄ < 0}.
We optimize (F̄ )− in the Loss Problem (LP) given by

inf
F̄

U−((F̄ )−)

s.t. E[Z(F̄ )−] = v+ −
(
V (0)

L(0)
−B

)
(LP)

F̄ is FT -measurable and upper-bounded.

Both problems, (GP) and (LP), depend on the parameters A and v+. Therefore, we de-
note the optimal solutions to these problems by Φ+(v+, A) for (GP) and Φ−(v+, A) for
(LP). The connection between (GP) and (LP) is established by finding a pair (v∗+, A

∗)
which maximizes Φ+(v+, A) − Φ−(v+, A). This problem is called the Gluing Problem.
To simplify the parametrization with respect to the set A, Jin and Zhou (2008) (Theo-
rem 5.1) show that an optimal set A∗ is always of the form A∗ = {Z ≤ c∗}, c∗ ≥ 0.
This simplifies the Gluing Problem to finding solutions of the form
Φ±(v+, c) := Φ±(v+, {Z ≤ c}), i.e. we solve an optimization problem in only two
real variables. In the following, we give an intuition why this simplification is possible.
First, we note that QZ(Z) and subsequently 1 − QZ(Z) are uniformly distributed and
A = {F̄ ≥ 0}. Let

c := qZ(Q(A)) = qZ(Q(F̄ ≥ 0)) = qZ(Q(F ≥ B)).

Then,

Q(Z ≤ c) = Q(Z ≤ qZ(Q(A))) = Q(A) = Q(F̄ ≥ 0)

for all relevant F̄ . Hence, Z ≤ c⇔ F̄ ≥ 0 as F will be a monotonic function of Z.
The Gluing Problem (GLUE) is defined as

sup
(v+,c)

Φ+(v+, c)− Φ−(v+, c)

s.t. 0 ≤ c ≤ ∞. (GLUE)

By solving (GLUE), we obtain the optimal parameters c∗ and v∗+. We showed
Z ≤ c⇔ F̄ ≥ 0 in all relevant cases, so for the optimal solutions, it holds

(F̄ ∗)+ = F̄ ∗1F̄ ∗≥0 = F̄ ∗1Z≤c∗
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as well as

(F̄ ∗)− = −F̄ ∗1F̄ ∗<0 = −F̄ ∗1Z>c∗ .

Consequently, we can write (GP) and (LP) equivalently as

sup
F̄

U+(F̄1Z≤c)

s.t. E[ZF̄1Z≤c] = v+, (GP’)

F̄1Z≤c ≥ 0

and

inf
F̄

U−(−F̄1Z>c)

s.t. E[−ZF̄1Z>c] = v+ −
(
V (0)

L(0)
−B

)
(LP’)

− F̄1Z>c ≥ 0.

3.2.4 Optimal CPT Funding Ratio

Jin and Zhou (2008) provide an explicit solution for power utility, which we adapt in
this section. We use

U+(v) = vα, U−(v) = βvα, α ∈ (0, 1), β > 1

and define

G(c) := E
[
Z

α
α−1w′+(QZ(Z))

1
1−α1Z≤c

]
,

and k(c) :=
βw−(1−QZ(c))

G(c)1−αE[Z1Z>c]α
.

We always assume
inf
c>0

k(c) ≥ 1. (K)

In the following result, adapted from Jin and Zhou (2008), we provide explicit solutions
for the optimal terminal funding ratio depending on the initial funding ratio.

Theorem 3.2.3 (Optimal Terminal Funding Ratio, CPT). Let (M) and (K) be satisfied.

If V (0)
L(0) ≥ B, the optimal solution F̄ ∗ to (CPTOP) is given by

F̄ ∗ = (F̄ ∗)+ =

V (0)
L(0) −B
G(∞)

(
Z

w′+(QZ(Z))

) 1
α−1
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and the optimal terminal funding ratio is F ∗(T ) = F̄ ∗ +B.

If V (0)
L(0) < B, then the following holds:

• If infc>0 k(c) = 1, the supremum value of (CPTOP) is 0 but not attainable.

• If infc>0 k(c) > 1, the Problem (CPTOP) admits an optimal solution if and only
if the problem

inf
0≤c<∞

(
βw−(1−QZ(c))

E[Z1Z>c]α

) 1
1−α
−G(c) (C)

admits an optimal solution c∗.

– If c∗ = 0 is the only solution to (C), then

F̄ ∗ =
V (0)

L(0)
−B

and the optimal terminal funding ratio is F ∗ = F̄ ∗ +B = V (0)
L(0) .

– If c∗ > 0, the optimal solution to (CPTOP) is given by

F̄ ∗ =(F̄ ∗)+ − (F̄ ∗)−

=
v∗+
G(c∗)

(
Z

w′+(QZ(Z))

) 1
α−1

1Z≤c∗ −
v∗+ −

V (0)
L(0) +B

E[Z1Z>c∗ ]
1Z>c∗

with

v∗+ =
B − V (0)

L(0)

k(c∗)
1

1−α − 1

and the optimal terminal funding ratio is F ∗ = F̄ ∗ +B.

Proof. The proof works along Jin and Zhou (2008) with the wealth being replaced by
the funding ratio and the change of numéraire as described in Section 2.

Remark 3.2.4. With I(y) = y
1

α−1 for the power utility, the parts
V (0)
L(0)
−B

G(∞)

(
Z

w′+(QZ(Z))

) 1
α−1

and
v∗+
G(c∗)

(
Z

w′+(QZ(Z))

) 1
α−1

can with Theorem 2.3.6 be interpreted as an optimal terminal

wealth of a standard optimization problem which is adjusted by a distorting factor and
scaled to the available budget for (F̄ ∗)+.

In the following section, we specify the distortion in order to achieve more explicit results
for the optimal terminal funding ratio and the corresponding investment strategies.
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3.2.5 Modified Wang-Distortion Function

We consider the distortion from Wang (2000), which can be written as2

w̄(p) :=

∫ qZ(p)

0
rfZ(r)dr = E

[
Z1Z≤qZ(p)

]
=Φ

(
log(qZ(p))− 1

2‖σL − γ
T ‖2T

‖σL − γT ‖
√
T

)
= Φ

(
Φ−1(p)− ‖σL − γT ‖

√
T
)
,

with fZ denoting the density function of Z. While w̄ is a probability distortion function
according to Definition 3.2.2, it is convex instead of reverse-S-shaped. A proof is provided
for a slightly more general statement in Appendix A.2, Lemma A.2.1.

With the following generalization to this distortion function, we get a distortion function
w(p), which can be reverse-S-shaped. It is defined by

w(p) := Φη
(

Φ−1(p)− δ‖σL − γT ‖
√
T
)
,

with parameters η ∈ (0, 1], δ ∈ (0, 1] and Φη(·) := (Φ(·))η. Moreover, we define

Zδ := exp

(
−1

2
δ2‖σL − γT ‖2T + δ(σL − γT )W (T )

)
,

which has, by the same derivation as for QZ , the cumulative distribution function

QZδ(z) = Φ

(
log z + 1

2δ
2‖σL − γT ‖2T

δ‖σL − γT ‖
√
T

)
.

The corresponding density is denoted by fZδ and the quantile function is given by

qZδ(p) = exp

(
−1

2
δ2‖σL − γT ‖2T + δ‖σL − γT ‖

√
TΦ−1(p)

)
.

Further, we define

w̄δ(p) :=

∫ qZδ (p)

0
rfZδ(r)dr = E

[
Zδ1Zδ≤qZδ (p)

]
=Φ

(
log(qZδ(p))− 1

2δ
2‖σL − γT ‖2T

δ‖σL − γT ‖
√
T

)
= Φ

(
Φ−1(p)− δ‖σL − γT ‖

√
T
)
,

2For ν ∈ R, c1, c2 ∈ R+ and Y ∼ LN (µ, σ2)

E[Y ν1Y ∈(c1,c2)] = exp

(
νµ+

1

2
ν2σ2

)(
Φ

(
log c2 − µ− νσ2

σ

)
− Φ

(
log c1 − µ− νσ2

σ

))
.
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with Footnote 2 as above. Hence,

w(p) = (w̄δ(p))
η .

Lemma 3.2.5. Let δ ∈ (0, 1] and η ∈ (0, 1]. Then, w satisfies (M) and its first derivative
is given by

w′(p) =ηΦη−1
(

Φ−1(p)− δ‖σL − γT ‖
√
T
)
qZ(p)

· exp

(
1

2
(1− δ2)‖σL − γT ‖2T + (δ − 1)‖σL − γT ‖

√
TΦ−1(p)

)
.

Furthermore, w is reverse S-shaped for η ∈ (0, 1).

Proof. See Appendix A.2.

The shape of w is further illustrated for various parameters in Figure 3.1, where we can
also observe that w is reverse-S-shaped for η = 0.5, which is particularly visible for the
case with δ = 1 at the same time. To get a better understanding of the effect of the
distortion, we apply it to an example for illustrative purposes. For a random variable Y
with distribution function QY and density function fY , we consider

U+(Y ) = E
[
U+(Y )w′+(1−QY (Y ))

]
=

∫ ∞
−∞

U+(y)w′+(1−QY (y))fY (y)dy,

which we interpret as an expectation of U+(Y ) under a distorted probability measure.
The distorted density function of Y is given by

fwY (y) := w′+(1−QY (y))fY (y)

and the corresponding distribution function by

Qw
Y (y) :=

∫ y

−∞
fwY (s)ds = 1− w+(1−QY (y)).

For Y being standard normally distributed, Figure 3.2 illustrates the distorted density
function fwY for various parameter choices. For a fixed value of η, a variation in δ
results in a shift of the distribution. If Y represents the return of the wealth or the
funding ratio, an increase in δ results in an increase in the probability for very low
returns, which might be a desirable property to adjust the Black-Scholes market model
for a higher downside risk. For η = 1, the whole density function is just shifted to the
left, so the expected return also decreases. With a decrease in η, the upper tail of the
distribution is emphasized. Combining both effects, the probability for events from both
tails is increased (see the graph for η = 0.5, δ = 1 in Figure 3.2).
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Figure 3.1: Distortion function w.
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3.2.6 Optimal Investment Strategy for the Modified Wang-Distortion

For the modified Wang-distortion function w, we derive the optimal terminal funding
ratio and investment strategy for the well-funded case and the underfunded case sepa-
rately in this section. We apply w to both gains and losses, denote the corresponding
distortions by w+ and w− and assume for the corresponding parameters δ± ∈ (0, 1] and
η± ∈ (0, 1]. Therefore, with Lemma 3.2.5, (M) holds. Note that the distortion on the
losses is needed to ensure that the problem is well-posed.

Optimal Investment Strategy in the Well-Funded Case

Theorem 3.2.6 (Three-Fund Separation, CPT, V (0)
L(0) ≥ B). Let (K) be satisfied and

V (0)
L(0) ≥ B. The optimal terminal funding ratio is given by

F ∗ −B = F̄ ∗ =

V (0)
L(0) −B
G(∞)

Z1−δ+ exp
(

1
2(δ2

+ − δ+)‖σL − γT ‖2T
)

η+Φη+−1
(

logZ+( 1
2
−δ+)‖σL−γT ‖2T

‖σL−γT ‖
√
T

)


1
α−1

and the optimal investment strategy is given by

π∗(t) = λCPT ((F̄ ∗)+(t, ZL(t)), B)πPS +
(
1− λCPT ((F̄ ∗)+(t, ZL(t)), B)

)
πLH ,

with

λCPT ((F̄ ∗)+(t, ZL(t)), B) =
−ZL(t) ∂∂z (F̄ ∗)+(t, ZL(t))

(F̄ ∗)+(t, ZL(t)) +B
,
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where the funding ratio at time t corresponding to (F̄ ∗)+ is denoted by

(F̄ ∗)+(t, ZL(t)) := EQL
[
(F̄ ∗)+|Ft

]
and ∂

∂z (F̄ ∗)+(t, ZL(t)) is the derivative of (F̄ ∗)+(t, ZL(t)) with respect to the second
component.

Proof. With Lemma 3.2.5,

w′+(QZ(Z)) =η+Φη+−1

(
logZ + 1

2‖σL − γ
T ‖2T

‖σL − γT ‖
√
T

− δ+‖σL − γT ‖
√
T

)
· Z

· exp

(
1

2
(1− δ2

+)‖σL − γT ‖2T + (δ+ − 1)

(
logZ +

1

2
‖σL − γT ‖2T

))
=η+Φη+−1

(
logZ + 1

2‖σL − γ
T ‖2T

‖σL − γT ‖
√
T

− δ+‖σL − γT ‖
√
T

)

· exp

(
−1

2
δ2

+‖σL − γT ‖2T + δ+‖σL − γT ‖
√
T

logZ + 1
2‖σL − γ

T ‖2T
‖σL − γT ‖

√
T

)

=η+Φη+−1

(
logZ + (1

2 − δ+)‖σL − γT ‖2T
‖σL − γT ‖

√
T

)

· exp

(
δ+ logZ − 1

2
(δ2

+ − δ+)‖σL − γT ‖2T
)
.

=η+Φη+−1

(
logZ + (1

2 − δ+)‖σL − γT ‖2T
‖σL − γT ‖

√
T

)
·

Zδ+ exp

(
−1

2
(δ2

+ − δ+)‖σL − γT ‖2T
)
.

Applying Theorem 3.2.3 for the well-funded case, we obtain F ∗ = (F̄ ∗)+ +B, with

(F̄ ∗)+ =

V (0)
L(0) −B
G(∞)

(
Z

w′+(QZ(Z))

) 1
α−1

=

V (0)
L(0) −B
G(∞)

Z1−δ+ exp
(

1
2(δ2

+ − δ+)‖σL − γT ‖2T
)

η+Φη+−1
(

logZ+( 1
2
−δ+)‖σL−γT ‖2T

‖σL−γT ‖
√
T

)


1
α−1

.

We use Appendix A.3 with (F̄ ∗)−(t, ZL(t)) = 0 to receive the optimal investment strat-
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egy for F ∗(t, ZL(t)) = (F̄ ∗)+(t, ZL(t)) +B:

π∗(t) =
1

F ∗(t, ZL(t))

(
ZL(t)

∂

∂z
(F̄ ∗)+(t, ZL(t))(πLH − πPS) +

(
(F̄ ∗)+(t, ZL(t)) +B

)
πLH

)
=
−ZL(t) ∂∂z (F̄ ∗)+(t, ZL(t))

(F̄ ∗)+(t, ZL(t)) +B
πPS +

(
1−
−ZL(t) ∂∂z (F̄ ∗)+(t, ZL(t))

(F̄ ∗)+(t, ZL(t)) +B

)
πLH

In the preceding theorem, we received again a three-fund separation. Since (F̄ ∗)− = 0,
the funding ratio never falls below the reference point B. In the following corollary, we
consider the case η+ = 1 to get a more explicit result for λCPT .

Corollary 3.2.7 (Three-Fund Separation, CPT, V (0)
L(0) ≥ B, η+ = 1). Let (K) be satis-

fied, V (0)
L(0) ≥ B and η+ = 1. The optimal terminal funding ratio is then given by

F ∗ −B = F̄ ∗ = (F̄ ∗)+ =

(
V (0)

L(0)
−B

)
exp

(
1

2

(1− δ+)(δ+ − α)

(1− α)2
‖σL − γT ‖2T

)
Z

1−δ+
α−1

and the optimal investment strategy is given by

π∗(t) = λCPT (F π
∗
(t), B)πPS + (1− λCPT (F π

∗
(t), B))πLH ,

with

λCPT (F π
∗
(t), B) =

F π
∗
(t)−B

F π∗(t)
· 1− δ+

1− α
.

Proof. For η+ = 1, we have with the proof of Theorem 3.2.6

w′+(QZ(Z)) = Zδ+ exp

(
−1

2
(δ2

+ − δ+)‖σL − γT ‖2T
)
.
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Thus, we have with Footnote 2 and with ν = δ+−α
1−α , c2 = c, and c1 = 0

G(c) =E
[
Z

α
α−1w′+(QZ(Z))

1
1−α1Z≤c

]
= exp

(
−1

2

δ2
+ − δ+

1− α
‖σL − γT ‖2T

)
E
[
Z
δ+−α
1−α 1Z≤c

]
= exp

(
1

2

((
δ+ − α
1− α

)2

− δ+ − α
1− α

−
δ2

+ − δ+

1− α

)
‖σL − γT ‖2T

)

· Φ

 log c+
(

1
2 −

δ+−α
1−α

)
‖σL − γT ‖2T

‖σL − γT ‖
√
T


= exp

(
1

2

(δ+ − 1)2α

(1− α)2
‖σL − γT ‖2T

)
Φ

 log c+
(

1
2 −

δ+−α
1−α

)
‖σL − γT ‖2T

‖σL − γT ‖
√
T

 ,

since (
δ2

+ − α
1− α

)2

− δ+ − α
1− α

−
δ2

+ − δ+

1− α
=

(δ+ − α)2 + (1− α)(α− δ2
+)

(1− α)2

=
−2δ+α+ α+ αδ2

+

(1− α)2
=

(δ+ − 1)2α

(1− α)2
.

Applying Theorem 3.2.6, the optimal funding ratio reads

(F̄ ∗)+ =

V (0)
L(0) −B
G(∞)

(
Z1−δ+ exp

(
1

2
(δ2

+ − δ+)‖σL − γT ‖2T
)) 1

α−1

=

(
V (0)

L(0)
−B

)
exp

(
−1

2

(δ+ − 1)2α

(1− α)2
‖σL − γT ‖2T

)
· Z

1−δ+
α−1 exp

(
1

2

δ2
+ − δ+

α− 1
‖σL − γT ‖2T

)
=

(
V (0)

L(0)
−B

)
exp

(
1

2

(1− δ+)(δ+ − α)

(1− α)2
‖σL − γT ‖2T

)
Z

1−δ+
α−1 ,

as

−(δ+ − 1)2α

(1− α)2
+
δ2

+ − δ+

α− 1
=
−(δ+ − 1)2α+ δ+(δ+ − 1)(α− 1)

(1− α)2

=
(1− δ+)(δ+α− α− δ+α+ δ+)

(1− α)2
=

(δ+ − 1)(δ+ − α)

(1− α)2
.

The value of (F̄ ∗)+ at time t, denoted by (F̄ ∗)+(t, ZL(t)), can be calculated using (A.12)
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in Appendix A.3 with ν = 1−δ+
α−1 , c2 =∞, and c1 = 0 and is given by

(F̄ ∗)+(t, ZL(t)) =

(
V (0)

L(0)
−B

)
exp

(
1

2

(1− δ+)(δ+ − α)

(1− α)2
‖σL − γT ‖2T

)
ZL(t)

1−δ+
α−1 ·

exp

(
1

2

(
1− δ+

α− 1
+ 1

)
1− δ+

α− 1
‖σL − γT ‖2(T − t)

)
=

(
V (0)

L(0)
−B

)
ZL(t)

1−δ+
α−1 exp

(
−1

2

(
1− δ+

α− 1
+ 1

)
1− δ+

α− 1
‖σL − γT ‖2t

)
,

due to

(1− δ+)(δ+ − α)

(1− α)2
=

(1− δ+)(δ+ − 1 + 1− α)

(1− α)2

=− (1− δ+)2 + (1− δ+)(α− 1)

(1− α)2

=−
(

1− δ+

α− 1
+ 1

)
1− δ+

α− 1
.

With (A.13) in Appendix A.3, the corresponding replicating strategy can be written as

π+(t) = πLH +
1− δ+

1− α
(πPS − πLH).

As (F̄ ∗)−(t, ZL(t)) = 0, the replicating strategy for F ∗(t, ZL(t)) = (F̄ ∗)+(t, ZL(t)) + B
is with (A.11) in Appendix A.3 given by

π∗(t) =
1

(F̄ ∗)+(t, ZL(t)) +B

(
(F̄ ∗)+(t, ZL(t))π+(t) +BπLH

)
=πLH +

(F̄ ∗)+(t, ZL(t))

(F̄ ∗)+(t, ZL(t)) +B
· 1− δ+

1− α
(πPS − πLH)

=πLH +
F ∗(t, ZL(t))−B
F ∗(t, ZL(t))

· 1− δ+

1− α
(πPS − πLH).

Again, π∗ can be represented as a three-fund separation with the liability hedging port-
folio, the performance seeking portfolio and the risk-free asset. With 1 − α > 0, we
interpret 1−δ+

1−α as a CPT-distorted factor of the risk appetite of the investor. As ob-
served before, a higher δ+ emphasizes the lower asset returns. This leads to a lower
allocation in the performance seeking portfolio, a higher allocation in the liability hedg-
ing portfolio and therefore a more cautious investment strategy. We also observe that
the investment in the performance seeking portfolio corresponds to a CPPI-strategy with
multiplier m := 1−δ+

1−α . This component ensures, together with the allocation in the lia-
bility hedging portfolio, that the funding ratio never falls below the reference point B.
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Thus, the funding ratio is always in the area of the CPT utility, in which the investor is
risk-averse and the risk-seeking part, i.e. U−, does not have an impact on the strategy.

Optimal Investment Strategy with Initial Underfunding

In case V (0)
L(0) < B and c∗ = 0 being the only solution to (C), the optimal terminal funding

ratio is with Theorem 3.2.3 given by

F ∗ =
V (0)

L(0)
.

In this case the optimal strategy is to hedge the liabilities perfectly with

πLH = (σT )−1σTL .

With this investment strategy, the funding ratio is kept constant. For the investor,
the risk of an even lower funding ratio outweighs the potential profit generated by an
investment in the performance seeking portfolio. Since Z ≤ c∗ ⇔ F ∗ ≥ B,

Q(F ∗ ≥ B) = Q(Z ≤ 0) = 0,

for c∗ = 0. This means that there is zero probability that funded or well-funded status
can be achieved and thus no reason to risk anything and try. Therefore, we only consider
the case c∗ > 0 in the following.

Proposition 3.2.8 (Optimal Terminal Funding Ratio, CPT, V (0)
L(0) < B). Let

infc>0 k(c) > 1 be satisfied and V (0)
L(0) < B. If (C) has an optimal solution c∗ > 0,

the optimal terminal funding ratio is given by

F ∗ −B = F̄ ∗ = (F̄ ∗)+ − (F̄ ∗)−,

with

(F̄ ∗)+ =
v∗+
G(c∗)

Z1−δ+ exp
(

1
2(δ2

+ − δ+)‖σL − γT ‖2T
)

η+Φη+−1
(

logZ+( 1
2
−δ+)‖σL−γT ‖2T

‖σL−γT ‖
√
T

)


1
α−1

1Z≤c∗

(F̄ ∗)− =
v∗+ −

V (0)
L(0) +B

1− Φ
(

log c∗− 1
2
‖σL−γT ‖2T

‖σL−γT ‖
√
T

)1Z>c∗

46



3 Funding Ratio Optimization

and

v∗+ =
B − V (0)

L(0)

k(c∗)
1

1−α − 1
.

Proof. We proceed as in the proof of Theorem 3.2.6 and receive by an application of
Theorem 3.2.3

(F̄ ∗)+ =
v∗+
G(c∗)

(
Z

w′+(QZ(Z))

) 1
α−1

1Z≤c∗

=
v∗+
G(c∗)

Z1−δ+ exp
(

1
2(δ2

+ − δ+)‖σL − γT ‖2T
)

η+Φη+−1
(

logZ+( 1
2
−δ+)‖σL−γT ‖2T

‖σL−γT ‖
√
T

)


1
α−1

1Z≤c∗ .

The other part is with Footnote (2) given by

(F̄ ∗)− =
v∗+ −

V (0)
L(0) +B

E[Z1Z>c∗ ]
1Z>c∗ =

v∗+ −
V (0)
L(0) +B

1− Φ
(

log c∗− 1
2
‖σL−γT ‖2T

‖σL−γT ‖
√
T

)1Z>c∗ .

While the CPPI-part for the performance seeking portfolio in the well-funded case en-
sures that the funding ratio never falls below the reference point B (and therefore never
falls into the risk seeking area U− of the utility function in T ), the optimal investment
strategy in the underfunded case corresponds to a leveraged strategy. Starting in the
risk-seeking area U− of the CPT utility, the investor tries to achieve a terminal funding
ratio above the reference point B. In case the financial market evolves in a favorable way,
more precise, if Z ≤ c∗, then the investor receives the terminal funding ratio (F̄ ∗)+ +B.
Otherwise, i.e. Z > c∗, the investor suffers a loss and receives the constant funding ratio
B − (F̄ ∗)−. Again, we consider the case η = 1 for a more explicit result.

Theorem 3.2.9 (Three-Fund Separation, CPT, V (0)
L(0) < B, η+ = 1). Let infc>0 k(c) > 1,

V (0)
L(0) < 0 and η+ = 1. If (C) has an optimal solution c∗ > 0, the optimal terminal funding
ratio is given by

F ∗ −B = F̄ ∗ = (F̄ ∗)+ − (F̄ ∗)−,
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with

(F̄ ∗)+ =
v∗+

Φ

(
log c∗+

(
1
2
− δ+−α

1−α

)
‖σL−γT ‖2T

‖σL−γT ‖
√
T

) ·

exp

(
1

2

(1− δ+)(δ+ − α)

(1− α)2
‖σL − γT ‖2T

)
Z

1−δ+
α−1 1Z≤c∗ ,

(F̄ ∗)− =
v∗+ −

V (0)
L(0) + 1

1− Φ
(

log c∗− 1
2
‖σL−γT ‖2T

‖σL−γT ‖
√
T

)1Z>c∗
and

v∗+ =
B − V (0)

L(0)

k(c∗)
1

1−α − 1
.

The optimal investment strategy is given by

π∗(t) = λCPT · πPS + (1− λCPT ) · πLH ,

with

λCPT =
1

F (t)π
·
(
F π+(t) · λ+ − F π−(t) · λ−

)
λ+ =

1− δ+

1− α
+

1

‖σL − γT ‖
√
T − t

·
φ
(
d
(

c∗

ZL(t) , T − t,
1−δ+
α−1

))
Φ
(
d
(

c∗

ZL(t) , T − t,
1−δ+
α−1

))
 ,

λ− =
φ
(
d
(

c∗

ZL(t) , T − t, 0
))

1− Φ
(
d
(

c∗

ZL(t) , T − t, 0
)) · 1

‖σL − γT ‖
√
T − t

,

F π+(t) =
v∗+ZL(t)

1−δ+
α−1 · Φ

(
d
(

c∗

ZL(t) , T − t,
1−δ+
α−1

))
Φ

(
log c∗− 1

2
· 1−δ+
α−1

‖σL−γT ‖2T
‖σL−γT ‖

√
T

) · exp

(
−1

2

(
1− δ+

α− 1
+ 1

)
· 1− δ+

α− 1
‖σL − γT ‖2t

)
,

F π−(t) =
v∗+ −

V (0)
L(0) +B

1− Φ
(

log c∗− 1
2
‖σL−γT ‖2T

‖σL−γT ‖
√
T

) · (1− Φ

(
d

(
c∗

ZL(t)
, T − t, 0

)))
,

φ denoting the density function of a standard normally distributed random variable and

d(c, s, v) :=
log(c)−(v+ 1

2)‖σL−γT ‖2s
‖σL−γT ‖

√
s

.
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Proof. From the proof of Corollary 3.2.7, we know that

G(c∗) = exp

(
1

2

(δ+ − 1)2α

(1− α)2
‖σL − γT ‖2T

)
Φ

 log c∗ +
(

1
2 −

δ+−α
1−α

)
‖σL − γT ‖2T

‖σL − γT ‖
√
T

 .

Applying Proposition 3.2.8 and inserting G(c∗) leads to

(F̄ ∗)+ =
v∗+
G(c∗)

(
Z1−δ+ exp

(
1

2
(δ2

+ − δ+)‖σL − γT ‖2T
)) 1

α−1

1Z≤c∗

=
v∗+

Φ

(
log c∗+

(
1
2
− δ+−α

1−α

)
‖σL−γT ‖2T

‖σL−γT ‖
√
T

) ·

exp

(
−1

2

(
1− δ+

α− 1
+ 1

)
1− δ+

α− 1
‖σL − γT ‖2T

)
Z

1−δ+
α−1 1Z≤c∗ ,

since (see the proof of Corollary 3.2.7)

−(δ+ − 1)2α

(1− α)2
+
δ2

+ − δ+

α− 1
=

(1− δ+)(δ+ − α)

(1− α)2
= −

(
1− δ+

α− 1
+ 1

)
1− δ+

α− 1
.

With (A.12) from Appendix A.3,

(F̄ ∗)+(t, ZL(t)) =
v∗+ZL(t)

1−δ+
α−1

Φ

(
log c∗+

(
1
2
− δ+−α

1−α

)
‖σL−γT ‖2T

‖σL−γT ‖
√
T

)Φ

(
d

(
c∗

ZL(t)
, T − t, 1− δ+

α− 1

))

· exp

(
−1

2

(
1− δ+

α− 1
+ 1

)
1− δ+

α− 1
‖σL − γT ‖2t

)
and the corresponding replicating strategy is with (A.13) from Appendix A.3 given by

π+(t) = πLH +

1− δ+

1− α
+

1

‖σL − γT ‖
√
T − t

φ
(
d
(

c∗

ZL(t) , T − t,
1−δ+
α−1

))
Φ
(
d
(

c∗

ZL(t) , T − t,
1−δ+
α−1

))
 (πPS − πLH).

