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The fascination of complex phenomena in open systems roots in a very old philo-
sophical, almost spiritual question. What is the fundamental difference between
a living thing, like a cat, and a non-living thing, like a stone? They both consist of
many particles that should follow the same laws of nature in principle. Yet, there
seems to be a distinction between them. Unlike a stone, a cat seems to move by
the power of a will that is not obviously captured by the “simple” laws of physics,
making it much more complex in a way. For a long time, this paradox has fascinated
scientists and philosophers alike, and to a certain degree it still does so to this day.
Until the first half of the last century, there was a rather clearcut distinction between
living and non-living matter, even among some recognized scientists. Supporters of
this view attributed living things to the existence of a life-giving substance called
élan vital. As often, a pure description had turned into a fake explanation.

One well known person who did not adopt this view was Alan M. Turing. He
rejected the idea of an ominous will or a vital force underlying the behavior and
the emergence of living things. Instead, he believed that complex phenomena like
thoughts and morphogenesis could emerge from very simple rules. In order to pro-
mote this view, he considered a toy model that basically describes the concentrations
of only two chemicals in a petri dish. In this model, the concentrations change over
time according to very simple chemical-reaction rules and diffusion [1]. It turns out
that this is sufficient for complex labyrinth patterns to emerge in the petri dish and
it has later been recognized that the very same mechanism is responsible for certain
characteristic pigment patterns in fish skin. These Turing patterns became one of
the prototypical examples for a self-organized complex phenomenon and they have
opened a whole field of chemical complexity. Turing patterns might not explain
life, but they certainly prove that something like a labyrinth pattern can paint itself
without the intention of a hidden painter behind.

The question of what constitutes a physical system in which such complex phe-
nomena can arise, and what a useful definition of a complex phenomenon is, has
been addressed by Ilya Prigogine. Until the middle of the 20th century, many-
particle systems were mostly considered at their thermodynamic equilibrium, so
one could apply the powerful theory of thermodynamics. They did not bother that
for the cat this would mean putting it in a box and waiting for convergence, because
thermodynamics had been developed to build engines, not to study cats. However,
the mindset of thermodynamic equilibria was somewhat over-established, such that
when Boris P. Belousov found a chemical mixture that periodically changed its color
and chemical concentrations, he was not believed at first. His findings were thought
to contradict the second law of thermodynamics, by which the entropy, which is
a function of the concentrations, cannot decrease, let alone oscillate periodically.
Because of the second law, concentrations in a mixture had mostly been thought
of as being at an equilibrium of maximum entropy. Anyhow, though indeed every
closed many-particle system will at some point end up in an equilibrium, Prigogine
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promoted the awareness that almost everything of interest actually happens before
that equilibrium is reached. In the case of Belousov’s paradoxical oscillations, later
known as the Belousov-Zhabotinski reaction, the key is that some chemical species
are slowly being depleted as the oscillation proceeds. As soon as there this not
enough fuel left for the oscillation, it stops and the system eventually settles to a
thermodynamic equilibrium. However, if you keep supplying the fuel in an open
flow reactor, the oscillation can go on indefinitely long. Considering such open
thermodynamic systems, which are artificially kept away from their equilibrium,
Prigonine advanced the theoretical framework of non-equilibrium thermodynamics.
He showed that in first-order proximity of a thermodynamic equilibrium, so called
dissipative structures can form, which happen to minimize the entropy production
by the open system, e.g. stationary Turing patterns and vortexes. The emergence of
dissipative structures indeed decreases the entropy inside the open system, but this
is made up for by an increase of the entropy of the surroundings. Even farther away
from equilibrium, an open system can in principle be arbitrarily complex. This re-
cognition restored the consistence between thermodynamics and all the phenomena
that we see everywhere around us, and it connected the theory of thermodynamics
with field of non-linear dynamics in the new field of far-from-equilibrium thermo-
dynamics. Today, this is one of the main branches of physics and it studies the
non-linear behavior of thermodynamic systems far from equilibrium. In this thesis
we mainly consider two technologically relevant examples for open systems that
are operated far from equilibrium: Silicon in hydrofluoric acid under positive bias
and CO electrooxidation on platinum.

Due to the work of John Bardeen and William Shockley on transistors, Si has
become the material that drove the third industrial revolution. When exposed to
air, Si forms a patina of SiO2 that is electrically insulating. To remove the SiO2
layer from a waver of Si, it can be immersed in HF acid. Moreover, HF acid leaves
the Si surface covered with Si-H bonds that passivate it against further oxidation.
However, if the oxidation is driven by an anodic bias, Si can be etched away by HF
acid. In the beginning, investigations of anodic Si in HF had been solely motivated
by technological motives, but it turned out that this system is worth studying for
another reason that lies in the context of far-from-equilibrium thermodynamics, i.e.
the very unique dynamical behavior of the oxide layer at sufficiently anodic potential.
Besides showing a variety of dynamical phenomena, anodic Si in HF is one of the
few systems that exhibit a certain highly selforganized oscillatory state, in which
one part of the Si electrode oscillates homogeneously while the rest is turbulent.
This type of state has been coined “Chimera state”, reflecting the unequal nature
of the two domains. While there are other experimental systems in which such
Chimera states occur, Si in HF is the only one so far in which there is no externally
imposed coupling between the oscillation sites. The experimental investigation of Si
in HF has sparked further theoretical understanding of how Chimera states can arise.
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Thus, Si in HF is relevant not only from a material science and an electrochemisty
point of view, but also for the understanding of general principles of non-linear
dynamics. A main issue with this system is the lack of understanding of the physical
processes behind the dynamics. This thesis contributes to this problem by proposing
a physicochemical model in Part.II, which is reworked and highly extended version
of an article that we published in The European Physics Journal [2].

Other instances of selforganization that have recently gained considerable atten-
tion were found in globally coupled systems of bistable components. Such systems
seem to show certain characteristic behaviors, like the sequential switching of indi-
vidual bistable components from one stable state to the other as a system-specific
global quantity is ramped. One example for this are chargeable nanoparticles in
Li-ion batteries that have a non-monotonous charge-voltage characteristics. Such
nanoparticles are bistable in a certain voltage range, being either charged or dis-
charged. As the total charge is increased over time by applying a constant current
to the battery, the nanoparticles are charged one after the other or in small groups,
as opposed to being charged simultaneously. Each time a group of nanoparticles is
charged, the voltage increases and decreases. Another example for this sequential
switching are Pt microelectrodes in a CO containing solution, which are technically
relevant for catalysis in hydrogen fuels-cells if the H2 came from steam reforming.
The individual microelectrodes have a non-monotonous current-voltage character-
istics. At very low voltages, the microelectrodes are covered with CO and conduct a
negligible current. At very large voltages, they are CO depleted and contribute a
large current. However, at intermediate voltages, they are bistable, being either in a
low-current or a hight-current state. If one ramps the total current through several
parallelly connected microelectrodes, they switch on individually, analogously to the
Li nanoparticles when their total charge is ramped. The two systems follow the same
dynamic principle. However, there is a behavior of the Pt microelectrodes that is
not seen with the Li nanoparticles: A sustained periodic oscillations, without a para-
meter ramp. This phenomenon has been observed in experiments and reproduced
in models, but it has not been clear why this happens and more importantly why it
does not happen in other systems. This question is answered in Part III. Moreover,
Part III addresses the individual switching and another so far undocumented kind of
sustained collective oscillation, which has interesting stability properties, by which it
could potentially occur in an actual fuel cell with arbitrarily many Pt nanoparticles.
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Chapter II.1

Motivation

Silicon is still most common working material in semiconductor devices and its
physical properties are, thus, of supreme interest. It can be cleaned with HF acid
and applying an anodic bias to a silicon electrode in HF acid can even polish or etch
it, depending on the applied electric potential. Furthermore, this electrochemical
setup is very interesting from a non-linear dynamics point of view: When a silicon
electrode is electrochemically dissolved in HF acid, it is covered by a layer of
oxidized silicon which can change its thickness in peculiar spatiotemporal patterns
[3–10]. (For a comprehensive overview of the work until 2003 see Chapter 5 in
[11].) These spatiotemporal patterns make silicon in hydrofluoric solution one of
the most relevant electrochemical systems for basic studies of nonlinear dynamics.
The most prominent example is the chimera state, in which one part of the electrode
surface oscillates homogeneously, while the rest is turbulent [12–15]. An example for
this is shown in Fig. II.1.1, which shows a spatially resolved ellipsometric-intensity
measurement of a silicon electrode in a HF containing solution. The ellipsometric
intensity is a qualitative measure of the oxide-layer thickness. On the left, we see
a snapshot of the electrode surface. The area close to the borders of the frame
does not belong to the electrode itself. The darker patch close to the center is the
homogeneous domain of the Chimera state, the rest appears to be inhomogeneous.
On the right, we see a time series of a one dimensional cut of the electrode (dashed
orange line). The homogeneous domain oscillates perfectly periodically while
the rest of the electrode exhibits spatiotemporal chaos. Although it is possible to
find some attempts of modeling [16–18], not even the simplest, periodic, spatially
homogeneous oscillations have so far been consistently and convincingly ascribed
to a concrete physical mechanism.

When trying to model the system one has to consider the following processes.
Applying a postive voltage to a silicon electrode in an aqueous electrolyte results
in the formation of silicon dioxide [11]. As the oxidation reaction proceeds, the
resulting layer of oxide eventually passivates the electrode, inhibiting further re-
action. However, if the solution contains HF or HF−2 species, the oxide layer is
etched away [19, 20]. The oxide layer thickness may, thus, attain a steady state at
which the rates by which the oxide layer grows into the silicon electrode and is
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Chapter II.1 Motivation

Figure II.1.1: Spatially resolved ellipsometric intensity in arbitrary units, measured
on a weakly illuminated 〈111〉 n-silicon electrode of 5 to 25 Ω cm in a solution of
0.05 M NH4F and 0.025 M H2SO4 (pH 2.3). The measurement has been conducted
by Maximilian Patzauer.

dissolved by the fluoride containing solution balance exactly. The current-voltage
characteristics of this equilibrium are very similar for a wide range of parameters as
measured by Chazalviel et al. [21]. They measured cyclic voltammograms that were
so slow that they were quasi-stationary. A typical curve is exemplarily depicted in
the cyclic voltammogram in Figure II.1.2, which was measured in the course of this
doctoral project. The curve has two current peaks. The first peak is very narrow
and, in this example, it lies close to 0.3 V vs. SHE. It marks the transition from pore
formation to electropolishing. The second peak is rather wide and its maximum
lies close to 1.8 V vs. SHE. At electrode potentials higher than the maximum of the
second peak, the driving force for the oxidation is so strong that an oxide layer of
some nm is present, while at electrode potentials between the two peaks there is
no layer. Thus, the second peak maximum marks the potential above which the
steady flow equilibrium has a layer. [22, 23]. At even higher voltages, namely in
the current plateau above 3 V vs. SHE in Fig. II.1.2, this equilibrium can become
dynamically unstable at certain experimental parameter values, which then leads to
spatiotemporal variations of the oxide-layer thickness. This plateau is referred to
as the resonant regime due to the strange impedance that has been measured there
[24].

Since complex dynamics tend to bifurcate from simple dynamics, the first step
towards a comprehensive understanding must be to find out which physical pro-
cesses lead to the equilibrium properties, for example the stationary current-voltage
characteristics and the electrochemical impedance. So far there is a model for the
current-voltage characteristics in the electropolishing regime at voltages below
second the current peak in Figure II.1.2 [25]. There is also a more abstract model
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Figure II.1.2: 2 mV/s cyclic voltammogram of a 〈111〉 p-silicon electrode of 5 to
25 Ω cm in a solution of 0.05 M NH4F and 0.025 M H2SO4 (pH 2.3), measured with
help from Konrad Schönleber.

for the electrochemical impedance at the plateau at higher voltages in Figure II.1.2,
which is known to show strange resonance [18]. In this part of the thesis, a physical
model is presented, which explains both the current-voltage characteristics and the
impedance spectrum in the regime of negative differential resistance. Moreover, the
model reproduces the dependence of the oxide layer thickness and the dissolution
valency on the applied potential.

The central idea of the model is that the oxide is etched with a rate that depends on
its composition. This assumption was motivated by measurements of the dissolution
valency and the current-voltage characteristics [7, 22, 23], and by the fact that the
etching is likely to occur purely chemically, i.e. without charge transfer [22, 26, 27].
The latter means that the applied potential should not influence the etch rate of
the oxide layer. However, the rates of the purely chemical etching and the voltage-
dependent oxidation have to be the same at the steady state. Hence, there has to be
an indirect dependence of the etch rate on the applied voltage. The model explains
this indirect dependence by the change in oxide composition as the voltage is varied.
This change could arise due to the accumulation/depletion of ions or defects moving
through the oxide layer. The core of the silicon part of this thesis is a physical model
that incorporates this idea.
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Chapter II.2

Review

This section reviews selected properties that have been measured for silicon elec-
trodes in fluoride-containing solutions. They form the basis of the model developed
in Chap. II.3. For more details on silicon electrodissolution, see the text book contrib-
uted by Xiaoge Gregory Zhang in 2001, reviewing the properties of silicon and its
oxides [11]. There is also a book from 2002 by Lehmann about the electrochemical
dissolution of silicon [28].

II.2.1 Activity diagram

For any combination of pH and electrode potential, the equilibrium conditions
dictate the activities of the chemical species in the electrolyte. These equilibrium
activities can be visualized quantitatively in a diagram like the one in Figure II.2.1,
where the equilibrium activities of several species are shown as gray-scale maps,
with pH and electrode potential plotted as the horizontal and the vertical axis, re-
spectively. Here, square brackets indicate activities. Such diagrams can be calculated
given a set of reactions, like II.2.5 - II.2.11, and given the corresponding ∆G0

f (T) for
each species, which is the standard Gibbs free energy of formation. The latter tells us
by how much the Gibbs free energy G(T, p, n1, n2, . . . , nN , Φ1, Φ2, . . . , ΦN) changes
if one mole of the respective species is added at 1 bar, temperature T, and activity
ak = 1. Let nk be the number of moles of the k-th species, zk the charge number of
the k-th species, Φk the electrostatic potential in the domain of the k-th species, R
the universal gas constant, and F the Faraday constant. For an arbitrary activity
ak of the k-th species, the change in G(. . . ) per mole is given by the elctrochemical
potential µ̃k(T, p, n1, n2, . . . , nN , Φ1, Φ2, . . . , ΦN):

µ̃k(. . . ) ≡ ∂G(T, p, n1, n2, . . . , nN , Φ1, Φ2, . . . , ΦN)

∂nk
(II.2.1)

if p=1bar
= RT · ln(ak) + zkFΦk +

(
∆G0

f
)

k (T) (II.2.2)

if ideal mixture
= RT · ln

 nk

∑
i

ni

+ zkFΦk +
(
∆G0

f
)

k (T) (II.2.3)
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Chapter II.2 Review

The sum in Eq. (II.2.3) goes over all species that have the same phase as the k-th spe-
cies. At equilibrium, the Gibbs free energy is minimal, and thus, the electrochemical
potentials obey Eq. (II.2.4), where νij ∈ Z is the stoichiometric coefficient of the j-th
species in the i-th reaction.

∀i : ∑
j

νij µ̃j(T, p, n1, n2, . . . , nN , Φ1, Φ2, . . . , ΦN) = 0 (II.2.4)

Setting the activity fixed for some of the species, like H2O or an electrode material,
we obtain the remaining activities with Eq. (II.2.4). In doing this, we follow Osseo-
Asare et al. very closely, who have plotted Pourbaix diagrams for this system [20].
Notice that the chosen reactions do not affect the equilibrium activities as long as
there is a pathway to every species and as long as stoichiometry is fulfilled, because
the solution of the equilibrium equation (Eq. (II.2.4)) stays the same.

Even though we only consider equilibrium conditions, the activities that we
obtain this way tell us if a given reaction is thermodynamically allowed at the Si-HF
interface. Let us first consider a Si electrode in H2O, without fluoride (Fig. II.2.1).
The involved species and reactions are given in Eq. (II.2.5) - (II.2.7) and Eq. (II.2.11).

2H2O + 2e− ⇀↽ H2 + 2OH− (II.2.5)
2H2O ⇀↽ O2 + 4H+ + 4e− (II.2.6)

O2 + Si + 2H2O ⇀↽ Si(OH)4 (II.2.7)
HF + F− ⇀↽ HF−2 (II.2.8)

HF ⇀↽ F− + H+ (II.2.9)
SiO2 + 6HF ⇀↽ SiF2−

6 + 2H+ + 2H2O (II.2.10)
Si + O2 ⇀↽ SiO2 (II.2.11)

For this setup, we see that H2 and O2 evolution occurs at the usual parameters,
so H2O is thermodynamically stable only within a certain potential range that
depends on the pH value. Analogously, Si is thermodynamically stable only for
rather cathodic electrode potentials. At more anodic potentials, the Si electrode is
oxidized to SiO2 (solid) or Si(OH)4 (in solution). Both are possible products from a
thermodynamic point of view. In practice, once a passivating layer of SiO2 is formed
on top of a Si electrode, the surface is blocked for further oxidation.

Let us now consider what happens if the solution contains a small amount of
fluoride (Fig. II.2.2). The equilibrium activities of H2, O2, SiO2, and Si(OH)4 stay
unchanged because the equilibrium condition stay the same for the reactions in-
volving these species, given a certain pH. This means that Si(OH)4 is still a possible
product. For the chosen total amount of fluoride, the fluoride can be present as
either F−, HF−2 or HF, depending of the pH value. The most important part here
is the species SiF2−

6 (in solution), which is present in a wide range of parameters.
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II.2.1 Activity diagram

[H2] > 1

[H2] < 10-10
[O2] > 1

[Si(OH)4] > 1
[SiO2] > 1

[O2] < 10-10

[Si(OH)4] < 10-10[SiO2] < 10-10

Figure II.2.1: Theoretical activities of some chemical species for Eq. (II.2.5) - (II.2.7)
and (II.2.11), i.e. silicon in water without any fluoride. We assume the fixed activities
[H2O] = [e−] = [Si] = 1. The necessary standard Gibbs free energies of formation are
given in Tab. II.2.1. Every shade of gray corresponds to an order of magnitude.

Notice that the equilibrium activities of SiF2−
6 is greater than one even though we fix

[HF]+2[HF−2 ]+[F−] = 0.02. This only means that for these parameters there is a strong
thermodynamic tendency to produce SiF2−

6 . It is just the same phenomenon that
we see e.g. with H2, even though we fix [H2O] = 1. For these parameters, SiF2−

6 is
thermodynamically favored over Si, and Si should therefore be dissolved. However,
this plot does not tell us whether SiF2−

6 is also favored over SiO2, which is very
favorable too, as seen in Fig. II.2.2, and which therefore should form a layer on top
of the Si.

