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Abstract—Assessment and testing are among the biggest
challenges for the release of automated driving. Up to this
date, the exact procedure to achieve homologation is not settled.
Current research focuses on scenario-based approaches that
represent driving scenarios as test cases within a scenario space.
This avoids redundancies in testing, enables the inclusion of
virtual testing into the process, and makes a statement about
test coverage possible. However, it is unclear how to define such
a scenario space and the coverage criterion.

This work presents a novel approach to the definition of the
scenario space. Spatiotemporal filtering on naturalistic highway
driving data provides a large amount of driving scenarios as
a foundation. A custom distance measure between scenarios
enables hierarchical agglomerative clustering, categorizing the
scenarios into subspaces. The members of a resulting cluster
found through this approach reveal a common structure that is
visually observable. We discuss a data-driven solution to define
the necessary test coverage for the assessment of automated
driving. Finally, the contribution of the findings to achieve
homologation is elaborated.

Index Terms—Autonomous vehicles, Vehicle safety, Testing,
Risk analysis, Performance analysis

I. INTRODUCTION

Automated driving is one of the most anticipated future
technologies and multiple automotive brands have announced
the release of automated vehicles in the near future [1], [2].
However, the assessment method to ensure a safe operation
and achieve homologation is not clear yet, which delays the
release of this technology [3]. Existing approaches in the au-
tomotive domain require an infeasible amount of real-world
testing [4]. Hence, current research focuses on scenario-
based approaches [5], [6]. These promise to put relief on
the required test amount by inclusion of cross-verified virtual
testing [7], [8] and avoidance of test redundancies [9]. Then
again, the representation of scenarios within a scenario or
test space enables variation of the test cases and a statement
about the test coverage [10].

Despite these efforts, the success of scenario-based testing
heavily depends on how well scenarios are defined within a
test space. Consequently, this work focusses on numerically
describing the difference between scenarios in the test space,

* These authors contributed equally to this work

J. Kerber, S. Wagner, and A. Knoll are with the Chair of Robotics,
Artificial Intelligence, and Embedded Systems, Department of Informatics,
Technische Universitdt Miinchen, Munich, Germany

K. Groh, D. Notz, and T. Kiihbeck are with BMW NA, Mountain View,
USA

D. Watzenig is with the Institute of Automation and Control at Graz
University of Technology, Graz, Austria

978-1-7281-6673-5/20/$31.00 ©2020 IEEE

Naturalistic

I| Maneuver Spatial Temproal
Detection Filter Filter

Driving _
_ ﬁafa’

IScenario Clustering

4-{ Clustering

| "
' Scenario Scene |
1| Distance Distance |
g )

Il Coverage
|

Fig. 1. The methodology presented in this paper is divided into three
components scenario extraction, distance measure, and clustering. These also
follow the general structure of this paper.

followed by a proof of concept on how scenario clustering
has to be established to enable an analytical estimate of the
test coverage for automated driving.

A similar approach applies random forest methods to sim-
ulated driving data [11], [12]. The approach shows promising
results can be generated with clustering. The way the features
are manually chosen limits the mapping of the temporal
development of a scenario. Additionally, manually choosing
features does not guarantee to map the characteristics of any
scenario completely and the impact of using simulated data
is not elaborated. There is, to the best of our knowledge, no
further work directly addressing the clustering of scenarios.
For that reason, and because of inherent differences in the
underlying data, the method presented in this work cannot
be benchmarked against existing approaches. Rather, a qual-
itative analysis of the results is conducted.

We present a novel approach to the definition of scenario
space. Its major components are depicted in Figure 1 and they
structure the remainder of this work. As a foundation, a large
amount of driving scenarios is extracted from naturalistic
real-world driving data. Section II provides the underlying
maneuver detection and spatiotemporal filtering is used for
the identification of scenarios within the large amount of data.
All scenarios are presorted into buckets for comparability de-
pending on structural information. A custom distance metric
for measuring the similarity of scenarios is first described
based on scenes or single time steps in Section III. The
accumulation to a single measure for a pair of scenarios
follows. In Section IV, the results from the distance measure
are used for hierarchical agglomerative clustering. Based
on the found clusters, discussions about potential coverage
statements are held. Lastly, Section V provides conclusions
and future work.
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II. LARGE SCALE SCENARIO EXTRACTION

Prior to the definition of a scenario distance metric for the
clustering algorithm, a significant number of scenarios need
to be generated and classified according to their character-
istics into so-called scenario buckets. The data source used
for this extraction is the highD dataset [13], which provides
drone recordings of 110,516 vehicles’ naturalistic trajectories
on German highways with two or three lanes. Therefore, this
extraction method and also the distance measure is created
specifically for highway situations and is not suited for urban
scenarios without modifications.