The second part of the terminal funding ratio is also given by Proposition 3.2.8. With
(A.12) from Appendix A.3, c2 =∞, c1 = c∗ and ν = 0, we have

(F̄ ∗)−(t, ZL(t)) =
v∗+ −

V (0)
L(0) +B

1− Φ
(

log c∗− 1
2
‖σL−γT ‖2T

‖σL−γT ‖
√
T

) (1− Φ

(
d

(
c∗

ZL(t)
, T − t, 0

)))
.
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Moreover, the replicating strategy π− of (F̄ ∗)− reads

π− = πLH −
φ
(
d
(

c∗

ZL(t) , T − t, 0
))

1− Φ
(
d
(

c∗

ZL(t) , T − t, 0
)) 1

‖σL − γT ‖
√
T − t

(πPS − πLH).

Finally, the total optimal investment strategy consisting of both parts can be written as
(see (A.11) in Appendix A.3)

π∗(t) =
1

F ∗(t, ZL(t))

(
(F̄ ∗)+(t, ZL(t))π+(t)− (F̄ ∗)−(t, ZL(t))π−(t) +BπLH

)
,

which corresponds to the representation from the statement of the theorem as
F ∗(t, ZL(t)) = (F̄ ∗)+(t, ZL(t))− (F̄ ∗)−(t, ZL(t)) +B.

3.3 Connection Between Expected Utility and CPT
Funding Ratio Optimization

In the previous section, we introduced the CPT funding ratio optimization as a gener-
alization of the expected utility framework. We illustrate the connections between the
results from Corollary 3.1.2 and Corollary 3.2.7 in this section. While the optimal in-
vestment strategy in the expected utility is a constant mix strategy, so the allocations in
the performance seeking portfolio and the liability hedging portfolio are independent of
F (t), the optimal investment strategy for the CPT approach with V (0)

L(0) ≥ B dynamically

depends on F (t). In Figure 3.3 and Figure 3.4, the weights of the performance seeking
portfolio and the liability hedging portfolio in t = 0 are illustrated. We choose α = −1
for both, the expected utility approach with power utility, and the CPT approach and
consider only the downside risk component of the distortion by setting η = 1 in the CPT
example. The optimal investment strategy in the CPT example differs from the optimal
strategy in the expected utility example by the consideration of the reference point B
and the factor 1−δ+ caused by the distortion. Figures 3.3 and 3.4 show the convergence
of the allocations in the CPT approach to the allocations of the expected utility approach
as the distortion is reduced (δ+ → 0) and as the reference point is decreased (B → 0).
Hence, the CPT approach can be considered as a generalization of the expected utility
approach with the expected utility approach representing the special case of a reference
point B = 0 and without distortion (δ+ = 0, η = 1).
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Figure 3.3: Weights of the perfor-
mance seeking portfolio in the different
settings.
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Figure 3.4: Weights of the liability hedging
portfolio in the different settings.
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4 Surplus Optimization

In this chapter, we maximize the utility of the terminal surplus. In Section 4.1, we intro-
duce the liability models and present the surplus optimization problem. The generalized
martingale approach is introduced in Section 4.2 and applied to receive the optimal
terminal wealth. Furthermore, the corresponding investment strategy is derived. For
several specific liability models, more explicit results are presented in Sections 4.3 and
4.4 and compared in Section 4.5. Section 4.6 contains a comparison to results from
Chapter 3. Large parts of this chapter coincide with Desmettre et al. (2020) and minor
parts coincide with Brummer et al. (2018). Throughout the whole chapter, we assume
d = 1, i.e. we consider only one risky asset.

4.1 Surplus Optimization Framework

For the maximization of the expected utility of the surplus of the assets over the liabilities
at time T , we define the surplus as introduced in Sharpe and Tint (1990) by

S(T ) := V (T )− ψLL(T, V (T )).

The factor ψL ∈ (0, 1] is constant as in Sharpe and Tint (1990) and allows for a flexible
portion of consideration of the liabilities. The liabilities L(T, V (T )) are further specified
in the following sections.

4.1.1 General Liability Model

To set up the portfolio optimization problem, we introduce the liabilities and the gener-
alized martingale approach in a way which is inspired by Desmettre and Seifried (2016).
They develop a two-step method for a setting that includes an illiquid asset which can
only be traded at the beginning of the time horizon. In the first step, the authors find
an optimal liquid portfolio given an arbitrary, but fixed illiquid investment and in the
second step, they optimize the amount invested in the illiquid asset. We extend the
methods used in the first step to our setting by interpreting the liability position as a
short position in an illiquid asset and allowing for such a short position. Furthermore, we
derive closed-form solutions for the optimal trading strategies in the setting of replicable
liabilities and for various types of liabilities with performance participation. We assume
that the value of the liabilities at time T can be modeled by random variables L1(T )
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and L2(T ) and that we cannot invest in the liabilities directly. L1(T ) will be used to
model a performance-participating part and L2(T ) will be used to model a part which is
not directly depending on wealth. L2(T ) can be interpreted as an index-linked part. For
both, L1 and L2, we want to allow for hedgeable and non-hedgeable components. The
hedgeable risks can be interpreted as, e.g., interest-rate risks and the non-hedgeable risks
as, e.g., inflation risks (income growth of the policy holder), mortality risk or operational
risk inherent in the liabilities. The hedgeable components are modeled by a stochastic
process X which satisfies the following assumption.

Assumption (LX). The process X follows

dX(t) = µX(t,X(t))dt+ σX(t,X(t))dW (t).

For t ∈ [0, T ], X(T ) can be written as a function of X(t) and an increment ξ(t, T ), i.e.

X(T ) = g(X(t), ξ(t, T )),

where ξ(t, T ) is independent of X(t) and g is twice differentiable with respect to the first
component.

Note that X(T ) is replicable, since X is driven by the same Brownian motion W as the
risky asset. To model the unhedgeable components of the liabilities, we use G-measurable
random variables U1 and U2. We consider liabilities L(T, v) and always impose the
following assumptions (L1) and (L2). (L1) states the general structure of the liabilities.
(L2) contains conditions to exclude the possibility of unavoidable bankruptcy.

Assumption (L1). The liabilities are of the form

L(T, v) = L(T, v,X(T ),U1,U2) = vL1(T,X(T ),U1) + L2(T,X(T ),U2), v > 0, (L1)

with non-negative, H-measurable functions Li(T,X(T ),Ui), i = 1, 2.

We call the left part of the sum vL1(T,X(T ),U1) performance-linked and the right part
L2(T,X(T ),U2) index-linked. To simplify the notation, we write L(T ) or L(T, v) instead
of L(T, v,X(T ),U1,U2) and Li(T ) instead of Li(T,X(T ),Ui), i = 1, 2 sometimes. For
each ω ∈ Ω, we further assume the existence of the worst case scenario with respect to
the unhedgeable risks defined by

ω̂i := arg sup
ω̂∈Ω

Li(T,X(T, ω),Ui(ω̂)), i = 1, 2.

In T , the liabilities are covered even for the worst outcomes of the unhedgeable risk
components, if

V (T, ω) ≥ ψLV (T, ω)L1(T,X(T, ω),U1(ω̂1)) + ψLL2(T,X(T, ω),U2(ω̂2)), (4.1)
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i.e. if V (T, ω) ≥ v̂0(ω) with

v̂0(ω) :=
ψLL2(T,X(T, ω),U2(ω̂2))

1− ψLL1(T,X(T, ω),U1(ω̂1))
. (4.2)

Assumption (L2). There exists a constant k1 ∈
[
0, 1

ψL

)
, and a Q̃-integrable random

variable k2(ω) such that Q-a.s.

k1 ≥L1(T,X(T ),U1) (L2.1)

and k2(ω) ≥ sup
ω̂∈Ω

L2(T,X(T, ω),U2(ω̂)). (L2.2)

Furthermore,

v0 ≥ E
[
Z̃(T )v̂0(ω)

]
. (L2.3)

In particular, this means that the investor has enough initial capital to hedge the worst
outcomes of the unhedgeable risk components associated with Ui, i = 1, 2. For a pension
plan or insurance company with the liabilities consisting of the discounted cash flows of
the future payments, an upper bound could be, e.g., the sum of all the (non-discounted)
payments or a cap in benefits to the policy holders (see Ekern (1996)).

4.1.2 Specific Liability Models

In this section, we present some specific liability models, for which we obtain more
explicit results later. We also discuss Assumptions (LX), (L1) and (L2), where (L2)
is always evaluated assuming that the investor has enough initial capital, i.e. (L2.3)
holds.

In some examples, we assume that X follows a geometric Brownian motion

dX(t) = X(t)
(
µ̂Xdt+ σ̂XdW (t)

)
, X(0) = 1, (4.3)

with constant coefficients µ̂X and σ̂X and W being the Brownian motion which also
drives the risky asset. Since

X(T ) =X(t)e(µ̂X−
1
2
σ̂2
X)(T−t)+σ̂X(W (T )−W (t)),

X satisfies Assumption (LX) with ξ(t, T ) = e(µ̂X−
1
2
σ̂2
X)(T−t)+σ̂X(W (T )−W (t)) and

g(x, ξ) = xξ. We assume that the investor cannot trade in X, only in the risky as-
set P and the risk-free asset P0. Since the Brownian motions driving P and X are the
same, X(T ) is still replicable with P . However, since trading in X is not allowed, the
model is also free of arbitrage.
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Example 4.1.1 (Geometric Brownian Motion). For the liabilities from Chapter 3 as
in (3.1), (L2.2) only holds if there are no unhedgeable risks, i.e. σε = 0. In this case,
a version of the liabilities in the market with d = 1 of the liabilities from Chapter 3 is
given with

L1(T ) = 0, L2(T,X(T )) = X(T ),

X as in (4.3), with µ̂X = µL, σ̂X = ‖σL‖ and k2(ω) = X(T, ω). These liabilities satisfy
Assumptions (LX), (L1) and (L2) with k1 = 0.

Example 4.1.2 (Replicable Liabilities). If we do not consider unhedgeable risks asso-
ciated with Ui, i = 1, 2, but a general process X satisfying Assumption (LX) as well as
general L1(T ) and L2(T ) satisfying Assumption (L2), we have

L(T, v) = vL1(T ) + L2(T ) = vL1(T,X(T )) + L2(T,X(T )). (RL)

In this case, we can set k2(ω) := L2(T,X(T, ω)).

Example 4.1.3 (Index-Linked Liabilities with Capped Maximum Benefits (ILCB)).
Motivated by Ekern (1996), we consider liabilities of the form

L1(T ) = 0, L(T,X(t)) = L2(T,X(T )) = L(0)f(X(T )), L(0) > 0, t ∈ [0, T ], (ILCB)

with capped maximum benefits, i.e.

f(x) = min {x,K} (4.4)

and X as in (4.3). This type of liabilities satisfies Assumptions (LX), (L1) and (L2)
with L1(T ) = 0, L2(T,X(t)) = L(0)f(X(T )), k1 = 0 and k2(ω) ≡ L(0)K. The cap
can be interpreted, e.g., as a special product feature to limit the insurance company’s
risk (see Ekern (1996)), as an implicit guarantee by the supervising authority to change
rules in case of industry-wide underfunding, or as some form of natural upper-bound as
described in Section 4.1.1.

In the following examples, we assume that the payment to the policy holder is depending
on the performance of the asset portfolio of the insurance company. Such mechanisms
can be found in various types of insurance contracts, see e.g. Korn and Wagner (2018)
or Kling et al. (2009).

Example 4.1.4 (Performance-Linked Liabilities (PLU)). We consider performance-
linked liabilities with unhedgeable risks of the form

L2(T ) = 0, L(T, v) = vL1(T,X(T ),U1), (PLU)

with general, L1(T,X(T ),U1) satisfying Assumptions (LX) and (L2). Since the future
payments to the clients, and subsequently the value of the liabilities, depend on the perfor-
mance of the assets for various insurance products, the value of the liabilities is assumed
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to be proportional to v here. The term L1(T ) can be used to model a component of the
liabilities that is not directly connected to the wealth. This may include both unhedgeable
risks, e.g. mortality risk and hedgeable risks such as interest-rate risk.

Example 4.1.5 (Performance-Linked Liabilities with Capped Benefits and Unhedge-
able Risks (PLCBU)). We specify the model from the previous example further using
an affine model. The use of an affine model in this context can also be found in
Höcht et al. (2008). In this example, we assume that U1 is uniformly distributed on
[c1, c2], with c1, c2 ≥ 0, c1 < c2. Furthermore, we consider liabilities of the form

L2(T ) = 0, L(T, v) = vL1(T,X(T ),U1) = vL(0) (β1f(X(T )) + β2U1) , L(0) > 0,
(PLCBU)

with X as in (4.3), f being a strictly positive function, which is bounded from above

by a constant K with 0 < K < 1
β1

(
1

ψLL(0) − β2c2

)
, β1, β2 ≥ 0, and almost everywhere

twice continuously differentiable. These liabilities are a special case of (PLU) and sat-
isfy Assumptions (LX) (see above) and (L2) with L1(T ) = L(0)(β1f(X(T )) + β2U1),
L2(T ) = 0, k1 = L(0)(β1K + β2c2) and k2(ω) = 0 (see also the proof of Corollary 4.4.3
for (L2.1)). In addition to the consideration of a general f , we also deal with special
choices of f:

Choosing f as in (4.4) introduces a positive correlation between the risky asset and L1(T ).
In the context of performance-linked liabilities, this leads to liabilities, which are more
sensitive to market changes than the wealth process. If we use the function

f(x) = min

{
1

x
,K

}
, (4.5)

this leads to a framework in which the policy holder participates only partially in the
performance of the assets. In particular, the liabilities can be written as

L(T, v) = vL1(T,X(T ),U1) = L(0)

(
β1 min

{
v

X(T )
, vK

}
+ β2U1v

)
and can therefore be interpreted as a capped relative performance of the insurance com-
pany’s wealth compared to an index. In addition, there is an unhedgeable component
which can be nicely interpreted in the context of mortality risk: while the first term

β1 min
{

v
X(T ) , vK

}
includes current estimates of the mortality, additional capital β2U1v

must be provided to cover the risk that the mortality changes more than expected in an
unfavorable way. In this context, the exact amount of additional capital required is un-
known in t = 0.

Example 4.1.6 (Performance Linked Liabilities with Capped Benefits (PLCBU*)). In
Chapter 3, we considered, inspired by Martellini (2006), liabilities modeled as geometric
Brownian motions which may also include unhedgeable risks. We adapt this model for
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the liabilities to the context of performance-linked liabilities in this section. We consider
more general liabilities of the form

L2(T ) = 0, L(T, v) := vL1(T,X(T ),U1),

with
L1(T,X(T ),U1) := L(0)f(X(T )U1(T )), L(0) > 0, (PLCBU*)

with X as in (4.3), f being a strictly positive function, which is bounded from above by
a constant K with 0 < K < 1

ψLL(0) , almost everywhere twice continuously differentiable

and U1(t) given by the SDE

dU1(t) = U1(t)σ̂εdWε(t), U1(0) = 1,

with constant σ̂ε and Wε being a Brownian motion which is independent of W . As in the
previous example, these liabilities are a special case of (PLU) and satisfy
Assumptions (LX) (see above) and (L2) with L1(T ) = L(0)f(X(T )U1), L2(T ) = 0,
k1 = L(0)K and k2(ω) = 0 (see also the proof of Corollary 4.4.7 for (L2.1)). In addi-
tion to the consideration of a general f , we also deal with special choices of f:

Scheuenstuhl and Zagst (2008) use geometric Brownian motions to model stock prices
with a market risk component and an idiosyncratic component. We proceed similarly to
model an index and the risk that the actual portfolio of the insurance company deviates
from this index. For X as in (4.3) representing an index, we interpret XU1 as a fund
which uses the index X as a benchmark. The SDE of the fund is with Itô’s formula given
by

d(X(t)U1(t)) = X(t)U1(t)σ̂εdWε(t) + U1(t)X(t) [µ̂Xdt+ σ̂XdW (t)]

= X(t)U1(t) [µ̂Xdt+ σ̂XdW (t) + σ̂εdWε(t)] ,

with σ̂ε representing the risk that the portfolio deviates from the index. For f as in (4.5),
the value of the liabilities can be written as

L(T, v) =vL1(T,X(T )) = L(0) min

{
v

X(T )U1(T )
, vK

}
.

As in the previous example, the liabilities can be interpreted as a capped relative perfor-
mance of an asset portfolio, which is, in this case, compared to a fund XU1.

Remark 4.1.7. This liability model can be interpreted as a performance-linked version of
the model in Chapter 3 for the special case of X being a Brownian motion. In contrast
to Chapter 3 and Example 4.1.1, the cap is necessary here to avoid the possibility of
bankruptcy caused by unlimited unhedgeable risks. In a pure funding ratio optimization,
such as in the expected utility setting in Chapter 3 or in a setting with L2(T,X(T ))
instead of L1(T,X(T )) as in Example 4.1.1, no cap is necessary.
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4.1.3 Surplus Optimization Problem

We now introduce the portfolio optimization problem for a general utility function as
in Definition 2.2.1 with V = (0,∞). In contrast to Chapter 3, where the CPT utility
function was also defined for a funding level below the reference point, we exclude a
negative surplus here due to the use of a traditional utility function. The set of admissible
strategies Λ′(v0) corresponding to the initial wealth v0 contains all admissible strategies
which satisfy

V (t)− E
[
Z̃(t, T )v̂0(ω)|Ft

]
≥ 0 Q-a.s. for all t ∈ [0, T ] (4.6)

and E [U−(S(T ))] <∞.

Remark 4.1.8. For V (T, ω) ≥ v̂0(ω), the investor has enough capital to cover the worst
outcomes of the unhedgebale risks in T (see (4.1) and (4.2)). Consequently, if (4.6)
holds, the investor has enough capital to cover the present value of the liabilities with
respect to the worst outcomes of the unhedgeable risk components in t ∈ [0, T ]. Note that
we assume that the investor has enough initial capital (see Assumption (L2.3)).

We aim at finding the optimal allocation in the risky asset and the risk-free asset such
that the expected utility of the terminal surplus is maximized :

max
π∈Λ′(v0)

E [U(S(T ))] = max
π∈Λ′(v0)

E [U(V π(T )− ψLL(T, V (T )))] (PS)

4.2 Generalized Martingale Approach for Surplus
Optimization

In this section, we present the generalized martingale approach, which we adapt from
Desmettre and Seifried (2016).

Remark 4.2.1. We wish to stress again that we focus on the maximization of the
expected terminal surplus

max
π∈Λ′(v0)

E [U(V π(T )− ψLL(T, V π(T )))] ,

in the presence of liabilities. In contrast, Desmettre and Seifried (2016) have focused on
the optimization with fixed-term securities

max
(ψ,π)∈Λ′(v0)

E
[
U(V (ψ,π)(T ) + ψF (T ))

]
,
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where ψ denotes the units invested into the fixed-term security F (T ), and Seifried (2010)
has focused on the optimal portfolio problem with deferred capital gains taxes

max
π∈Λ′(v0)

E
[
U
(
v01{V π(T )≤v0} + (1− α) (V π(T )− v0)1{V π(T )>v0}

)]
,

where α ∈ [0, 1) is the investor’s personal tax rate.

Different from Desmettre and Seifried (2016), where an optimization over ψ leads to
the investment in the fixed-term asset, we assume ψL to be constant since it is in our
setting rather a property of the preferences of the investor than a control variable. This
assumption is in line with Sharpe and Tint (1990) and Detemple and Rindisbacher
(2008). To utilize the approach from Desmettre and Seifried (2016), we introduce the
random utility functions

Ūω(v) :=U (v − ψLL(T, v))

=U(v − ψLL(T, v,X(T, ω),U1(ω),U2(ω))), v ∈ (v̂0(ω),∞), ω ∈ Ω,

and Ûω : (v̂0(ω),∞)→ R, ω ∈ Ω, given by

Ûω(v) := E
[
Ūω(v)|FT

]
= E [U (v − ψLL(T, v))|FT ] .

Note that v̂0(ω) ∈
(

0, ψLk2(ω)
1−ψLk1

]
. Also note that for the case of replicable liabilities, i.e.

there are no unhedgeable components U1 and U2, we obviously have

Ûω(v) = Ūω(v) , ω ∈ Ω .

In our surplus optimization framework, in contrast to Desmettre and Seifried (2016), we
replace the illiquid asset with a corresponding positive payoff by liabilities that generate
a negative value

−ψLL(T, v) < 0 .

The subsequent results are needed for further derivations.

Lemma 4.2.2. The random utility function Ûω is differentiable for almost every ω ∈ Ω
with

Û ′ω(v) = E
[
(1− ψLL1(T ))U ′ (v − ψLL(T, v))

∣∣FT ] .
Furthermore, Û ′ω is strictly monotonically decreasing, Û ′ω(v̂0(ω)) ∈ (0,∞], Û ′ω(v) > 0 for
all v > v̂0(ω) and Û ′ω(v)→ 0 as v →∞.
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Proof. For ω ∈ Ω, v̂ > v̂0(ω) arbitrary but fixed and ε small enough, we have

0 <
∂

∂v
U(v − ψLL(T, v))

=
∂

∂v
U((1− ψLL1(T ))v − ψLL2(T )))

= (1− ψLL1(T ))U ′((1− ψLL1(T ))v − ψLL2(T ))

≤ U ′((1− ψLL1(X(T, ω),U1(ω̂1))(v̂ − ε)− ψLL2(X(T, ω),U(ω̂2)))

for all v ∈ (v̂− ε, v̂+ ε) since 1−ψLL1(T ) > 0, U is increasing and U ′ decreasing. Thus,
given FT , there is a constant upper bound for ∂

∂vU(v−ψLL(T, v)) and differentiation and
integration at v̂ can be interchanged by dominated convergence. The other properties
follow by the characteristics of U ′ as well as v̂0.

Since Ûω is differentiable with Û ′ω : (v̂0(ω),∞) → (0, Û ′ω(v̂0(ω))) and due to its mono-
tonicity, we can define the inverse marginal utility corresponding to Ûω and we denote
it by Îω : (0,∞) → (v̂0(ω),∞), where we set Îω(y) := v̂0(ω) for y ≥ Û ′ω(v̂0(ω)). Note
that, due to the structure of the liabilities, Îω is a deterministic function of y and X(T ).
Therefore, we also write

Îω(y) = I(y,X(T )) = I(y, g(X(t), ξ(t, T ))).

The following assumption will be used for the derivation of optimal investment strate-
gies.

Assumption (LS). I(yZ̃(t, T ), g(x, ξ(t, T ))) is almost everywhere twice continuously
differentiable with respect to both, x and y. Li(T, g(x, ξ(t, T )))), i = 1, 2 are almost
everywhere twice continuously differentiable with respect to x.

Furthermore, we define

H(t, y, x) :=E
[
Z̃(t, T )Îω(yZ̃(t, T ))|Ft

]
=E

[
Z̃(t, T )I

(
yZ̃(t, T ), g(x, ξ(t, T ))

)
|Ft
]
x, y > 0, t ∈ [0, T ],

The following Lemma provides a necessary condition required for the later application
of the generalized martingale approach.

Lemma 4.2.3. It holds that

H(0, y,X(0)) = E[Z̃(T )Îω(yZ̃(T ))] <∞, for all y > 0.

Furthermore, H(0, y,X(0)) is continuous and strictly monotonically decreasing in y.

Proof. We have for v > v̂0(ω) by dominated convergence as in the proof of Lemma 4.2.2
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and as U ′ is strictly monotonically decreasing

Û ′ω(v) =E
[
∂

∂v
U (v − ψLL(T, v))

∣∣∣∣FT]
=E

[
(1− ψLL1(T ))U ′((1− ψLL1(T ))v − ψLL2(T ))

∣∣FT ]
≤U ′ ((1− ψLL1(X(T, ω),U1(ω̂1)))v − ψLL2(X(T, ω),U2(ω̂2)))

=:Mω(v)

for a.e. ω ∈ Ω. Note that Mω(v) is continuous and strictly monotonically decreasing
and therefore its inverse

IMω (y) =

{
(Mω)−1(y), 0 < y < Û ′(v̂0(ω))

v̂0(ω), else

is monotonically decreasing as well. Then, it follows for all 0 < y < Û ′ω(v̂0(ω))

y = Û ′ω

(
Îω(y)

)
≤Mω

(
Îω(y)

)
.

By the monotonicity of IMω (y), we have

IMω (y) ≥ IMω
(
Mω

(
Îω(y)

))
= Îω(y).

Since both sides are equal for y > Û ′ω(v̂0(ω)), we learn that Îω(y) ≤ IMω (y) for almost
every ω ∈ Ω. As Li(X(T, ω),Ui(ω̂i)) are FT -measurable for i = 1, 2, and due to the
boundedness conditions (L2.1) and (L2.2),

IMω (y)

≤ max

{
1

1− ψLL1(X(T, ω),U1(ω̂1))
(I (y) + ψLL2(X(T, ω),U2(ω̂2))) ; v̂0(ω)

}
≤ max

{
1

1− ψLk1
(I(y) + ψLk2(ω)) ; v̂0(ω)

}
.

The statement follows with (2.7) as k2(ω) is Q̃-integrable by Assumption (L2). The
continuity and monotonicity of H(0, y,X(0)) follow with Lemma 4.2.2.

Optimal Terminal Wealth and Investment Strategy

The following result states that the well-known calculation of the optimal
terminal wealth using the martingale approach (see, e.g., Theorem 7.6 (p. 114) in
Karatzas and Shreve (1998)) which can also be transferred to the case with a random
utility function, which is based on the terminal surplus S(T ) = V (T )− ψLL(T, V ).
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Theorem 4.2.4 (Optimal Terminal Wealth). The optimal terminal wealth for (PS) is
given by

V ∗(T ) = Îω(Y (v0)Z̃(T )),

with Y (·) being the inverse of H(0, ·, X(0)). The optimal terminal surplus is then given
by

S∗(T ) := V ∗(T )− ψLL(T, V ∗(T )).

Proof. The proof is provided in Appendix B.

In case of a surplus optimization without performance-linked liabilities, i.e. L1(T ) = 0,
we have for very unfavorable market developments, i.e. high values of Z̃(T ),
V ∗(T ) = Îω(Y (v0)Z̃(T )) = v̂0(ω) = supω̂∈Ω ψLL2(T,X(T, ω),U2(ω̂)). Thus, the surplus
S∗(T ) consists only of the difference between the worst case scenario of the unhedgeable
risks v̂0(ω) and the actual realization ψLL2(T,X(T, ω),U2(ω)).

For the optimal terminal wealth, we now deduce the corresponding replicating strategy.

Theorem 4.2.5 (Optimal Investment Strategy). Let Assumption (LS) be satisfied. The
investment strategy corresponding to the optimal terminal wealth from Theorem 4.2.4 is
given by

π∗(t) =
1

σ(t)V ∗(t)
[−Hy (t,Y(t), X(t))Y(t)γ(t) +Hx (t,Y(t), X(t))σX(t,X(t))] ,

with

Y(t) :=Y (v0)Z̃(t) = Y (v0)e−
∫ t
0 r(s)+

1
2
γ(s)2ds−

∫ t
0 γ(s)dW (s).

Furthermore,

V ∗(t) =H(t,Y(t), X(t)).

Proof. The SDE of Y can be written as

dY(t) =Y(t) [−r(t)ds− γ(t)dW (t)] .

By Theorem 4.2.4,

V ∗(T ) = Îω(Y (v0)Z̃(T )) = Îω(Y(T )).
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We thus have with Assumption (LX)

V ∗(t) =E
[
Z̃(t, T )Îω (Y(T )) |Ft

]
=E

[
Z̃(t, T )I (Y(T ), X(T )) |Ft

]
=E

[
Z̃(t, T )I

(
Y(t)Z̃(t, T ), g(X(t), ξ(t, T ))

)
|Ft
]

= H (t,Y(t), X(t)) .

As Assumption (LS) holds, we can apply Itô’s formula and obtain

dV ∗(t) =dH (t,Y(t), X(t))

=Ht (t,Y(t), X(t)) dt+Hy (t,Y(t), X(t)) dY(t) +Hx (t,Y(t), X(t)) dX(t)

+

[
−Hyx (t,Y(t), X(t))Y(t)γ(t)σX(t,X(t)) +

1

2
Y(t)2γ(t)2Hyy (t,Y(t), X(t))

+
1

2
σX(t,X(t))2Hxx (t,Y(t), X(t))

]
dt

= [Ht (t,Y(t), X(t))− r(t)Y(t)Hy (t,Y(t), X(t)) + µX(t,X(t))Hx (t,Y(t), X(t))

−Hyx (t,Y(t), X(t))Y(t)γ(t)σX(t,X(t)) +
1

2
Y(t)2γ(t)2Hyy (t,Y(t), X(t))

+
1

2
σX(t,X(t))2Hxx (t,Y(t), X(t))

]
dt

+ [−Hy(t,Y(t))Y(t)γ(t) +Hx(t,Y(t))σX(t,X(t))] dW (t).

Comparing the coefficients of the diffusion terms of this SDE and (2.1), we receive

V ∗(t)π(t)σ(t) =−Hy (t,Y(t), X(t))Y(t)γ(t) +Hx (t,Y(t), X(t))σX(t,X(t)),

which completes the proof.

4.3 Performance- and Index-Linked Liabilities

In this section, we consider an application with replicable liabilities, i.e. we assume
liabilities of the form (RL). Throughout the whole section, we consider a power utility
function of the form (2.6) to model the preferences of the investor.