In order to determine for which parameters the SiO2 layer is actually capable of
protecting the electrode, let us consider what would happen to a solid SiO2 phase,
i.e. with activity 1, in a fluoride containing solution (Fig. II.2.3). Looking at the
equilibrium activity of SiF2−

6 Fig. II.2.3, we see that for the chosen total amount of
fluoride there is a pH window in which SiF2−

6 is thermodynamically favorable over
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Figure II.2.2: Theoretical activities of some chemical species for Eq. (II.2.5) - (II.2.11),
for Si in a F-containing solution. We assume the fixed activities [H2O] = [e−] = [Si] = 1,
[HF]+2[HF−2 ]+[F−] = 0.02. The necessary standard Gibbs free energies of formation
are given in Tab. II.2.1. Every shade of gray corresponds to an order of magnitude.
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Figure II.2.3: Theoretical activities of some chemical species for
Eq. (II.2.5),(II.2.6),(II.2.8),(II.2.9),(II.2.10), for SiO2 in a F-containing solution.
We assume the fixed activities [H2O] = [e−] = [SiO2] = 1, [HF]+2[HF−2 ]+[F−] = 0.02.
The necessary standard Gibbs free energies of formation are given in Tab. II.2.1.
Every shade of gray corresponds to an order of magnitude.
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SiO2. Thus, it is only within this pH window that a passivating SiO2 layer could
be dissolved. Notice that this window does not depend on the potential, so the
dissolution does not involve a net charge transfer. All in all, this means that the Si
electrode should be dissolved only within the intersection between the parameter
regime in which SiO2 can be produced from Si (Fig.II.2.2), and the parameter regime
in which the produced SiO2 can be dissolved as SiF2−

6 (Fig.II.2.3).
Notice that there is no parameter regime in which SiF2−

6 could be produced
without SiO2 too being much more favorable than Si. This could mean that the
dissolution of Si always involves an electrochemical oxidation to SiO2, followed by
a purely chemical etching, i.e. SiO2 reacts to SiF2−

6 . We incorporate this idea in the
dynamic Si-dissolution model in Chap. II.3, by assuming that there is a thin layer of
SiOx present during the dissolution. In the model, SiOx is considered instead of SiO2,
because we expect sub-stoichiometric oxide to play an important role for the shape
of the current voltage characteristics, and because measurements of a dissolution
valence smaller than 4, i.e. 4 charge carriers per Si atom, indicate sub-stoichiometric
oxide [22]. Unlike for SiO2, the data on sub-stoichiometric oxide is sparser, so it has
not been considered in this section.

∆G0
f (298 K) ref.

H2(g) 0 by def.
O2(g) 0 by def.
H+(aq) 0 by def. (SHE)
OH−(aq) 157.2 kJ [29]
H2O(l) -237.1 kJ [29]
HF(g) -275.4 kJ [29]
HF(aq) -296.82 kJ [20]
HF−2 (aq) -579.08 kJ [20]
F−(aq) -278.79 kJ [20]
Si(s) 0 by def.
SiO2(s) -850.70 kJ [20]
Si(OH)4(aq) -1316.6 kJ [20]
SiF2−

6 (aq) -2199.4 kJ [20]
e− 0 by def. (SHE)

Table II.2.1: Standard Gibbs free energy of formation ∆G0
f at 298 K for compounds in

gaseous (g), liquid (l), or solid (s) phase, or dissolved in water (aq)
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II.2.2 Current-voltage characteristics

A steady state current-voltage characteristics with two current peaks like the one
in Fig. II.1.2 was measured by Eddowes in 1990 [22]. He also investigated how the
hight of the two peaks changes with the fluoride concentration. The peak at lower
voltage marks the voltage below which pores are formed, according to Lehmann
[30]. He measured the height of the first peak, also known as the critical current,
for various HF concentrations and temperatures. The resulting data points clearly
followed Eq. II.2.12. It contains the weight fraction of HF c, the temperature T, the
Boltzmann-constant k, and three fit parameters: The activation energy Ea = 345 meV,
the exponent ν = 1.5, and the coefficient C = 3300 A cm−2 · 100ν.

JPS = Ccνexp
(
−Ea

kT

)
(II.2.12)

However, the second peak, the one at higher voltages, is even more interesting in
our context because it roughly marks the voltage above which we find the peculiar,
resonant voltage regime. Interestingly, the latter peak pertains its width at arbitrarily
slow voltage scan-rates and its shape cannot be explained by traditional models
for surface adsorption or layer transport. A systematic study of the current-voltage
curve including the second peak has been contributed by Chazalviel et al. They
measured the current-voltage characteristics for various combinations of pH and
F-concentrations [21]. Qualitatively, the curves look similar for a very wide range of
parameters. The negative differential resistance part of the second peak is explained
by the model we present Chap. II.3.

II.2.3 Ionic transport

From the measurements of the reaction products, one cannot conclude on the trans-
port processes in the oxide layer. When the layer grows, do oxygen containing
ions pass the oxide layer to oxidize more silicon or do silicon ions migrate towards
the electrolyte? Experiments with silicon isotopes indicate that the oxide grows to
the inside, not to the outside [31]. Once the ions have passed the oxide layer and
arrive at the silicon, the oxidation reaction needs electron holes to proceed [32]. For
n-doped silicon this means that an illumination above the silicon band gap is needed.
Otherwise a huge voltage is needed to draw an electric current. The realization that
ions migrate from the electrolyte through the oxide layer towards the unoxidized
silicon is included in the model we present in Chap. II.3.
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II.2.4 Photoluminescence and trap hopping

In 1988 a group at the Hokkaido University in Japan showed that under strong
anodic bias anodically grown oxide as well as thermal oxide exhibit electrolumines-
cence [32]. Voltages of about 10 V to 200 V were obtained under galvanostatic control
depending on doping, current density and duration. The luminescence appeared in
changing patterns that eventually became homogeneous. The authors did not pay
much attention to the patterns, but they explained the luminescence with electron
injection and trap hopping, as reviewed in the model-review chapter. The concept of
electron trap-hopping is incorporated in the model in Chap. II.3, where we assume
it to be the mechanism by which electrons move through the oxide layer when
an oxidation reaction occurs inside the bulk of the oxide layer as opposed to the
silicon|oxide-layer interface.

II.2.5 Oscillation shapes and patterns

Oscillations during silicon electrodissolution in fluoride containing solution have
been known for a long time [33]. Without the fluoride the oscillations still appear
transiently [10]. Over the last couple of years, these oscillations have been invest-
igated in much more detail and more dynamical features have been reported. For
instance, there are two types of oscillations that coexist for certain parameter ranges
[7, 34]. In this, the coexisting oscillations are not always periodic, but can also be
chaotic. The fact that two separate attractors exist could mean that there are two
different oscillation mechanisms at work. Furthermore, the coexistence might be
linked to spatio-temporal patterns that have been found in the system, including
amplitude clusters and chimera states [8, 35]. All these dynamical features occur in
a voltage regime where there is an oxide layer on top of the silicon. In Chap. II.3, we
model this layer, reproducing many of its properties, but we could not reproduce
these oscillations and patterns. This would be a topic for further improvement of
the model.

II.2.6 At very high voltages

Ellipsometry allows an estimation of the oxide-layer thickness. For ethylene glycol
((CH2OH)2) electrolytes with dissolved potassium nitrate (KNO3), ellipsometric
measurements at high voltages (∼100 V) strongly indicate that only a small fraction
of the total current goes into oxide formation [32, 36, 37]. A little more recent
measurements by Proost et al. yields the same if one compares their electrical current
and ellipsometrically measured thickness [10]. They used acetic acid (CH3CO2H)
in pure water as electrolyte and they also checked their oxide thickness by ex
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situ transmission electron microscopy (TEM). The non-oxide-forming current is
responsible for the current increase beyond the wide, resonant plateau in Fig. II.1.2.
However, the model we present in Chap. II.3 only considers electric current that
does lead to oxide formation, which dominates at not so high voltage. Thus, the
simulated current voltage curve does not show the measured current increase
beyond the plateau.

II.2.7 Electrochemical impedance

The electrochemical impedance of an electrode can often provide deep insight into
the ongoing physical processes [38]. Chazalviel et al. measured the impedance
of a silicon electrode in a fluoride containing solution [24]. They found that in
the resonant voltage regime the impedance could not be explained by traditional
impedance models which include resistors for surface reactions, Warburg elements
for diffusion, and constant-phase elements for non-ideal surface structures. Instead,
their interpretation is that the electrode behaves like an inhomogeneous array of
randomly spiking elements [18], which is further described in the corresponding
model-review section. However, this interpretation is unlikely, since the electrode
surface appears to be perfectly homogeneous during most of the observed oscilla-
tions [16]. All in all, the impedance spectrum needs more understanding, especially
in the resonant voltage regime, see Fig. II.1.2. The model we present in Chap. II.3
contributes to this by explaining the measured impedance at slightly lower voltages,
i.e. in the voltage regime of negative differential resistance.

II.2.8 Limited illumination of n-type silicon

The electro-oxidation of silicon requires electron holes. For n-type silicon this means
that it has to be illuminated for the oxidation reaction to proceed. Alternatively,
one can apply a very high anodic bias and, thus, create an inversion layer, which
provides the necessary holes. The number of holes in the inversion layer grows
exponentially with the voltage drop across it, so it behaves like a current limiter
in series that claims all the applied voltage down to a certain point, below which
its differential resistance becomes small. This is sketched in Fig. II.2.4 for different
current limits, i.e. for different illumination strengths. The voltage drawn by the
limiter is simply added to the voltage drawn by the electrode, “dragging” the curve
to the right. In this sketch, the strange resonant regime is represented by a limit cycle
(pink dots) branching from a supercritical Hopf bifurcation, which is a simplification.

Notice that the current-voltage curve becomes Z-shaped when the illumination
is limited, yielding three branches of which the middle one is unstable. In order
to visualize this Z-shape, the cut-off in Fig. II.2.4 is sketched as much smoother
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than it actually is in the experiments, where the top two branches are practically
indistinguishable. The emergence of this Z-shape indicates a cusp bifurcation with
one saddle-node bifurcation at each “angle” of the Z. As the illumination is lowered,
one of the two saddle-node bifurcations moves along the current-voltage curve, the
other saddle-node bifurcation quickly moves horizontally to the right and leaves
the plot range of Fig. II.2.4 somewhere between the second and third sketched level
of illumination (orange and green lines in Fig. II.2.4). In a two parameter plot, this
leads to saddle-node bifurcation-curves as shown in Fig. II.2.5 (blue lines).

Fig. II.2.5 also shows a vertical and a horizontal Hopf-bifurcation line (orange).
The vertical line follows from the assumption that there is a Hopf bifurcation at
strong illumination. As long as the illumination is sufficiently strong and, thus, the
current limit sufficiently high, the Hopf bifurcation will always occur a the same
voltage, as it does for all the sketched limits in Fig. II.2.4. Hence, there is the vertical
Hopf-bifurcation line in Fig. II.2.5.

The horizontal Hopf-bifurcation line (orange) and the other bifurcations (red and
green) in Fig. II.2.5 are somewhat more speculative. The main question is: What kind
of bifurcation makes the limit cycle oscillations disappear when the illumination is
gradually lowered, e.g. going from (5, 1.1) to (5, -0.1) in Fig. II.2.5? It is rather likely
that there is some sort of codimension-two point involved close to the point (2, 0.2)
in Fig. II.2.5. If this codimension-two point were a Bogdanov-Takens bifurcation
[39], it would mean that the limit cycle disappears in a homoclinic bifurcation as
the illumination is lowered. Another possible codimension-two point would be a
Fold-Hopf bifurcation [40], which has one zero and two purely imaginary, complex
conjugate eigenvalues. A Fold-Hopf bifurcation can have various complicated
unfoldings and even imply a local birth of chaos. One possible scenario is sketched
in Fig. II.2.5, where the limit cycle is destabilized in a subcritical secondary Hopf-
bifurcation

For the model that we develop in Chap. II.3, we take away that it is probably
sufficient to cover p-silicon. Weakly illuminated n-silicon can then be represented
with a current limiter that is connected in series.

II.2.9 Model by Cattarin et al.

The steady-state electric current through a silicon anode depends mainly on three
parameters: The electrode potential, the fluoride concentration, and the pH value
[21]. For the latter two parameters, Cattarin et al. proposed a model [27], in which
they considered a rotating disk electrode with the corresponding flow field in front.
They obtained ordinary differential equations (ODE) for the concentrations in the
diffusion layer. The boundary conditions of this ODEs were ‘constant concentration’
on the bulk side and ‘reaction-flow consistency’ on the electrode-surface side. The
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Figure II.2.4: A sketch of the current-voltage curve around the second current peak
for different illumination strengths (current limits) for n-type silicon in HF solution.
The pink dots represent a limit cycle oscillation.

values of the constant concentrations can be calculated from the pH and potential,
but the reactions and rates for the reaction-flow consistency needed some creative
work to be formulated: Knowing the reactants and products, Cattarin et al. proposed
that SiO2 can be dissolved in reaction II.2.13, II.2.14, or II.2.15.

6HF + SiO2
k1→ SiF2−

6 + 2H2O + 2H+ (II.2.13)

3HF−2 + H+ + SiO2
k2→ SiF2−

6 + 2H2O (II.2.14)

2HF−2 + 2HF + SiO2
k3→ SiF2−

6 + 2H2O (II.2.15)

Their central idea now was about the rates of these reactions. They assumed that
reaction II.2.13, II.2.14, and II.2.15 are linearly proportional to [HF]2, [HF−2 ]2, and
[HF][HF−2 ] respectively. With these rates, they were able to reproduce measured
current-pH curves and current fluoride-concentration curves very well, at fluor-
ide concentrations above 0.03 mol·l−1 and at fixed electrode potential of 2.2 V vs
saturated calomel electrode (SCE).
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Figure II.2.5: Sketch of a possible bifurcation diagram for n-Si in HF solution: Saddle-
node bifurcation (blue), Hopf bifurcation (orange), homoclinic bifurcation between
a saddle and a torus (red), secondary Hopf-bifurcation (green). For ambiguous
cases the number of stable and unstable directions is given in brackets. In this
simple sketch, the illumination is basically just the current limit, since the two are
proportional anyway.
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II.2.10 Model by Chazalviel et al.

Some authors claim that differential equations are not suited to describe the system.
In 1992, Chazalviel and Ozanam came up with the idea of self-oscillating micro-
domains [18] to describe the complicated impedance spectra they obtained [24]. In
their model, they postulate that the electrode is made up of microscopic, stochastic
oscillators that randomly switch on that are coupled and can, thus, synchronize. The
degree of synchronization determines the global current and voltage. This approach
was adapted by Föll et al. in 1998 [41–43] and by Lewerenz et al. in 2000 [44, 45]
who proposed different interpretations for the local oscillators. In the model by
Lewerenz et al., cracks form in layers under compressive stress which seems like
an unphysical assumption, because one would rather expect cracks to form under
tensile or shear stress. In the model by Föll et al., the oscillation is assumed to
occur due to a breakdown caused by the electric field, which at first seems more
convincing from a physical point of view. However, this idea of a critical breakdown
voltage has been refuted by Proost et al., who investigated transient oscillations
in a fluorite-free electrolyte [10]: They used galvanostatic control and found that
the magnitude of the electric field, at which their recurring voltage drops occurred,
was significantly different for each period, becoming smaller and smaller as the
equilibrium was approached. Moreover, ellipsometric measurements by our group
showed that the micro-domains are rather unlikely, because the oxide happens to
oscillate fully homogeneously, at least most of the time [16].

II.2.11 Model by Hasegawa et al.

In an organic, fluoride free electrolyte the voltage grows continuously under gal-
vanostatic control and after some minutes the voltage takes a linear time dependence
[32, 36]. This happens at voltages above 20 V. Hasegawa et al. proposed the fol-
lowing model to describe the oxide growth they observed in this linear regime for
p-silicon:

d
dt

x = AJ (II.2.16)

J = B exp(CUp/x) (II.2.17)

where x is the oxide thickness, Up and J are the cell voltage and current density
respectively and A, B, C are constants. A depends on the molar density of the oxide
and on the formation efficiency, i.e. the fraction of current that is associated with
oxide formation. B and C describe the tunneling of electrons out of trapped states in
the oxide. Thus it depends on the electric field (∝ Up/x) in the oxide.
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Furthermore, they interpret the higher voltage Un measured with n-silicon as the
break-down voltage across the electron depleted space-charge layer in the silicon.
They claim that a break down is necessary to achieve the given current because it
creates the holes needed for oxide formation.

Un = Up + k0(1− k1/Iphoton)
n (II.2.18)

Equation II.2.18 describes the break-down voltage depending on the illumination
Iphoton with k0, k1, n being constants.

The model qualitatively explains the two peaks they found in the luminescence
spectrum. The first peak has a photon energy similar to the difference between
the conduction band energies of Si and SiO2. The second peak is close to the 2 eV
traps found in thermal SiO2 [11]. They found the same luminescence spectrum
applying anodic bias to a silicon electrode with thermally grown oxide, instead of
anodically grown oxide. Under cathodic bias the first peak disappeared while the
second remained, which is consistent with their interpretation.

tunneling

space

energy

hυ

hυ

conduction 
band of SiO2

-2eV traps

Figure II.2.6: Model by Hasegawa et al. for the electron transport in thermal and
anodic oxide [32].

II.2.12 Model by Krischer et al.

P-type silicon anodes show very typical current-voltage curves [21], strange res-
onance [24] and oscillations [7], depending on the parametric conditions. This
characteristic behavior of p-type silicon anodes is also seen with n-type silicon
anodes if the missing holes are provided via photo illumination [19, 46]. Larger
currents require more photons [23]. Under certain conditions, if the illumination is
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chosen such that the current is illumination-limited during a certain phase range
of an oscillation, very complex, spatiotemporal patterns emerge in the oxide layer
thickness, which has been measured with ellipsometry [14].

Despite their complexity, the spatio-temporal patterns can be qualitatively re-
produced by a remarkably simple partial differential equation, which represents a
spatially extended medium at the onset of oscillation [13, 15]:

∂tW(x, t) =

linear local dynamics︷ ︸︸ ︷
W(x, t)

linear local coupling︷ ︸︸ ︷
+(1 + ic1)∇2W(x, t)

first non-linear term of local dynamics︷ ︸︸ ︷
−(1 + ic2)|W(x, t)|2W(x, t)

−(1 + iν)〈W〉(t)︸ ︷︷ ︸
linear global coupling

+(1 + ic2)〈|W|2W〉(t)︸ ︷︷ ︸
non-linear global coupling

(II.2.19)
Equation II.2.19 is a modified version of the complex Ginzburg-Landau equation

(MCGLE) [47].