The construction of a single scenario from the trajectory
dataset requires three steps:

1) Maneuver detection: Every scenario needs to include a
certain type of maneuver, e.g. a lane change (LC), that
defines the structure of the scenario.

2) Spatial filter: Scenarios are always subjective and refer
to one vehicle which is from now on referred to as EGO.
A scenario must only include the trajectory information
of other traffic objects (TOs) that are relevant for the
behavior of the EGO in the vehicle pool.

3) Temporal filter: The duration of a scenario is chosen
to fully include all detected maneuvers over their full
length in the relevant environment.

These three components are described in the following sub-
sections and the results are summarized.

A. Maneuver Detection

The goal of this component is to detect defined maneuvers
as they are later needed for the temporal filter. Following the
scenario definition of Ulbrich et. al. [14], a scenario consists
of multiple scenes that describe a short temporal snapshot.
Scenarios have a longer duration and they contain actions and
events. We define actions as specific maneuvers and focus
on LC maneuvers as they are one of the primary sources
of risk in highway traffic. The duration of a maneuver is
specified by the start and end event. A detection algorithm
starts with identifying the lane crossing times by continuously
checking for a change in the lane ID as provided in the highD
dataset. After that, the start and end times are determined
by iterating forward and backward in time until the lateral
velocity drops below a threshold of 0.03%;. The maneuver
detection is repeated for every TO in the dataset and the
start and end events of every maneuver are saved with the
corresponding TO ID.

In this work, maneuver detection is only done on LCs as a
proof of concept. Certainly, an extension to more maneuvers
is required for completeness but exceeds the scope of this
work.

B. Spatial Filtering

The dataset contains multiple vehicles existing at the
same time and certainly not all of them are relevant for
the EGO. Therefore, spatial filtering determines the relevant
environment that influences the behavior of the EGO. For
every recorded scene of the EGO, a list of relevant TOs needs
to be determined. The spatial filter has to be designed in a

Zthresh,back Ladj Tthresh,front

Fig. 2. Spatial filtering through an eight-vehicle-model identifies all TOs
that are relevant for the EGO in a current scene. Vehicles II and VII are
in the adjacent slot depicted by the dashed lines. The blue TO is discarded
because it is past the red relevancy threshold and the yellow vehicle is
discarded because there is already TO III in the slot which is closer to the
EGO. Three slots stay empty because there is no vehicle within the area.

way that this list is as short as possible while still including
all relevant TOs.

For the spatial filter, we use an eight-vehicle-model with
three parameters as depicted in Figure 2 to judge whether a
TO is relevant for the EGO or not. Here, the proximity of
the EGO is divided into eight slots on the current and the
neighboring lanes of the EGO. There are three slots in front
of and three behind the EGO, each on the lanes left and right
to the EGO lane, as well as the EGO lane itself. Additionally,
there are the two adjacent slots directly left and right to the
EGO. Every slot must only contain one vehicle which is why
only the TO closest to the EGO is considered while others
are discarded such as the yellow TO in Figure 2. Note that
the longitudinal distances to the EGO are measured from the
geometric center point of both vehicles. Any TOs that are
two or more lanes to the left or right to the EGO are ignored
for the spatial filtering as they only become relevant once
they are in a neighboring lane. The slot length in front of
and behind the EGO is limited by the relevancy thresholds
shown by the red lines. They imply that any vehicle beyond
does not influence the behavior to the EGO because it is too
far away such as the blue TO in Figure 2. If there is no TO
in a slot it stays empty and thus TOs I, II, III, IV, and VII
are judged relevant for that scene.

