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Abstract

This thesis proposes a novel framework for motion planning with safety guarantees for au-

tonomous vehicles with a focus on highway traffic scenarios.

To achieve this safety guarantee, we first introduce an architecture for the longitudinal control

of the ego vehicle that ensures safety with respect to all relevant vehicles by computing

sufficient inter-vehicle distances. The required space between vehicles permits an emergency

maneuver that can bring the ego vehicle to a safe state, thus making this approach intrinsically

safe. To assess the efficacy and efficiency of our presented methodology, we compare our results

with state-of-the-art approaches via numerical simulations.

We then introduce a new approach to generate the over-approximation of all possible occu-

pancies of surrounding traffic participants over time. Whilst full braking of vehicles driving

ahead is assumed as a worst-case scenario for the longitudinal motion of the ego vehicle, in

order to allow the ego to perform more complex maneuvers, this assumption alone does not

suffice anymore. Therefore, the prediction of future occupancies is realized by employing tech-

niques from reachability analysis on an abstract model of a vehicle. The introduced approach

is evaluated and validated using real traffic data showing that the recorded trajectories are

indeed enclosed by the predicted occupancy sets.

Finally, we introduce a fail-safe motion planner that guarantees safety with a novel control

scheme that is similar to a safety net. A long-term optimal trajectory is generated by consid-

ering non-formal predictions of the surrounding vehicles. This trajectory is followed only if

there exists an emergency maneuver capable of steering the ego vehicle to a safe state. If no

further fail-safe maneuver exists, the motion planner switches to a precomputed emergency

maneuver that guarantees safety by embedding the overapproximative sets of the surrounding

vehicles as system constraints. Furthermore, the motion planner introduces an approach to

determine the latest point in time where an emergency maneuver is guaranteed to exist.





Zusammenfassung

Diese Dissertation schlägt ein neuartiges Konzept für die Bewegungsplanung von autonomen

Fahrzeugen mit Sicherheitsgarantien vor. Der Fokus liegt dabei besonders auf Autobahnsze-

narien.

Um die Sicherheitsziele zu erreichen, führen wir zunächst eine Architektur für die Längssteue-

rung des Ego-Fahrzeugs ein. Diese gewährleistet die Sicherheit aller relevanten Fahrzeuge,

indem ausreichend große Abstände zwischen den Fahrzeugen berechnet werden. Aufgrund der

Abstände gibt es ein Notfallmanöver, das das Ego-Fahrzeug in einen sicheren Zustand bringen

kann, wodurch unser Ansatz intrinsisch sicher wird. Um die Effektivität und Effizienz unse-

rer vorgestellten Methode zu bewerten, vergleichen wir in numerischen Simulationen unsere

Ergebnisse mit dem Stand der Technik.

Danach führen wir einen neuen Ansatz ein, der eine Überapproximation aller möglichen

Belegungsmengen anderer Verkehrsteilnehmer im Laufe der Zeit berechnet. Während wir

für die Längsbewegung des Ego-Fahrzeuges die Vollbremsung vorausfahrender Fahrzeuge als

Worst-Case-Szenario annehmen, reicht diese Annahme nicht für komplexere Manöver des

Ego-Fahrzeugs aus. Deshalb wird die Prädiktion der zukünftigen Belegungsmengen durch den

Einsatz von Techniken aus der Erreichbarkeitsanalyse an einem abstrakten Fahrzeugmodell

realisiert. Der vorgestellte Ansatz wird unter Verwendung realer Verkehrsdaten bewertet und

validiert. Dabei wird gezeigt, dass die aufgezeichneten Trajektorien tatsächlich in den vorher-

gesagten Belegungsmengen eingeschlossen sind.

Schließlich stellen wir einen ausfallsicheren Bewegungsplaner vor, der die Sicherheit mit einem

neuartigen Regelungsschema garantiert, das einem Sicherheitsnetz ähnelt. Eine langfristig op-

timale Trajektorie wird erzeugt, indem nicht-formale Prädiktionen der umgebenden Fahrzeuge

berücksichtigt werden. Diese Trajektorie wird nur dann verfolgt, wenn es ein Notfallmanöver

gibt, das das eigene Fahrzeug in einen sicheren Zustand bringen kann. Falls kein weiteres

ausfallsicheres Manöver vorhanden ist, wechselt der Bewegungsplaner zu einem vorberechne-

ten Notfallmanöver, das die Sicherheit garantiert, indem die überapproximierten Mengen der

umgebenden Fahrzeuge als Randbedingungen verwendet werden. Außerdem beinhaltet der

Bewegungsplaner einen Lösungsansatz zur Identifizierung des spätesten Zeitpunkts zu dem

ein Notfallmanöver noch garantiert ist.
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Chapter 1

Introduction

One of the biggest technology innovations to date is represented by advancements in autonomous driving,

which can bring considerable enhancements towards the quality of life. Approximately 1.35 million people

die each year as a result of road traffic crashes1, out of which human error represents the root cause in

more than 90% of these situations [169]. Increased road safety, traffic flow, mobility, and comfort are

among the most prominent advantages to be introduced by automated driving, by partially or completely

removing driving duties from human drivers [10]. Therefore, autonomous vehicles represent the future of

the transportation industry due to their massive potential of improving safety. As a result, autonomous

vehicles are expected to become the most viable means of transportation by 2040 and are predicted to

account for more than 75% of the cars on the roadway2.

While this innovative technology brings a great improvement in mobility, it also raises considerable

concern since it has a direct social impact [126]. Among the most critical topics raised are data security,

liability, engagement with insurance companies after an accident, legal aspects, and one of the foremost

topics, safety. The latter topic begs the following questions: Can the autonomous vehicles improve safety

on roads? Can safety be guaranteed for passengers? These questions represent just a few of the frequently

arising concerns regarding this new technology.

Both automobile and technology companies have made remarkable achievements in autonomous driv-

ing research and have already demonstrate their technological advancements (see Fig. 1.1), massive po-

tential, as well as their encountered challenges [43, 116, 201]. Due to the integration of advanced driver

assistance systems (ADAS), many vehicles available on the market are already equipped to support drivers

in various situations such as lane-keeping or emergency braking assistance. These systems have already

demonstrated their ability to enhance the comfort and safety of passengers.

1https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
2https://site.ieee.org/itss/2014/09/15/you-wont-need-a-drivers-license-by-2040/
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In particular, adaptive cruise control systems (ACC) — as described in the corresponding intelligent

transportation system standard [82] — enjoys increasing popularity since it automates the longitudinal

control of vehicles in uncomfortable or frequently occurring situations, e.g., stop-and-go in traffic jams or

long-lasting highway journeys. Various ACC systems have been proposed in the literature over the years,

aiming to improve different aspects of existing systems such as driving comfort, traffic flow [79, 80], fuel

efficiency [2], and travel time [20].

Figure 1.1: Different prototypes of self-driving vehicles1.

Since fully autonomous vehicles relieve humans of all driving duties, the safe operation of vehicles in

dynamic and uncertain environments must be guaranteed by considering both uncertainties introduced by

sensors and actuators and those introduced by the unexpected future behavior of other traffic participants.

On the one hand, the uncertainty introduced by sensors and actuators can be decreased by either explicitly

modelling this uncertainty in the planning problem, or by using high performance hardware, that produces

more accurate results. On the other hand, guaranteeing safety while considering unexpected maneuvers

of other traffic participants when planning a trajectory for the ego vehicle still represents a challenging

task for the automotive industry.

Figure 1.2: A Google car involved in an accident, due to misinterpretation of behavior of another traffic
participant 2.

For instance, one of the first accidents caused by a self-driven Google car (see Fig. 1.2) occurred due to

a misinterpretation of the future behavior of the other traffic participants. Still, predicting the actions

1These images are the property of Google LLC.
2Source: www.bbc.com/news/technology-35800285
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of other traffic participants is not a trivial task, even for human drivers — for example, the trained test

driver of the Google car could not accurately foresee the actions of the other vehicle involved in the

collision.

Nevertheless, a reliable autonomous vehicle must be capable of predicting and coping with unexpected

maneuvers of other traffic participants. Thus, the driving decisions of such autonomous systems must

guarantee the safety of passengers and other traffic participants, before they are deployed into a mixed

traffic situation, that is, with both human-driven and self-driven vehicles, which represents the main

theme of this thesis.

1.1 Standards and Legal Background Regarding Safety

Although impressive results have already been achieved by experimental autonomous vehicles, safety

remains the most significant challenge the autonomous driving industry is facing. Currently, when an

autonomous vehicle is tested on public roads, a safety driver is required in order to bring the vehicle to

a safe state in case of a failure. However, in the future, a fully autonomous vehicle must always be able

to keep the system in a safe state. Absolute safety, i.e., the guarantee that an autonomous vehicle will

never be involved in an accident, is not possible [168] since the road is shared with other agents as well

(e.g., human-driven vehicles whose driving decisions cannot be controlled). What is attainable, however,

is the guarantee that an autonomous vehicle will not cause an accident and will try to avoid or mitigate

a possible collision when feasible.

According to the ISO 26262 standard [83], a system is said to operate in a safe mode when there

is no unreasonable risk. In this standard, the risk is calculated as a combination of the severity of a

personal injury and the probability of occurrence. The challenge, however, is to identify a risk level that

is considered acceptable based on the current driving situation, according to moral, ethical, and social

aspects [126, Chapter 23]. Nonetheless, this standard tackles only safety hazards caused by software

or hardware failures and not the ones provoked by erroneous driving decisions. In early 2019, a new

standard has been released — Safety Of The Intended Functionality (SOTIF) [84] — which is concerned

with guaranteeing safety in the absence of a fault in the system. However, the SOTIF standard does

not provide a solution such that the system can guarantee safety, but instead provides a set of guidelines

(e.g., recommendations regarding design or validation, etc.) that help to achieve safety.

One of the most important safety-related aspects regarding driving decisions (for both human-driven

and self-driven vehicles) represents the required inter-vehicle distance, often called the safe distance, that

must be kept with respect to the other traffic participants. In the German Road Traffic Regulation

(Straßenverkehrsordnung) [34, Section 4] this distance is defined as follows: “a vehicle moving behind

another vehicle must, as a rule, keep a sufficient distance from that other vehicle such that it is able

to pull up safely even if it suddenly slows down or stops.” However, the description of this traffic rule
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regarding safe distance is not a formal one. As a consequence, it is challenging, if not almost impossible,

to check the correctness of the resulting behavior of an autonomous vehicle.

Recently, a new research direction — formalizing traffic rules [157,159] — has gained more attention

as this represents the first step towards compliant and safe autonomous cars. For such systems, formal

guarantees are compulsory in order to prove their correctness — such as obeying the traffic regulations

— before being deployed on roads. However, how to formally guarantee safe motion planning that can

correctly react to unexpected changes in the traffic environment is not a trivial task.

1.2 Scope and Objectives

In early 2014, the Society of Automotive Engineers (SAE) established a classification of the level of

autonomy [161] for self-driven vehicles (as illustrated in Fig. 1.3) that ranges between 0 (No Automation)

and 5 (Full Automation). The first three levels correspond to vehicles requiring drivers. Some driving

functions, however, are taken over by the system. Conditional automation corresponds to a system where

the driver represents a necessity and must be able to take control of the vehicle at any time. In contrast to

the automation levels 1—3, level 4 and 5 (high automation and full automation) correspond to a system

where the driver is not required; however, the driver does retain the option of controlling the vehicle, if

desired.

0 1 2 3 4 5

No
Automation

Driver
Assistance

Partial
Automation

Conditional
Automation

High
Automation

Full
Automation

Figure 1.3: Levels of autonomy according to SAE1.

In this thesis, we focus on the two highest levels of automation (high and full automation), starting

from a partially automated system — equipped with Adaptive Cruise Control (ACC) functionality. As

mentioned previously, in order to deploy such systems where the driver is not required to take control of

the vehicle, safety must be guaranteed in any traffic scenario. However, since an infinite number of traffic

scenarios exists, classical test-drives are not enough to prove that an autonomous vehicle will always

make the correct decision. Studies have shown that in order to prove the safety of autonomous vehicles,

hundreds of millions of test-drives are required [86]. Hence, tens of years of testing would be necessary

1Source: www.nhtsa.gov/technology-innovation/automated-vehicles-safety
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to validate the reliability of self-driven vehicles. Therefore, a different validation paradigm is essential to

guarantee the safety of autonomous vehicles.

This thesis addresses the problem of generating provable safe motion planning for autonomous vehicles

in a mixed traffic scenario that includes both human-driven and self-driven vehicles. For this purpose,

fail-safe maneuvers are generated through certifiable methods that can bring the ego vehicle to a safe

state under various scenarios including the worst-case scenario, where other traffic participants perform

unexpected maneuvers that may endanger the ego vehicle. The key element in guaranteeing safety is

to consider not only the most likely behavior of other traffic participants, but the entire set of possible

future maneuvers when planning a trajectory for the ego vehicle. Furthermore, the generated maneuvers

of the ego vehicle must not be too conservative such that traffic flow is hindered.

1.3 Thesis Outline

Throughout this thesis, each chapter contains a relevant literature review, followed by a problem formu-

lation. Then, the proposed solution is provided, together with numerical and experimental results that

validate our methods.

Safe Longitudinal Control of Autonomous Vehicles

The current advanced driving assistance systems that provide longitudinal control of vehicles cannot

ensure safety in all traffic situations. This is mainly caused by inaccurate assumptions of the behavior of

other vehicles driving ahead, which lead to an erroneous estimation of the required safe distance. The main

contribution of Chapter 2 is to design a longitudinal controller with safety guarantees for autonomous

vehicles, while still satisfying comfort. The first novelty of our approach is in the computation of the

required safe distance with respect to the vehicles driving ahead of the ego vehicle. The correct safe

distance is calculated such that an emergency maneuver that can bring the ego vehicle to a safe state

is guaranteed to exist, even in the worst-case scenario where the leading vehicle performs full brake. In

contrast to other approaches that generate only one trajectory based on the most likely behavior of the

leading vehicle, we generate two trajectories: one that tries to achieve comfort and efficiency, while trying

to keep the safe distance, and a second one that is able bring the ego vehicle to a safe state when the

assumptions made of the behavior of other traffic participants no longer hold.

Another novel feature introduced by our approach is that we do not only consider the closest leading

vehicle when calculating an acceleration command, but all traffic participants with respect to which

the ego vehicle might violate the safe distance or those that can violate the safe distance themselves by

performing cutting-in maneuvers. Hence, we prohibit the violation of the safe distance by the ego vehicle,

with respect to all vehicles driving ahead.

5



1. Introduction

Two different approaches are proposed for the generation of the acceleration of the ego vehicle with

respect to the vehicles that are driving in the ego lane and the ones that change lanes towards the ego

lane. For the first category of vehicles (the ones driving in the ego lane), we first calculate the correct

inter-vehicle distance that is required in order to safely react, even when a leading vehicle is performing

a full brake (as required in [34, Section 4]). Then, a mechanism of engaging a precomputed emergency

maneuver, in the situation that the safe distance cannot be kept anymore, is presented. For the second

category of selected vehicles (the ones changing lanes towards the ego lane), if the safe distance is violated

by cutting-in vehicles, an acceleration profile is calculated for the ego vehicle such that it can clear the

violated safe region in a given time horizon. Finally, a decision algorithm is presented that selects which

acceleration command among the set of generated ones satisfies the safe distance corresponding to all

selected surrounding vehicles. To assess the performance regarding safety and comfort of the proposed

framework numerical experiments were conducted using the NGSIM data [65].

Parts of the contributions of Chapter 2 are published in [121].

Overapproximative Occupancy Set Computation of Traffic Participants

To introduce the ability of an autonomous system to perform complex maneuvers that are provable safe,

the entire range of possible future behavior of other traffic participants must be considered. In contrast

to most existing work, where probabilistic-based approaches are used to predict collision probability with

other traffic participants, we propose a formally guaranteed method to compute the overapproximative

occupancy of other traffic participants. In contrast to the longitudinal control with safety guarantees ap-

proach where it suffices to consider the worst-case behavior of other traffic participants in order to prevent

rear-end collisions, the entire range of physical possible maneuvers a vehicle can perform corresponding

to the current road network is considered in Chapter 3. In other words, this is a requirement such that

the ego vehicle can autonomously perform other maneuvers rather than just keeping the current lane.

Due to the nonlinear dynamics of other traffic participants and the consideration of corresponding con-

straints (e.g., excluding behaviors that violate traffic regulations, such as leaving the road boundary),

standard techniques for reachability analysis cannot be applied to calculate a set-based prediction of

other traffic participants. In [7] it was shown that the set-based occupancy prediction of the surround-

ing vehicles can be calculated in a formal manner. In this chapter, the previous work is extended by

providing a framework that can rigorously compute the overapproximative occupancy prediction of the

surrounding traffic participants on an arbitrary road network. To validate the proposed method, two

sets of evaluations were performed. First, we have compared the corresponding predicted occupancy sets

against the real trajectories of vehicles taken from the NGSIM data [65]. Then, we have demonstrated

that our overapproximative results are tight by comparing the results with a high-fidelity model.

The contributions from Chapter 3 are published in [10].
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Fail-Safe Motion Planning

One of the most critical challenges facing motion planners in autonomous driving is guaranteeing that

the ego vehicle will not reach an inevitable collision state, which could be caused by either an inaccurate

assumption of the behavior of dynamical obstacles (i.e., the other traffic participants) or by a faulty

response to changes in the traffic scenario. Chapter 4 addresses the problem of developing a fail-safe

motion planner capable of generating optimal trajectories that can guarantee safety at all times. The

optimality is achieved by considering the most probable maneuvers of the other traffic participants.

Similar to the longitudinal motion planning with safety guarantees, the trajectory is followed, only if

it is verified as safe. A trajectory is verified as safe, only if its occupancy sets do not intersect the

corresponding occupancy of the other traffic participants, and, at the end of this trajectory, there exists

an emergency maneuver that can safely bring the ego vehicle to a standstill.

While verifying the existence of such an emergency maneuver at each time step guarantees safety, it may

be computationally too expensive, and oftentimes it is not required. Therefore, we provide an algorithm

that calculates the maximum time horizon during which the ego vehicle can safely follow a given optimal

trajectory, with the guarantee that a safe emergency maneuver exists at the end of this time horizon.

To demonstrate the efficiency of our presented algorithm, we test it against real traffic data taken from

NGSIM data [65]. In doing so, we slightly modify the traffic situations to further challenge the motion

planner. Then, we calculate the latest point in time where an emergency maneuver is guaranteed to exist.

Chapter 4 is based on contributions that are published in [120] and [122].
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Chapter 2

Safe Longitudinal Control of

Autonomous Vehicles

One of the main challenges associated with advanced driving assistance systems is the guarantee that the

vehicle can be brought to a safe state even when faced with unexpected, dangerous driving situations.

In particular, when the safe distance is erroneously approximated based on an incorrect assumption of

the future behavior of other traffic participants, this may lead to a possible imminent collision state if a

dangerous situation occurs (e.g., the leading vehicle performs an unexpected emergency maneuver). We

first present a method to calculate the correct inter-vehicle distance, which guarantees that if the distance

is maintained, an emergency maneuver exists such that the ego vehicle can be brought to a safe state. The

second novelty compared to the most existing work on motion planning is that we do not only consider

a single target vehicle when calculating the required safe distance, but we select a set of relevant traffic

participants that may affect the safety of the ego vehicle. In this way, we prevent imminent collisions

resulting from situations where the target vehicle is rapidly changing1.

The remainder of this chapter is organized as follows: In Sec. 2.1, a review of the related literature is pre-

sented, together with the contributions brought by this chapter. Then, in Sec. 2.2, preliminary definitions

and notations used throughout the chapter are introduced. After the problem statement is formulated,

the method for computing safe longitudinal control is presented by sequentially introducing different

traffic scenarios based on the relevant selected traffic participants (see Sec. 2.3). Lastly, in Sec. 2.4, the

experimental results based on recorded traffic data are presented to demonstrate the performance and

improvement of the novel longitudinal planning approach compared to the previous work.

1For instance, the closest leading vehicle changes the current lane due to a slow or static obstacle which forces the ego
vehicle to suddenly react to a new target vehicle.
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2.1 Introduction

Adaptive Cruise Control (ACC) systems can be particularly useful to improve safety by partially removing

driving duties from human drivers. Although most ACC systems try to consider safety explicitly, they

fail to ensure safety in complex scenarios, such as sudden emergency braking maneuvers of preceding

vehicles or cut-ins of vehicles from adjacent lanes. However, these kinds of situations do occur in real

traffic and their resulting collisions can cause severe or fatal injuries, unless the human driver intervenes

such that a collision is avoided or mitigated.

