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1 Introduction  

Water scarcity is a rising issue worldwide. In Germany, drier summers and dwindling water 

resources are forcing farmers to seek ways to reserve water and irrigate their crops more 

efficiently. The extreme summer of 2018 had severe consequences for the German farmers and 

concepts are needed to make sure harvests are not lost due to water stress in these extreme 

weather conditions. This study project, which is a collaboration between the DHI WASY GmbH 

and the Chair of Geoinformatics of the Technical University of Munich, aims to advance the 

automation of irrigation systems. The objective of the project was to solve distinct challenges that 

occur with the automated irrigation of crops.  

Monitoring of parameters, such as climate and soil conditions, water resources, and the state of 

the crops, is essential to create a fully automated system. A further measure are water balance 

model, which provide additional data and give farmers and developers the opportunity to 

simulate different scenarios. Gathering all these information raises the question how to receive, 

store and use this data effectively to optimize the water usage. Resilient and effective data 

workflows are crucial to develop optimization algorithms that are user-friendly, transferable and 

transparent. Different providers for sensor technologies and equipment have distinct ways of 

delivering their data, thus causing interoperability issues. Moreover, model results are usually 

delivered in formats that diverge greatly from sensor data, although it is crucial for validation, 

comparison, and visualization that model and sensor data are available in the same storage 

format. In the scope of this project, it is examined if data handling problems arising with different 

data sources can be resolved by transforming all available data to an open web standard.  

All parties agreed beforehand that the so-called SensorThings API standard by the Open 

Geospatial Consortium (OGC) deems suitable. The SensorThings API standard is designed for 

Internet of Things (IoT) applications. It is the goal of the DHI WASY GmbH to include models into 

an IoT environment by creating virtual sensor data from model outputs. Therefore, this project 

examines if this is possible within the framework of the SensorThings API.   

Special focus was also laid on the possibilities to store statistical data within the standard. Model 

data and sensor measurements are afflicted with uncertainty. It is important to store and visualize 

statistical data, because it impacts the decisions that the operator makes, and any future 

optimization algorithms must consider statistical parameters to ensure accuracy. 

A huge potential for optimization of irrigation and timeseries prediction lies within the scopes of 

machine learning algorithms [1]. Therefore, another objective was to create a data structure that 

enables other developers to import the stored data and convert it into a suitable format for 

further preprocessing and development of algorithms.  

 

 



An example workflow was built based on data of a pilot project for automated farming. The pilot 

project is delineated in the following chapter. The sensor data of the pilot fields (obtained from a 

climate station and soil sensors on-site) is acquired via the application programming interface 

(API) of the companies providing the technologies. Furthermore, an existing water balance model 

created with the MIKE-SHE software delivers simulated data on soil moisture content. All data 

was collected, converted, and implemented within the framework of the OGC SensorThingsAPI 

standard.  

Making an automated system transparent is important to gain trust of farmers. Moreover, hybrid 

system are desired where the operator can make decisions both based on experience and 

additional information or algorithms. The visualization of data is essential for the transparency of 

a system. Realtime applications require real-time visualization and continuous tracking of all 

parameters must be possible. For this purpose, a simple interactive map-centric web-application 

was created to visualize all given data. A further visualization tool used is Grafana.  Since Grafana 

supports the SensorThingsAPI standard, dashboards can be employed without further effort. 

These dashboards were then implemented within the interactive map. Moreover, a graphical user 

interface has been established to make the data workflow scripts accessible for everyday use. 

Another great issue of IoT smart irrigation systems is the remote location that leads to 

accessibility problems. As already mentioned, the sensors on-site are provided by external 

companies and have been connected to the cellular network. Therefore, the remote-control 

concept was designed only to control an on-site pump. Two setups that were chosen to be 

suitable were applied to achieve this. The first technology is a GSM module controlled by short 

message service (SMS) coupled to an API that enables the user to send the messages via http 

request. The second approach is based on a LoRa network. With the help of TheThingsNetwork 

API, a microcontroller with an implemented LoRa – chip can be controlled via HTTP request. Due 

to the remote location of the pilot field, it was necessary to setup a gateway. A more detailed 

description of the hardware is given in chapter 3.2.  

In the first chapter, I will present the project Irrimode, which is the foundation of this study 

project. Following this, a brief overview of related literature will be given. The subsequent chapter 

delineates the theory, software, and tools that were used within this work, before I outline the 

implementation of the data workflow and the remote control.  

 

 

 

 

  



1 Project Irrimode 

The core competence of the DHI WASY GmbH lies in the digitization, modelling and visualization 

of water systems. A collaborated project between the DHI WASY GmbH and various partners has 

been launched to make irrigation in agriculture more efficient and transparent. Detailed 

information about this so-called project Irrimode can be found on the corresponding website [2]. 

Operational partners are Gut Mennewitz GmbH, Ingenieurbüro Irriproject Dirk Borsdorff and 

AGRO-SAT Consulting GmbH and further associated partners are the DLG e.V. Fachzentrum 

Landwirtschaft, Hochschule Anhalt FB I – Landwirtschaft, Ökotrophologie und 

Landschaftsentwicklung, and Obsthof Am Süßen See GmbH. The project, which is state-aided by 

the state Sachsen-Anhalt and the European Union fund ELER, aims to digitize and optimize the 

drop irrigation system of a pilot crop field in Bernburg, Germany [1]. To achieve this, an integrated 

approach was applied, which comprises different components such as a “MIKE-SHE” model, 

weather data and real-time sensor data. The system scheme is depicted in Figure 1. A solar pump, 

which is controlled by a control unit, pumps water from the intermediate storage tank to the 

fields, a process, which is controllable by valves.  

An on-site climate station exists, provided by Pessl Instruments [4]. Sensor readings and 

estimated properties are available online and can be requested through an API. Available 

parameters are air temperature, solar radiation, soil temperature, solar panel voltage, 

precipitation, wind speed, leaf wetness, relative humidity, dew point, reference crop 

evapotranspiration (ETo) and vapor-pressure deficit.  

Additionally, datalogger are put into place to obtain real-time data on the water content, salinity 

and soil temperature. Every datalogger consists of various sensors that measure these three 

parameters in different depths. Three sensors are employed per ten-centimeter interval starting 

from 5 cm and finishing at 85 cm below the surface. As in the case of the Pessl Instruments climate 

station, the data is uploaded to a proprietary server of the vendor Sentek Technologies and can 

be requested through an API.  

Furthermore, the MIKE-SHE software offers water balance modelling of the crop fields. A model 

has been created providing output information on current transpiration, evaporation, and thus 

water content. The model is meant to be used to optimize the irrigation and to simulate potential 

scenarios. [1]  

 

 



 

Figure 1: System scheme of the Irrimode project [1].  

 

2 Theoretical Background 

2.1 Software 

2.1.1 Modeling Software 

The MIKE software products are powered by the company DHI. One of the products is the MIKE-

SHE software, which is used for water balance modeling and simulation of surface-groundwater 

interactions. It integrates all significant processes at the catchment scale, such as 

evapotranspiration, infiltration, overland flow, unsaturated flow, groundwater flow and channel 

flow [5]. Different approaches both physics-based and stochastic/data-driven are provided for 

modeling of the individual processes. MIKE-SHE models can hence be considered a holistic 

approach to implement the whole hydrological cycle with its influences on the crop field.  

With the help of this software, it is possible to forecast soil water content and predict various 

scenarios. The numerical calculations are grid-based, and several layers can be defined to 

simulate three-dimensional water flow. 

All MIKE products are using the proprietary Data File System (DFS) format to handle spatial 

timeseries data. DFS is a binary format that can be split into three parts: A header section 

comprises general information such as start time, geographic map projection, etc. The static 

section saves time-independent static data for certain items. An item could be, for example, a 

parameter such as soil moisture content. The section that takes the most storage space is the 

dynamic data section, which contains time-dependent data. The Data File System format can be 

sub-divided into spatial-dimension-dependent sub-formats. In the case of dfs0 - files, which 



describe files with scalar values, one can also talk about model-based virtual sensor timeseries. 

[6] 

The MIKE-SHE model data is an example of how models can be integrated into an IoT environment 

in form of virtual sensor data. A virtual sensor is defined as a type of software using mathematical 

models to estimate product properties or process conditions based on physical observations. This 

is necessary, for example, when a physical sensor is too slow, inaccurate, too expensive, or when 

the sensor cannot be placed at the location where measurements are needed. In this case, a 

virtual sensor can be “deployed”, which means the measurements of this location are estimated 

based on the physical measurements that are delivered by the surrounding sensors. In our case, 

the virtual sensor data is not based on physical sensor measurements but timeseries are 

estimated with a vast amount of input data and with the help of the MIKE-SHE software. 

 

2.1.2 Programming Language and Integrated Development Environments (IDE) 

Python 3.7 was chosen as the programming language for this project, because it offers built-in 

data wrangling features and can be used for all kind of sectors, such as web, software, and GUI 

development, scientific and numeric calculations and for system administration [7]. This makes it 

suitable not only for the data transformation but also for development of algorithms, as well as 

for visualization and for the development of a graphical user interface. Some of the libraries that 

enable this development are described below.  