The widths of the slots are given by the width of the
respective lane and the lengths of the slots have to be
parameterized. For the front and back relevancy thresholds
Tthresh, front A0 Tihresh back, W€ choose 100m and  50m.
The length of the adjacent slot /,4; is chosen to be 10m long
as it is highly unlikely that two vehicles drive within one slot
on a highway.

Lastly, the spatial filtering process defines every vehicle
in the dataset as the EGO once. The filter is applied for all
scenes of its appearance which results in a list of relevant
TOs for every EGO choice. This list can also be longer than
eight vehicles as TOs can enter and leave the cells of the
eight-vehicle-model over time.

After the spatial filtering and the maneuver detection
process, every vehicle in the dataset has information over the
relevant environment as well as the timestamps of the start
and end event of maneuvers. This is the basis for the temporal
filter that determines the scenario duration and vehicle pool
for the final scenario extraction.
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Fig. 3. Temporal filtering determines the duration and the vehicle pool of a
scenario. The horizontal lines show the state information of four exemplary
TOs over the lifetime of an EGO. The scenario duration, denoted by the
width of the red frame, is determined with the help of the start and end
events of the maneuvers and the relevant TOs, denoted by the height of the
red frame, which are chosen with the help of the relevancy information.

C. Temporal Filtering

As a final step of the scenario extraction, the detected ma-
neuvers and the relevancy information from the two previous
components are used to determine:

a) the duration of the scenario
b) the TOs that are relevant within this time.

The goal of the temporal filter is that the duration and the
vehicle pool of the scenario are chosen so that the extracted
scenario contains its cause and effect. An example of this is a
scenario, as shown later in Figure 6, where the EGO follows
another TO A in the left lane at a higher speed (cause) which
results in A merging to the left lane in front of TO B so
that the EGO can pass (effect). Accordingly, every scenario
should always include the full duration of the maneuvers
that caused it. The scenario duration and vehicle pool are
determined by two rules:

Rule A: A scenario always starts with the first start event
and ends with the last end event of all ongoing
maneuvers.

If a TO is relevant for at least once within the
scenario duration its relevancy will be extended
over the whole duration.

Rule B:

These rules are further elaborated with the use of Figure 3.
Therein, the temporal evolution of an EGO and four relevant
TOs identified by the spatial filter are shown. Dashed lines
indicate irrelevancy for the EGO in the current scene while
solid lines state relevancy. Further, blue arrows show the
maneuvers found with the presented maneuver detection.
During the first maneuver of TO1, no other TO is relevant
and no other maneuver happens. The temporal context is
hence given through Rule A and only this TO and the EGO
are included in the scenario. Rule A means further that two
overlapping maneuvers result in only one scenario, as shown
for Scenario B on the right. During that time, also TOg
is marked as relevant once and therefore included over the
whole duration of the two maneuvers through Rule B. As
a conclusion of both of these rules, for a TO, that initially
becomes relevant while it is in a maneuver, the relevancy
needs to be extended so that the start of the maneuver is
included in the scenario duration. This can be seen for TOq
in Scenario B in Figure 3.
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Fig. 4. The extracted scenarios are assigned to scenario buckets according
to the number of vehicles included in the scenario. Also, the maneuver types
are shown through tags. Most scenarios only contain one specific maneuver
tag but with rising vehicle pool size the ratio of scenarios with multiple tags
increases.

Scenarios are extracted by iterating over the scenes of
every vehicle in the dataset while considering relevancy in-
formation and maneuver events. Note that multiple scenarios
can be extracted from a single vehicle if the maneuvers and
therefore the scenario durations do not overlap, as shown for
the EGO in Figure 3. Having all three components of the
extraction defined, they are applied to the highD dataset and
results follow.

D. Scenario Extraction Results

Using the presented method, 46,681 scenarios are extracted
from the 110,516 vehicles included in the highD dataset. This
section aims to present some statistics over the gathered data
to make the filter choices plausible.