4.3.1 Optimal Investment Strategy with Replicable Liabilities

As a direct consequence of Theorem 4.2.5 we obtain:

Corollary 4.3.1 (Power Utility and Replicable Liabilities (RL)). Let Assumption (LS)
be satisfied. The optimal terminal wealth for an investor with power utility function (2.6)
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and liabilities as in (RL) is given by

V ∗(T ) = Īω(Y (v0)Z̃(T )) =
1

1− ψLL1(T )

( Y (v0)Z̃(T )

1− ψLL1(T )

) 1
α−1

+ ψLL2(T )

 .

and

Y (v0) =

v0 − E
[
Z̃(T ) ψLL2(T )

1−ψLL1(T )

]
E
[(

Z̃(T )
1−ψLL1(T )

) α
α−1

]

α−1

.

Furthermore,

V ∗(t) =H(t,Y(t), X(t))

=Y(t)
1

α−1E

( Z̃(t, T )

1− ψLL1(T, g(X(t), ξ(t, T )))

) α
α−1

∣∣∣∣Ft


+ E
[
Z̃(t, T )

ψLL2(T, g(X(t), ξ(t, T )))

1− ψLL1(T, g(X(t), ξ(t, T )))

∣∣∣∣Ft]
and the optimal investment strategy is given by

π∗(t) = πM (t) + πPL(t) + πIL(t) + πmi(t),

with the Merton portfolio

πM (t) =
γ(t)

(1− α)σ(t)
,

performance-linked part

πPL(t) =
σX(t,X(t))

σ(t)V ∗(t)
E
[
Z̃(t, T )

(
α

1− α

)
(−ψLL1,x(T,X(T )))gx(X(t), ξ(t, T )))

· [1− ψLL1(T, g(X(t), ξ(t, T )))]
1−2α
α−1

(
Y(t)Z̃(t, T )

) 1
α−1

∣∣∣∣Ft] ,
index-linked part

πIL(t) =
ψL

σ(t)V ∗(t)
E
[
Z̃(t, T )

(1− α)σX(t,X(t))L2,x(T,X(T )gx(X(t), ξ(t, T ))− γ(t)L2(T,X(T ))

(1− α)(1− ψLL1(T,X(T )))

∣∣∣∣Ft]
and a mixed part

πmi(t) =
σX(t,X(t))

σ(t)V ∗(t)
E
[
Z̃(t, T )

ψLL2(T,X(T ))ψLL1,x(T,X(T ))gx(X(t), ξ(t, T )))

(1− ψLL1(T,X(T )))2

∣∣∣∣Ft] ,
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where Li,x(T,X(T )), i = 1, 2 denote the derivatives of Li(T,X(T )) with respect to the second
component.

Proof. We have Ûω = Ūω since the liabilities are replicable with

Ūω(v) = U(v − ψLL(T, v)) =
1

α
(v − ψL (vL1(T ) + L2(T )))α, v > v̂0(ω) =

ψLL2(T )

1− ψLL1(T )

and

Ū ′ω(v) = (1− ψLL1(T ))(v − ψL(vL1(T ) + L2(T )))α−1, v >
ψLL2(T )

1− ψLL1(T )
.

Since Ū ′ω

(
ψLL2(T )

1−ψLL1(T )

)
=∞, the inverse of Ū ′ω is given by

Īω(y) =
1

1− ψLL1(T )

((
y

1− ψLL1(T )

) 1
α−1

+ ψLL2(T )

)
. (4.7)

Hence, given v0 ≥ E
[
Z̃(T ) ψLL2(T )

1−ψLL1(T )

]
, the optimal solution V ∗(T ) from Theorem 4.2.4 is given

by V ∗(T ) = Īω(Y (v0)Z̃(T )), which reads as in the statement. Furthermore,

H(0, y,X(0)) = E

 Z̃(T )

1− ψLL1(T )

( yZ̃(T )

1− ψLL1(T )

) 1
α−1

+ ψLL2(T )


and

H(0, Y (v0), X(0))
!
= v0

⇔Y (v0) =

v0 − E
[
Z̃(T ) ψLL2(T,X(T ))

1−ψLL1(T,X(T ))

]
E
[(

Z̃(T )
1−ψLL1(T,X(T ))

) α
α−1

]

α−1

.

To obtain the optimal investment strategy, we apply Theorem 4.2.5 and calculate

V ∗(t) =H(t,Y(t), X(t)) = E
[
Z̃(t, T )Īω(Y(T ))|Ft

]
=E

 Z̃(t, T )

1− ψLL1(T,X(T ))

( Y(t)Z̃(t, T )

1− ψLL1(T,X(T ))

) 1
α−1

+ ψLL2(T,X(T ))

∣∣∣∣Ft


=Y(t)
1

α−1E

( Z̃(t, T )

1− ψLL1(T, g(X(t), ξ(t, T )))

) α
α−1 ∣∣∣∣Ft


+ E

[
Z̃(t, T )

ψLL2(T, g(X(t), ξ(t, T )))

1− ψLL1(T, g(X(t), ξ(t, T )))

∣∣∣∣Ft] .

66



4 Surplus Optimization

Then,

Hx(t,Y(t), X(t))

= E
[
Z̃(t, T )

(
α

1− α

)
(−ψLL1,x(T,X(T )))gx(X(t), ξ(t, T )))

· [1− ψLL1(T, g(X(t), ξ(t, T )))]
1−2α
α−1

(
Y(t)Z̃(t, T )

) 1
α−1

∣∣∣∣Ft]
+ E

[
Z̃(t, T )

ψLL2,x(T,X(T )gx(X(t), ξ(t, T ))

1− ψLL1(T,X(T ))

+Z̃(t, T )
ψLL2(T,X(T ))ψLL1,x(T,X(T ))gx(X(t), ξ(t, T )))

(1− ψLL1(T,X(T )))2

∣∣∣∣Ft] , (4.8)

where expectation and differentiation can be interchanged due to dominated convergence with
Assumption (L2). Finally,

−Hy(t,Y(t), X(t))Y(t)γ(t) = E
[
Z̃(t, T )

∂

∂Y(t)
Îω(Y(T ))

∣∣Ft]Y(t)γ(t)

=
γ(t)

1− α
Y(t)

1
α−1E

( Z̃(t, T )

1− ψLL1(T, g(X(t), ξ(t, T )))

) α
α−1 ∣∣∣∣Ft


=

γ(t)

1− α

(
V ∗(t)− ψLE

[
Z̃(t, T )

L2(T,X(T ))

1− ψLL1(T,X(T ))

∣∣Ft]) . (4.9)

Applying Theorem 4.2.5 and inserting (4.8) as well as (4.9), we have

π∗(t) =
1

σ(t)V ∗(t)
[−Hy (t,Y(t), X(t))Y(t)γ(t) +Hx (t,Y(t), X(t))σX(t,X(t))]

=πM (t)− 1

σ(t)V ∗(t)
· γ(t)ψL

1− α
E
[
Z̃(t, T )

L2(T,X(T ))

1− ψLL1(T,X(T ))

∣∣Ft]
+ πPL(t) +

σX(t,X(t))

σ(t)V ∗(t)
E
[
Z̃(t, T )

ψLL2,x(T,X(T )gx(X(t), ξ(t, T ))

1− ψLL1(T,X(T ))

∣∣∣∣Ft]+ πmi(t)

=πM (t) + πPL(t)− 1

σ(t)V ∗(t)
· γ(t)ψL

1− α
E
[
Z̃(t, T )

L2(T,X(T ))

1− ψLL1(T,X(T ))

∣∣Ft]
+

ψL
σ(t)V ∗(t)

E
[
Z̃(t, T )

σX(t,X(t))L2,x(T,X(T )gx(X(t), ξ(t, T ))

1− ψLL1(T,X(T ))

∣∣∣∣Ft]+ πmi(t)

=πM (t) + πPL(t) + πIL(t) + πmi(t),

with πM (t), πPL(t), πIL(t) and πmi(t) as in the statement.

In this corollary, the portfolios πPL (respectively πIL) are zero when L1(T,X(T )) (re-
spectively L2(T,X(T ))) is zero. In each of the two cases, πmi is also zero. We will
particularly examine these special cases. The case L2(X(T )) = 0 will be covered in
Corollary 4.4.5 and the case L1(T,X(T )) = 0 is treated in the following remark.
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Remark 4.3.2. In case L1(T,X(T )) = 0 and with Corollary 4.3.1,

v0 = E
[
Z̃(T )V ∗(T )

]
=E

[
Z̃(T )

(
Y (v0)Z̃(T )

) 1
α−1

]
+ E

[
Z̃(T )ψLL2(T )

]
.

The interpretation is that the optimal terminal surplus is the same as the optimal wealth

of an investor with initial capital v0 − E
[
Z̃(T )ψLL2(T )

]
who maximizes the expected

utility of terminal wealth only. Moreover, πPL(t) = πmi(t) = 0 and

π∗(t) =
γ(t)

(1− α)σ(t)
·
V ∗(t)− ψLE

[
Z̃(t, T )L2(T,X(t))|Ft

]
V ∗(t)

+
σX(t,X(t))

σ(t)V ∗(t)
ψLE

[
Z̃(t, T )L2,x(T,X(T )gx(X(t), ξ(t, T ))|Ft

]
.

Thus, the optimal investment strategy is as in Chapter 3, given by a three-fund separation
and can also be seen as a generalization of a CPPI strategy. The Merton portfolio

γ(t)
(1−α)σ(t) is scaled by the relative surplus at time t. The second term represents the
liability hedging portfolio and the remaining wealth is invested in the risk-free asset. A
more detailed comparison of the funding ratio optimization and surplus optimization is
provided in Section 4.6.

For this case, i.e. liabilities as in (RL) with L1(T,X(T )) = 0, we consider a particular
application which allows for a closed-form solution for the investment strategy in the
following section.

4.3.2 Index-Linked Liabilities with Capped Maximum Benefits

For the first example with a specific liability model which admits a closed-form solution,
we assume constant coefficients µ, σ and r and liabilities as in (ILCB). As a consequence
of Theorem 4.2.5 , we obtain the following result:

Corollary 4.3.3 (Index-Linked Liabilities with Capped Maximum Benefits (ILCB)).
The optimal investment strategy for an investor with power utility function (2.6) and
liabilities as in (ILCB) is given by

π(t) =
1

σ(t)V ∗(t)

[
γ(t)

1− α

(
V ∗(t)− ψLL(0)e−r(T−t)

(
KΦ(d2(t)) +X(t)e(µ̂X−σ̂Xγ)(T−t)Φ(−d1(t))

))
+ψLL(0)e−r(T−t)e(µ̂X−σ̂Xγ)(T−t)Φ(−d1(t))σ̂XX(t)

]
,

with

d1(t) =
log
(
X(t)
K

)
+
(
µ̂X − σ̂Xγ + 1

2 σ̂
2
X

)
(T − t)

σ̂X
√
T − t
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and

d2(t) =d1(t)− σ̂X
√
T − t.

Proof. We apply Theorem 4.2.5 and compute

H (t,Y(t), X(t))

= Y(t)
1

α−1E
[
Z̃(t, T )

α
α−1 |Ft

]
+ ψLE

[
Z̃(t, T )L(T, g(X(t), ξ(t, T )))|Ft

]
= Y(t)

1
α−1E

[
Z̃(t, T )

α
α−1 |Ft

]
+ ψLL(0)E

[
Z̃(t, T ) min(X(T ),K)|Ft

]
.

With

K ≥ X(T ) = X(t)e(µ̂X−
1
2
σ̂2
X)(T−t)+σ̂X(W (T )−W (t))

⇔ W (T )−W (t)√
T − t

≤
log
(

K
X(t)

)
−
(
µ̂X − 1

2 σ̂
2
X

)
(T − t)

σ̂X
√
T − t

=: −d̄2(t),

E
[
Z̃(t, T ) min(X(T ),K)|Ft

]
= e−r(T−t)K − E

[
Z̃(t, T ) max (K −X(T ), 0) |Ft

]
= e−r(T−t)

(
K −

∫ −d̄2(t)

−∞
e−

γ2

2 (T−t)−γ
√
T−tuKφ(u)du

+X(t)

∫ −d̄2(t)

−∞
e−

γ2

2 (T−t)−γ
√
T−tue(µ̂X−

1
2 σ̂

2
X)(T−t)+σ̂X

√
T−tuφ(u)du

)

= e−r(T−t)

(
K −

∫ −d̄2(t)

−∞
Kφ(u+ γ

√
T − t)du

+X(t)e(µ̂X−σ̂Xγ)(T−t)
∫ −d̄2(t)

−∞
φ
(
u+ (γ − σ̂X)

√
T − t

)
du

)

= e−r(T−t)

(
K −

∫ −d2(t)

−∞
Kφ(u)du+X(t)e(µ̂X−σ̂Xγ)(T−t)

∫ −d2(t)

−∞
φ
(
u− σ̂X

√
T − t

)
du

)
= e−r(T−t)

(
K −KΦ(−d2(t)) +X(t)e(µ̂X−σ̂Xγ)(T−t)Φ(−d1(t))

)
= e−r(T−t)

(
KΦ(d2(t)) +X(t)e(µ̂X−σ̂Xγ)(T−t)Φ(−d1(t))

)
,

where d1(t) and d2(t) are as stated in the theorem. Using

∂

∂X(t)
d1(t) =

∂

∂X(t)
d2(t) =

1

X(t)σ̂X
√
T − t

,

69



4 Surplus Optimization

we receive

Hx (t,Y(t), X(t))

=
∂

∂X(t)
ψLL(0)e−r(T−t)

(
KΦ(d2(t)) +X(t)e(µ̂X−σ̂Xγ)(T−t)Φ(−d1(t))

)
=ψLL(0)e−r(T−t)

(
Kφ(d2(t))

X(t)σ̂X
√
T − t

+ e(µ̂X−σ̂Xγ)(T−t)Φ(−d1(t))− e(µ̂X−σ̂Xγ)(T−t)φ(−d1(t))

σ̂X
√
T − t

)
=ψLL(0)e−r(T−t)e(µ̂X−σ̂Xγ)(T−t)Φ(−d1(t)),

since φ(x) = φ(−x) and

φ(d2(t)) =
1√
2π
e−

d2(t)2

2 =
1√
2π
e−

(d1(t)−σ̂X
√
T−t)2

2

=
1√
2π
e−

d1(t)2−2d1(t)σ̂X
√
T−t+σ̂2

X (T−t)
2

=
1√
2π
e−

d1(t)2

2 elog(X(t)
K )+(µ̂X−σ̂Xγ+ 1

2 σ̂
2
X)(T−t)− 1

2 σ̂
2
X(T−t)

=
X(t)

K

1√
2π
e−

d1(t)2

2 e(µ̂X−σ̂Xγ)(T−t) =
X(t)

K
φ(d1(t))e(µ̂X−σ̂Xγ)(T−t).

Using (4.9), we receive

−Hy(t,Y(t), X(t))Y(t)γ(t) =
γ(t)

1− α

(
V ∗(t)− ψLE

[
Z̃(t, T ) min(X(T ),K)

∣∣Ft]) .
The statement then follows directly from Theorem 4.2.5.

We conclude that this specification of the liability process leads to an optimal investment
strategy that can be stated in closed form. However, non-hedgeable risks are not included
in this liability specification and the resulting investment strategy does not have an
impact on the value of the liabilities. We address these extensions in the next section.

4.4 Performance-Linked Liabilities

In this section, we derive an optimal strategy for an investor with liabilities that include
an asset performance participation under the assumption of a power utility function
(2.6) and liabilities of the form (PLU). The following theorem, which is a consequence
of the general setting dealt with in Theorem 4.2.4, gives the solution for the optimal
terminal wealth in the setting with performance-linked liabilities:
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Theorem 4.4.1 (Optimal Terminal Wealth, Performance-Linked Liabilities). The op-
timal terminal wealth for an investor with power utility function (2.6) and performance-
linked liabilities as in (PLU) is given by

V ∗(T ) =
(

∆ωY (v0)Z̃(T )
) 1
α−1

,

with

∆ω := (E[(1− ψLL1(T ))α |FT ])−1

and

Y (v0) :=

(
1

v0
E
[
Z̃(T )

(
∆ωZ̃(T )

) 1
α−1

])1−α
.

Proof. For the power utility case with asset participation type liabilities, we have

Ûω(v) =E
[

1
α (v − ψLvL1(T ))α

∣∣FT ] =
vα

α
E
[
(1− ψLL1(T ))α

∣∣FT ]
and thus, we can directly calculate

Û ′ω(v) = vα−1E
[
(1− ψLL1(T ))α

∣∣FT ] .
Using Assumption (L2.1) and k1, ψL ∈ (0, 1), we get v̂0(ω) = 0 and thus Û ′ω(v̂0(ω)) =
Û ′ω(0) = 0. Hence,

Îω(y) = (∆ωy)
1

α−1 ,

for all y > 0 with
∆ω = (E [(1− ψLL1(T ))α |FT ])−1

and

H(0, y,X(0)) = E
[
Z̃(T )Îω(yZ̃(T ))

]
= E

[
Z̃(T )

(
∆ωyZ̃(T )

) 1
α−1

]
.

Thus, Y (v0) is given by

H(0, Y (v0), X(0)) = E
[
Z̃(T )V ∗(T )

]
=E

[
Z̃(T )

(
∆ωY (v0)Z̃(T )

) 1
α−1

]
!

= v0

⇔ v0 =Y (v0)
1

α−1E
[
Z̃(T )

(
∆ωZ̃(T )

) 1
α−1

]
⇔ Y (v0) =

(
1

v0
E
[
Z̃(T )

(
∆ωZ̃(T )

) 1
α−1

])1−α
.

Finally, V ∗(T ) = Î(Y (v0)Z̃(T )).
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The structure of the terminal wealth is similar to the terminal wealth of an investor with
power utility and without considering the surplus. The surplus is taken into account by
the adjustment factor

∆
1

α−1
ω = (E[(1− ψLL1(T ))α |FT ])

1
1−α ,

where the term

1− ψLL1(T ) =
S(T )

V (T )

can be interpreted as the terminal surplus relative to the terminal wealth of the asset
portfolio. From the structure of ∆ω, we can also deduce that the unhedgeable risks (i.e.
risks independent of FT ) are considered in the optimal terminal wealth (and subsequently
in the investment strategy leading to the terminal wealth) only in expectation. The
actual realization of the unhedgeable risks only has an impact on the terminal surplus,
but not the terminal wealth. However, the hedgeable parts of L1(T ) lead to the following
impact of the adjustment factor ∆ω: for α < 0, an ω ∈ Ω resulting in a larger relative

surplus leads to a smaller adjustment factor ∆
1

α−1
ω , whereas for α > 0, a larger relative

surplus leads to a larger adjustment factor. This means that the adjustment factor ∆
1

α−1
ω

has a dampening effect on the volatility of the terminal wealth for α < 0, which results
from the high risk aversion. On the other hand, a less risk-averse investor with α > 0
uses a large capital buffer to increase the final wealth. Interpreting the limit α → 0 as
an investor with logarithmic utility in terms of the relative risk aversion, we have for
such an investor

E [U(S(T ))] = E [log (V (T )− ψLV (T )L1(T ))]

= E [log(V (T ))] + E [(1− ψLL1(T ))] .

Hence, the solution to (PS) is independent of L1(T ), the relative surplus does not have
an impact on the terminal wealth and therefore, this limit separates the cases α > 0 and
α < 0.

We can also deduce optimal investment strategies in the setting with performance-linked
liabilities.

Theorem 4.4.2 (Optimal Investment Strategy, Performance-Linked Liabilities). Let
Assumption (LS) be satisfied. The optimal terminal wealth for an investor with power
utility function (2.6) and performance-linked liabilities as in (PLU) is given by

π∗(t) =
γ(t)

(1− α)σ(t)
+

1

σ(t)V ∗(t)
Hx (t,Y(t), X(t))σX(t,X(t)),
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with

Y(t) = Y (v0)Z̃(t),

Y (v0) as in Theorem 4.4.1 and

Hx(t,Y(t), X(t)) = Y(t)
1

α−1E
[
Z̃(t, T )

α
α−1

∂

∂X(t)
(∆ω(g(X(t), ξ(t, T ))))

1
α−1 |Ft

]
.

Furthermore,

V ∗(t) = E
[
Z̃(t, T )

(
∆ω (g(X(t), ξ(t, T )))Y(t)Z̃(t, T )

) 1
α−1 |Ft

]
.

Proof. We apply Theorem 4.2.5 to the optimal wealth from Theorem 4.4.1. We have

V ∗(t) = H(t,Y(t), X(t)) =E
[
Z̃(t, T )Îω(Y(T ))|Ft

]
=E

[
Z̃(t, T ) (∆ω(X(T ))Y(T ))

1
α−1 |Ft

]
=E

[
Z̃(t, T )

(
∆ω (g(X(t), ξ(t, T )))Y(t)Z̃(t, T )

) 1
α−1 |Ft

]
.

For the calculation of Hx and Hy, the expectation and differentiation can be interchanged
by dominated convergence due to Assumption (L2). Hence,

−Hy(t,Y(t), X(t))Y(t)γ(t)

= −Y(t)γ(t)
∂

∂Y(t)
E
[
Z̃(t, T )

(
∆ω (g(X(t), ξ(t, T )))Y(t)Z̃(t, T )

) 1
α−1 |Ft

]
=

γ(t)

1− α
E
[
Z̃(t, T )

(
∆ω (g(X(t), ξ(t, T )))Y(t)Z̃(t, T )

) 1
α−1 |Ft

]
=

γ(t)

1− α
V ∗(t)

and

Hx(t,Y(t), X(t)) =
∂

∂X(t)
E
[
Z̃(t, T )

(
∆ω (g(X(t), ξ(t, T )))Y(t)Z̃(t, T )

) 1
α−1 |Ft

]
=Y(t)

1
α−1E

[
Z̃(t, T )

α
α−1

∂

∂X(t)
(∆ω(g(X(t), ξ(t, T ))))

1
α−1 |Ft

]
The statement follows with Theorem 4.2.5.

In Theorem 4.4.2, we observe again a three-fund solution. In contrast to Corollary 4.3.1,
where the performance seeking part was scaled by the relative surplus at time t, it has
the structure of a constant-mix strategy plus liability hedging term here. In the case of
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constant coefficients, which will be of particular relevance for our numerical examples,
we obtain

Hx(t,Y(t), X(t))

= Y(t)
1

α−1E
[(
e−(r+ 1

2
γ2)(T−t)−γ(W (T )−W (t))

) α
α−1 ∂

∂X(t)
(∆ω(g(X(t), ξ(t, T ))))

1
α−1 |Ft

]
= Y(t)

1
α−1 e

α
1−α(r+ 1

2
γ2)(T−t)E

[
e
γα
1−α (W (T )−W (t)) ∂

∂X(t)
(∆ω(g(X(t), ξ(t, T ))))

1
α−1 |Ft

]
.

4.4.1 Performance-Linked Liabilities with Capped Benefits and
Unhedgeable Risks

The preceding theorem allows for the consideration of liability factors L1(T ) which are
only partially hedgeable. To illustrate that, we use a two-factor model with one factor
representing the hedgeable risks and one factor representing the unhedgeable risks. For
the liabilities presented here, we can explicitly calculate

∆
1

α−1
ω = (E [(1− ψLL(0) (β1f(X(T )) + β2U1))α |FT ])

1
1−α

and ∂
∂X(t)∆

1
α−1
ω as shown in the following corollary.

Corollary 4.4.3 (Two-Factor Performance-Linked Liabilities). The optimal terminal
wealth for an investor with power utility function (2.6) and performance-linked liabilities
as in (PLCBU) with general f is given by Theorem 4.4.1 and the optimal investment
strategy is given by Theorem 4.4.2 with

∆
1

α−1
ω =

(
(1−ψLL(0)(β1f(X(T ))+β2c1))α+1−(1−ψLL(0)(β1f(X(T ))+β2c2))α+1

(c2−c1)(ψLL(0)β2)(α+1)

) 1
1−α

and

∂

∂X(t)
∆

1
α−1
ω =

1

1− α

(
−ψLL(0)β1f

′(X(T ))gx(X(t), ξ(t, T ))

((c2 − c1) (ψLL(0)β2) (α+ 1))
1

1−α

)
[(1− ψLL(0) (β1f(X(T )) + β2c1))

α

− (1− ψLL(0) (β1f(X(T )) + β2c2))
α

] (α+ 1)·

·
[
(1− ψLL(0) (β1f(X(T )) + β2c1))

α+1

− (1− ψLL(0) (β1f(X(T )) + β2c2))
α+1
] α

1−α

for α 6= −1. For α = −1, we have

∆
1

α−1
ω =

(
1

(c2 − c1)(ψLL(0)β2)
log

(
1− ψLL(0) (β1f(X(T )) + β2c1)

1− ψLL(0) (β1f(X(T )) + β2c2)

)) 1
2
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and

∂

∂X(t)
∆

1
α−1
ω =

−ψLL(0)β1f
′(X(T ))gx(X(t), ξ(t, T ))

(1− α) ((c2 − c1)(ψLL(0)β2))
1
2

(
log

(
1− ψLL(0) (β1f(X(T )) + β2c1)

1− ψLL(0) (β1f(X(T )) + β2c2)

))− 1
2

·
(

1

1− ψLL(0) (β1f(X(T )) + β2c1)
− 1

1− ψLL(0) (β1f(X(T )) + β2c2)

)
.

Proof. For liabilities of the form (PLCBU), the corresponding random utility function
is given by

Ûω(v) = E [U (v − ψLvL(0) (β1f(X(T )) + β2U1))|FT ] .

For K < 1
β1

(
1

ψLL(0) − β2c2

)
, we obtain with f(X(T )) ≤ K that

L1(T,X(T ),U1)) = ψLL(0) (β1f(X(T )) + β2U1) < ψLL(0)(β1K + β2c2) =: k1 < 1.

Hence, (L2.1) holds and Û is well-defined for all v > 0, i.e. v̂0(ω) ≡ 0. The optimal
terminal wealth is given by Theorem 4.1 with ∆ω = (E[(1− ψLL1(T ))α |FT ])−1. First,
we consider the case α 6= −1. Since X(T ) is FT -measurable and U1 is independent of
FT , it follows that

E [(1− ψLL1(T ))α |FT ] =
1

c2 − c1

∫ c2

c1

(1− ψLL(0) (β1f(X(T )) + β2u))α du,

and consequently

1

∆ω
=

−1

(c2 − c1)(ψLL(0)β2)

∫ 1−ψLL(0)(β1f(X(T ))+β2c2)

1−ψLL(0)(β1f(X(T ))+β2c1)
uαdu

= (1−ψLL(0)(β1f(X(T ))+β2c1))α+1−(1−ψLL(0)(β1f(X(T ))+β2c2))α+1

(c2−c1)(ψLL(0)β2)(α+1) .

Furthermore,

∂

∂X(t)
∆

1
α−1
ω

=
∂

∂X(t)

(
(1−ψLL(0)(β1f(g(X(t),ξ(t,T )))+β2c1))α+1−(1−ψLL(0)(β1f(g(X(t),ξ(t,T )))+β2c2))α+1

(c2−c1)(ψLL(0)β2)(α+1)

) 1
1−α

=
1

1− α

(
−ψLL(0)β1f

′(X(T ))gx(X(t), ξ(t, T ))

(c2 − c1) (ψLL(0)β2) (α+ 1)

)
[(1− ψLL(0) (β1f(X(T )) + β2c1))α

− (1− ψLL(0) (β1f(X(T )) + β2c2))α]

· (α+ 1)
(

(1−ψLL(0)(β1f(X(T ))+β2c1))α+1−(1−ψLL(0)(β1f(X(T ))+β2c2))α+1

(c2−c1)(ψLL(0)β2)(α+1)

) α
1−α

,

which can be written as in the statement. In case α = −1, the proof works analogously,
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but we have

1

∆ω
=

1

(c2 − c1)(ψLL(0)β2)
log

(
1− ψLL(0) (β1f(X(T )) + β2c1)

1− ψLL(0) (β1f(X(T )) + β2c2)

)
,

respectively

∆
1

α−1
ω =

(
1

(c2 − c1)(ψLL(0)β2)
log

(
1− ψLL(0) (β1f(X(T )) + β2c1)

1− ψLL(0) (β1f(X(T )) + β2c2)

)) 1
2

and

∂

∂X(t)
∆

1
α−1
ω

=
−ψLL(0)β1f

′(X(T ))gx(X(t), ξ(t, T ))

(1− α) ((c2 − c1)(ψLL(0)β2))
1
2

(
log

(
1− ψLL(0) (β1f(X(T )) + β2c1)

1− ψLL(0) (β1f(X(T )) + β2c2)

))− 1
2

·
(

1

1− ψLL(0) (β1f(X(T )) + β2c1)
− 1

1− ψLL(0) (β1f(X(T )) + β2c2)

)
.

With U1 being independent of FT and X(T ) being FT -measurable, the distortion factor

∆
1

α−1
ω is expressed in terms of an expected value of a function of U1 and the actual

realization of the unhedgeable risks does not influence the optimal investment strategy.

Remark 4.4.4. For f as in (4.4), we have f ′(x) = 1 for x < K and f ′(x) = 0 for
x > K. This property together with the fact that f is constant for x ≥ K simplifies the
numerical calculation of the expectation from Theorem 4.4.2. The case of f from (4.5)
is very similar. The same holds true for the two subsequent examples in this section.

In the case β2 = 0, i.e. if there are no unhedgeable risks, the optimal investment strategy
simplifies and is given by the following corollary.