II.2.13 Summary and Conclusion

Silicon is one of the mostly investigated materials and there are many models for the
self-organization phenomena it shows in hydrofluoric solution. However, as you
can see in Tab. II.2.2, we are still quite far from a model that captures all the complex
behavior of the Si-HF system. Researchers that have been particularly active in
modeling these complex phenomena were Lehmann at the Siemens AG in Munich,
the Palaiseau group around Chazalviel and Ozanam, the Kiel group around Föll,
the group in Berlin around Lewerenz, and our group in Munich around Krischer.
Looking at our model in the last row of Tab. II.2.2, we see that it explains a wide
range of phenomena with only a few reasonable assumptions and, thus, contributes
to the overall understanding of the Si-HF system. The model is covered in Chap. II.3.
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Table II.2.2: Summary of several models, their assumptions, and of the features they
reproduce
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Chapter II.3

Model definition

In this Section, we model the oxide layer, SiOx, that covers the Si anode in hy-
drofluoric solution. We aim to reproduce the negative-differential resistance, i.e.
dI/dϕWE < 0, where I is the electric current and ϕWE is the potential of the working
electrode.

II.3.1 Concept

In this model it is assumed that the electrodissolution of Si occurs in three steps,
which are sketched in Figure II.3.1. The initial step is silicon oxidation at the interface
between the silicon and the oxide layer. In this step, the oxide layer grows into the
silicon electrode. The pure silicon is, thus, replaced by a partially oxidized silicon
species, e.g. SiO.

The second step happens inside the layer volume and transforms the partially
oxidized silicon, SiO, into the final oxidation state, SiO2. In reality, the transforma-
tion from Si to SiO2 is likely to involve several sub-steps and further intermediate
oxidation states, correspondingly. These sub-steps are merged for simplicity in this
model. In the third and final step the layer is etched away purely chemically. The
etch rate is assumed to depend on the oxide composition and to be faster if the
fraction of partial oxide is higher.

One possible way to realize the mechanism we stated above is given by the
following set of reactions. Ions O2− enter the oxide layer by a reaction like:

(H2O)solution ⇀↽ 2(H+)solution + (O2−)layer (R0)

Under the present high electric fields (∼ 1 V/nm) the ions travel through the layer
and oxidize the silicon in two steps

Si + 2h+ + O2− k1→ SiO (R1)

SiO + αh+ + O2− k2→ SiO2 + (2− α)e−, with 0 < α < 2 (R2)
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Chapter II.3 Model definition

or in just a single step

Si + 4h+ + 2O2− k3→ SiO2 (R3)

Reaction (R1), occurs at rate r1(t) at the boundary between silicon and a mixed layer
of SiO and SiO2. This mixture is referred to as SiOx in the following. Inside the
mixed oxide layer the SiO created in Reaction (R1) can be further oxidized to SiO2
in Reaction (R2) at rate r2(x, t). Alternatively, Si can be directly oxidized to SiO2 in
Reaction (R3) at rate r3(t).

The last step is the etching of oxide at the boundary between oxide and solution
with a rate retch(t) depending on the oxide composition right at the boundary. The
corresponding reaction reads

SiOx + 6HF → SiF2−
6 + x H2O + 2H+ + (2− x)H2 (R4)

with some x between 1 and 2. As detailed above, the dissolution of SiO2 in hydro-
fluoric solution is well investigated [20, 27] and more complicated than Reaction (R4),
but our simplification will serve the purpose.

II.3.2 Kinetic description

We transcribed the ideas from Section II.3.1, which are sketched in Figure II.3.1, to a
set of coupled partial differential equations of time t and of one spatial dimension
x which points perpendicularly away from the electrode surface. These partial
differential equations describe the transport and the reactions inside the oxide
layer and at its boundaries. As etching and reaction (R1) and (R3) proceed, the
corresponding interfaces move. Let xa(t) and xb(t) be the time dependent position
of the Si/SiOx and SiOx/solution interfaces, respectively. Assuming a constant
molar oxide density nox for simplicity, the velocities can be written in terms of the
respective reaction rates:

∂txa(t) = − 1
nox

(r1(t) + r3(t)) (II.3.1)

∂txb(t) = − 1
nox

retch(t) (II.3.2)

where the rates per unit area r1(t), r3(t) and retch(t) are defined below in Equation
(II.3.3), (II.3.4) and (II.3.5).

Since we exclusively consider situations where the silicon surface is covered with
some (though possibly thin) oxide layer, the rates r1(t) and r3(t) are assumed to be
limited solely by a lack of O2− ions. Silicon and h+, the other reactants involved, are
present in high concentrations because we consider p-type silicon under anodic bias.
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x

oxidesilicon

cb of pure SiO2

vb of pure SiO2

electrolyte

r 2( x , t) : SiO+αh++O2− →SiO2+(2−α)e−

r etch(t ): etching of SiO and SiO2
O2−

acceptors

R4

n ion(x , t ) , nSiO(x , t ) ,φ (x , t ) xb(t )xa (t )

fast
O2−

2 H+

H2O

R2

r 3(t ): Si+4 h++2O2−→SiO2

R1r 1(t ): Si+2 h++O2−→SiO

R3

cb of SiOx

vb of SiO x

vb

cb

Figure II.3.1: A sketched band diagram of the model with all the variables that define
a state: Interface positions xa(t) and xb(t), concentration of O2− ions nion(x, t),
concentration of intermediate oxide nSiO(x, t) and electric potential ϕ(x, t). The
bandgap of SiOx (solid black line) is smaller than that of pure SiO2 (dashed black
line) [50]. Furthermore, the reaction that allows O2− to enter the oxide layer is
assumed to be fast compared to the transport inside the layer, so that the chemical
potential of O2− at xb(t) is prescribed by the electrolyte.
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Chapter II.3 Model definition

The etch rate retch(t) for a certain oxide mixture is linearly interpolated between the
etch rate of pure SiO2 and the etch rate of pure SiO with proportionality coefficients
ηSiO2 , ηSiO:

r1(t) = k1nion(xa(t), t) (II.3.3)

r3(t) = k3[nion(xa(t), t)]2 (II.3.4)
retch(t) = ηSiOnSiO(xb(t), t) + ηSiO2 [nox − nSiO(xb(t), t)] (II.3.5)

where nox is the molar density of silicon in the oxide, and nSiO(x, t), nion(x, t) are the
molar densities of SiO and O2− respectively. The concentration of SiO2 is expressed
as nox − nSiO(x, t). Hereby we assume SiO2 to be the non-SiO fraction of the entire
molar oxide density nox. The rate coefficients k1 and k3 depend on the potential
drop across the space charge layer which is assumed to be constant in our model,
because the differential capacity of the space charge layer is large. Thus, k1 and k3
are constant as well.

Unlike the reactions (R1) and (R3) which are interface reactions, reaction (R2)
occurs inside the oxide volume. From the participating species we expect elec-
trons/holes to leave/enter the oxide quickly via direct tunneling or trap hopping
which has been observed in the electroluminescence spectra of electrically biased
oxide films [32]. The remaining degrees of freedom in the oxide layer are then the
concentrations of SiO and O2−. The dynamics of these two species is dictated by
their respective mass balance equations which contain transport and reaction terms:

∂tnion(x, t) = −∇Jion(x, t)− r2(x, t) (II.3.6)
∂tnSiO(x, t) = −∇JSiO(x, t)− r2(x, t) (II.3.7)

where Jion(x, t) and JSiO(x, t) are the molar fluxes of O2− and SiO respectively.
Let ϕ(x, t) be the electrostatic potential. Since O2− is the only charged species

considered inside the oxide, the total charge density in the layer is zionFnion(x, t),
where zion is the number elementary charges per ion, i.e. -2, and F is the Faraday
constant. Poisson’s equation thus reads:

∇2ϕ(x, t) = − zionF
εox

nion(x, t) (II.3.8)

Introducing the diffusion constants Dion, DSiO and the rate coefficient k2, the trans-
port and reaction terms in Equation (II.3.6) and (II.3.7) can be modeled as:

Jion(x, t) = −Dion∇nion(x, t) +
DionzionF

RT
nion(x, t)∇ϕ(x, t) (II.3.9)

JSiO(x, t) = −DSiO∇nSiO(x, t) (II.3.10)
r2(x, t) = k2nion(x, t)nSiO(x, t) (II.3.11)
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where diffusive transport was assumed to be Fickian in Eq. (II.3.9), (II.3.10) and
the Einstein-Smoluchowski relation was used to derive the ionic migration term in
Equation (II.3.9). R and T are the gas constant and absolute temperature, respectively.
The diffusion of SiO reflects the thermal restructuring of the solid oxide.

II.3.3 Boundary conditions

Continuity yields Equation (II.3.12) and (II.3.13) as boundary conditions for the
Si/SiOx interface at xa:

Jion(xa(t), t) = −r1(t)− 2r3(t) + nion(xa(t), t) ∂txa(t) (II.3.12)
JSiO(xa(t), t) = r1(t) + nSiO(xa(t), t) ∂txa(t) (II.3.13)

For the SiOx/solution interface at xb(t) we assume a certain fixed concentration n0
ion

of O2− that is tantamount to assuming that Reaction (R0) is always in equilibrium.
The oxide dissolution is accounted for by the movement of the SiOx/solution in-
terface in Equation (II.3.2). Thus, the flux of SiO at the boundary should be set to
zero:

nion(xb(t), t) = n0
ion (II.3.14)

JSiO(xb(t), t) = 0 (II.3.15)

To come up with the boundary conditions for the electrostatic potential φ(x, t)
we made the following simplifying assumption about the space-charge layer. The
differential capacity of the space charge layer of p-type silicon under strong anodic
bias is very large, like in the case of a metal-insulator-semiconductor capacitor [51].
The same is true for the Helmholtz layer which also has a large capacity. Therefore,
any change in the total applied voltage will drop on the much smaller capacitor
formed by the oxide layer. Thus, the oxide sees the externally applied voltage with a
fixed offset, which is exemplary illustrated in Fig. II.3.2. In the example in Fig. II.3.2,
the voltage drop across the space charge layer ∆φ1 complies with

∆φ1 =
2kT

e
ln
(

Qsc

(2ε0εSi kT Nd)0.5

)
, (II.3.16)

where Nd = 1021m−3 and εSi = 11.7. Assume the oxide layer and the Helmholtz
layer had constant capacities Cox, Ch:

Cox =
εoxε0

dox
=

1 · 8.854 · 10−12AsV−1m−1

5 · 10−10m
= 4.07µF cm−2 (II.3.17)

Ch =
εwaterε0

dh
=

6 · 8.854 · 10−12AsV−1m−1

7.6 · 10−10m
= 6.99µF cm−2 (II.3.18)
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Figure II.3.2: This example illustrates that, under forward bias, the space charge
layer almost acts as a constant voltage offset.

The resulting potential differences ∆φ1, ∆φ2, ∆φ3 then indicate that the differential
space-charge layer capacity is negligibly large within the voltage regime in question.
Furthermore, the contribution of the Helmholtz layer appears to be small, even
when the oxide-layer thickness dox is as small as 5 · 10−10m.

Under the said assumptions, we end up with the following boundary conditions
for the electrostatic potential:

ϕ(xa(t), t) = U(t) (II.3.19)
ϕ(xb(t), t) = 0 (II.3.20)

where U(t) equals the externally applied voltage plus/minus a constant offset.

II.3.4 Total electric current

The total electric current I(t) that flows into the working electrode is the sum of the
reaction current Ireac(t) and capacitive charging current Ich(t).

I(t) = Ireac(t) + Ich(t) (II.3.21)

The current I(t) is used in Sec. II.4 to predict a cyclic voltammogram and an imped-
ance spectrum and is compared to electrochemically measured data.

The reaction current Ireac(t) is calculated from the reaction rates r1(t), r3(t) and
r2(x, t), where r1(t),r3(t) were defined as rates per surface area and r2(x, t) as a rate
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II.3.5 Implementation

per unit volume.

Ireac(t) = 2F

r1(t) + 2 · r3(t) +
xb(t)∫

xa(t)

dx r2(x, t)

 (II.3.22)

Remember that we assumed that the electrons/holes created/consumed in the bulk
at rate r2(x, t) leave/enter the oxide via trap hopping or direct tunneling, more or
less immediately. Thus, the current resulting from r2(x, t) is contributing to Ireac(t)
without any further delay.

The capacitive charging current Ich(t) is calculated from the electric potential
ϕ(x, t) as

Ich(t) = −εox ∂t

[
lim
h↘0

∂x ϕ(xa(t) + h, t)
]

(II.3.23)

which is simply the time derivative of the integrated space charge in the semicon-
ductor. Equation (II.3.23) was obtained by integrating Poisson’s equation from −∞
to xa(t) + h and differentiating both sides of the equation with respect to t.

II.3.5 Implementation

The numerical results in the next chapter were obtained with the proprietary finite
element software COMSOL 5.2 [52]. We solved partial differential equations numer-
ically on a one dimensional spatial domain perpendicularly to the electrode, which
represents the oxide layer of finite thickness. From the available physics components
in COMSOL, we used the ‘General Form PDE’ component for chemical species,
the ‘Poisson’s Equation’ component for the electrostatic potential, and the ‘Moving
Mesh’ component to simulate the growth and dissolution of the oxide layer. The
spatial domain was split into 2000 finite elements of the same length, which were
adapted continuously as the boundaries moved. All simulations were run with the
COMSOL-study ‘Time Dependent’ and all solver configurations were left at their
default except for the ‘Relative tolerance’ which we reduced to 10−7 for the electric
impedance calculations and to 10−5 in all other cases. All the parameters, variables
and physical constants used in the simulations are listed in Tab. II.3.1, II.3.2, II.3.3.

II.3.6 Discussion

There are quite some tunable parameters in the model. The electrochemical potential
of ions in equilibrium and the transport and reaction rates were chosen somewhat
arbitrarily, but for the remaining parameters one can make an educated guess. For
the molar density nox and the permittivity εox one can approximately take known
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Notation Value Meaning
nox 4.381 · 10−2 mol cm−3 molar oxide density
n0

ion 9.36 · 10−5 mol cm−3 O2− concentr. in equilib. with solution
Dion 1.1962 · 10−13 cm2 s−1 diffusion coefficient of O2−

DSiO 3.2 · 10−16 cm2 s−1 diffusion coefficient of SiO
k1 1600 cm s−1 reac. coeff. of first oxidation step
k2 2.048 · 104 cm3mol−1 s−1 reac. coeff. of second step
k3 3 · 1015 cm4mol−1s−1 reac. coeff. of direct SiO2 production
U 2 V electrode voltage with offset
εox 1 · ε0 permittivity of mixed oxide
εSi − permittivity of silicon

ηSiO 6 · ηSiO2 etch velocity of pure SiO
ηSiO2 2.09 · 10−8 cm s−1 etch velocity of pure SiO2

Table II.3.1: Default parameters used if not stated otherwise

Notation Unit Meaning
I(t) [A m−2] externally measurable electric current

Ich(t) [A m−2] current connected to capacitive charging
Ireac(t) [A m−2] current connected to reactions

Jion(x, t) [mol m−2 s−1] flux of O2−

JSiO(x, t) [mol m−2 s−1] flux of SiO
nion(x, t) [mol m−3] concentration of O2−

nSiO(x, t) [mol m−3] concentration of SiO
q(t) [C m−2] Si space charge plus surface charge
r1(t) [mol m−2 s−1] rate of the reaction in Eq. (R1)

r2(x, t) [mol m−3 s−1] rate density of the reaction in Eq. (R2)
r3(t) [mol m−2 s−1] rate of the reaction in Eq. (R3)

retch(t) [mol m−2 s−1] rate of etching
t [s] time coordinate
x [m] spatial coordinate perpendicular to surface

xa(t) [m] position of the Si/SiOx interface
xb(t) [m] position of the SiOx/solution interface
ν(t) [1] dissolution valence, i.e. e− transferred per Si dissolved

ϕ(x, t) [V] electrostatic potential
∆ϕWE(t) [V] voltage between working and reference electrode

Table II.3.2: Variables
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Notation Value Meaning
F 96.485 C mol−1 Faraday constant
T 293 K assumed room temperature

zion −2 elementary charges per O2−

ε0 8.854 · 10−12 F m−1 vacuum permittivity

Table II.3.3: Physical constants

values of thermal oxide. The etch rates of partial and stoichiometric oxide ηSiO, ηSiO2

can be roughly estimated from the experimentally observed etch rates. The offset
between the model voltage parameter U and the actual voltage across the interface
can be estimated considering the dependence of the space charge layer’s differential
capacity on the voltage drop across it.

Although the reactions that we assumed above lead to good predictions, the
mechanism could probably also be implemented with other reactions. One could
for example consider OH− ions and Si(OH)x instead of O2− ions and SiOx.
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Chapter II.4

Simulation results

In this chapter we compare the model simulations to measured data. The the
measurements have been performed by Maximilian Patzauer and Dominique Koster.
The results are published in [2].

II.4.1 Current-voltage characteristics

The model is supposed to reproduce the negative slope in the current-voltage char-
acteristics. In an electrochemical set up, this negative slope is measured between
the maximum of the second current peak and the resonant current plateau in Fig-
ure II.1.2 if the applied voltage is cycled. We simulated such cyclic voltammetry
by making the model parameter U a periodic triangular function of time, since U
represents the potential difference between the silicon electrode and the electrolyte.
The parameter U differs from the actual applied voltage by an offset due to the space
charge layer and the Helmholtz layer, which are discussed in Section II.3.3, but are
not quantified in this model. After an initial transient the resulting voltammogram
is robust for a wide range of initial conditions. Figure II.4.1 shows a simulated
voltammogram with a scan rate of 1 mV s−1 and the corresponding electrochemical
measurement. In both curves the current decreases with higher electrode potential.

II.4.2 Oxide layer properties

The thickness of the oxide layer as obtained during the simulated cyclic voltam-
metry is plotted in Figure II.4.2, together with the corresponding electrochemical
measurement which shows an in-situ ellipsometric signal. The ellipsometric signal
is approximately proportional to the oxide layer thickness but also depends on the
refractory index inside the layer and in front of it. It can be used as a qualitative
estimation of the layer thickness [9]. In both plots the thickness increases with the
applied voltage.