Two IDEs were used for developing the scripts: Jupyter Notebook and PyCharm. Project Jupyter 

was started in 2014 on basis of the IPython Project. Jupyter products are used “to develop open-

source software, open-standards, and services for interactive computing across dozens of 

programming languages” [8]. One application is the Jupyter Notebook, which is a web-based 

computational environment that extends the traditional console-based approach by embedding 

developing, documenting, and execution of code into one. Jupyter Notebook documents are 

based on JSON and consist of ordered lists of input and output cells that can comprise code, 

markdown text, mathematics, or plots. Various programming languages are supported by Jupyter. 

[9] 

The second IDE that was used is PyCharm Community Edition. PyCharm is an integrated 

development environment (IDE) released by JetBrains in 2010. It offers intelligent coding 

assistance, built-in developer tools and supports Python web development frameworks [10]. 

Hence in my opinion, PyCharm is more suitable for the implementation of a software library and 

was used accordingly, whereas the development of the code was done in Jupyter Notebook. 

For the programming of a microcontroller the Arduino IDE was used. Arduino IDE is a cross-

platform with a code editor, and it offers a simple way to compile and upload programs to an 

Arduino board. An Arduino IDE program is called a sketch. Features of the program are the sketch 

editing tools, library manager, and serial monitor. The programming languages C and C++ are both 

supported by Arduino IDE.  



2.1.3 Libraries 

2.1.3.1 NumPy  

NumPy is a powerful package for scientific computing with Python. The most important features 

that come with the package are a N-dimensional array object, sophisticated functions, and tools 

for integration of C/C++ and Fortran code [11]. Further it enables linear algebra, Fourier 

transformations, and random number calculations [11]. NumPy is also useful for storing multi-

dimensional generic data [11]. This is the reason why it was used for handling the model data.  

 

2.1.3.2 Pandas  

With the Pandas library, Python developers have a data analysis tool and an integrated high-

performances data structure [12]. Some features that are often used within this project are, for 

example, the reading and writing of data between in-memory data structures and CSV, text files, 

Microsoft Excel, or SQL databases, merging and joining of data sets, flexible reshaping and 

pivoting of data sets, and the intelligent data alignment [12]. The library offers a fast and efficient 

DataFrame object for data wrangling with embedded indexing [12]. Other libraries are built on 

top of Pandas including statistical, machine learning, and visualization libraries [13]. This makes 

the Pandas DataFrame object a popular starting point for development of data tools [13].  

 

2.1.3.3 GeoPandas 

In the scope of this project, geospatial data plays a major role. Hence, the GeoPandas library was 

used to make the handling of geospatial data easier. GeoPandas is an extension of the Pandas 

library. It allows spatial operations on geometric types by extending the datatypes used by 

Pandas. The geometric operations are done by another library called shapely. The Pandas 

DataFrame object is replaced by the GeoDataFrame object of GeoPandas. [14] 

 

2.1.3.4 Requests 

Requests is a library for using the Hypertext Transfer Protocol (HTTP) 1.1. This package embeds 

the urllib3 library and replaces the urllib2 default module of python. It offers an easy way to 

communicate with HTTP and enables integration of web services into Python. [15] 

 

  



2.1.3.5 Pickle 

Pickling is the process of converting a python object hierarchy into a byte stream. The pickle 

module therefore establishes a binary protocol for serializing and de-serializing a Python object 

structure. A pickled object can be saved as local file, which can then be reloaded back into Python. 

This makes the Pickle module a tool for storing all common Python datatypes as local Pickle files. 

[16] 

 

2.1.3.6 Leaflet Visualization Tool  

Leaflet is an open-source source library for creating interactive maps. It is based on JavaScript and 

has most functions inherited that are needed by developers  to build the map [17]. Since in the 

scope of this project, not JavaScript but the Python language will be used, the folium library is of 

importance. This library implements the leaflet.js library into a python environment plus adds 

some data wrangling tools [18]. 

 

2.1.4 Docker 

Docker is the leading company in the containerization market [19]. Containers are used to 

package  everything necessary to run an application, such as code, runtime, system tools, system 

libraries and settings [20]. In a way, containers act like virtual machines but there are distinctions: 

containers run on the hosts operating system, whereas a virtual machine (VM) includes a full copy 

of an operating system. Thus, virtual machines take up a lot more storage space [8, 9]. The 

technology Docker put forward was designed to facilitate creation, shipment, deployment and 

running of applications by packaging software applications into standardized units [20]. A 

standardized unit of software is called a docker container. With this, Docker established an 

industry standard for containers that are lightweight and secure [20].  

The Docker Engine is the interface between containers and resources. The engine was originally 

created for Linux operating systems but thanks to virtualization technologies it is now also 

possible to use it on Windows or Mac OS [22]. Since containers are fairly light-weight and start up 

is fast, docker containers are becoming popular in cloud applications. The automated scaling of 

applications is made easier [22]. 

For the scope of this study project, it is important to understand some distinct components of 

docker. An overview of the structure is given in Figure 2. First, one must differentiate between 

images and containers. Images pose read-only, immutable files that contain all necessary files to 

run a container [23]. The relation between an image and a container can be compared to the 

relation of a class to an object [23]. Once run, the docker image becomes the docker container, if 

the Docker Engine is used, which means the application defined in the image is running within 

the container [20]. As shown in Figure 2, the required information to create a specific image are 

stored in a local Dockerfile. Docker containers and images on the other side are stored within a 



local Docker instance. However, Docker images can be saved as archive file with tar, which is a 

software for collecting many files into one [24]. This enables the user to store local backup files 

that can be loaded back into an image. Another instance of the data structure of Docker are 

volumes. They are necessary to manage application data and are useful for backups and exchange 

of data between docker containers [25]. The storage of application data is described in detail on 

the documentation page of docker [25]. 

 

Figure 2: Overview of Docker structure, from [26]. 

 

2.1.5 Grafana 

Grafana is an open-source observability platform that supports over 30 data sources. Data is 

queried from the source and visualized in form of dynamic dashboards. Grafana also comprises 

alerting and ad-hoc filtering features. Many plugins for distinct ways of visualization are available 

for Grafana, such as the “DarkSky” weather forecast plugin, “Heatmaps”, “Worldmap Panel”, 

“GeoLoop”, “Plotly”, ”Trend Box”, and many more. Furthermore, Grafana supports various data 

sources. Most importantly for this project, Grafana provides a plugin for the SensorThings API as 

data source. This makes Grafana an example of a service that can be used as plug-and-play 

application when standards are put into place. [27] 



2.2 Standards 

2.2.1 Open Geospatial Consortium (OGC) 

The Open Geospatial Consortium is an organization that comprises more than 530 businesses, 

government agencies, research organizations and universities [14]. It is the objective of the 

consortium to make geospatial information and services fair, accessible, interoperable, and 

reusable (FAIR).  To make this happen, the OGC released various royalty-free, publicly available, 

open standards, such as, for example, Web Map Service (WMS), Geography Markup Language 

(GML), KML, and Open Modelling interface (OpenMI) [28]. Existing standards for the water 

industry are the Water Modeling Language (WaterML) and the Groundwater Modeling Language 

(GroundwaterML) [14, 15].  

 

2.2.2 OGC Sensor Web Enablement (SWE) 

The OGC Sensor Web Enablement describes a suite of standards that were developed to enable 

discovery, access, tasking, as well as eventing and alerting of sensor resources in a standardized 

way [31]. It includes the following standards: Sensor Modeling Language (SensorML), Observation 

and Measurements (O&M), Sensor Observation Service (SOS), and the Sensor Things API [32]. The 

SensorML describes sensors and measurement processes, the O&M handles real-time sensor 

observations, whereas the SOS and Sensor Things API are standards for the retrieval of sensor 

descriptions and observations, hence, represent web service interface standards. The standard 

used in this project for accessing and storing sensor and model data is the Sensor Things API, 

which is explained in the following chapter.   

 

2.2.3 OGC Sensor Things API 

The Sensor Things API is the latest standard of the SWE suite and updates the older xml encoded 

standards, which were complex in use [33]. The standard offers a web-based approach to connect 

IoT devices, data and applications in an open, geospatial, and unified way [34]. The Sensor Things 

API is based on the REST principles, JSON encoding, and can make use of MQTT and OASIS Open 

Data protocol and URL conventions [34]. MQTT is a machine-to-machine protocol specialized for 

IoT applications, characterized by its small size, low power consumption, and small data packets 

[35]. The OASIS Open Data protocol builds on HTTP and JSON, follows the REST principle, and uses 

Uniform Resource Identifiers (URI) to address and access resources [36]. Various queries are 

supported such as sorting, pagination, filtering, selecting, and expanding. The filtering functions 

implemented in the standard enable users to make specific requests. The functions embed logical, 

mathematical, and comparison operators, plus string, mathematical, geospatial, and date and 

time functions [33]. 

There are two functionalities provided in the standard: sensing and tasking [7]. In this context, 

sensing describes how to manage and retrieve observation and metadata IoT sensor systems, 



whereas the tasking part is about parameterizing sensors and actuators [7]. While the tasking part 

is not relevant for this work, the sensing part is the base of the data storage within the workflow 

concept. 

Sensor Things API comprises various entities: “Things, Locations, Sensors, ObservedProperties, 

Historical Locations, Datastream, Observation and FeatureOfInterest”. Their individual attributes 

and the relations between the entities are depicted in Figure 3. A short description of the entities 

is necessary to grasp the data structure: 

- Thing: Following the ITU Telecummunication Standardization Sectors definition, a Thing is 

“an object of the physical world or the information world (virtual things), which is capable 

of being identified and integrated into communication networks” [37]. 