Thus, to achieve autonomy levels 4 and 5 (as illustrated in Fig. 1.3), the required step forward is

to guarantee vehicle safety during the longitudinal motion of an autonomous vehicle in arbitrary traffic

scenarios. Except for the typical driving scenario where the ego vehicle must keep the desired velocity

and the desired distance with respect to the leading vehicle, other traffic situations may occur where the

safe distance is jeopardized. For example, the safe distance may be violated by surrounding vehicles that

perform cut-in maneuvers, or when the closest leading vehicle rapidly changes due to a slower vehicle

driving ahead that forces the ego vehicle to perform an emergency maneuver. Therefore, if other traffic

participants perform dangerous maneuvers that can endanger the safety of the ego vehicle, an appropriate

reaction is required to avoid or mitigate a potential collision. In the following, a review of the related

literature is presented.

2.1.1 Related Work

Systems that provide longitudinal control of a vehicle (such as, cruise control, adaptive cruise control,

or cooperative adaptive cruise control systems1) are already receiving a lot of attention from automobile

companies. Each of these systems is characterized by key aspects that define the functionality that the

corresponding system is intended for, as illustrated in Fig. 2.1.

Longitudinal control
system

Cruise Control (CC)
Adaptive Cruise

Control (ACC)

Cooperative Adaptive

Cruise Control (CACC)

Spacing policies Prediction and reaction
to cut-in maneuvers

Control strategies String stability

Figure 2.1: Key aspects of various longitudinal control systems.

1Cooperative adaptive cruise control systems are mainly used for truck platooning.
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Cruise Control. Computing a longitudinal acceleration command to maintain a desired velocity/inter-

vehicle distance has been exhaustively studied. Systems like conventional cruise control (CC), which

automatically control the speed of a vehicle to a user-defined set value, are widely used in vehicles

nowadays with the aim of achieving fuel economy but also improving driving comfort on highways [67,148].

Whilst cruise control systems have simpler requirements compared to other longitudinal control func-

tionalities, adaptive cruise control is a more complex system that relies on a precise set of specifications

that must be satisfied. Next, we present some of the key aspects that define an adaptive cruise control

system, that are also in the focus of this chapter.

Adaptive Cruise Control (ACC). To go one step further than CC, to improve not only driving

comfort, but also safety on roads, active safety systems have been developed. The goal of active safety

systems (e.g., adaptive cruise control, lane departure prevention, brake assist, or electronic stability

control) is to avoid collisions, and when this is not possible, to mitigate the effects of a possible collision.

Previous studies have shown that these systems are indeed able to improve safety on roads, by decreasing

the number of traffic accidents [156].

In this chapter, however, we will solely focus on adaptive cruise control. Adaptive cruise control

is a system that provides longitudinal control of the ego vehicle such that a required safe distance is

kept with respect to the leading vehicle, as defined in the corresponding ISO standard 156222 [82], by

assuming that pedestrians and non-motorized vehicles are prohibited on the road (e.g., highway traffic

environment). In addition to the primary purpose of keeping the safe distance, ACC can improve traffic

flow and driving comfort [79, 80]. Besides improving traffic flow and comfort, ACC systems can also

reduce fuel consumption [2] and trip time [20]. An extensive survey on ACC systems can be found

in [182] and [197].

Spacing policies for ACC. How to compute the required safe inter-vehicle distance is of utmost

importance when designing an ACC system, because if it is not properly defined, a collision with the

leading vehicle may be imminent. In the German Road Traffic Regulations [34, Sec. 4] it is stated that

“[...] a vehicle moving behind another vehicle must, as a rule, keep a sufficient distance from that other

vehicle to be able to pull up safely even if it suddenly slows down or stops.” However, this definition is

not a formal one. Although developing ACC systems is a mature research field, how to guarantee safety

if the leading vehicle performs a sudden emergency maneuver, while avoiding jerky maneuvers is not a

trivial task.

In [128], an intelligent cruise control system is presented, where a constant time headway is kept.

In order to cope with emergency situations, a strategy for switching from cruise control to emergency

control was developed [128]. When a hazardous situation occurs, the emergency controller is activated,

comparing the safe braking distance for both the target and ego vehicle. On the one hand, if the leading
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vehicle fully brakes until it stops, but the ego vehicle brakes with a less deceleration power compared to

the leading vehicle, a collision may be imminent if the current inter-vehicle distance is not large enough.

On the other hand, if the ego vehicle strongly decelerates to reestablish the violated safe distance, this

would cause high jerk values, and thus, uncomfortable driving, although the situation may quickly resolve.

Control strategies for ACC. In previous works, different approaches for verifying collision avoidance

by using various space control policies have been presented [125,162,178,200]. Several acceleration profiles

utilized to maintain a given safe inter-vehicle distance, have also been proposed in [138,195]. However, in

order to maintain a safe inter-vehicle distance and comfortable drive, there must be a trade-off between

these two aspects.

Another approach for the control of a vehicle such that a given safe inter-vehicle distance is satisfied

uses correct-by-construction control software synthesis [142,143]. Within this paradigm, the specifications

for the adaptive cruise control system are given as Linear Temporal Logic (LTL) formulae. To design a

controller that satisfies the given specification, a discrete abstraction of the system is performed. However,

the finite abstraction computation is expensive, and the size of the resulting graph used to design the

controller is exponential in terms of the dimensions of the considered system and the length of the LTL

behavior specification.

To increase safety and traffic throughput, game theory-based methods have been investigated as

well [118, 181]. In these approaches, each vehicle is considered an agent and the controller design is

seen as a game between the actions of each agent and the disturbances introduced by the environment.

Nevertheless, this approach has exponential complexity in the number of agents.

The ACC problem can also be addressed using control barrier functions [15,129]. These functions are

used to penalize any violation of the constraints that arise from ACC specifications. Briefly, this method

exploits the control barrier function property that as the value of the function approaches infinity, the

points grow closer to the boundaries of the safe region (i.e., the safe distance becomes too short). Yet,

finding an appropriate control barrier function is not a trivial task and it is limited by system dimensions.

A widely used method to tackle adaptive cruise control problems is the Model Predictive Control

(MPC) framework, which uses its capability of handling multiple constraints in a receding horizon fashion

[22,38,112,127,136,172]. At each time instant, a finite-time open-loop optimal control problem is solved.

Then, the solution to the optimization problem provides the optimal control input from which only the

first part is executed before new sensor values are available. A benchmark setup is proposed in [39], which

assesses different model predictive control methods used for ACC. An overview of constraint MPC can

be found in [119]; for a comprehensive survey on MPC with constraints, the reader is referred to [127].

Hereafter, we primarily focus on the previous work on ACC that uses MPC since this work is most

closely related to our approach. In [22], a two-mode ACC system that utilizes MPC, in which controllers

shift between speed control (transitional operation) and distance control (steady-state operation), is
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presented. The optimization problem is solved subject to desired inter-vehicle distance and acceleration

limitation, which are incorporated as constraints. In [112], in order to increase tracking capabilities and

fuel economy, an optimal control law is applied. There, a constant time headway spacing policy is used

to keep a safe distance between vehicles. The aim of the control problem addressed in [38] is to minimize

the distance between two vehicles. It is assumed that the ego vehicle receives the future reference state of

the leading vehicle at each sample time. However, if the leading vehicle suddenly brakes, the ego vehicle

may not stop within the given safe distance.

This leads to another approach on ACC, developed in [183], where a collision avoidance strategy is

integrated. The desired acceleration of the ego vehicle is computed based on the forward spacing error

and velocity. However, no analysis on the variation of the spacing error is performed as the focus was on

the variation of the velocity.

Cooperative Adaptive Cruise Control. To benefit from new technologies that enable communica-

tion between vehicles, the idea of cooperative adaptive cruise control was developed [145, 172]. String

stability, i.e., the capacity of minimizing the tracking errors in the upstream direction of convoys, which

is one of the most crucial properties of a platoon, is addressed in [37,153,198,200,204]. An essential com-

ponent in a cooperative architecture (platoon) represents inter-vehicle communication, i.e., all entities

within the cooperative team know the future trajectory of the others. However, if the communication is

lost (e.g., due to environmental conditions) and one of the vehicles performs an unexpected maneuver,

such as fully braking, a collision is likely inevitable.

Prediction and reaction to cut-in maneuvers. Up until now, only typical traffic scenarios have

been taken into account, where the ego vehicle considers only the closest leading vehicle, driving in the

same lane. However, this information is not enough to guarantee safety for an autonomous vehicle,

even when concerned with travel only in the longitudinal direction. For example, in the situation where

another traffic participant performs a lane change towards the ego lane aiming for the inter-vehicle gap

between the ego vehicle and the leading vehicle, the ego vehicle should promptly react such that if the

cutting-in vehicle fully brakes, a collision could be avoided or at least mitigated.

Therefore, in order to consider a cut-in maneuver when controlling the ego vehicle, the cutting-in

maneuver first must be recognized. Thus, methods that reliably detect if a surrounding vehicle performs

a cut-in maneuver are required. Previous work that considers cut-in maneuver detection has been carried

out in [21, 88, 109, 133, 202]. The most common approaches use neural networks [55], hidden Markov

models [47], Bayesian networks [58, 110], and support vector machines [17]. In [170], a survey on vision-

based vehicle future behavior analysis is presented.

The importance of considering cut-in maneuvers performed by human-driven vehicles, especially in

platooning scenarios, is investigated in [18]. There, a comparison between the performance of two different
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approaches, ( [155, Chapter 7] and [152]) is performed by examining different aspects, e.g., control

strategies and available information. In [81], the effects of cut-in maneuvers in mixed traffic are analyzed,

which mainly focuses on position error disturbances and fuel consumption. There already exists work

that considers integrating the intended cut-in maneuver into calculation of the required acceleration of

the ego vehicle in order to increase the performance of the ACC systems regarding smoothness and safety.

For example, in [135], an approach that incorporates cut-in predictions into the longitudinal control of

the ego vehicle is presented. If a cut-in maneuver is detected, the cut-in vehicle is now considered as a

leading vehicle and the ego vehicle updates its acceleration corresponding to the current traffic situation.

However, no further explanation of how the acceleration should be updated is presented. If a possible

cut-in is detected (given the current traffic scenario, it is expected that a surrounding vehicle would

perform a cut-in maneuver), then the velocity of the ego vehicle decreases until the ego vehicle is slightly

slower than the potential cut-in vehicle. However, this may lead to an increase in the number of cut-in

maneuvers.

The approach described in [91] considers a situation where a surrounding vehicle may perform a cut-in

maneuver to enter a vehicle platoon. As a result, a hard brake may be required in order to react to the

sudden lane change. This problem is addressed by developing a stochastic model predictive controller

with the aim of minimizing the spacing error. There, the probability of a cut-in maneuver is calculated,

which, in turn, is used to update at each time instance the input acceleration. However, it is not clear

how the safe distance can still be satisfied or how fast the violated area can be cleared in an emergency

situation. Similar to [91], in [203], the probability of a cut-in maneuver is calculated under the assumption

that the leading vehicles, as well as the cutting-in vehicle, are driving with constant acceleration. The

calculated probability value is then fed to a MPC-based controller.

The scenario where a vehicle cuts in front of a convoy formation is considered in [115]. A model

predictive approach is used to control the vehicle convoy by predicting the lane change trajectory of

the cutting-in traffic participant. Although the cost function used to generate the control inputs for

the vehicle convoy integrates the prediction of the other traffic participant behavior, safety cannot be

guaranteed due to the possibility of unexpected maneuvers of the surrounding vehicles.

Often, achieving efficient and comfortable driving, while still guaranteeing safety with respect to the

future possible behavior of other traffic participants are contradictory requirements. In general, current

longitudinal control schemes only consider rather simple traffic scenarios, e.g., the situation when the

first leading vehicle performs an emergency maneuver. If the first leading vehicle is performing a lane

change because there is a static obstacle ahead, it is possible that no feasible control input exists such

that the ego vehicle is able to avoid a collision. Therefore, not only the closest leading vehicle must be
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considered when generating an input for the ego vehicle, but also vehicles driving further out in the ego

lane.

Moreover, the driving situation where the inter-vehicle distance is suddenly reduced due to another

third vehicle performing a cut-in maneuver, that aims for the inter-vehicle distance between the ego and

leading vehicle has to be considered such that the ego vehicle can restore the safe distance as soon as

possible.

2.1.2 Contributions

The following contributions are introduced in this chapter:

• One of the major contributions of this chapter is the design of a control scheme similar to a safety

net, which consists of a nominal controller, supervised by an emergency controller, which is activated

only when the nominal control is no longer feasible. This novel control scheme can guarantee safety

at all times by considering unexpected behavior of the other traffic participants. Comfort is also

achieved by introducing a new braking profile for the emergency maneuver.

• In order to guarantee safety, a correct safe inter-vehicle distance based on different emergency

braking profiles is computed. Multiple braking profiles used for generating the emergency maneuvers

are analyzed, and a discussion is held on how the emergency profile design influences the safe inter-

vehicle distance and the jerk.

• In addition to the typical leading-follower vehicle setup, where the ego vehicle must keep a safe

inter-vehicle distance from the vehicle driving ahead in the same lane, other traffic participants

that are driving in the adjacent lanes are also considered. If a surrounding vehicle initiates a lane

change aiming at the gap between the ego vehicle and its leading vehicle, leading to the violation

of the safe distance, an acceleration command is calculated for the ego vehicle to clear the violated

area.

• Several tests considering multiple scenarios, including a comparison with a standard ACC, were

performed in order to assess our approach.

This chapter is based on previous work that was already published in [121].

2.2 Preliminaries and Problem Formulation

Here, some preliminaries and notations used throughout this chapter are presented.

We refer to the driving sector, which is constrained by a left and right boundary, as a lane. We denote

the ego vehicle by E, i.e., the vehicle to be controlled. Throughout this thesis, the term of “ego vehicle”

and “host vehicle” will be used interchangeably. The surrounding vehicles V�,i represent the other traffic
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2. Safe Longitudinal Control of Autonomous Vehicles

participants, driving in the proximity of the ego vehicle, where � ∈ {left, right, lead}, i ∈ {1, 2, · · · , N�},

and N� is the number of the detected surrounding vehicles in different lanes, depending on the sensor

capabilities of the ego vehicle. The lower the subscript index i, the closer the vehicle is with respect to

the ego vehicle. Note that this thesis does not include any sensor performance analysis.

In the following, a highway traffic scenario is considered. In this chapter, only the longitudinal

movement of the ego vehicle along a given lane is examined. We assume that the desired lane is given by

a tactical planner. For now, the lane change maneuvers of the ego vehicle are not considered.

Definition 2.1 (Occupancy of a vehicle). The occupancy Γ(V, t) : {E, V�,1, · · · , V�,N} × R+ → P (R2),

represents the rectangle that encloses the body of a vehicle V , at time t. The occupancy Γ(V, t) is

computed based on the position and the orientation at time t, and the size (length and width) of the

vehicle; Uncertainties in the measurements can be considered as well.

In the following definitions, the � subscript from the notation V�,i will be omitted, for readability

purposes.

Definition 2.2 (Inter-vehicle distance). The inter-vehicle distance δ(Vi, Vj, t), i 6= j, between vehicles Vi

and Vj at time t, is defined as the minimum displacement between their corresponding occupancies.

Definition 2.3 (Safe distance). The safe distance dsafe(Vi, Vj, t) represents the minimum inter-vehicle

distance that must be kept between vehicles Vi and Vj, i 6= j, such that a collision can still be avoided

through braking in the event that the vehicle driving ahead initiates an emergency maneuver.

2.2.1 Assumptions

Throughout this chapter, the following assumptions are made:

1. No communication between the vehicles (V2V) or vehicle to infrastructure (V2I) is assumed. There-

fore, the ego vehicle does not know the future velocity and acceleration of the surrounding vehicles.

The entire set of data regarding the environment and the other traffic participants are acquired and

then predicted by the ego vehicle.

2. The current information regarding the other traffic participants is acquired through the ego vehicle’s

sensors (e.g., see [87]). Note that the performance analysis of a vehicle’s sensor (e.g., LIDAR, laser,

camera) is beyond the scope of the work presented in this thesis. For information regarding the

performance of sensors, the reader is referred to [170].

3. An efficient state estimation method is available, and it provides an accurate measurement of the

ego state.
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2.2 Preliminaries and Problem Formulation

4. The maximum deceleration capability of other traffic participants can be estimated (for example,

by differentiating them into different classes, as motorbike, truck, car, etc., or by considering the

friction coefficient of the road surface the vehicle is driving on1.)

5. In this chapter, we assume that a high-level planner is available, and it requests keeping the current

lane for the ego vehicle.

6. In the event that a surrounding vehicle initiates a cut-in maneuver (i.e., a lane change maneuver

aimed at the gap between the ego vehicle and another vehicle driving ahead) that violates the safe

inter-vehicle distance, the ego vehicle does not accelerate until the safe distance is restored.

2.2.2 Vehicle System Dynamics

In the following, the mathematical model for a vehicle following setup is derived, as illustrated in Fig. 2.2.

For simplicity, we illustrate only one leading vehicle, Vlead.

s̃ego

E

E

Vlead

Vlead

time t :

time t+∆T :

sego slead

aego

alead

dlead

∆s

amin
dego

dsafe

dsafe

asafe

δ(E, Vlead, t)

Figure 2.2: Vehicle following setup.

Both the ego and leading vehicle are described by their absolute position, sego and slead. The position

sego represents the front of the ego vehicle and slead the rear of the leading vehicle. The current absolute

velocity vego and vlead and the absolute acceleration aego and alead are acquired through the ego vehicle’s

1The deceleration capability of a vehicle driving on a road covered in ice is reduced compared to the situation where
the vehicle is driving on a dry road.
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2. Safe Longitudinal Control of Autonomous Vehicles

sensor set. The measured inter-vehicle distance between the ego and leading vehicle, δ(E, Vlead, t), is

calculated as δ(E, Vlead, t) = slead − sego.
A rather simple model is used to design the controller for the ego vehicle:

ẋ = Ax+Bu, A =





0 1 0
0 0 −1
0 0 0



 , B =





0
0
1



 ,

x =





∆s
∆v
aego



 , u = jego,

∆s = δ − dsafe, ∆v = vlead − vego, (2.1)

where the control variable u is the jerk of the ego vehicle jego (jerk is the time derivative of acceleration).

The state and control inputs are only allowed to take values within the following intervals:

0 ≤ ∆s ≤ ∆smax,

amin ≤ aego ≤ amax,

jmin ≤ jego ≤ jmax, (2.2)

where ∆smax, amin, amax, jmin, and jmax are user-specified parameters. An additional constraint is

considered for the acceleration of the ego vehicles, in order to achieve string stability [92]:

aego,k ≤ max
τ∈[k−H,k]

|alead,τ |, k ∈ {1, . . . , Npred}, (2.3)

where Npred is the predicted horizon, H is the size of the time window, and tk is the current timestamp.

In other words, in order to achieve string stability, the acceleration of the ego vehicle should be bounded

by the acceleration profile of the leading vehicle over the past time interval [tk −H, tk].

2.2.3 Problem Formulation

When focusing on the longitudinal motion of the ego vehicle, three main categories of traffic scenarios

can be distinguished depending on the behavior of the other traffic participants (since we assume that

the ego vehicle is following the current lane). First, if there is no leading vehicle, typical cruise control

(CC) can be applied such that a predefined velocity is maintained by the ego vehicle. When other traffic

participants are driving in the proximity of the ego vehicle, two other possible traffic situations may occur

where the ego vehicle has to adapt its behavior such that a potential rear-end collision can be avoided.

In the first of these two situations involving other traffic participants, one of the leading vehicles

initiates an emergency brake and a collision may be inevitable if the inter-vehicle distance δ(E, Vlead,1, t)

is not large enough. Therefore, a correct safe inter-vehicle distance must be computed such that a collision
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2.2 Preliminaries and Problem Formulation

(a) The current safe distance is satisfied δ(E, Vlead,1, tk) ≥ dsafe(E, Vlead,1, tk).

(b) The safe distance is violated by the cut-in vehicle δ(E, Vleft,1, tk+1) < dsafe(E, Vleft,1tk+1).

safe region
dsafe( · , · , t)

intended cut-in
maneuver

E

E

Vleft,1

Vleft,1

Vlead,1

Vlead,1

Vright,1

Vright,1

∆s

∆s

Figure 2.3: A traffic participant Vleft,1 starting a lane change maneuver towards the inter-vehicle gap
between the ego and the leading vehicle.

can be avoided only through braking. The primary issue we deal with here is the design of a control

scheme to guarantee that the safe inter-vehicle distance is not violated even in the worst-case scenario

where the leading vehicle starts an emergency maneuver. In addition, the generated maneuvers should

be comfortable but should not jeopardize safety.

The next considered situation involving other traffic participants represents one where the surrounding

vehicles driving in adjacent lanes initiates a lane change towards the current lane and violate the safe

distance, as illustrated in Fig. 2.3. Thus, the ego vehicle must cope with the unexpected maneuvers of

other traffic participants by restoring the violated safe distance as soon as possible.

To summarize, a unified framework must be designed to control the longitudinal movement of the

ego vehicle which guarantees that the ego vehicle will not produce a rear-end collision with the leading

vehicle and, in the case of an unexpected cut-in maneuver performed by a vehicle driving in an adjacent
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yesyes no no

Init

Vehicle selection

∃ Vlead,i? ∃ Vleft,i?
∃ Vright,i?