The main idea of the model is that the etch rate of the oxide depends on its
composition. Thus, let us have a look at Fig. II.4.3 (Top) which shows the stationary
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Figure II.4.1: Comparison of simulated and measured cyclic voltammograms. Or-
ange: Cyclic voltammogram obtained from the model described in Chapter II.3 at a
scan rate of 1 mV/s, using the parameters in Table II.3.1. Blue: Cyclic voltammogram
at 1 mV/s of a (111) p-silicon electrode of 5 to 25 Ω cm in a solution of 0.05 M NH4F
and 0.025 M H2SO4 (pH 2.3)

oxide composition for some voltages U. With increasing voltage U the stationary
layer thickness xb(t)− xa(t) increases. Consider the four cases in Fig. II.4.3 (Top).The
concentration of partial oxide nSiO(x, t) is the highest at the Si/SiOx interface xa(t),
where the partial oxide is created. Closer to the SiOx/solution interface xb(t) the
fraction of partial oxide becomes smaller as it is used up in Reaction (R2). The
remaining fraction right at the SiOx/solution interface xb(t) determines the etch
rate by Equation (II.3.5). Note that this fraction of partial oxide is much smaller at
the SiOx/solution interface if the layer is thicker and U is larger. This comes from
an increased volume that is available for the ions nion(x, t) to participate in the bulk
Reaction (R2), which consumes partial oxide. Consequently, if U is larger, the layer
is etched more slowly, according to Equation (II.3.5).

The concentration of ions nion(x, t) is the highest at the SiOx/solution interface
xb(t) where the electrochemical potential of O2− in the oxide and the electrochemical
potentials of protons and water in the electrolyte are assumed to be in equilibrium.
With increasing distance from the SiOx/solution interface xb(t), which corresponds
to going left in Fig. II.4.3 (Top), the concentration of ions decreases. This is because
the ions enter the oxide at the SiOx/solution interface xb(t) and are then used
up in the oxide volume by Reaction (R2) and at the Si/SiOx interface xa(t) by
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Figure II.4.2: Comparison of the simulated oxide layer thickness during a slow
voltage scan and the corresponding experimental in-situ ellipsometric signal which
is proportional to the layer thickness [9]. Orange: Oxide layer thickness vs. voltage
U during simulated cyclic voltammetry using the model described in Chapter II.3
at a scan rate of 1 mV/s, with the parameters of table II.3.1. Blue: Ellipsometric
intensity representing the oxide layer thickness during a 1 mV/s cyclic voltage scan
of (111) p-silicon of 5 to 25 Ω cm in a solution of 0.05M NH4F and 0.025M H2SO4
(pH2.3)

Reaction (R1) and (R3). The concentration of ions in the layer determines the
curvature of the electrostatic potential ϕ(x, t) in Fig. II.4.3 (Bottom) by Poisson’s
equation. Its derivative gives us the electric field −∂x ϕ(x, t), which monotonically
increases from about 0.2 V/nm at the SiOx/electrolyte interface to 2-3 V/nm at the
Si/SiOx interface.

II.4.3 Dissolution valence

We calculated the reaction valence ν(t) in the presented model in terms of the
reaction current Ireac(t), the Faraday constant F, the Si/SiOx interface position xa(t)
and the molar density of Si-atoms in the SiOx layer nox :

ν(t) =
Ireac(t)

F ∂txa(t) nox
. (II.4.1)
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Figure II.4.3: Stationary distributions of several space-dependent quantities are
shown at different voltages U. At each voltage U there is a different stationary layer
thickness xb(t)− xa(t) which is reflected by the respective domain of definition. Top:
Stationary concentration of O2− ions nion(x, t) (dashed line) and of partially oxidized
silicon nSiO(x, t) (solid line) for different applied voltages. Bottom: Stationary profile
of the corresponding electric potential ϕ(x, t) and the electric field ∂x ϕ(x, t).
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Figure II.4.4: Dissolution valency as defined by Equation (II.4.1) is plotted over the
voltage U(t) during simulated cyclic voltammetry using the model described in
Chapter II.3 at a scan rate of 1 mV/s, with the parameters in Table II.3.1. As the
voltage is increased the valency increases from 3.4 to 4, as reported in the literature
[22, 23].

The calculated reaction valence during simulated cyclic voltammetry is shown in
Figure II.4.4. Due to the slow scan rate there is no noticeable hysteresis, if there is
one at all. The simulated valence increases monotonically with the voltage from a
value of about 3.4 close to the current peak to 4 at the plateau where it saturates.
The same behavior has been confirmed by gravimetric measurements [22] and by
rotating ring disc measurements [7, 23] The exact value of the valence in the limit
U → 0 can be adjusted by changing the rate constant of Reaction (R3).

II.4.4 Impedance spectra

To obtain the impedance spectra for our model described in Chap. II.3 we set the
parameter U to a different function for each investigated angular frequency ω,
denoted by Uω(t):

Uω(t) = 1 mV · sin(ω t) + U0 (II.4.2)

The model Equations were solved for many periods of Uω(t) such that the result-
ing electric current Iω(t) converged and became sine-shaped. We calculated the
corresponding analytical signals Ũω(t) and Ĩω(t) with the Matlab R2017b function
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hilbert(...) [53]. This means that Ũω(t) and Ĩω(t) are obtained by removing from
Uω(t) and Iω(t) by removing the negative and zero frequency components. The
impedance Zω(t) is then calculated as

Zω(t) =
Ũω(t)
Ĩω(t)

(II.4.3)

which would be constant in time if the current response was perfectly linear. How-
ever, even at the small perturbation amplitudes that we chose, the current response
is not perfectly linear, so Zω(t) is not perfectly constant. Thus, we determined the
value for the impedance Zω at a certain angular frequency ω by time-averaging
Zω(t) over some periods. Alternatively one could have calculated the impedance
from the values of the Fourier transformed signals at ω, which is equivalent for a
linear response.

The impedance spectra obtained by the simulation are plotted in Fig. II.4.5 (Top)
and Fig. II.4.6 (Top) and the corresponding electrochemically measured impedance
spectra in Fig. II.4.5 (Bottom) and Fig. II.4.6 (Bottom). There is an offset in the voltage
U which is qualitatively discussed in Chap. II.3, see also the different voltage axes
in Fig. II.4.1. In the simulation both semi-circles grow as the voltage is increased,
which is also the case in the measured spectra. The measured spectra have a ’kink’
which is not found in the simulated spectra. The ’kink’ becomes more prominent
for larger voltages. The plots in Figure II.4.7 exemplarily compare one simulated
impedance spectrum to one measured impedance spectrum. It can be seen that the
simulated spectrum looks similar to the measured spectrum around 2 V vs SHE.

The model allows us to assign a physical meaning to some features of the meas-
ured impedance spectra which are illustrated in the equivalent circuit in Figure II.4.8.
For example, when omitting the charging term Ich(t) in the numerical calculation
(see Equation (II.3.23)), the small semi-circle at high frequencies in the Nyquist plot
disappears. Thus, it is clear that the small semi-circle emerges due to interfacial
charging, which means that opposing charges accumulate at the Si/SiOx interface
and at the SiOx/solution interface. Hence, any equivalent circuit would require a
capacitor C1, see Figure II.4.8.

At an intermediate frequency at which the small and the large semi-circle merge,
the impedance is almost perfectly ohmic. This means that this frequency is suffi-
ciently low for the layer capacity to be negligibly small but high enough so that the
oxide thickness is not affected. Thus, the impedance at this frequency corresponds to
the resistivity of the layer for a fixed thickness. This is represented in the equivalent
circuit by a resistor R1. Since the simulated impedance spectra at low frequencies
resemble a semi-circle which ends at a real and negative value when ω → 0, we fit
a capacitor C2 � C1 in parallel with a negative resistance R2. This approximation
seems to be valid for the electrochemically measured impedance spectra in Fig. II.4.5
(bottom) at U ≈ 2 V vs SHE.
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Figure II.4.5: A comparison of the Nyquist plots of simulated and electrochemically
measured impedance spectra. (Top): Nyquist plot of impedance spectra from
a simulation using the model described in Chapter II.3 with the parameters in
Tab. II.3.1. (Bottom): This Nyquist plot of impedance spectra that were measured
applying dynamic multi-frequency analysis [54] for (111) p-silicon of 5 to 25 Ω cm in
a solution of 0.05 M NH4F and 0.025 M H2SO4 (pH2.3).
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Figure II.4.6: Comparison of Bode plots of the same data as in Figure II.4.5. (Top):
Bode plot of the simulated data from Fig. II.4.5. (Bottom): Bode plot of the measured
data from Fig. II.4.5.
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Figure II.4.7: One simulated impedance spectrum at voltage U = 0.4V and one
measured impedance spectrum at voltage U = 2.2V vs SHE are exemplarily com-
pared. Fits are represented by solid lines for the absolute value |Z| and by dashed
lines for the complex phase of Z. The equivalent circuit can be seen in Figure II.4.8.
The circuits fit the simulated spectrum well but do not reflect all features of the
measurement. These features become more dominant at higher voltage, as can be
seen in Fig. II.4.5 (bottom).
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R1

C1

R2 < 0

C2

Figure II.4.8: Equivalent circuit fitted to the spectra in Figure II.4.7. It fits the
simulated spectra quite well, but for the measured spectra it neglects the ’kink’
at around 0.2Hz and it does not describe the complex phase at ω → ∞.

There are some measurable features that the model does not reproduce. It can be
seen in the Bode plot in Fig. II.4.6 (bottom) that at high frequencies the measured
spectra approach a phase that differs from −π/2, where −π/2 would correspond
to an ideal capacitor. This is probably caused by an uncompensated resistance in
series, which leads to a complex phase of zero at ω → ∞.

Another feature in the measured spectra, which is not reflected by the model, is
the kink at frequencies between 0.1 Hz and 1 Hz. This kink becomes a loop that
grows for higher voltage until at some voltage it possibly causes the resonance
that is known to occur in the system [24], by touching the origin in the Nyquist
plot. If the impedance becomes zero at a certain frequency, it corresponds to a
Hopf-bifurcation [55], which could explain the emergence of oscillations that are
observed in the system [7, 33]. However, the loop is not explained by the model
and the scenario in the electrochemical set up is probably even more complicated,
as can be guessed from earlier impedance measurements at other parameters [24].
Unfortunately, measuring the impedance of the steady state in the resonant regime
appears to be challenging, also with dynamic multi-frequency analysis.

A third discrepant feature is measured at smaller anodic voltages. As the voltage
is decreased in the electrochemical set up, one eventually passes the current peak
and arrives at the electropolishing regime where the differential resistance is positive.
Thus, the presumed contact point between the impedance curve and the real axis at
zero frequency in the Nyquist plot moves from the left half plane to the right, as for
the measured data in Figure ??. The model, in contrast, is not valid for voltages this
low, as there is no oxide layer of relevant thickness.

II.4.5 Origin of the negative differential resistance

From our model we can extract the necessary physical conditions leading to the
negative differential resistance. First we note that in order to obtain the negative
slope in the current voltage characteristics only the reactions (R0), (R1), (R2), and
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(R4) are required. Reaction (R3), in contrast, was only introduced to adjust the
valence to above 3 at very small layer thicknesses, where volume Reaction (R2)
hardly occurs.

Let us assume that the system is in a steady state on the negative differential
branch. An increase in the voltage U leads to an increase in the amount of O2−

ions pulled into the oxide layer by reaction (R0) which increases the rate of the first
oxidation step (R1), as the latter requires O2− ions. The resulting thickening of the
oxide layer works against (R1) because the path that the O2− ions have to travel in
order to reach the Si/SiOx interface becomes longer. Therefore, the thickening of
the oxide layer partly compensates the rate increasing effect of the larger voltage
U on the first oxidation step (R1). The second oxidation step (R2), however, which
happens inside the layer volume, is supported by the thicker layer, or at least it
is less suppressed compared to the first oxidation step (R1), which happens at the
Si/SiOx interface. Thus, the oxide layer now contains a higher fraction of fully
oxidized silicon, SiO2, as compared to a smaller applied voltage U. Consequently,
the oxide layer is etched more slowly by Reaction (R4). This thickens the oxide layer
even further such that the rate increasing effect of the larger voltage U on the first
step (R1) is overcompensated.

Note that without considering reaction (R2), any increase in voltage is com-
pensated by a thicker oxide layer in such a way that the electric field inside the
oxide layer as well as the current remain constant, independently of the ratios or the
absolute vales of the rate constants of SiO (R1) and SiO2 (R3) formation.

In short, the negative differential resistance is the result of the interplay between
the further oxidation of partially oxidized SiOx inside the oxide layer and the
dependence of the etch rate on the stoichiometry of the oxide.
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Chapter II.5

Summary and outlook

Silicon in hydrofluoric solution under anodic bias is a system that is not only of
technological relevance, but also of significant interest in regard of its capabilities to
show a wide range of self-organization phenomena. In this part, we have presented
a model for this, which is build on principles of non-equilibrium thermodynam-
ics, solid state chemistry and semi-conductors physics. The model captures the
behavior qualitatively and semi-quantitatively with minimal complexity. It was
possible to reproduce a wide range of measurements, assuming that the reaction is
mainly limited by the migration of ions in the oxide layer. Hence, we neglected the
dependence of electrochemical reaction rates on the electrochemical potential. We
also discussed that we can neglect temporal variations of the potential drops across
the space charge layer and the Helmholtz layer because of their large capacities. In
contrast, a very crucial element for reproducing the negative-differential resistance
is the oxidation of SiOx within the oxide layer, and the dependence of the etch
rate on the oxide stoichiometry. Our simulations reproduced the current-voltage
curve in the voltage regime of negative differential resistance below the resonant
current-plateau, and the monotone dependence of the valency and the oxide-layer
thickness on the applied voltage. Moreover, the simulations reproduce measured
impedance spectra.

This presented model is a basis on which one can build to further uncover non-
linear features of the Si electrodissolution dynamics, such as current oscillations or
the patterns observed with n-type Si electrodes. For this, it is likely that some of the
simplifying assumptions entering the model have to be relaxed.
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Modeling of CO Electrooxidation
on Globally Coupled Pt

Microelectrodes
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Chapter III.1

Motivation

In the Part II we considered a model for how silicon is electrochemically dissolved
in hydrofluoric acid under anodic bias. Our motivation had been the interesting
dynamical phenomena in the system. We presented a model that could reproduce
a wide range of measurements, but its ability to capture the complex dynamics of
the system was sill quite limited. In this part, we deal with a completely different
situation, regarding not only the considered material, but also the state of the art
in its modeling – the electrooxidation of CO on platinum. In particular, we want to
investigate the dynamics of an array of several platinum microelectrodes that are
short circuited. The physics of the CO electrooxidation on platinum is well known
and its dynamics can be well reproduced by models. The motivation here is to
explain the behavior of the models, and to carve out the general principles for the
selforganization that we see, in particular, oscillations of globally coupled, bistable
components.

Usually, collective oscillations are found in systems that consist coupled oscillators.
The coupling between the oscillators can make them synchronize in phase and
frequency [56]. This scenario is found in nearly any field of natural science. Notable
examples range from mechanical clocks, over arrays of Josephson junctions, chemical
and electrochemical systems to swarm behavior and pedestrian dynamics. Besides
completely uniform oscillations, there is a variety of synchronization patterns that
form spontaneously in many coupling topologies [57–60]. Among these are cluster
patterns, which consist of multiple synchronized groups of oscillators [61–63]. In
contrast to coupled oscillators, coupled bistable components are studied sparsely.
Kouvaris and colleagues showed that networks of bistable, diffusively coupled
elements with global feedback may form localized stationary patterns [64]. In this
part, we explain how coupled bistable components can also exhibit collective cluster
oscillations. More precisely, the coupled bistable components may spontaneously
form two or three groups that exhibit synchronous oscillations although the basic
component is neither oscillatory or resonant itself.

Bistability of stationary states is a very basic nonlinear behavior that non-linear
dynamical systems can show. A technologically relevant example for globally
coupled bistable components are catalyst particles on a common support where
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the catalytic reaction exhibits bistable kinetics [65]. Another example is an array of
micro-electrodes which are coupled through an external circuit and possess an N- or
an S-shaped current voltage characteristic [66, 67]. In this case, even the dynamics
of the individual components can be accessed experimentally. Furthermore, Li-ion
batteries which composed of many individually chargeable nanoparticles embed-
ded in a common matrix material fall into this category[68–71]. The chargeable
nanoparticles in this case are bistable within a certain range of potential, being either
in a Li-rich or in a Li-poor phase. A related, illustrative example are rubber balloons,
each one being attached to one of many openings of a pipe and the entire system
being ‘charged’ with air [69, 72, 73]. Note, however, that despite the mentioned
strong similarities, the comparison between the latter two systems, which do not
dissipate energy, and the dissipative systems considered here should be seen with
caution.

The interesting behavior in ensembles of bistable components arises when they
are operated under a global constraint. Without loss of generality, this can be
exemplified with the CO electrooxidation on an array of microelectrodes. The
microelectrodes are the components and we couple them by fixing the total electrical
current through them. The dynamics of an individual component k depend on
an inner state variable xk that is bistable in some region of the applied voltage u
(Fig. III.1.1a). The current yk through the component depends on the inner state xk
such that the yk-u curve inherits the bistability from xk. We use the symbol y for
the current instead of the more common symbol i throughout this part to avoid
ambiguity with the imaginary unit. The poisition of the steady states in the yk-u
diagram does not depend on whether one controls the current yk or the voltage u,
but the stability does. While a single, individual component is monostable under
yk control, it is bistable under u control, the middle autocatalytic branch being
unstable (Fig III.1.1a, b). An entire ensemble of bistable components corresponds
to an equivalent circuit as in Fig. III.1.1c, where all the components are connected
in parallel. While the components are effectively decoupled under u control, under
ytot control, i.e. a fixed the sum of the individual currents yk in case of the Pt
microelectrodes, the behavior is much more interesting and is the topic of this part
of the thesis. Remember that Fig. III.1.1 can also represent non-electrical systems
like the rubber balloons that are attached to a common pipe, in which case u would
be the pressure in the pipe and yk would be the air in the k-th rubber balloon. For
the Li nanoparticles u is the voltage and y. Still we will continue to use the Pt
microelectrodes as the main example.

One well known response of such a system upon a slow ramp of the total current
ytot (or total charge in the case of the Li-ion batteries or the rubber balloons) is the
sequential activation of the individual components [66–69]. Starting from an initial
condition where all elements are in the low-current state, one element after the
other will switch to the high current branch, as shown in Fig. III.1.2. This sequential
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Figure III.1.1: A circuit representation of the system. (a): A single bistable component
under u control, i.e. a fixed electrode potential in case of a Pt microelectrode. yk and
xk adjust accordingly (b): A single bistable component under yk control, i.e. a fixed
electrode current in case of a Pt microelectrode. u and xk adjust accordingly. (c):
Globally coupled, bistable components.