- Location/FeatureOfInterest: The Location entity, as defined in the OGC SensorThings API 

standard, is the last known location of one or multiple Things. The entity FeatureOfInterest 

is often identical to the location particularly in in-situ applications. It has a direct one-to-

one relation to the observation entity. The observation result is allocated to a 

phenomenon, which is a property of the FeatureOfInterest. However, in remote sensing 

applications, the ultimate location of the Thing may not be identical to the 

FeatureOfInterest but rather describe a remotely sensed geographical area or volume.  

[34] 

- Historical Location: This entity describes location of last known and previous locations of 

the Thing. [34] 

- Datastream: Data produced by the same Sensor and the same ObservedProperties are 

grouped by the Datastream entity. [34] 

- Sensor: A Sensor is defined as an instrument that observes either a property or a 

phenomenon that aims to produce an estimate of the value of the property. [14, 16] 

- ObservedProperty: An ObservedProperty describes an Observation phenomenon. [34] 

- Observation: An Observation is the measurement or otherwise determination of a 

property's value [14, 16].  

 



 

Figure 3: Sensing entities of the OGC SensorThingsAPI standard [34]. 

 

The Sensor Things API standard additionally offers a MultiDatastream and a data array extension 

that supports complex result types in form of array data [34]. The UML data model for the 

extensions is shown in Figure 4. Its structure is like the original, but the Datastream entity is 

replaced by the MultiDatastream. In contrary to the original Datastream entity, the 

MultiDatastream is based on arrays, which means that multiple ObservedProperties are linked to 

one MultiDatastream. Furthermore, the Observation result is now of the type JSON-Array. This 

offers the opportunity to store multiple values in one result array, which is particularly interesting 

for the storage of multi-dimensional raster data. With this extension, different approaches are 

possible to store the model simulation results.  

There are several free and open source implementations of the Sensor Things API, such as Eclipse 

Whiskers, GOST, FROST, and Mozilla STA [22 - 25]. 

 



 

Figure 4: MultiDatastream Extension Entities. [34] 

 

2.2.4 Quality Modeling Language/ISO 19157 

The resultQuality attribute of the entity Observation in the Sensor Things API standard requires a 

Data Quality Element as type. A Data Quality Element is defined in the ISO 19157 [43]. In this 

standard, it is clarified how to describe the quality of geographic data. The ISO 19157 defines the 

components needed for the description of data quality, the procedures for evaluating the quality, 

the specifying of components and content structures of a register for data quality measures, and 

establishment of principles for reporting data quality [43].  

The Data Quality Element is an abstract object that will be represented by one of the different 

types, depicted in Figure 5. In this work, the resultQuality attribute is used to store statistical data. 

For the uncertainty of model output data, for example, the DQ_QuantitativeAttributeAccuracy 

would be of interest.  



 

Figure 5: Data Quality Element Types. [44] 

 

The Quality Modeling Language (QualityML) is a profile of the ISO 19157 but extends it by defining 

semantics and vocabularies for the quality concept [45]. It widely uses expressions from the 

Uncertainty Modeling Language (UncertML) [46]. The UncertML is based on a discussion paper of 

the OGC from 2009 [47]. It is a conceptional model that encapsulates probabilistic uncertainties 

[46]. The UncertML never became an official OGC standard and the UncertML website was shut 

down in 2016 [45]. However, the QualityML was instituted, which extends the uncertainty 

concept by alternative metrics [45].  

 

 

 

 

 

 

  



2.2.5 Fraunhofer Open Source SensorThings (FROST) Server 

As mentioned, there are a multiple open-source server that implement the Sensor Things API 

standard. Since our department already had experiences with the Fraunhofer Open Source 

SensorThings (FROST) server and it is the first implementation that includes all the extensions of 

the OGC Sensor Things API standard, this server was chosen for the storage of the sensor and 

model data. FROST is an open-source server application based on JavaEE, PostgreSQL, and 

PostGIS. The server is designed to interconnect IOT devices, data, and applications over the 

Internet, thus, enabling IOT systems [48]. The FROST server is characterized by its scalability, 

enabling systems both on small scale (e.g., Raspberry PI) and local servers, as well as for cloud 

application [33]. Furthermore, when using the FROST server, the user can be sure that the data is 

stored truly type-conserving. Moreover, type-specific ordering plus type-safe filtering are possible 

[33]. For attributes whose types are not specifically defined within the Sensor Things API standard 

(of type “any”) the FROST server can store any type that is valid in JSON [33]. There are many 

ways to set up the FROST server. It can either be installed either separately for HTTP or MQTT, or 

all-in-one. The deployment can be done with the help of Docker.  

 

2.3 Connectivity 

2.3.1 Global System for Mobile Communication (GSM)  

In the late 1980s caused by the switch from national regulation of networks to privatization, new 

ways of telecommunication were developed. The Global System for Mobile Communication 

(GSM) is one of the standards that resulted from this development. GSM describes the protocols 

used in the second generation (2G) cellular networks. Most 2G networks operate in the bands of 

900 MHz or 1800 MHz. [39, 40] 

 

2.3.1.1 Messagebird API 

The service company Messagebird provides an API to send, receive, and control Short Message 

Service (SMS), Voice and Whatsapp messages. This makes it possible to integrate Short Message 

Services messages into the remote-control system and automatize the communication between 

user and a receiver. [51] 

 

2.3.2 Low Power Wide Area Network (LPWAN) 

In times of rapid increase of IoT devices, long range networks have become more popular. 

Different technologies are available for the long-range radio communication including the three 

leading ones Sigfox, LoRa and NB-IoT. A recent comparative study on these technologies 

regarding their advantages, quality of service, network coverage, and cost has been conducted 

by Kais Mekki et. al [52]. LPWANs are characterized by their low power-consumption, low costs, 



low data rate and long range. Low power wide area networks are therefore ideal for IoT 

applications, which do not require high data rates.   

 

2.3.2.1 Sigfox 

Sigfox is a commercial network operator using unlicenced ISM bands. Their technology provides 

bidirectional data transmission, where the downlink only occurs after an uplink signal [52]. The 

range of coverage is very high whereas, on the downside, the maximum messages per day are 

restricted to 140 [52]. Sigfox implemented their own base stations equipped with cognitive 

software-defined radios. The user must pay per device and amount of messages to make use of 

the base stations [53]. The maximum data rate is 100 bps with a payload length of maximum 12 

bytes (UL)/ 8 bytes (DL) [52].  

 

2.3.2.2 Narrow Band IoT (NB-IoT) 

The Narrow Band IoT is a special LPWAN technology because it can coexist with GSM and LTE 

under licensed frequency bands. Three operation modes are possible: stand-alone operation, 

guard-band operation (utilization of unused resource blocks within the LTE carriers guard band), 

and in-band operation (utilization of resource blocks within LTE carrier).[52]   

The protocol is built on the LTE protocol but has reduced functionalities to decrease the data rate. 

In summary, the NB-IoT is based on the LTE network infrastructure but has been adopted to the 

characteristics required for IoT applications. The use of the network is not free, coverage is lower 

compared to LoRa and Sigfox and energy consumption is generally higher due to QoS handling 

and synchronous communication for uplink and downlink [52]. 

 

2.3.2.3 LoRa/LoRaWAN 

LoRa is a physical layer technology, which also uses unlicensed ISM bands to implement the 

network. It provides different classes (A, B, C) which are based on different uplink/downlink 

schemes [54]. A standardized protocol called LoRaWAN is applied for the data transfer using LoRa 

modulation. LoRa modulation is built on Chirp spread-spectrum (CSS) technology, which uses 

chirp signals for communication [55]. The LoRaWAN protocol makes use of different spreading 

factors. This factor defines the total number of symbols (coding information bits), which is 

calculated by using the spreading factor as exponent with base 2 [55]. Hence, the spreading factor 

is used to accustom the data rate to range. The data rate further depends on the bandwidth. A 

higher data rate comes at the price of lower range and vice versa [52]. 

Depending on the region, LoRaWAN can use bandwidths that vary between 125 kHz, 250 kHz and 

500 kHz. The general range is lower than what the Sigfox base stations provide. The maximum 

payload length for each message is 243 bytes. [56] 



The European LoRaWAN network operates in a frequency band between 863 MHz and 870 MHz 

[57]. The frequency regulations of Europe specify so-called duty-cycles, which is a fraction of one 

period when a system or signal is active [58]. A period is defined as the time it takes for a signal 

to switch on and off again [58]. Section 7.2.3 of the ETSI EN300:220 standard defines specific sub-

bands and their duty cycles for Europe: [59] 

- g (863.0 – 868.0 MHz): 1% 

- g1 (868.0 – 868.6 MHz): 1% 

- g2 (868.7 – 869.2 MHz): 0.1% 

- g3 (869.4 – 869.65 MHz): 10% 

- g4 (869.7 – 870.0 MHz): 1% 

These specifications apply to every device, which transmits on one of these frequencies. Most of 

the LoRaWAN channels show a duty-cycle of 1% or lower. The network needs to be smart when 

scheduling messages on gateways. However, developers also must consider these limitations 

when designing a LoRaWAN based system by reducing their payload size, transmission intervals 

and avoiding downlink messages. [57] 

LoRaWAN uses identifiers to know which specific device, application, or gateway is 

communicating: there are the DevEUI (unique; 64 bit end-device identifier), the DevAddr (non-

unique; 32 bit device address), the AppEUI (unique; 64 bit application identifier), and the 

GatewayEUI (unique; 64 bit gateway identifier). [60] 

Some microcontroller boards support the LoRa network as they have a respective communication 

interface implemented. Some boards have LoRa transceiver embedded (e.g., Adafruit Feather M0 

RFM95 Lora) but the protocol must be implemented manually. Certain others have a LoRaWAN 

chip, which implements the LoRaWAN protocol (e.g., Seeeduino LoRaWAN) so that the developer 

can use the implemented protocol via a library.  