For 38.1% of vehicles exactly one scenario is extracted,
for 2.0% two scenarios and below 0.1% three to five sce-
narios are extracted. No scenarios are extracted for 59.8%
of vehicles because no maneuver happens in the relevant
environment. The distribution of scenarios according to their
vehicle pool size is shown in Figure 4. Furthermore, every
scenario is tagged with the maneuver type it contains and the
vertical bars are divided accordingly. As a result, 56.13%
of scenarios contain a right LC, 52.59% a left LC, 1.36%
a double right LC, and 0.80% a double left LC. The total
percentage of scenarios that contain more than one tag and
therefore multiple maneuvers is 10.48%. This number rises
with increasing vehicle pool size form 2.1% at three, over
6.7% at five, and up to 22.3% at ten vehicles as more
maneuver happen with more vehicles. Currently, these tags
are only used for statistical plausibility check of the results.

It is crucial for the scenario distance measure (Section III)
and the clustering (Section IV) that the vehicle pool size and
the scenario duration should be kept as small as possible
to prevent an increase of the scenario space dimensions.
The restrictiveness of the spatial filter causes a small total
average vehicle pool size of 6.51. This is small compared
to the average number of vehicles that are on screen at a
time (15.77) and during the whole duration per EGO (30.26).
Also, the temporal filtering approach reduces the average
scenario duration from an average 14.38s on-screen time to
8.36s.
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Fig. 5. The figure shows two scenes in yellow and green from two different
scenarios that are compared. The scene distance is calculated by summing
the eight surrounding slot distances. First, the slot distances are calculated
in meters. Slots with only one TO are marked as vacant and slots where
neither of the two scenarios has a TO are marked as empty. In a second
step, the metric slot distances are normalized to a distance between 0 and
1, empty slots are set to 0, and vacant slots are set to a penalty factor of
1.5.

To be able to compare two scenarios, they must both
take place at the same location and their vehicle pool must
be of the same size. Hence, they are divided into scenario
buckets of comparable instances. With this scenario dataset,
a scenario distance measure that enables a clustering of
scenarios is derived in the following section.

III. A SCENARIO DISTANCE MEASURE

A central requirement for clustering scenarios is the defini-
tion of a distance measure that describes the similarity of two
scenarios. As previously mentioned, it is only meaningful to
calculate a distance on comparable scenarios, meaning with
the same number of vehicles in its pool and on the same
location. Therefore, a bucket with three vehicles including
the EGO on a two-lane highway is used for all results in the
following.

The derived distance measure samples multiple scenes in
fixed time intervals, calculates the scene distance for each
sample, then cumulates the scene distances, and normalizes
it by its length. In the first subsection, the calculation of the
scene distance utilizing the eight-vehicle-model is explained.
After that, scene distances are accumulated and normalized
by their length to get the scenario distance. Finally, results of
the derived distance measure are shown and future improve-
ments are discussed.

A. Scene Distance

The calculation of the scene distance is based on the slots
of the eight-vehicle-model, as shown in Figure 5. Herein, the
TOs in the proximity of the EGO are shown in yellow and
green for the current scenes of two scenarios to compare.
Similar to the spatial filter in the extraction, all surrounding
vehicles are first mapped to the eight slots around the EGO.

Whenever both scenarios have a TO in one slot the lon-
gitudinal distance between the vehicles’ geometrical centers
is measured and saved for that slot as referred by the orange
values in the figure. We define slots as empty (green ) when
neither scenario contains a TO in that slot and as vacant (red
v) when only one of both scenarios has a vehicle in that slot.

581

-20

£

=N

> 25

8

g -30

g . EGO S4 TO; Sz % TO2 Sy
g EGO Sp TO1 Sz ®TOs Sp

200 300 400 500

Longitudinal Position x[m]

Fig. 6. A scenario comparison plot enables visual inspection of the similarity
of a scenario pair. The trajectories of both scenarios are superimposed,
whereby crosses mark scenario A (S_4) and circles mark scenario B (Sp).
This example shows a scenario pair with one of the closest distances
in scenario bucket on a highD recording location with two lanes and
three vehicles in the pool. Note that the scaling of longitudinal to lateral
coordinates is 1:8 for better visibility.

We use the same parameterization as in the extraction
with 100m front relevancy threshold, 50m back relevancy
threshold, and 10m adjacent slot length which results in
a maximum slot lengths of 95m. All eight slots are now
normalized with this value so that all distances have a value
range of [0,1]. The slots marked as empty are set to 0
as there is no vehicle in both scenarios and therefore no
difference between them. For a vacant slot, a penalty of 1.5 is
introduced, which is even worse than the maximal difference.
This is motivated by the fact that removing or adding a
vehicle in one of these slots structurally changes the scenario.
Certainly, a cluster should only contain scenarios with similar
structure and hence such a dissimilarity is penalized.

