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Abstract. For the last several years, laser scanning has become one of the reference technologies 

when talking about the monitoring of assets. Nowadays, the trend is to use these data for creating 

semantically rich three-dimensional (3D) models, broadly known as digital twins. The bottleneck 

appears when processing the large amount of data acquired with the laser scanner. This paper tackles 

the creation of IFC data models using classified point cloud data. The point labelling methodology 

is based on one in the state-of-the-art, whose results have been improved. Then, each group of points 

is converted to a triangulated mesh, and the resultant geometrical objects are placed in an IFC-based 

model in a low and high level of detail. Moreover, the resultant IFC model allows the enrichment of 

the captured geometry with additional information. 

1. Introduction 

The modern society is increasingly dependent on digital representations of the environment. 

Since the majority of the assets are already built, there are usually no digital as-built 

representations of them available. Assets are likely to change during their life cycle due to 

deterioration caused by impacts or sudden events. Therefore, digital representations should 

represent assets during their entire lifecycle, from design to their end-of-life, so that periodic 

maintenance and analysis can be performed in order to evaluate their behaviour. 

The digital replica of the real-world data is known as digital twin (El Saddik, 2018). This “twin” 

should contain not only 3D geometrical data, but also semantically rich information 

representing the characteristics associated with the asset (materials, safety, occupancy, relations 

between components, etc.). A digital twin (DT) of the infrastructure will ensure its normal 

functionality and operation, being able to detect changes in its condition due to the constant 

update of its information. This will decrease the disruption of service, the risk to which the end-

users are subjected to, and costs savings for the infrastructures owners as a consequence of the 

previous (Lu and Brilakis, 2019a). It is important to highlight that the characteristics of DTs 

will depend a lot on their purpose, so a DT can have different levels of detail (LoD): from non-

geometrical representation, to two dimensional (2D) geometry, or 3D data models (i.e. plans, 

B-reps, point clouds). In some cases, the geometry of the DT will not be required, being 

uniquely dependent on the semantic information. This calls for linked data approaches so that 

the needed information is easily available, accessible, and properly organised. One example of 

linking information could be the use of ontologies, useful for data hierarchies (Beetz, 2018). 

Although the creation of DT during the design phase of an infrastructure is broadly extended, 

it is not the case during the rest of its life cycle. This is motivated by the resource consumption 

of this task in comparison with doing it the traditional way. This is where LiDAR technology 

comes into place. Point clouds provide geometrical information about the environment where 

the survey was performed, but it is not enough. This information needs to be processed and 

interpreted so that it can be used in a BIM (Building Information Modelling) model or as a DT. 

The paper aims to demonstrate a full toolchain from the capturing process to the validation of 

the IFC (industry foundation classes) data format. The proposed workflow shows the capability 

of IFC to store not only design data but also the results of processed point clouds. The definition 
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of end-user requirements (EURs) for digital twins is not a defined task for this paper. Lu and 

Brilakis (2019b) prepared the fundamental information that a DT should contain in the form of 

six EURs. The present work has been developed in order to fulfil these requirements. 

 

Figure 1: Main components of a masonry arch bridge (Ural et al., 2008) 

The bridge under study is to be divided into six different elements: spandrel walls, vaults, piers, 

cutwaters, roadway and parapet (Figure 1). The present article is divided as follows: Section 2 

summarizes the state of the art in relation with the field of research; Section 3 introduces IFC 

as one of the most frequently used data structures for BIM processes; Section 4 describes the 

methodology developed from the point cloud classification to the IFC instance model creation; 

the results are presented in Section 5; and, finally, a summary of the conclusions extracted from 

this work is exposed (Section 6). 

2. Literature Review 

Point clouds acquisition can be performed using aerial laser scanning (ALS), mobile laser 

scanning (MLS), or terrestrial laser scanning (TLS) systems. Depending on the use of the point 

clouds in a later step, a different system is to be used. In this relation, Soilán et al. (2019) 

presented a review with the most relevant laser scanning technologies available in the market 

and their applications regarding transport infrastructures. Since the present work is focused on 

masonry arch bridges, the better approach is to use TLS systems to perform the survey. They 

usually work mounted on a stand or tripod and obtain high-resolution scans in a short period of 

time (in a range of minutes) (Olsen et al., 2010). 