Corollary 4.4.5 (Performance-Linked Liabilities with Capped Benefits (PLCB)). The
optimal terminal wealth for an investor with power utility function (2.6) and performance-
linked liabilities as in (PLCBU) with general f and β2 = 0 is given by Theorem 4.4.1
and the optimal investment strategy is given by Theorem 4.4.2 with

∆
1

α−1
ω = (1− ψLL(0)β1f(X(T )))

α
1−α

and

∂

∂X(t)
∆

1
α−1
ω = (1− ψLL(0)β1f(X(T )))

2α−1
1−α

(
α

1− α

)
(−ψLL(0)β1f

′(X(T ))) gx(X(t), ξ(t, T )).
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Proof. The proof works along the proof of Corollary 4.4.3 with

∆ω = (E[(1− ψLL1(T ))α |FT ])−1 = (1− ψLL1(T ))−α

since the liabilities are FT -measurable here. In this case, we obtain

∂

∂X(t)
∆
− 1
b

ω =
∂

∂X(t)

(
(1− ψLL(0)β1f(X(T )))

−α
) 1
α−1

=
∂

∂X(t)
(1− ψLL(0)β1f(g(X(t), ξ(t, T ))))

α
1−α

= (1− ψLL(0)β1f(X(T )))
2α−1
1−α

(
α

1− α

)
(−ψLL(0)β1f

′(X(T ))) gx(X(t), ξ(t, T )).

It is clearly visible in this example that the factor ∆
1

α−1
ω only depends on the relative

surplus and the risk aversion here. As described earlier, Corollary 4.4.5 describes a
special case of Corollary 4.3.1 (with L2(T,X(T )) = 0).

4.4.2 Liabilities Driven by Geometric Brownian Motion

In this section, we consider the liability model (PLCBU*).

Remark 4.4.6. In the case of completely hedgeable liabilities, i.e. σ̂ε = 0, the liabilities
correspond to the setting from Corollary 4.4.5 for the choice β1 = 1.

We examine the optimal terminal wealth and optimal investment strategy, in particu-
lar

∆
1

α−1
ω =

(
E
[
(1− ψLL(0)f(X(T )U1(T )))α

∣∣∣FT ]) 1
1−α

in the following corollary.

Corollary 4.4.7 (Liabilities Driven by Geometric Brownian Motion). The optimal ter-
minal wealth for an investor with power utility function (2.6) and performance-linked
liabilities as in (PLCBU*) with general f is given by Theorem 4.4.1 and the optimal
investment strategy is given by Theorem 4.4.2 with

1

∆ω
=

∫ ∞
−∞

(
1− ψLL(0)f

(
X(T )e−

1
2
σ̂2
εT+σ̂ε

√
Tu
))α

φ(u)du
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and

∂

∂X(t)
∆

1
α−1
ω =

1

1− α

(∫ ∞
−∞

(
1− ψLL(0)f

(
g(X(t), ξ(t, T ))e−

1
2
σ̂2
εT+σ̂ε

√
Tu
))α

φ(u)du

) α
1−α

·
∫ ∞
−∞

α

(
1− ψLL(0)f

(
g(X(t), ξ(t, T ))e−

1
2
σ̂2
εT+σ̂ε

√
Tu
))α−1

·
(
−ψLL(0)f ′

(
g(X(t), ξ(t, T ))e−

1
2
σ̂2
εT+σ̂ε

√
Tu
))

· gx(X(t), ξ(t, T ))e−
1
2
σ̂2
εT+σ̂ε

√
Tuφ(u)du.

Proof. We proceed in a similar way as in the proof of Corollary 4.4.3. The random
utility function for liabilities of the form (PLCBU*) is given by

Ûω(v) =E [U(v − ψLvL(0)f(X(T )U1(T )))|FT ] .

For K < 1
ψLL(0) , we have with f(X(T )U1(T )) ≤ K

L1(T,X(T ),U1)) = ψLL(0)f(X(T )U1) ≤ ψLL(0)K =: k1 < 1.

Hence, (L2.1) holds and Û is well-defined for all v > 0, i.e. v̂0(ω) ≡ 0. Again, we apply
Theorem 4.4.1 and Theorem 4.4.2. It follows that

1

∆ω
=

∫ ∞
−∞

(
1− ψLL(0)f

(
X(T )e−

1
2
σ̂2
εT+σ̂ε

√
Tu
))α

φ(u)du,

Thus,

∆
1

α−1
ω =

(∫ ∞
−∞

(
1− ψLL(0)f

(
X(T )e−

1
2
σ̂2
εT+σ̂ε

√
Tu
))α

φ(u)du

) 1
1−α

and the statement follows by a straight-forward derivation using that expectation and
differentiation can be interchanged here by dominated convergence due to (L2.1) and
the properties of f as introduced in (PLCBU*).
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4.5 Comparison of Optimal Investment Strategies

In this section, we use the different derived results to assess the impact of the liabili-
ties, of the performance participation and of the unhedgeable risks on the investment
strategy in the surplus optimization framework. In particular, we use the liability mod-
els specified in Examples 4.1.3 (ILCB), 4.1.5 (PLCBU), 4.1.6 (PLCBU*) and Corollary
4.4.5 (PLCB) as well as a strategy with mixed, hedgeable liabilities. In Section 4.5.1, we
analyze the influence of general parameters on the optimal investment strategy. Com-
pared to the Merton portfolio µ−r

(1−α)σ2 , the replicable liabilities from Corollary 4.3.3

(Example 4.1.3 (ILCB)) illustrate the influence of the hedgeable, index-linked liabilities
with capped benefits. On the other hand, compared to the results from Corollary 4.4.5
(performance-linked, replicable (PLCB)), this setting also serves as a reference point for
the assessment of the impact of the performance participation with hedgeable liabilities.
In addition, we consider replicable liabilities as in Corollary 4.3.1 (mixed liabilities), with
liabilities consisting of an equally-weighted average of the replicable performance-linked
and index-linked type. In Section 4.5.2, the impact of the unhedgeable component in the
liability risk is studied when comparing the results from Corollary 4.4.3 (performance-
linked liabilities in a two-factor model, liabilities as in Example 4.1.5 (PLCBU)) and
Corollary 4.4.5 (performance-linked, replicable (PLCB)). Finally, comparing the results
from Corollary 4.4.3 (performance-linked liabilities in a two-factor model (PLCBU)) and
Corollary 4.4.7 (performance-linked liabilities, setting as in Example 4.1.6 (PLCBU*)),
we compare the influence of the different types of models with unhedgeable risks for the
liabilities.

For these comparisons, we compute the optimal allocation in the risky asset in t = 0
numerically. Unless otherwise mentioned, we consider an investor with power utility
function with α = −1 and a risky asset representing equity with µ = 0.06 and σ = 0.3.
Furthermore, we choose r = 0.01, T = 10, ψL = 1, V (0) = 1 and L(0) = 0.5. X is
always modeled as in (4.3) with µ̂X = 0, σ̂X = 0.1. For the specific parameters of the
liability models, we choose K = 1.7, β1 = β2 = 0.5, c1 = 0, c2 = 0.1, and σ̂ε = 0.48.
To ensure comparability of the models, σ̂ε is chosen such that the optimal allocations of
both models with unhedgeable risks, i.e. the models from Corollary 4.4.3 (PLCBU) and
Corollary 4.4.7 (PLCBU*), match for the setting in Section 4.5.2, whereas L(0) andK are
chosen such that the conditions for Corollary 4.4.3, Corollary 4.4.5 and Corollary 4.4.7
hold. Due to the typical properties of insurance products, liabilities which are partially
linked to the development of an index or the portfolio of the insurance company itself
are often most interesting. For f as in (4.4), the index-linked liabilities exhibit such
a behavior. However, the performance-linked liabilities are stronger linked to the de-
velopment of the risky asset than the asset portfolio itself. Therefore, we use f from
(4.4) only to analyze the optimal investment strategy with index-linked liabilities and
to illustrate the impact of the performance participation in the first part. In the second
part, we choose f from (4.5) to get a more realistic assessment of the performance-linked
liabilities. In this setting, we compare the different models for the performance-linked
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liabilities and analyze the impact of unhedgeable risks.

4.5.1 Impact of the Type of the Liabilities
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Mixed Liabilities

Figure 4.1: Optimal investment strategy
depending on the initial wealth, f as
in (4.4).
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Figure 4.2: Optimal investment strategy
depending on ψL, f as in (4.4).

In Figure 4.1, we see that the optimal allocation in the risky asset is independent of
the initial wealth for the model with performance-linked liabilities (PLCB) as both, the
assets and liabilities, increase with V (0), whereas the allocation is decreasing in the
initial wealth for the model with index-linked liabilities (ILCB) as a lower initial wealth
requires a hedge of the liability risk which makes up a larger part of the portfolio. As
f(X(T )) is positively correlated to the asset portfolio here, the higher investment for the
index-linked and performance-linked liabilities compared to the Merton portfolio can be
interpreted as an additional effort to hedge the liabilities.

The level to which the liabilities are considered influences the optimal investment strat-
egy as Figure 4.2 shows. As ψL → 0, the extent to which the liabilities are considered
is decreasing and the strategies converge to the Merton portfolio. Again, we observe
that the performance-linked liabilities lead to the highest allocation in the risky asset.
Similar to the observation in Figure 4.1, the positive correlation of X(T ) and the asset
portfolio leads for the index-linked and performance-linked liabilities to a larger alloca-
tion as the surplus decreases, which can be interpreted as an additional effort to hedge
the liabilities.

To examine the effect of the risk aversion, Figure 4.3 shows the optimal allocation de-
pending on the relative risk aversion 1 − α. The allocation in the risky asset is de-
creasing with a higher level of risk aversion in all cases. However, the allocation in
the performance-linked case is higher than the allocation of the Merton portfolio for
1 − α > 1 and lower than the Merton portfolio for 1 − α < 1. The higher allocation

80



4 Surplus Optimization

of the investor being more risk-averse compared to the Merton portfolio can again be
interpreted as an additional attempt to hedge the liability risk inherent in L1(t). As
described before, the limit α → 0, can be interpreted as an investor with logarithmic
utility and the optimal investment strategy is independent of L1(T ) for such an in-
vestor. Therefore, the performance-linked investment strategy converges to the Merton
portfolio as 1 − α → 1. For the index-linked liabilities, the difference of the allocation
between a high risk aversion and a low risk aversion is smaller. The reason is that the
investor having index-linked liabilities hedges the liabilities regardless of the risk aver-
sion. Only the investment of the remaining wealth is subject to the risk aversion (see
the explanation after Corollary 4.3.1). In Figures 4.1-4.3, the optimal allocation for the
mixed liabilities is always between the allocation of the performance-linked liabilities
and the index-linked liabilities. To summarize, we see that in the case of index-linked
or performance-linked liabilities, an investor invests considerably more in the risky asset
than the investor without performance-linked liabilities. Furthermore, we observe that
if the surplus is lower or the investor is more risk-averse, additional efforts are made to
hedge the liabilities in the case of performance-linked liabilities. The different liability
models show that a close link to the insurance company’s portfolio value leads to higher
allocations in the risky asset, which should be considered for the product design if, e.g.,
a high share of risky assets is desired for long-term products. Furthermore, the larger
difference in the allocation in Figure 4.3 for the performance-linked liabilities compared
to the index-linked liabilities shows that in case of performance-linked liabilities, the
allocation is more sensitive to a change in α, so the insurance company’s risk aversion is
more important to the policy holder. This can be explained by the fact that the insur-
ance company’s risk aversion does not have an impact on the performance of the index
underlying the index-linked product. However, if the policy holder participates in the
insurance company’s asset portfolio, the performance of the policy is directly influenced
by the insurance company’s risk aversion. As a consequence, the risk aversion of the
insurance company and the policy holder should be consistent for performance-linked
products.
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Figure 4.3: Optimal investment strategy
depending on the relative risk aversion
1− α, f as in (4.4).
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Figure 4.4: Optimal investment strategy
depending on the relative risk aversion
1− α, f as in (4.5).

4.5.2 Comparison of Investment Strategies with Performance-Linked
Liabilities and Non-Hedgeable Risks

In this section, we compare the settings for performance-linked liabilities (Corollaries
4.4.5 (PLCB), 4.4.3 (PLCBU) and 4.4.7 (PLCBU*)). In particular, we analyze the
impact of unhedgeable risks on the optimal investment strategy. For a more realistic
model of the liabilities, we use f from (4.5) in this section.
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Figure 4.5: Optimal investment strategy
depending on ψL, f as in (4.5).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

β
1

0

0.05

0.1

0.15

0.2

0.25

0.3

π
* (0

)

Merton Portfolio

Perf.-Linked Liabilities (PLCB)

Perf.-Linked Liabilities (PLCBU), β
2
=0.5

Perf.-Linked Liabilities (PLCBU), β
2
=0.7

Figure 4.6: Optimal investment strategy
depending on β1, f as in (4.5).

By the choice of the parameters, both cases with performance-linked liabilities and addi-
tional unhedgeable risks have the same allocation in the base case with the parameters
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as described above. It is observable from Figure 4.4 that for 1 − α > 1, performance-
linked liabilities without unhedgeable risks (PLCB) admit a higher allocation compared
to the corresponding liability model with unhedgeable risks (PLCBU) as no buffer for
these risks must be provided. For an increasing portion in ψL, i.e. as the weight of
the liabilities increases and the surplus decreases, the allocation in the risky asset is de-
creasing. This is in contrast to the results presented in Figure 4.3, where the difference
occurs as f(X(T )) is negatively correlated to the risky asset in the setting of Figure 4.4.
Moreover, we notice that the allocation in the risky asset for the liabilities (PLCBU*)
is slightly higher than the allocation in the the liability model (PLCBU) for ψL ∈ (0, 1),
while both allocations are the same for ψL = 1 (by construction of the paremter set)
and for ψL = 0 (as the liabilities are not at all taken into account). The weight for the
consideration of the hedgeable part of the liability risk in the liability model (PLCBU),
represented by β1, varies in Figure 4.6 and is shown for different levels of β2, β2 = 0.7,
β2 = 0.5 and β2 = 0 (hedgeable performance-linked liabilities). We see that for larger
values of β1, the optimal allocation decreases as well as for larger values of β2, so an
increase in the liability risk leads to a decrease in the allocation. Independent of the
level of β2, the optimal investment strategy converges to the Merton portfolio as β1 → 0.
This can be explained by the observation that for β1 = 0 and any β2, the surplus can
be represented as a product of the portfolio value and the relative surplus 1− ψLL1(t),
with L1(t) being independent of the portfolio value. In summary, Figures 4.4-4.6 show
that unhedgeable risks such as additional mortality risks lead to a reduction in the risky
asset allocation. The effect increases as the risk aversion increases (Figure 4.4), the
surplus decreases (stronger consideration of the liabilities, Figure 4.5) or the portion of
the unhedgeable risks increases (Figure 4.6). For the design of products, this means
that the policy holder suffers form the insurance company’s unhedgeable risks through
a lower allocation in risky assets, in particular in case the insurance company has little
own funds or is very risk-averse.

4.6 Comparison of Funding Ratio Optimization and
Surplus Optimization

As stated in Remark 4.3.2, the optimal investment strategy for the surplus optimiza-
tion framework can also be interpreted in terms of a three-fund separation. On the
other hand, we have observed in Chapter 3 that the CPT funding ratio optimization
can be interpreted as a generalization of the expected utility optimization. To com-
pare the funding ratio optimization and the surplus optimization, we first establish a
connection between the CPT funding ratio optimization and the surplus optimization
approach. Then, we examine the three-fund separation of the surplus optimization ap-
proach further. Most aspects can be nicely interpreted directly from the closed-form
representations of the investment strategies. In addition, Figures 4.7-4.10 illustrate the
quantitative impact of changes in wealth and the risk aversion. The parameters chosen
here are V (0) = 1.1, L(0) = 1, α = −1, B = ψL = 0.5 and δ+ = 0.1.
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In the CPT context, we optimize the utility of F̄ = F π(T ) − B = V π(T )
L(T ) − B and we

have

V π(T )
L(T ) −B ≥ 0 ⇔ V π(T ) ≥ BL(T ) ⇔ V π(T )−BL(T ) ≥ 0.

We observe that the terminal surplus is positive if and only if the funding ratio is
above the reference point. Hence, the reference point B, indicating to which extent the
liabilities are considered, corresponds to ψL in the partial surplus optimization.

To be able to compare the three-fund separation for the surplus optimization to the
results for the funding ratio optimization, we expand the analysis from Remark 4.3.2
by using a liability model as in Chapter 3, i.e. we assume liabilities modeled by a
geometric Brownian motion. In Example 4.1.1, we already showed that the liability
model from Chapter 3 can be included in the surplus optimization framework by choosing
L1(T,X(T )) = 0, L2(T,X(T )) = X(T ) and X is given by a Geometric Brownian motion

as in (4.3). In Chapter 3, the discounted liability process was assumed to be a Q̃-
martingale to be able to use the liability process as a numéraire, so we assume that
Z̃(t)X(t) is a martingale here. Then, we have with Remark 4.3.2 for the optimal investment
strategy

π∗(t) =
γ(t)

(1− α)σ(t)
·
V ∗(t)− ψLE

[
Z̃(t, T )L2(T,X(t))|Ft

]
V ∗(t)

+
σX(t,X(t))

σ(t)V ∗(t)
ψLE

[
Z̃(t, T )L2,x(T,X(T )gx(X(t), ξ(t, T ))|Ft

]
=

γ(t)

(1− α)σ(t)
·
V ∗(t)− ψLE

[
Z̃(t, T )X(T )|Ft

]
V ∗(t)

+
X(t)σ̂X
σ(t)V ∗(t)

ψLE
[
Z̃(t, T )ξ(t, T )|Ft

]
=

1

1− α
V ∗(t)− ψLX(t)

V ∗(t)
πPS +

ψLX(t)

V ∗(t)
σ−1σ̂X , (4.10)

with the martingale property of X and subsequently ξ and πPS as in (2.11). Here, ψLX(t) is
the value of the part of the liabilities considered, and σ−1σ̂X corresponds to the liability hedging

portfolio from Chapter 3. Thus, the part ψLX(t)
V ∗(t) σ

−1σ̂X hedges the liabilities completely. It is

visible that the investment in the performance seeking portfolio is scaled by the relative surplus

λS(V ∗(t), X(t)) := V ∗(t)−ψLX(t)
V ∗(t) and the relative risk tolerance 1

1−α . The strategy is therefore a

generalization of the CPPI strategy with the power utility of the surplus being a generalization
of the usual HARA utility for a stochastic floor. Furthermore, (4.10) can also be written as

π∗(t) =
1

1− α
λS(V ∗(t), X(t))πPS + (1− λS(V ∗(t), X(t)))σ−1σ̂X .

As the investor becomes more risk-averse i.e. α decreases, the investment in the performance
seeking portfolio is reduced, the liabilities are still completely hedged, and the investment in the
risk-free asset is therefore increased. As the surplus is decreased, i.e. V ∗(t) − ψLX(t) → 0 and
for arbitrary, but fixed α, the allocation in the risky asset is also reduced. As the liabilities are
still completely hedged, this means the investor only holds the liability hedging portfolio in the
limit.

84



4 Surplus Optimization

Recall that the three fund separations, which we obtained in Chapter 3 is given by

π∗(t) =
1

1− α
πPS +

(
1− 1

1− α

)
πLH

for the expected utility funding ratio optimization with power utility (see Corollary 3.1.2) and

π∗(t) = λCPT (F (t), B)πPS + (1− λCPT (F (t), B))πLH ,

with

λCPT (F (t), B) =
F (t)−B
F (t)

· 1− δ+
1− α

for the CPT optimization with initial well-funding (see Corollary 3.2.7). Comparing these results
to (4.10), we observe two differences. First, the allocation of the liability hedging portfolio in
the surplus optimization is independent of the the relative risk tolerance in (4.10). The power
utility applied to the surplus establishes a terminal wealth constraint V ∗(T ) ≥ ψLL2(T,X(T )).
Hence, the liabilities ψLL2(T,X(T )) have to be completely hedged regardless of the investor’s risk
aversion. As we observed, the optimal terminal surplus is the same as the optimal terminal wealth

from an investor with initial capital v0−E
[
Z̃(T )ψLL2(T )

]
(see Remark 4.3.2). Depending on the

risk aversion, the capital not needed to hedge the liabilties is distributed only between the risky
asset and the risk-free asset. This explains why the allocation in the liability hedging portfolio is
independent of α (see also Figure 4.7). Furthermore, this means that a very risk-averse investor
would hedge the liabilities and invest the remaining capital in a way such that there is little risk
for a loss in surplus, i.e. in the risk-free asset. In Figure 4.8, we observe the decrease in the
allocation in the risky asset as the risk aversion increases, where the difference in the allocation
between the surplus optimization approach and the CPT approach results from the distortion
in the CPT approach. For the funding ratio optimization in an expected utility framework
with power utility (Corollary 3.1.2), the utility function is defined for any non-negative terminal
funding ratio, i.e. there is no constraint on the terminal funding ratio and therefore no need
to hedge the liabilities completely. Moreover, the allocations in the liability hedging portfolio
and the performance seeking portfolio are independent of the actual wealth and funding ratio
(see Figures 4.9 and 4.10). For the CPT funding ratio optimization with initial well-funding and

η+ = 1 (Corollary 3.2.7), we have λCPT (F (t), B) = F (t)−B
F (t) · 1−δ+

1−α . Inserting F (t) = V (t)
L(t) , we

obtain

F (t)−B
F (t)

=
V (t)−BL(t)

V (t)
.

Thus, the allocation in the performance seeking portfolio is, except for the distorting factor,
the same in the CPT case and the surplus optimization case, where the reference point B again
corresponds to ψL in the surplus optimization. In contrast to the surplus optimization framework,
the investment in the liability hedging portfolio is increased as the risk aversion increases for the
expected utility funding ratio optimization and CPT funding ratio optimization (see Figure 4.7)
or as F (t) → B in the CPT funding ratio optimization (see Figure 4.9). This can be explained
as the investor within the surplus optimization framework reduces risk by reducing the volatility
of the surplus (i.e. hedging the liabilities completely and investing the remaining capital in the
risk-free asset) while an investor considering the funding ratio reduces the volatility by investing
in the liability hedging portfolio.
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Figure 4.7: Optimal strategy depending
on the relative risk aversion (liability
hedging part).
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Figure 4.8: Optimal strategy depending
on the relative risk aversion (performance
seeking part).
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Figure 4.9: Optimal strategy depending
on wealth (liability hedging part).
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Figure 4.10: Optimal strategy depending
on wealth (performance seeking part).

As observed in this chapter, considering the utility of the surplus imposes a constraint on the
terminal wealth, which ensures that the wealth does not fall below the value of the liabilities.
In practice, regulatory constraints such as the Solvency II regulatory regime for insurance com-
panies aim at protecting the policy holders by imposing constraints on insurance companies.
These constraints limit the decisions insurance companies can make. We deal with Solvency II
constraints on the investment strategy in Chapter 5 and Chapter 6.
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5 An Approximation to
Wealth-Dependent Risk Constraints

Motivated by the Solvency II regulatory framework, we develop solution methods for portfolio
optimization problems with wealth-dependent risk constraints in this chapter and in Chapter 6.
In this chapter, we begin by introducing a general portfolio optimization problem with wealth-
dependent risk constraints in Section 5.1. In Section 5.2, we introduce those parts of the convex
duality approach from Cvitanić and Karatzas (1992), which are transferable to our framework
with wealth-dependent portfolio constraints and we describe why their solution approach is not
applicable to our optimization problem. For constraint sets independent of wealth, we state
optimal investment strategies based on known results in Section 5.3. These results will be used
in the iterative two-step approach to the problem with wealth-dependent constraint sets and serve
as an associate problem in the solution approach in Chapter 6. In Section 5.4, we introduce the
Solvency II constraint set, for which we develop the iterative two-step approach in Section 5.5. We
assess the impact of the Solvency II constraints on the optimal investment strategy in Section 5.6
and compare our approach to an optimal approach on a discrete grid in Section 5.7. Large parts
of this chapter coincide with Escobar et al. (2019) or Escobar et al. (2020).

5.1 The Constrained Optimization Problem

We consider a closed and convex wealth-dependent constraint set K = (K(t, V (t))t∈[0,T ] and the
set of admissible strategies that satisfy the constraints

Λ(v0) := {π : π(t) ∈ K(t, V π(t)) Q-a.s.

and V π(t) ∈ V = (L,∞) Q-a.s. for all t ∈ [0, T ] , V π(0) = v0} .

As in Chapter 2.3, for a strictly increasing, strictly concave utility function, the constrained
optimization problem with utility from terminal wealth is defined as

Φ(v0) := sup
π∈Λ′(v0)

E [U (V π(T ))] , (P)

where Λ′(v0) ⊂ Λ(v0) consists of all π ∈ Λ(v0) satisfying E [U−(V π(T ))] <∞.

It should be noted that (P) does not fall under the framework established in Cvitanić and
Karatzas (1992). Although the authors mention their proofs can be extended to random con-
straint sets, i.e. constraint sets on the investment strategy π that depend on a random variable,
the case of a constraint set which depends also on wealth as a function of π is not covered as we
see later.
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5 An Approximation to Wealth-Dependent Risk Constraints

5.2 Convex Duality Framework

This section provides the theoretical background for the constrained portfolio optimization. In
Sections 5.2.1 and 5.2.2, we introduce the auxiliary market and optimality condition in the
context of wealth-dependent and investment constraints. In Cvitanić and Karatzas (1992), the
authors show that solving the constrained optimization problem is equivalent to solving an uncon-
strained optimization problem within an appropriately chosen auxiliary market. The appropriate
auxiliary market is chosen via a dual problem. In the following, we adapt parts of this approach
to the more general case of wealth-dependent constraints.

5.2.1 Auxiliary Markets

To create the auxiliary markets, we introduce d-dimensional processes (λ(t))t∈[0,T ], which are F-
progressively measurable. For t ∈ [0, T ] and V (t) ∈ V, the support function of the set K(t, V (t))
is defined as

δ(t, λ(t), V (t)) := sup
x∈K(t,V (t))

(−xTλ(t)) = − inf
x∈K(t,V (t))

xTλ(t), λ(t) ∈ Rd, (5.1)

and

XK(t,V (t)) :=
{
λ(t) ∈ Rd : δ(t, λ(t), V (t)) <∞

}
=

{
λ(t) ∈ Rd : inf

x∈K(t,V (t))
xTλ(t) > −∞

}
.

The following lemma illustrates the connection between the support function and the constraint
set and will be needed later.

Lemma 5.2.1 (Rockafellar (1970), p. 112).

π(t) ∈ K(t, V (t)) ⇔ δ (t, λ(t), V (t)) + π(t)Tλ(t) ≥ 0 for all λ(t) ∈ XK(t,V (t)).

The auxiliary markets Mλ with d + 1 assets and price processes (Pλ,i(t))t∈[0,T ], i = 0, ..., d are
derived from the original market by modifying the drift and the interest rate:

rλ(t) := r(t) + δ (t, λ(t), Vλ(t)) , µλ(t) := µ(t) + λ(t) + δ (t, λ(t), Vλ(t)) 1,

γλ(t) := σ−1(t) (µ(t) + λ(t)− r(t)1) = γ(t) + σ−1(t)λ(t).

The wealth process in Mλ is given by

dV πλ (t) =V πλ (t)
[
πT (t) ((µ(t) + λ(t) + δ(t, λ(t), V πλ (t))1) dt+ σ(t)dW (t))

]
+V πλ (t)

[
(1− π(t)T1) (r(t) + δ(t, λ(t), V πλ (t))) dt

]
=V πλ (t)

[
πT (t) (µ(t)dt+ σ(t)dW (t))

]
(5.2)

+ V πλ (t)
[
δ(t, λ(t), V πλ (t)) + π(t)Tλ(t) + (1− π(t)T1)r(t)

]
dt.

Note that the wealth processes in M and Mλ are the same if

δ(t, λ(t), V πλ (t)) + π(t)Tλ(t) = 0 for L ⊗Q− a.e. (t, ω) ∈ [0, T ]× Ω,
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5 An Approximation to Wealth-Dependent Risk Constraints

with L denoting the Lebesque measure. In the auxiliary market Mλ, we consider admissible
unconstrained strategies satisfying

Λλ(v0) := {π : V πλ (t) ∈ V Q-a.s. for all t ∈ [0, T ] , V πλ (0) = v0}

and especially those processes λ which are of the form

D :=

{
λ : E

(∫ T

0

‖λ(t)‖2dt

)
<∞, E

(∫ T

0

δ (t, λ(t), V πλ (t)) dt

)
<∞, for all π ∈ Λλ(v0)

}
.

For the optimization problem, we consider the subset Λ′λ(v0) ⊂ Λλ(v0) consisting of the strategies
in Λλ(v0), for which

E
[
U−(V πλ (T ))

]
<∞

holds additionally. The auxiliary problem in Mλ is defined as:

Φλ(v0) := sup
π∈Λ′λ(v0)

E [U (V πλ (T ))] . (PAUX)

The optimal investment strategy for (PAUX) is denoted by πλ, the corresponding wealth at time
t ∈ [0, T ] is denoted by V πλλ (t). Note that the investment strategy in (PAUX) is, in contrast to
(P), not directly restricted by the constraint set K, so (PAUX) might be easier to solve.