Figure III.1.2: Oscillations in an array of 12 parallelly connected Pt microelectrodes
in CO saturated 0.5 mM sulfuric acid during a galvanodynamic scan of 203 pA s−1,
(a): Electric potential over time. (b): Individual currents over time. Reproduced
from [74], with the permission of AIP Publishing.
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activation was coined mosaic instability in the case of first-order phase transition
systems [70, 75]. There is also another phenomenon that has been observed CO
electrooxidation on an array of Pt micro-electrodes, which has not been observed in
the other mentioned systems. The emergence of collective oscillations from the third
activation on. These oscillations even persist if the total current ytot is kept constant
to the degree that the experimental parameters can be kept constant, as shown in
Fig. III.1.3 [74]. Here, each oscillatory state is characterized by one electrode on the
autocatalytic state, the other eleven electrodes being distributed on the high and low
current states. The measured oscillations could be reproduced with a mathematical
model capturing the electrochemical kinetics of the system. However, for large
numbers of components, oscillatory solutions have not been reported. In this part
of the thesis, we demonstrate that bistable multi-component systems can exhibit
oscillations even for an arbitrarily large number of components.
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Figure III.1.3: Potential (a) and individual current (b) time series for a current of
60 nA applied to twelve short-circuited microelectrodes in CO saturated 0.5 mM
sulfuric acid. Reproduced from [74], with the permission of AIP Publishing.
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Chapter III.2

Review: Phase transitions

The bistable reaction kinetics on Pt microelectrodes described in this part of the
thesis are very similar to systems that have a first-order phasetransition. In this
chapter, we review phase transitions in a way that makes it easy to compare the two.

In order to treat phase transitions, it is not sufficient to describe a thermodynamic
system only in terms of the common thermodynamic quantities S, T, V, p, N, µ. In
particular, one needs to introduce an order parameter x that captures the particle
structuring and can, thus, distinguish between e.g. a solid and a liquid phase.

III.2.1 Homogeneous

Let us start from the beginning and define the entropy S of a system in terms of the
phase volume Γ, the total energy E, the volume V, the number of particles N, and
the order parameter x and let us denote the Boltzmann constant by kb.

S(x, E, V, N) = kbln(Γ(x, E, V, N)) (III.2.1)

The first law of thermodynamics reads

dE =

(
∂S
∂E

)−1 ∂S
∂x

dx −
(

∂S
∂E

)−1

dS +

(
∂S
∂E

)−1 ∂S
∂V

dV +

(
∂S
∂E

)−1 ∂S
∂N

dN

=: ξ(x, E, V, N)dx + T(x, E, V, N)dS − p(x, E, V, N)dV + µ(x, E, V, N)dN
(III.2.2)

in which T, p, µ are the temperature, the pressure, and the chemical potential, re-
spectively. The function ξ does not have a specific name but we can think of it as
a “order-parameter potential” that describes the change in energy per change in
order parameter, analogously to the chemical potential, which describes the change
in energy per change in particle count. For our purposes we can keep V and N
constant, so the system reduces to:

S(x, E) = kbln(Γ(x, E)) (III.2.3)
dE = ξ(x, E)dx + T(x, E)dS (III.2.4)

61



Chapter III.2 Review: Phase transitions

For an isolated system, in which E is kept constant, order parameter might evolve
according to:

d
dt

x(t) = f̃ (x(t), E) (III.2.5)

T = g̃(x(t), E) (III.2.6)

in which t is the time, g̃(x(t), E) = − (∂S(x(t), E)/∂E)−1, and f̃ is a function that
fulfills a strong formulation of the second law of thermodynamics, i.e. ∀E∀x :
(∂S(x, E)/∂x) f̃ (x, E) ≥ 0. The f̃ -g̃ notation is used to make it easier to see the
link between the phase transitions we consider here and bistable systems like Pt
microelectrodes, which are the main topic of interest in this part of the thesis.

If instead of isolating the system we keep its temperature T fixed using a thermal
reservoir, the dynamics change to:

d
dt

x(t) = f (x(t), T) (III.2.7)

E = g(x(t), T) (III.2.8)

Here, f is a function that, just as f̃ above, fulfills a strong formulation of
the second law of thermodynamics. Since we fix T, V, N, this means ∀T∀x :
(∂F(x, T)/∂x) f (x, T) ≤ 0, where F = E− TS is the Helmholtz free energy. Minim-
izing F maximizes the total entropy of the system and the thermal reservoir. For g
it was assumed that g̃(x(t), E) is invertible in E and that ∀E∀x : E = g(x, g̃(x, E)).
This is not guaranteed since there can be multiple values of E pointing to the same
function value of g̃(x, E) ≡ T(x(t), E). However, such ambiguities can be resolved
by introducing more order parameters.

Now we have almost everything we need to describe a phase transitions that
occurs under T variation. A phase transition occurs when there there is a bifurcation
in Eq.(III.2.7). For a first-order phase-transition it is a saddle node bifurcation,
or rather a pair of saddle node bifurcations surrounding a bistable region like in
Fig.III.2.1. The two stable equilibria in the bistable region correspond to two phases
of a substance, e.g. solid and liquid. For a second-order phase-transition it would be
a pitch-fork bifurcation.

III.2.2 Inhomogeneous

In a less idealized scenario, the system is spatially extended and the transition occurs
inhomogeneously. One can again chose to isolate the system to keep the total energy
constant, or immerse it in a thermal reservoir to keep the temperature constant. With
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Figure III.2.1: Qualitative sketches of various quantities during an overly idealized
first-order phase-transition in a homogeneous system during a slow temperature
ramp. (solid black line): Stable equilibrium. (dashed black line): Unstable equi-
librium. (red line): System state. (green arrows): flow field (a): Order parameter
over temperature. (b): Energy over temperature. (c): Entropy over temperature.
(d): Helmholtz free energy over temperature. (e): Helmholtz free energy over order
parameter for various temperatures. The red dot indicates the system state.
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the temperature as the constant control parameter one obtains an equation like

d
dt

x(r, t) = f (r, t, T) (III.2.9)

Etot =
∫

dr g(x(r, t), T) =
∫

dr Eloc(r, t) (III.2.10)

in which r parameterizes space, Etot is the total energy of the system, Eloc is the local
energy density. f (r, t, T) ensures that the total free energy Ftot, given as a functional
of x, decreases with time (second law), i.e.

∀T∀t :
∫

dr
δFtot[λr′.x(r′, t), T]

δx(r, t)
f (r, t, T) ≤ 0. (III.2.11)

The λ here is used in the sense of lambda calculus, i.e. (λr′.x(r′, t)) : r → x(r, t).
The energy Etot is now an integral over the local energy density Eloc(r, t), but one
could also model it as a functional. When defined as an integral, it is more similar to
the bistable Pt microelectrodes, because then Etot takes the role that the total current
plays for the Pt microelectrodes that are connected in parallel. This is explained
in more detail in Chap. III.3. The main difference is the continuity in r instead of
discrete components. Analogously, T takes the role that the electrode potential plays
for the microelectrodes.

An simple illustrative choice of Ftot, f , and g that produces a first-order phase-
transition would be

Ftot[λr′.x(r′, t), T] :=
∫

dr′

−(T − T0)x(r′, t)− 1
2

x(r′, t)2 +
1
4

x(r′, t)4︸ ︷︷ ︸
Floc

+
1
2
(∇r′x(r′, t))2


(III.2.12)

f (r, t, T) := −δFtot[λr′.x(r′, t), T]
δx(r, t)

(III.2.13)

g(x(r, t), T) := x(r, t) (III.2.14)

With this choice Eq.(III.2.11) is fulfilled. So the dynamical system would be:

d
dt

x(r, t) = T − T0 + x(r, t)− x(r, t)3 +∇2
r x(r, t) (III.2.15)

Etot =
∫

dr′ x(r′, t) (III.2.16)

This is an Allen-Cahn-like equation [76] that makes a phase transition at T = T0. For
T = T0 the system has two domains, the size of which determines the total energy
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Etot (and analogously the total entropy Stot). The energy regime in which a stable
equilibrium with such two distinct domains exists is the binodal regime. The part of
the binodal regime in which there is no stable homogeneous state is the spinodal
regime. Notice that even if derivatives of x with respect to r were to be included in
g and in the integral for Etot, their contribution would be small if the total domain
size is large (analogously for Stot). The resulting equilibria of Eq.(III.2.15),(III.2.16)
and of similar systems are sketched in Fig. III.2.2. Notice that for inhomogeneous
systems the transition occurs at a different temperature than in the homogeneous
case, namely where the two minima of the local term of Floc have the same value.
However, the equilibria of the homogeneous system still exist but are metastable.

In the next chapters, we consider globally coupled bistable components, which
are very similar to systems that have a first order phase transition. One individual
component behaves analogous to the homogeneous phase transition, but when
many of them are globally coupled we see qualitatively different phenomena. The
key property that distinguishes the globally coupled bistable components from an
inhomogeneous phase transition, which we have just discussed, is the lack of a local
coupling between the components. As a result these systems can have much more
complicated equilibrium lines and show various interesting dynamical phenomena.
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T
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a) b)

c) d)

e)

T 1 T 2 T 3 T 4 T 6 T 7T 5

T 1 T 2 T 3 T 4 T 6 T 7T 5

F loc

F totS tot

E tot spinodal binodal

Figure III.2.2: Qualitative sketches of various quantities during an idealized first-
order phase-transition in a inhomogeneous system during a slow temperature
ramp. (black line): equilibrium. (red line): System state. (a): Order parameter over
temperature. (b): Energy over temperature. (c): Entropy over temperature. (d):
Helmholtz free energy over temperature. (e): Helmholtz free energy over order
parameter for various temperatures. The red dot indicates the system state.
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Chapter III.3

General, linear analysis

This chapter deals with the sequential activation and with the voltage oscillations,
which both have been observed with arrays of Pt micro-electrodes in CO containing
solutions [74]. To explain these phenomena it is sufficient to assume a qualitative
S-shape of the current-voltage characteristics, which is an equilibrium curve, and
consider the linear regime close to it. Therefore, no dynamical equations are specified
in this chapter. For this reason, the statements in this chapter are very general and
apply to an entire class of systems, including Pt micro-electrodes under total-current
control, rubber balloons under total-air control, or LixFePO4 nano-particles under
total-charge control. Despite its generality, the following analysis has been done with
mainly Pt microelectrodes in mind, which influenced certain decisions regarding
the notation.

III.3.1 Individual components

Let us first consider the individual components that make up the ensemble in
Sec. III.3.2. One component represents, for example, an individual Pt micro-electrode,
a rubber balloon, or a LixFePO4 nano-particle.

III.3.1.1 System Definition

We assume that we have been given an ordinary differential equation for a bistable,
individual component. We further assume that the equation can be written in the
following state-space form:

d
dt

x(t) = f (x(t), u) (III.3.1)

y(t) = g(x(t), u) (III.3.2)

We think of u ∈ R and y ∈ R as voltage and current respectively and of the entries
of x ∈ Rn as concentrations of n chemical species. Other interpretations could be for
example (u: temperature, y: energy, x: order parameter), (u: force, y: momentum, x:
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u

x(t)
f(x(t),u) = 0

Figure III.3.1: Sketched nullcline of f

velocity/position) or (u: voltage, y: charge, x: extent of reaction). u is the control or
input variable and y is the output variable.

We assume that f : (Rn, R) → Rn is a parameterized flow field of the form
depicted in Fig. III.3.1, i.e. for any u Eq. (III.3.1) is bistable or monostable and its
nullcline forms an S in the x-u plot. We chose this restriction, so we can later use a
simpler notation for the individual branches of the S, but the results can be easily
generalized to more complicated shapes of f as well. Let the fixed points of the flow
field f be hyperbolic for almost any u. Further, we assume that g : (Rn, R) → R

is strictly monotone in its second argument, so we can define an inverse function
g̃ : (Rn, R)→ R and a function f̃ : (Rn, R)→ Rn such that

∀x, u : g̃(x, g(x, u)) := u (III.3.3)

∀x, y : f̃ (x, y) := f (x, g̃(x, y)) (III.3.4)

This gives us a conjugated version of the system in which input and output are
exchanged:

d
dt

x(t) = f̃ (x(t), y) (III.3.5)

u(t) = g̃(x(t), y) (III.3.6)

The equilibrium line of a single component is the set E:

E := { (u, y, x) | 0 = f (x, u) ∧ y = g(x, u) } (III.3.7)

The conjugate system yields the same set:

E = { (u, y, x) | 0 = f̃ (x, y) ∧ u = g̃(x, y) } (III.3.8)
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III.3.1 Individual components

III.3.1.2 Linearization

Let (ueq, yeq, xeq) ∈ E be an equilibrium and let the small deviations from that
equilibrium be denoted by a circumflex (also known as ‘hat’):

(û(t), ŷ(t), x̂(t)) := (u(t)− ueq, y(t)− yeq, x(t)− xeq) (III.3.9)

Notice that we now also allow small fluctuations in the parameter u. Equation
(III.3.1) and (III.3.2) can then be linearized to

d
dt

x̂(t) = Ax̂(t) + Bû(t) (III.3.10)

ŷ(t) = Cx̂(t) + Dû(t), (III.3.11)

with A, B, C, D defined as:

A :=
∂ f (x, u)

∂x

∣∣∣∣x=xeq

u=ueq

∈ Rn×n (III.3.12)

B :=
∂ f (x, u)

∂u

∣∣∣∣x=xeq

u=ueq

∈ Rn×1 (III.3.13)

C :=
∂g(x, u)

∂x

∣∣∣∣x=xeq

u=ueq

∈ R1×n (III.3.14)

D :=
∂g(x, u)

∂u

∣∣∣∣x=xeq

u=ueq

∈ R1×1 (III.3.15)

Analogously,

Ã :=
∂ f̃ (x, y)

∂x

∣∣∣∣x=xeq

y=yeq

∈ Rn×n (III.3.16)

B̃ :=
∂ f̃ (x, y)

∂y

∣∣∣∣x=xeq

y=yeq

∈ Rn×1 (III.3.17)

C̃ :=
∂g̃(x, y)

∂x

∣∣∣∣x=xeq

y=yeq

∈ R1×n (III.3.18)

D̃ :=
∂g̃(x, y)

∂y

∣∣∣∣x=xeq

y=yeq

∈ R1×1 (III.3.19)

yields

d
dt

x̂(t) = Ãx̂(t) + B̃ŷ(t) = (A− BD−1C)x̂(t) + BD−1ŷ(t) (III.3.20)

û(t) = C̃x̂(t) + D̃ŷ(t) = −D−1Cx̂(t) + D−1ŷ(t) (III.3.21)
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Chapter III.3 General, linear analysis

To derive the latter, solve Eq. (III.3.11) for û(t) to get Eq. (III.3.21) and then elim-
inate û(t) in eq. III.3.10 to get eq. III.3.20. Notice that the Jacobians A and Ã at
(ueq, yeq, xeq) differ, describing the voltage controlled case and the current controlled
case, respectively.

III.3.1.3 Saddle-node bifurcation of a voltage-controlled component

Assume that at some (usn, ysn, xsn) ∈ E the voltage-controlled system III.3.1, III.3.2
has a saddle-node bifurcation [77], which is the "least degenerate" critical point. This
means that one single eigenvalue of the Jacobian A = ∂ f (x,u)

∂x

∣∣∣ x=xsn

u=usn ∈ Rn×n equals

zero. Let v ∈ Rn×1 be the corresponding eigenvector, so Av = 0, and let w ∈ R1×n

be the adjoint null-vector, so wA = 0 and wv = 1. Furthermore, the following
non-degeneracy conditions are assumed:

d2

dξ2 w f (ξv + xsn, usn)

∣∣∣∣
ξ=0

:= 2α 6= 0 (III.3.22)

d
dû

f (xsn, û + usn)

∣∣∣∣
û=0

:= β 6= 0 (III.3.23)

d
dξ

g(ξv + xsn, usn)

∣∣∣∣
ξ=0

:= γ 6= 0 (III.3.24)

(III.3.25)

Close to (usn, ysn, xsn), we can reduce our x̂(t) ≡ x(t)− xsn to a projection of x̂(t)
into the one-dimensional center-space. Let us call it ξ̂(t). We then get Eqs. (III.3.26),
(III.3.27). (If α, β or γ actually happened to be equal to zero we suggest to investigate
an “arbitrarily similar” system, in which this it not the case).

d
dt

ξ̂(t) = α ξ̂2(t) + β û(t) (III.3.26)

ŷ(t) = γ ξ̂(t) + D û(t) (III.3.27)

Setting d
dt ξ̂(t) = 0 and eliminating ξ̂(t) we get the steady state line in the vicinity of

(usn, ysn, xsn):

ŷeq = ±γ

√
−βûeq

α
+ Dûeq (III.3.28)

(ûeq, ŷeq, x̂eq) denotes equilibria of (û(t), ŷ(t), x̂(t)) := (u(t)− usn, y(t)− ysn, x(t)−
xsn). Notice that Eq. (III.3.28) describes a turning point in the steady-state line, with
two solutions for ûeq < 0 and none for ûeq > 0 or vice versa, depending on the signs
of α and β.
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III.3.2 Ensemble

For any ueq there are by definition at most three equilibria. We name these three
groups by the letters "a", "m", "p". "a" stands for the "active" equilibrium where
the current is the largest, "m" for the "middle" equilibrium which is unstable under
voltage control, and "p" for "passive", where the current is the lowest. The current
in the "passive" state of the original experiment [74] is close to zero, thus the name
"passive".

The points at which the "a"- and the "m"-branch or the "m"-and the "p"-branch
meet are just the turning points we just described in Eq. (III.3.28).

III.3.2 Ensemble

III.3.2.1 Ensemble definition

Instead of one single component following Eq. (III.3.1) and (III.3.2), we now assume
N identical components. So ∀i ∈ {1, . . . , N} :

d
dt

xi(t) = f (xi(t), ui(t)) (III.3.29)

yi(t) = g(xi(t), ui(t)) (III.3.30)

To couple the components, we introduce the total curent ytot(t) and the common
voltage u(t), as sketched in Fig. III.1.1c :

N

∑
i=1

yi(t) = ytot (III.3.31)

∀i ∈ {1, . . . , N} : ui(t) = u(t) (III.3.32)

The total current ytot acts as a control-parameter, which is prescribed by an experi-
menter, while u(t) adjusts itself in a consistent way. For the (u: voltage, y: current, x:
concentrations)-interpretation, our global coupling corresponds to a parallel connec-
tion of the individual components. However, a global coupling like in Eq. (III.3.31),
(III.3.32) occurs in other physical contexts, too: In the (u: temperature, y: energy,
x: order parameters)-interpretation the components are thermally coupled to each
other (Eq. (III.3.32)), but isolated from the environment (Eq. (III.3.31)). In the (u: dis-
placement, y: momentum, x: velocity/position)-interpretation it can be an ensemble
of pendulums on a floating raft.