In order to create a 3D data model of an asset using a point cloud, a first classification of points 

is needed so that the elements forming the asset are grouped. Over the years and thanks to the 

evolution of technology, numerous works concerning the automatic or semi-automatic 

classification of point clouds started to arise. When specifically talking about arch bridges, 

Walsh et al. (2013) started classifying points into different structural elements using laboratory 

specimens and testing real bridges. Later on, Riveiro, DeJong and Conde (2016) developed a 

methodology for automatically segment their structural elements. Concerning the inspection of 

masonry arch bridges, Sánchez-Rodríguez et al. (2018) showed an automatic processing 

method for laser scanning data in order to detect faults in their piers. The current trend for point 

cloud classification is to use algorithms that automatically predict the class of a point based on 

learning algorithms. Barrile, Candela and Fotia (2019) worked with an aerial survey of a 

concrete viaduct in order to apply photogrammetric reconstruction to classify the structural 
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elements of the asset. They applied image analysis techniques and used the Mask-RCNN 

(Region-Based Convolutional Neural Network) (He et al., 2017) to perform this classification. 

After processing the point cloud data, the next step would be to create a 3D data model of the 

structure using that information. In this paper, the standard IFC is to be used. There are already 

some works developed in this respect. Ma et al. (2018) manually prepared the 3D model using 

Revit, tracing the points in the cloud. Later, a pipeline for going from point clouds to IFC 

models was presented in (Zhao and Vela, 2019). They detect and classify objects using a 

machine learning approach and then, each individual element is parametrized to create the IFC 

objects. Lu and Brilakis (2019a) created a method for creating DTs of reinforced concrete 

bridges from already labelled point clusters. Those clusters are sliced and projected to the XY-

plane in order to fit a 2D ConcaveHull α-shape. The obtained contour is then transformed to 

2D Cartesian points (IfcCartesianPoint) to create the IFC instances. 

Another approach for the point cloud-to-IFC conversion is to make use of the (3D) laser 

scanning data reconstructing the geometric surfaces needed to produce a mesh. Numerous 

methods have been proposed to tackle this problem. Most commonly, the variational methods 

(Zhao et al., 2000), tensor voting (Medioni, Lee and Tang, 2000), implicit surface (Hoppe et 

al., 1994), and Delaunay triangulations (Cohen-Steiner and Da, 2004). Delaunay triangulations 

are greedy algorithms that reconstruct the surface as a result of the union of sequentially 

selected triangles. Such algorithms start with a seed triangle, and then the triangulated surface 

incrementally grows by using the previously selected triangles to select a new triangle for 

advancing the front. The idea presented in this paper is that IFC provides geometric 

representations within its geometry resources to store meshes like the created ones. 

This paper examines whether and to what extent bridges can be better described using the latest 

schema extension proposal IFC4x2. Thus, a framework was developed which converts the 

captured geometries into an IFC4x2 based instance model. During the processing, two LoDs 

were considered to make the resulting model lightweight and easy to consume in various use 

case scenarios. Moreover, the models are enriched with semantic information that was extracted 

during the segmentation and processing of the point cloud. 

3. Data Formats for Digital Twins 

The way in which information is stored, exchanged, and shared between different parties in a 

project needs to be standardized. The use of data models ensures it’s the success of data 

exchange processes, with information encoded using a specific data model. For the use of BIM 

models or DTs, they have to meet specific geometric and semantic requirements, which have 

been defined exemplarily by the BIM4INFRA2020 project (BIM4INFRA2020, 2018). Data 

models can provide geometric and semantic information or only geometric content. DXF and 

OBJ can be considered as the most representative ones when talking about geometric data 

models (Autodesk, 2017; Wavefront, 2019). Since in this work semantic information is also 

used, IFC2x3, IFC4, IFC4x1, IFC4x2 and CityGML should be the ones coming into place 

(buildingSMART International Alliance for Interoperability, 2007; buildingSMART 

International, 2018). In this work, IFC 4x2 is the data model to be used since it covers 

requirements for detailed geometric representations paired with specific product classifications 

for each component. This will avoid the need for re-implement a way of combining geometry 

with semantics in a formal way. 