Compute input CC

Compute input ACC Compute inputs w.r.t. cut-in maneuvers

Selection safe control input

➀

➁

➂ ➃

➄

Sec. 2.3.1

Sec. 2.3.2

Sec. 2.3.3 Sec. 2.3.4

Sec. 2.3.5

Figure 2.4: Architecture for generating the safe longitudinal control input algorithm.

lane, the ego vehicle shall reestablish the safe distance in a given amount of time.

2.3 Safe Longitudinal Control

In this section, our approach for generating longitudinal control with safety guarantees for the ego vehicle

is presented, as illustrated in Fig. 2.4. To ensure that the inter-vehicle distance between the ego and

leading vehicle is larger than the desired safe distance, an ACC system with safety guarantees was

proposed in our previous work [121]. First, a required safe braking distance is computed for the ego

vehicle. Then, an MPC controller tries to generate an acceleration command for the ego vehicle such

that the safe distance is satisfied by assuming the most likely behavior of the leading vehicle. Here,

a simple prediction that assumes constant velocity is applied. However, more sophisticated prediction
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2.3 Safe Longitudinal Control

algorithms could be used as well. The generated control input is then applied to the ego vehicle only if

it is verified as safe, i.e., by applying this control input, the desired safe distance is not violated even in

the worst-case scenario of the leading vehicle fully braking.

The general architecture is determined by five main steps: ➀ First, we select the vehicles that could

influence the behavior of the ego vehicle by considering the braking distance of the ego vehicle and the

predicted behavior of the other traffic participants (Sec. 2.3.1). ➁ If there are no selected vehicles, then a

typical cruise control is applied to the ego vehicle (Sec. 2.3.2). ➂ Otherwise, if there are vehicles driving

in the ego lane, an ACC input with respect to each of those vehicles is generated (Sec. 2.3.3). ➃ If there

are surrounding vehicles driving in adjacent lanes and initiating lane change maneuvers towards the ego

lane, a corresponding control input is generated with respect to each cutting-in vehicle, such that the

corresponding safe distance is restored as soon as possible (Sec. 2.3.4). ➄ Lastly, only one control input

is selected to be applied to the ego vehicle, such that safety is satisfied with respect to all the considered

vehicles (Sec. 2.3.5). Each step will be described in more detail in the following sections.

2.3.1 Vehicle Selection

In this section, a method to select the relevant vehicles that could influence the behavior of the ego

vehicle is presented. Since it is assumed for now that the ego vehicle may only move autonomously in the

longitudinal direction along the current lane and that no lane change is performed by the ego vehicle1, the

traffic situation could change primarily due to the following types of actions of the surrounding vehicles:

i) Let us first consider the vehicles driving in the same lane as the ego vehicle. If the closest leading

vehicle engages an emergency brake, the ego vehicle should be able to avoid a collision. Moreover, if the

closest leading vehicle performs a lane change because the next leading object has a lower velocity or is

at a standstill (e.g., a stopped vehicle or a construction site), the ego vehicle should be able to avoid a

crash with the next leading object as well. This is valid for all objects that are driving or are situated

within the stopping distance of the ego vehicle.

ii) Secondly, the other traffic participants driving in adjacent lanes are considered. However, the ones

that maintain their current lane do not directly affect the future behavior of the ego vehicle. Therefore,

only the vehicles, whose intended maneuver is to perform a lane change towards the ego lane are considered

here.

Let us first introduce the stopping distance of the ego vehicle. Given the current velocity vego,

assumption of the maximum deceleration amin of the ego vehicle, and considering the reaction time treact

corresponding to the latency of the actuators, the stopping distance of the ego vehicle dstop,ego can be

1To perform a lane change, a vehicle is required to maintain the safe distance while approaching an inter-vehicle gap
from an adjacent lane.
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defined as follows [158]:

dstop,ego = treact · vego +
v2ego

2 · |amin|
. (2.4)

Next, we define dselect as the distance measured from the current position of the ego vehicle within which

the relevant vehicles are selected. We set dselect = dstop,ego since, in this way, we are already considering

the worst-case scenario where all vehicles within the stopping distance are taken into account. This means

that there will be no collision with any vehicles driving outside this area since a standstill would have

been already reached by the ego vehicle, outside the selected distance.

Then, we define the selected relevant surrounding vehicles Vselected as follows (see Fig. 2.5):

Vselected =
{

V�,i | [δ(E, V�,i, t) ≤ dselect ] ∧ [ (� = lead ) ∨ (� ∈ {left, right} ∧

V�,i performs a lane change towards the ego lane ) ]
}

. (2.5)

Note that we are not considering any future intended maneuvers of the leading vehicles (i.e., change to

the left/right adjacent lane) until they actually reach the target adjacent lanes since we must guarantee

that no rear collision with any of the leading vehicles will occur. It is, therefore, better to consider that

the leading vehicle(s) will remain within the current lane rather than erroneously predicting a lane change

and a rear-end collision to take place.

Vright,2

Vleft,1

E Vlead,3
Vlead,1 Vlead,2

Vright,1

Vleft,2

dselect
intended maneuver

Figure 2.5: Vehicle selection based on the stopping distance of the ego vehicle and on the intended maneuver
of the vehicles driving in adjacent lanes. The selected vehicles are represented with a solid line whereas the
discarded vehicles are represented with a dashed line.

2.3.2 Cruise Control

After the selection of the surrounding vehicles that could influence the behavior of the ego vehicle,

if no surrounding vehicles are selected, then typical cruise control (CC) is applied to the ego vehicle.

Although cruise control systems have been already extensively studied both in academia and industry,
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for completeness a brief introduction to CC systems is subsequently presented. Since no surrounding

vehicles are involved here, the dynamics of the ego vehicle can be modeled by a double integrator:

ẋCC =

(

0 1
0 0

)

xCC +

(

0
1

)

jego,

xCC =

(

∆vego
aego

)

and ∆vego = |vego − vdes|, (2.6)

where | · | represents the absolute value and vdes is the desired speed. To increase the driving comfort by

gradually reaching the desired velocity, the following cost function is introduced:

JCC =

Ncc
∑

i=1

γv,i ·∆v2ego(ti) + γu · j2ego(ti), (2.7)

where Ncc is the time horizon for calculation of the control input for cruise control and γv,i, γu are

the weighting parameters corresponding to ∆vego and jego, respectively. Finally, the control problem is

formulated as follows:
min

aego(ti)
JCC

subject to ∀i ∈ {1, . . . , Ncc} :

jmin ≤ jego(ti) ≤ jmax,

∆vego ≤ ∆vmax,

eq. (2.7).

(2.8)

2.3.3 Adaptive Cruise Control

If among the selected vehicles, there are vehicles driving in the current lane, then the ego vehicle should

apply an ACC control input such that the corresponding safe inter-vehicle distance is kept with respect

to the leading vehicle.

However, maintaining a safe inter-vehicle distance only with respect to the closest leading vehicle

Vlead,1 (as illustrated in Fig. 2.3) is not sufficient to ensure safety. If the closest leading vehicle Vlead,1 is

changing its lane due to another vehicle that is driving slower, or due to a static obstacle, the ego vehicle

may not be able to find any acceleration input such that a safe distance is kept with respect to the next

leading vehicle Vlead,2, or no emergency maneuver could exist such that a collision is avoided.

In contrast to a typical ACC, where the longitudinal control input is calculated only with respect to

the closest leading vehicle, we generate a longitudinal control input with respect to each vehicle driving

ahead of the ego vehicle in the same lane such that safety is guaranteed. Choosing which control input

to be applied among the generated ones is later explained in Sec. 2.3.5. In this section, for the purpose

of notation simplicity, we exemplify the ACC design for only one leading vehicle Vlead. Nevertheless,

generation of the ACC control input for each of the leading vehicles is done in the same manner.
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yes no

Initialization

Compute: dsafe(t), u(t), asafe(t)

t← t+∆T

δ(t) < dsafe(t)

Apply u(t)

Receive new measurements for the leading vehicle;
update state for the ego and the leading vehicle.

Apply asafe(t)

Figure 2.6: Control scheme of our proposed ACC concept.

To guarantee collision avoidance, we embed standard controllers for adaptive cruise control into a

framework that ensures that safe distance calculated with respect to the leading vehicle is satisfied at

all times. The main idea behind this is to always have a safe braking trajectory available that is able

to bring the ego vehicle to a safe stop, even when the leading vehicle suddenly fully brakes. As long

as the standard controller, which we refer to as the nominal controller, is able to keep an inter-vehicle

distance δ(E, Vlead, t) ≥ dsafe(E, Vlead, t), the nominal controller stays in action. If, however, there exists

no feasible input u(t) such that δ(E, Vlead, t) ≥ dsafe(E, Vlead, t), a precomputed emergency maneuver

asafe(t) is engaged so that safety is not jeopardized. This can be guaranteed since the precomputed

emergency control asafe(t) is calculated such that a collision can be avoided, even in the worst-case

scenario when the leading vehicle fully brakes. The main control scheme is illustrated in Fig. 2.6.

In the following section, Sec. 2.3.3.1, several braking profiles with respect to the length of dsafe and

the jerk1 values of the braking trajectory are studied. A more gradual engagement of brakes decreases

jerk and thus increases comfort, while enlarging the required safe distance dsafe. Controllers for tracking

1Jerk represents the time derivative of acceleration; it is a typical measure for driving comfort.
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the pre-computed braking trajectory are not discussed as the focus of this work in on the novel aspect of

guaranteeing collision avoidance. During the emergency maneuver, if the inter-vehicle distance becomes

again safe, i.e., δ(E, Vlead, t) > dsafe(E, Vlead, t) since dsafe has shortened due to the fact that the preceding

vehicle has not engaged brakes to the expected extent, the control is taken back by the nominal controller.

Since (i) we choose braking profiles such that they initially engage mildly and (ii), in almost all cases,

control quickly goes back to the nominal controller, passengers would not realize that an emergency

trajectory was engaged.

In this work, we use model predictive control (MPC) as the nominal controller, since MPC provides

optimal solutions while attempting to meet constraints—this, however, is not always achieved due to

assumptions on the behavior of the leading vehicle, that are not always correct. Our MPC is computed

based on the assumption that the leading vehicle moves with constant velocity, which is a reasonable

assumption to optimize ride comfort, but safety cannot be ensured since the leading vehicle may suddenly

brake. Therefore, an emergency controller must be applied when a critical situation occurs. The control

output of the MPC is denoted by u(t). Our cost function for the MPC is rather standard and can

be formulated as a quadratic programming (QP) problem where all matrices have appropriately chosen

dimensions:

min
u
J(x(t), u(t)) = xTN |tPxN |t+

+

N−1
∑

i=0

(

xTi|tQxi|t + uTi|tRui|t

)

, subject to: (2.2)-(2.3),

where:

• xi|t and ui|t are the state and input at time i, based on the state measurement at time t, respectively,

• J( · , · ) is the cost function, N is the prediction horizon,

• matrix Q ≥ 0 weights the state vector,

• matrix R > 0 penalizes the control input,

• terminal cost P is chosen to guarantee stability.

To summarize the proposed control scheme, first an optimal control output u(t) is generated under

the assumption that the leading vehicle is driving with constant velocity vlead. At each sample time we

verify if the safety distance dsafe is satisfied after applying u(tk) for one time step. This means we check if

there exists an emergency maneuver asafe that can bring the ego vehicle to standstill while avoiding any

collision, even in the worst-case scenario when the leading vehicle brakes with full deceleration amin (see

Fig. 2.7b). If the verified control output u(tk) yields a safe distance, then u(tk) is applied to the system.
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Nevertheless, if no feasible control output u(tk) is found such that the safe distance is satisfied

δ(E, V, tk+1) ≥ dsafe(E, V, tk+1) (as illustrated in Fig. 2.7c), a gradual emergency maneuver asafe(tk) is

applied, which guarantees safety, for any deceleration profile of the leading vehicle. Until a new safe

control output u(t) is found, the pre-computed emergency maneuver is applied.

2.3.3.1 Safe distance and acceleration profile of the emergency maneuver.

In [158], a formal analysis for safe distance computation is presented, however, only the case where

constant acceleration is applied is considered. Here, four different deceleration profiles are analyzed. We

select the solution that guarantees safety at all times and additionally assures comfort by minimizing

jerk. Based on these criteria, we propose a mixed deceleration profile asafe(t) and we compute the safe

braking distance dego such that a collision can be avoided. Moreover, the jerk values are kept within

given limits such that uncomfortable driving is avoided, if the dangerous situation resolves.

Constant full deceleration. One of the most straightforward approaches is to apply constant full

deceleration: asafe(t) = amin, t ≥ 0. This profile provides the smallest safe distance possible. However,

applying full deceleration leads to uncomfortable driving. Moreover, due to the jerky behavior, traffic

flow might be hindered.

Linear deceleration. Another possible profile is linear deceleration: asafe(t) =
amint

c
, t ≥ 0, c > 0,

amin ≤ asafe(t) < 0. The jerk values introduced by this profile are lower since the acceleration is linearly

decreasing. However, the braking distance corresponding to this profile is larger than the one correspond-

ing to the constant full deceleration profile described previously.

Exponential deceleration. The exponential deceleration profile is defined as follows:

asafe(t) = 1− ct, t > 0, c > 1, amin ≤ asafe(t) < 0. (2.9)

When applying the exponential deceleration, the jerk value is even less compared to the one produced

by the linear deceleration. Therefore, if the leading vehicle fully brakes for only one time step, the ego

vehicle will smoothly brake, making this deceleration profile suitable for systems whose measurements are

affected by noise. In the following, the computation of the braking distance is derived: Given a = v̇ and

v = ṡ, where v and s are velocity and position; s is the solution of the differential equation s̈ = asafe(t).

Let us first define the braking time of the ego vehicle tstop,H as the time when the velocity reaches 0,

where the initial velocity is ṡ(0) = v0, and tH represents the time when the maximum deceleration is

reached. The braking distance dego is the exact solution of s̈ = asafe(t), computed for the braking time
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Figure 2.7: Adaptive cruise control. Switching between nominal control and emergency maneuver.
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tstop,H, by double integrating the acceleration:

dego =
1

ln2c
+
t2H
2
− ctH

ln2c
+
t stop,H

lnc
+ v0tstop,H. (2.10)

Mixed deceleration. The previous deceleration profiles introduce several benefits (e.g., providing the

shortest safe distance) but also a series of drawbacks: (i) if constant maximum deceleration is applied, the

jerk is a Dirac function, so the value goes to infinity, and (ii) by applying linear or exponential deceleration,

while the value of jerk is comfortable, the braking distance is too long. This could result in frequent cut-in

maneuvers performed by vehicles driving in adjacent lanes. To overcome these disadvantages, a mixed

deceleration profile is proposed:

asafe(t) =

{

1− ct if t ≤ tH,
amin if tH < t ≤ tstop,H,

tH = logc (1− amin),

t > 0, c > 1, amin ≤ asafe(t) < 0. (2.11)

The parameter tH represents the time when the maximum deceleration is reached during exponential

deceleration so that we continue with full braking. Hereafter, the mixed deceleration profile is utilized to

generate the acceleration profile that is employed during the emergency maneuver.

D
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Figure 2.8: Safe distance computation.

Let sL(t) = slead + vleadt −
1

2
|amin|t2 be the function that describes the leading vehicle position and

vL(t) = vlead − |amin|t be the leading vehicle velocity, considering the worst-case scenario where full

brake is applied. Let sH(t) be the function that describes the ego vehicle’s position. Then, the required
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inter-vehicle distance dsafe that must be maintained in order to guarantee safety is computed as:

dsafe = slead − sE − dmin,

where the distance between sL(t) and sH(t) over a time interval ∆τ is:

dmin = min
t∈∆τ

(sL(t)− sH(t)).

To compute dsafe, we analyze the monotonicity of sL(t)− sH(t). Both sL(t) and sH(t) are monotonically

increasing over time intervals ∆τ = [tmin, tmax], where tmin, tmax ∈ {tstop,L, tH, tstop,H} and

tstop,L =
vlead
|amin|

,

tH =
ln(1− amin)

ln(c)
,

tstop,H =
1

|amin|

(

tH +
1− ctH
ln(c)

+ vego

)

,

where tstop,L is the braking time of the leading vehicle, and | · | represents the absolute value of a real

number.

Next, to analyze the monotonicity of the inter-vehicle distance, we first compute all possible permu-

tations between tH, tstop,H, and tstop,L, since the acceleration mode changes at this points in time. In

the following, it is considered that zero acceleration determines a standstill state. There are six possible

situations, based on the applied accelerations (alead ∈ {0, amin} and aego ∈ {0, amin, 1− ct}), described in

Table 2.1.

Table 2.1: Changes in the monotonicity of the inter-vehicle distance based on the time when the acceleration
mode changes.

Situation # Condition

# 1 tH ≤ tstop,L ≤ tstop,H
# 2 tstop,L ≤ tstop,H ≤ tH
# 3 tstop,L ≤ tH ≤ tstop,H
# 4 tstop,H ≤ tH ≤ tstop,L
# 5 tstop,H ≤ tstop,L ≤ tH
# 6 tH ≤ tstop,H ≤ tstop,L.

In the following, we compute dmin,∆τ considering all possible combinations of the applied deceleration

of the ego and leading vehicle for each time interval. For example, in Fig. 2.8 three different cases can

be distinguished: t ∈ [0, tH] : alead = amin, aego = 1− ct; t ∈ [tH, tstop,L] : alead = amin, aego = amin;

t ∈ [tstop,L, tstop,H] : alead = 0, aego = amin. The other cases are similar depending on the situation. The
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2. Safe Longitudinal Control of Autonomous Vehicles

cases when both vehicles are at standingstill or when the ego vehicle is at standingstill and the leading

vehicle is braking are not considered because they represent obvious safe situations. Therefore, only the

remaining four combinations of acceleration are analyzed, as shown in Table 2.2.

Table 2.2: Possible combinations of applied deceleration.

case (a) case (b) case (c) case (d)

Lead amin standstill standstill amin

Ego amin amin 1-ct 1-ct

Subsequently, each case is analyzed and dmin is computed as the minimum over all dmin,∆τ where

∆τ = [tmin, tmax], tmin, tmax ∈ {tH, tstop,H, tstop,L}, depends on the scenario.

• Case (a): ∆v = vlead(t)− vEgo(t), t ∈ ∆τ ;

if ∆v > 0 then ∆s(t) is increasing on ∆τ ⇒ dmin,∆τ = sL(tmin)− sH(tmin);

if ∆v < 0 then ∆s(t) is decreasing on ∆τ ⇒ dmin,∆τ = sL(tmax)− sH(tmax).

• Case (b): ∆v = 0− vH(t) < 0 then ∆s(t) is decreasing on ∆τ ⇒ dmin,∆τ = sL(tmax)− sH(tmax).

• Case (c): ∆v = 0− vH(t) < 0 then ∆s(t) is decreasing on ∆τ ⇒ dmin,∆τ = sL(tmax)− sH(tmax).

• Case (d): The variation of the velocity is described by ∆v = amint+ vlead − t− vego −
1− ct
ln(c)

; to find

if ∆s is increasing or decreasing, ∆v = 0 is computed. Therefore, the critical point of ∆s is:

t0 = −
q ln(c) + p LambertW

(

0,
ln(c)

p p
√
cq

)

p ln(c)
,

where p = (amin − 1)ln(c), q = 1+ (vlead − vego)ln(c), and the LambertW function is the inverse function

of f(W ) = WeW . To check if ∆s(t) has a minimum or a maximum value at time t0, we compute the

second derivative: ¨∆s(t) = ∆a(t) = amin − (1 − ct). Since ∆a(t) < 0 ⇒ ∆s(t0) has a maximum at t0.

Therefore, the minimum of ∆s(t) can be at either tmin or tmax. Three further cases can be distinguished:

(d.1): t0 < tmin ⇒ ∆s(t) is decreasing on ∆τ ⇒ dmin,∆τ = sL(tmax)− sH(tmax);

(d.2): t0 > tmax ⇒ ∆s(t) is increasing on ∆τ ⇒ dmin,∆τ = sL(tmin)− sH(tmin);

(d.3): t0 ∈ [tmin, tmax] ⇒ dmin,∆T =

{

∆s(tmin), if ∆s(tmin) < ∆s(tmax)

∆s(tmax), if ∆s(tmin) ≥ ∆s(tmax)
.

To summarize, first the time intervals [tmin, tmax], tmin, tmax ∈ {tH, tstop,H, tstop,L} are selected depend-

ing on the scenario, as shown in Table 2.1. Then, dmin is computed accordingly, based on the applied

deceleration profiles. Finally, the safe distance dsafe is computed by applying the proposed deceleration

profile asafe(t) such that any collision can be avoided.
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2.3 Safe Longitudinal Control

2.3.4 Reaction to Cut-in Maneuvers

Apart from the vehicles driving in the ego’s lane, the selected vehicles driving in the adjacent lanes can

influence the behavior of the ego vehicle. Recall that among the surrounding vehicles driving within the

stopping distance of the ego vehicle, only those who are initiating a lane change towards the ego’s lane

(referred to as cutting-in vehicles) are selected.