 

2.3.2.4 The Things Network (TTN) 

The Things Network (TTN) is a community network that operates LoRa networks world-wide, free 

of charge, as part of the LoRa Alliance [61]. The do not only maintain a LoRa network, but also 

provide a network server for public use. Because it is a community-based initiative, anyone can 

set up and run a gateway using TTN. At the moment, there are about 10 000 gateways available 

in 147 countries [61]. The local TTN communities work on the establishment and maintenance of 

the network.  

To make use of the LoRa gateways, each device or node must be registered with TTN. A free user 

account must be created, and a new application must be set up to add devices under the 

respective application. For every registered device the individual history of sent and received data 

packages can be observed online. [61] 



The preferred option to connect with TTN is the Over-the-Air Activation (OTAA). Devices perform 

a network connection process during which a dynamic DevAddr is allocated and security keys are 

negotiated with the system. This is the most secure way to establish a connection [60] 

Since the TTN provides an open network, it follows a fair access policy that limits the data every 

node can send and receive per day. The uplink airtime is restricted to 30 seconds, whereas the 

downlink messages are limited to 10 messages per node per 24 hours. [62] 

Crucial aspects for fulfilling the duty-cycle regulations and the TTN policy are airtime and range, 

both of which depend on transmission interval, payload, bandwidth, spreading factor, and 

confirmation messages.  

As elaborates before, the data rate depends on the bandwidth and the spreading factor. The 

higher the data rate the shorter the airtime and, hence, the lower the energy consumption due 

to reduced active time. Thus, if one increases the bandwidth or reduces the spreading factor, the 

payload will be transmitted in lower air time. However, the range will be diminished consequently 

because the gateway would be more sensitive to noise. The TTN website provides an airtime 

calculator for users to test their data transmissions [63]. A good starting point is a spreading factor 

of 7 with a bandwidth of 125 (SF7BW125), which has the least airtime and energy consumption, 

and if the range is not enough, adapt it respectively. [64]  

The LoRaWAN protocol has a feature for the adaptation of the data rate. When the adaptive data 

rate (ADR) is enabled, the network will automatically optimize the data rate. The regional 

parameters define where it makes sense to activate this feature [65].  

The payload generally must be as low as possible to keep airtime and energy consumption low. 

Therefore, it makes sense to use binary encoding. A suitable payload format is the Cayenne 

Protocol, which is discussed in the following section. [64] 

One further factor for energy efficiency is the transmission power. With a reduced transmission 

power, the range will be reduced but the device consumes less energy. In general, the time 

interval between messages should at least a few minutes to ensure a low energy consumption 

and fulfillment of regulations and the TTN policy. [64] 

All these rules apply to the uplink. However, downlinks are different, because during the time 

when the gateway sends a downlink, all channels are blocked for uplink signals. Thus, it is 

generally recommended not to use downlinks, or minimize its use and payloads. Furthermore, 

confirmation uplinks are to be avoided, if they are not necessary. The data rate of the downlink 

is based on the uplink. Hence, if the uplink airtime is low the downlink airtime will be low, too. 

[64] 

 

  



2.3.2.5 Cayenne Protocol 

The Cayenne Low Power Payload (LPP) is used by “myDevices.com” to implement LoRaWAN 

nodes into their Cayenne platform. It is a format which offers a simple and convenient way for 

LPWAN networks such as LoRaWAN to send information. The Cayenne LPP complies with the 

limitation of the payload size by structuring the payload format into channels, types, and values. 

This allows the device to send various sensor information at once. The data types are based on 

the IPSO Alliance Smart Objects Guidelines [66]. The data types are specified properties, such as 

temperature, humidity, etc. According to the data type, the data size will vary. By using the 

Cayenne Protocol, the payload can be as low as 11 bytes. The payload that is send is encoded in 

hexadecimal. [67]  

 

3 Implementation 

The complete software library, all scripts and Jupyter notebooks are available as GitHub 

repository [68]. The structure and scripts are examined in the following chapter.  

 

3.1 Data Workflow 

The main goal of this study project was to develop a data workflow that enables storage of data 

from different data sources (including model data) in a standardized way. Furthermore, it should 

facilitate visualization, and provide an interface for further preprocessing and optimization 

algorithms. The result data workflow is illustrated in Figure 6. First, an overview of the whole 

workflow is given before the individual parts are elaborated in more detail.  

The sensor data is requested from the corresponding API of the providers. The data is converted 

and split up into metadata and timeseries for further transfer. Before the data is deployed in the 

Sensor Things API standard, it is saved in excel (metadata) and csv-files (timeseries). These files 

represent an interface for users of the data workflow. One can manually adapt parameters and 

validate the data before it is forwarded to the Sensor Things API standard. The request and 

conversion of the timeseries has been done for the two providers Pessl Instruments and Sentek 

Technologies. However, other sensor providers store their data in other formats. Hence, this pre-

interface, consisting of excel and csv-files, will be the target format for other sensor data that may 

be requested in the future.  

The model data (dfs3 format) of a MIKE-SHE model, which simulated moisture content for several 

months in 2018, is imported, converted to a NumPy array and split up for different storage 

options. This is one example for how model data can be put into a programming environment.  

As discussed, the Sensor Things API Web Interface Service standard was chosen to store and 

interact with the sensor and model data. As examined in chapter 2.2.5, the FROST Server 

implements the desired standard. Hence, this server implementation was chosen as the base for 



the storage of the sensor and model data. The interaction with the server is managed by the 

metadata excel sheets. 

Once the timeseries data is deployed on the server, it can be requested and is automatically 

converted to a Pandas DataFrame object. This format is ideal, since Pandas is an essential tool for 

further preprocessing and development of machine learning algorithms. 

Visualization was achieved by using Grafana and an interactive Leaflet map. The Leaflet map is 

based on the csv-files, shapefiles, model data, and weather forecast data of the German 

Meteorological Service (DWD). In addition to this, Grafana was set up to create interactive 

dashboards on base of the FROST Servers standardized data. These dashboards were then 

embedded as iframes into the Leaflet map. 

 



 

Figure 6: Data workflow as flowchart. BLUE: data transformation; RED: data storage; GREEN: visualization, YELLOW: further data 
use.  

  



3.1.1 Access to Third-Party API 

The data transformation from the provider APIs to the OGC Sensor Things API was conducted as 

pilot example on how to standardize sensor data from different data sources. Both Pessl 

Instruments and Sentek Technologies do not provide standardized data yet. The API of Sentek 

Technologies provides xml and json formatted data, whereas the Pessl Instrument API supplies 

data in json format. Thus, with these data sources two common formats are covered. Therefore, 

the transformation scripts can be adjusted in the future for other data sources with the same 

format.  

The file containing all functions required for the transformation of sensor, is the data_import.py 

file. The import codes are based on the excel sheets created for each sensor provider 

(“spreadsheet_sentek.xlsx” and “spreadsheet_pessl.xlsx”), which define the local directory paths 

of all sensor csv- and svg-files. For future use, these excel sheets need to be adjusted to the new 

sensor names.  

At first, when there are no files existing, the “create_csv_sentek” function will create new csv-

files for all Sentek Technologies sensors and will update them to the last known timestamp.  

A corresponding function for Pessl Instruments sensors is “create_csv_pessl”. However, for the 

Pessl Instruments sensors this will only save one dataset that is received by making one request. 

To update the timeseries within the csv-file to the latest known timestamp, the function 

“update_csv_pessl” must be called subsequent to creating the csv-files. If the “create_csv_pessl” 

function is run, even though there are already files existing with the same names defined in the 

“spreadsheet_pessl.xlsx”, they will be overwritten. Both the update function of both Pessl and 

the update function of Sentek Sensors read out the last values from the existing csv-files to find 

the last timestep they must make a request from.  

The metadata, such as sensor names, are exported to another excel sheet named 

“parameters.xlsx” for the subsequent POST request to FROST that is elaborated in the following 

chapter about storage.  

The model data was exported to Python with the help of a tool, developed internally by the DHI 

Group. The tool is called “pydhi” and enables imports of Data File System - formatted result data 

from MIKE-SHE models. After import, the data is converted to a NumPy array for further usage 

and to embed it into the leaflet map. 

Since the model data is a local resource and incorporates complex raster data in Data File System 

format, different storage technique have been examined to find a suitable solution. The ideal case 

for further use within and between models would be the storage of the model output as raster 

data. This possibility was examined, but it was discovered that the Sensor Things API is not 

suitable for this purpose, which will be further discussed in chapter 4.1.1. For visualization and 

comparison to sensor data, this approach would not be an ideal fit in any case. Therefore, 

different approaches have been developed.  



Storing the data as virtual sensor timeseries in form of grid points with coordinates and one value, 

has been proven to be a good storage strategy. This way, it can be visualized as graph and 

compared to the measured sensor data. Thus, this approach was chosen as first option. However, 

this only allows for storage of two spatial dimensions. A way to solve this is to store each node 

individually with information on its depth. Arrays that contain additional data on depth or further 

parameters are desired for multidimensional plots.  