5.2.2 Optimality Condition for Wealth-Dependent Constraint Sets

As a result of the wealth-dependent constraint set, several parts of the main results from Cvitanić
and Karatzas (1992) are compromised. For once, the support function depends on wealth as well,
or alternatively on the integrated strategy, hence jeopardizing the construction of the auxiliary
and dual problems, i.e. Z̃λ depends on V . Moreover, in Cvitanić and Karatzas (1992), the
appropriate auxiliary market is obtained from optimizing the dual problem. The dual problem
in their case does not depend on primal variables, i.e. control π or wealth V , hence it can be
decoupled from the primal problem. As also stated in Cvitanić and Karatzas (1992) this is,
in principal, still possible for stochastic constraints (with such decoupling property). For our
constraint set, however, the situation is more involved, as both, the investment strategy and
wealth, are mixed in the constraint set. The question if and how a dual for such a type of
dependence can be established and solved is, to the best of our knowledge, not answered yet.
The only part from the approach in Cvitanić and Karatzas (1992) which can be transferred to
our setting is their Proposition 8.3. The following proposition provides a condition for the choice
of an appropriate auxiliary market. It generalizes Proposition 8.3 from Cvitanić and Karatzas
(1992) to a setting including wealth-dependent constraints.

Proposition 5.2.2 (Optimality Condition). Suppose that, for some λ∗ ∈ D

πλ∗(t) ∈ K(t, V πλ∗λ∗ (t)) (5.3)

δ (t, λ∗(t), V πλ∗λ∗ (t)) + πλ∗(t)
>λ∗(t) = 0 (5.4)

hold L ⊗ Q-almost everywhere, with πλ∗ being the optimal investment strategy for (PAUX) in
Mλ∗ . Then, πλ∗ belongs to Λ′(v0) and is optimal for the original constrained optimization
problem (P).
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Proof. With (5.4) and (5.2), we conclude that V πλ∗λ∗ is also the wealth process corresponding to
πλ∗ in the original market M, i.e. V πλ∗λ∗ = V πλ∗ , and with (5.3) that πλ∗ ∈ Λ′(v0). Therefore,
we have Φλ∗(v0) ≤ Φ(v0).

On the other hand, with Lemma 5.2.1, we have for an arbitrary investment strategy π ∈ Λ′(v0)
that π(t) ∈ K(t, V π(t)) and thus

δ (t, λ∗(t), V π(t)) + π(t)>λ∗(t) ≥ 0

Q-almost surely and t ∈ [0, T ] and subsequently since V πλ∗(0) = V π(0) = v0 with (5.2)

V πλ∗(t) ≥ V π(t) for all t ∈ [0, T ]

Q-almost surely and as U is (strictly) increasing, also

E
[
U−
(
V πλ∗(T )

)]
≤ E

[
U−
(
V π(T )

)]
<∞

and

E
[
U
(
V π(T )

)]
≤ E

[
U
(
V πλ∗(T )

)]
.

We deduce Λ′(v0) ⊂ Λ′λ∗(v0) and
Φ(v0) ≤ Φλ∗(v0).

Hence, πλ∗ is optimal for (P).

While the previous proposition provides a condition for λ∗ in a setting of wealth-dependent
constraints, it does not show a practical way how to obtain λ∗. As stated above, the method
from Cvitanić and Karatzas (1992) to obtain λ∗ through a dual problem is not applicable in
our context. In the next section, we deal with constraint sets which are independent of wealth,
which will be the basis for the approximative two-step approach in this chapter as well as the
treatment of truly wealth-dependent constraints in Chapter 6.

5.3 Dual Optimization Problem for Constraint Sets
Independent of Wealth with Logarithmic Utility and
Power Utility

The following results provide the solution for the special case of a problem with constraints
independent of wealth, i.e. we assume a constraint set K ≡ K, K being nonempty, convex
and closed. Furthermore, we consider the corresponding optimization problem (P) with this
constraint set. Since the constraint set K is independent of wealth, the setting is inside the
framework by Cvitanić and Karatzas (1992). The process λ∗ satisfying (5.3) and (5.4) can be
obtained by solving a dual problem (Theorem 10.1. from Cvitanić and Karatzas (1992)) which
can be used, e.g., to derive the solution for logarithmic utility and power utility. In our setting,
the dual problem to (P) reads

Φ̃ := inf
λ∈D

E
[
Ũ
(
Z̃λ(T )

)]
, (D̂)
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with the pricing kernel in the auxiliary market Mλ

Z̃λ(t) = exp

(
−
∫ t

0

r(s) + δ(s, λ(s)) +
1

2
‖γλ(s)‖2ds−

∫ t

0

γλ(s)T dW (s)

)
and the convex conjugate of the utility function is defined as

Ũ(y) := sup
v>0

[U(v)− vy] , 0 < y <∞.

For the logarithmic utility and the power utility, we present a version of the result in Cvitanić
and Karatzas (1992) but without consumption. We consider a logarithmic utility function of the
form (2.4) with the convex conjugate of the utility function given by

Ũ(y) = sup
v>0

[U(v)− vy] = −(1 + log(y)), 0 < y <∞

and a power utility function of the form (2.6) with the convex conjugate

Ũ(y) = sup
v>0

[U(v)− vy] =
1− α
α

y
α
α−1 , 0 < y <∞.

For both, the logarithmic utility and the power utility, the optimal control λ∗ for (D̂) and the
optimal investment strategy can be represented in the following way.

Proposition 5.3.1. For U being the logarithmic utility function from (2.4) (case α = 0) or
the power utility function from (2.6) (case α < 1, α 6= 0), the optimal investment strategy with
constant constraint set K is given by

π∗(t) = πλ∗(t) =
1

1− α
(σ(t)σ(t)T )−1(µ(t) + λ∗(t)− r(t)1),

with deterministic

λ∗(t) = arg inf
λ∈XK

{
1

2(1− α)
‖γ(t) + σ−1(t)λ‖2 + δ(λ)

}
.

Furthermore, we have

πλ∗(t) ∈ K (5.5)

λ∗(t)Tπλ∗(t) + δ(λ∗(t)) = 0. (5.6)

Proof. The proof is provided in Appendix C.

Remark 5.3.2. Note that the proof of Proposition 5.3.1 is heuristic. For mathematical rigoros-
ity, the conditions of Theorem 2.3.1 have to be satisfied. This is the case for α > 0 and bounded
λ∗(t) as in most of our later applications.
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5.4 The Solvency II Constraint Set

The constraint sets we use are inspired by the standard formula for the Solvency II regulation for
insurance companies, which can be found in European Union (2015) (especially Chapter V). The
idea of this risk based regulatory regime is that insurance companies must provide enough own
funds to cover the 99.5%-Value-at-Risk on a time horizon of one year. While insurance companies
can choose between using the standard formula, an internal model or a partial internal model, we
only deal with the standard formula here as internal models might be company specific and not
publicly available. An important impact of the regulatory Solvency II rules is that the investment
strategy is constrained, with different asset classes requiring different amounts of capital to cover
the corresponding risks. Under Solvency II, the following risk categories are considered for the
market risk: interest-rate risk, equity risk, property risk, spread risk, concentration risk and
currency risk. Since concentration risk and currency risk might be very company-specific, we
neglect these two categories. Government bonds are considered to have interest-rate risk only.
Equity is only considered in equity risk, real estate only in property risk. Corporate bonds are
assumed to have interest-rate risk and spread risk. Thus, we consider a market model with four
risky assets (i.e. d = 4), which we identify with these asset classes. The standard formula for
the market risk of the solvency capital requirements at time t under Solvency II reads

SCRmkt(t) =

√√√√ 4∑
i,j=1

cijSCRmkti (t)SCRmktj (t),

with the captial requirements SCRmkti (t) , i ∈ {interest rate, equity, property, spread} and the
correlation cij between the risk categories i and j. The correlation matrix is given by (see
European Union (2015), Chapter V, Section 5)

C =



Interest-Rate Equity Property Spread

Interest-Rate 1 A A A

Equity A 1 0.75 0.75

Property A 0.75 1 0.5

Spread A 0.75 0.5 1

. (5.7)

In case an increase (decrease) in interest rates represents a risk to the company, the factor A
is chosen as 0 (0.5). In both cases, the correlation matrix is positive definite. As insurance
companies must provide enough own funds to cover the capital requirements, we can establish a
constraint set given by

K(t, V (t)) =
{
π(t) ∈ Rd : V (t)− L ≥ SCRmkt(t)

}
, (5.8)

where we describe the own funds as the difference between the assets (represented by the portfolio
value V (t)) and the liabilities (represented by a constant L ≥ 0). This constraint set depends
jointly on the investment strategy and on wealth. For equity risk, property risk and spread risk,
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the capital requirements for each risk category are determined as

SCRmktequity(t) =π2(t)k2V (t),

SCRmktproperty(t) =π3(t)k3V (t),

and SCRmktspread(t) =π4(t)k4V (t),

with constants ki ∈ (0, 1], i = 2, 3, 4 representing shocks which are specified within Solvency II.
While these shocks represent direct shocks on the value invested in a particular asset class, the
shocks for the interest-rate risk are applied to the term structure of interest rates and may affect
different asset classes and the value of the liabilities as well. The required capital which must be
provided is determined by the loss in own funds suffered from the interest-rate shock k1 ∈ (0, 1].
Here, we assume that the impact of a change in interest rates to the liabilities is higher than to
the assets. Therefore, a decrease in interest rates is a risk to the investor. Hence, the value of A
in the correlation matrix C is set to 0.5. We approximate the capital requirements for interest-
rate risk using the durations of assets and liabilities (see e.g. Zagst (2002), Chapter 6.1)

SCRmktinterest(t) = k1 (dLL− d1π1V (t)− d4π4V (t)) , (5.9)

where dL denotes the duration of the liabilities, d1 denotes the duration of the government bonds
and d4 denotes the duration of the corporate bonds. We choose the liabilities to be constant
in this chapter and in Chapter 6 as we want to examine the pure effect of the constraints on
the investment strategy and to allow for closed-form solutions. Furthermore, liabilities are very
company specific. Despite this simplification, the capital charges on interest-rate risk associated
with the liabilities can still be calculated. This is comparable to the simplifying assumption of
a constant volatility in the Black-Scholes model, where the vega can still be used for option risk
management. For this setting, the constraint set (5.8) can be written as

K(t, V (t)) =

{
π(t) :

V (t)− L
V (t)

≥
√

(Bπ(t) + v)
T
WCW (Bπ(t) + v)

}
, (5.10)

with

B :=


−d1 0 0 −d4

0 1 0 0
0 0 1 0
0 0 0 1

 , v :=


L
V (t)dL

0
0
0

 ,W := diag(k1, ..., k4)

and the correlation matrix C = (cij)i,j=1,...,4 with A = 0.5. Similar as in Chapter 4, we denote

the process V (t)−L
V (t) as the relative surplus (RS).

5.5 Construction of the Two-Step Approach

To overcome the above described lack of a solution approach via a dual problem for our type of
constraints, we establish an approximative two-step approach in this chapter. For the whole two-
step approach, we assume constant market coefficients µ, σ and r. We approximate K(t, V (t))
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by

K̃(t, c(t)) :=

{
π(t) : c(t) ≥

√
(Bπ(t) + ṽ)TWCW (Bπ(t) + ṽ)

}
, (5.11)

with a reasonable deterministic function c(t) and ṽ := ((1− c(t))dL, 0, 0, 0)T . The reason for the
replacement of v by ṽ is that c(t) will serves as a lower bound for RS(t) and

c(t) ≤ V (t)− L
V (t)

= 1− L

V (t)

⇔ L

V (t)
≤ 1− c(t). (5.12)

Proposition 5.5.1. Let t ∈ [0, T ] and π(t) such that SCRi(t) ≥ 0 for all i. If c(t) ≤ V (t)−L
V (t) ,

π(t) ∈ K̃(t, c(t))⇒ π(t) ∈ K(t, V (t)).

Proof. See Appendix C.

The two-step approach consists of the following steps:

Step 1: Using Proposition (5.3.1), the optimal investment strategy is determined depending on
c(t) and we receive the dynamics of the wealth process depending on c(t).

Step 2: c(t) is chosen such that the probability that the RS falls below c(t) does not exceed a
predefined level.

5.5.1 Step 1: Optimal Investment Strategy Depending on c(t)

For K̃(t, c(t)), we can calculate the support function analytically as stated in the following
result.

Proposition 5.5.2. The support function of K̃(t, c(t)) can be written as

δ(λ(t), c(t)) = c(t)
√
λ(t)TB−1(WCW )−1(BT )−1λ(t) + λ(t)TB−1ṽ,

XK̃ := XK̃(t,c(t)) = Rd

Proof. See Appendix C.

Note that the function δ(λ(t), c(t)) is continuous and convex on XK̃ = Rd for all t ∈ [0, T ]
and c(t) > 0. Moreover, δ(λ(t), c(t)) is F-progressively measurable for every Rd-valued process
λ(t) ∈ XK̃ .
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Using Proposition (5.3.1), a suitable auxiliary market can be constructed with the optimal dual
λ∗(c(t)) given by

λ∗(c(t)) = arg inf
λ∈XK̃

{
1

2(1− α)
(‖γ + σ−1λ‖2) + δ(λ, c(t))

}
= arg inf

λ∈Rd

{
1

2(1− α)
(‖γ + σ−1λ‖2) + c(t)

√
λTB−1(WCW )−1(BT )−1λ+ λTB−1ṽ

}
(5.13)

While we are not aware of an analytical representation for λ∗(c(t)) in the case of more than one
risky asset, λ∗(c(t)) can easily be computed numerically. The explicit representation of λ∗(c(t))
for the case of only one risky asset is presented in the following example.

Example 5.5.3. Let d = 1 with the risky asset representing, e.g., equity. We consider
Solvency II capital requirements of the form

SCRmkt(t) = π(t)kV (t), k ∈ (0, 1] .

The corresponding Solvency II constraint set K(t, c(t)) can be written as

K(t, c(t)) =
{
π(t) : c(t) ≥

√
π(t)2k2

}
= {π(t) : c(t) ≥ k|π(t)|} .

and the support function is given by

δ(λ(t), c(t)) =
c(t)

k
|λ(t)|.

In this case, we have

λ∗(c(t)) = arg inf
λ∈R

{
1

2(1− α)
‖γ + σ−1λ‖2 +

c(t)

k
|λ|
}

= min

(
c(t)(1− α)σ2

k
− (µ− r), 0

)
and

π∗λ∗(c(t)) = min

(
c(t)

k
,

1

1− α
µ− r
σ2

)
.

Proof. See Appendix C.

5.5.2 Step 2: Determination of c(t)

In this section, we choose a constant c as the largest possible number for which the two-step
Solvency II capital requirements (5.11) hold for all points in time t ∈ [0, T ] with a probability of
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1− β, i.e. we find

max c

s.t. Q
[

min
0≤t≤T

V ∗(t, c)− L
V ∗(t, c)

≥ c
]
≥ 1− β, c ∈

[
0,
v0 − L
v0

]
.

We determine this probability using methods similar to the ones from barrier option pricing. In
particular, we have

V ∗(t, c)− L
V ∗(t, c)

≥c

⇔ 1− L

V ∗(t, c)
≥c

⇔ 1− c ≥ L

V ∗(t, c)

⇔ V ∗(t, c) ≥ L

1− c
.

Thus, we compute the probability that the optimal wealth process V ∗(t, c) hits the barrier L
1−c

from above. For a given probability 1− β, the constant c can be obtained numerically from this
result.

Proposition 5.5.4. For the optimal wealth process V ∗(t, c) corresponding to the optimal invest-
ment strategy π∗(c, t), with the constraint set from (5.11),

Q
[

min
0≤t≤T

V ∗(t, c)− L
V ∗(t, c)

≥ c
]

= 1− Φ

 log
(

L
(1−c)v0

)
− µ̃T

σ̃
√
T

− e2
log

(
L

(1−c)v0

)
µ̃

σ̃2 Φ

 log
(

L
(1−c)v0

)
+ µ̃T

σ̃
√
T


with

µ̃ = π∗(c)T (µ− r) + r − σ̃2

2
and σ̃ = ‖π∗(c)Tσ‖.

Proof. With Proposition 5.3.1 and c(t) ≡ c being constant in (5.13), the wealth process V ∗(t, c)
evolves like a geometric Brownian motion with constant drift and diffusion as π∗(c(t)) ≡ π∗(c)
is a constant mix strategy. The SDE can be written as

dV ∗(t, c) =V ∗(t, c)
[
(π∗(c)T (µ− r) + r)dt+ π∗(c)TσdW (t)

]
.

Then, the minimum of the wealth process is for a fixed t ∈ [0, T ]

minV ∗(t, c) = V ∗(0, c)eminR(t) = v0e
minR(t),
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with R(t) := µ̃t+ σ̃W (t) being a Brownian motion with drift µ̃ and diffusion σ̃

µ̃ = π∗(c)T (µ− r) + r − σ̃2

2
and σ̃ = ‖π∗(c)Tσ‖.

For the distribution of the RS process, we find

Q
[

min
0≤t≤T

V ∗(t, c)− L
V ∗(t, c)

≥ c
]

= Q
[

min
0≤t≤T

(
1− L 1

V ∗(t, c)

)
≥ c
]

= Q
[
1− L max

0≤t≤T

(
1

V ∗(t, c)

)
≥ c
]

= Q
[

max
0≤t≤T

(
1

V ∗(t, c)

)
≤ 1− c

L

]
= Q

 1

min
0≤t≤T

(V ∗(t, c))
≤ 1− c

L

 = Q
[

L

1− c
≤ min

0≤t≤T
V ∗(t, c)

]

= 1−Q
[

min
0≤t≤T

V ∗(t, c) ≤ L

1− c

]
= 1−Q

[
v0e

minR(t) ≤ L

1− c

]
= 1−Q

[
min

0≤t≤T
R(t) ≤ log

(
L

(1− c)v0

)]

= 1− Φ

 log
(

L
(1−c)v0

)
− µ̃T

σ̃
√
T

− e2
log

(
L

(1−c)v0

)
µ̃

σ̃2 Φ

 log
(

L
(1−c)v0

)
+ µ̃T

σ̃
√
T

 ,

where the distribution function of the running minimum of R(t) can be found in Björk (2009),
p.266.

5.5.3 Iterative approach

In this section, we approximate the optimal investment strategy under a wealth-dependent con-
straint set further by applying the two-step approach to smaller intervals and recalculating the
optimal investment strategy at an increasing number of fixed points ti in [0, T ] with a decreas-
ing length of the intervals ∆t = ti+1 − ti. This means, we take into account that the optimal
investment strategy may depend on the stochastic outcome of the investment decisions.

We consider the set of nI + 1 points in time ti with

0 = t0 < t1 < ... < ti−1 < ti < ti+1 < ... < tnI = T and ti+1 − ti = ∆t.

For t ∈ [ti, ti+1), we denote the optimal iterative investment strategy by π∗I (t, ci). It is found
using the two-step probability approach with a constant ci, so considering the probability

Q
[

min
ti≤t<ti+1

V π
∗
I (t, ci)− L
V π
∗
I (t, ci)

≥ ci
]
≥ (1− β)∆t, (5.14)

where for t ∈ [ti, ti+1), the optimal wealth process evolves according to

dV π
∗
I (t, ci) = V π

∗
I (t, ci)

(
π∗I (t, ci)

T (µ− r) + r
)
dt+ π∗I (t, ci)

TσdW (t),

with a known realized wealth V π
∗
I (ti, ci)) at time ti.
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In contrast to the two-step probability approach, we scale the probability from the right-hand
side of (5.14) to the length of the sub-intervals ∆t for the iterative approach. As the wealth
process V π

∗
I (t, ci)) follows a Geometric Brownian motion with independent increments and the

investment strategy as well as c(t) are recalculated in every point ti, a probability of (1 − β)∆t

corresponds to a probability for the whole investment horizon of(
(1− β)∆t

) 1
∆t = 1− β.

The function c(t) is then a stepwise-constant function with values ci for t ∈ [ti, ti+1) depending
on the actual wealth V π

∗
I (ti, ci)) at the beginning of the time period [ti, ti+1).

Compared to the probability approach on [0, T ] without recalculation of the optimal investment
strategy, the constraints are relaxed in the iterative approach as there is the possibility of a more
dynamic risk reduction. In Figure 5.1, the constant c for the regular approach and the time-
dependent c(t) for nI = 10 and nI = 100 in the iterative approach are shown for a sample path
of the RS. The higher value of c(t) for the iterative approach is observable. The same parameters
as in Section 5.6 are used with an initial RS of 0.5.

Comparing both versions of the iterative approach, for a higher number of readjustments, the

probabilities (1 − β)
1

∆t increase on each sub-interval on the one hand. On the other hand, the
length of the intervals on which c(t) is constant, decreases. In total, c(t) for nI = 100 is closer
to the RS process most of the time. This is only violated in cases in which the RS process drops
close to c(t) for nI = 10 near the next adjustment point of c(t) with nI = 10. In general, a
shorter interval for the readjustments allows for higher values of c(t), which lead to less strict
constraints.
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Figure 5.1: c(t) for different numbers of
readjustments.

In the following sections, we assess the numerical impact of the Solvency II constraints in a multi-
dimensional example using the established iterative two-step approach. In Section 5.6, we study
the optimal investment strategy under the impact of the constraints and analyze its sensitivities.
In Section 5.7, we show that, as the number of increments increases, the investment strategy
converges numerically to the optimal investment strategy with wealth-dependent constraint set.
As we do not know the optimal investment strategy with wealth-dependent constraint set in
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closed form, we approximate this strategy on a discrete grid for the one-asset example. Due
to the increased computational effort of the numerically optimal strategy, we only consider one
risky asset here.

5.6 Numerical Evaluation of the Two-Step Approach in a
Multidimensional Example

We begin by describing the example with three risky assets. The first risky asset represents
government bonds, the second equity and the third corporate bonds. In contrast to the constraint
set presented in Section 5.4, we neglect investment in real estate and the corresponding property
risk constraints as the holdings in this asset class might be very company specific. The market
parameters µ, σ and r are chosen as

r = 0.01, µ =

0.011
0.06
0.018

 , σ =

 0.06 0 0
0.0167 0.2995 0
0.0050 0.0298 0.0953

 . (5.15)

These parameters are determined based on historical yield curve data from the European Central
Bank as well as historical time series of equity indices, government bond indices and corporate
bond indices. Historical risk premiums were used for the asset representing equity. The in-
vestment horizon T of the investor is chosen to be one year. Larger investment horizons would
lead to a more volatile terminal wealth, which requires significantly more computational effort
to obtain a good approximation to the optimal investment strategy for the Bellman approach
on the discrete grid. The investor is assumed to have a power utility function as in (2.6) with
α = 0.2. The probability 1 − β of the iterative approach is chosen to be 95%. The intuitive
interpretation is that the Solvency II constraints will be fulfilled for all t ∈ [0, T ] in 19 out of 20
years on average.

In the constraint set, we include the three risk categories, which apply to the chosen asset classes:
interest-rate risk, equity risk and spread risk according to Section 5.4. The total solvency capital
requirements are then determined by (5.10), with

C =


Interest-Rate Equity Spread

Interest-Rate 1 0.5 0.5

Equity 0.5 1 0.75

Spread 0.5 0.75 1

, B =

−d1 0 −d3

0 1 0
0 0 1

 , v :=

 L
V (t)dL

0
0

 .

The matrix W is defined according to European Union (2015) as

W =

0.35µ1 0 0
0 0.39 0
0 0 0.091

 .

Under Solvency II, the capital requirements for equity risk, spread risk and property risk are
determined as the losses occurring from the application of shocks to the value of the affected
assets. In contrast, the interest-rate shock is determined by a shift in the interest rates. In line
with European Union (2015), we choose a 35% decrease in the level of interest rates. In our
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model, the level of interest rates can be approximated by µ1, the drift of the first risky asset
representing government bonds. This shock is applied to government bonds, corporate bonds
and the liabilities in our example, where the loss triggered by the shock is calculated with (5.9).
Therefore, the first entry of the diagonal of W is chosen as k1 = 0.35µ1. For the choice of C,
we also use the Solvency II parameters specified for companies, for which a decrease in interest
rates provides a risk, which is consistent with the definition of SCRmktinterest(t) as well as with the
durations we choose in the following. The duration of the liabilities dL is set to 12 years, whereas
the duration of the government bonds d1 is set to 8.9 years and the duration of the corporate
bonds d3 is set to 6.7 years. The values are determined using mean durations in EIOPA (2013).

Optimal Investment Strategy

For the parametrization of the iterative approach, we assume that the investor readjusts the
approach on a daily basis. However, we only calculate the optimal investment strategy in t = 0.
Since the optimal allocation at later points is only depending on the RS, we consider different
values of initial RS. In Figure 5.2, the optimal λ∗ in t = 0 is shown for different initial RSs and the
corresponding optimal investment strategy in t = 0 is shown in Figure 5.3 for different values of
the initial RS. For all values of the initial RS which we consider, the optimal investment strategy
leads to positive SCRs for the different risk categories. Thus, Proposition 5.5.1 is applicable and
the Solvency II requirements hold with a probability of 95%.

For an initial RS higher than 0.28, the unconstrained optimal investment strategy can be imple-
mented. In this case, a significant share of wealth is allocated in all three different asset classes,
with the highest proportion (65.17%) being invested in equity. For an initial RS less than 0.28,
the optimal unconstrained investment strategy is not admissible and the risk in the investment
strategy is reduced. As the initial RS falls below 0.28, the allocation in equity decreases sharply
and the allocation in corporate bonds is also reduced, whereas the allocation in government bonds
increases. This observation can be explained by the fact that the most severe constraints are im-
posed on equity, which is the most risky asset class in our example, The constraints on corporate
bonds also contribute considerably which leads to a substantial decrease in the allocation.

On the other hand, government bonds become more attractive since they hedge the liability
risk better than corporate bonds due to the higher duration and they are assumed to have
no spread risk under the Solvency II standard formula. For an initial RS equal to zero, the
only investment strategy which satisfies the constraints is to hedge the interest-rate risk of the
liabilities completely with government bonds. It is observable in Figure 5.3 that the optimal
investment strategy converges to this allocation as the initial RS converges to 0.
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Figure 5.2: Optimal dual λ∗ in t=0
for different values of the initial RS.
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Figure 5.3: Optimal investment strategy π∗

in t=0 for different values of the initial RS.
The remaining wealth is invested in the
risk-free asset.

Sensitivities of the Optimal Investment Strategy

In this section, we analyze the sensitivity of the investment strategy with respect to the initial
RS, the insurance company’s risk preferences and the duration of the liabilities. Figures 5.4,
5.6 and 5.8 show the optimal investments in the three different assets for different levels of
α. For all three risky asset classes, a higher risk aversion (i.e. a lower value of α) leads to a
reduction of the investment. This means, a higher portion of wealth is invested in the risk-
free asset. Consequently, for lower values of α, the constraints only have an impact for lower
values of the initial RS. Figure 5.4 exhibits a convergence towards government bonds for very
small values of the initial RS as a way to minimize the capital requirements as described before.
For all levels of risk aversion, the allocations in Figures 5.4, 5.6 and 5.8 converge to the same
values as the initial RS approaches 0 due to this effect. Since α has a significant impact on
the unconstrained portfolio, the differences in the allocation in equity and corporate bonds are
large for higher values of the initial RS (representing a situation in which the constraints have
little or no effect on the investment strategy). In conclusion, these observed effects have the
following consequences: First, the allocations in equity and corporate bonds are most sensitive
to α for high values of the initial RS (where the constraints do not have an impact). Second,
the allocation in government bonds is most sensitive to changes in α for values of the RS, for
which a high risk aversion leads to an optimal investment strategy which is not impacted by the
constraints, whereas a low risk aversion leads to a constrained optimal investment strategy.

As the duration of the liabilities is, as the level of risk aversion, company-specific, we analyze the
optimal investment strategy for various values of this parameter to analyze how the structure
of the liability influences the optimal investment strategy. The optimal allocation in each risky
asset class can be found in Figures 5.5, 5.7 and 5.9 for various values of the liability duration.
The liability duration has an impact on the interest-rate SCR module. A higher liability duration
requires a larger investment in bonds to hedge the greater sensitivity of the insurance company’s
value of the liabilities to changes in interest rates. As described above, the allocation in govern-
ment bonds is increased as RS approaches zero to hedge the liability risk. In this situation, the
sensitivity of the allocation to changes in the liability duration is especially high. For all values
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of the RS, we observe that liabilities with a larger duration lead to lower allocations in equity
and corporate bonds. This can be explained by the fact that more capital is needed to cover the
higher interest-rate risk for higher liability durations, so a smaller portion of wealth is available
to cover spread risk and equity risk. Hence, the allocations are most sensitive with respect to
different liability durations in the area where the restrictions have a large impact. In Figures
5.5, 5.7 and 5.9, it can also be observed that, for a fixed level of α, the allocations change mono-
tonically in the duration of the liabilities. Interestingly, the increasing need for liability hedging
caused by higher liability durations results in an increase in only the allocation in government
bonds, whereas the corporate bond allocation is decreased. At this point, the advantage of a
better diversification which would be provided by an increase in corporate bonds as well does
not outweigh the disadvantage of the additional risk capital required for spread risk. Due to this
opposite effect on government bonds and corporate bonds, changes in the liability duration have
only a small impact on the allocation in equity.
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Figure 5.6: Portion of wealth invested
in equity for different levels of α.
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Figure 5.8: Portion of wealth invested
in corporate bonds for different levels
of α.
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corporate bonds for different liability du-
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5.7 Comparison to a Numerically Optimal Investment
Strategy

As we do not have a closed-form solution of the optimal dynamic investment strategy with
Solvency II constraints, we construct an approximation on a discrete grid using the Bellman
principle. We use this approximative optimal investment strategy as a reference for a comparison
to our approaches. First, we explain the approach using the Bellman principle in Section 5.7.1.
Then, we compare this approach to the two-step approach with constant c and to the iterative
approach with readjustments of c(t) in Section 5.7.2.