In conclusion, every slot distance can have a value between
0 and 1.5 which sums up to a scene distance value range of
[0,12]. Yet, alone the distance of single scenes is not enough
for comparing scenarios. Thus, its extension to scenarios is
presented in the following.

B. Scenario Distance

The scenario distance is calculated by sampling scenes at
5H z, summing the scene distance values, and normalizing
the sum by the number of scenes. When comparing scenario
pairs of different length, longer scenario pairs do not auto-
matically receive a higher scenario distance score than shorter
ones. The advantage of the normalization is that the scenario
distances also have a value range of [0,12] which gives an
intuitive understanding of the distance score. For example, if
a scenario pair has a distance score under 1.0 it usually has
a similar structure because over the majority of the sampled
scenes there is no vacant slot which results in a slot distance
value of 1.5.

Finally, symmetry and non-negativity of the scenario dis-
tance are given which is a requirement for most linkage crite-
ria of hierarchical clustering as described in Subsection IV-A.
Exemplary results given through this parameterization follow.

C. Distance Measure Results

Every possible pair within one scenario bucket is cal-
culated and stored in a distance matrix. Results from the
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scenario distance measure are analyzed with the help of a
scenario comparison plot that shows the trajectories of both
scenarios superimposed in Figure 6. This example shows a
scenario where the EGO follows another TO5 on the left
lane and both drive by a TO; on the slower right lane. TOq
then changes to the slower right lane so that the EGO passes
TO;. This also shows that the extraction method successfully
includes cause (EGO follows TO, at a higher speed) and
effect (TO; merges to the right lane to let the EGO pass).
Based on this comparison plot, one can validate the similarity
of both scenarios as this example, with a distance value of
0.14, is in the 0.77 percentile of all scenario pairs in its
vehicle pool.

While the current implementation of the distance measure
works well for a proof of concept of scenario clustering, as
shown in Section IV, there are some possible improvements
to make for the future. The current implementation only
describes differences in the surrounding of the EGO and
does not reflect the EGO movement. Thus, scenarios with a
velocity difference across all TOs including the EGO and
scenarios that are shifted by lanes are considered similar.
Additionally, distance measures of scenario pairs with
different lengths are only calculated over the duration of
the shorter scenario. This works fine for minor duration
differences but gets more problematic as they get bigger.
One option to solve this would be to introduce a penalty for
duration differences or even to filter out very short scenarios.

Summarizing, the presented distance measure assigns low
values to scenario pairs whose similarity is confirmed visu-
ally. Downsides to the current implementation reveal sug-
gestions for improvements that are to be considered for an
unrestricted application. For this proof of concept, the current
implementation is sufficient to provide the foundation for a
clustering following in the next section.

IV. PROOF OF CONCEPT FOR SCENARIO CLUSTERING

This section introduces a proof of concept for the actual
clustering of scenarios utilizing the distance measure pre-
sented before. First, hierarchical agglomerative clustering is
applied to the pre-computed distance matrix of a scenario
bucket. After that, the resulting clusters are validated by
visual inspection. Finally, a concept is introduced to how
scenario clustering can be used in the future to estimate test
coverage for automated driving.

A. Application of Hierarchical Clustering

We choose a connectivity-based clustering approach as
it groups instances into clusters based on their relative
distances. Hierarchical agglomerative clustering follows a
bottom-up approach where all instances start in their own
cluster and are continuously merged following a linkage
criterion until a threshold is reached [15]. This procedure
is visualized through a dendrogram, as shown in Figure 7.