Fortunately, the FROST server offers the MultiDatastream extension defined in the scope of the 

Sensor Things API standard (see chapter 2.2.3). This extension enables an array-based storage 

with further information. Within the scope of the project, this was tested by storing arrays with 

additional data on depth. The MultiDatastream extension is an essential instance of the Sensor 

Things API that makes it possible to store distributed model data. These two approaches enable 

an integration of model data into an IoT environment.  

As depicted in Figure 1, there is an alternative for the data handling of the Pessl Instrument data, 

which sends POST requests directly to the FROST servers Observation entity without saving it as 

csv-file. This is done by the function “direct_post_pessl”, which requests data as do the functions 

described before, but converts it to JSON instead, which is required for the FROST server. Even 

though, in this way, the computational time for import, conversion, and export of timeseries to 

FROST is reduced, it is generally important to have an interface to manage the data exchange 

between the FROST Server and data sources. Therefore, it is recommended to always update the 

csv-files with the identical data, when a POST request is made. If this is not the case, information 

may be lost, or duplicates may occur.  

In the next chapter, it will be further elaborated how the Sensor Things API data model is 

implemented. 

 



3.1.2 Data Storage and the SensorThings API 

 

Figure 7: Data workflow FROST Server Communication. ORANGE: functions; RED: data storage; GREY: POST request functions of 
different entities. 



The aim of the project was to standardize model and sensor data and store it efficiently. As 

already mentioned, the Fraunhofer Open Source Sensor Things Server was used to achieve this 

goal. This server implements the OGC Sensor Things API standard. Communication scripts have 

been implemented that are based on HTTP requests and JSON, as defined in the Sensor Things 

API standard (see chapter 2.2.5). The file containing the functions is the “FROST.py”. The workflow 

with all functions is depicted in Figure 7. 

The upper part of the figure deals with the POST requests of the sensor timeseries that are saved 

in the csv-files and their corresponding metadata. Every entity of the Sensor Things API standard 

has its own function to upload the data to the server. The metadata and the links to the csv-files 

are managed by the excel sheet parameters.xlsx. The crucial factor is the IDs of the entities, which 

need to be accurate in the excel sheet for the POST request to work: 

As shown in Figure 3, the Datastream has exactly one Thing, one Sensor, and one 

ObservedProperties.  The IDs of these related entities must be defined in the JSON object. Hence, 

the entities Things, Sensors, and ObservedProperties must exist before the respective Datastream 

entity can be created. Consequently, for the Observation entity POST request to be successful, 

the corresponding Datastream entity must exist when the POST request is sent.  

After each post, the IDs are automatically filled into the respective column of the corresponding 

sheet in the parameter.xlsx file. However, the IDs of the entity’s Sensors, Things, and 

ObservedProperties must be assigned manually to each other in the sheet “Manual Assignment”, 

because the code cannot know to which thing a sensor belongs to and which sensor records what 

property.  

The excel file is color-coded to make it easier for the user to decide which column is updated 

automatically and which must be adjusted manually. Furthermore, it can be checked in the excel 

file if the POST request was successful. This way, a user-friendly pre-interface is created that can 

be adapted and validated manually before it is send to the FROST server for long-term storage. 

The entities of the Sensor Things API had to be defined for the available sensor and model data. 

Every data logger has been defined as one individual Thing while the sensors of every datalogger 

are all added as individual Sensor entities. In other words, every datalogger was defined as one 

thing with 30 sensors connected to it over the Datastream entity. 

Putting the model data into the Sensor Things API framework was more complicated, because of 

the separation of Things and Sensors. Intuitively, the created virtual sensors would fit into the 

scope of the Sensor entity, however, the location entity is merely related to the Things entity 

(Figure 3). Therefore, it is necessary to save the virtual sensors as Things to save the location 

information. Furthermore, when creating a Datastream entity, it is mandatory to connect a 

Sensor. Hence, one must also define the virtual sensors as Sensors. Consequently, every virtual 

sensor was saved as Sensor and Thing entity. Further options to solve this problem are discussed 

in section 4.1. 



The lower part of Figure 7 shows how the MIKE-SHE model data is added to the FROST Server. It 

is split up into the virtual sensor timeseries and the multi-observation approach. The virtual 

sensor timeseries functions are not fundamentally different from the sensor data scripts. Thus, 

the communication to the FROST Server is also based on an excel file (parameters_model.xlsx). It 

has almost identical characteristics as the parameters.xlsx file but contains an additional sheet 

with the MultiDatastream parameters.  

Since in the model output data only gives values for the property soil moisture, this exact property 

ID is received by a GET request with a filter in the get_propID_for_Model function. This is an 

example of a specific filtered request, which is defined in the Sensor Things API, that shows the 

advantages of adapting a Web Service Interface standard.  

Because the UML data model of the MultiDatastream extension is similar in many aspects, the 

functions for the entities Things, Sensors, ObservedProperties, and Locations are complementary 

to the POST request functions of the sensor data. However, there are some differences to the 

JSON object when the MultiDatastream and Data Array extension are applied. MultiDatastreams 

group a selection of complex Observation results [34]. This means that for every index of the 

attribute multiObservationDataTypes the respective observed property must be defined, thus, 

each array index must relate to an ID of the ObservedProperties entity. The 

multiObservationDataTypes attribute defines the dimension of the data array result in the 

Observation entity. Therefore, one must make a POST request with a result array that has the 

same dimension as the multiObservationDataTypes attribute of the corresponding 

MultiDatastream.  

Another ambition of this work was to find a way to store statistical data in a standardized way. It 

has been discovered that there is a way to achieve this within the Sensor Things API. The 

resultQuality attribute of the Observation entity lets the user store data according to the ISO 

19157. Unfortunately, there was no model dataset with statistical information available to 

implement this in the FROST server.  However, it was tested successfully, if a POST request 

implementing statistical data based on the ISO 19157 is possible. It has also been discovered that 

the resultQuality attribute of the entity Observations in the Sensor Things API standard is 

extensible, hence, further approaches are possible. For instance, the QualityML can be applied to 

describe statistical sensor data in more detail.  

 

 

  



3.1.3 Data Export FROST  

For further use of the data stored in the FROST Server, a function was needed that exports the 

observation data. As elaborated in section 2.1.3.2, the Pandas DataFrame object is a popular 

starting point when it comes to preprocessing and development of machine learning algorithms. 

Hence, the objective was to export the standardized data and convert it to this format. 

The function that was written to do exactly this is called “request_observations_FROST”. It is also 

based on the parameter.xlsx excel file for specifying what observations to request. The resulting 

DataFrame object includes all requested Datastreams and has two columns for each property, 

which contain the timestamp in one and the observation value in the other.   

The full dataframe is saved as pickle-file because it takes a large amount of computational time 

to send enormous amounts of GET requests to the FROST Server for observation data. This pickle 

file can be imported with the function “get_pickle_observations”. 

One example how the data could be further preprocessed and used was implemented. The so-

called ARIMA algorithm was implemented, which forecasts timeseries. The ARIMA function 

requires the input variable “property”, which defines what value to look for in the pickle imported 

dataset. According to this variable, the ARIMA algorithm is applied to the corresponding data.  

The results of the ARIMA algorithm are inaccurate. The script only represents an example for the 

data workflow.  



3.1.4 Visualization  

The sensor and model data were visualized in the form of an interactive leaflet map and as 

interactive plot in Grafana. Both are powerful tools to increase transparency of irrigation systems. 

Therefore, the interactive Grafana dashboards were integrated into the leaflet map to bring the 

features of both tools together. The functions and relations used to generate this integrated 

approach are depicted in Figure 8. 

  



 

 

Figure 8: Overview of functions and relations for the visualization of sensor and model data. RED: data storage; GREEN: 
visualization tools; BLUE: data transformation/functions. 

 

 



 

3.1.4.1 Grafana 

Grafana was set up with Docker. When running the Grafana Docker image, some settings must 

be defined, such as what plugins to install and if embedment into other websites is possible. 

Grafana offers a plugin that links the Sensor Things API as data source and, hence, depicts the 

data stored on the FROST server. Different dashboards have been created, for example, one for 

all sensor measurements of the Pessl Instruments climate station and one for a datalogger that 

covers plots of all salinity, soil temperature, and soil moisture in different depths. This way, the 

operator can see the spatial differences and draw conclusions from related parameters. 

 

3.1.4.2 Leaflet Interactive Map 

The leaflet map integrates shapefile polygons of the field and the individual sensors with their 

locations and popups with the data plots and last measured values. Within the popups the user 

can click on a hyperlink which connects HTML to each individual sensor with additional data. The 

model data is visualized as a chloropleth map with a time slider.  

Additional supportive data was included in the Web-Application, like a rain radar that is updated 

hourly for whole Germany. The radar is a Web Map Service, provided by the German 

meteorological service on their Geoserver [69]. This is an example of WMS static images that can 

be implemented into the map. With the help of the existing script, in the future merely the source 

needs to be adjusted to enable embedment.  

Furthermore, the user can switch between various Tile Map Service (TMS) base layers for 

reference and a satellite image layer provided by ESRI. This represents a way how to embed TMS 

layers. Other TMS layers can be imported in the future only by changing the source link.  