To decide how the ego vehicle should react to the cutting-in vehicle, let us first introduce the concept of

Inevitable Collision State (ICS) [49]:

Definition 2.4 (Inevitable collision state). A vehicle is in an inevitable collision state if a collision with

an obstacle (static or dynamic) is inevitable, no matter the future trajectory of the vehicle.

A cut-in maneuver performed by a surrounding vehicle can result in three possible traffic scenarios:

1. The ego vehicle is in an inevitable collision state (not only the safe distance is violated, but the

collision cannot be avoided, even by applying full brake);

2. The safe distance is violated, but the ego vehicle is not in an inevitable collision state and the safe

distance can be restored by engaging a clearance acceleration;

3. The safe distance is not violated; therefore, the behavior of the ego vehicle is not affected by the

cut-in maneuver.

In order to determine which traffic scenario the ego vehicle will end up in due to the cutting-in maneu-

ver, the future occupancy of the cutting-in vehicle is required. Once a lane change maneuver towards the

ego lane is predicted, the trajectory associated with it is predicted as well. However, instead of using a

prediction algorithm, we are directly projecting the current occupancy of the cutting-in vehicles Γ(V, t0),

V ∈ {Vleft,i, Vright,i} onto the ego’s lane, by considering that a lane change is performed instantaneously.

This approach will enhance safety due to the overapproximative manner of computing the future trajec-

tory of the cutting-in vehicle, since by considering an instantaneous lane change, the most aggressive lane

change a vehicle can perform, is already incorporated. Moreover, this approach is also computationally

inexpensive.

Definition 2.5 (Projected occupancy of a surrounding vehicle). The projected occupancy Γp(V, t) of

a surrounding vehicle V ∈ {Vleft,i, Vright,i} onto the ego vehicle’s lane is represented by the oriented

bounding box corresponding to the occupancy Γ(V, t) rotated in the driving direction and translated to

the center line of the ego’s lane.

After the predicted occupancy is generated, if no inevitable collision state is detected, a clearance

acceleration is computed for the ego vehicle, such that the violated safe distance is restored. In the

following, we present a method for determining whether the ego vehicle is in an inevitable collision

state with respect to the projected occupancy Γp(V, t), by considering that the cutting-in vehicle V can

instantaneously reach the ego vehicle’s lane, once a lane change is predicted.
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2. Safe Longitudinal Control of Autonomous Vehicles

2.3.4.1 Inevitable Collision State

To check if a cut-in maneuver could lead to an ICS, two different behaviors are assumed for the cutting-

in vehicle once the ego vehicle’s lane is reached. Case (i): the cutting-in vehicle fully accelerates; and,

Case (ii): the cutting-in vehicle drives with constant velocity. For both cases, it is assumed that the ego

vehicle engages full deceleration amin starting when the cutting-in vehicle reaches the ego vehicle’s lane

until standstill is reached at time

tE, stop =
vE(t0)

amin
. (2.12)

Case (i): To verify if a collision is inevitable, we first assume that the cutting-in vehicle applies full

acceleration amax once the target lane — on which the ego vehicle drives — is reached. Then, we check

whether a collision would occur between the current time t0 and the stopping time of the ego vehicle,

tE, stop. To find the possible collision time, we solve sE(t) = sV (t) where

sE(t) = sE(t0) + vE(t0)t+
amint

2

2
, (2.13)

sV (t) = sV (t0) + vV (t0)t+
amaxt

2

2
. (2.14)

This results in a quadratic equation in t, with two possible solutions:

t1 =
−(vC(t0)− vE(t0)) +

√
∆1

amax − amin
, (2.15)

t2 =
−(vV (t0)− vE(t0))−

√
∆1

amax − amin
, (2.16)

where ∆1 = (vV (t0)− vE(t0))2 − 2(amax − amin)(sV (t0)− sE(t0)). Finally, a collision is inevitable if any

of the solutions t1 or t2 satisfies the following condition:

(t0 ≤ t1 ≤ tE, stop) ∨ (t0 ≤ t2 ≤ tE, stop)→ ICS. (2.17)

Case (ii): If no ICS is detected in Case (i), we further assume the average case scenario, where the

cutting-in vehicle continues driving with constant velocity, once the target lane is reached. To check

whether there is an ICS in this case, we compute the intersection time between the position of the two

vehicles sV (t) and sE(t), where

sV (t) = sV (t0) + vV (t) · t, (2.18)

by solving sV (t) = sE(t). This quadratic equation has two solutions t3 and t4,

t3 =
(vV (t0)− vE(t0)) +

√
∆2

amin
, (2.19)
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t0 :

t1 = t0 +∆t :

tclear :

· · ·

··
·

Γ(E, t0)

∆s(tclear)

Γp(V, t0)

Γp(V, t1)

Γp(V, t1)

Γp(V, tclear)

Γp(V, tclear)

Γ(E, t1)

Γ(E, tclear)

safe region dsafe(t)

maximum allowed position of the ego vehicle, smax,E(t)

smax,E(tclear)

predicted occupancy of vehicle V , Γ(V, t)

driving direction

sp,V (tclear)

Figure 2.9: After a cut-in maneuver is predicted, the maximum admissible position of the ego vehicle is
calculated, such that the inter-vehicle distance between the ego and the cutting-in vehicle is the safe distance.
A clearance acceleration should be generated such that the violated safe region is restored within a given
time horizon tclear.

t4 =
(vV (t0)− vE(t0))−

√
∆2

amin
, (2.20)

where ∆2 = (vE(t0)− vV (t0))2 − 2amin(sE(t0)− sV (t0)). There exists an ICS if the roots t3 or t4 satisfy

the following condition:

(t0 ≤ t3 ≤ tE, stop) ∨ (t0 ≤ t4 ≤ tE, stop)→ ICS. (2.21)

If ICS is detected (via eqs. (2.17) or (2.21)), then the ego vehicle must apply full deceleration amin in

order to mitigate the collision, as shown in Alg. 1. Otherwise, if no ICS is detected under the previous

assumptions, a clearance acceleration aclear(t) is computed for the ego vehicle such that the safe distance

is restored within a given time horizon tclear, as subsequently described in Sec. 2.3.4.2.

For the worst-case scenario where the cutting-in vehicle performs a full brake, the ICS can be evaluated

by using the approach in [158]. If there is an ICS detected, then the ego vehicle should engage full brake,

in order to mitigate the collision. However, the cutting-in vehicle must be held responsible for the possible

collision, since it violated the safe distance.
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2. Safe Longitudinal Control of Autonomous Vehicles

Algorithm 1 Behavior of the ego vehicle based on ICS detection.

Input: ∆t, xE(t0), xV (t0), V ∈ Sp
{left, right}

Output: aclear(t), t = t1, · · · , tclear
1 Assume amax for V and amin for E

if ICS == true ⊲ according to (2.17)

then

2 aclear(t)← amin; ⊲ such that the collision can be mitigated

3 else

4 Assume a = 0 for V and amin for E

if ICS == true ⊲ according to (2.21)

then

5 aclear(t)← amin; ⊲ mitigate the collision

6 else

7 Calculate aclear as described in Sec 2.3.4.2.

2.3.4.2 Clearance acceleration aclear computation

If the safe inter-vehicle distance is violated by a surrounding vehicle V that performs a cut-in maneuver,

the ego vehicle should gradually brake, such that the safe distance is restored within a given time horizon

tclear.

In order to restore the safe distance within a given time horizon tclear, a clearance acceleration

profile aclear(t) is generated. However, to compute aclear(t), the future safe distance dsafe(Γp(V, t)),

t = t1, · · · , tclear is required. As the future safe distance for the entire time horizon dsafe(Γp(V, t)) cannot

be computed since it depends on the unknown aclear(t), we approximate dsafe(Γp(V, t)) with an upper-

bound of the safe distance dsafe( · ).
We further assume that the cutting-in vehicle does not brake after the target lane is reached. Moreover,

once the safe distance dsafe(Γp(V, t)) is violated, we limit the maximum velocity of the ego vehicle to the

current value for the entire time horizon tclear, vE(t) ≤ vE(t0), t = t1, · · · , tclear, i.e., the ego vehicle does

not accelerate until the safe distance is restored.

Definition 2.6 (Upper bound of the safe distance dsafe). Assuming the minimum acceleration of the

cutting-in vehicle V is aV (t) = 0, and requiring the clearance acceleration of the ego vehicle aclear(t) ≤ 0,

t = t1, · · · , tclear, we define the upper bound of the safe distance calculated for the entire clearance time

horizon as dsafe(t) = dsafe(t0).

Recall that the clearance acceleration aclear(t) ≤ 0, where t0 < t ≤ tclear, is calculated only if an ICS is
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not detected when assuming that the cutting-in vehicle does not engage a braking maneuver aV (t) ≥ 0

(see Alg.1). If dsafe(t) is greater than dsafe(t0), t0 < t ≤ tclear, this would result in an ICS since at t0, the

ICS is already verified considering that the ego vehicle applies full emergency brake. On the other hand,

if an ICS was detected, instead of calculating the clearance acceleration, the collision would attempt to

be mitigated, as illustrated in Alg.1.

Next, a clearance acceleration aclear(t) is calculated such that the safe distance is restored within a

time horizon tclear. The overall approach for computing aclear(t) is presented in Alg. 2 and subsequently

explained. First, the safe distance dsafe(t0) is computed. Then, for all time instances within the clearance

time horizon ∀ti ∈
{

t1, t1 + ∆t, . . . , tclear
}

, the required safe distance dsafe(ti) is overapproximated with

dsafe(t0). Next, we predict the future position of the cutting-in vehicle sp,V (ti) for each time instance ti,

by utilizing (2.18). Let us denote by smax,E(ti), ti = t1, · · · , tclear, the maximum admissible position of

the ego vehicle (see Fig. 2.9), such that the safe distance is satisfied with respect to the predicted position

sp,V (ti) of the cutting-in vehicle V , then

smax,E(ti) = sp,V (ti)− dsafe(ti). (2.22)

Once the maximum allowed position of the ego vehicle is computed, the clearance acceleration aclear(ti) is

generated such that ∆s(tclear) ≥ 0 where ∆s(tclear) = d(E, V, tclear)− dsafe(tclear). To calculate aclear(ti),

the following objectives are considered: The position error ∆s(ti), and the jerk jclear(ti) = ȧclear(ti)

should be minimized, while constraints on position and acceleration are imposed, as will be subsequently

described. Therefore, the following objective function is introduced:

J =

Nclr
∑

i=1

γs,i(smax,E(ti)− sE(ti))2 + γuj
2
clear(ti), (2.23)

where Nclr =
tclear
∆t

represents the optimization horizon, γu is the weighting coefficient that penalizes the

jerk, and γs,i denotes the weighting coefficient penalizing the deviation of the ego vehicle’s position sE

at time instance ti from the corresponding reference position smax,E(ti).

To progressively achieve clearance of the violated area within tclear, we propose increasing the values

of the weighting parameters γs,i, such that the position smax,E(ti) is gradually reached 0 < γs,i < γs,i+1,
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2. Safe Longitudinal Control of Autonomous Vehicles

∀i ∈ {1, · · · , Nclr − 1}. Finally, the control problem is formulated as follows:

min
aclear(ti)

Nclr
∑

i=1

γs,i(smax,E(ti)− sE(ti))2 + γuj
2
clear(ti),

subject to ∀i ∈ {1, . . . , Nclr} :

smax,E(tclear)− sE(tclear) ≥ 0,

aclear(ti) ≤ 0,

eq. (1) - (3), (13).

(2.24)

Algorithm 2 Computation of acceleration aclear.

Input: ∆t, tclear, sE(t0), vE(t0), sV(t0), vV(t0)

Output: aclear(t), t = t1, t1 +∆t, . . . , tclear

1 while tclear ≥ 0 do

2 Calc. dsafe(t0);

forall ti ∈
{

t1, t1 +∆t, . . . , tclear
}

do

3 dsafe(ti)← dsafe(t0);

Calc. predicted position of V, sp,V (ti);

Calc. max. admissible position of E, smax,E(ti);

Calc. aclear(ti) subject to (2.24);

4 tclear ← tclear −∆t;

5 return aclear(t)

This control problem is solved at each time instance ti, which results in a sequence of control inputs

acleart(t); however, only the first control input is considered and the rest are discarded. Then, the

clearance time tclear is updated accordingly since the time required to clear the violated safe area is

reduced, as the time passes. Next, the states are updated and the control problem is solved again, for

the new optimization horizon, until the clearance time has passed.

2.3.5 Longitudinal Control Input Selection

After a control input is generated with respect to each selected vehicle (recall Fig. 2.4), only one control

input is chosen to be applied to the ego vehicle. If no surrounding vehicle is selected, the cruise control

acceleration command aCC is applied such that the desired speed is maintained. Otherwise, if selected

surrounding vehicles exist Vselected 6= ∅, the control input that can achieve safety with respect to all

surrounding vehicles must be chosen:
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along(t) =

{

aCC(t), Vselected = ∅

min{aACC(t), acut-in(t)} Vselected 6= ∅.
(2.25)

The acceleration that produces the most defensive driving is then chosen and applied to the ego vehicle.

Since all values of the generated acceleration profiles can achieve safety with respect to the corresponding

vehicles, selecting the acceleration profile that achieves the most defensive driving ensures a safe behavior

considering all selected vehicles.

2.4 Experimental Results

The presented approaches are evaluated with real traffic data for more than 300 vehicles. The data is

collected on a segment of US highway 101 (Hollywood Freeway) located in Los Angeles, California, on

June 15th, 2005, as part of the Next Generation SIMulation (NGSIM)1 project.

In this simulation, the vehicles from the dataset are considered as leading vehicles in the ACC setup.

For each vehicle, the following information is available at each sampling time: position, velocity, and

acceleration. In the typical scenarios, the lead vehicle is driving with variable acceleration; however, in

order to make the scenarios even more difficult, sudden brakes are added. The ego vehicle is positioned

behind the leading vehicle, with a randomly generated initial velocity and acceleration. For all considered

scenarios, the time step ∆t was set to 0.1 seconds, and the time horizon N was set to 3 seconds. The

allowed range of velocity, acceleration, jerk, and distance error are shown in Table 2.3.

Table 2.3: Allowed value range of different variables for the ACC setup.

Variable v[m/s] a[m/s2] j[m/s3] ∆s[m]

Allowed value range [0,60] [-10,10] [-2,2] [0,10]

Safe MPC-based ACC. Two different deceleration profiles are used to evaluate the safe MPC-based

ACC: full deceleration and mixed deceleration. For both cases, we evaluate the arithmetic mean j, ∆s,

δ, and the standard deviation σj , σ∆s, σδ associated with the variables j,∆s, and δ, respectively, for all

considered vehicles. The simulation results are shown in Table 2.4.

Table 2.4: Simulation results of safe ACC.

Brake j[m/s3] σj [m/s3] ∆s[m] σ∆s[m] δ[m] σδ[m]

Full -0.005 0.883 3.369 3.557 22.073 11.244

Mixed -0.006 0.298 0.287 1.071 23.773 6.080

1https://www.fhwa.dot.gov/publications/
research/operations/its/06135/
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As can be seen in Table 2.4, although the mean jerk value generated by applying full deceleration is

small, the standard deviation (σj = 0.883) shows that there is a broader range of jerk values compared

to that generated from the mixed deceleration profile (σj = 0.298). Moreover, because of the frequent

application of full braking, the safe distance tracking parameter ∆s shows a worse performance, when

compared with the case when mixed deceleration is applied. For mixed deceleration, it can be seen that

the value of j is small, which indicates comfortable driving without jerky maneuvers. The standard

deviation σj is also small, thus most of the jerk values are close to the mean value. The results show

good tracking performance, as the mean value of ∆s is small. The average distance between vehicles is

around 23m, which is comparable to the distance provided by the two-seconds distance rule1 [124], which

depends on the velocity.
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Figure 2.10: Safe MPC-based ACC: Full deceleration.

For illustration purposes, we only present the detailed simulation results for one considered scenario,

where the time duration of recording took more than 2 minutes. The simulation results when applying

the full deceleration profile are depicted in Fig. 2.10. It can be seen that large variations in the ego

vehicle’s acceleration lead to large variations in velocity (see Fig. 2.10). Moreover, the jerk caused by

frequently applying full brake induces uncomfortable driving.

Platooning using safe MPC-based ACC. In the following, we propose a four-vehicle setup to

evaluate the string stability. The trajectory of vehicle #1 is taken from the US101 dataset. The other

vehicles are driving one behind each other, directly behind vehicle #1. The three vehicles are controlled

1http://www.rotr.ie/rules-for-driving/speed-limits/
speed-limits 2-second-rule.html
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Figure 2.11: Safe MPC-based ACC: Mixed deceleration.
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Figure 2.12: Safe MPC-based ACC: Jerk values for mixed deceleration.

by our proposed algorithm with the task that vehicle #2 safely follows vehicle #1, vehicle #3 follows

vehicle #2, and vehicle #4 follows vehicle #3.

The velocities of the ACC-equipped vehicles (#2, #3, #4) smoothly follow the velocity of the leading

vehicle (see Fig. 2.13) when the mixed deceleration profile was applied. In approximately 10% of the

considered time, the emergency maneuver is engaged in order to not violate the safe distance. Still, jerk

values are maintained in the specified comfortable value range [74]. Even while the lead vehicle suddenly
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performs full braking, the ACC-equipped vehicles smoothly decelerate. Additionally, the position error

∆s introduced by the leading vehicle’s braking is attenuated in the upstream direction, as illustrated in

Fig. 2.13.
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Figure 2.13: Safe MPC-based ACC: Platooning setup with mixed deceleration.

The mean jerk values j and the standard deviation σj are small (see Table 2.4), which implies com-

fortable driving without jerky maneuvers. Maintaining the inter-vehicle distance as close as possible to

the safe distance dsafe by minimizing ∆s shows good tracking performance. In this way, both safety and

comfort are achieved by utilizing the proposed ACC concept.
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All simulations were performed on a machine with 2.2 GHz, Intel i7 processor and 16 GB 1600 MHz

DDR3 memory. The mean value of the computation time is 0.08s, showing that this approach is real-time

capable.
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Figure 2.14: Simulation results: PI-based ACC.

PI-based ACC. Lastly, we evaluate our method against a state-of-the-art ACC approach applied

in the automotive industry [39, 200], which utilizes proportional-integral control (PI). Here, we use an

implementation based on [200] where the desired inter-vehicle distance is a function of constant spacing,

constant time headway, and the velocity of the leading vehicle. Of course, other spacing policies can be

used, as proposed in the paper [200] (e.g., variable time headway).
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Even though the performance of the selected algorithm [200] shows to be effective with respect to

position and velocity tracking, the PI controller itself cannot guarantee safety. Since the position errors ∆s

have negative values, as illustrated in Fig. 2.14, the controller fails to safely track the desired inter-vehicle

distance.
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Figure 2.15: Simulation results: Reaction to a cutting-in vehicle.

Reaction to cut-in maneuvers. In this section, the reaction to a cut-in maneuver is evaluated. The

computation was performed on a computer with a 2.40 GHz Intel Core i5-6200U processor.

A cut-in maneuver was recognized at approximately 2.3 seconds after the simulation started. The

initial relative velocity between the ego vehicle and the vehicle for which a cut-in maneuver was predicted,

was approximately 13 m/s and the inter-vehicle distance was about 60 m, which was significantly lower

than the required safe distance of approximately 100 m. Throughout this simulation, the clearance time

tclear was set to 7 seconds. The violated safe distance was, however, cleared in less than 6 seconds due to

the corresponding braking of the ego vehicle, as shown in Fig. 2.15.

42



2.5 Conclusions

Safe Longitudinal Control Evaluation. In [123], a slightly modified1 version of the presented safe

longitudinal control was evaluated by a user study performed by using a driver simulator provided by the

automobile manufacturer BMW Group. The aim of this user study was to assess the comfort and safety

of the entire system from a user experience point of view and to provide a comparison to a state-of-the-art

ACC system. The considered traffic scenarios, the questionnaire used, and the evaluated hypotheses are

listed in the Appendix.

The results of the evaluation are shown in Table 2.5. The grey-colored cells represent the scenarios

and adjacent to that, are the evaluated hypothesis for which the results are significant. For the other

three cases (Scenario 1 — both hypotheses, and Scenario 5 — the comfort-related hypothesis), no sig-

nificant results were concluded since it was not possible to differentiate between the behavior of the safe

longitudinal control and the state-of-the-art ACC. Thus, both hypotheses have been validated over the

majority of the scenarios considered through the user study and this shows a comfortable and safe-feeling

user experience together with a performance similar to that provided by the considered state-of-art ACC

system.

Table 2.5: Evaluation of the user study results [123].

Scenario Evaluated hypothesis

Safety
1) Emergency brake of the first leading vehicle

Comfort

Safety
2) Standstill second leading vehicle

Comfort

Safety
3) Aggressive cut-in maneuver

Comfort

Safety
4) Long cut-in maneuver

Comfort

Safety
5) Entering a traffic jam

Comfort

2.5 Conclusions

In this chapter, a novel architecture for the longitudinal control of autonomous vehicles with safety

guarantees has been proposed.