The IFC data model was initially designed to transfer digital models of buildings. Since the 

interest in BIM technology is constantly increasing during the last years, the international non-

profit organization buildingSMART International (bSI) decided to extend the IFC data model 
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for civil infrastructure assets. The first initiatives in this regard were the IfcAlignment project 

(buildingSMART International, 2018) and the IFC Overall Architecture report (Borrmann et 

al., 2017). Upon these projects, the IfcBridge extension project has added new classes and types 

to enable a more detailed description of bridge structures. The final deliverables include a 

comprehensive requirements analysis as well as a schema extension proposal (Borrmann et al., 

2019). Besides IfcBridge, several other projects like IfcRoad, IfcPortsAndWaterways, and 

IfcTunnel are conducted inside the Infra room, which is a subsection of bSI. Additionally, the 

IfcRail project (located inside the RailwayRoom) proposed a schema extension for railbounded 

traffic. It is ongoing work to harmonize all proposals among the individual projects to deliver 

a harmonized infra extension in the end. This deliverable will most likely build the base for the 

next major release IFC5.  

Even though the toolchain discussed in this paper was not in the primary scope of the IfcBridge 

extension project, data exchange scenarios of processed point cloud information can be realized 

using IFC classes. 

4. Methodology 

The methodology presented in this paper is in charge of creating IFC instance models in order 

to store bridge models created out of a laser scan. It is divided into three parts: (i) point cloud 

classification; (ii) point cloud-to-mesh conversion; and (iii) generation of the IFC model. 

4.1 Point Cloud Classification 

The point cloud classification methodology follows the steps previously stated in Riveiro, 

DeJong and Conde (2016), where a methodology for the segmentation of masonry arch bridges 

from TLS datasets was presented. In the present work, this method has been modified in order 

to improve the performance of the algorithms, as presented in Figure 2. 

The method starts with a masonry arch bridge point cloud, already aligned and prepared for its 

processing. This point cloud B = (x, y, z, I), is formed by the 3D spatial coordinates (x, y, z), 

and the reflected laser pulse intensity, I. In this case, only the geometrical information is to be 

used. The point cloud is oriented to the y coordinate axis, resulting Br = (x, y, z) applying 

principal component analysis (PCA), and taking the first component as basis to perform the 

rotation (Gressin et al., 2013). Next step is to distinguish between points forming vertical and 

non-vertical elements. This is done calculating the elevation angle histogram of the points 

cloud, in which two main peaks are present. The points are thus classified in two classes: 

vertical elements V = (x, y, z) ϵ Br and non-vertical elements N = (x, y, z) ϵ Br. 

 

Figure 2: Proposed classification workflow 
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Working with the point cloud containing vertical bridge elements, V, a first classification based 

on the azimuth angle of each point is performed. As before, this angle was computed in a 

neighbourhood of 0.25 m. Then, a k-means clustering (Lloyd, 1982) is applied to the data, 

dividing the point cloud into four main classes: possible spandrel walls, possible piers, possible 

cutwaters, and non-classified points. Each of these new sections is specifically analysed so that 

the wrongly classified points are reclassified. A connected components detection algorithm is 

applied for this matter. Points belonging to the parapet of the bridge are present in both the 

vertical and non-vertical elements point cloud. In both classes, the parapet is detected as the 

highest points in the cloud. 

Lastly, from the point cloud of non-vertical elements, points forming vaults are detected 

applying a connected components detection algorithm, and each individual one is isolated 

thanks to their center of gravity. 

4.2 Point cloud-to-Mesh Conversion 

Once the point cloud is segmented, multiple steps are performed to reconstruct the final mesh 

(as illustrated in Figure 3). First, each segment is preprocessed by omitting noise. Here the 

points are sorted in an increasing order of the average squared distance to their nearest 

neighbors, and the points with the largest value are deleted. The reconstructed mesh could be 

used for multiple different purposes, including performing simulations and renovation. 

Thereby, in some cases, a highly detailed or a coarse representation could fit more to the 

intended purpose.   