The data plots are based on the timeseries data from the csv-files. Two main function can be 

differentiated in generation of figures and generation of the map. In the “gen_fig_sentek” 

function, for example, the csv-file data is exported and plotted. In the corresponding 

configuration excel file the user can define, what time interval to plot by choosing either a start 

and end time or activate automation, which enables the user to plot an amount of days before 

the current one. The paths of the csv-files and their generated svg-files with the plots are 

managed by the “spreadsheet_sentek/spreadsheet_pessl” excel files. 

Once the svg-files are updated, the “gen_map” function can be called. This function has many 

inputs and is based on the folium library (see 2.1.3.6). HTML templates for the popups are linked 

to the function. On basis of these templates, further HTML templates are generated within the 

“gen_map” function for the hyperlinks in the popups that lead the user to further plotted data. 

The svg-file paths that should be plotted in the hyperlink are managed by the 

“html_assignment.xlsx” excel file. This approach is based on static plots that need to be updated. 

More desirable is an interactive plot, where the user can choose what data to see on click. Thus, 



as a second approach Grafana interactive plots have been deployed into the map as inline iframe. 

However, no script has been created to automize the assignment of Grafana dashboards to the 

corresponding sensors. 

The last values of the timeseries that are shown in the popup are extracted on basis of the paths 

given in the “spreadsheet_sentek/spreadsheet_pessl” excel files. The model data is imported as 

Numpy array and converted to a chloropleth map. 

 

 

3.2 Remote Control Concept  

The objective was to make the system controllable remotely. A G.S.I Galcon Irrigation Control Unit 

is available on-site, located inside a small house close to the pilot field. The unit is depicted in 

Figure 9. It has three inputs to control the valves for watering. The aim was to enable a remote 

control of these. For this purpose, a connection had to be established between the control and 

the user.  

 

 

Figure 9: G.S.I Galcon Irrigation Control Unit. [70] 

 

Generally, the most suitable network depends highly on the given conditions. Since on agricultural 

land the conditions are usually not ideal due to lack of electricity and LAN on the fields, the focus 

was on LPWAN and cellular networks. Kais Mekki et al. concluded that for smart farming the NB-

IoT is not a valid solution for the near future while Sigfox and LoRa are ideal [52]. However, in the 

long term, the federal government of Germany is planning to provide cellular network coverage 

for 99% of the German population [71]. Therefore, it is likely that many farms will also be covered 

in the coming years and hence, cellular networks and the NB-IoT technology are viable options, 

too.  



Based on these findings, two distinct approaches were chosen to create a resilient, 

complementary, and redundant system. The first implementation was based on the cellular 

network, more specifically, on the second-generation mobile GSM technology. Additionally, in 

case that a farm is not in the range of the cellular network, a LoRaWAN microcontroller and a 

LoRaWAN Gateway were installed to establish a low power wide area network. In the following 

chapter the hardware for the two approaches are described and it is elaborated how the systems 

were established and configured. A detailed concept scheme of the setup is shown in Figure 10.  

 

 

Figure 10: Remote Control System Implementation Scheme.  

  



3.2.1 Cellular Network (2G) 

3.2.1.1 Hardware 

A commercial GSM remote control module was used to enable cellular network connection. The 

hardware is shown in Figure 11. The module is designed for monitoring of events and operation 

of remote-control systems. It enables the user to send and receive Short Message Service (SMS) 

notifications and CLIP calls in any GSM mobile phone network. The GSM2000 module has an 

integrated GSM transceiver chipset, four control inputs, and four relay outputs that operate in 

pulse mode. This means they can be either switched on for a programmable time or the state can 

be permanently changed. Access can be limited to a certain amount of phone numbers to improve 

IT-security and malicious usage. For the uplink (confirmation SMS) up to six numbers can be 

chosen. Phone numbers can be added and deleted remotely with a master number that is set 

when the device is configured. Moreover, a limit can be set for the maximum amount of SMS per 

day to avoid high bills in case of errors and disturbances in general. [72] 

 

  

Figure 11: Danitech Alarm GSM2000 Remote Control Module universally programmable via PC. [72] 

 

3.2.1.2 Setup and Configuration 

The GSM module requires a SIM-card that is put into the slot shown in the top center of the left 

photo in Figure 11. The card must either have the PIN-code “1234” or no PIN at all.  

The configuration is done with a software that comes with the GSM module. In the software, the 

user can change all possible settings, which include the configuration of the inputs and outputs, 

the definition of the phone numbers allowed to receive and send SMS, and some general settings. 

The software user can define an access code, activate status SMS, performance tests, and more.  

As mentioned before, the outputs can be set to bistable, which enables an on and off switch via 

SMS, or to monostable, which means that the SMS must contain a time specification. Another 

option is to define a constant time within the software or set it to operation mode “any”, which 

means all parameters are defined in the SMS text. An example would be “OUT1 2:30 OUT2 T”, 



which sets the output 1 to HIGH for 2 hours and 30 minutes and the output 2 to HIGH permanently 

with only one SMS. The producer provides a manual for the use of the configuration software 

with more detailed instructions. [73] 

It is not desired that the operator needs to send a manually typed SMS for the control of the 

water system, hence, the Messagebird API was used, to make the communication programmable. 

Messagebird provides their users with their own library to communicate with their server [51]. 

The code to send a SMS with a specific message is implemented in the “Downlink_TTN.ipynb” file.  

 

3.2.2 LoRa Network  

As a second option, the LoRaWAN technology was applied. Several devices were needed to 

establish a LoRa network, such as a microcontroller board, a LoRa gateway, two SMA antennas, 

and three relays. As shown in Figure 10, the microcontroller board was programmed to send 

uplink and downlink payloads to the gateway. As mentioned in the theoretical part, 

TheThingsNetwork community supplies publicly available gateways. Unfortunately, it was 

observed that no gateway was available within the range of the pilot field. Therefore, a Lora Lite 

Gateway, which is described more detailed in the hardware chapter, was set up. Nevertheless, 

the server of TheThingsNetwork was used to communicate with the operator.  Via HTTP requests, 

the operator can send downlink signals to the API of the TTN, which forwards it to the 

microcontroller. The microcontroller was programmed to listen to the downlink signals after 

every uplink and then sets the states of the relays according to the signal. It was elaborated in 

chapter 2.3.2 that the amount of downlink signals should be kept as low as possible. Since it is 

essential for the control of the pump that it receives a signal, no way led around sending 

downlinks. The problems that arise with this will be further elaborated in the discussion part. 

 

  



3.2.2.1 Hardware 

 

Figure 12: Seeeduino LoRaWAN Microcontroller. [74] 

The microcontroller that was used for the project is the Seeeduino LoRaWAN microcontroller 
board. It has 32 kilobytes (KB) of RAM and a voltage of 3.3 V. It has 20 general purpose 
input/output (I/O) lines, two I2C connections, a wire antenna, and two serial connections. An LED 
indicates when the microcontroller is hooked up to a power supply. It is specifically designed to 
function on the LoRaWAN network, as it has a chip (RHF76-052) implemented for the LoRaWAN 
protocol. The microcontroller is compatible with Class A and C (see 2.3.2.3). Furthermore, it has 
a battery management chip embedded that makes charge of lithium batteries via USB possible 
and ensures long battery lifetime [74]. The GPS version was bought; hence, it is also possible to 
track the location of the microcontroller.  

 

  



 

Figure 13: LoRa Lite Gateway 

The LoRa Lite Gateway consists of an iC880A LoRaWAN concentrator, a Raspberry PI B+, and a 

sandwich board. According to the datasheet, it supports a radio frequency range of 863 MHz to 

870 MHz, requires a supply voltage of 5V, and consumes depending on the operation mode up to 

2300 mA. The transmission power is limited to a maximum of 20 dBm.  It comprises four USB 

ports, an Ethernet port, a status LED, and requires a SubMiniature Version A (SMA) antenna.  [75] 

The Seeduino LoRaWAN microcontroller has a wire antenna integrated but to be on the safe side, 

an additional LoRa antenna kit was purchased (see Figure 14).   

 

Figure 14: LoRa Antenna Kit. [76] 

 

A connection between the control unit and the Seeeduino Microcontroller is required to control 

the pump. Hence, three Grove Relays were added to the system. The operating voltage of the 

relays are between 3.3 and 5 Volt. An integrated light will switch on when a current is introduced. 

[77] 

 



 

Figure 15: Grove Relay. [77] 

 

Further, as described in the section about the LoRa Lite Gateway, an additional SMA antenna was 

needed. The Lora 868 MHz Antenna, shown in Figure 16, was chosen to be a good fit. It covers 

the frequencies from 860 MHz to 870 MHz and the antenna gain is 3 dBi. [78] 

 

 

Figure 16: LoRa 868 MHz Antenne SMA. [78] 

 

3.2.2.2 Setup and Configuration 

For the setup of the Seeeduino LoRaWAN microcontroller the boards driver had to be installed. 

With the help of the board manager, which is integrated in the Arduino IDE, the Seeduino 

LoRaWAN board can be installed. Furthermore, the CayenneLPP and the LoRaWAN library needed 

to be downloaded and added to the sketch.  

The microcontroller was programmed to send uplinks every 5 minutes using the Cayenne 

protocol. The uplink signals are assigned to the lowest payload possible. The DevEUI, AppEUI, and 

AppKEY are defined in the setup function for the communication with the TTN server. A high data 

rate is set by default to DR5 with a spreading factor of 7. Moreover, the adaptive data rate is 

activated, and the transceiver power is set to the maximum that is possible in the 868 MHz band. 