Experimenting with different linkage criteria and thresh-
olds reveals best results with complete-linkage also known
as Farthest Point Algorithm or Voor Hees Algorithm [16]
for the introduced distance measure. The exact mathematical
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Fig. 7. The dendrogram visualizes the bottom-up hierarchical clustering
process. Scenarios shown on the x-axis are continuously merged into clusters
according to an increasing linkage criterion depicted on the y-axis. The
merging stops at a determined threshold and the resulting clusters are formed,
depicted by the different colors. The example cluster that is depicted in
Figure 8 is shown in greater detail in the top right corner.
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Fig. 8. The cluster validation plot overlays all trajectories of one cluster to
ascertain that the clustered scenarios are similar. This example is the same
cluster as shown in Figure 7 and illustrates a scenario where the EGO drives
on the left lane behind another vehicle A that then merges in front of vehicle
B so that the EGO can pass.

procedure shall not be explained further at this point as
it strictly follows the implementation provided by scipy’s
hierarchical clustering module [17]. The threshold where
the merging stops and the final clusters are specified are
determined manually. An initial threshold is set at the biggest
gap in the dendrogram which is then fine-tuned by iteratively
decreasing the threshold until the validation plots of the
clusters showed homogeneous scenario types.

The results provided in Figure 7 show the clusters for the
previously mentioned bucket including three vehicles on a
two-lane road. A cluster in green is highlighted as it is used
for visual validation in the following.

B. Clustering Results and Validation

After creating clusters through the application and parame-
terization of the chosen clustering method we need to validate
that the resulting clusters indeed group scenario of similar
type. The validation is done by a qualitative inspection of the
plot shown in Figure 8 where a clear structure is recognized.
In fact, the scenario pair example shown earlier in Figure 6
is part of the cluster that is highlighted in the dendrogram in
Figure 7 and this validation plot. With these results, we prove
that the derived distance measure succeeds at describing the
similarity between scenarios and hierarchical agglomerative
clustering with complete-linkage can be successfully applied
to the extracted dataset.

When comparing the scenario buckets on the same location
but with bigger vehicle pool size the increased dimensional-
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ity, which requires exponentially more data, is evident. While
the average distance between all scenario pairs increases from
3.49 for three vehicles to 4.68 for five vehicles the average
relative cluster size decreases from 1.89% to 0.72%. This
means that there are more clusters, which are more spread
out, as dimensionality increases.

In summary, this proof of concept shows a possible solu-
tion for scenario clustering which can be used to determine
test coverage for automated driving as presented in the
following subsection.

C. Towards Estimation of Test Coverage

Finally, we propose that scenario clustering can be applied
to find a data-driven solution to the required test coverage for
autonomous driving. The idea is, that the test volume has to
be equal to all scenarios that are possible on a specific road.
This is done by continuously collecting scenario data until
an exit criterion is met.

We abstract the data collection into three (partly overlap-
ping) phases:

1) Discovery: New types of scenarios with the same struc-

ture are discovered and form a new cluster
2) Expansion: Variations of that scenario type are found
and expand the size of the cluster

3) Convergence: The density of clusters increase while no

new clusters are discovered and expansion stops

When the third phase has been reached, a density threshold
must be defined as an exit criterion.

However, using scenario clustering, one must test for
every location individually as global homologation can not
be given. Thus, locations are divided into reference and
validation locations. On a reference location, the collection
process will be done once until convergence. Every validation
location is linked to a reference location that is very similar
to the former with regards to road topology, speed limits, etc.
Therefore, only a subset of the data volume of the reference
location has to be tested on validation locations to ensure a
safe operation.

V. CONCLUSION AND FUTURE WORK

A scenario clustering approach for automated driving situ-
ations is proposed. It first creates a scenario dataset through
maneuver-based extraction with a spatiotemporal filter using
an eight-vehicle-model. After that, a novel scenario distance
measure is derived that describes the similarity of a scenario
pair based on their trajectories. Finally, a proof of concept
shows the application of hierarchical clustering with the
custom distance measure to the scenario dataset and resulting
clusters are validated.

The implementation is done on a proof of concept level.
For completeness, the approach still requires extensions to be
applicable without limitations. Among these is the extension
to urban environments, more maneuvers than just LCs, and
open shortcomings of the distance measure.

The distance measure can be used to find similar scenarios
in simulation and real-world testing for cross-verification
[8]. Most importantly, the clustering approach provides the

means for a data-driven as opposed to a statistical [4],
[18] estimation of required test-coverage as suggested in
Subsection IV-C. Altogether, the presented methodology is
a promising candidate to enable scenario-based testing for
homologation and assessment of automated driving.
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