Based on the purpose, a level of detail (Trimble, 2013) is selected. Accordingly, capturing 

reality (LoD 500), focuses first on reconstructing the outer surface of the geometric features by 

approximating its shape. Once the surface is reconstructed, an additional step is required to fill 

any remaining gaps / holes. These holes could result due to scanning or processing issues, which 

are hard to completely avoid, like because of defects in the scanning process or inaccuracies in 

the segmentation or noise omitting algorithms. On the other hand, selecting a low LoD requires 

much less processing as only rough placeholders that represent the overall dimensions are 

required. In this regard, based on the convex hull (Barber, Dobkin and Huhdanpaa, 1996) of 

each segment, a triangulated mesh, which does not suffer from any holes, is generated. 

 

Figure 3: Proposed framework for transforming point cloud segments to 3D mesh. The framework 

provides two approaches, one for reconstructing surfaces with high details, and another for generating 

a coarse representation of each segment 
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4.3 Generation of the IFC Model 

The IFC data model provides huge flexibility to model use-case specific requirements. An 

example of this is the flexibility to assign the best-fitting geometry representation for a given 

source geometry. Product representations can be modeled by using explicit or implicit (i.e. 

procedural) geometries. Besides, a huge advantage of IFC compared to other data models is the 

opportunity to represent several levels of details using the same data standard. This makes the 

results easier to consume in a variety of existing tools since IFC is widely adopted in the AEC 

(Architecture, Engineering, and Construction) market. The generation of the IFC instance 

model containing the captured bridge is done by a console app written on top of the IFC 

framework XBIM (Lockley, 2007). It creates a basic spatial structure typically used for bridges 

which splits the construction into logical parts (e.g., superstructure, substructure, foundation). 

Several products are assigned to these logical containers afterwards. A simple JSON-based 

dictionary enables the engineer to assign the segmented geometries to a suitable IfcProduct 

class.  

The computed meshes are stored as instances of the class IfcTriangulatedFaceSet and linked to 

instances that are derived from IfcProduct.  

5. Results 

5.1 Case Study 

The bridge selected to validate the presented process is a masonry arch bridge. It is the roman 

bridge of Segura, located on the border of Portugal and Spain and crossing the river Erjas. The 

bridge is used to communicate the provinces of Castelo Branco (Portugal) and Cáceres (Spain) 

by a national road (Durán, 1996). This bridge has been selected since it has already been studied 

in previous works (Arias et al., 2010; Riveiro, DeJong and Conde, 2016). 

Data Acquisition. Each survey has to be planned according to the needs given by the structure 

to be scanned and its environment. In this case, the survey is done in an outdoors environment, 

and so the meteorological conditions have also to be considered. The point cloud acquisition 

was performed using the TLS Riegl LMS-Z390i (RIEGL, 2020). The operations of recording 

point clouds with this RIEGL scanner were controlled with Riscan PRO Software (Riegl©). In 

order to perform the survey leaving as less non-scanned bridge parts as possible, the scans were 

taken from seven different positions from which a different point cloud was obtained. These 

were aligned thanks to the use of reflective targets placed over several planes in the 

surroundings of the structure. For the case of this paper, the point cloud was reused from a 

previous survey, which is described more in detail in (Arias et al., 2010). The obtained point 

cloud is formed by 1,259,148 points. 

Ground Truth Preparation. The ground truth used to compare the point cloud classification 

has been obtained using the software CloudCompare (v2.10.2) (CloudComapre, 2020), in order 

to manually segment the point cloud into seven different classes of points: roadway, parapet, 

spandrel walls, vaults, piers, cutwaters, and non-classified points. 

5.2 Point Cloud Classification 

The classification of points in masonry arch bridges point clouds has been proven as valid in a 

previous work by Riveiro, DeJong and Conde (2016). That methodology has been modified for 

this work in order to improve its performance. The dataset described in Section 5.1 is used to 

prove the validity of the classification methods proposed. This point cloud is segmented in 
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seven categories depending on their geometrical characteristics, as exposed in Section 4.1. An 

overview of the results is presented in Figure 4. Figure 4(a) and (c) show the original point 

cloud (upstream and downstream, respectively), while in Figure 4(b) and (d), points are 

depicted with different colours depending on their specific group. 