The distinctiveness of the presented longitudinal control framework is that safety can be formally

guaranteed by having an emergency maneuver available at all times, that ensures the ego vehicle can

be brought to a safe state. Thus, safety is ensured even in unexpected critical traffic scenarios, e.g., the

1The main modification is represented by introducing a jerk optimal transition acceleration profile between two consec-
utive maneuvers.
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2. Safe Longitudinal Control of Autonomous Vehicles

closest leading vehicle performs a full brake maneuver or it changes lanes due to a slower vehicle driving

ahead that could bring the ego vehicle in a dangerous situation if no appropriate deceleration is applied.

One unique feature introduced by the presented approach is that the required safe distance considers not

only the most likely behavior, but full deceleration of the vehicle driving ahead, which makes possible

to safely react in extreme traffic situations. Moreover, the precomputed deceleration profile that brings

the ego vehicle to a safe state can be tuned such that either a more aggressive reaction or a milder one

can be used when the emergency maneuver is engaged. This allows an adapted response to a dangerous

situation based on user preferences, which is then reflected in the required inter-vehicle safe distance.

In most previous work, an emergency maneuver is usually generated only when a dangerous situation

occurs. However, this may lead to a collision since it is possible that no feasible emergency maneuver

exists anymore at the time when the dangerous situation is triggered. On the other hand, our approach

keeps an emergency maneuver available at all times that accounts for the worst-case behavior of the other

traffic participants. Thus, one of the key benefits introduced by our technique is that the pre-computed

emergency maneuver can bring the ego vehicle to a safe state even if a critical traffic situation occurs.

Another advantage compared to previous work is that safety is guaranteed not only with respect

to the closest leading vehicle but with all relevant vehicles driving ahead. By keeping a pre-computed

emergency maneuver available that corresponds to each selected surrounding vehicle, we avoid a situation

that can lead to an imminent collision state.

The proposed framework was tested via simulations that demonstrated its performance and that

the approach is safe, and yet, it does not introduce vehicle behavior that is too conservative. One of

the most significant assets of our framework — apart from guaranteeing safety — is represented by its

modularity. Due to the flexibility of the proposed framework where each part can be exchanged with

different methodologies (e.g.: various deceleration profiles that characterize the emergency maneuver can

be used), this approach can be easily applied in practice.

Our approach, unfortunately, cannot handle the situation where an obstacle suddenly appears in front

of the ego vehicle (e.g., a falling object from an above bridge). Although, once the dangerous situation is

assessed and the ego vehicle would begin mitigating an imminent collision, safety can no loner be achieved.

However, to the best of our knowledge, there is no approach in the literature that can guarantee absolute

safety.
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Chapter 3

Overapproximative Occupancy Set

Computation of Traffic Participants

One of the main challenges facing safety guarantees for autonomous vehicles is how to cope with the

unknown future behavior of surrounding vehicles. In the previous chapter, we addressed the safety

problem for a specific scenario, which is, considering that the ego vehicle remains in the lane in which

it is currently driving. However, to guarantee safety in more complex traffic scenarios, a prediction

algorithm that considers all possible future behaviors of the other traffic participants is required. Most of

the previous work tackled this problem by calculating the probability distribution over time of other traffic

participants’ future behavior or by generating multiple possible future trajectories. These approaches,

however, cannot guarantee that the planned trajectory for the ego vehicle is collision-free. Instead of

using non-formal prediction techniques such as single behaviors or probabilistic approaches to predict

the future behavior of the other traffic participants, in this chapter, we calculate an over-approximation

of all possible occupancies of surrounding traffic participants over time. This makes it possible to prove

whether a planned trajectory of an autonomous vehicle can safely be followed or whether an emergency

maneuver is required to avoid a possible collision.

The remainder of this chapter is organized as follows: In Sec. 3.1, a review of the related literature is

presented and the contributions of this chapter are introduced. Sec. 3.2 presents the basic idea behind

the integration of our occupancy prediction to a collision avoidance concept along with the constraints

made on the behavior of other traffic participants. In Sec. 3.3, the representation of the road network

and the mathematical modeling of other traffic participants are described, while Sec. 3.4 introduces the

algorithm for calculating the occupancy prediction. Sec. 3.5 presents the experimental results, including

the comparison with a high-fidelity vehicle model and real traffic data. In the final part of this chapter,

Sec. 3.6, the conclusions are presented.

This chapter is based on [10].
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3.1 Introduction

To guarantee safety for autonomous vehicles, provably correct decision algorithms using formal methods

are required [6, 93, 132]. The capability to cope with different levels of uncertainty — in both measure-

ments (e.g., road boundaries, static obstacles, or traffic participants) and future behavior of other traffic

participants — represents one of the most challenging aspects facing the development of autonomous

vehicles.

The approach we propose enables us to generate formally correct maneuvers, despite the aforemen-

tioned uncertainties, by computing the set of future occupancies of other traffic participants. We can

therefore guarantee that the ego vehicle will not produce a collision if no intersections between the oc-

cupancy of the ego vehicle and the predicted occupancy set of the other traffic participants are detected

for all points in time [6].

In order to plan a safe trajectory for the ego vehicle, several aspects must be considered such as:

planning a maneuver [107] that avoids the predicted future occupancies of other traffic participants,

maneuver recognition [40, 113, 199], and trajectory prediction of the surrounding vehicles. Predictions

that are made for particular road sections, such as merging lanes, or different intersections, are mainly

addressed by using machine learning techniques [77,174,186]. In this chapter, however, we will tackle only

the computation of the predicted occupancy sets of other traffic participants, while the framework that

shows how the occupancy sets can be integrated into maneuver planning problem will be subsequently

presented in Chapter 4. In [111], a comprehensive survey on behavior prediction has been published

where the considered literature was categorized into physics-based, maneuver-based, and interaction-

aware prediction. In the following, we provide a literature review organized into four main categories [10]:

approaches computing (i) a single future behavior, (ii) a countable set of future behaviors, (iii) probability

distributions of future behaviors, and (iv) uncountable sets of future behaviors; this categorization is

somewhat orthogonal compared to the one presented in [111].

Single future behavior. Most of the previous work that tackles the prediction of future behaviors

of surrounding traffic participants generates only the most probable future behavior [24, 31, 44, 96, 192].

These approaches are widely used because they provide a straightforward way to consider the prediction

of the other traffic participants in motion planning or in collision prediction problems. In [24], the future

position of surrounding vehicles is estimated by assuming constant acceleration and yaw rate, which are

tracked by an extended Kalman filter. To generate evasive trajectories for the ego vehicle [44], single

behavior predictions are completed for each traffic participant. Since the maneuver planner in [192] targets

comfortable driving under consideration of social behavior, only a single future behavior of surrounding

traffic participants is considered. In [31], in order to determine whether a collision can be avoided through

steering and/or braking, only one trajectory is predicted for each surrounding road user. In [96], the risk
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3.1 Introduction

assessment of traffic situations is performed by considering multiple possible maneuvers of the ego vehicle.

However, only one single future trajectory is calculated for the other traffic participants.

Various heuristic methods based on a single behavior — often referred to as surrogate measures —

have been developed for driving assistance systems where fast computation is prioritized higher than

the formal correctness of warnings. Time to collision (TTC) [188] is one of the most known surrogate

measures that assumes the velocities and directions of vehicles are constant, and thus computes the time

when a crash would occur under these assumptions. Various extensions to TTC have been proposed

such as time-exposed TTC and time-integrated TTC [131], as well as combinations of several surrogate

measures [179].

Countable set of future behaviors. Since considering single trajectories for the other traffic par-

ticipants may be insufficient, and to mitigate the fact that infinitely many future trajectories can exist,

many previous works instead consider a finite number of future behaviors. Usually, these methods are

widely used for collision assessment. In [85], in order to compute the time to trigger an emergency brake,

multiple physically possible trajectories of the ego vehicle and one of the other vehicles are generated

offline. Multiple simulations are often weighted by probabilities, which are also known as Monte Carlo

simulations. This technique is often used for online threat assessment of vehicles [32, 42, 45] or to create

a threat database [98]. Motion clusters in combination with a particle filter are used in [69] to determine

the most likely future motion. Nevertheless, these approaches generate a finite number of predictions

that cannot guarantee safety since infinitely many traffic scenarios exist.

Probability distribution of future behaviors. Another cluster of approaches addresses the fact

that infinitely many possible future behaviors exist. Instead of generating a countable set of predicted

trajectories, the probability distribution of possible future behaviors is computed. The behavior of other

traffic participants is predicted using Dynamic Bayesian Networks in [59]. Another probabilistic approach

has been suggested in [106] where Gaussian distributions are used to represent the future occupancy with

a special focus on the efficient computation of the collision probability. In [95], a lane-based probabilistic

distribution is used to predict the future behavior of the surrounding traffic participants, which is then

used for collision risk assessment. Nevertheless, safety cannot be formally guaranteed by any of these

aforementioned approaches, since a collision probability of zero does not imply that a collision is not

possible. This, however, is guaranteed in [13] by formally abstracting traffic participants to Markov

chains using reachability analysis. In [11], a comparison of this approach with Monte Carlo simulations

has been performed. Yet, since only a finite number of possible trajectories are generated with respect

to the probability distribution among the lanes, safety still cannot be guaranteed.
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3. Overapproximative Occupancy Set Computation of Traffic Participants

Uncountable set of future behaviors. The necessity of generating the set-based prediction for other

traffic participants is highlighted in the framework proposed in [185]. However, no algorithm that can

formally compute occupancy prediction is proposed.

In [6], techniques from reachability analysis are utilized to rigorously compute an over-approximation

of the occupancy of surrounding vehicles. Since the computation is done such that the resulting predicted

sets are over-approximative, and therefore considers all possible behaviors, this approach is predestined

for certification (e.g., [180]). Generating the set-based prediction of traffic participants is a challenging

task due to their dynamics that are typically nonlinear and subject to constraints (e.g., one has to

exclude behaviors, such as leaving the road boundary). Since those constrains cannot be formulated

as bounds of inputs that are independent of the current state of the system, traditional techniques for

reachability analysis cannot be applied. Previous work can be grouped by their applied set representation:

polytopes [36], zonotopes [12], zonotope bundles [8], rectangular grids [41], ellipsoids [103], support

functions [60], oriented rectangular hulls [173], and axis-aligned boxes [68]. However, standardized set

representations can only be used when unrealistic behavior does not have to be excluded; otherwise, the

prediction may result into non-convex or disjoint reachable sets [164, 171].

In [62], the authors tackled the prediction problem, which is required for collision risk assessments,

by considering a combination of set-based and stochastic prediction methods. Nevertheless, the set-

based computation presented in [62] is heuristic and it does not fit into a formal analysis. Reachability

analysis has multiple field applications such as driving assistant systems [46, 93] or mobile robotics.

Within the field of mobile robotics there are many applications of reachable sets, but they mostly use

overly simplified models for road transportation applications. For example, in [184] intervals of possible

velocities in all directions are considered whereas more complex models assume intervals of both velocity

and acceleration [30]. More complex models are based on Dubin’s car [196] or a tricycle model [35].

3.1.1 Contributions

The review of the existing work shows that a formal approach for computing the occupancy prediction for

other traffic participants is required in order to guarantee safe maneuvers. The concept presented in this

chapter is an extension of the work described in [6,7] where it was shown that the occupancy prediction

of other traffic participants can be computed in a formal manner via reachability analysis. The approach

presented in this chapter significantly extends previous work in the following ways:

• We present a framework that can formally predict the occupancy area of other traffic participants,

on an arbitrary road network. Compared to previous work [6, 7] where only single lanes without

forks or joints were considered, the new presented framework makes it possible to predict the future

behavior of surrounding vehicles on multi-lane roads, as well.
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• While previous work [6,7] assumed that the shortest path through a road network (as later defined

in Problem 1) exists, in this work an efficient algorithm that provides an over-approximation for

the fastest way though a lane is presented.

• In contrast to the previous work, here we consider arbitrary lane changes made by other traffic

participants.

• We validate our approach against real traffic data for the first time and verify whether the predicted

sets always enclose the corresponding occupancy of the recorded trajectory of the surrounding

vehicles.

3.2 Motivation and Objective

The proposed concept is described as follows: a planned trajectory of an autonomous vehicle is defined

as being safe if its corresponding occupancy does not overlap with the occupancy of any surrounding

traffic participant at any moment. A limited timeframe, however, contains infinitely many points in time.

Thus, one cannot guarantee that a collision will not occur by only verifying if there is an intersection

between the occupancy of the ego vehicle and the other traffic participants for discrete points in time. To

check if a given trajectory is free from collision, we verify if a possible intersection exists for successive

time intervals as shown in Fig. 3.1. We can, therefore, guarantee safety for the reference trajectory if no

intersection exists for consecutive time intervals between the occupancy of the ego vehicle and occupancy

of the other vehicles by doing only a finite number of collision checks. If the time step for which the

occupancy sets are calculated is too large, the results from the collision check may be too conservative.

In other words, if the time step is too large, an intersection between the corresponding occupancy sets

of the ego and surrounding vehicles could be detected regardless of the safe behavior of the ego vehicle.

Nevertheless, this can be tackled by recursively separating time intervals [tk, tk+1] into [tk, t̃] and [t̃, tk+1]

with t̃ = 0.5(tk + tk+1) for which occupancy sets are intersecting. For the initial time step tk+1 − tk we

suggest a value of 0.5 s.

In Fig. 3.2 we illustrate the method for calculating safe reference trajectories for the ego vehicle. Next,

we introduce some various types of trajectories, that will better guide the reader through the figure.

• Long-term reference trajectory: We assume that a trajectory planner provides a trajectory for the

ego vehicle, that is calculated for a given time horizon (typically, this time horizon is a couple

of seconds). Note that this long-term reference trajectory is generated based on a non-formal

prediction of other traffic participants.

• Intended trajectory: First part of the long-term reference trajectory that is subject to formal veri-

fication.
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Figure 3.1: Occupancy of traffic participants for selected time intervals [10].

• Fail-safe trajectory: A trajectory that brings the vehicle to a safe state, such as a safe distance

behind another vehicle or at standstill in a shoulder lane.

• Potential trajectory: Obtained as the concatenation of the intended trajectory and a fail-safe tra-

jectory, which has not yet been verified as safe.

• Safe trajectory: The potential trajectory that has been verified as safe. The verification of the safe

trajectory is done for all times. Note that a collision may be inevitable if the reference trajectory

is replanned [149] and if the reference trajectory would not result in a safe state.

At each time instance, the procedure illustrated in Fig. 3.2 is performed, and continuously repeated

such that all changes that occur in the considered traffic scenario are included. We begin with a verified

safe trajectory of the ego vehicle from the previous time step tk−1 (Fig. 3.2, ➀). Then, the predicted

occupancy of other traffic participants is calculated, using the method that will be subsequently described

in this chapter (Fig. 3.2, ➁). Please note that in order to keep the illustration compact, we do not

separately show the occupancy for consecutive time intervals, but instead only show the union of partial

occupancy sets. New potential trajectories are planned based on the occupied regions over time (Fig. 3.2,

➂). The further potential trajectories are then generated starting from the previous one at a point B
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(see Fig. 3.2, ➂), which is chosen based on the observation that the computation time for the verification

tcomp is roughly linear in the prediction time horizon th: tcomp ≈ λ th (λ ∈ R, λ > 0) where λ depends

on the computational capabilities. In most cases, to obtain the verified result of the new potential

trajectory upon arriving at B, we choose B to be the point at which the vehicle will arrive at time

λ th + ǫ (ǫ ∈ R, ǫ > 0); larger values of ǫ provide more conservative results but limit the risk of triggering

the fail-safe trajectory in case the verification result is not obtained in time.

We define a potential trajectory (i.e., a concatenation of the intended and the fail-safe trajectories)

as safe for the ego vehicle following it if its corresponding occupancy never overlaps the occupancy of

another traffic participant. Note that multiple further potential trajectories may be verified as safe (see

Fig. 3.2, ➂). Out of those safe trajectories, the one that minimizes a user-defined cost function is selected

(Fig. 3.2, ➃ b). However, if no further safe trajectory is found, the previous trajectory is continued

(Fig. 3.2, ➃ a), which may result in steering along the fail safe trajectory. If there is enough time to

replan, and new safe trajectories are found, the ego vehicle may never engage the fail-safe trajectory.

As illustrated in Fig. 3.2, ➂, the larger occupancies of other vehicles obstruct space for the trajec-

tory planning of the ego vehicle. Given that the reach of the resulting occupancy prediction sets is

directly proportional to the prediction horizon, trajectory planning should be done for two time horizons

in parallel. In addition to long-term trajectories that are generated based on non-formal occupancy pre-

diction techniques, such as single behaviors or probabilistic methods, as shown in the upper illustration

of Fig. 3.3, emergency trajectories that consider the occupancy sets of the other vehicles are computed.

In the upper illustration Fig. 3.3, an example of an overtaking planned maneuver is illustrated, which

considers only the single predicted behavior of the other traffic participant. Note that we do not apply

our verification concept over the entire intended long-term trajectory. Since the uncertainty of behaviors

of the surrounding traffic participants grows with time, the reach of the predicted occupancy sets would

grow and cover most of the road, making it almost impossible to verify the entire planned trajectory.

Instead, we apply our verification concept only to short potential trajectories (the first part of a long-term

reference trajectory plus a fail-safe trajectory) as depicted in the bottom illustration of Fig. 3.3. Since

we are using a short time horizon for verification, the proposed set-based techniques do not obstruct

overly large regions for trajectory planning. If the maneuver is safe, the next part of the long-term plan

is executed; otherwise, the fail-safe maneuver is engaged. As a result, the proposed set-based occupancy

prediction guarantees safe maneuvers, while non-formal techniques provide long-term plans based on

likely behaviors of other traffic participants.

This chapter proposes a framework that automatically generates the occupancy sets of the surround-

ing traffic participants on arbitrary road networks. Because this framework should adhere to real-time

constraints, a fast and robust algorithm for computing the occupancy prediction is required. Given that

it is provably impossible to compute exact occupancy sets [151], a method that allows one to calculate
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Non-formal, long-term prediction (t ∈ [0, tlong])

Formal, short-term prediction (t ∈ [0, tshort], tshort < tlong)
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intended trajectory
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trajectory
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over-approx. occupancy
at t = tshort

occupancy of
prediction horizon

fail-safe trajectory

surrounding vehicle

surrounding vehicle

Figure 3.3: Comparing non-formal, long-term prediction with formal, short-term prediction of other traffic
participants [10].

an overapproximation prediction is required. The unique feature of our approach is that we specifically

consider uncertainties in both the future behavior of traffic participants and their measurements of posi-

tion, orientation, length, width, velocity, and acceleration. Next, we introduce the model of other traffic

participants and a model of the road network that are used for the oveapproximative occupancy set

prediction.

3.3 Mathematical Modeling

In the following, a formal representation of road networks and the vehicle model used for predicting

occupancy sets are introduced. The road network is based on the concept of lanelates introduced in [27],

and the model of the surrounding traffic participants is tailored such that their unknown future behavior

is considered.

3.3.1 Road Network Representation

For predicting the occupancy sets of the other traffic participants, we first require a formal and robust

representation of road networks. For this purpose, lanelets [27] are used, which are atomic, interconnected,

and drivable road segments.

Definition 3.1 (Lanelet [27]). A lanelet is defined by its left and right bound where each bound is

represented by an array of points (a polyline), as illustrated in Fig. 3.4.
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Figure 3.4: Lanelets description.

Additionally, we introduce the start points and end points of a lanelet as the first and final points of the

left and right border in driving direction, respectively, as illustrated in Fig. 3.4.

Among the other environment inputs required by autonomous vehicles, road network information (in

particular, lane information, e.g. [205]) is expected to be available. The left and right bounds of lanelets

could be directly determined from an open-source map like OpenSteetMap1, by e.g. importing a raw

map into the free JavaOpenStreetMap (JOSM)2. The raw data consisting of a left border and right border

is annotated by the speed limit (maximum allowed speed on that particular lanelet) and a unique ID.

Since all possible paths through the current road network must be considered such that an overap-

proximative prediction can be generated, an adjacent lanelet matrix is computed firstly. Let us define

the road network as a directed graph G = (V , E), where the set of vertices V corresponds to the lanelets,

while the directed edges set E contains the possible transitions between two adjacent lanelets. Moreover,

each vertex has four different types of outgoing edges: longitudinal, left, right, empty. AG represents the

adjacent lanelet matrix and is defined as follows: AG : V × V → {long, right, left,∅}, where × denotes the

Cartesian product. Without loss of generality, we assume that all laterally adjacent lanes have the same

length. This is illustrated for the road network shown in Fig. 3.4, where lanelet1 and lanelet2 have the

same length. In this way, the number of lateral adjacencies for multi-lane roads can be reduced.