The equilibrium line of an ensemble of N components can be plotted as the set EN :

EN :=


u, ytot,

 x1
...

xN



∣∣∣∣∣∣∣ [∀i ∈ {1, . . . , N} : 0 = f (xi, u)] ∧ ytot =

N

∑
i=1

g(xi, u)

 ,

(III.3.33)
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which is the same as

EN :=


u, ytot,

 x1
...

xN



∣∣∣∣∣∣∣
∀i ∈ {1, . . . , N} : 0 = f̃ (xi, g(xi, u)︸ ︷︷ ︸

yi

)

 ∧ ytot =
N

∑
i=1

g(xi, u)︸ ︷︷ ︸
yi


(III.3.34)

Notice that in an ensemble equilibrium all the individual components are in indi-
vidual equilibria, i.e.:u, ytot,

 x1
...

xN


 ∈ EN ⇒ ∀i ∈ {1, . . . , N} :

(
u︸︷︷︸
ui

, g(xi, u)︸ ︷︷ ︸
yi

, xi
)
∈ E (III.3.35)

III.3.3 Comparison with first-order phase-transitions

Let us compare Eqs.(III.3.29), (III.3.30), (III.3.31) (III.3.32) with Eqs. (III.2.9), (III.2.10),
which describe a first order phase transition. We see, that the two systems are very
similar because both have a control parameter u or T in the flow-field function f for
a state variable x, and an output variable ytot or Etot, which is obtained by summing
or integrating over a function g of x. For both systems, f is a bistable flow field
in case of homogeneous x. However, even for large numbers of components the
equilibria of the two systems are quite distinct. This is because for phase transitions
there is a local coupling (diffusion in the example) which is not present for the
microelectrodes. Thus, for phase transitions, the equilibria lie on the Maxwell
line (see Fig.III.2.2) while for the globally coupled microelectrodes the equilibria
are much more complicated. If instead of microelectrodes we looked at a single
macroscopic Pt electrode with CO surface-diffusion, the mathematical description
would be identical to that of a first order phase transition. I this case, the two
concepts have converged.

III.3.3.1 Linearization

Let group "a", i.e. the group on branch "a", contain Na ∈N0 of the members of all
the N components and let X̂a(t) ∈ RNan×1 be the column-vector that is obtained by
stacking all the x̂i(t) ∈ Rn×1, for i indexing the members of group "a". Furthermore,
let A ≡ ∂ f

∂x , B ≡ ∂ f
∂u , C ≡ ∂g

∂x , D ≡ ∂g
∂u at the equilibrium of group "a" be denoted

by Aa ∈ Rn×n, Ba ∈ Rn×1, Ca ∈ R1×n, Da ∈ R1×1, respectively. Let quantities
with subscripts "m" and "p" be defined analogously. Let Ik ∈ Rk×k be the identity
matrix, let 0j×k, 1j×k ∈ Rj×k be matrices of only zeros and only ones, respectively,
and let ⊗ : (Ra×b, Rc×d)→ Rac×bd denote the Kronecker product. Then, using the
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III.3.3 Comparison with first-order phase-transitions

abbreviations X̂(t), A, B, C, D defined below, the linearization of the entire ensemble
around its equilibrium takes the form:

d
dt

X̂(t) = AX̂(t) + Bû(t) (III.3.36)

ŷtot(t) = CX̂(t) + Dû(t) (III.3.37)

with

X̂(t) :=

 X̂a(t)
X̂m(t)
X̂p(t)

 ∈ R(Na+Nm+Np)n×1 (III.3.38)

A :=

INa ⊗ Aa
INm ⊗ Am

INp ⊗ Ap

 ∈ RNn×Nn (III.3.39)

B :=

 1Na×1 ⊗ Ba
1Nm×1 ⊗ Bm
1Np×1 ⊗ Bp

 ∈ RNn×1 (III.3.40)

C := 11×N︸ ︷︷ ︸
sum in Eq. (III.3.31)

INa ⊗ Ca
INm ⊗ Cm

INp ⊗ Cp


︸ ︷︷ ︸

∈RN×Nn

= (11×Na ⊗ Ca, 11×Nm ⊗ Cm, 11×Np ⊗ Cp)

∈ R1×Nn (III.3.41)

D := 11×N︸ ︷︷ ︸
sum in Eq. (III.3.31)

 1Na×1 ⊗ Da
1Nm×1 ⊗ Dm
1Np×1 ⊗ Dp


= NaDa + NmDm + NpDp

∈ R1×1 (III.3.42)

Analogously to Eq. (III.3.20) and (III.3.21), the following conjugated system with the
current ytot(t) as the control parameter is obtained by solving Eq. (III.3.37) for û(t)
and eliminating it in Eq. (III.3.36):

d
dt

X̂(t) = ÃX̂(t) + B̃ŷtot(t) = (A− BD−1C)X̂(t) + BD−1ŷtot(t) (III.3.43)

û(t) = C̃X̂(t) + D̃ŷtot(t) = −D−1CX̂(t) + D−1ŷtot(t) (III.3.44)

Consider Aa, Am, Ap for some fixed u(t) = ueq, i.e. the Jacobian of the active,
middle, passive branch of an individual component under constant-voltage control.
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Chapter III.3 General, linear analysis

What can we infer about the stability of the ensemble under constant-global-current
control? This question means asking what we can conclude about Ã at that voltage
ueq, the Jacobian of the ensemble under current control. This question is treated in
the next subsections.

III.3.3.2 Stability analysis of the Jacobian Ã

The eigenvectors of Ã can be separated into two categories. The eigenvectors of
the first category each affect only members within a single group, so we call them
intra-group perturbations. The eigenvectors of the second category, let us call them
inter-group perturbations, affect two or more groups, but they move each group as
a whole, not perturbing the individual members of a group against each other.

III.3.3.3 Intra-group perturbation

Let va, vm, vp ∈ Rn×1 be eigenvectors of Aa, Am, Ap and let λa, λm, λp be the
corresponding eigenvalues:

∀s ∈ {a, m, p} : (As − λsINs)vs = 0 (III.3.45)

Let VNs ∈ RNs×1, ∀s ∈ {a, m, p} be arbitrary vectors of zero 1-norm, i.e.

∀s ∈ {a, m, p} : 11×Ns VNs = 0 (III.3.46)

Then the following Va, Vm, Vp are eigenvectors of Ã:

(Ã− λaINn)

VNa ⊗ va
0Nmn×1

0Npn×1


︸ ︷︷ ︸

=:Va

= 0 (III.3.47)

(Ã− λmINn)

 0Na×1

VNm ⊗ vm
0Npn×1


︸ ︷︷ ︸

=:Vm

= 0 (III.3.48)

(Ã− λpINn)

 0Nan×1

0Nmn×1

VNp ⊗ vp


︸ ︷︷ ︸

=:Vp

= 0 (III.3.49)
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III.3.3 Comparison with first-order phase-transitions

Checking (III.3.47), exemplarily:

(Ã− λaINn)Va
(III.3.43)
= AVa − BD−1CVa − λaINnVa

(III.3.39),(III.3.41)
=

(
(INa ⊗ Aa)(VNa ⊗ va)

0(Nm+Np)n×1

)
− BD−1

(
(11×Na ⊗ Ca)(VNa ⊗ va)

0(Nm+Np)n×1

)
− λaVa

=

(
INa VNa ⊗ Aa va

0(Nm+Np)n×1

)
− BD−1

(
11×Na VNa ⊗ Ca va

0(Nm+Np)n×1

)
︸ ︷︷ ︸

(III.3.46)
= 0(Na+Nm+Np)n×1

−λaVa

(III.3.45)
=

(
VNa ⊗ λava

0(Nm+Np)n×1

)
− λaVa

= λaVa − λaVa
= 0

(III.3.50)
Equation (III.3.47), (III.3.48) and (III.3.49) yield n(Na − 1), n(Nm − 1), n(Np − 1)
independent eigenvectors of Ã, if Na, Np, Nm 6= 0, respectively, otherwise none. This
is because there are n dimensions to choose va, vm, vp from and Na− 1, Nm− 1, Np−
1 dimensions for VNa , VNm , VNp .

Notice that the eigenvectors in Eq (III.3.47), (III.3.48) and (III.3.49) each have non-
zero entries only in one of the groups. Thus, they describe intra-group perturbations.
They leave the voltage û(t) unchanged, since C̃Vs = 0, ∀s ∈ {a, m, p}. Furthermore,
the stability/instability of the ensemble equilibrium with respect to intra-group
perturbations can be directly inferred from the stability/instability of the individual
components. This means for instance that if Nm > 1, then a positive eigenvalue
λm of an individual, voltage-control Jacobian Am directly implies instability of the
current-controlled ensemble with Jacobian Ã. This is why any stable ensemble-
equilibrium can have at most one single component in the "m"-state.

III.3.3.4 Inter-group perturbations

Previously, we described eigenvectors Va, Vm, Vp corresponding to perturbations
within single groups. In contrast, the following eigenvectors V each perturb more
than one group, but leave the components within each group synchronous to each
other. We claim that the following Eq. (III.3.51) describes the remaining 3n (or less if
a group is empty) eigenvectors V of the current-control Jacobian Ã to the eigenvalues
λ:

(Ã− λ INn) (A− λ INn)
−1B︸ ︷︷ ︸

=:V

= 0 (III.3.51)

However, such an eigenvector V only exists, if (A− λ INn) is invertible. (A− λ INn)
is invertible, if and only if we assume λ 6= λa, λm, λp. This is because if λ 6=
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λa, λm, λp, then and only then λ is not an eigenvalue of A, which are Ns-times
λs, ∀s ∈ {a, m, p}, see the definition of A in Eq. (III.3.39). But if λ is not an eigenvalue
of A, then and only then det(A− λ INn) 6= 0, i.e. (A− λ INn) is invertible. (The
case λ = λa, λm, λp is treated in the next subsection.)

We further claim that the corresponding eigenvalues λ are obtained by solving
Eq. (III.3.52), which might be difficult in general:

0 = −C (A− λ INn)
−1B︸ ︷︷ ︸

≡V

+D (III.3.52)

(III.3.36),
(III.3.37)≡ L{ŷtot}(λ)

L{û}(λ) := Ytot(λ) (III.3.53)

L denotes the Laplace transformation and in Eq. (III.3.52) we used L{ d
dt X̂}(λ) =

λL{X̂}(λ). Eq. (III.3.51) and (III.3.52) say that, at the eigenvalues λ of Ã, the total
admittance Ytot(λ) vanishes. Notice that Ytot(λ) is only defined, if λ is not an
eigenvalue of A. Analogously, the total impedance Ztot(λ) := Y−1

tot (λ) is only
defined if λ is not an eigenvalue of Ã. Let us confirm Eq. (III.3.51):

(Ã− λINn)V
(III.3.43)
= (A− BD−1C− λINn)V
= (A− λINn)V− BD−1 CV︸︷︷︸

I I I.3.52
= D

(III.3.51)
= (A− λINn)(A− λ INn)

−1B− BD−1D
= B− B
= 0

(III.3.54)

Eq. (III.3.52) can be hard to solve. However, if we only care about whether the
ensemble can oscillate or not, we only need to look for a Hopf-bifurcation, at which a
complex-conjugate pair of eigenvalues λ, λ∗ of the Jacobian Ã passes the imaginary
axis in the complex plane under parameter variation [78]. The frequency of the
resulting oscillation is ω/(2π) and obeys iω = λ = −λ∗, in which i is the imaginary
unit.

If we insert iω for λ, each of the three groups has an admittance

Ys(iω) = Ys(−iω)∗ = −Cs(As − iωINsn)
−1Bs + Ds, ∀s ∈ {a, m, p} (III.3.55)

and the total admittance is the sum of them

Ytot(iω) = ∑
s∈{a,m,p}

Ys(iω) (III.3.56)

If we limit ourselves to components of dimension n = 1, the impedance of each of
the groups can be represented as one of the two circuits in Fig. III.3.2 a,b, in which
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Figure III.3.2: Circuit representations of Eq. (III.3.1), (III.3.2) for a scalar xk

the choice between the inductive version (Fig. III.3.2a) and the capacitive version
(Fig. III.3.2b) depends on the sign of the product CB = ∂g/∂xk ∂ f /∂u. For an LC-
circuit we need both, inductance and capacitance, and in fact this requirement for a
Hopf bifurcation is also found when looking at the imaginary part of Eq. (III.3.52),
in which Ytot is written as the sum of the impedances of the three groups:

0 = Im(Ytot(iω))
= ∑

s∈{a,m,p}
−iωNsCs(As + iω)−1(As − iω)−1Bs︸ ︷︷ ︸

Im(Ys(iω))
n=1
= ∑

s∈{a,m,p}
−iωNsCsBs|As + iω|−2

(III.3.57)

This equation needs to hold at a Hopf-bifurcation. For n = 1, this criterion can
only be fulfilled if we have both, a group s1 with Cs1 Bs1 < 0 and a group s2 with
Cs2 Bs2 > 0 such that the total sum is zero. (All summands may also be zero, but
this is a degenerate case.) This means that the product CB has to change its sign
along the equilibrium curve of the individual components, as illustrated in the next
chapter with an example (Fig.III.4.1). Thus, the necessary condition for a Hopf
bifurcation in the considered class of system, a core result of this part of the thesis, is
given by:

∃u : ∃x1, x2 : f (x1, u) = f (x2, u) = 0
∧ ∂g/∂xk|x1,u ∂ f /∂u|x1,u < 0

∧ ∂g/∂xk|x2,u ∂ f /∂u|x2,u > 0 (III.3.58)

This criterion specifies that there is a voltage u for which at least one branch
behaves capacitively and at least one branch that behaves inductively, which both is
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Chapter III.3 General, linear analysis

necessary to form an LC circuit and, thus, voltage oscillations. However, even if a
certain given ensemble equilibrium fulfills this, the oscillations could still be damped
or overdamped, which depends on the values of the resistors in the equivalent circuit
in Fig. III.3.2. On the other hand, damped voltage-oscillations also require an LC
circuit, i.e. the criterion (III.3.58) needs to be fulfilled. In the Chap.III.4, we introduce
an exemplary model.

III.3.3.5 Circuit representation

Let us check that the circuit representations in Fig. III.3.2 are actually valid. The
component equation

d
dt

x(t) = f (x(t), u(t)) (III.3.59)

y(t) = g(x(t), u(t)) (III.3.60)

can be linearized

d
dt

x̂(t) = fx x̂(t) + fuû(t) (III.3.61)

ŷ(t) = gx x̂(t) + guû(t) (III.3.62)

and Laplace transformed:

iωL[x̂](iω) = fxL[x̂](iω) + fuL[û(t)](iω) (III.3.63)
L[ŷ](iω) = gxL[x̂](iω) + guL[û(t)](iω) (III.3.64)

Eliminating L[x̂](iω) we get the admittance Y(iω):

L[ŷ](iω) =
[

gx(iω− fx)
−1 fu + gu

]
︸ ︷︷ ︸

Y(iω)

L[û(t)](iω) (III.3.65)

In comparison, the circuit in Fig. III.3.2a yields the same, identifying R1, R2, L with
the respective values of the three electrical components.

Y(iω) = (iωL + R2)
−1 + R−1

1 (III.3.66)

=
[
iω(gx fu)

−1 − fx(gx fu)
−1
]−1

+ gu (III.3.67)

= gx [iω− fx]
−1 fu + gu (III.3.68)
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III.3.3 Comparison with first-order phase-transitions

Analogously, the same is true for the circuit in Fig. III.3.2b, with R1, R2, C.

Y(iω) = [(iωC)−1 + R2]
−1 + R−1

1 (III.3.69)

=
[
−(iω)−1 f 2

x (gx fu)
−1 + fx(gx fu)

−1
]−1

+ (gu − f−1
x gx fu) (III.3.70)

= gx

[
1

−(iω)−1 f 2
x + fx

− 1
fx

]
fu + gu (III.3.71)

= gx

[
−iω

f 2
x − iω fx

− fx − iω
f 2
x − iω fx

]
fu + gu (III.3.72)

= gx

[
− fx

f 2
x − iω fx

]
fu + gu (III.3.73)

= gx [iω− fx]
−1 fu + gu (III.3.74)

III.3.3.6 Zero eigenvalues

Consider a turning point of an individual component as described in Eq (III.3.28).
What does it mean for the eigenvalues of Ã, the Jacobian of the current-controlled
ensemble, if two branches of an individual component meet, for instance "a" and
"m"? It means that two of the three groups fuse, their members becoming indis-
tinguishable. So there is an eigenvalue λa of Aa and an eigenvalue λm of Am with
λa = λm = 0 or, analogously, λm = λp = 0. Furthermore, it means that instead of
an inter-group eigenvalue λ as in the subsection before, which solves Eq (III.3.52),
we get, for instance, an eigenvalue λ = λa = λm = 0. The eigenvector V of Ã to the
eigenvalue λ can then again be written in terms of va and vm, the eigenvectors of Aa
and Am to the eigenvalues λa and λm:

(Ã− λIN)

 1
Na
(1Na×1 ⊗ va)

− 1
Nm

(1Nm×1 ⊗ vm)

0Npn×1


︸ ︷︷ ︸

V

= 0 (III.3.75)

Here, individual components can arbitrarily switch between "a" and "m", since the
two groups are now indistinguishable. Analogously, if λ = λm = λp:

(Ã− λIN)

 0Nan×1

1
Nm

(1Nm×1 ⊗ vm)

− 1
Np
(1Np×1 ⊗ vp)


︸ ︷︷ ︸

V

= 0 (III.3.76)
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Chapter III.3 General, linear analysis

III.3.3.7 Saddle-node bifurcation of the voltage-controlled ensemble, i.e.
Z=0

In a voltage-controlled ensemble the individual components are decoupled. So if
the individual components, which are identical, have a saddle-node bifurcation at
some (usn, ysn, xsn) ∈ E, under voltage-control, then the entire ensemble has many
saddle-node bifurcations at that usn. However, because of symmetry, some of these
saddle-node bifurcations lie on the same points in phase space, such that we actually
have several multi-branch bifurcations that are equivariant with respect to some
index permutations.

Let us look at these equivariant bifurcations in more quantitative detail. Close
to such a bifurcation point (usn, ysn, xsn), the i-th component has the equilibria
(ueq

i , yeq
i , xeq

i ):

(yeq
i − ysn) = ±γ

√
−

β(ueq
i − usn)

α
+ D(ueq

i − usn), (III.3.77)

The two branches meet at (usn, ysn, xsn). Without loss of generality (wlog), let us
assume that it is the "a"- and "m"-branch that meet, with the ± in Eq. (III.3.77)
assigning the branch for each component in question. Wlog, assume "+" goes to "a"
and "-" goes to "m". The members of the remaining "p"-group sit at (usn, ysn

p , xsn
p )

during the bifurcation and their Jacobian Ap is still invertible. If u is close to usn,
they reside close to the following current-voltage line:

(yeq
i − ysn

p ) =
(

CpA−1
p Bp + Dp

)
(ueq

i − usn) (III.3.78)

Defining yeq
tot := ∑N

i=1 yeq
i and ueq := ueq

i , ∀i ∈ {1, . . . , N}, and summing up
Eq. (III.3.77) and (III.3.78), respectively, for all the N components, we get Eq. (III.3.79)
for the current-voltage curve of the ensemble:

yeq
tot − (Na + Nm)ysn − Npysn

p = (Na − Nm)γ

√
−β(ueq − usn)

α
+ Dm(ueq − usn)

+ Np

(
CpA−1

p Bp + Dp

)
(ueq − usn) (III.3.79)

Notice that Dm ≡ Da at the bifurcation. There are N−Np + 1 combinations to choose
the tuple (Na, Nm) from, so there are N − Np + 1 different branches emerging from
(usn, ysn) in a yeq

tot-u
eq plot. The number of branches is larger if you distinguish

components. Notice that at voltage usn we get not just one, but N such special
branching points, each at a different current ytot = (Na + Nm)ysn + Npysn

p . The
current at the k-th branching point is [(N − k)ysn + kysn

p ] and the number of its
branches is (N − k) + 1.
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III.3.3 Comparison with first-order phase-transitions

Since the position of the equilibria does not depend on whether u or ytot is con-
trolled, we have also learned something about the ytot-controlled ensemble, even
though there it is not just an ensemble of uncoupled components. This will be
discussed in Chap. III.5 with the help of an example model.