All parameters can be adjusted, as it is described in section 2.3.2.4, if connection problems occur 

due to the range. Eight channels are set between 867.1 MHz and 868.5 MHz in steps of 0.2 MHz. 

With every uplink, the controller also listens for downlinks. Hence, it can take a maximum of 5 

minutes until the pump reacts to the sent downlink signal. The downlinks are sent via HTTP 

request, which are sent in the “downlink_ttn.py” python file. Two options were programmed: the 

first is an on-off code, which changes the state of the relay permanently. The other option is based 

on duration. In this case, the microcontroller switches the state of the relay to HIGH for as long 

as it is specified in the python code. The first option only works if the microcontroller has been 

flashed with the “Lora_downlink_bistable.ino” sketch, while the duration approach is relying on 

the “Lora_downlink_duration.ino” sketch. Implementing both options would cause a large 

payload, which creates the issues explained in section 2.3.2.4. 

The API of the TTN requires a JSON object, which specifies the device ID, port, payload, and if a 

confirmation should be send. The payload has to be encoded in base64 to be accepted from the 

TTN server [79]. As described in section 2.3.2.5 , the uplinks are encoded in hexadecimal and the 

downlinks are encoded in accordance to the encoding of the uplink. Hence, the server forwards 

the base64 encoded message it received from the python script, in hexadecimal encoding to the 

gateway, which forwards it to the microcontroller. Once the microcontroller checks for downlink 

signals, it will receive the hexadecimal encoded buffer and decode it to an integer. This number 

is used for the duration-dependent activation of the relay. The downlink and uplink signals can 

be tracked in the console of the TTN website [61].  

 

To configure the LoRa Lite Gateway for the communication with the TTN server, the SD of the 

Raspberry PI that is integrated in the gateway was flashed with a docker image. The image is 

provided by a Bavarian group named “Docker Pirates”. It was downloaded from their page: 

https://blog.hypriot.com/downloads/. To connect to the Raspberry Pi B+, an SSH connection was 

established in the local network. A log-in is required with the credentials provided on the GitHub 

page of the image provider [80]. Furthermore, a GatewayEUI is necessary for the registration of 

the Gateway in the TTN network [60]. The unique EUI was created by using the unique MAC 

address of the Ethernet interface, which is built into the Raspberry Pi, and adding 6 bytes to reach 

the required 64 bit length [60]. After this, the docker image was run on the Raspberry Pi, which 

commences a docker container, as explained in section 2.1.4. This container is restarted every 

time the Raspberry PI is booted. It needs to be mentioned that a Raspberry Pi in general must not 

be cut off from electricity without shutting it down, as this can cause the corruption of the SD. A 

detailed description of the setup of the gateway using the described image can be found on the 

wiki-site of the Chair of Geoinformatics of the TU Munich [81]. After the gateway is up and 

running, it needs to be registered on the website of the TTN with the GatewayEUI that was 

created.  

 

 

https://blog.hypriot.com/downloads/


4 Discussion 

4.1 Data Workflow  

4.1.1 Data Storage and the SensorThings API  

The use of standards for the storage, communication, and exchange of data generally bears great 

potential. A study of the U.S. Department of Commerce Technology Administration suggests that 

15.8 billion US dollars are spent per year due to interoperability issues in the U.S. capital facilities 

industry [82]. If all parties used standards, industries will be not only more feasible but also long-

term storage and accumulation of data will be made easier. Furthermore, services and 

applications can be based on standards, which enables plug-and-play uses. One example of such 

a service used in this work is Grafana, which provides a plugin to incorporate the Sensor Things 

API standard as data source. Moreover, standardization generally makes it easier for developers 

to use data for further programming, increases productivity, and connect applications [83]. 

One objective of the study project was to build a data workflow that enables efficient 

management of both sensor and model data with the aim of implementing a standard. The 

available sensor data contains only one-dimensional data (timeseries). This was ideal for the use 

of the Sensor Things API standards, which is meant for IoT applications.  

The model data, however, which has the proprietary format DFS, is not so easy to handle. For 

further use of the model data it is desirable to store it in a raster format within the framework of 

an OGC standard. It was discovered that the Sensor Things API is not the right standard to achieve 

this. In theory, a large array could be stored with the help of the MultiDatastream extension. 

However, the observed property must be defined for every array index. The properties of the 

raster data matrices of the model output are usually all the same, which would mean that every 

array index would have the identical observed property. This is not what the Sensor Things API 

was established for.  

A viable alternative for storing raster files is PostGIS raster [84]. PostGIS is not OGC compliant per 

se but implements the “Simple Features – SQL -Types and Functions 1.1” specification [85]. The 

FROST server is already based on a PostgreSQL and PostGIS data structure and delivers a 

standardized web service interface by implementing the Sensor Things API. The PostGIS raster 

extension could be established and the standardized web interface service could be extended. To 

make storage possible, an interface for the transformation from the Data File System format to 

PostGIS raster would be needed. 

The implemented approach of storing the data as virtual sensors is also desirable. By reducing the 

dimensions to two, comparison between model data and physical measurements are made easier 

and model data can be put into an IoT environment. It is necessary that for every estimated MIKE-

SHE virtual sensor one Things and one Sensors entity must be defined. This has been solved by 

creating identical instances, but the issues can be solved in more elegant ways. An alternative 

approach would be to assign the entities in the same way as the datalogger data was interpret. 

This means that one model node would be defined as a Thing, which has one location but different 



virtual sensors in different depths. By applying this, the semantics between sensor and model 

data would be consistent.  

If needed, the MultiDatastream extension can be applied to store additional data in an array-

based result, such as depth information or more than one observed property. Since the data 

loggers were equipped with three sensors for every depth, it would be also a possibility to assign 

these values to merely one sensor entity, which delivers result arrays that contain all three values 

for salinity, soil moisture content, and soil temperature that are measured by the individual 

sensors. By applying this, the individual sensor characteristics are lost, but the amount of sensor 

entities would decrease, which makes it more manageable and easier to access the data. 

However, this may not necessarily comply with the ideology of the Sensor Things API.  

In general, it must be clear to all users how all entities are defined for different situations. For 

example, in the case of the Irrimode project dataloggers with various sensors were put into the 

soil. Every datalogger was interpreted as an individual thing entity. If somebody else interprets 

the three sensors in one depth as a thing instead of the whole datalogger, it will lead to 

misunderstandings and errors. Especially when arrays are used, as described in the example 

above, it can cause problems when people are not aware that there are three sensors behind one 

result array. It is one step to standardize the storage format and web service interface, but the 

semantics must be standardized, as well. In my opinion, the Thing entity is not clearly defined in 

the scope of the Sensor Things API standard and leaves space for interpretation [34].  

 

4.1.2 Alternative Standards 

The Sensor Things API is a standard specially designed for the web development community and 

offers a standardized way to describe, interact and store sensor observation data. For IoT 

applications the model data can be transformed according to the implementation of this project. 

However, a lot of metadata is lost by using the Sensor Things API because no entities exist to store 

the water modeling specific metadata. One option to handle this problem is to extend the Sensor 

Things API standard, which is possible according to the document [34].  

Another option is the use of alternative standards. The OGC established a standard tailor-made 

for the water sector. The so-called Water Modeling Language (WaterML) provides encoding of 

water observation data and comprises several parts, such as: Timeseries, Ratings, Gaugings and 

Sections, and Surface Hydrology Features [29]. Furthermore, the standard contains another 

modeling language for groundwater applications (Groundwater Modeling Language – GWML2) 

and a section on water quality data (WaterML-WQ) [29]. The WaterML is, equivalent to the Sensor 

Things API, based on the O&M conceptional model. It is implemented as application schema in 

XML following the rules of the Geographic Markup Language (GML) [17, 77]. This enhances 

consistency and interoperability between the WaterML and other standards. Moreover, it 

harmonizes with the Australian Water Data Transfer format, the WaterML 1.0 from the United 

States and the German XHydro format [78, 79].  By applying this standard, further information of 

the model could be stored.  



If in the future it is also desired to store the model data as raster files within the scope of the OGC 

standard suite, the use of an alternative standard is recommended. The OGC established a Web 

Coverage Service Interface (WCS) standard that defines the retrieval of geospatial data as so-

called “coverages”. These coverages represent temporal and spatial variation phenomena, more 

precisely, regular and irregular grids, point clouds, and general grids [89]. This means that spatial 

and temporal information are related to potentially multi-dimensional properties. The MIKE-SHE 

model DFS files fall under the category of information that can be described by the coverages. 

The Web Coverage Service Interface standard consists of a core that every WCS implementation 

must support and various extensions [90].  

 

4.2 Technical Improvements 

Apart from conceptional improvements, technical issues must be discussed, as well. So far, there 

is no automated time schedule for when the scripts are run. However, it makes sense to set a 

time, for example, at night when all data is updated. The “schedule” module for python provides 

functions to make this possible [91].  

Furthermore, I recommend that the scripts that update the csv-files and the FROST Server 

database are coupled, so that no csv-files can be updated without a POST request to the FROST 

Server. This way, it is ensured that no errors occur due to asynchronous updates.  

The csv-files and excel serve as manual interface for data validation and definition of metadata. 