5.7.1 Optimal Investment Strategy Using the Bellman Principle

In this section, we construct an approximation to the optimal investment strategy with Solvency
II constraints on a discrete grid using a backwards-inductive approach, which is based on the
Bellman principle. The use of a discrete approximation in case of the lack of a closed-form
solution to a portfolio optimization problem was suggested in He (1990), which also includes
a proof of convergence of a discrete model to a continuous model. Bertsekas (1995) as well as
Rieder and Zagst (1994) show that the numerical approximation on a discrete grid is also possible
for constrained portfolio optimization problems.

We consider a set of nB + 1 points in time with

0 = t0 < t1 < ... < ti−1 < ti < ti+1 < ... < tnB = T and ti+1 − ti = ∆tB .

The wealth V (ti) at time ti can take values on the set

V̄ :=
{
v0, v1, v2, ..., vj−1, vj , vj+1, ..., vM

}
with vj+1 − vj = ∆v,

so V̄ is constant over time and approximates the set of all possible values of the wealth with
M + 1 discrete points.
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In our approach, all wealth outcomes V (ti) ∈
(
vj − ∆v

2 , v
j + ∆v

2

]
are assigned to vj ∈ V̄. For t0,

the initial wealth V (t0) is known as v0.

By π(ti, V (ti)), we denote the investment strategy for [ti, ti+1). It is constant on this interval
and subject to the portfolio constraints at the beginning of the interval. This constraint set is
adapted from (5.11) and for the one-dimensional case given by

K̃ti =

{
π(ti, V (ti)) :

V (ti)− L
V (ti)

≥ k|π(ti, V (ti))|
}
.

The discrete optimization problem on the grid reads

max
π(t0,V (t0))∈K̃t0 ,π(t1,V (t1))∈K̃t1 ,...,π(tn,V (tn))∈K̃tnB

E [U(V (T ))] . (PD)

We solve (PD) using the backwards-inductive approach based on Bellman’s principle with Algo-
rithm 1. The following result is used in this algorithm.

Proposition 5.7.1. Let V (ti) be given in ti. Then, for the investment π(ti, V (ti)), the probability
that the wealth at time ti+1 = ti + ∆t is assigned to vj ∈ V̄ is given by

q(V (ti), π(ti, V (ti)), v
j)

= Q

(
V (ti)e

(
π(ti,V (ti))(µ−r)+r−

π(ti,V (ti))
2σ2

2

)
∆t+π(ti,V (ti))σ

√
∆tzj ∈

(
vj − ∆v

2
, vj +

∆v

2

])

= Φ

 log
(
vj+ ∆v

2

V (ti)

)
−
(
π(ti, Vti)(µ− r) + r − π(ti,V (ti))

2σ2

2

)
∆t

π(ti, V (ti))σ
√

∆t


− Φ

 log
(
vj−∆v

2

V (ti)

)
−
(
π(ti, V (ti))(µ− r) + r − π(ti,V (ti))

2σ2

2

)
∆t

π(ti, V (ti))σ
√

∆t

 ,

with zj being a standard-normally distributed random variable.

With Algorithm 1, the initial optimal investment π∗(t0, V0), which we will also use in our ex-
amples later, can be calculated by solving the problem in t = 0 and with known initial wealth
v0.

Remark 5.7.2. The optimization problems (5.17) have to be solved for each point of the grid,
i.e. for every ti ∈ {0, ..., nB − 1} at all vj ∈ V̄, numerically by testing various values for the
allocation. Hence, the computational effort grows exponentially in the number of risky assets.
This is the reason, why we only consider the example with one risky asset here.
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Algorithm 1 (Bellman Approach)

Step ti+1 → ti for all i ∈ {nB − 1, nB − 2, ..., 1, 0}:

We calculate the value function Φ(ti, V (ti)), defined as the expected utility of the optimal
terminal wealth, given V (ti) at time ti, recursively as

Φ(ti, V (ti)) =
M∑
j=0

q(V (ti), π
∗(ti, V (ti)), v

j) Φ(ti+1, v
j), (5.16)

with Φ(tnB , v
j) := U(vj), V (ti) ∈ V̄.

For any V (ti) ∈ V̄, the optimal investment in the risky asset π∗(ti, V (ti)) is given by

arg max
π(ti,V (ti))∈Kti

M∑
j=0

q(V (ti), π(ti, V (ti)), v
j) Φ(ti+1, v

j). (5.17)

5.7.2 Comparison of the (Iterative) Two-Step Approach and the
Bellman Approach

For the comparison of the two-step approach and the iterative approach to the Bellman approach,
we use measures, which we introduce in the following. As the iterative approach includes a buffer
to keep the risk of violating the constraints between two readjustment points at an acceptable
level, we want to examine the costs of this buffer. Compared to the Bellman approach, we want
to analyze the loss in utility gain and the difference in the investment strategy, which can be
interpreted as a safety margin. Although measures for the loss which are expressed in terms of the
wealth or the surplus (as we use in Section 6.3) provide a better interpretability than measures
in terms of the utility function, the former are not suitable for the comparison here, since the
difference between the iterative approach and the Bellman approach is already very small. This
may provide difficulties as we discretize wealth here. Instead, we consider the expected utility
gain, defined as

E [∆U(v0, π, T )] := E [U(V π(T ))]− U(v0),

for initial wealth v0, investment strategy π and investment horizon T . Furthermore, we define
the relative underperformance of the investment strategy π compared to an optimal investment
strategy π∗ (in our case the Bellman strategy) as

RUP (v0, T, π, π
∗) := 1− E [∆U(v0, π, T )]

E [∆U(v0, π∗, T )]
.

For the considered investment strategy π, we measure the margin of safety compared to the
Bellman strategy π∗ at time t ∈ [0, T ] as

MOS(t, π, π∗) := 1− π(t)

π∗(t)
.
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5 An Approximation to Wealth-Dependent Risk Constraints

In the following examples for the two-step approach without readjustments and the iterative
approach, we consider a time period of T = 1 due to the increased computational effort for
larger T as described above. In this setting, the optimal two-step approach without iterative
readjustments will be set constant for one year in a way such that the Solvency II constraints
are not violated with a probability of 1 − β = 95%. Naturally, we can expect a significant
underperformance of the two-step approach compared to the Bellman approach. For the Bellman
approach, we set nB = 500, which corresponds to more than one readjustment daily. The
parameters of the market model are chosen consistently with the risky asset representing equity
from Section 5.6, i.e. µ = 6%, σ = 30% r = 1% and the Solvency II SCR parameter k is set to
k = 0.39. The investor is assumed to have a power utility function with α = 0.2. These settings
result in an allocation in the risky asset of 69.44% if no constraints are applied at all. Since the
optimal investment in the risky asset is non-negative, Proposition 5.5.1 is applicable.

Two-Step Approach without Readjustments

The performance of an investment strategy using the two-step approach without readjustments,
which results in a constant investment strategy on the one-year period, is compared to the Bell-
man approach in Figures 5.10 and 5.11. Figure 5.10 shows that the underperformance in utility
gain is small if the RS is high, but it increase up to roughly 25% as the RS decreases. The maxi-
mum of the underperformance can be observed for values of the RS close to 0.15. For increasing
values of the RS higher than 0.15, the impact of the constraints reduces in general, which leads
to a lower underperformace of the two-step approach. For decreasing values of the RS lower than
0.15, both, the Bellman strategy and the two-step approach become sharply constrained, which
also reduces the underperformance of the two-step approach.
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Figure 5.10: Relative underperformance
in expected utility gain of the one-
year probability approach.
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Figure 5.11: Margin of Safety of the one-
year probability approach.

Figure 5.11 exhibits a considerable margin of safety, resulting from the requirement to fulfill the
Solvency II capital charges in T with probability 1 − β for the constant investment strategy of
the two-step approach compared to the Bellman strategy, which allows for a dynamic readjust-
ment. Only for large values of the RS, a slightly lower margin of safety is possible. Clearly,
the considerable losses and margins of safety for small values of the RS occur due to the lack
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5 An Approximation to Wealth-Dependent Risk Constraints

of a dynamic way to adjust the allocation and to prevent violating the Solvency II constraints
by reducing risk within (0, T ). To mitigate this weakness, we consider the iterative approach as
introduced in Section 5.5.3 with allowance for readjustments of the strategy on smaller intervals
in the next section.

Iterative Approach with Readjustments

For the iterative approach, with its strategy depending on the current wealth as for the Bellman
approach, we also develop an algorithm on a grid, which has the same set of possible outcomes
V̄ for the wealth process at each point in time ti as the grid for the Bellman approach. However,
the grid for the iterative approach has a smaller number nI of readjustments of the strategy
throughout [0, T ] than the Bellman strategy as it is designed as an approximation to the optimal
investment strategy in continuous time. For the calculations of the value function of the iterative
approach, we use the following algorithm on the grid.

Algorithm 2 (Iterative Approach)

Step ti+1 → ti for all i ∈ {nI − 1, nI − 2, ..., 1, 0}:

For general ci, the investment strategy on [ti, ti+1) is calculated as in Example 5.5.3:

π∗I (ci) = min

(
ci
k
,

1

1− α
µ− r
σ2

)
and the corresponding wealth on this interval is denoted by V π∗I (t, ci). We determine c∗i
numercially (using Proposition 5.5.4) as

max c∗i

s.t. Q
[

min
ti≤t<ti+1

V π∗I (t, ci)− L
V π∗I (t, ci)

≥ ci
]
≥ 0.95∆t.

For V (ti) ∈ V̄, the value function ΦI(ti, V (ti)) is calculated recursively as

ΦI(ti, V (ti)) =
M∑
j=0

q(V (ti), π
∗
I (c
∗
i ), v

j) ΦI(ti+1, v
j)

with ΦI(tnI , v
j) = U(vj).

Note that the backwards-inductive approach from Algorithm 2 is only necessary to obtain the
value function. The optimal investment strategy in ti can be directly calculated since V (ti) is
known. In particular, c∗0 and π∗I (c∗0) are calculated with the initial wealth V (t0) = V (0) = v0.

Remark 5.7.3. In comparison to the Bellman approach, the optimal investment strategy can be
calculated faster here for two reasons: First, if the discretization of the time horizon is equidistant,
the optimal strategy is only depending on the wealth at each point of the grid and it is independent
of the time. Thus, the calculation of the optimal strategy has to be made only once for each point
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5 An Approximation to Wealth-Dependent Risk Constraints

in V̄. Second, the optimal strategy does not have to be found by testing various values as in the
Bellman approach, but is available in closed-form. Even the case of a multi-asset setting, λ∗ for
the optimal investment strategy has to be numerically determined, which is still much faster than
the search in the Bellman approach (where the effort increases exponentially with the number of
risky assets).

Performance of the Iterative Approach

In order to compare the iterative approach to the Bellman approach, we calculate the optimal
investment strategy and the value function using Algorithm 2. For the discretization V̄, we use
the same set as for the Bellman approach. For the iterative approach, we want to examine the
impact of regular readjustments, so we choose nI = 20 < 500 = nB , so we have a finer grid for
the Bellman approach.

Figures 5.12 and 5.13 illustrate the better approximation considering the underperformance and
the margin of safety, which the iterative approach provides for the optimal dynamic investment
strategy. For large values of the RS, the underperformance and margin of safety of the iterative
approach is barely noticeable (recall that the measures for the underperformance and the margin
of safety are defined in relative terms compared to the Bellman strategy). For small values of RS,
the underperformance and margin of safety of the iterative approach range up to roughly 10%
and 30%, which is considerably less than for the two-step approach without readjustments.
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Figure 5.12: Relative underperformance
in expected utility gain of the iterative
approach.
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Figure 5.13: Margin of safety of the itera-
tive approach.

Convergence of the Iterative Approach

As the iterative approach is designed to approximate the optimal constrained investment strategy,
we analyze its underperformance and the margin of safety as we shorten the intervals between the
readjustments in this section. We focus here on lower values of the RS, for which the difference
between the iterative approach and the Bellman approach is larger. For an increasing number of
readjustments, Figure 5.14 shows the convergence of the underperformance in expected utility
gain. As the number of readjustments increases, the safety margin decreases (see Figure 5.15)
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5 An Approximation to Wealth-Dependent Risk Constraints

and the difference between the performance of the iterative approach and the Bellman strategy
vanishes. For nI = 250 readjustments per year, the underperformance drops below 2% even for
small values of the initial RS. This means that, although the probability for which the constraints
need to hold at the end of each sub-interval (1 − β)∆t increases with a shorter frequency of
readjustments, i.e. as ∆t decreases, a higher portion of wealth can be allocated to the risky asset
due to the shorter period until the next readjustment. For insurance companies, who face the
trade-off between the increasing operational costs of a more frequent readjustment and the loss
caused by the required margin of safety for less frequent updates, this analysis can be used to
determine a suitable frequency of readjustments of the investment strategy.
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Figure 5.14: Relative underperformance
in expected utility gain.

1  2  4  10 20 50 100 250

Number of readjustments

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
a

rg
in

 o
f 

s
a

fe
ty

RS=0.15

RS=0.2

RS=0.25

Figure 5.15: Margin of safety.

5.7.3 Conclusion on the Iterative Two-Step Approach

With the two-step approach and the possibility to apply it iteratively, we provide an approach to
treat wealth-dependent Solvency II constraints in a setting with a continuous market model and
allowance for dynamic investment strategies. In particular, the presented approach is applicable
for investors with power utility who also want to take the liability risk in the constraint set
into account. Motivated by the lack of an analytical solution to this problem, the iterative
two-step approach provides a setting, which is superior to the Bellman approach with respect
to the computational effort. Moreover, the approach can handle settings with more risky assets
without having the disadvantage of an exponentially growing effort as in the Bellman approach.
However, the lack of an analytical solution raises the question if we can find conditions under
which portfolio optimization problems in continuous time with wealth-dependent risk constraints
can actually be solved. From a practical point of view, such a solution would be better suited
to assess investment strategies in settings with long-term investment horizons, in which the
discretizations for the approximate approaches become large. Such an improved handling for
long-term investment horizons would be of special interest as this perspective coincides with the
nature of many insurance products and corresponding liabilities. We deal with these aspects in
the next chapter.
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6 Wealth-Dependent Risk Constraints

In this chapter, we consider a constraint set, which depends jointly on wealth and the investment
strategy. Within the portfolio optimization approach using the convex duality method to cover
constraints on the investment strategy, the crucial step is to solve the dual problem to obtain a
process λ∗ and corresponding optimal investment strategy πλ∗ in M∗λ which jointly satisfy the
optimality conditions from Proposition 5.2.2. For constraint sets, which depend jointly on wealth
and the investment strategy, the support function generally depends on the wealth as well. As
described in Section 5.2.2, the construction of an appropriate dual problem is to the best of our
knowledge not solved. Therefore, we show in Section 6.1 that, under certain conditions, a prob-
lem with a wealth-dependent constraint set can be transformed such that λ∗ can be determined
by the duality methods from Cvitanić and Karatzas (1992). With this approach, we overcome
the main shortcoming of the approach presented in Chapter 5, where we could only solve the
optimization problem using constraint sets, which approximate the original wealth-dependent
constraint set. In Section 6.2, we introduce a version of the Solvency II constraint set, which
we use for the numerical study in 6.3. Finally, we compare the iterative two-step approach from
the previous chapter to the exact approach from this chapter in Section 6.4. Large parts of this
chapter coincide with Escobar et al. (2020). For the wealth-dependent constraint sets, we impose
the following assumptions:

Assumption (A1). Let f : [0, T ]× V→ R+. K is of the form

K(t, V (t)) =
{
π(t) ∈ Rd : f(t, V (t))β ≥ g(π(t)), V (t) ∈ V

}
, t ∈ [0, T ], (A1)

for a homogeneous function g : Rd → R of order β satisfying

g(απ(t)) = αβg(π(t))

for all α ≥ 0 and a constant β > 0.

Assumption (A2). For any λ(t) ∈ XK(t,V (t)), the suport function has the separable structure

δ(t, λ(t), V (t)) = f(t, V (t)) · h(λ(t)) (A2)

for some function h : Rd → R+ and f as in (A1).

Assumption (A1) represents a very general form for wealth-dependent risk constraints, where g(π)
represents some function describing the risk of the portfolio process π and f(t, V (t)) represents
the risk budget depending on V (t). Here, g(π) is the component, which is inside the setting of
Cvitanić and Karatzas (1992), whereas the wealth-dependence through f(t, V (t)) is not covered
therein. In the following section, we introduce the constraint set derived from the Solvency II
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standard formula, i.e. g(π) is derived from the regulations for calculating the market risk of the
asset portfolio of an insurance company and f(t, V (t)) represents the relative surplus (own funds
relative to the value of the assets). In Assumption (A2), we require the support function to be
proportional to the risk budget f(t, V (t)).

Associate Problem with Constraint Set Independent of Wealth

In the following, we introduce the associate problem with constraints independent of wealth
to which we will reduce our original problem with wealth-dependent constraints (P) later. In
addition to the constraint set K(t, V (t)) from (A1), we consider an associate constraint set

K̂ :=
{
π ∈ Rd : 1 ≥ g(π)

}
, (6.1)

which can be interpreted as K from (A1) with f(t, V (t)) ≡ 1. The support function is therefore
with (A2) given by

δ̂(λ(t)) = h(λ(t)).

We consider the problem (P) with constraint set K̂ from (6.1) and utility Û . This problem is
called the associate problem. For Û being the logarithmic utility function from (2.4) (case α = 0)
or the power utility function from (2.6) (case α < 1, α 6= 0), Proposition 5.3.1 can be applied to
solve the associate problem. The optimal investment strategy is then given by

π̂λ̂∗(t) =
1

1− α
(σ(t)σ(t)T )−1

(
µ(t) + λ̂∗(t)− r(t)1

)
, (6.2)

with deterministic optimal dual process

λ̂∗(t) = arg inf
λ∈XK̂

{
1

2(1− α)
‖γ(t) + σ−1(t)λ‖2 + δ̂(λ)

}
. (6.3)

Conditions (5.5) and (5.6) hold with Proposition 5.3.1 and read

π̂λ̂∗(t) ∈ K̂ (6.4)

λ̂∗(t)T π̂λ̂∗(t) + δ̂(λ̂∗(t)) = 0. (6.5)

6.1 Solution Approach for Wealth-Dependent Constraint
Sets

In this section, we consider the problem (P) (and subsequently also (PAUX)) with general wealth-
dependent constraints satisfying (A1)and (A2) and a general utility function U satisfying Defini-
tion 2.2.1. We use the following assumption in Theorem 6.1.1, which provides a solution for this
problem and conditions under which a reduction of the problem to a problem with constraint
set K̂ from (6.1) is possible.
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6 Wealth-Dependent Risk Constraints

Assumption (A3*). The solution Φ ∈ C1,2([0, T ]× V) to (PAUX) within Mλ∗ satisfies

− Φv(t, v)

vΦvv(t, v)
=
f(t, v)

1− α
⇔ Φv(t, v) = c1e

∫ v
c2

−(1−α)
xf(t,x)

dx
ϕ̃(t), (A3*)

for a function ϕ̃(t) and constants c1, c2 and α < 1.

Theorem 6.1.1. Let Assumptions (A1), (A2) and (A3*) be satisfied with f(t, v) > 0 for all

(t, v) ∈ [0, T ]× V and let λ∗ = λ̂∗ be as in (6.3). Then, the optimal investment strategy is given
by

πλ∗(t) =
1

1− α
· f(t, V πλ∗λ∗ (t)) · (σ(t)σ(t)T )−1(µ(t) + λ∗(t)− r(t)1). (6.6)

Furthermore, πλ∗ is also the optimal investment strategy for (P).

Proof. The HJB equation corresponding to (PAUX) in Mλ∗ is given by

sup
π(t)∈Rd

{
vπ(t)T (µ(t) + λ∗(t)− r(t)1) Φv(t, v) +

1

2
v2‖πT (t)σ(t)‖2Φvv(t, v) (6.7)

+Φt(t, v) + v(r(t) + δ(t, λ∗(t), v))Φv(t, v)} = 0

Φ(T, v) = U(v). (6.8)

From (A3*) and the first order condition in (6.7), we have

πλ∗(t) =

(
− Φv(t, v)

vΦvv(t, v)

)
(σ(t)σ(t)T )−1(µ(t) + λ∗(t)− r(t)1)

=
1

1− α
f(t, v)(σ(t)σ(t)T )−1(µ(t) + λ∗(t)− r(t)1).

Hence, (A1) reads

f(t, V πλ∗λ∗ (t))β ≥ g (πλ∗(t))⇔ 1 ≥ g (π̂λ∗(t)) (6.9)

with π̂λ∗ from (6.2). Using (A2), (6.6) and f(t, V πλ∗λ∗ ) > 0, (5.4) can be written as

f(t, V πλ∗λ∗ (t)) · h(λ∗(t)) + f(t, V πλ∗λ∗ (t)) · π̂λ∗(t)>λ∗(t) =0

⇔ h(λ∗(t)) + π̂λ∗(t)
>λ∗(t) =0. (6.10)

Thus, conditions (5.3) and (5.4) are equivalent to (6.9) and (6.10) in our setting. On the other

hand, for λ∗ = λ̂∗, (6.9) and (6.10) are equivalent to (6.4) and (6.5). With Proposition 5.3.1, λ̂∗

and π̂λ̂∗ solve (6.4) and (6.5) and consequently λ∗ = λ̂∗ and πλ∗(t) = f(t, V πλ∗λ∗ (t)) · π̂λ̂∗(t) solve
(5.3) and (5.4). Thus, πλ∗ is optimal for (P) by Proposition 5.2.2.

For the shifted logarithmic utility and the HARA utility in (P), this theorem is applied in the
next section.
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Logarithmic Utility and HARA Utility

In the sequel, we use the shifted logarithmic utility (2.3) and HARA utility (2.5) with 0 < L < v0.
For these two utility functions, we provide solutions to (P) using Theorem 6.1.1 under the fol-
lowing assumption:

Assumption (A3). Let

f(t, V (t)) =
V (t)− L(t)

V (t)
, L(t) := e−

∫ T
t
r(s)dsL, t ∈ [0, T ]. (A3)

Corollary 6.1.2 (Logarithmic Utility). Let Assumptions (A1), (A2) and (A3) be satisfied. For
an investor with shifted logarithmic utility (2.3), the value function to (PAUX) in Mλ∗ is

Φ(t, v) = log(v − L(t)) + ϕ(t),

ϕ(t) =

∫ T

t

1

2
‖γλ∗(s)‖2 + r(s) + h(λ∗(s))ds.

Hence, (A3*) is fulfilled, the optimal investment strategy to (P) is given by

πλ∗(t) =

(
V πλ∗ (t)− L(t)

V πλ∗ (t)

)
(σ(t)σ(t)T )−1(µ(t) + λ∗(t)− r(t)1),

and Φ(t, v) is also the value function for (P).

Proof. See Appendix D.

Corollary 6.1.3 (HARA Utility). Let Assumptions (A1), (A2) and (A3) be satisfied. For an
investor with HARA utility (2.5), the value function to (PAUX) in Mλ∗ is

Φ(t, v) =
(v − L(t))α

α
ϕ(t),

ϕ(t) =eα
∫ T
t

1
2(1−α)

‖γλ∗ (s)‖2+r(s)+h(λ∗(s))ds.

Hence, (A3*) is fulfilled, the optimal investment strategy to (P) is given by

πλ∗(t) =
1

(1− α)

(
V πλ∗ (t)− L(t)

V πλ∗ (t)

)
(σ(t)σ(t)T )−1(µ(t) + λ∗(t)− r(t)1),

and Φ(t, v) is also the value function for (P).

Proof. See Appendix D.

Remark 6.1.4. Remark 5.3.2 applies to Corollary 6.1.3 as well.

A closed-form representation for the wealth process of the optimal investment can be calculated
in the same way as for a usual HARA strategy, as shown in the following proposition.
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Proposition 6.1.5 (Optimal Wealth Process). The optimal wealth process corresponding to πλ∗

from Corollary 6.1.2 or Corollary 6.1.3 has the representation

V πλ∗ (t) = (V πλ∗ (0)− L(t)) e
1

1−α (
∫ t
0
γλ∗ (s)T γ(s)+(1−α)r(s)− 1

2(1−α)
‖γλ∗ (s)‖2ds)

· e
1

1−α
∫ t
0
γλ∗ (s)dW (s) + L(t),

with α = 0 for the logarithmic utility.

Proof. See Appendix D.

6.2 The Solvency II Constraint Set

To apply the previous results to Solvency II constraints, we discuss a version of the constraint
set, which we use for the numerical study to the approach with wealth-dependent constraints.
In contrast to the applications in Chapter 5 for the (iterative) two-step approach, we cannot
consider the interest-rate risk inherent in the liabilities here, as the resulting support function
(see Proposition 5.5.2) is not separable as required in Assumption (A2). Without interest-rate
risk within the liabilities, an increase in the level of interest rates is a risk for the insurance
company. This is the opposite case as in the application in Chapter 5. Both cases are captured
by Solvency II with different levels in the interest-rate shocks applied and different correlations to
the other risk categories (see (5.7)). While the case of Chapter 5 represents a typical life insurance
company with long-term liabilities, the case considered here could be interpreted as a non-life
insurance company. As in Chapter 5, we start by considering four risky assets representing
government bonds, equity, real estate and corporate bonds. In this setting, the Solvency II
capital requirements for the risk categories are therefore determined as

SCRmktinterest(t) = k1(d1π1 + d4π4)V (t),

SCRmktequity(t) = k2π2(t)V (t),

SCRmktproperty(t) = k3π3(t)V (t),

SCRmktspread(t) = k4π4(t)V (t),

with constants ki > 0, i = 1, ..., 4 representing the shocks specified by Solvency II for the
corresponding risk categories and d1 and d4 being the duration of the government bonds and
corporate bonds. Adapted to this case, (5.10) reads

K(t, V (t)) :=

{
π(t) ∈ Rd :

V (t)− L(t)

V (t)
≥
√

(Bπ(t))TWCWBπ(t)

}
, t ∈ [0, T ], (6.11)

with C as in (5.7) with A = 0, as well as

B =


d1 0 0 d4

0 1 0 0
0 0 1 0
0 0 0 1

 and W = diag(k1, k2, k3, k4).
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Note that WCW is positive definite and (A1) and (A3) hold with β = 1 as well as
g(π(t)) =

√
(Bπ(t))TWCWBπ(t). The following result holds for a more general Solvency II-type

constraint set with the function f not being further specified. Note that the support function
here satisfies the separability Assumption (A2).

Proposition 6.2.1 (Generalized Solvency II Constraint Set). We consider a general Solvency
II-type constraint set, which is of the form (A1) with

g(π(t)) =
√

(Bπ(t))TRBπ(t), (6.12)

a positive definite matrix R, and an invertible matrix B. For λ(t) ∈ XK(t,V (t)) ≡ Rd, the support
function is given by

δ(t, λ(t), V (t)) = f(t, V (t))
√
λ(t)TR−1λ(t). (6.13)

Hence, (A2) is fulfilled. Furthermore, if f is bounded, D can be equivalently defined as

D :=

{
λ : E

(∫ T

0

‖λ(t)‖2dt

)
<∞

}
. (6.14)

Proof. See Appendix D.

Remark 6.2.2. Note that f as in Assumption (A3) is bounded for V (t) ≥ L(t), so D can be
defined as in Proposition 6.2.1.

6.3 Numerical Study

In this section, we illustrate the impact of regulations and market conditions using the preceding
results and the version of the Solvency II constraint set. Throughout this chapter and for the case
of exposition, we assume constant market coefficients µ, σ, r. We conduct two numerical studies,
one with one risky asset and one with three risky assets. Our goal is to assess the long-term
impact of the regulation.

For all examples, we consider the optimization problem (P) with HARA utility from (2.5) and

the constraint set from (6.11), i.e. f(t, V (t)) = V (t)−L(t)
V (t) . With the support function from (6.13),

Proposition 5.3.1 and Corollary 6.1.3, we have

πλ∗(t) =
V πλ∗ (t)− L(t)

V πλ∗ (t)
π̂∗
λ̂∗

=
1

1− α
V πλ∗ (t)− L(t)

V πλ∗ (t)
(σσT )−1 (µ+ λ∗ − r1) , (6.15)

with

λ∗ = λ̂∗ = arg inf
λ∈Rd

{√
λT (BTRB)−1λ+

1

2(1− α)
(‖γ + σ−1λ‖2)

}
.
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The value function is given by

Φ(t, v) =
(v − L(t))α

α
ϕ(t),

with ϕ(t) = e
α
(

1
2(1−α)

‖σ−1(µ+λ∗−r1)‖2+r+
√

(λ∗)T (BTRB)−1λ∗
)

(T−t)
. By πu and Φu, we denote the

investment strategy and value function for the unconstrained optimization problem in the original
market, which we use to assess the loss caused by the constraints. The unconstrained case is
given for λ∗ = 0, so inserting in πλ∗ and Φ yields

πu(t) =
1

1− α
V πu(t)− L(t)

V πu(t)
(σσT )−1 (µ− r1) ,

Φu(t, v) =
(v − L(t))α

α
ϕu(t),

with ϕu(t) = eα( 1
2(1−α)

‖σ−1(µ−r1)‖2+r)(T−t). Besides studying the optimal investment strategy
πλ∗(t), we also want to analyze the loss an insurance company suffers due to regulatory constraints
under relevant market conditions.