  

  

Figure 4: Original point cloud upstream (a) and downstream (c) compared with the classification 

results: roadway (orange), parapet (lilac), spandrel walls (magenta), vaults (yellow), piers (green) and 

cutwaters (blue) 

The results obtained with this new methodology are compared quantitatively with the 

previously labelled ground truth. The same is done with the ones obtained by Riveiro, DeJong 

and Conde, (2016). The parameters chosen to summarise the performance of each method are 

the precision, recall, and F-Score metrics. The methodology developed for this work shows 

better results than the previous one presented in (Riveiro, DeJong and Conde, 2016). 

Table 1: Performance metrics 

Element 
Precision Recall F-Score Precision Recall F-Score 

Previous methodology New methodology 

Spandrel walls 0.7694 0.1996 0.3170 0.8711 0.8956 0.8832 

Vaults 0.9685 0.1147 0.2050 0.9452 0.7240 0.8199 

Piers 0.7786 0.7563 0.7673 0.6794 0.9448 0.7904 

Cutwaters 0.2016 0.1784 0.1893 0.9750 0.7444 0.8442 

Roadway 0.8348 0.2975 0.4387 0.5427 0.9963 0.7026 

Parapet - - - 0.7512 0.6690 0.7078 

5.3 Generation of the IFC Model 

The model generation was performed by the developed methodology described in Section 4.2 

and 4.3. The individual segments (vaults, piers, etc.) were preprocessed and reconstructed in 

both LoDs, 200 and 500. At the end, all segments are combined to represent the captured bridge 

as illustrated in Figure 5 and Figure 6. The resultant meshes were efficiently generated, 

producing models that are lightweight enough (in terms of the number of points per triangulated 

geometry) to be visualized in the common IFC viewers that support IFC4X2 (like BIM vision 

2.23 or FZK Viewer). 
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Figure 5: Resulting IFC Model in LoD 200 

 

Figure 6: Resulting IFC Model in LoD 500 

Additionally, the IFC models were semantically enriched by adding custom property sets to the 

IfcProject and IfcSite entities, incorporating the parameters used to capture the point cloud using 

the laser scanner as well as the parameters used to reconstruct the surfaces. This information 

enables the receiving engineer to roughly classify the quality of the given model. It is important 

to have such properties directly assigned to the model to enable a correct interpretation of the 

given geometry.  

6. Conclusion 

This paper presents an automatic methodology for transforming classified point clouds into IFC 

models for further applications. The presented methodology is divided into three main parts: (i) 

point cloud classification; (ii) point cloud-to-mesh conversion; (iii) mesh-to-IFC conversion. 

The methodology overcomes the gaps existing in the captured point cloud using advanced 

geometric reconstruction techniques and maps the segmented assets to the latest IFC schema. 

Furthermore, the IFC-based result is then ready to get further information attached to it, such 

as construction materials, structural health monitoring information, etc. This can be considered 

the first approach to transform masonry arch bridges’ point clouds into Digital Twins. 

The results presented show a good performance referring to point cloud classification, 

improving a previously published methodology. In addition, the models created using this 

information allow to present different level of detail, depending on the purpose of the DT. 

Finally, it is important to highlight that the end user’s requirements are also fulfilled. This work 

proves that laser scanning systems can be considered as a tool for capturing the as-built 

environment and creating digital representations of it. Different aspects may be taken into 

consideration for future work regarding the transformation of point clouds into IFC. The results 

obtained in the classification of LiDAR data can always be improved. Nowadays, the use of 

deep learning algorithms is one of the latest trends developed, being in the state of the art for 

many applications. Progress is under way in the 3D data field, and it is foreseeable that the AI 

(artificial intelligence) is able of obtaining better results than heuristics for certain applications 

in the near future. Some works using specialized neural networks (kpconv, PointNet, 

PointNet++, splatnet, etc.) have already shown good results. Concerning the creation of IFC 

instance models, other techniques can be used to compare the results in the same datasets. 

Moreover, different bridge’s typologies should be studied in order to prove a broader validity 

of the developed algorithms. 
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