We define two lanelets as longitudinally adjacent, i.e., AG(lanelet1, lanelet3) = long, if the left and

right start points of a lanelet coincide with the corresponding final points of the other lanelet. Lanelet

lanelet2 is right-adjacent to lanelet1, i.e., AG(lanelet1, lanelet2) = right, if the points of the right border

of lanelet1 are identical to the ones of the left border of lanelet2. Similar definition applies by analogy

for the left-adjacent lanes. Lanelet lanelet1 is left-adjacent to lanelet2, i.e., AG(lanelet2, lanelet1) = left,

if the points of the left border of lanelet2 are identical to the ones of the right border of lanelet1. In

1www.openstreetmap.org
2https://josm.openstreetmap.de
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Figure 3.5: Road fork description.

practice, however, the connection points of the lanelets may not be identical (e.g., due to measurement

uncertainties). Therefore, the implementation should accept small deviations in the connection points of

lanelets when constructing the adjacency matrix.

If the considered road network contains only lateral and longitudinal adjacent lanes, the construction

of the adjacent road matrix is straightforward. However, most road networks also contain road forks, see

Fig. 3.4. Therefore, the road adjacency matrix must be constructed in order to ensure that the computed

occupancies are over-approximative. We consider that a lane change is possible as long as there exists

an intersection of lanes as shown in Fig. 3.5a. According to the definition of the adjacent lanelet matrix,

one can only model whether or not lane crossings are possible along the entire length of a lanelet. Hence,

to construct the adjacency matrix, we partition the lanelets accordingly. We first introduce the point

p which represents the intersection of the corresponding lane boundaries of the road fork, as shown in

Fig. 3.5a. If the final points of the outer bounds of lanelet11 and lanelet21 correspond to the point p, and

lanelet21 and lanelet22 continue along the corresponding lanes as shown in Fig. 3.5a, all lanelets fulfill

the constraint that they are either adjacent along their full length or not at all. The resulting adjacency

matrix is presented in Fig. 3.5b. The adjacency makes it possible to define a lane:

Definition 3.2 (Lane). A lane is defined as the union of lanelets that are longitudinally adjacent.

In the following section, a model of the other traffic participants used to calculate the occupancy prediction

is described.

3.3.2 Model of Other Traffic Participants

The mathematical model of other traffic participants, inspired by [6], is derived assuming the following

constraints:

C1: when a parameterized speed vmax is reached (vmax could be set to a certain percentage above the

official speed limit1), positive longitudinal acceleration is stopped;

1The speed limitation values may be different for specific types of vehicles, e.g., passenger car vs. truck.
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C2: assuming that one can estimate the maximum engine power, that is characterized by a parameterized

speed vS , then the positive longitudinal acceleration is inversely proportional to speed above vS ;

C3: since the primary traffic scenario considered here is represented by driving on highways, we assume

that driving backwards is not allowed;

C4: maximum absolute acceleration is bounded by amax;

C5: actions that cause a vehicle to cross the road/lane/sidewalk/crosswalk boundary are forbidden;

however, unless various traffic regulations or lane markings forbid it, crossing lane boundaries is

allowed.

While the constraints C1, C3, and C5 are derived from the traffic rules described in the Vienna

Convention on Road Traffic [176], the others — C2 and C4 — represent physical constraints. If no speed

limit exists, as on the German Autobahn, C1 can also be considered a physical constraint, provided by

the maximum achievable speed of a vehicle. Formalization of traffic rules is a new research area [157,159],

but out of the scope of this thesis. A different set of constraints may be considered when surrounding

vehicles are automated and able to communicate their future plans to each other. In that situation, one

only has to consider the uncertainty in following planned trajectories due to sensor noise, as demonstrated

in [4], or uncertainty introduced by actuators. Based on the broadcasted high-level plan, we can adjust

the adjacent lanelet matrix AG , accordingly. For example, if the considered traffic participant is expected

to keep the current lane, then the adjacency edges corresponding to a lane change maneuver (both left

and right) can be removed. Moreover, different sets of traffic regulations can be considered for each traffic

participant — either by adding or removing traffic rules — for instance, depending on the vehicle type

(e.g., if required, an emergency vehicle can violate the speed limit prescribed by the corresponding traffic

sign). Nevertheless, removing some of the constraints does not affect the soundness of the verification

procedure, but it does increase the uncertainty in the behavior of other traffic participants, that only

leads to more conservative behavior of the ego vehicle. In the following, we model the dynamics of other

traffic participants by a point mass (assuming that a rectangle encloses the body of the vehicle):

s̈x(t) = ax(t), s̈y(t) = ay(t), (3.1)

where sx(t), sy(t) denote the position and ax(t), ay(t) denote the acceleration in x and y coordinates, re-

spectively. In order to restrict ax(t) and ay(t) according to the constraints C1-C4, unit vectors that point

towards the longitudinal and lateral direction of the vehicle are introduced: Φlong(t) =
1
v [vx(t), vy(t)]

T ,

Φlat(t) =
1
v [−vy(t), vx(t)]T , where v = ‖[vx, vy]T ‖2 and ‖.‖2 denotes the Euclidean norm. Thus, we can

define ax and ay as a function of the longitudinal acceleration along(t) and the lateral acceleration alat(t)
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as follows:
[

ax
ay

]

= Φlongalong +Φlatalat. (3.2)

Considering the maximum tire friction potential, let us define a normalized steering input u1, where

u1 = 1 refers to full steering to the left and u1 = −1 refers to full steering to the right, from which results

the lateral acceleration

alat = amax u1. (3.3)

According to Kamm’s circle, we can limit the remaining acceleration potential in longitudinal direction,

as follows:

ac1,long =
√

(amax)2 − (alat)2, (3.4)

which is a good approximation since the peak forces on the tires are almost identical for the longitudinal

and the lateral directions, see e.g. [166, Fig. 14-16]. Thus, the maximum possible acceleration (constraint

C4) is considered. Assuming that the vehicle has the engine power P and the vehicle mass m, one

can derive the maximum longitudinal acceleration from P
mv = amax

vS
v , where vS = P

amaxm
is the speed

above which the acceleration is limited by the engine power and no longer by the tire friction. However,

since it is not trivial to estimate the vS parameter, as a fallback solution one may set vS = ∞ , which

provides an over-approximation for the occupancy set computation. Similar to the lateral acceleration,

a normalized control input u2 for the longitudinal acceleration is introduced, where u2 = ±1 represents

full braking and full acceleration within the acceleration potential. We therefore consider the restrictions

to forward driving only, limited engine power, and the maximum speed (constraints C1-C3) by limiting

the longitudinal acceleration as follows:

ac2,long =











amax
vS
v , vS < v < vmax ∧ u2 > 0,

amax, (0 < v ≤ vS ∨ (v > vS ∧ u2 ≤ 0)),

0, v ≤ 0 ∨ (v ≥ vmax ∧ u2 ≥ 0).

(3.5)

The longitudinal acceleration that satisfies the proposed constraints C1-C4 results by combining ac1,long

and ac2,long (the constraint C5 for not leaving the road is considered later) is defined as:

along =

{

ac2,long u2, ac2,long |u2| ≤ ac1,long,
ac1,long sgn(u2), ac2,long |u2| > ac1,long.

(3.6)

Likewise, to model static obstacles, e.g. stationary vehicles or just other objects, one can simply consider

them as other traffic participants with zero velocity.

3.4 Occupancy Prediction

In this section, we present the occupancy prediction algorithm for the other traffic participants based

on models of the road network and of other traffic participants, just described in Sec. 3.3. Apart from
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the main requirement of the prediction algorithm to generate provable correct results, another crucial

specification is real-time capability. Efficient computation is required in order to realize frequent updates

and to be able to quickly react to changing traffic situations — since the occupancy prediction is iteratively

computed as described in Sec. 3.2.

Let us now introduce what we refer to as a model in this chapter.

Definition 3.3 (Model). Given is a dynamical system ẋ = f(x(t), u(t)), where x is the state, u is the

input, and t is the time. The possible initial states and the inputs are bounded by sets: x(0) ∈ X0,

∀t : u(t) ∈ U . The model of this system is defined as the tuple (ordered set) M = (f,X0,U).

Given a model M , we define a reachable set as follows.

Definition 3.4 (Reachable set). The reachable set of a model M (see Def. 3.3) at time t = r is

R(M, r) =

{

x(0) +

∫ r

0

f(x(t), u(t))dt

∣

∣

∣

∣

x(0) ∈ X0, ∀t : u(t) ∈ U
}

and the reachable set of a time interval t ∈ [0, r] is

R(M, [0, r]) =
⋃

t∈[0,r]

R(M, t).

Nevertheless, if we would consider the constraints C1-C5 of the vehicle dynamics as described in

Sec. 3.3.2, we would have to model the dynamics of the vehicle using a combination of discrete and

continuous dynamics, which is also referred to as a hybrid system [14]. For instance, if the vehicle reaches

the maximum velocity vmax, the dynamics must change to constant velocity. However, the computation

of the reachable sets of hybrid systems is too time consuming for our application. Therefore, we use

abstractions of the original model M instead.

Definition 3.5 (Abstraction). Given is a model M of a dynamical system. The model Mi is an ab-

straction of M if the reachable set of the abstraction contains the reachable set of the model, i.e.,

∀t > 0 : R(M, t) ⊆ R(Mi, t).

When choosing an abstract model, two of the most important requirements to be satisfied are the

following: preserving the essential behavior of the original model and permitting computationally more

efficient methods for reachability analysis. Since we are ultimately only interested in the occupancy, which

is determined by the position and orientation of other traffic participants, we aim to find abstractions

that are tight with respect to these variables. Given a state vector x ∈ Rn, where the first two elements

x1, x2 are the x-position and the y-position, and the third element x3 is the orientation, we denote

proj(x) = [x1, x2, x3]
T as the operator that projects the state vector onto position and orientation.

Further, proj
(

R(M, t)
)

:= {proj(x)|x ∈ R(M, t)} returns the set of possible positions and orientations.
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3.4 Occupancy Prediction

We exploit the fact that in the end, we are only interested in the position and orientation using the

following proposition taken from [6, Prop. 5.1]:

Proposition 3.1 (Over-approximative occupancy). Given are models Mi, i = 1, . . . ,m which are ab-

stractions of model M0, i.e., ∀t > 0 : R(M0, t) ⊆ R(Mi, t). The occupancy of the model M0 can be

over-approximated by

∀t > 0 : proj
(

R(M0, t)
)

⊆
m
⋂

i=1

proj
(

R(Mi, t)
)

.

Using the above model abstraction for the computation of reachable sets facilitates considerably

faster over-approximative results, while still providing accuracy. There are two main reasons why the

abstractions are more rapidly computed: first, they do not evaluate the complete set of states, and since

the computational complexity of reachability analysis is superlinear in the number of state variables, this

is a major advantage. Secondly, the constraints C1-C5 are considered by performing an intersection of

the results of abstractions that are purely continuous, instead of considering hybrid dynamics. We can

obtain a more precise occupancy prediction by having a larger number of computed abstract models which

comes along with the disadvantage of increased computation time. We can, therefore, tune a trade-off

between accuracy and computational time depending on the requirements. For example, for the traffic

participants driving in close proximity to the ego vehicle, a more accurate prediction may be required,

such that the ego vehicle can plan its trajectory. For the remainder of the surrounding traffic participants

that are driving a farther distance away, however, such a precise prediction may be unnecessary due to

the uncertainty. Note that there is a potential to improve the computation time by using multi-core

hardware architectures, where each abstract model can run in parallel in its own processing thread.

The occupancy sets are calculated for consecutive time intervals τk := [tk, tk+1] for a user-specified

step size r = tk+1 − tk and user-specified time horizon th. In order to ensure that collision detection is

not missed, we calculate the occupancy prediction for consecutive time intervals instead of consecutive

points in time. In this thesis, two abstract models for computing the occupancy of each traffic participant

are considered. The first abstraction is denoted by M1, and it considers the constraints C3 and C4 (see

Sec. 3.3.2). The predicted occupancy using abstraction M1 is denoted by O1(t) ⊇ proj
(

R(M1, t)
)

and is

so-called acceleration-based occupancy. The second abstraction M2 considers the constraints C1, C2, and

C4 in longitudinal direction. Its corresponding occupancy is denoted by O2(t), and we refer to it as lane-

following occupancy. The last constraint C5 is considered by intersecting the drivable area, delimited by

the road boundaries Oroad, with the occupancy sets resulting from considering the other two abstraction

M1 and M2. As a result, to consider all proposed constraints, the overall occupancy O(t) is computed as

follows:

O(t) = O1(t) ∩ O2(t) ∩ Oroad. (3.7)
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3. Overapproximative Occupancy Set Computation of Traffic Participants

The next step is to decide on a set representation for the overall occupancyO(t). The recurrent operations
that must be performed at each time step are represented by collision checks on the occupied regions of

the other traffic participants with the corresponding occupancy of the ego vehicle. To efficiently perform

those collision checks and to exactly compute the intersections in (3.7), we require a set representation

that has the following properties: (i) is closed under intersection, (ii) is able to represent non-convex

sets, and (iii) provides efficient algorithms for collision detection. Therefore, we choose polygons, as

illustrated in Fig. 3.6, since other common set representations (ellipsoids, boxes, zonotopes, polyhedra,

etc.) are all convex.

Definition 3.6 (Polygon). Given is a tuple (v1, . . . , vp) of p vertices vi ∈ R2. A polygon P (v1, . . . , vp)

is a set in the plane bounded by a border that consists of straight lines between neighboring vertices vi

and vi+1, except for the last vertex vp which is connected to the first one v1, see e.g. Fig. 3.8b.

In order to satisfy real-time computation constraints, a fast algorithm is required for identifying the

intersections of polygons as specified in (3.7). Many algorithms already exist that compute the intersection

of two polygons [1]. However, considering the strict time requirements, we choose the Greiner Hormann

Polygon Clipping Algorithm since it can efficiently deal with non-convex polygons [63].

initial occupancy

left boundary

right boundary

front boundary

rear boundary

Figure 3.6: Initial occupancy and boundaries of the predicted occupancy set.

In order to compute the predicted occupancy O1(t) and O2(t) in (3.7), we first define a set of pa-

rameters that characterize each vehicle. The considered parameters are listed in Table 3.1. Due to the

fact that the prediction of the occupancy sets is performed in an over-approximative manner, all possible

lanelets that a vehicle can follow have to be considered. To identify the reachable lanelets, we search

the adjacency graph of the road network (see e.g. road fork in Fig. 3.5b). In order to improve computa-

tional performance, the algorithm can be parallelized for every vehicle. Next, the occupancy prediction

for each considered abstract model is described, where acceleration-based occupancy (abstraction M1) is

presented in Sec. 3.4.1 and lane-following occupancy (abstraction M2) is presented in Sec. 3.4.2.

3.4.1 Acceleration-Based Occupancy (Abstraction M1)

The first abstraction of vehicle dynamics considers that absolute acceleration is limited (C4) and that

driving backwards is not allowed (C3). The constraint C4 implies that the over-approximated occupancy

at time t can be described by a circle with center c(t) and radius r(t) (see [164]) as shown in Fig. 3.7,
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3.4 Occupancy Prediction

Table 3.1: Vehicle parameters used for computation of occupancy sets.

parameter variable [unit]

max. acceleration amax [m/s2]

max. velocity vmax [m/s]

switching velocity vS [m/s]

vehicle width w̃ [m]

vehicle length l̃ [m]

when constraint C3 (driving backwards) is not yet considered:

c(t) =

[

sx(0)
sy(0)

]

+

[

vx(0)
vy(0)

]

t, r(t) =
1

2
amaxt

2. (3.8)

sx

s y

4

0

−4

0 10 20

[bx(t), by(t)]
T

[bx(t), −by(t)]T

O([tk, tk+1])

O(tk−2) r(tk+1)

c(tk+1)

Figure 3.7: Acceleration-based occupancy sets.

Without loss of generality, assuming that sx = 0, sy = 0, vx = v and vy = 0, the boundary of the

acceleration-based occupancy is described by a two-dimensional function [bx(t), by(t)]
T , where

bx(t) = v0t−
a2maxt

3

2v0
, by(t) =

√

1

4
a2maxt

4 −
(a2maxt

3

2v0

)2

, (3.9)

as shown in [6]. To prevent driving backwards, the solution in x-direction is to set the maximum value

of bxmax
:= bx(tmax) for t ≥ tmax. The value tmax =

√

2/3 v0
amax

is found by solving for ḃx(t) = 0. The

outer bound of the occupancy O1(τk) for a given time interval τk = [tk, tk+1] is obtained by using the

following lemma:

Lemma 1 (O1(τk) without vehicle dimensions). The occupancy O1(τk) without considering vehicle
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3. Overapproximative Occupancy Set Computation of Traffic Participants

dimensions is over-approximated by a polygon P (q1, . . . , q6), where

q1 = [cx(tk)− r(tk), cy(tk) + r(tk)]
T ,

q2 = [bx(tk), cy(tk+1) + r(tk+1)]
T ,

q3 = [cx(tk+1) + r(tk+1), cy(tk+1) + r(tk+1)]
T ,

q4 = [cx(tk+1) + r(tk+1), cy(tk+1)− r(tk+1)]
T ,

q5 = [bx(tk), cy(tk+1)− r(tk+1)]
T ,

q6 = [cx(tk)− r(tk), cy(tk)− r(tk)]T .

Proof. The resulting occupancy is over-approximate by the convex hull of the occupancy O(tk) and

O(tk+1), as illustrated in Fig. 3.8a. This is an over-approximation since the boundary [bx(t), by(t)]
T form

(3.9) is concave. The points where [bx(t), by(t)]
T and [bx(t),−by(t)]T intersect with O1(tk) and O1(tk+1)

are denoted by q̂1 - q̂4 (see Fig. 3.8a).

The exact boundary O1(τk) is over-approximated by the vertices q1-q6 and q̂1 - q̂4 (see Fig. 3.8b). Finally,

we over-approximate the result in Fig. 3.8b by its convex hull, such that q̂1 - q̂4 are removed (see Fig. 3.8c)

resulting in the vertices q1, . . . , q6 of the occupancy polygon. �

In order to reduce memory consumption and computation time for collision checks, we remove q̂1 - q̂4

such that we obtain a polygon with fewer vertices at the cost of a negligible over-approximation, as

illustrated in Fig. 3.8c. Until now, we have assumed that each vehicle is a point mass without considering

its dimensions. To include this in the occupancy prediction, we enclose the body of a vehicle including

uncertainty in its initial position, in a rectangle with length l̃ and width w̃ and whose reference point is

the centroid. After adding measurement uncertainties, we enclose the occupancy of the vehicle in a larger

rectangle of length l and width w as depicted in Fig. 3.9. Assuming that each point of the vehicle has

the acceleration bound amax and after introducing the notation M(X ∗) for a model whose set of initial

states is X0 = X ∗, we can formulate that

R(M(X0), t) =
⋃

x0∈X0

R(M(x0), t), (3.10)

which directly follows from the definition of reachable sets in Def. 3.4. Using (3.10), we can derive the

over-approximative occupancy of a vehicle, based on an initial occupancy set, as follows:

Theorem 3.1 (O1(τk) with vehicle dimensions). The exact occupancy O1(τk), when X0 is a rectangle

of length l and width w, is over-approximated by a polygon P (p1, . . . , p6) using the vertices q1-q6 from

Lemma 1, where

p1 = q1 + [−0.5l, 0.5w]T , p4 = q4 + [0.5l, −0.5w]T ,
p2 = q2 + [−0.5l, 0.5w]T , p5 = q5 + [−0.5l, −0.5w]T ,
p3 = q3 + [0.5l, 0.5w]T , p6 = q6 + [−0.5l, −0.5w]T .
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O1(tk) O1(tk+1)

q̂1 =

[bx(tk), by(tk)]
T

q̂2 =

[bx(tk+1), by(tk+1)]
T

q̂3 =

[bx(tk),−by(tk)]T
q̂4 =

[bx(tk+1),−by(tk+1)]
T

(a) Convex hull of occupancy.

O1(tk)

O1(tk+1)

q1

q2 q3

q4q5

q6

q̂1 q̂2

q̂3q̂4

r(tk) r(tk+1)

c(tk) c(tk+1)

(b) Enclosing, non-convex polygon.

q1

q2 q3

q4q5

q6

r(tk) r(tk+1)

c(tk) c(tk+1)

(c) Enclosing, convex polygon.

Figure 3.8: Computation steps to obtain convex, over-approximative occupancy.

Proof. The proof follows directly from Lemma 1 and (3.10). Fig. 3.9 illustrates the resulting vertices

from the theorem. �

Due to position and orientation invariance, we have assumed without loss of generality, a specific relative
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p1

p2 p3

p4p5

p6

q1

q2 q3

q4q5
q6

0.5l

0.5w

l̃

l

w̃w

Figure 3.9: Occupancy polygon where the vehicle dimensions are considered. The points q1-q6 are taken
from Fig. 3.8.

position and orientation of the initial set. However, to obtain the occupancy for an arbitrary situation,

the calculated occupancy must be translated and rotated according to the initial position and orientation

of the vehicle.