This is commonly measured via a wealth equivalent utility loss, which can be defined (see Escobar
et al. (2015) and literature therein) as the solution l to

Φu(0, (1− l)v) = Φ(0, v)

⇔ l = 1− 1

v

((
αΦ(0, v)

ϕu(0)

) 1
α

+ L(0)

)

=

(
1−

(
ϕ(0)

ϕu(0)

) 1
α

)(
v − L(0)

v

)
.

Note that for an unconstrained strategy, we obtain l = 0. Whereas the wealth equivalent loss
is independent of wealth for a power utility function (i.e. for L = 0), it depends on wealth
in our case as we use the HARA utility. Therefore to describe the losses independently of the
initial wealth, we introduce the concept of surplus equivalent losses (SEL). The SEL measures
the percentage-wise reduction in initial surplus an unconstrained investor requires to reach the
expected utility of a constrained investor. In other words, the SEL describes the reduction in
“return” caused by the constraints. We denote the surplus of the unconstrained strategy and
the constrained strategy by

Su(t) := V πu(t)− L(t) and S(t) := V πλ∗(t)− L(t).

In particular, we write S := S(0) = v − L(0) to write the value function in terms of the surplus
as

ΦS(0, S) :=
Sα

α
ϕ(0) = Φ(0, V ), ΦSu(0, S) :=

Sα

α
ϕu(0) = Φu(0, V )

and define the SEL ls as the solution to

ΦSu(0, (1− ls)S) = ΦS(0, S), i.e. ls = 1−
(
ϕ(0)

ϕu(0)

) 1
α

.
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In addition to this measure, we introduce the surplus equivalent risk reduction (SERR). While
SEL captures the initial surplus return reduction, SERR is meant to capture the risk reduction
due to the constraints. SERR measures the percentage-wise decrease in the terminal surplus
a constrained investor can allow for to reach the same VaR level as an unconstrained investor.
Therefore, they both capture the trade-off of return (on initial surplus) respectively risk (on
terminal surplus) due to constraints: for a given ε ∈ (0, 1), the surplus equivalent risk reduction
is defined as the solution rs to

Q((1− rs)S < cuε ) = Q(Su < cuε ) = ε,

with a constant cuε being the ε-quantile of the distribution of the terminal surplus from the
optimal unconstrained strategy Su := V πu(T )−L and the surplus corresponding to the optimal

constrained strategy S := V πλ∗ (T ) − L. Then, cε :=
cuε

(1−rs) is the ε-quantile of the terminal

surplus of the constrained strategy. Hence,

rs = 1− cuε
cε

= 1− V aRuε
V aRε

,

with V aRuε denoting the Value-at-Risk of the terminal surplus for the unconstrained optimal
investment strategy and V aRε denoting the Value-at-Risk of the terminal surplus for the con-
strained investment strategy (each at a confidence level of 1 − ε). For the numerical study, we
choose V (0) = 1 and L = 1 unless stated otherwise. For all numerical examples, we use the
parameters from Chapter 5 wherever possible.

When determining the parametrization of the constraints, supervising authorities have to deal
with the utility trade-off between the risk reducing effect of the regulatory constraints on the one
hand (measured by the SERR here), and the loss in performance on the other hand (measured
by the SEL in our case). To examine this trade-off further, we introduce, inspired by the mean-
variance principle, the surplus equivalent risk adjusted loss (SERIAL) as

SERIAL = ls − a · rs,

with the parameter a > 0 determining how many units in additional SEL the investor would
accept for one additional unit in SERR.

Example with One Risky Asset

For simplicity, we start with an example with one risky asset representing equity and the risk-free
asset representing cash. Hence, this example is the wealth-dependent version of
Example 5.5.3. We begin, as in Section 5.7.2, by setting µ = 0.06, σ = 0.3 and r = 0.01.
Unless stated otherwise, we use the constraint set (6.16) with k = 0.39 and T = 10. With this
choice, we want to assess the long-term impact of the constraints as this perspective coincides
with the nature of many insurance products and the duration of insurance liabilities. The optimal
unconstrained investment strategy is given by

πu(t) =
1

1− α
V πu(t)− L(t)

V πu(t)

µ− r
σ2

.

For α, we consider different values between α = 0.4 and α = 0.55. For α = 0.55, the terminal
surplus for the unconstrained investment strategy exhibits a median very close to the initial
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surplus. Higher values of α would lead to a median lower than the initial surplus, which is
unappealing for insurance companies. The other bound α = 0.4 is chosen to represent an
investor who does not want to invest more than 100% of the wealth in the risky asset (even in
case of a very high surplus). The constraint set (6.11) reads (see Example 5.5.3):

K(V (t)) =

{
π(t) :

V (t)− L(t)

V (t)
≥
√
π(t)2k2

}
=

{
π(t) :

V (t)− L(t)

V (t)
≥ |π(t)k|

}
(6.16)

and the resulting support function from (6.13)

δ(t, λ(t), V (t)) =
V (t)− L(t)

kV (t)
|λ(t)|.

λ∗ can be calculated with Corollary 6.1.3, Theorem 6.1.1 and Example 5.5.3 explicitly as

λ∗ = min

(
(1− α)σ2

k
− (µ− r), 0

)
.

With (6.15), we have

πλ∗(t) =
1

1− α
V πλ∗ (t)− L(t)

V πλ∗ (t)

(µ+ λ∗ − r)
σ2

=
V πλ∗ (t)− L(t)

V πλ∗ (t)
min

(
1

k
,

1

1− α
µ− r
σ2

)
.
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Figure 6.1: Density function of the
optimal terminal surplus (α = 0.5).
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Figure 6.2: Density function of the optimal
terminal surplus (α = 0.5).

The density function of the terminal surplus for the unconstrained investment strategy can be
seen in Figure 6.1. For this parameter set, the optimal unconstrained strategy does not violate
the constraints since the optimal HARA strategy naturally includes a reduction of risk as the
surplus is decreasing in times of distress. However, if market conditions change such that investors
are more optimistic, we show that the constraints play an important role. Figure 6.1 shows a
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slightly more optimistic scenario with µ = 0.08 and σ = 0.25. In this case, the unconstrained
strategy does not violate the constraints either. However, as we continue to look at an even more
optimistic scenario and consider µ = 0.1 and σ = 0.2, the impact of the constraints becomes
visible and is shown in Figure 6.2. In this case, one can observe that the unconstrained investment
strategy leads to a higher risk of a loss in the sense of a terminal wealth below the initial surplus
(approx 0.1), which is compensated by a higher chance of a very large gain. In the following,
we will compare different parameter settings and we will refer to the setting of Figure 6.2 as the
reference scenario.

Figure 6.3 shows the impact of a variation of k on the optimal investment strategy for several
choices of α. For low values of k (k ≤ 0.2), the optimal unconstrained investment strategy can
be implemented and therefore, the variation of k does not have an influence on the strategy. For
small values of α, there is a larger region which allows for the implementation of the unconstrained
strategy. The currently prescribed value of k (0.39), however, would even affect very risk-averse
investors (low α).
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Figure 6.3: Optimal investment strategies as a function of α and k. The asterisk marks
the parameter setting from Figure 6.2.

The specific impact of the constraint set with respect to the loss in utility and decrease in risk
is displayed in Figures 6.4-6.6. An increase in k, i.e. a more restrictive Solvency II constraint
set, results in an increasing SEL (Figure 6.4). The areas exhibiting no SEL correspond to
parameter sets for which the unconstrained strategy can be implemented. In Figure 6.5, the
surplus equivalent risk reduction is displayed for ε = 0.1. As we would expect, an increasing
k, i.e. more restrictive Solvency II constraints, lead to an increasing SERR. A key observation
from Figure 6.4 and Figure 6.5 is that there is an optimal value of k for given market conditions
and investor risk-aversion levels. Such k shall lead to a reasonable combination of low SEL and
high SERR. For instance, for α = 0.4, a value k = 0.4 would keep the SEL below 18% with
a large SERR of 70%. In other words, the regulatory value would ensure a proper risk control
with minimum initial penalty. To give a more precise answer on this question, it is important to
know how investors weigh changes in SEL and SERR. Assuming that the supervising authorities
determine k such that it is optimal for an insurance company in our base case (α = 0.5), the
minimum SERIAL would correspond to the actual value of k (k=0.39) for a = 3.69. Therefore,
we choose this value of a in Figure 6.6. It is observable that for different values of α ∈ [0.4, 0.55],
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the k(α) which leads to a minimum SERIAL ranges from 0.32 to 0.57. In particular, a very
risk-averse investor (small α) would have a larger k which minimizes SERIAL. In other words, a
more risk-averse investor can deal better with stricter regulation.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
E

L

α=0.40

α=0.45

α=0.50

α=0.55

Figure 6.4: SEL versus k.
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Figure 6.5: SERR versus k.
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Figure 6.6: SERIAL versus k, a = 3.69.

Concluding, our one-dimensional analysis shows that while an investor with HARA utility reduces
risk as the surplus decreases by construction even in the case without constraints, the presence
of constraints has an important role as it prevents the investor from taking too much risk in good
market scenarios. The constraints could lead to losses of up to 30% in the setting of Figure 6.2
for the standard parametrization of Solvency II with k = 0.39 (see Figure 6.4). While this
one-asset example provides a clear view on the impact of the constraints on the portfolio risk in
general, we work with a multi-asset example in the following section to analyze the interaction
between the assets.
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6 Wealth-Dependent Risk Constraints

Example with Three Risky Assets

Extending the setting from the previous section with one asset representing equity, we now add
two further risky asset classes. With respect to the assets and risk categories considered as well
as the market parameters µ, σ, r, we proceed as in Section 5.6, i.e. we consider the market
parameters from (5.15). However, as described above, we cannot include the liabilities in the
interest-rate capital requirements due to the lack of the separability of the support function
here. Consequently, the interest-rate risk is represented by an increase in the interest rates,
so the Solvency II capital requirement differs from the ones in Section 5.6 with respect to the
interest-rate shock k1, the incorporation of the liability risk and the correlation matrix C. As
in Section 5.6, we do not consider an investment in real estate and the corresponding property
capital requirements. In total, the constraints are in this case determined by (6.11) with

B =

8.9 0 6.7
0 1 0
0 0 1

 , W = diag(k1, k2, k3) =

0.47µ1 0 0
0 0.39 0
0 0 0.091

 ,

and C = (cij)i,j=1,...,3 =

1 0 0
0 1 0.75
0 0.75 1

 ,

The parameter 0.47µ1 represents a 47% upward shock in the interest rates (corresponding to
the drift of the government bonds in our example). The 47% is the upward-shock specified by
Solvency II for an interest rate of 8 years, being the closest key rate to the mean of the assumed
duration of the government bonds (8.9 years) and corporate bonds (6.7 years). The reasoning
behind the choice of k1 = 0.47µ is the same as in Section 5.6, where the differences in k1 and
SCRmktinterest(t) occur as an increase in the level of interest rates represents a risk in this section. In
Section 5.6, we consider a decrease in interest rates as we additionally take the interest-rate risk
in the liabilities into account there. According to the previous section, we choose α = 0.5. Again,
we observe that the optimal investment strategy corresponds to the unconstrained strategy in
this parameter setting (see Figure 6.7 ). In the example with one asset, the risk premium µ−r in
the optimistic scenario is 1.8 times the risk premium in the original scenario and the volatility σ
in the optimistic scenario corresponds to the original volatility multiplied by a factor of 2/3. To
obtain a consistent optimistic scenario for the three asset example, we determine µ such that the
risk premium µ − r1 is scaled by the factor 1.8 compared to the original scenario and we scale
the volatility matrix σ by the factor 2/3. This procedure ensures that the correlations between
the assets remain unchanged. The resulting µ and σ are given by

µ =

0.0118
0.1

0.0244

 , σ =

 0.04 0 0
0.0111 0.1997 0
0.0033 0.0198 0.0636

 .

In this scenario, the constraints have an impact which is comparable to the one in the example
with one risky asset, a density plot of the terminal surplus is given in Figure 6.8).
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Figure 6.7: Density function of the
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Figure 6.9: Investment strategy versus varying W (α = 0.5). The asterisks mark the
parameter setting from Figure 6.8.

In order to examine the influence of the regulatory constraints further, we vary W in the follow-
ing. In Figure 6.9, the optimal investment strategy is shown where W is multiplied by a factor
between 0.2 and 2 so we vary the capital requirements for the risk categories. In the area of
low values for the factor, the unconstrained investment strategy can be implemented. As the
factor increases and the risk constraints become more severe, the decrease is particularly large
on equity, but also on corporate bonds, whereas the allocation in government bonds starts to
increase. The effect on equity can be explained by the large risk of the asset class which is also
represented in the parametrization of W . The different effects on corporate bonds and govern-
ment bonds result from the fact that corporate bonds are subject to spread risk and interest-rate
risk, whereas government bonds are only subject to interest-rate risk. As the risk constraints
become more severe, corporate bonds are less attractive and are reduced. Although government
bonds are also affected by the increasing severity of the interest-rate risk requirements, they
appear to be more attractive compared to the other asset classes, in particular corporate bonds.
Figures 6.10-6.12 show the SEL, SERR and SERIAL. As in the example with one risky asset,
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we choose a such that the SERIAL is minimal for the original capital requirements W . We find
a similar structure of minimum SERIAL for various values of α as in the example with one risky
asset. The higher value of a (a = 4.64 here compared to a = 3.69 for one risky asset) means that
for the same amount of additional SEL, the investor would be willing to accept less additional
SERR than the investor with only one risky asset due to the diversification possibilities.
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Figure 6.10: SEL versus varying W
(α = 0.5).

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Portion of the initial risk constants

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
E

R
R

α=0.40

α=0.45

α=0.50

α=0.55

Figure 6.11: SERR versus varying W
(α = 0.5).
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(α = 0.5, a = 4.64).
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6.4 Comparison of the Two-Step Approach and the
Approach with Wealth-Dependent Constraints

In Chapter 5 and Chapter 6, we establish the aproximative, iterative two-step approach and an
exact method for wealth-dependent constraint sets and analyze the impact of the constraints
in Solvency II-examples on the investment strategies derived with these two methods as well as
further measures of performance and risk. Due to the specific requirements of each approach,
the applicability of the two approaches is slightly different, which directly affects the numerical
Solvency II examples for both cases.

Two-step approach Wealth-dependent approach

Wealth-dependent constraints Approximative Truly wealth-dependent

Utility function Power utility HARA utility

Risk capital for liability risk Included Not included

Comparison To Bellman approach To unconstrained strategy

Table 6.1: Comparison of the two approaches.

In Table 6.1, an overview for the comparison of both approaches is provided. A major difference
is of course given by the fact that the constraint set is only approximatively wealth-dependent in
the iterative two-step approach, whereas it is really wealth-dependent in the setting Chapter 6.
The power utility function can be used for the two-step approach as a solution for the dual
problem is available, whereas we are not aware of an analytical solution of the dual problem
for the HARA utility with a constraint set independent of wealth. On the other hand, the lack
of an exact solution for the problem with wealth-dependent constraint set and power utility
provides the motivation for the search for an approach with HARA utility and wealth-dependent
constraint sets. The use of the power utility in our approach to wealth-dependent constraint
sets is included as a special case for L = 0. However, this results in f(t, V (t)) to be constant, so
the constraint set would have to be independent of the wealth process due to Assumption (A1).
These observations lead to the conclusion that the presented iterative two-step approach is not
applicable to a setting with HARA utility and the solution for the wealth-dependent constraint
sets is not applicable to a setting with power utility. Furthermore, due to the necessity of the
separability of the support function as in Assumption (A2) for the reduction to the associate
problem, an inclusion of the liability risks in the setting with wealth-dependent constraint set
is not possible with the model of the interest-rate capital requirements from Chapter 5. In
Chapter 5, however, this type of interest-rate risk requirement can be used as the separability
of the support function is not necessary here. With respect to the numerical results, we find
that the constraints have a considerable impact on the investment strategy in the base scenario
for the investor with power utility whereas the investor with HARA utility reduces the risk
even without constraints as the relative surplus (RS) decreases. Thus, the constraints only have
an impact in scenarios like the optimistic scenario. For the investor with power utility, the
impact of the constraints is depending on the RS and for suitably high values of the RS, the
optimal unconstrained investment strategy can be implemented. In contrast, the impact of the
constraints on the investor with HARA utility is only depending on the market parameters and
the risk aversion.

125





7 Conclusion

We present solutions to portfolio optimization problems in continuous time with allowance for
dynamic investment strategies including two major components which ensure that insurance com-
panies can meet their liabilities: portfolio optimization under stochastic liabilities and portfolio
optimization with risk constraints, which jointly depend on wealth and the investment strategy.
The novelties presented extend the existing literature on portfolio optimization in continuous
time to the best our our knowledge in the following way:

• The CPT funding ratio optimization provides the most general funding ratio optimization
framework with explicit solutions.

• The dynamic surplus optimization is the most comprehensive framework with closed-form
solutions for terminal surplus optimization including various types of index- and perfor-
mance participation as well as unhedgeable risks.

• The approaches to constrained portfolio optimization establish the most far reaching results
on portfolio optimization with risk constraints, which depend jointly on wealth and the
investment strategy, in particular Solvency II-type constraints.

These results are complemented by numerical studies and subsequent economic conclusions.

In particular, we extend the quantile optimization approach for CPT portfolio optimization to
funding ratio optimization and apply it to a modification of the Wang-distortion function in
Chapter 3. We obtain optimal investment strategies for well-funded and underfunded investors.
The optimal investment strategies are compared to the ones in an expected utility framework.
In Chapter 4, we extend a generalized martingale approach to dynamic surplus optimization
and derive closed-form solutions for various types of index- and performance-linked liability
models, which may also include unhedgeable risks. In numerical studies, we analyze the impact
of different liability models on the optimal investment strategy and we compare the results to
the ones from the funding ratio optimization. Inspired by the Solvency II standard formula,
we formulate convex portfolio constraints, we introduce the setting for wealth-dependent risk
constraint sets and we construct an iterative two-step approach for an investor with power utility
who is subject to Solvency II constraints in Chapter 5. In Chapter 6, we establish the approach
for truly wealth-dependent risk constraints and general utility functions by showing that the
problem can, under certain conditions, be reduced to an associate problem with constraint set
independent of wealth. The associate problem can then be solved by known convex duality
results. Using this approach, we derive closed-form solutions for the optimal investment strategy
and terminal wealth for a shifted logarithmic utility and HARA utility. In a numerical study
with HARA utility and Solvency II-type constraints, we analyze the impact of the constraints
and we examine the trade-off between the effect on the reduction of risk and the loss in utility
caused by the constraints.

The results obtained point at several starting points for possible future research. With respect
to constraints, which jointly depend on the investment strategy and wealth, the question how
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an appropriate dual problem can be constructed remains open. Moreover, a combination of
LDI and wealth-dependent portfolio constraints may represent an even better framework for
insurance companies. A direct way may be the application of our iterative two-step and possibly
our framework for truly wealth-dependent risk constraints to an expected utility funding ratio
optimization. With respect to a combination of the generalized martingale approach and portfolio
constraints, the question arises, how a suitable auxiliary market could be set up and how the
liabilities and the stochastic utility function are treated.
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A Appendix to Chapter 3

A.1 HJB Approach to Funding Ratio Optimization

Proof of Theorem 3.1.1

The HJB equation associated with (3.4) can be written as:

Φt(t, v) + sup
π∈Rd

[
µπF (t)vΦv(t, v) +

1

2
σπF (t)2v2Φvv(t, v)

]
= 0, (A.1)

Φ(T, v) = U(v), v ∈ V.

We consider general Φ(t, v) and receive the optimal investment strategy by computing the supre-
mum in the HJB equation using the help function

M(π) := µπF (t) · v · Φv(t, v) +
1

2
· σπF (t)2 · v2 · Φvv(t, v).

As the first order condition, we obtain

∂

∂π
M(π)

∣∣∣∣
π=π∗

=
(
(µ− r1)− σσTL

)
vΦv(t, v) + (σσTπ∗ − σσTL )v2Φvv(t, v) = 0

⇔ σσTπ∗v2Φvv(t, v) =−
(
(µ− r1)− σσTL

)
vΦv(t, v) + σσTLv

2Φvv(t, v)

⇔ π∗ =−
(
(σσT )−1(µ− r1)− (σT )−1σTL

) Φv(t, v)

vΦvv(t, v)
+ (σT )−1σTL .

Since ∂2

∂π2M(π)

∣∣∣∣
π=π∗

= v2Φvv(t, v)σσT is negative definite, the optimal investment strategy can

be written as

π∗(t, F (t)) =
(
1− λEU (t, F (t))

)
πLH + λEU (t, F (t))πPS .

Proof of Corollary 3.1.2

We apply Theorem 3.1.1 and use the usual separation approach

Φ(t, F (t)) = U(F (t))ϕ(t), (A.2)
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where ϕ : [0, T ] → R+. Thus, Φ is strictly concave in F (t) as U is strictly concave and we can
find a unique maximizer π∗. With U ′(F (t)) = F (t)α−1 and U ′′(F (t) = (α− 1)F (t)α−2,

λEUP (F (t), t) = − Φv(t, F (t))

F (t)Φvv(t, F (t))
· 1

1− α
.

Thus, the optimal investment strategy is given by

π∗(t) =

(
1− 1

1− α

)
πLH +

1

1− α
πPS ,

with the remaining wealth 1−1Tπ∗ being invested in the risk-free asset. Inserting π∗, we have

µπ
∗

F (t) =r + π∗(t)
T

(µ− r1)− µL + σLσ
T
L + σ2

ε − σLσTπ∗(t)

=r − µL + σLσ
T
L + σ2

ε +

(
1− 1

1− α

)
σLσ

−1(µ− r1) +
1

1− α
‖γ‖2

−
(

1− 1

1− α

)
σLσ

T (σT )−1σTL −
1

1− α
σLσ

T (σσT )−1(µ− r1)

=r − µL + ‖σL‖2 + σ2
ε +

(
1− 1

1− α

)
σLγ +

1

1− α
‖γ‖2

−
(

1− 1

1− α

)
‖σL‖2 −

1

1− α
σLγ

=r − µL +
1

1− α
‖σL‖2 + σ2

ε +

(
1− 2

1− α

)
σLγ +

1

1− α
‖γ‖2

and

σπ
∗

F (t)2 = ‖π∗(t)Tσ − σL‖2 + σ2
ε

=

∥∥∥∥(1− 1

1− α

)
σLσ

−1σ +
1

1− α
(µ− r1)T (σσT )−1σ − σL

∥∥∥∥2

+ σ2
ε

=

∥∥∥∥ 1

1− α
(
γT − σL

)∥∥∥∥2

+ σ2
ε .

With the ansatz (A.2), the HJB equation (A.1) simplifies to an ODE of the form

0 =ϕ′(t) +

[
µπ
∗

F (t)α+
1

2
σπ
∗

F (t)2α(α− 1)

]
ϕ(t).

The terminal condition implies ϕ(T ) = 1, so

ϕ(t) = exp

([
µπ
∗

F (t)α+
1

2
σπ
∗

F (t)2α(α− 1)

]
(T − t)

)
.

The conditions of Theorem 2.3.1 hold by the same argument as in Remark 2.3.4.
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A.2 Probability Distortion

Lemma A.2.1. The function w̄δ : [0, 1]→ [0, 1] with

w̄δ(p) = Φ
(

Φ−1(p)− δ‖σL − γT ‖
√
T
)
, δ > 0,

is convex.

Proof. With

w̄δ(p) =

∫ qZδ (p)

0

rfZδ(r)dr =

∫ qZδ (p)

0

qZδ(QZδ(r))fZδ(r)dr =

∫ p

0

qZδ(s)ds,

we have

w̄′δ(p) = qZδ(p) = exp

(
−1

2
δ2‖σL − γT ‖2T + δ‖σL − γT ‖

√
TΦ−1(p)

)
.

Hence,

w̄′′δ (p) = w̄′δ(p)
δ‖σL − γT ‖

√
T

φ (Φ−1(p))
≥ 0,

with φ denoting the density function of a standard normally distributed random variable.

Proof of Lemma 3.2.5

We apply findings from Jin and Zhou (2008), Section 6.2. to our distortion function. For
w(p) = (w̄δ(p))

η, we have with w̄′δ(p) = qZδ(p) (see the proof of Lemma A.2.1)

w′(p) =η(w̄δ(p))
η−1qZδ(p)

=ηΦη−1
(

Φ−1(p)− δ‖σL − γT ‖
√
T
)

· exp

(
−1

2
δ2‖σL − γT ‖2T + δ‖σL − γT ‖

√
TΦ−1(p)

)
=ηΦη−1

(
Φ−1(p)− δ‖σL − γT ‖

√
T
)

· exp

(
−1

2
‖σL − γT ‖2T + ‖σL − γT ‖

√
TΦ−1(p)

)
· exp

(
1

2
(1− δ2)‖σL − γT ‖2T + (δ − 1)‖σL − γT ‖

√
TΦ−1(p)

)
=ηΦη−1

(
Φ−1(p)− δ‖σL − γT ‖

√
T
)
· qZ(p)

· exp

(
1

2
(1− δ2)‖σL − γT ‖2T + (δ − 1)‖σL − γT ‖

√
TΦ−1(p)

)
.

We consider
qZ(p)

w′(p)
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to show that (M) is satisfied. With

c := qZ(p), I(c) :=
w′(p)

qZ(p)

∣∣∣∣
p=QZ(c)

=
w′(QZ(c))

c
, H(c) := w(QZ(c)),

and since H ′(c) = w′(QZ(c))Q′Z(c), we have

I(c) =
H ′(c)

cQ′Z(c)

and

I ′(c) =
H ′′(c)cQ′Z(c)−H ′(c)cQ′′Z(c)−H ′(c)Q′Z(c)

(cQ′Z(c))2
≤ 0

⇔ H ′′(c)

cQ′Z(c)
− H ′(c)Q′′Z(c)

cQ′Z(c)2
≤ H ′(c)

c2Q′Z(c)

⇔ cH ′′(c))

H ′(c)
− cQ′′Z(c)

Q′Z(c)
≤ 1

⇔ j(c) := c

(
H ′′(c))

H ′(c)
− Q′′Z(c)

Q′Z(c)

)
≤ 1.

As Z is log-normally distributed, c > 0. Furthermore,

qZ(p)

w′(p)
is increasing ⇔ I(c) is decreasing ⇔ j(c) ≤ 1, (A.3)

since QZ(c) is monotonically increasing. In the following, we set up the function j(c). With
(3.6),

H(c) = w(QZ(c)) = Φη

(
log c+

(
1
2 − δ

)
‖σL − γT ‖2T

‖σL − γT ‖
√
T

)
,

we have

H ′(c) =ηΦη−1

(
log c+ ( 1

2 − δ)‖σL − γ
T ‖2T

‖σL − γT ‖
√
T

)
φ

(
log c+ ( 1

2 − δ)‖σL − γ
T ‖2T

‖σL − γT ‖
√
T

)
1

c‖σL − γT ‖
√
T
> 0

and, since φ′(x) = −xφ(x),

H ′′(c) =H ′(c)(η − 1)
φ
(

log c+( 1
2−δ)‖σL−γ

T ‖2T
‖σL−γT ‖

√
T

)
Φ
(

log c+( 1
2−δ)‖σL−γT ‖2T
‖σL−γT ‖

√
T

) 1

c‖σL − γT ‖
√
T

−H ′(c)
(

log c+ ( 1
2 − δ)‖σL − γ

T ‖2T
‖σL − γT ‖

√
T

)
1

c‖σL − γT ‖
√
T
−H ′(c)1

c
.
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Thus,

cH ′′(c)

H ′(c)
=(η − 1)

φ
(

log c+( 1
2−δ)‖σL−γ

T ‖2T
‖σL−γT ‖

√
T

)
Φ
(

log c+( 1
2−δ)‖σL−γT ‖2T
‖σL−γT ‖

√
T

) 1

‖σL − γT ‖
√
T

−
(

log c+ ( 1
2 − δ)‖σL − γ

T ‖2T
‖σL − γT ‖

√
T

)
1

‖σL − γT ‖
√
T
− 1. (A.4)

Furthermore, with (3.6),

Q′Z(c) = φ

(
log c+ 1

2‖σL − γ
T ‖2T

‖σL − γT ‖
√
T

)
1

c‖σL − γT ‖
√
T

and

Q′′Z(c) =− φ
(

log c+ 1
2‖σL − γ

T ‖2T
‖σL − γT ‖

√
T

)
1

c‖σL − γT ‖
√
T

(
log c+ 1

2‖σL − γ
T ‖2T

c‖σL − γT ‖2T
+

1

c

)
.