81





Chapter III.4

Model

Before, we have discussed various general concepts of coupled bistable systems,
regarding equilibria and their linear stability. In this chapter, we apply these ideas
to a simplified model for parallelly connected Pt microelectrodes in a CO containing
solution. This model is capable of reproducing two interesting experimental obser-
vations. Moreover, it makes it easy to illustrate the mechanisms behind. The first
observation is the individual switching of the microelectrodes as the total current
is gradually increased. The second observation is the oscillation of the electrode
potential for a fixed current.

III.4.1 Derivation of the model

We derived our model from the following, more detailed model for the CO adsorp-
tion on a platinum micro-electrode [66, 67, 74].

d
dt

Ci =
2D
δ2 (Cb − Ci)−

Stot

δ
(kadsCi(1− θi)− kdesθi) (III.4.1)

d
dt

θi = kadsCi(1− θi)− kdesθi − kreacθi(1− θi)exp(α f φi) (III.4.2)

Ji = 2FStotkreacθi(1− θi)exp(α f φi) (III.4.3)

This model is already able to reproduce the individual switching and the potential
oscillations, but it makes it very hard to understand why the oscillations occur, so
we need to simplify it. Our simplified model captures the steady states of Eq. (III.4.1)
and (III.4.2). Its impedance is not exactly the same as in the original model, but it
still provides oscillations as an ensemble.

To obtain our simplified version, we set dCi/dt to zero to eliminate Ci, so
Eq. (III.4.2) becomes Eq. (III.4.4).

d
dt

θi =
DCbkads − (DCbkads + Dkdes)θi

D + kadsδStot − kadsδStotθi
− kreacθi(1− θi)exp(α f φi) (III.4.4)

Ji = 2FStotkreacθi(1− θi)exp(α f φi) (III.4.5)
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Chapter III.4 Model

Then, defining

τ :=
DCb

δStot
(III.4.6)

ui :=
δStot

DCb
kreacexp(α f φi) (III.4.7)

yi := Ji
δ

2FDCb
(III.4.8)

a :=
D

kadsδStot
(III.4.9)

b :=
kdesδStot

DCb
. (III.4.10)

we are left with

d
dτ

θi =
1− (1 + ab)θi

1 + a− θi
− θi(1− θi)ui (III.4.11)

yi = θi(1− θi)ui (III.4.12)

in which a and b are small, positive constants. We rename τ to t and θi to xi and
changed the values of a and b to make the system less stiff, but we kept them much
smaller than one.

III.4.2 Model

The following first order ordinary differential equation (ODE) describes a single
electrode, where the surface coverage x(t) is defined on the unit interval [0,1]:

d
dt

x(t) =
1− (1 + ab)x(t)

1 + a− x(t)
− u[1− x(t)]x(t) (III.4.13)

The square brackets in this are used in place of regular round brackets for a better
readability. Now, we take N instances of Eq. (III.4.13) and couple them globally as
in Eq. (III.4.14) and (III.4.15). The setup is sketched in Fig. III.1.1.

d
dt

xi(t) =
1− (1 + ab)xi(t)

1 + a− xi(t)
− u(t)[1− xi(t)]xi(t) (III.4.14)

ytot =
N

∑
i=1

u(t)[1− xi(t)]xi(t) (III.4.15)

Eq. (III.4.13) can have up to three equilibria, two of which are stable with an unstable
equilibrium in between. For Eq. (III.4.14) it is up to 3N equilibria for each u, but
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III.4.2 Model

there are at most (3+N−1
N ) equilibria that are distinct under index permutations.

The term (3+N−1
N ) describes the number of possibilities to distribute N indistin-

guishable components to 3 distinguishable branches. As we saw before, the admit-
tance of the ensemble is the sum of the admittances of the individual components.
Thus, looking at the admittance of Eq. (III.4.13) allows us to draw conclusions on
Eq. (III.4.14), (III.4.15). Fig. III.4.1 exemplary illustrates the equilibria and admittance
of Eq. (III.4.13) and those of Eq. (III.4.14), (III.4.15) for N = 3. The two equilibria
at u = u1 = 4.418 and u = u2 = 5.295 both have more than one component on
the negative-slope branch, three and two respectively. As we showed, this means
that these two equilibria are intra-group unstable with a positive real eigenvalue.
Moreover, you can instantly rule out the possibility of resonance at u = u1 = 4.418,
because all three components act inductively (orange branch). In other words, the
ensemble-impedance lacks a capacitive component (blue branches) to form an LC-
circuit. In contrast, the equilibrium like the one at u = u3 = 8.368 can give rise
to sustained periodic oscillations, if it becomes inter-group unstable, because it is
intra-group stable. In fact, the equilibrium at ytot = N · 0.833 is unstable, and there
is a limit cycle oscillation which branches from it at lower ytot. The oscillation is
shown in Fig. III.4.2 (top).

Another way of looking at the equilibria of Eq. (III.4.14), (III.4.15) is plotting ytot
over u, as in Fig III.4.3. From all possible equilibria for an arbitrary number of
components N, Fig III.4.3 shows the ones in which the components are clustered in
two groups, where the group size ration is 1:4. Furthermore, the figure indicates the
stability of the equilibria with respect to inter-group perturbations (by color) and
with respect to intra-group perturbations (by solid/dashed line). The continuation
of the two-cluster equilibria was done with Auto [79]. To obtain this two-cluster
continuation, we considered a four component version of the system, in which each
of the four-components represented one of four groups with sizes N1, N2, N3, N4
with N1 + N2 + N3 + N4 = N. We considered four groups because this allowed
us to divide each of the two groups into two subgroups. In this way, we were
able to obtain the respective intra-group stability. To account for the group sizes,
we modified Eq. (III.3.2) to y` = (N`/N)g(x`, u). We fixed (N1 + N2)/N = 0.8
(size of the first cluster) and (N3 + N4)/N = 0.2 (size of the second cluster), and
N2/N = 0.16 and N4/N = 0.04. Note that with y` = (N`/N)g(x`, u), the model
depends only on the relative sizes of the groups and not on the total ensemble size
N.

Apart from the equilibria, we found another very interesting feature in Fig III.4.3.
Consider the supercritical Hopf bifurcation at about ytot/N = 0.785. In this bi-
furcation, an inter-group-stable, intra-group-unstable equilibrium is turned into an
inter-group-unstable, intra-group-unstable equilibrium and an inter-group-stable,
inter-group-unstable limit cycle. These three limit sets all correspond to states that
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Figure III.4.1: Exemplary illustration of the three equilibria of Eq. (III.4.14), (III.4.15)
for N = 3, a = 0.05, b = 0.01 at ytot = N · 0.833, marked by horizontal the dashed
line. (a),(b): Circuit representation of the admittance of an individual component for
different yk. (c): Equilibrium line of an individual component. The orange branch
corresponds to (a), blue branches to (b). Vertical dashed lines indicate different
ensemble equilibria. (d): Circuit representation of the ensemble admittance at each
of the three equilibria from (c).

would not be observable in an experiment or a simulation since they all are inter-
group-unstable. However, at a slightly larger ytot, the limit cycle undergoes another
bifurcation that stabilizes its intra-group direction. The resulting oscillation is shown
in Fig. III.4.2 (bottom) for N = 20. Notice that both groups have more than one
component, even though the limit cycle originally branched from an intra-group-
unstable equilibrium. This is an important observation because by the degeneracy
of intra-group eigenvalues it means that there is a corresponding stable limit cycle
even for very large N, e.g. with group sizes 16 · 1022 and 4 · 1022 for N = 1023. Since
the Pt microelectrodes are a model system for Pt nanoparticles in fuel cells, this
could have significant technical implications, because fuel cells are supposed to
yield a constant voltage.

In our continuation, the bifurcation in which the intra-group direction of the limit
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cycle is stabilized, is a transcritical bifurcation of limit cycles in which the limit cycle
collides with another limit-cycle that is not depicted in Fig III.4.3. More details on
this are given in the next chapter, where we take a deeper look at the cluster (i.e.
group) dynamics of the model that we have just introduced.
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Figure III.4.2: yi time-series with small offsets, produced by Eq. (III.4.14), (III.4.15)
for N = 3 (upper plot), N = 20 (lower plot), and a = 0.05, b = 0.01, ytot = N · 0.833
(both plots). The limit cycle that is approached for N = 3 has the same intra-group
stability as the related equilibrium depicted in Fig. III.4.1 at u3. They collide in a
super-critical inter-group Hopf-bifurcation at a slightly smaller ytot . In contrast,
the limit cycle at N = 20 does not share the intra-group instability of its related
equilibrium which it meets in a close-by inter-group Hopf-bifurcation, see Fig. III.4.3.
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Figure III.4.3: Two-group limit-sets of Eq. (III.4.14), (III.4.15) for a = 0.05, b = 0.01,
for a group-size ratio of 1:4, valid for any number of components N. Solid line:
intra-group-stable equilibrium. Dashed line: intra-group-unstable equilibrium. Blue
line: inter-group-stable equilibrium. Green line: inter-group-unstable equilibrium.
Orange surface: intra-group-unstable, inter-group-stable limit-cycle. Pink surface:
stable limit-cycle. "+": saddle-node bifurcation. "x": super-critical Andronov-Hopf
bifurcation. "?": transcritical bifurcation.
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Non-linear cluster dynamics of the model

In Chap. III.3, we did a general linear analysis that applies to an entire class of sys-
tems. In this chapter, we investigate the nonlinear properties of an examplary model
that we defined in Chap. III.4. In particular, we investigate its cluster dynamics. For
this purpose, let us slightly rewrite the model equations (III.4.14), (III.4.15):

d
dt

xk(t) =
1− (1 + ab)xk(t)

1 + a− xk(t)
− u(t)[1− xk(t)]xk(t) (III.5.1)

y =
1
N

N

∑
l=1

u(t)[1− xl(t)]xl(t) (III.5.2)

This can be rearranged to an explicit form:

d
dt

xk(t) =
1− (1 + ab)xk(t)

1 + a− xk(t)
− [1− xk(t)]xk(t)

1
N ∑N

l=1[1− xl(t)]xl(t)
y (III.5.3)

u(t) =
y

1
N ∑N

l=1[1− xl(t)]xl(t)
(III.5.4)

In the following, we restrict ourselves to a = 0.05, b = 0.01 and use these abbrevi-
ations:

f (x) =
1− (1 + ab)x

1 + a− x
(III.5.5)

g(x) = (1− x)x (III.5.6)

Thus, our system has the form

d
dt

xk(t) = f (xk(t))−
g(xk(t))

1
N ∑N

l=1 g(xl(t))
y (III.5.7)

u(t) =
y

1
N ∑N

l=1 g(xl(t))
. (III.5.8)
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III.5.1 Cluster subspaces

Cluster subspaces are invariant subsets of the state space. Considering only the
dynamics on these subsets significantly reduces the complexity but still allows us
to draw conclusions about the full system. Let A ⊂ {1, . . . , N}. Then the cluster
subspace

CA = {(x1, . . . , xN) | xj = xk if k, j ∈ A}
is dynamically invariant. Let A = {A1, A2, . . . , AM} be a partition of {1, . . . , N}, i.e.
∀j 6= k : Aj ∩ Ak = ∅ and

⋃
A∈A A = {1, . . . , N}. We define CA as

CA =
⋂

A∈A
CA, (III.5.9)

and call it an M-cluster subspace. Throughout this thesis, we use the terms ’cluster’
and ’group’ synonymously. Let aj = |Aj| denote the number of components in the
j-th cluster. On CA the dynamics of the system are M dimensional and given by

d
dt

xk(t) = f (xk)−
g(xk(t))

∑M
j=1

aj
N g(xj(t))

y (III.5.10)

u(t) =
y

∑M
j=1

aj
N g(xj(t))

(III.5.11)

where the summation now goes over the clusters. If we set nl =
al
N and form the

limit N → ∞, we can see nl as a continuous parameters.

III.5.2 Fully synchronized dynamics

On C{{1,...,N}} ≡ C{1,...,N} where all N units have the same value for xk(t), the system
reduces to the following:

d
dt

xk(t) =
1− (1 + ab)xk(t)

1 + a− xk(t)
− y (III.5.12)

u(t) =
y

[1− xk(t)]xk(t)
(III.5.13)

Eq. (III.5.12) has only one single equilibrium point for any valid y, which is described
by Eq. (III.5.14), (III.5.15) and is plotted in Fig. III.5.1.

xk =
1− y− ay
1 + ab− y

(III.5.14)

u =
(1 + ab− y)2y

a(b + y)(1− y− ay)
(III.5.15)

We see that the system is monostable everywhere, i.e. for each y there is exactly one
single equilibrium. However, there are multiple equilibria for some u.
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Figure III.5.1: Equilibrium curve in the synchronized subspace C{{1,...,N}}. The letters
"a", "m", "p" indicate the active, middle, and passive equilibrium branch, respectively,
in the sense of y representing a reaction current.

III.5.3 Two-cluster dynamics and bifurcations

Now, we consider a two-cluster subspace C{A1,A2}. The clusters are of relative
sizes n1 and n2 (with n1 + n2 = 1) and the dynamics are effectively two dimensional,
given by

d
dt

x1(t) = f (x1(t))−
g(x1(t))

n1g(x1(t)) + n2g(x2(t))
y (III.5.16a)

d
dt

x2(t) = f (x2(t))−
g(x2(t))

n1g(x1(t)) + n2g(x2(t))
y (III.5.16b)

u(t) =
y

n1g(x1(t)) + n2g(x2(t))
. (III.5.16c)

The intersection of all possible two-cluster subspaces contain the fully synchronized
subspace C{{1,...,N}}, on which x1(t) = x2(t). Unlike in the equilibrium in the fully
synchronized subspace, the other equilibria in the two-cluster subspace C{A1,A2}
can undergo various bifurcations as y is varied, depending on the choice of n1, n2.
This is exemplarily illustrated in Fig. III.5.2 for n1 = 0.8, n2 = 0.2. Comparing
this to Fig. III.5.1, we see that the fully synchronized equilibria are still in place.
They interact with the two-cluster equilibria in two transcritical bifurcations (yellow

93



Chapter III.5 Non-linear cluster dynamics of the model

0.0 0.2 0.4 0.6 0.8 1.0
y

0

5

10

15

20

25

30

u

equilibrium

limit cycle

saddle node bif.

transcritical bif.

Hopf bif.

aa

mm
ma

mp amap

papm

pp

Figure III.5.2: Equilibrium curve on a two-cluster subspace C{A1,A2} with n1 = 0.8,
n2 = 0.2, for a = 0.05, b = 0.01. Like in Fig. III.5.1, the letters "a", "m", "p" indicate
the active, middle, and passive equilibrium branch, respectively. The first of two
letters represents x1, the second x2.

dots). Furthermore, the two-cluster equilibria undergo saddle-node bifurcations
(green dots) and a Hopf bifurcation (purple dot), in which a two-cluster limit-cycle
is born (light blue). Consider the transcritical bifurcations. In these bifurcations,
the fully synchronous subspace is penetrated by an equilibrium point that lies in
the two-cluster subspace C{A1,A2}. So from the four equilibria that branch from the
transcritical bifurcations (yellow dots), two lie in the fully synchronous subspace
and two do not. Furthermore, for some n1, one of the transcritical bifurcation points
(the one at larger current y) participates in a homoclinic bifurcation, together with
the limit cycle (light blue) that originates at the Hopf bifurcation (purple dot). This
is illustrated in Fig. III.5.3. At y = 0.82, we have three equilibria, a saddle that lies
in the fully synchronized subspace C{{1,...,N}}, an unstable two-cluster focus, and
a stable two-cluster node. There is also a two-cluster limit cycle around the focus
that was just born at a slightly smaller y. At y = 0.86, we see that the limit cycle has
significantly increased in size and the two rightmost equilibria have moved closer to-
gether. At y ≈ 0.904, there is a homoclinic bifurcation between the limit cycle and the
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Figure III.5.3: Phase portraits in an invariant two-cluster subspace C{A1,A2} with
n1 = 0.8, n2 = 0.2, for a = 0.05, b = 0.01.
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fully synchronized equilibrium. Simultaneously, the fully synchronized equilibrium
undergoes a transcritical bifurcation with one of the two-cluster equilibria. Notice
the paradoxical situation: At te homoclinic bifurcation, the lower part of the stable
manifold of the fully synchronized equilibrium is formed by the homoclinic loop
that is attracting; but at the same time, the invariant, fully synchronized subspace is
also its stable manifold. This seems to be resolved somehow by the simultaneous
occurrence of the transcritical bifurcation. At y = 0.91, the limit cycle is gone and
the formerly stable two-cluster node has pierced through the fully synchronized
subspace and is has now been turned into a saddle, while the formerly unstable
direction of the fully synchronized equilibrium has been stabilized. At y = 0.91325,
the two two-cluster equilibria have moved very close to each other and at y = 0.93
they have annihilated each other in a saddle node bifurcation, such that leaving the
fully synchronized equilibrium remains as the only limit set.