3.4.2 Lane-Following Occupancy (Abstraction M2)

So far, only a limited absolute acceleration of other traffic participants has been considered. Nevertheless,

as described by the constraints C1 and C2, a vehicle cannot always accelerate with amax in the longitu-

dinal direction (i.e., driving direction) to consider maximum velocity (C1) and maximum engine power

(C2). Constraints C1 − C2 are evaluated on partial paths along inner lane boundaries, which increases

the efficiency. After finding the maximum position along these partial paths, we assume that the vehicle

location can be anywhere in lateral direction (i.e., perpendicular to the path) within the lane boundaries.

Let us introduce another constraint C4∗ — a variation of C4 — such that the limited maximum acceler-

ation can be enforced not only in longitudinal, but also in lateral direction in abstraction M2. Therefore,

the traveled distance along a path is independent of its shape when considering the constraints C1, C2,

and C4∗. This leads to:

Proposition 3.2 (Traveled distance along path forM2). Since we do not consider lateral acceleration in

constraints C1, C2, and C4∗, the maximum velocity is not influenced by the shape of the followed path.

Nevertheless, the lateral acceleration is still considered, but only in abstraction M1, according to the

Kamm’s circle. The calculation of the front position along a route, denoted by ξf (t) (f : front), is applied

to model M2 as described in [6]. We first introduce the interval of initial path coordinates [ξ
0
, ξ0] and

velocities [v0, v0]. Then, we compute the front position along a path ξf (t) by simulating the vehicle model

described in Sec. 3.3.2 with maximum acceleration u2 = 1 from ξf (0) = ξ0 and v(0) = v0. Due to the

monotonicity of the longitudinal dynamics, only a single simulation is required. However, since infinitely
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many paths exist, even if a single lanelet is followed, the question of how to select the shortest path is

raised. This matter was not considered in the work described in [6], where it was assumed that the shortest

path is represented by the center path along a lane, which does not result in an over-approximation since

one can cut corners. In the following, we present an approach that is able to abstract the behavior of the

other traffic participants in a way that satisfies constraints C1, C2, and C4∗ regardless of the selected

path through the lanelet’s sequence. To this end, we propose an algorithm that efficiently calculates a

lower bound of the shortest path through a lanelets sequence, derived from a given road network.

Next, let us formalize the problem of determining the shortest path along a lane. We can assume,

without loss of generality, that a vehicle can be represented by a point if the distances between lane

boundaries are reduced such that the dimensions of the vehicle are considered. Note that, if this step

would not be performed (to increase calculation speed), the soundness of the proposed approach would

not be affected, i.e., the resulting shortest path would be even shorter compared to the exact solution.

The resulting solution is still overapproximative, but at a cost of being more conservative.

Problem 1 (Shortest path through a lane). Given is an arbitrary lane as depicted in Fig. 3.11. Let us

denote the start border by bstart(sx, sy) and the end border by bend(sx, sy). A point [sx, sy]
T is on the

start line for bstart(sx, sy) = 0 and bstart(sx, sy) < 0 when a point is inside the lane segment. This is

analogous for bend(sx, sy). The lane boundaries are formulated as inequality constraints, where one is on

the right hand side from the left boundary in driving direction if bleft(sx, sy) < 0 and analogously for

bright(sx, sy) < 0. We can then formulate the area of the lane segment as the set

Osegment ={[sx, sy]T |bstart(sx, sy) < 0, bend(sx, sy) < 0,

bleft(sx, sy) < 0, bright(sx, sy) < 0}.
(3.11)

Next, we introduce a path variable ξ such that the x-position and y-position are functions of it: sx(ξ),

sy(ξ). The path variable ξ can result from sx(ξ), sy(ξ) as

ξ =

∫ ξ

0

√

s′2x (ξ̂) + s′2y (ξ̂) d ξ̂,

s′x(ξ̂) =
d sx(ξ)

d ξ

∣

∣

∣

ξ=ξ̂
, s′y(ξ) =

d sy(ξ)

d ξ

∣

∣

∣

ξ=ξ̂
.

(3.12)

Finally, the problem of finding the shortest path from bstart to bend while remaining within the road

boundaries can be formulated as:

min
sx(ξ),sy(ξ)

J(sx(ξ), sy(ξ)) =

∫ ξf

0

√

s′2x (ξ̂) + s′2y (ξ̂)d ξ̂

under the constraints

bstart(sx(0), sy(0)) = 0,

bend(sx(ξf ), sy(ξf )) = 0,

bleft(sx(ξ), sy(ξ)) < 0,

bright(sx(ξ), sy(ξ)) < 0.

(3.13)
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Taking into consideration that our application should run in a real-time environment, we have to find a

solution to Problem 1 that adheres to the required time performance. However, solving Problem 1 is time

consuming, even when considering only polygon obstacles [57,70,78]. Therefore, instead of providing the

exact solution to Problem 1, we compute an under-approximation of the shortest path. To this end, we

introduce the notion of corresponding paths:

Definition 3.7 (Corresponding path). We define the corresponding path h(ξ) with path variable ξ of

the border b as

b(sx(ξ), sy(ξ)) = 0 ⇒ h(ξ) = [sx, sy]
T .

The other direction of the implication h(ξ) = [sx, sy]
T ⇒ b(sx(ξ), sy(ξ)) = 0 is not unique, and we only

require that a possible solution is provided such that the set {[sx, sy]T |b(sx, sy) < 0, sx, sy ∈ R} refers

to the inner part behind the border.

The path h(ξ) either refers to the left or right border of a lane, depending on context. When using

hright(ξ), we explicitly refer to the right border and analogously for hleft(ξ). We denote the well-known

signed curvature by

κ(ξ) = fκ(h(ξ)) =
s′x(ξ)s

′′
y(ξ)− s′′x(ξ)s′y(ξ)

(s′x(ξ)
2 + s′y(ξ)

2)3/2
.

In the following, two cases are distinguished when we under-approximate the length of the shortest path,

depending on whether the inner border of the lane has an inflection point or not. Let us start with the

case where there is no inflection point in the inner boundary of the lane.

hstart hend

haux,i haux,i+1

pd,i pd,i+1 hright
hfront(ξf )

{[sx, sy]T |bfront(ξf (t), sx, sy) < 0}

Figure 3.10: Shortest path through a lane without inner inflection point.

Lemma 2 (Shortest path without inner inflection point). Given is a lane segment as described in Prob-

lem 1, where the inner lane bound does not change the sign of the curvature, i.e., ∄ξ : κright(ξ) :=

fκ(hright(ξ)) = 0. Without loss of generality, we consider a right curve so that the inner bound is hright.

We further require that hstart, hend are straight lines perpendicular to hright. This can be formalized by
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introducing the normal vectors nstart, nend ∈ R2 and the distance values dstart, dend ∈ R:

∀ξ ∈ [0, ξf ] :

κright(ξ) < 0 (right turn),

constraints in (3.13) (lane borders),

bstart(sx, sy) = nT
start[sx, sy]

T − dstart (start line),
bend(sx, sy) = nT

end[sx, sy]
T − dend (finish line),

|nT
starth

′
right(0)|

‖nstart‖2‖h′right(0)‖2
= 1 (bstart perpendicular to hright),

|nT
endh

′
right(0)|

‖nend‖2‖h′right(0)‖2
= 1 (bend perpendicular to hright).

(3.14)

The shortest path corresponding to Problem 1 is [s∗x(ξ), s
∗
y(ξ)]

T = hright(ξ) for ξ ∈ [0, ξf ].

Proof. We divide the problem of the lemma into subproblems by introducing auxiliary line segments

haux,i(α) = pi + αli, α ∈ [0, 1], pi, li ∈ R2, with the corresponding border that is denoted by baux,i (see

Def. 3.7). In this way, we obtain the same sub-problems, except that bstart is replaced by baux,i and bend

is replaced by baux,i+1. Next, we calculate the shortest distance between two auxiliary line segments. Let

pd,i and pd,i+1 be the start and end points of the shortest line connecting both line segments haux,i and

haux,i+1 (see Fig. 3.10).

There exist four cases for the shortest distance between two line segments [117]:

(A) pd,i and pd,i+1 are within haux,i and haux,i+1,

(B) pd,i is within haux,i and pd,i+1 is one of the end points of haux,i+1,

(C) opposite of case (B),

(D) pd,i and pd,i+1 are end points of haux,i and haux,i+1.

In a two-dimensional setting, case (A) only occurs when the line segments intersect, which can be ruled

out (see Fig. 3.10). Cases (B) and (C) result in longer solutions compared to case (D); this can be easily

seen, since either the movement of pd,i along haux,i or the movement of pd,i+1 along haux,i+1 increases

the distance.

When the number N of auxiliary straight lines haux,i approach infinity, the union
⋃N

i {pd,i+γ(pd,i+1−
pd,i)|γ ∈ [0, 1]} of the shortest line segments approaches the set of points on hright(ξ). �

Until now, we have shown how to calculate the shortest path along a lane segment without an inner

inflection point. Next, we use this result to compute an over-approximative occupancy through such a

lane segment.

Lemma 3 (Occupancy without inner inflection point). Given is a lane segment as formalized in (3.14),

where the inner lane bound does not have an inflection point. We denote by ξf (t) the front position along

the inner path under constraints C1, C2, and C4∗, and by bfront(ξf (t), sx, sy) = nT
f (ξf (t))

[

[sx, sy]
T −

hright(ξf (t))
]

the front border (see Fig. 3.10), which is perpendicular to the inner bound (here: hright)

so that nf is aligned with the inner bound: |nT
f (ξ)h

′
right(ξ)|/(‖nf (ξ)‖2‖hright(ξ)‖2) = 1. Then, by using
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Osegment from (3.11), the over-approximative occupancy under constraints C1, C2, and C4∗ is

O2(t) = {[sx, sy]T |bfront(ξf (t), sx, sy) < 0} ∩ Osegment

assuming that the segment describes a turn of less than 90◦. If this is not the case, one can split the

segment into smaller segments without loss of generality.

Proof. The fastest path for moving from one boundary of a lane to the other boundary is determined

by the shortest path. This is true due to the invariance of the velocity with respect to the shape of a

followed path, as shown in Prop. 3.2. Lemma 2 has shown that the shortest path within a lane without

an inflection point is represented by the inner border itself. Therefore, it suffices to compute the front

bound along the path of the inner border and perpendicular to it. The proof is concluded by applying

Lemma 2, which indicates there is no other shorter path between bstart and bfront. �

So far, the occupancy of a vehicle along a lane without an inflection point has been considered. To

over-approximate the occupancy along an arbitrary lane, we introduce our inflection-point segmentation.

Definition 3.8 (Inflection-point segmentation). We algorithmically define the inflection-point segmen-

tation of a lane, with its result illustrated in Fig. 3.11:

(i) If the curvature of the inner left boundary is positive κleft > 0, start at [s̃x, s̃y]
T , where bstart(s̃x, s̃y) =

0, bleft(s̃x, s̃y) = 0, and follow hleft. Otherwise (for the inner right boundary), start at [ŝx, ŝy]
T ,

where bstart(ŝx, ŝy) = 0, bright(ŝx, ŝy) = 0, and follow hright. If initially the left and right boundaries

of the lane are both concave, according to this algorithm, the left side is the default one.

(ii) We denote an inflection point by γi, which is defined by a sign change of κleft or κright, depending

on the border that is being currently followed (see Fig. 3.11). We then follow the current lane

boundary until an inflection point γi is reached. Next, we construct a line segment hcross,i(α) =

γi + αgi, γi, gi ∈ R2, α ∈ [0, 1], from one bound to the other, that is perpendicular to the bound

belonging to γi. For the change from the left to the right bound, we have gTi h
′
left = 0, hcross,i(0) =

hleft(γi,x, γi,y), hcross,i(1) = hright(µi,x, µi,y), where µi is the point from which one continues on

the other bound (see Fig. 3.11). We analogously perform this procedure for the change from the

right to the left bound.

(iii) Additional line segments h̃cross,i(α) = µi+αg̃i, α ∈ [0, 1] that are drawn to intersect the previously

followed border (see Fig. 3.11) are required in order to obtain a proper segmentation. In contrast

to hcross,i(α) that is perpendicular to the current lane boundary, h̃cross,i(α) is perpendicular to the

opposite lane bound (g̃Ti h
′
right = 0).

(iv) Next, we define two types of regions Ri and IRi, as illustrated in Fig. 3.11: Given the corre-

sponding bounds bcross,i and b̃cross,i of the line segments hcross,i and h̃cross,i, the regions Ri =

{[sx, sy]T |bcross,i(sx, sy) < 0, b̃cross,i−1(sx, sy) < 0} ∩ Osegment without the inner inflection point

and intermediate regions IRi = {[sx, sy]T |b̃cross,i(sx, sy) < 0, bcross,i(sx, sy) < 0}∩Osegment , where

one border only consists of the single point µi.

(v) The bound to which µi belongs is followed until another inflection point is reached and the same

procedure is repeated until the final border is reached (bend(sx, sy) = 0).
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hstart

hend

γ1

µ1

γ2

µ2

hright

hleft

R1

IR1 R2

R3
IR2

σ1

σ2

hcross,2

h̃cross,1

hcross,1

Figure 3.11: Inflection point segmentation of a lane.

Let us introduce the jth inner paths hin,j(ξ) of an inflection-point segmentation, where ξ ∈ [0, ξmax,j[,

hin,j(0) = µi−1, and ξmax,j is defined as the value that ensures hin,j(ξmax,j) = γi. The inner path hin,j(ξ)

is perpendicular to h̃cross,j−1 at ξ = 0 and perpendicular to hcross,j at ξ = ξmax,j . However, this is not

necessarily ensured for the first and last partial inner path hin,1 and hin,e, touching hstart and hend,

respectively. Therefore, we construct the auxiliary first and last inner bounds hin,init(ξ) and hin,final(ξ)

as shown in Fig. 3.12, which are perpendicular to hstart, hend and touch hin,1(ξ), hin,e(ξ), such that

orthogonality is ensured in those cases, as well.

The partially-connected aggregated path accumulated from the partial inner paths hin,j(ξ) is then

defined as follows:

h(ξ) =































hin,init(ξ), ξ ∈ [0, ξ̃0[,

hin,1(ξ), ξ ∈ [ξ̃0, ξ̃1[,

hin,2(ξ − ξ̃1), ξ ∈ [ξ̃1, ξ̃2[,
...

hin,final(ξ − ξ̃e−1), ξ ∈ [ξ̃e−1, ξ̃e].

(3.15)

Next, given the front path variable ξf , one must evaluate the aggregate path (3.15) to obtain [sx,f , sy,f ]
T =

h(ξf ). The front bound is constructed as described in Lemma 3.

Theorem 3.2 (Occupancy along lane). Let us denote by jξ(t) the index of the region corresponding

to ξ(t), i.e., ξ(t) ∈ [ξ̃j−1, ξ̃j [ in (3.15). Next, we introduce the occupancy within the jthξ inflection-point

region obtained from Lemma 3 as O2,jξ(t). Thus,

O2(t) = (

jξ(t)−1
⋃

j=0

Rj) ∪ (

jξ(t)−1
⋃

j=0

IRj) ∪ O2,jξ(t).
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Proof. The result follows directly from Fig. 3.11, Fig. 3.12, and Lemma 3. �

hstart

hend

γ1

µ1

hin,init(ξ̃0)

hin,final(0)

hin,init(ξ)

hin,1(ξ)
hin,2(ξ − ξ̃1)

hin,final(ξ − ξ̃e−1)

σ1

Figure 3.12: Inner paths of a lane segment.

Recall that in order to consider all future possible behaviors of a vehicle, we not only compute the

occupancy for the current lane but also for surrounding lanes if a lane change is possible according to the

road adjacency graph.

3.5 Numerical Experiments

In this section, we demonstrate our proposed approach for different multi-lane road networks considering

road forks, as well. Moreover, the predicted occupancy sets computed using our proposed methodology

are compared to results obtained from a high-fidelity model. The behaviors of the high-fidelity model

are obtained by using rapidly-exploring random trees (RRTs) [108]. Real-world measurements from

US highway 101, i.e., a dataset that is part of the Federal Highway Administration’s (FHWA) Next

Generation Simulation (NGSIM)1 project, are used to validate our approach. For this purpose, we

check whether all the recorded data is enclosed by our set-based occupancy prediction for each traffic

participant, for each corresponding time instance.

The results were obtained on a machine with 2.2 GHz Intel Core i7 processor and 16 GB 1600 MHz

DDR3 memory. The required vehicle parameters are listed in Table 3.1. For simplicity, we use the

same parameters for all predictions: amax = 10 m/s2 (obtained from friction coefficient µ = 1.02 and

1http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm
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g = 9.81 m/s2; see [189, Fig. 3.3]), vmax = 30 m/s (considering US highway speed limit of 65 mph plus

overspeeding), vS = 10 m/s, w = 1.8 m, and l = 4.2 m.

We first present the prediction for a single vehicle to demonstrate how our approach works for multiple

lanes and road forks. Then, we present the validation results using the data from US highway 101 and

the comparison with a high-fidelity vehicle model.

3.5.1 Multi-Lane Road Networks Involving Road Forks

In this section, two different scenarios are considered: a road fork and a multi-lane road network. Both

traffic scenarios are created based on real roads modeled in OpenStreetMap, which we have processed

with JavaOpenStreetMap(JOSM)1. The time step size is set to ∆t = ti+1 − ti = 0.5 s, the time horizon

th = 3 s, and the initial velocity v(0) = 25 m/s for both traffic scenarios. Recall that the occupancy sets

are calculated for consecutive time intervals, as was explained in Sec. 3.4. Therefore, no possible future

occupancy is missed during the prediction.

Fig. 3.13 illustrates the first scenario, in which the vehicle can drive in two potential lanes. To

illustrate the underlying computation of the occupancy for each abstraction model, we plot the predicted

sets in individual plots for the left and right turn, respectively, within time interval [t4, t5] (Fig. 3.13a

and Fig. 3.13b). The predicted occupancy of both lane options for the complete time horizon O([t0, th])
is shown in Fig. 3.13c.

(a) Occupancy for left turn
and t ∈ [t4, t5].

(b) Occupancy for right turn
and t ∈ [t4, t5].

initial position

(c) Overall occupancy of the
entire prediction horizon

O1([t4, t5])

O2([t4, t5]) ∩Oroad

O([t4, t5])
O([0, th])

Figure 3.13: Occupancy prediction for scenario I.

The second traffic scenario that is considered is illustrated in Fig. 3.14. The road consists of one lane

in one direction, and three lanes in the opposite direction. Initially, the vehicle for which the occupancy

prediction is done is driving in the center lane, and therefore, in the absence of any other constraint, it

1https://josm.openstreetmap.de
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can change lanes both towards the left and the right adjacent lane. The predicted occupancy sets are

illustrated in Fig. 3.14 for the entire time horizon of th = 3 s.

Table 3.2 summarizes the computation times for the scenarios described above. It can be seen that

the computation time represents only a small fraction of the prediction horizon, i.e., less than 10 %.

Thus, our proposed prediction algorithm is suitable for online computation. Moreover, if the prediction

of each vehicle is performed in parallel — due to the fact that the prediction of each vehicle can be done

independently — one can compute the future occupancy of many surrounding vehicles in a similar time.

O([0, th])initial position

Figure 3.14: Occupancy prediction of scenario II.

Table 3.2: Computation Time for Scenario I and II.

Computation Prediction Fraction of
time horizon prediction horizon

Scenario I 0.19 s 3 s 6.3 %
Scenario II 0.17 s 3 s 5.7 %

3.5.2 Comparison with a High-Fidelity Vehicle Model

Due to the considered constraints C1−C5 in Sec. 3.3.2, as well as in Prop. 3.1, Lemmas 1, 2, and 3, and

Theorem 3.1 and 3.2, we have ensured that the predicted occupancy sets are over-approximative. On the

one hand, this allows us to consider all possible behaviors of the other traffic participants, and therefore

we are able to react to unexpected maneuvers. On the other hand, one could argue that our results —

albeit formally correct — may be too conservative. Therefore, what remains is answering the question of

how conservative our results are. To investigate this issue, a high-fidelity vehicle model is introduced, in

order to compute possible behaviors using rapidly exploring random trees (RRTs) [108]. When computing

subsets of reachable sets [28], RRTs have proven useful and, as demonstrated in e.g. [71], they are also

more efficient compared to Monte Carlo simulations when diversity of the solutions is important. Please

note, however, that RRTs are not a formal method so the comparison with our set-based prediction does

not provide a proof for the over-approximative computation. Instead, it only shows how tight our results

are when comparing against a high-fidelity model.