Hence, the second term in j is given by

cQ′′Z(c)

Q′Z(c)
= −

log c+ 1
2‖σL − γ

T ‖2T
‖σL − γT ‖2T

− 1. (A.5)

With (A.4) and (A.5), the function j reads

j(c) =
η − 1

‖σL − γT ‖
√
T

φ
(

log c+( 1
2−δ)‖σL−γ

T ‖2T
‖σL−γT ‖

√
T

)
Φ
(

log c+( 1
2−δ)‖σL−γT ‖2T
‖σL−γT ‖

√
T

) + δ

=
η − 1

‖σL − γT ‖
√
T

φ (d(c, T, δ − 1))

Φ (d(c, T, δ − 1))
+ δ, (A.6)

with d(c, T, δ) :=
log c−(δ+ 1

2 )‖σL−γT ‖2T
‖σL−γT ‖

√
T

, so d(c, T, δ− 1) =
log c+( 1

2−δ)‖σL−γ
T ‖2T

‖σL−γT ‖
√
T

. Now we want to

examine when (M) holds using (A.2). Since η ∈ (0, 1], η−1

‖σL−γT ‖
√
T

φ(d(c,T,δ−1))
Φ(d(c,T,δ−1)) ≤ 0 and if c→ 0,

this term converges to 0. Hence, j(c) ≤ 1 for all c > 0 ⇔ δ ≤ 1 so w satisfies (M) if and only if
δ ≤ 1. We proceed by determining when w is reverse-S shaped. By definition of H,

H ′(c) = w′(QZ(c))Q′Z(c) > 0

and

H ′′(c) = w′′(QZ(c))Q′Z(c)2 + w′(QZ(c))Q′′Z(c)

= w′′(QZ(c))Q′Z(c)2 +
H ′(c)

Q′Z(c)
Q′′Z(c), (A.7)

as well as
w(p) = H(qZ(p)) = H(c).
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Rewriting (A.7),

w′′(QZ(c)) =
1

Q′Z(c)2

[
H ′′(c)− H ′(c)

Q′Z(c)
Q′′Z(c)

]
.

Finally,

w′′(QZ(c)) < 0⇔ H ′′(c)− H ′(c)

Q′Z(c)
Q′′Z(c) < 0⇔ c

(
H ′′(c))

H ′(c)
− Q′′Z(c)

Q′Z(c)

)
= j(c) < 0.

Thus, w is reverse-S shaped if and only if j is first negative and then positive. We assume
η ∈ (0, 1). Furthermore, j as in (A.6) can be written as

j(c) =(η − 1)c
∂

∂c
(log (Φ (d(c, T, δ − 1)))) + δ

=δ +
η − 1

‖σL − γT ‖
√
T

∂

∂d
(log (Φ (d))) |d=d(c,T,δ−1)

and therefore, we have

j′(c) =
η − 1

‖σL − γT ‖
√
T

∂2

∂d2
(log (Φ (d))) |d=d(c) ·

∂

∂c
d(c, T, δ − 1).

As η ∈ (0, 1), η−1

‖σL−γT ‖
√
T
< 0. Furthermore, ∂

∂cd(c, T, δ − 1) = 1
c‖σL−γT ‖

√
T
> 0. As the normal

distribution has a log-concave distribution function (see e.g. Bagnoli and Bergstrom (2005)),
∂2

∂d2 (log (Φ (d))) ≤ 0. Consequently, j is monotonically increasing. Moreover,

lim
c→∞

j(c) = δ

and

lim
c→0

j(c) = lim
d→−∞

η − 1

‖σL − γT ‖
√
T

φ (d)

Φ (d)
+ δ

= lim
d→−∞

1− η
‖σL − γ‖

√
T
d+ δ = −∞

with l’Hôpital’s rule and since φ′ (d) = −dφ (d). Thus, j changes its sign from negative to positive
and w is reverse-S shaped, if δ > 0.

A.3 Replicating Strategies for Selected Pay-Offs

We begin by replicating general funding ratio processes F±(t, ZL(t)). Since the funding ratio pro-
cess can be interpreted as a wealth process, which is discounted by the numéraire L, F±(t, ZL(t))
is a QL-martingale. Therefore, the SDE can with Itô’s lemma be written as

dF±(t, ZL(t)) = ZL(t)
∂

∂z
F±(t, ZL(t))(σL − γT )dWQL(t), (A.8)
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with a QL-Brownian motionWQL . On the other hand, with (3.2) and using again that F±(t, ZL(t))
is a QL-martingale,

dF±(t, ZL(t)) = F±(t, ZL(t))(πTσ − σL)dWQL(t). (A.9)

Using (A.8) and (A.9),

F±(t, ZL(t))(π(t)Tσ − σL) = ZL(t)
∂

∂z
F±(t, ZL(t))(σL − γT ),

which we solve for π

π(t) =
ZL(t)

F±(t, ZL(t))

∂

∂z
F±(t, ZL(t))(σT )−1(σTL − γ) + (σT )−1σTL

=
ZL(t)

F±(t, ZL(t))

∂

∂z
F±(t, ZL(t))(πLH − πPS) + πLH . (A.10)

We use this result to derive the replicating portfolios of (F̄ ∗)+ and (F̄ ∗)−. The corresponding
strategies are denoted by π+ and π− respectively. To compute the replicating portfolio π∗ of the
total terminal funding ratio F ∗, further calculations are required since the hedging portfolio of
F ∗ is not the sum of the hedging portfolios of the partial solutions. Instead,

dF ∗(t, ZL(t)) = d(F̄ ∗(t, ZL(t)) +B) = d((F̄ ∗)+(t, ZL(t)))− d((F̄ ∗)−(t, ZL(t))),

since dB = 0. With (A.9),

F ∗(t, ZL(t))(πT (t)σ − σL)dWQL(t) =
(
(F̄ ∗)+(t, ZL(t))(π+(t)Tσ − σL)

− (F̄ ∗)−(t, ZL(t))(π−(t)Tσ − σL)
)
dWQL(t),

which can also be written as

F ∗(t, ZL(t))πT (t)σdWQL(t) =
[
(F̄ ∗)+(t, ZL(t))π+(t)Tσ − (F̄ ∗)−(t, ZL(t))π−(t)Tσ

+(F ∗(t, ZL(t))− ((F̄ ∗)+(t, ZL(t))− (F̄ ∗)−(t, ZL(t))))σL
]
dWQL .

Since

F ∗(t, ZL(t))− ((F̄ ∗)+(t, ZL(t))− (F̄ ∗)−(t, ZL(t))) = B

for all t ∈ [0, T ], solving for π leads to

π∗(t) =
1

F ∗(t, ZL(t))

(
(F̄ ∗)+(t, ZL(t))π+(t)− (F̄ ∗)−(t, ZL(t))π−(t) +BπLH

)
. (A.11)

With (A.10) for π+ and π−,

π∗(t) =
ZL(t)

F ∗(t, ZL(t))

(
∂

∂z
(F̄ ∗)+(t, ZL(t))− ∂

∂z
(F̄ ∗)−(t, ZL(t))

)
(πLH − πPS) + πLH .
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In the well-funded case, i.e. (F̄ ∗)− = 0, we have

π∗(t) =
ZL(t) ∂∂z (F̄ ∗)+(t, ZL(t))

F ∗(t, ZL(t))
(πLH − πPS) + πLH .

In the following, we derive a more explicit representation for the replication strategy of a terminal
funding ratio of the form

F (T,ZL(T )) = ZL(T )ν1ZL(T )∈(c1,c2), ν ∈ R, c1 ≥ 0, c2 > 0.

With ZL(t, T ) := ZL(T )
ZL(t) , the funding ratio at time t can be calculated as

F (t, ZL(t)) =EQL
[
ZL(T )ν1ZL(T )∈(c1,c2)

∣∣Ft] = EQL
[
ZL(t, T )νZL(t)ν1ZL(t)ZL(t,T )∈(c1,c2)

∣∣Ft]
=ZL(t)νE

[
ZL(t, T )ν+1

1
ZL(t,T )∈

(
c1

ZL(t)
,
c2

ZL(t)

)∣∣∣∣Ft] .
Applying Footnote 2, we receive

F (t, ZL(t)) =ZL(t)ν exp

(
−1

2
(ν + 1)‖σL − γT ‖2(T − t) +

1

2
(ν + 1)2‖σL − γT ‖2(T − t)

)

·

Φ

 log
(

c2
ZL(t)

)
+ 1

2‖σL − γ
T ‖2(T − t)− (ν + 1)‖σL − γT ‖2(T − t)

‖σL − γT ‖
√
T − t


− Φ

 log
(

c1
ZL(t)

)
+ 1

2‖σL − γ
T ‖2(T − t)− (ν + 1)‖σL − γT ‖2(T − t)

‖σL − γT ‖
√
T − t


=ZL(t)ν exp

(
1

2
(ν + 1)ν‖σL − γT ‖2(T − t)

)

·

Φ

 log
(

c2
ZL(t)

)
− (ν + 1

2 )‖σL − γT ‖2(T − t)

‖σL − γT ‖
√
T − t


− Φ

 log
(

c1
ZL(t)

)
− (ν + 1

2 )‖σL − γT ‖2(T − t)

‖σL − γT ‖
√
T − t


=ZL(t)ν exp

(
1

2
(ν + 1)ν‖σL − γT ‖2(T − t)

)
·
(

Φ

(
d

(
c2

ZL(t)
, T − t, ν

))
− Φ

(
d

(
c1

ZL(t)
, T − t, ν

)))
, (A.12)
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with d (c, s, ν) as in Appendix A.2. For the application of (A.10), we calculate

∂

∂z
F (t, z) = exp

(
1

2
(ν + 1)ν‖σL − γT ‖2(T − t)

)
·
(
νzν−1

(
Φ
(
d
(c2
z
, T − t, ν

))
− Φ

(
d
(c1
z
, T − t, ν

)))
−
(
φ
(
d
(c2
z
, T − t, ν

))
− φ

(
d
(c1
z
, T − t, ν

))) zν−1

‖σL − γT ‖
√
T − t

)
=
ν

z
F (t, z)− exp

(
1

2
(ν + 1)ν‖σL − γT ‖2(T − t)

)
·
(
φ
(
d
(c2
z
, T − t, ν

))
− φ

(
d
(c1
z
, T − t, ν

))) zν−1

‖σL − γT ‖
√
T − t

.

Inserting F (t, ZL(t)) and ∂
∂zF (t, z) in (A.10), we see that

π(t) =πLH +

(
ν −

exp
(

1
2 (ν + 1)ν‖σL − γT ‖2(T − t)

)
F (t, ZL(t))‖σL − γT ‖

√
T − t

·(
φ

(
d

(
c2

ZL(t)
, T − t, ν

))
− φ

(
d

(
c1

ZL(t)
, T − t, ν

)))
ZL(t)ν

)
(πLH − πPS)

=πLH

+

ν − 1

‖σL − γT ‖
√
T − t

φ
(
d
(

c2
ZL(t) , T − t, ν

))
− φ

(
d
(

c1
ZL(t) , T − t, ν

))
Φ
(
d
(

c2
ZL(t) , T − t, ν

))
− Φ

(
d
(

c1
ZL(t) , T − t, ν

))
 ·

(πLH − πPS)

=πLH

+

−ν +
1

‖σL − γT ‖
√
T − t

φ
(
d
(

c2
ZL(t) , T − t, ν

))
− φ

(
d
(

c1
ZL(t) , T − t, ν

))
Φ
(
d
(

c2
ZL(t) , T − t, ν

))
− Φ

(
d
(

c1
ZL(t) , T − t, ν

))
 ·

(πPS − πLH). (A.13)
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B.1 Proof of Theorem 4.2.4

We adapt the proof of Theorem 3.3 in Desmettre and Seifried (2016) (see also Seifried (2010))
to our setting, in particular to the different continuation of Îω.

Lemma B.1.1 (Young’s Inequality). Let v > v̂0(ω), y > 0. Then,

Ûω(v) ≤ Ûω(Îω(y)) + y
(
v − Îω(y)

)
Q-a.s.

Proof. As U is concave and Ûω is Q-a.s. differentiable as stated in Lemma 4.2.2, we have for
v, v1 > v̂0(ω)

Ûω(v) ≤ Ûω(v1) + Û ′ω(v1) (v − v1) . (B.1)

In the following, we use (B.1) and set v1 = Îω(y). If y < Û ′ω(v̂0(ω)), then
Û ′ω(Îω(y)) = y and

Ûω(v) ≤ Ûω(Îω(y)) + y
(
v − Îω(y)

)
.

If y > Û ′ω(v̂0(ω)), Îω(y) = v̂0(ω) and

Ûω(v) ≤Ûω(Îω(y)) + Û ′ω(Îω(y))
(
v − Îω(y)

)
=Ûω(Îω(y)) + Û ′ω(v̂0(ω))

(
v − Îω(y)

)
≤Ûω(Îω(y)) + y

(
v − Îω(y)

)
since v > v̂0(ω) = Îω(y) by assumption.

Proof of Theorem 4.2.4

We consider the set

V :=
{
V FT -measurable: V ≥ v̂0, E

[
Ûω(V )−

]
<∞, E

[
Z̃(T )V

]
≤ v0

}
.

By construction of our financial market, V is the set of all payoffs which can be replicated with
an initial wealth of not more than v0 and which cover the value of the liabilities in T for every
realization of the unhedgeable risks. In the following, we show that V ∗(T ) := Îω(Y (v0)Z̃(T ))
is the optimal terminal wealth. We observe that V ∗(T ) ≥ v̂0 by the definition of Îω, V ∗(T ) is
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FT -measurable and E
[
Z̃(T )V ∗(T )

]
= v0 by the definition of Y (v0). Furthermore, with arbitrary

v = V ∈ V and y = Y (v0)Z̃(T ), Young’s inequality (see Lemma B.1.1) reads

Ûω(V ∗(T )) = Ûω(Îω(Y (v0)Z̃(T )))

≥ Ûω(V ) + Y (v0)Z̃(T )
(
Îω(Y (v0)Z̃(T ))− V

)
(B.2)

= Ûω(V ) + Y (v0)Z̃(T ) (V ∗(T )− V ) .

Therefore,

Ûω(V ∗(T ))− ≤ Ûω(V )− + Y (v0)Z̃(T ) (V ∗(T ) + V )

and thus

E
[
Ûω(V ∗(T ))−

]
≤ E

[
Ûω(V )−

]
+ Y (v0)

(
E
[
Z̃(T )V ∗(T )

]
+ E

[
Z̃(T )V

])
<∞

as V ∈ V and E
[
Z̃(T )V ∗(T )

]
= v0 < ∞. Consequently, V ∗(T ) ∈ V. Applying (B.2) again and

taking the expectation on both sides of this inequality leads to

E[Ûω(V ∗(T ))] ≥ E[Ûω(V )] + Y (v0)
(
v0 − E[Z̃(T )V ]

)
≥ E[Ûω(V )],

since E[Z̃(T )V ∗(T )] = v0 and E[Z̃(T )V ] ≤ v0. Since

E
[
Ûω(V )

]
=E [E [U(V − ψLL(T, V ))|FT ]]

=E [U(V − ψLL(T, V ))]

for all V ∈ V, we see that

V ∗(T ) = arg max
V ∈V

E [U(V − ψLL(T, V ))] .
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Proof of Proposition 5.3.1

The proof is adapted from Cvitanić and Karatzas (1992). For the logarithmic utility, the dual
problem reads

Φ̃ = inf
λ∈D

E
[
Ũ
(
Z̃λ(T )

)]
= inf
λ∈D

E
[
−
(

1 + log
(
Z̃λ(T )

))]
= −1 + inf

λ∈D
E

[∫ T

0

(r(s) + δ(λ(s)) +
1

2
‖γλ(s)‖2)ds+

∫ T

0

γλ(s)T dW (s)

]

= −1 + inf
λ∈D

E

[∫ T

0

(r(s) + δ(λ(s)) +
1

2
‖γλ(s)‖2)ds

]
.

This expression can be minimized point wise for t ∈ [0, T ] with

λ∗(t) := arg inf
λ∈XK̂

{
1

2
‖γ(t) + σ−1(t)λ‖2 + δ(λ)

}
.

For the power utility, with the value function being defined as

Φ̃(t, z) := inf
λ∈D

E
[
Ũ
(
Z̃λ(T )

)
|Z̃λ(t) = z

]
,

the associated HJB equation is given by

0 = inf
λ∈XK

{
−zδ(λ)Φ̃z(t, z) +

1

2
z2‖γ(t) + σ−1(t)λ‖2Φ̃zz(t, z)

}
+ Φ̃t(t, z)− zr(t)Φ̃z(t, z)
Φ̃(T, z) = Ũ(z), z ∈ (0,∞).

In order to solve it, we use the ansatz

Φ̃(t, z) =
1− α
α

z
α
α−1 ϕ̃(t).

Then,

Φ̃t(t, z) =
1− α
α

z
α
α−1 ϕ̃′(t)

and

Φ̃z(t, z) = −z
α
α−1−1ϕ̃(t) = −z

1
α−1 ϕ̃(t)
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as well as

Φ̃zz(t, z) =
−1

α− 1
z

α
α−1−2ϕ̃(t).

Inserting into the HJB equation and dividing by z
α
α−1 , we receive

0 =

(
inf

λ∈XK

{
1

2(1− α)
‖γ(t) + σ−1(t)λ‖2 + δ(λ)

}
+ r(t)

)
˜ϕ(t) +

1− α
α

ϕ̃′(t).

The solution to this ODE , which also satisfies the terminal condition is given by

ϕ̃(t) = e−
α

1−α
∫ T
t

1
2(1−α)

‖γ(s)+σ−1(s)λ∗(s)‖2+δ(λ∗(s))+r(s)ds,

λ∗(t) = arg inf
λ∈XK

{
1

2(1− α)
‖γ(t) + σ−1(t)λ‖2 + δ(λ)

}
.

Using the result in Cvitanić and Karatzas (1992), the optimal investment strategy in the uncon-
strained auxiliary marketMλ∗ is given by replacing µ and r with µλ∗ and rλ∗ in Corollary 2.3.2
and Corollary 2.3.3 (see also Theorem 15.3 in Cvitanić and Karatzas (1992)). As λ∗ is determined
by the dual problem, πλ∗ is also the optimal investment strategy for the original constrained prob-
lem (see Theorem 10.1 in Cvitanić and Karatzas (1992), in particular the implication (D)⇒ (A)).
Finally, with the implication (D) ⇒ (B) from Theorem 10.1. in Cvitanić and Karatzas (1992),
we have (5.5) and (5.6).

Proof of Proposition 5.5.1

We have SCRi(t) ≥ 0 for all i, i.e.

SCRmktinterest(t) =k1 (dLL− d1π1(t)V (t)− d4π4(t)V (t)) ≥ 0,

SCRmktequity(t) =k2π2(t)V (t) ≥ 0,

SCRmktproperty(t) =k3π3(t)V (t) ≥ 0

and SCRmktspread(t) =k4π4(t)V (t) ≥ 0.

The right-hand sides of the inequalities in K̃(t, c(t)) and K(t, V (t)) differ only in the first com-
ponent of v and ṽ and

v1 =
L

V (t)
dL ≤ (1− c(t))dL = ṽ1.

Due to the monotonicity of the square-root function, we consider the function
g(v) := (Bπ(t) + v)

T
WCW (Bπ(t) + v) and its gradient

∇g(v) = 2WCW (Bπ(t) + v).
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Hence, ∇g(v) is non-negative since

Bπ(t) + v ≥ 0⇔


dLL− d1π1(t)V (t)− d4π4(t)V (t)

π2(t)
π3(t)
π4(t)

 ≥


0
0
0
0


by assumption and WCW has non-negative entries. Hence,

f(v) :=

√
(Bπ(t) + v)

T
WCW (Bπ(t) + v)

is monotonically increasing in the first component of v. With v1 < ṽ1,

f(v) ≤ f(ṽ).

We conclude

c(t) ≥ f(ṽ)⇒ c(t) ≥ f(v)

and as c(t) ≤ V (t)−L
V (t) is assumed, the statement follows.

Proof of Proposition 5.5.2

Let t ∈ [0, T ]. We consider the Lagrangian function to (5.1) for K̃(t, c(t))

L(x, y) = −λ(t)Tx+ y
(
c(t)2 − (Bx+ ṽ)

T
WCW (Bx+ ṽ)

)
with the Lagrange multiplier y ≥ 0. For λ(t) = 0,

δ(λ(t), c(t)) = 0 = c(t)
√
λ(t)TB−1(WCW )−1(BT )−1λ(t) + λ(t)TB−1ṽ.

Let λ(t) 6= 0. From the first order condition, we have

∇xL(x, y) = −λ(t)T − 2y (Bx+ ṽ)
T
WCWB = 0

and
∂

∂y
L(x, y) = c(t)2 − (Bx+ ṽ)

T
WCW (Bx+ ṽ) = 0.

The first equation yields y > 0 and

x = B−1

(
− 1

2y
(WCW )−1(BT )−1λ(t)− ṽ

)
.

Furthermore, inserting x into the second equation, we have

c(t)2 −
(
− 1

2y
(WCW )−1(BT )−1λ(t)

)T
WCW

(
− 1

2y
(WCW )−1(BT )−1λ(t)

)
= 0
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and thus

y =
1

2c(t)

(
λ(t)TB−1(WCW )−1(BT )−1λ(t)

) 1
2 .

Inserting y into x, δ(λ(t), c(t)) = −λ(t)Tx follows as in the statement.

Proof of Example 5.5.3

For the calculation of the support function, we consider two cases:
Case 1: for λ ≥ 0,

δ(λ, c(t)) = sup
x∈K(t,c(t))

(−xλ) =
c(t)

k
λ.

Case 2: for λ < 0,

δ(λ, c(t)) = sup
x∈K(t,c(t))

(−xλ) = −c(t)
k
λ.

In total, we can write these cases as

δ(λ, c(t)) =
c(t)

k
|λ|.

In case λ ≥ 0, λ∗ is given by

λ∗(c(t)) = arg inf
λ∈R

{
c(t)

λ

k
+

1

2

(
γ +

λ

σ

)2
1

1− α

}
.

We find λ∗ by considering f(λ) := c(t)λk + 1
2

(
γ + λ

σ

)2 1
1−α . For λ > 0,

f ′(λ) =
c(t)

k
+

1

σ

(
γ +

1

σ
λ

)
1

1− α
> 0,

since c(t) ≥ 0 and γ ≥ 0 due to µ ≥ r, so f is strictly monotonically increasing and attains its
minimum for this case in λ = 0.

In the second case, i.e. λ < 0,

λ∗(c(t)) = arg inf
λ∈R

{
−c(t)λ

k
+

1

2

(
γ +

λ

σ

)2
1

1− α

}
.

We minimize f(λ) := −c(t)λk + 1
2

(
γ + λ

σ

)2 1
1−α and consider the first order condition

f ′(λ) = −c(t)
k

+
1

σ

(
γ +

λ

σ

)
1

1− α
=0

⇔ λ =
c(t)σ2(1− α)

k
− (µ− r),
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which satisfies λ < 0, if

c(t)σ2(1− α)

k
< (µ− r).

Otherwise, f ′(λ) < 0 for λ < 0 and therefore, f attains its minimum in λ = 0.

Combining the two cases,

λ∗(c(t)) = min

(
c(t)(1− α)σ2

k
− (µ− r), 0

)
.

Using Proposition (5.3.1),

π∗λ∗(c(t)) =
1

1− α
σ−1

(
γ + σ−1λ∗(c(t))

)
=

1

(1− α)σ2
(µ− r + λ∗(c(t)))

=
1

(1− α)σ2

(
µ− r + min

(
c(t)(1− α)σ2

k
− (µ− r), 0

))
= min

(
c(t)

k
,

1

1− α
µ− r
σ2

)
.
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Proof of Corollary 6.1.2

We use the ansatz

Φ(t, v) = log(v − L(t)) + ϕ(t).

Thus, we have

Φt(t, v) =
−1

v − L(t)
r(t)L(t) + ϕ′(t) and Φv(t, v) =

1

v − L(t)
.

Remembering that f(t, v) = v−L(t)
v due to (A3), we learn that Φv(t, v) satisfies (A3*) for ϕ̃(t) = 1,

c1 = 1, c2 = 1 + L(t), and α = 0. Moreover, inserting πλ∗ from the proof of Theorem 6.1.1 into
(6.7) and using (A2) , we receive

sup
π(t)∈Rd

{
vπ(t)T (µ(t) + λ∗(t)− r(t)1) Φv(t, v) +

1

2
v2‖πT (t)σ(t)‖2Φvv(t, v)

+Φt(t, v) + V (r(t) + δ(t, λ∗(t), v))Φv(t, v)}

= vf(t, v)‖γλ∗(t)‖2Φv(t, v) +
1

2
v2f(t, v)2‖γλ∗(t)‖2Φvv(t, v)

+ Φt(t, v) + v(r(t) + δ(t, λ∗(t), v))Φv(t, v)

=
1

2
vf(t, v)‖γλ∗(t)‖2Φv(t, v) + Φt(t, v) + v(r(t) + δ(t, λ∗(t), v))Φv(t, v)

=
1

2
‖γλ∗(t)‖2 −

1

v − L(t)
r(t)L(t) + ϕ′(t) +

v

v − L(t)
r(t) + h(λ∗(t))

=
1

2
‖γλ∗(t)‖2 + r(t) + h(λ∗(t)) + ϕ′(t) = 0

due to the definition of ϕ(t) in the statement. Hence, (6.7) holds. Finally, the ansatz for
Φ(t, v) also satisfies (6.8) and solves (PAUX) inMλ∗ . The statement then follows with Theorem
6.1.1.
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Proof of Corollary 6.1.3

We use the ansatz

Φ(t, v) =
(v − L(t))α

α
ϕ(t).

Thus, we have

Φt(t, v) = −(v − L(t))α−1r(t)L(t)ϕ(t) +
(v − L(t))α

α
ϕ′(t)

and

Φv(t, v) = (v − L(t))α−1ϕ(t).

Φv(t, v) satisfies (A3*) for ϕ̃(t) = ϕ(t), c = 1 and c2 = 1 + L(t). Moreover, inserting πλ∗ from
the proof of Theorem 6.1.1 into (6.7) and using (A2) and (A3), we receive

sup
π(t)∈Rd

{
vπ(t)T (µ(t) + λ∗(t)− r(t)1) Φv(t, v) +

1

2
v2‖πT (t)σ(t)‖2Φvv(t, v)

+Φt(t, v) + v(r(t) + δ(t, λ∗(t), v))Φv(t, v)}

=
v

1− α
f(t, v)‖γλ∗(t)‖2Φv(t, v) +

1

2

v2

(1− α)2
f(t, v)2‖γλ∗(t)‖2Φvv(t, v)

+ Φt(t, v) + v(r(t) + δ(t, λ∗(t), v))Φv(t, v)

=
1

2

v

1− α
f(t, v)‖γλ∗(t)‖2Φv(t, v) + Φt(t, v) + v(r(t) + δ(t, λ∗(t), v))Φv(t, v)

=

(
1

2
‖γλ∗(t)‖2 + h(λ∗(t))

)
(v − L(t))αϕ(t)− (v − L(t))α−1r(t)L(t)ϕ(t)

+
(v − L(t))α

α
ϕ′(t) + r(t)v(v − L(t))α−1ϕ(t)

=

(
1

2
‖γλ∗(t)‖2 + h(λ∗(t))

)
(v − L(t))αϕ(t) +

(v − L(t))α

α
ϕ′(t) + r(t)(v − L(t))αϕ(t)

=

[(
1

2
‖γλ∗(t)‖2 + h(λ∗(t)) + r(t)

)
ϕ(t) +

1

α
ϕ′(t)

]
(v − L(t))α = 0.

for ϕ(t) as given in the statement and thus (6.7) holds. Finally, the ansatz for Φ(t, v) also satisfies
(6.8) and solves (PAUX) in Mλ∗ . The statement then follows with Theorem 6.1.1.
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Proof of Proposition 6.1.5

We calculate the dynamics of the surplus corresponding to the optimal investment strategy
Sπλ∗ (t) := V πλ∗ (t)− L(t). The SDE of the optimal terminal wealth is with (5.2) given by

dV πλ∗ (t) = V πλ∗ (t)

[
1

1− α
V πλ∗ (t)− L(t)

V πλ∗ (t)
γλ∗(t)

T (γ(t)dt+ dW (t)) + r(t)dt

]
.

The SDE of Sπλ∗ (t) is given by

dSπλ∗ (t) = dV πλ∗ (t)− r(t)L(t)dt

= (V πλ∗ (t)− L(t))

[
1

1− α
(
γλ∗(t)

T γ(t)dt+ γλ∗(t)
T dW (t)

)
+ r(t)dt

]
= Sπλ∗ (t)

[(
1

1− α
γλ∗(t)

T γ(t) + r(t)

)
dt+

1

1− α
γλ∗(t)

T dW (t)

]
.

Thus, Sπλ∗ (t) can be written explicitly as

Sπλ∗ (t) = Sπλ∗ (0)e
1

1−α (
∫ t
0
γλ∗ (s)T γ(s)+(1−α)r(s)− 1

2(1−α)
‖γλ∗ (s)‖2ds+

∫ t
0
γλ∗ (s)dW (s)),

which completes the proof with the definition of Sπλ∗ (t).

Proof of Proposition 6.2.1

The representation of δ(t, λ(t), V (t)) follows analogue to Proposition 5.5.2 with c(t) := f(t, V (t)),
dL := 0, d1 := −d1 and d4 := −d4. Moreover,

δ (t, λ(t), V (t)) = f(t, V (t))‖λ(t)‖(BTRB)−1 ,

with ‖λ(t)‖(BTRB)−1 :=
√
λ(t)T (BTRB)−1λ(t). In the case that f is bounded and since all

norms on Rd are equivalent, there exists a constant c > 0 such that

f(t, V (t))‖λ(t)‖(BTRB)−1 ≤ c · ‖λ(t)‖ ≤ c ·max
{

1, ‖λ(t)‖2
}
≤ c ·

(
1 + ‖λ(t)‖2

)
and consequently

E

(∫ T

0

δ (t, λ(t), V (t)) dt

)
≤ c · E

(∫ T

0

1 + ‖λ(t)‖2dt

)
= c · T + c · E

(∫ T

0

‖λ(t)‖2dt

)
,

so D can be defined as in (6.14).
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