For values other than n1 = 0.8, n2 = 0.2, the bifurcations lie as shown in the
two-parameter bifurcation diagram in Fig. III.5.4. Notice that Fig. III.5.4 reflects the
symmetry of Eq. III.5.16a, III.5.16b, III.5.16c in n1. The saddle node bifurcations
(green lines) merge with the transcritical bifurcations (yellow lines) at n1 = n2 = 0.5,
where we have a pitchfork bifurcation that is equivariant with respect to index per-
mutation. The Hopf bifurcations (pink lines) merge with a saddle node bifurcation
at ni = 0 and at ni ≈ 0.35. It is likely that these codimension-two points are likely
Takens-Bogdanov bifurcations, indicating that the full bifurcation diagram might be
a bit more complicated. Notice that the transcritical bifurcations occur for all n1, n2
at the same y. For the full system C{{1},...,{N}} this means that such a transcritical bi-
furcation occurs in each possible two-cluster subspace C{A1,A2} simultaneously. This
means that there are two branches in the fully synchronized subspace C{{1,...,N}} and
two in each possible two cluster subspace C{A1,A2}, of which there are (2N − 2)/2. If
you do not distinguish the components, there are only N − 1 distinct two-cluster
subspaces. Thus, in the full system C{{1},...,{N}}, this transcritical bifurcation point
corresponds to a multi-branch bifurcation point that is equivariant with respect
to index permutation. For N = 2, this is just the pitchfork bifurcation we see in
Fig. III.5.4 at n1 = 0.5.
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Figure III.5.4: Local bifurcations in a two-cluster subspace C{A1,A2} with n2 = 1− n1,
for a = 0.05, b = 0.01.
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III.5.4 Three-cluster dynamics and bifurcations

Now suppose that we have a three-cluster subspace C{A1,A2,A3} with three clusters
of relative sizes n1 + n2 + n3 = 1. On C{A1,A2,A3}, the dynamics are given by

d
dt

x1(t) = f (x1(t))−
g(x1(t))

n1g(xl(t)) + n2g(x2(t)) + n3g(x3(t))
y (III.5.17a)

d
dt

x2(t) = f (x2(t))−
g(x2(t))

n1g(xl(t)) + n2g(x2(t)) + n3g(x3(t))
y (III.5.17b)

d
dt

x3(t) = f (x3(t))−
g(x3(t))

n1g(xl(t)) + n2g(x2(t)) + n3g(x3(t))
y (III.5.17c)

u(t) =
y

n1g(x1(t)) + n2g(x2(t)) + n3g(x3(t))
(III.5.17d)

The invariant three-cluster space C{A1,A2,A3} contains the invariant two-cluster
spaces C{A1∪A2,A3}, C{A1,A2∪A3} and C{A1∪A3,A2}, on which the dynamics are given
by (III.5.16). Three-cluster subspaces are particularly interesting because all equilib-
ria of the full system (III.5.1) each lie in one of them. To see this, let us set dxk/dt to
zero, choose any constant value for u, and multiply Eq. (III.5.1) by (1 + a− xk). We
end up with a third order polynomial in xk, which has three real roots or fewer:

0 = 1− (1 + ab)xk − u[1− xk]xk(1 + a− xk) (III.5.18)

= −u x3
k + (2u + au) x2

k − (1 + ab + u + au) xk + 1 (III.5.19)

This property allows us to investigate all local bifurcations of the full system looking
only at three-cluster subspaces C{A1,A2,A3} with different (n1, n2, n3). An exemplary
equilibrium curve is shown in Fig. III.5.5 for a three-cluster subspace C{A1,A2,A3}
with n1 = 0.8, n2 = 0.16, n3 = 0.04. For every u and for fixed ni, there are now up to
33 = 27 equilibria, because each xi can take one of three values while dxi/dt = 0,
du/dt = 0, see Fig. III.5.5. Comparing Fig. III.5.5 to the two-cluster equilibria in
Fig. III.5.2, we realize that these two-cluster equilibria are still there in the form of
C{A1,A2∪A3}.

III.5.4.1 Equivariant bifurcation of equilibria

Compared to the two-cluster subspace (Fig. III.5.2), in the three-cluster subspace
(Fig. III.5.5), there are six more transcritical bifurcations (yellow dots), that is eight in
total. In these transcritical bifurcations, the two-cluster equilibria interact with three-
cluster equilibria, just like it is the case in Fig. III.5.2 between the fully synchronized
equilibrium and the two-cluster equilibria. The transcritical bifurcations occur
at the values of u at which the equilibrium equation (Eq. (III.5.19)) has a double
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Figure III.5.5: Equilibrium curve in a three-cluster subspace on C{A1,A2,A3} with
n1 = 0.8, n2 = 0.16, n3 = 0.04, for a = 0.05, b = 0.01. Like in Fig. III.5.1, the letters
"a", "m", "p" indicate the active, middle, and passive equilibrium branch, respectively.
The first of three letters represents x1, the second x2, the third x3.

root, i.e. at the turning points of the fully synchronized equilibrium line. The
bifurcation scenario of these additional transcritical bifurcations is similar to what
we saw before, when a two-cluster equilibrium pierced the fully synchronized
subspace. However, in this case a three-cluster equilibrium pierces a two-cluster
subspace, because one extra cluster is present “as a bystander” during the bifurcation.
Each of the three two-cluster subspaces that Eq. (III.5.17a) - (III.5.17d) can represent
(i.e. C{A1∪A2,A3}, C{A1,A2∪A3}, C{A1∪A3,A2}, i.e. x1 = x2, x2 = x3, x1 = x3) contains
one such transcritical bifurcation for each double root of the equilibrium equation
(III.5.19), of which there are two. So by 3 · 2 = 6, this gives us six more transcritical
bifurcations in addition to the two we saw in Fig. III.5.2.

Unlike with the transcritical bifurcations that lie in the fully synchronized sub-
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space (Fig. III.5.2), the positions of the other transcritical bifurcaions in two-cluster
subspaces depend on the cluster sizes n1, n2, n3. To investigate this, let u∗ denote a
value of u at which Eq. (III.5.19) has one real double root xd and one real single root
xs. Without loss of generality, we consider x1 = xs, x2 = x3 = xd, i.e. C{A1,A2∪A3}.
Then, the associated value of y at which the bifurcation occurs is

y = n1u∗g(x1) + n2u∗g(x2) + n3u∗g(x3) (III.5.20)
= n1u∗g(xs) + (n2 + n3)u∗g(xd) (III.5.21)
= n1u∗g(xs) + (1− n1)u∗g(xd) (III.5.22)
= u∗[g(xs)− g(xd)]n1 + u∗g(xd), (III.5.23)

which is linear in n1. Analogously, in the other two two-cluster subspaces (i.e.
C{A1∪A3,A2} and (C{A1∪A2,A3}), the value of y at which the transcritical bifurcation
occurs depends linearly on n2, n3, respectively. Thus the transcritical bifurcations lie
as shown in Fig. III.5.6. In this figure, we see that the eight transcritical bifurcations
exist for every n1. The value n1 = 0.8 corresponds to Fig. III.5.5. We see the two
transcritical bifurcations in C{A1,A2∪A3} following Eq. (III.5.22). Furthermore, n2
and n3 are chosen to be linearly dependent on n1 (see caption Fig. III.5.6), so the
corresponding bifurcations lie on straight lines, too.

For the full system with N identical components this means that for each ` ∈
{2, . . . , N} (i.e. combined size of cluster 2 and 3) there are (N

` )∑`−1
k=1 (

`
k) transcritical

bifurcations at y = u∗[g(xs)− g(xd)] `/N + u∗g(xd). These bifurcations lie in (N
` )

different subspaces, depending on which xk are at xs and xd. If you consider
bifurcations as identical when they can be switched between by index perturbation,
then there is only one such bifurcation for each combination of ` ∈ {2, . . . , N}
(i.e. combined size of cluster 2 and 3) and k ∈ {1, . . . , ` − 1} (i.e. size of cluster
2). Furthermore, many of these transcritical bifurcations lie on the same points
in parameter space and in phase space such that in total there are actually just
N − 1 multi-branch bifurcation-points at every u∗, i.e. one for each possible size
of cluster 1 (the cluster at xs), i.e. one for each ` ∈ {2, . . . , N}. These bifurcations
are invariant under intra-cluster index-permutations and are very similar to the
equivariant bifurcations we saw in lower dimensions. Here, however, they can occur
at various different values of y.

At certain parameters, the described transcritical bifurcations in three-cluster
subspaces have another interesting property that we have similarly seen in two-
cluster subspaces, like in Fig. III.5.3: The bifurcation point, which lies in a two-cluster
subspace, participates in a homoclinic bifurcation with a limit cycle, which lies in a
three cluster subspace and branches from a nearby Hopf bifurcation. This is again
analog to what we have seen in the lower dimensional case.
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Figure III.5.6: Transcritical bifurcations (Eq. (III.5.22)) and some of the Hopf bi-
furcations (numerically continued with AUTO-07P [79]) occurring in three-cluster
subspaces in which n2 = 0.8 · (1− n1), n3 = 0.2 · (1− n1), a = 0.05, b = 0.01. The
letters "a", "m", "p" indicate the branches on which each of the three clusters sit
during the plotted Hopf bifurcations (purple line), see Fig. III.5.1.
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III.5.4.2 Equivariant bifurcation of limit cycles

Before, we saw equilibria in three-cluster subspaces that pierced invariant two-
cluster subspaces in a transcritical bifurcation as y is varied. For the full system with
N identical components this implied the presence of various equivariant bifurcations.
Here, we present a similar scenario with limit cycles instead of equilibria. A limit
cycle that lies in a three cluster subspace pierces an invariant two cluster subspace
(wlog x2 = x3) in a transcritical bifurcation of limit cycles. This is illustrated in
Fig. III.5.7 for n1 = 0.8, n2 = 0.16, n3 = 0.04. At y = 0.78625 there is a three-cluster
limit cycle and a three-cluster equilibrium, which became unstable in a three-cluster
Hopf bifurcation at a slightly smaller y. There is also a two-cluster limit cycle and
a two-cluster equilibrium, which branched from a two-cluster Hopf bifurcation
at a slightly smaller y. These two-cluster limit sets lie in the invariant C{A1,A2∪A3}
subspace, i.e x2 = x3. As y is increased to y = 0.79, we see that the limit cycles
have increased in size and have moved closer together. At y = 0.79625 there is
a transcritical bifurcation of the limit cycles, i.e. they fall together on C{A1,A2∪A3}.
Then, at y = 0.8, the three-cluster limit cycle is on the other side of the C{A1,A2∪A3}
plane.

Because of continuity, the transcritical bifurcation of limit cycles has to exists
for other values of n2, n3 (with n2 + n3 = 1− n1) as well, as long as we do not go
too far away in (n2,n3) space. At the bifurcation, however, we have x2 = x3 for
any choice of n2, n3 (with n2 + n3 = 1− n1), so the two-cluster limit cycle stays
in place. For the full system with N identical components and large enough N
this means that at this value of y multiple limit cycles from different three-cluster
subspaces meet in the same two cluster limit cycle, each changing the sign of a
different Lyapunov exponent of the two-cluster limit cycle. Remember that the
Jacobian eigenvalues corresponding to directions transversal to a certain cluster
subspace are degenerate (see linear analysis). This degeneracy is inherited by the
Lyapunov of limit cycles that lie inside the cluster subspace. This means that at
this values of y we have an equivariant bifurcation of limit cycles that changes the
signs of all the Lyapunov exponents of the two cluster limit cycle simultaneously.
However, it is not for sure, that in the three-cluster representation (Eq. III.5.17a
- III.5.17d) the transcritical bifurcation of limit cycles persists for all n2,n3 (with
n2 + n3 = 1− n1) or whether it turns into another mechanism of stabilizing the
respective transversal (i.e. intra-cluster) Lyapunov exponents. Unfortunately, there
is no straight forward method/tool to continue the transcritical bifurcation of limit
cycles in parameter space. Developing such a method would be an interesting topic
for further investigation.
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Figure III.5.7: Phase portraits showing a transcritical bifurcation of limit cycles
(continued with AUTO-07P [79]) for x1 = 0.8, x2 = 0.16, x3 = 0.04, a = 0.05,
b = 0.01
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Chapter III.6

Summary and Outlook

We have investigated the dynamics of an array (or ensemble) of parallelly connected
Pt microelectrodes in a CO containing solution. This array can be seen as a model-
system for the catalyzing Pt nanoparticles in hydrogen fuel cells and is therefore of
technical interest. Besides that, we claimed that the Pt-CO system is also well suited
for the general study of phase transitions in globally coupled systems of bistable
components, because there is a well established mathematical model for it. To this
end, we pointed out the analogy between a bistable open system like the array of Pt
microelectrodes, and a common first order phase transition, like evaporation. We
noticed that the main difference between the two lies in the coupling, which is local
(e.g. diffusion) and global (e.g. common temperature) in the case of a common first
order phase transition and solely global for the array of microelectrodes (common
voltage). We then explained the observation that the microelectrodes switch on
individually when the total current is ramped, and that the electric potential and
the individual currents oscillate when the total current is fixed. For this, we did a
linear stability analysis of the system. Since we made just very few assumptions on
the exact dynamics, the results are applicable to a wide class of systems in which
bistable components are globally coupled. We saw, for example, that the eigenvalues
of the Jacobian with respect to intra-cluster perturbations are degenerate within
each cluster. After the general linear analysis, we did a numerical nonlinear study
of a concrete model of the Pt-CO system, which we derived by simplifying a well
established Pt-CO model. We reduced the dynamics of the N electrode model to
one, two, and three dimensional cluster subspaces and discussed the occurring
local bifurcations. Among these local bifurcations we found Hopf bifurcations that
induced oscillations, as observed in galvanostatic measurements. The oscillations
that branched from Hopf bifurcations always had an unstable cluster or a cluster
with just a single electrode in it, so we concluded that they would not be measurable
in a real fuel cell with very large numbers of Pt nanoparticles. However, we also
found a transcritical bifurcation of limit cycles that stabilized unstable clusters,
yielding a stable limit-cycle oscillation with two clusters. We concluded that such
a limit cycle would ’scale’ up to large N, i.e. it would persist and remain stable if
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the number of electrodes in the clusters and the total current are multiplied by any
natural number.

There are several promising directions in which one could go from here. There
is room for improvement of the linear analysis that we did. One could loosen the
assumptions that we made for the individual components even further, e.g. by
allowing multi-stability not only in u, but also in y. However, the most promising
follow-up projects would rather build on the chapter about nonlinear cluster dy-
namics. It would be very interesting to find a way to numerically continue the
transcritical bifurcation of limit cycles in the three-cluster subspace to other cluster
sizes n1, n2, n3 to get a more complete picture of the bifurcation scenario in the
full N electrode system. There are also probably some homoclinic bifurcations in
the system that one could look for. Even more interesting would be the question
whether the transcritical bifurcation of limit cycles can also be found in the original,
well established Pt-CO model. If so, it would be very likely that the corresponding
’scalable’ oscillations (where all clusters have at least two electrodes in them) could
also be measured with an array of microelectrodes. In this case, such oscillations
would probably also occur in fuel cells. Apart from Pt catalysts for fuel cells, it
would be interesting to look at other bistable systems. With the LC-circuit analogy
that we presented, and with the associated necessary criterion, it is straight forward
to filter for potential candidate systems by measuring their impedance along the
equilibrium curve.
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We have considered two electrochemical systems, the electrodissolution of silicon
in hydrofluoric acid and the electrooxidation of CO on platinum. Together, these
two systems showcase the wide spectrum of modeling of complex systems. Both
are of supreme technical relevance and both show complex selforganization.

Silicon is the main working material in integrated circuits and hydrofluoric acid
can be used to clean, polish, and etch it, depending on the applied voltage and the pH
value. Besides that, Si in HF acid is a prototypical example for a system that yields
Chimera states, which have gained considerable attention in the non-linear dynamics
community. Due to its technical relevance, Si in HF has been very much investigated,
but still, the physical processes that lead to the complex selforganization are far
from being clear. This mainly concerns the resonant voltage regime, in which
Chimera states and other oscillatory phenomena can arise, depending on doping,
illumination and external resistance. The most common approach here is to assume
that the electrode consists of microscopic domains that are self-oscillating. The
proposed oscillation mechanism differs between different models. Even though such
models can explain some phenomena, they leave a lot of questions open, concerning
quantitative explanations of the oscillation mechanisms and the embedding of
the models into the well established frame of synchronization phenomena in a
dynamical systems sense.

Besides the resonant regime, also the regime of negative differential resistance re-
quires some modeling efforts. This is what we contributed in Part II. With a relatively
simple model, we were able to reproduce the current-voltage curve, the impedance,
the qualitative oxide layer thickness, and the dissolution valence. What we were not
able to reproduce is the strange resonance that occurs as the resonant plateau begins.
However, while for our explanations we separated the current-voltage curve into
different voltage regimes, they are not really that clearly separated in reality. For
example, we discussed that a limited illumination of n-type silicon might shear the
current voltage curve such that the system becomes bistable between different states
that would otherwise correspond to different voltage ranges. Our work forms the
basis for further modeling and ultimately reproducing and explaining the Chimera
states and other phenomena that this system exhibits. In this, the model will have to
stay appropriately simple and consistent with all the measurements.

A powerful model for the Si-HF system would be able to reproduce the complex
dynamical behavior, such that one could do a numerical bifurcation study. However,
with regard to the lack of such a model, the problem should be tackled not only
from the bottom, as we did here, but also from the top. This means modeling the
dynamical features with purely mathematical model to determine the necessary
ingredients. By this, one could reduce the search space for a physical model. Con-
siderable progress in this regard has been made with the help of a modified version
of the complex Ginzburg-Laundau equation, and there are still efforts worth taking
in that direction. The gap between the top-down and the bottom-up approaches
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will eventually have to be closed by taking a working bottom-up physical model
with predictive power and showing that it fulfills the minimal requirements by the
top-down considerations.

Apart from contributing to the understanding of the silicon system, the model
that we presented also represents a new mechanism for the occurrence of a negative
differential resistance in the current-voltage curve. Due to its simplicity, this mech-
anism is very likely to be also found in other electrochemical scenarios where there
is a patina that is grown electrochemically and dissolved purely chemically.

In contrast to the silicon system, the electrooxidation of CO on platinum were
already very well understood from a physicochemical point of view. The sequential
activation and the oscillations could be well reproduced by established models. The
remaining task here was to explain why these behaviors, mainly the oscillations,
occur and how this generalizes to other systems of globally coupled bistable com-
ponents. Unlike with the silicon the preexistence of a reliable model allowed for
a throughout analytical study of the observed phenomena. We applied different
degrees of abstraction. Firstly, we considered a general class of bistable systems
under global coupling. With this, we explained the sequential activation in the
dynamical-systems framework and derived a necessary condition for an oscillations
to arise. For this criterion, we provided an intuitive LC-circuit analogy. Secondly,
we considered a simplified version of a preexisting model. With this we illustrated
the general analysis. Moreover, we performed a detailed bifurcation study on it and
found an interesting limit cycle that would translate sustained oscillations for an
arbitrarily large number of bistable components. Thus, it could for example be seen
in real fuel cells with large numbers of catalyzing Pt nanoparticles. However, the
implications might be even more far-reaching. Without the awareness that collective
oscillations can be provoked in this way, the natural interpretation would be that ob-
served oscillations emerge due to synchronization of individual oscillators. In view
of our results, it might turn out that some observations of collective oscillations have
to be reinterpreted. All in all, we recognize that even decades after its initiation, the
field of non-equilibrium thermodynamics keeps baring new, fascinating findings.
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