This bears advantages and disadvantages with it. Most people are familiar with excel and csv files, 

which makes the data workflow applicable for vast amount of people. However, one can argue 

that it is not state-of-the art technology and excel brings some problems with it. One major issue 

I faced was that when updating values in excel files, other cells which contain functions that point 

to the updated cell, were read as none type. This issue was solved by creating a function that 

opens the corresponding file, saves it, and closes it again. Although this works, it is not an efficient 

way when it comes to computational calculation time. Therefore, the alternative option to make 

a direct POST request to the FROST server has been programmed. This enables a translation from 

the API data of Pessl Instruments to the Sensor Things API standard on the fly. This approach limits 

the user’s expenditure to a minimum. In both cases, the scripts rely on the consistency of the API 

that provides the data.  

  



4.3 Visualization 

The visualization was done before the FROST Server had been setup because of an internal 

schedule of the company. The ideal case, however, is that the leaflet map is generated on basis 

of the data exported from the FROST Server. Furthermore, the model data was only visualized for 

one day and cannot be changed by the user yet. An interactive plot is more desirable where the 

user can change parameters and see model and sensor data for specified time periods. The sensor 

data time plot interval can be changed within the configuration excel sheets or interactively when 

using the Grafana dashboards. As mentioned, no automation script exists yet to assign the sensors 

to a specific Grafana plot when creating the map. Such a function will be necessary to create a 

more interactive user experience. The user should further have the chance to compare the model 

data to the physically measured timeseries. This could be also realized with Grafana by adding 

the model data into the existing sensor data plots.  

 

4.4 Remote Control Concept 

Two approaches were chosen suitable for the remote control of the on-site control unit. One was 

based on the second-generation cellular network. While the 2G network can be described as one 

of the most successful cellular networks, the amount of users has declined in recent years and 

some countries have started to shut down their 2G network due to new evolving technologies 

such as UMTS, LTE, NGMN, etc. [41, 42].  Therefore, the GSM module must be replaced by newer 

technologies, which are based on the fourth and fifth generation networks. As elaborated, the 

state of Germany is planning to provide cellular network coverage of 99% of the population in 

Germany and currently invests in 5G technology [71]. The responsibility for optimization lies here 

with the state. [94] 

The other approach made use of the LoRa technology as one of the available options for low 

power wide area networks. A Seeduino LoRaWAN microcontroller board has been programmed 

to send uplinks and to receive downlinks. The signals are forwarded by a Lora Lite Gateway, which 

was setup to communicate with TheThingsNetwork server. To sum up, a duration-based 

communication from a user interface to the control-unit was established. The main problem with 

this approach lies within the delay of signals that originates from the uplink/downlink principle of 

LoRa. The microcontroller only checks for downlinks with every five minutes uplink. Hence when 

considering airtime, and computational time, it can take up to a maximum of approximately 6 

minutes until the activation/deactivation of a relay occurs. A reduced uplink time interval would 

improve this at the expense of the battery lifetime. Nevertheless, the possibility of an immediate 

shutdown is not given and in case of an emergency, this option is crucial. One option to implement 

this is the “interrupt” function. This provides a way to break the script and execute an alternative 

function [94]. With this an emergency button can be defined, which can be activated at any time. 

When setting up a gateway with TheThingsNetwork, it is usually made publicly available. If a 

gateway is used by many users and generally for many downlinks, it will cause further delays and 



uplinks will be blocked more often. Hence, a reliable remote-control system should not be 

integrated in the public network. TheThingsNetwork also offers a way to connect to a private 

back-end [95]. However, TTN has been designed for the public network and documentation on 

handling private networks is limited [61]. One alternative is ChirpStack, which was designed 

specifically for users that want to setup their own private LoRa network and servers [96].  

ChirpStack is open-source, commercially usable (MIT licensed) and offers a ready-to-use solution 

with a Web-interface and APIs [96]. The technology is based on four major components: LoRa 

Gateway Bridge, Network Server, Application Server, and Geolocation Server [96]. Different 

configurations are possible, for example, installation of all these four components on separate 

servers or setup of all components and dependencies directly on a gateway [96]. A detailed 

documentation is available on the ChirpStack website [96]. With the help of this service, a private 

network with a local backend can be established. In my opinion, this is a better solution for the 

remote control of agricultural control-units than using TTN.  

Ideally, the microcontroller board must be programmed only once and can be run for several 

years depending on the battery lifetime. In case the code needs to be changed, the developer 

must collect the microcontroller from site. A single-board computer (e.g., Rasperry Pi) offers an 

alternative. This credit-card sized computer offers a feasible way of running codes and Arduino 

IDE sketches with low energy consumption. It can be connected to the microcontroller board and 

programmed remotely [97]. Thus, the combined approach is an option for a more flexible remote 

control with higher controllability.  

An operating system has advantages over microcontrollers boards but comes at the price of 

elevated power consumption. Hence, a single-board computer could replace the microcontroller 

completely offering more flexibility and further network options. The Rasperry Pi 4 [98], for 

example, comes with Gigabit Ethernet, onboard wireless networking and Bluetooth. The Rasperry 

Pi Zero W [99], which consume much less power, also provides a wireless LAN and Bluetooth 

connection. In the microcontroller board industry, devices with WLAN and Bluetooth connections 

have been developed, too (e.g., ESP32). In conclusion, there are many alternatives for the 

hardware setups with different networks. According to the available network, demanded 

flexibility, power consumption, and general preferences of the farmers, a few setups must be 

established that can replace each other.  

 

 

  



5 Outlook 

In the scope of this project a full data workflow was created. This enables the request from two 

different data sources, the import of MIKE-SHE simulation data, and storage of all data within the 

scope of the IoT based Web Interface Standard SensorThings API. Another script exports the 

timeseries data from the FROST server for further use.  

In the future other add-ons may be desirable and other data sources will be required to extend 

the workflow. Figure 19 shows a potential extended data workflow. As depicted in the figure, one 

addition to the data workflow could be a validation script preceding the data storage to prevent 

subsequent problems. Furthermore, developers may want to implement scripts for statistical 

analysis, geoprocessing, or data fusion. These can be built on the output of the FROST export 

script and may add further information to the database of the FROST server.   

In this work, it has been illustrated how to access two different third-party APIs. Unfortunately, 

as long as external providers do not employ standards in their APIs, individual script will be 

required to convert information from other sources into the format that the further data 

workflow is built on. The scripts that request and transform data from the Pessl Instruments and 

Sentek Technologies API handle xml and json format. Thus, these scripts can be used as base for 

further acquisition of data. However, in the future other technologies are likely going to play a 

part in smart farming systems, such as image processing and drone flight data. Script will be 

required that integrate such data in the FROST Server. The SensorThings API supports data from 

remote sensing, which makes the established data workflow suitable for these applications.  

The overall aim of the Irrimode project is the digitization and optimization of the irrigation system. 

The first step has been accomplished in the framework of this study project. However, the 

development of an optimization algorithm lies still ahead. The optimization can be accomplished 

in different ways. Analytical solutions as well as machine learning algorithms are viable options.  

 



 

Figure 179: Possible extensions of data workflow. [78] 

  



Another goal could be to create a machine learning algorithm as supplement to the MIKE-SHE 

model to ensure real-time simulation. The pilot crop field uses drip irrigation for watering. For 

this application, the created model is fast enough because the watering happens rather slowly, 

roughly 2 mm per hour. For other farms, which use irrigation methods with a higher flux rate, the 

numerical model is too slow for the optimization in real-time. Furthermore, simulations of 

different scenarios are beneficial for optimization. This requires high computational time, which 

makes it not suitable for real-time application. To resolve this problem a machine learning 

algorithm could offer a solution, which generally needs less computational time. The algorithm 

would replace the MIKE-SHE model and predict soil parameters.  

 

6 Conclusion 

The goal of this work was to establish a data workflow that offers a resilient and effective way of 

digitizing and storing data. By implementing the Sensor Things API standard, this goal was 

achieved. This Web Service Interface standard offers a well-conceived way of data storage and 

interaction for IoT applications with a high level of detail. If further algorithms are built based on 

this standard, developers will face fewer interoperability issues. Both sensor and model data have 

been implemented within the FROST server that implements the Sensor Things API. It has been 

discovered that it is possible to store model data in the framework of the Sensor Things API either 

as virtual sensors or with the help of the data array extension. Since the sensor and model data 

are stored in the same manner, comparison and further use are made easy. Moreover, it has been 

found that statistical data can be stored within the Sensor Things API by embedment of the ISO 

19157 and the QualityML. 

As it was expected, the storage of whole raster files does not make sense within the Sensor Things 

API standard. The Web Coverage Service standards of the OGC is more suitable for this purpose.  

The WaterML may be interesting in the water modelling sector to save model metadata that is 

otherwise lost.  

One objective was to create a data structure that enables other developers to import the stored 

data. Hence, the workflow was extended by the means of an export script that enables requests 

of the standardized data.  

The visualization was achieved through an interactive map that integrated interactive plots of the 

sensor and model data. This increases transparency and makes decision making easier for the 

operator. Furthermore, a graphical user interface for the data workflow has been established.  

Two approaches were implemented to create a redundant and resilient system for the control of 

the on-site control unit. A GSM module enables the operator to send control-SMS in the second-

generation cellular network, whereas a microcontroller board was programmed for the use of a 

LoRa network. In the future, the GSM module should be replaced by a technology that works on 

the fourth-generation network. The LoRa network was set up to be public. To make the remote 

control more reliable it should be employed in form of a private network.  
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