The evaluated high-order model considers the vertical load of all 4 wheels due to roll, pitch, yaw,

their individual spin and slip, and nonlinear tire dynamics. Three masses determine the multi-body
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Table 3.3: Initial values of the high-order model (see [5]).

sprung mass unsprung mass other
init. init. init.

name val. name val. name val.
yaw angle Ψ0 roll angle (f) 0 wheel speed (lf) ω0

yaw rate Ψ̇0 roll rate (f) 0 wheel speed (rf) ω0

roll angle 0 roll angle (r) 0 wheel speed (lr) ω0

roll rate 0 roll rate (r) 0 wheel speed (rr) ω0

pitch angle 0 y-velocity (f) vyf,0 pin joint diff. (f) 0
pitch rate 0 y-velocity (r) vyr,0 pin joint diff. (r) 0
x-velocity vx,0 z-position (f) zf,0 x-position sx,0
y-velocity vy,0 z-velocity (f) 0 y-position sy,0
z-position 0 z-position (r) zr,0
z-velocity 0 z-velocity (r) 0

dynamics as follows: the unsprung mass and the sprung mass of the front and rear axles. The forces

between these masses are described by the dynamics of the suspension and the tire model. Our model

is taken from [3, Appendix A] and has been used in previous publications [5]. The vehicle parameters

were provided by vehicle 14 in [3, Appendix E], which is a BMW 320i. For the tire dynamics we use the

PAC2002 Magic-Formula tire model whose parameters are taken from the example of a PAC2002 tire

property file in [134]. The high-order model is initialized as summarized in Table 3.3, where f/r indicates

front/rear. Next, we introduce the initial heading Ψ0, the initial yaw rate Ψ̇0, the initial rotational speed

of the wheels ω0 = v0/R (v0: initial velocity, R radius of the wheel), the initial velocity in x/y-direction

of the vehicle coordinate system vx,0/vy,0, the initial height over ground z0, and the initial x/y-position

sx,0/sy,0.

xn xadd

xs

results of
different
inputs

xi

tk−2 tk−1 tk tk+1

x

t

Figure 3.15: Sampling procedure of our RRT approach.

Since we are interested in the results for consecutive time intervals, we slightly modify the procedure
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from a standard RRT approach, e.g. [28], such that a constant sampling density for each time window is

achieved, as illustrated in Fig. 3.15. In this thesis, we apply the procedure taken from [5]:

1. Initialize the discrete set of states for the next time interval as X (τk+1) = ∅.

2. Generate a sample xs from the state space.

3. Find the nearest state xn according to a distance measure ρ so that xn = argmin(ρ(xs, xi)), where

xi ∈ X (τk).

4. Obtain the input u that drives xn to the new state xadd closest to xs.

5. Add xadd to the set of states for the next time interval X (τk+1).

6. Repeat steps 2-5 for a predefined number of samples, then go to the next time interval and start

with step 1.

Note that if we would initialize the discrete set of states for the next time interval as X (τk+1) = X (τk), one
would obtain the approach used in [28]. For sampling space X we use only the x-position and y-position

and we choose the Euclidian distance as a distance measure. Then, the optimal input u determined by

the steering angle and the brake/acceleration pedal angle, that steers the system from the state xn to

state xs, by minimizing ρ(xadd, xs), is chosen by testing 12 combinations of steering and acceleration

such that the resulting acceleration lies on Kamm’s circle. New samples for the inputs are changed every

0.25 s, and each time interval X (τk+1) contains 100 samples. Different initial states compared to the

previous subsection (Sec. 3.5.1) are used — the initial velocity is set to 10 m/s instead of 25 m/s, and

the initial position is closer to the road bifurcation — such that we can demonstrate how the prediction

is affected by changing the initial state.

In Fig. 3.16, the results corresponding to the high fidelity model are illustrated. One can observe

that for each time interval, the vehicle is able to drive close to the borders of the predicted occupancy

sets. The RRT sampling for turning left and right is illustrated separately. It is worth mentioning that

computing the RRTs of high-fidelity models does not fulfill the real-time constraints. We have used the

same machine for the calculation of set-based prediction, and sampling the RRTs; both calculations were

performed using Matlab. In contrast to our approach that generated the results within one fraction of a

second, the prediction using the high-fidelity model took approximately 10 hours.

3.5.3 Comparison with Real Traffic Data

In this section, we further assess our approach against real traffic data recorded from a highway, by

showing that the tracked occupancy of each traffic participant lies within our predicted over-approximative

occupancy sets. This evaluation is done for a time horizon of th = 2 s and use a time step size of

∆t = ti+1− ti = 0.4 s. We introduce the trec,i as the time of the ith recorded set of occupancies. Starting
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Figure 3.16: Comparison of set-based occupancy prediction with results from the RRT computation for
each time interval. Crosses show possible positions of the high-fidelity model for the left turn and dots show
possible positions for the right turn. Gray regions indicate the predicted occupancy.
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Figure 3.17: (a) A video camera mounted on top of a building used to record trajectory data [65].
(b) Aerial photograph that shows the study area [65]. (c) Aerial photo of US highway 101 section.

from the occupancies at trec,i, we predict the occupied sets for the time interval [trec,i, trec,i + th] and

then check if the recorded occupancies are enclosed by the over-approximative predicted sets. If the real

occupancies lie inside the predicted ones, we move forward to the next time interval [trec,i+1, trec,i+1+th].

This procedure is repeated until all times trec,i within the given time horizon th have been verified.

The dataset was collected from the Next Generation Simulation (NGSIM) program1. The traffic

data was obtained on a 0.6 km segment of the US Highway 101 (Hollywood Freeway) in Los Angeles,

California, on June 15th, 2005, containing detailed trajectory data for each traffic participant, over the

entire period from 07:50 am to 8:35 am. The area was monitored using eight video cameras placed on

various buildings, as shown in Fig. 3.17.

For illustration purposes, we only present the results corresponding to a section of the recorded

highway sector in Fig. 3.18. Otherwise, the prediction of the individual vehicles would not be visible

due to the length of the recorded section of the highway. Nevertheless, we have calculated the predicted

occupancy set for all recorded vehicles, for the given time horizon. The initial occupancy of the vehicles

1http://www.fhwa.dot.gov/
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initial position

recorded position at end of time interval

O([ti, ti+1])t ∈ [0,0.4] s:

t ∈ [0.4,0.8] s:

Figure 3.18: Occupancy prediction using recorded vehicles from US highway 101.

is represented by solid rectangles where the inner line indicates the driving direction (see Fig. 3.18). The

dashed rectangles show the recorded occupancy of each car at the end of the time interval (t = trec,i+∆t),

while the polygons with solid border mark the predicted occupancy, as illustrated in Fig. 3.18.

The computation of the occupancy prediction took an average of 0.2 s per vehicle for 5 instead of 6

time intervals as in scenarios I and II, and thus is only slightly slower than the results of Table 3.2. The

most significant result of this evaluation performed against real traffic data is that, out of a total number

of 1074 considered vehicles, none of them violated the predicted occupancy.

3.6 Conclusions

In this chapter, we have introduced a novel framework that can formally calculate the predicted occupancy

sets of surrounding traffic participants on arbitrary road networks. The highlight of our approach,

compared to existing work in this field, is that it can formally guarantee the borders of occupied areas

utilizing techniques from reachability analysis. The distinctiveness of our approach is that the correctness

of the prediction is not jeopardized if a specific constraint is removed from the model of the other traffic

participants due to a violation of that constraint by a vehicle. This action, however, comes with a cost

that the predicted occupancy grows faster and therefore the ego vehicle is required to generate more

conservative trajectories to avoid overlapping with the enlarged occupancy of that corresponding traffic

participant.

Therefore, our approach proves to be inherently safe since the safety of the ego vehicle is not en-

dangered if some constraints on the model of other traffic participants are omitted or removed due to

current behavior, but it results into a more conservative behavior. Note that only the set-based techniques
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have this property as the predicted occupancy sets generated with the other techniques, e.g., multiple

simulations, are not monotonically enlarged when removing constraints.

The evaluation of the proposed approach was done against real traffic data collected from a segment of

US Highway 101. The validation results highlight the over-approximative characteristic of our approach,

which is able to predict all the future behaviors of other traffic participants, for a given time horizon.

At the same time, our results demonstrate that the predicted sets are tight when comparing the results

obtained with a high-fidelity model. Moreover, our set-based prediction method is real-time capable since

the prediction computations only required a fraction of the considered time horizon (less than 10 %). All

these features confirm that our approach is indeed suitable for online motion planning and verification

algorithms.
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Chapter 4

Fail-Safe Motion Planning

This chapter proposes a method to generate comfortable and provably-safe maneuvers for autonomous

vehicles. Similar to the longitudinal motion planning presented in Chapter 2, this approach consists of

three steps: first, a long-term optimal trajectory is generated for the ego vehicle that accounts for the

predicted, most likely future behavior of other traffic participants. However, since most of the time,

the prediction of the other vehicles is not fully accurate due to various reasons (e.g., uncertainty in

the measurements, or just due to unexpected maneuvers), safety cannot be guaranteed. Since a single

prediction does not suffice to ensure safety, we compute the over-approximative occupancy sets of the

other traffic participants, as described in Chapter 3, which consider all possible future maneuvers for short,

consecutive time intervals. These sets are then incorporated as constraints when generating corresponding

emergency maneuvers for the ego vehicle.

The intended part of the optimal long-term trajectory (recall Fig. 3.2) is followed by the ego vehicle

only after it is verified as safe. If the given section of the trajectory (i.e., the intended part) is not verified

as safe, a precomputed emergency maneuver that can bring the ego vehicle to a safe state is engaged. A

trajectory is verified as safe if its corresponding occupancy does not intersect with the occupancy of the

other traffic participants, and, starting at the end of this trajectory, there exists an emergency maneuver

whose corresponding occupancy does not intersect with the corresponding over-occupancy sets of the

surrounding vehicles.

Verifying at each time instance whether there exists a safe emergency maneuver is computational

expensive, and often not required. Therefore, we calculate the maximum time horizon the ego vehicle

can safely follow the long-term trajectory while guaranteeing that at the end of this time horizon, an

emergency maneuver is guaranteed to exist.

The remainder of this chapter is organized as follows: In Sec. 4.1 we present a review of related

literature. Then, we introduce our contributions in Sec. 4.2. Some preliminaries and assumptions are

presented in Sec. 4.3, that guide the reader towards the problem formulation. The framework that
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provides the fail-safe motion planner is described in Sec. 4.4. The methodology used to calculate the

latest point in time where an emergency maneuver is guaranteed to exist is presented in Sec. 4.5. Lastly,

numerical experiments used to demonstrate the proposed approach are shown in Sec. 4.6.

The section regarding the generation of fail-safe motion planning is based on work published in [120]. The

section concerning how to determine the maximum time for a vehicle to safely follow a given trajectory

is published in [122].

4.1 Introduction and State of the Art

Most previous work on trajectory planning of vehicles considers only one predicted trajectory of each

other traffic participant (e.g., the most probable trajectory). However, relying only on the most probable

trajectory of other traffic participants is not safe, since unexpected maneuvers may result in inevitable

collisions.

There also exist approaches that consider multiple future behaviors of the other traffic participants,

as already described in Sec. 3.1. Yet, safety cannot be guaranteed, since this finite number of possible

maneuvers of the surrounding vehicles does not consider the entire set of possible future maneuvers.

Therefore, unexpected maneuvers that may occur, but are not considered, could result in a collision.

Generating safe trajectories for an autonomous vehicle in a dynamic environment is an exhaustive

research area, yet no provable correct solution has been proposed, that considers all possible future

behaviors of other traffic participants. In [168] a “model for safety assurance” of autonomous vehicles has

been proposed, where it is shown that “improper behavior of others” can be considered as well. However,

it is assumed that all traffic participants will try to avoid a possible dangerous situation. While generating

trajectories for an autonomous vehicle in static environments is a problem for which optimal solutions

are already available (e.g., [29], [107]), motion planning in dynamic environments is not a trivial task

since the unknown future behavior of other traffic participants has to be incorporated into the planning

problem.

Motion planning techniques have been comprehensively studied and different approaches were already

proposed in the literature. These approaches can be categorized as following: 1) by planning in discrete

space (e.g., grid-based approaches [107], planning using motion primitives [50], rapidly-exploring random

trees [33, 102, 105], and road maps [26, 89, 90, 175, 177]), and 2) by planning in continuous space (e.g.

optimal control, Model Predictive Control (MPC) [16, 147, 193, 194], and elastic bands [154]). A survey

on existing algorithms for collision-free trajectory planning for mobile robots can be found in [76] and

motion planning techniques for self-driving vehicles in [146].
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Planning in discrete space

Sampling-based motion planning algorithms such as Probabilistic Road Maps (PRM) [26,89,90,175,177]

or Rapidly-Exploring Random Trees (RRT) [33, 102, 105] demonstrate good performance in practice, in

particular for path planning in high-dimensional non-convex state spaces. Nevertheless, the control inputs

that are used to explore the configuration space have a great impact on the performance of sampling-based

approaches.

To reduce the computational burden caused by sampling, predefined and parametrized trajectories,

which are often referred to as a motion primitives (e.g., turn left, right turn, go straight, etc) are intro-

duced in [50]. The generation of these maneuvers is done such that they can be easily inter-connected, to

form a maneuver automaton [51]. Due to the off-line computation of the motion primitives, the planning

algorithms that use a maneuver automaton are suitable for real-time applications.

The construction of formally verified maneuver automata using reachability analysis has been inves-

tigated in [72]. In [137], a heuristic graph search is used to find a feasible path. Another approach

is presented in [61], where the motion primitives are modeled as a hybrid system, the discrete states

are the predefined trajectories, and the control input that steers the system from one state to another

is defined by maneuvers. Therefore, optimal path generation becomes a classic hybrid optimal control

problem [167].

Planning in continuous space

Elastic bands have been introduced in [154], with the aim to fill the gap between path planning and

control to make it possible to plan a trajectory directly in continuous space. The key feature of the

elastic bands is that their corresponding paths can be deformed in real-time in order to react to changes

in the environment. The utility of elastic bands has been demonstrated for various purposes, such as

emergency maneuver generation [73], trajectory planning [64], or adaptive cruise control [56], where only

one path is computed. To overcome the issue that a single elastic band may fail to describe a desired

path, several elastic bands are generated in [163]. Then, a single solution that minimizes a given cost

function is selected.

Optimal control or MPC [16, 147, 193, 194] are techniques widely used for generating optimal trajec-

tories where different constraints can be directly embedded into the planning problem. In [16], MPC

is utilized for trajectory planning to prevent lane departure. Collision-free trajectories that take static

obstacles into considerations have been investigated in [147]. In [194], collision avoidance is achieved

through steering and braking under the assumption that the obstacles move with constant velocity. The

authors of [97] proposed a provable safe system, however, the inter-vehicle and vehicle to infrastructure

communication are vital to the proposed approach, since it is assumed that the information regarding

lane changes intentions of all interacting vehicles can be exchanged.
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Due to the dynamic characteristic of traffic scenarios, one must consider a replanning mechanism to

be able to avoid possible collisions. Although most previous work considers this mandatory mechanism,

there is no approach for determining the moment at which replanning should be performed in order

to guarantee safety. Instead, replanning is done on the fly when a dangerous situation may already

be inevitable. Therefore, the authors of [66] propose an algorithm that computes an adaptive time

horizon that dictates when replanning should be performed. The so-called “time to potential failure”

determines how long the current trajectory is safe under some given assumptions. However, if no further

safe trajectory is found, a collision may be imminent. Therefore, there exists no guarantee that by the

end of this time horizon, a safe maneuver can be found. To cope with the dynamic environment, the

authors of [52] propose an adaptive planning horizon computation based on the changing rate of the

environment’s configuration. However, this approach cannot guarantee that another feasible maneuver

exists after the computed time horizon.

The above methods cannot ensure safety in every traffic scenario since there exist unconsidered possible

future maneuvers of other traffic participants, when generating a trajectory for the ego vehicle, which can

result in a collision. Some emerging attempts toward safe motion planning exist. For example, in [25],

an emergency maneuver is generated, considering the initial state as the final state of the generated long-

term trajectory. However, not all possible future trajectories of the surrounding vehicles are considered.

Instead, viable inter-vehicle communication and future trajectories are assumed to be known [25].

In our previous work, [120], a fail-safe motion planner is proposed. The proposed planner consists of

two parts: i) an optimal trajectory is generated for the ego vehicle considering the most likely trajectories

of other traffic participants, for a long time horizon and ii) at each time step, the overapproximative

occupancy sets that enclose all the possible trajectories of other vehicles for a given time interval are

computed. Then, it is verified whether there exists an emergency maneuver that can bring the ego

vehicle to a safe state without intersecting any other occupancy sets of the surrounding vehicles. If such

an emergency maneuver exists, the ego vehicle can continue following the optimal trajectory. Otherwise,

the emergency maneuver generated at the previous time step is engaged until a new safe trajectory is

found.

The authors of [150] divide planning tasks into three levels: route planning (provides specific tasks

to be accomplished in order to reach the ultimate goal; e.g., follow a specific highway route), behavioral

planning (facilitate decision-making in order to properly interact with the other traffic participants; e.g.,

changing a lane) and motion planning (generate an admissible set of actions such that the local objectives

are fulfilled; e.g., generate consecutive values of acceleration such that a safe inter-vehicle distance is kept,

with respect to the other traffic participants).

This work assumes that a route and a behavioral planner exist that provides a set of relevant driving

decisions in order to reach the desired goal (e.g. lane change for switching between two roads) or to
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increase customer satisfaction (e.g., changing the lane to prevent driving behind a slower vehicle for a long

time). There already exists comprehensive work that tackles questions like: “is a lane change mandatory?”

or “is a lane change desirable?” by using different approaches such as rule-based methods [23, 48],

utility-based frameworks [54, 139, 140, 191], probabilistic-based approaches [19, 165], model predictive

control [141], game-theory-based methods [130], or Petri nets-based solution [53].

4.2 Contributions

Although there exists a lot of work on motion planning for autonomous vehicles, how to guarantee safety

in a dynamic environment is still a major issue, due to the uncertainties introduced by the infinite number

of possible maneuvers of other traffic participants. In addition, achieving comfortable and efficient driving

while guaranteeing safety are, most of the time contradictory requirements (e.g. conservative maneuvers

may be safe, however, they could lead to decreased traffic throughput that diminishes efficiency). A

fail-safe motion planning framework is therefore required in order to be able to safely react in any traffic

scenario.

With the aforementioned issues in mind and considering the gaps that exist in the current state-of-

the-art, the main contributions of this chapter are:

• We propose an architecture to guarantee safety in motion planning by accounting for every possible

future maneuver of other traffic participants, in both longitudinal and lateral directions.

• Unlike previous work, we generate not only one, but two trajectories for the ego vehicle. First, we

compute an optimal trajectory that considers the most likely behavior of the other traffic partic-

ipants. Another trajectory, corresponding to an emergency maneuver is generated by considering

the overapproximative occupancy sets of the surrounding vehicles at each time step. The long-term,

optimal trajectory is followed only if it is verified as safe, i.e., there exists an emergency maneuver

that concatenated to the optimal trajectory can bring the ego vehicle to a safe state.

• In order to generate safe guaranteed emergency maneuvers for the ego vehicle, overapproximative

occupancy sets (see Chapter 3 for details) are generated and included into the calculation of the

evasive maneuvers.

• Moreover, since verification of the optimal trajectory at each time instance is computationally

expensive, and often not required, instead of generating an emergency maneuver at each time step,

we compute the maximum amount of time a vehicle can safely follow a given trajectory. Then, by

the end of this time horizon a safe emergency maneuver is guaranteed to exist.
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The section regarding the generation of fail-safe motion planning is based on work published in [120]. The

section concerning how to determine the maximum time for a vehicle to safely follow a given trajectory

is based on work published in [122].

4.3 Preliminaries and Problem Formulation

In this chapter, we extend the approach presented in Chapter 2, by considering that the ego vehicle

can autonomously perform a lateral maneuver in addition to a longitudinal one. This implies that more

thorough attention to the existing road network is required since this may influence the way the ego

vehicle responds to changes in the traffic scenario.

In the following, we will consider a road network determined by multiple adjacent lanes with arbitrary

curvature. As already mentioned, an efficient representation of road networks can be found in [27]. For

a more concise road network representation, the reader is referred to Section 3.3.1.

Thereafter, we will intentionally consider only one surrounding vehicle Vlead, in order to focus on

the novel aspects introduced in this chapter. However, this approach is applicable to arbitrarily many

surrounding vehicles. Of course, the physical capability of the on-board sensors must be considered.

Therefore, only the vehicles driving within the field of view shall be taken into account when planning a

trajectory for the ego vehicle. Note that, unlike the field of view considered in Chapter 2, where we are

only looking ahead of the ego vehicle, in this chapter it is a requirement to consider the rear field of view

of the ego vehicle. This is mandatory in order to guarantee safety when the ego vehicle performs a lane

change.

t0

t0

t1

t1

t1

t2

t2

t2

t3

t3

t3

Surrounding vehicle Vlead: most likely trajectory

Ego vehicle E: long-term, optimal trajectory

Surrounding vehicle Vlead: unexpected maneuver

Figure 4.1: The long-term trajectory of the ego vehicle is generated by considering only the most likely
behavior of the other traffic participants. However, if the leading vehicle performs an unexpected maneuver,
the ego vehicle may not be able to replan or find any feasible emergency maneuver in order to avoid a possible
collision.
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Let us consider the traffic scenario illustrated in Fig. 4.1. Here, a long-term trajectory is generated

for the ego vehicle (represented by blue) by considering only the most likely behavior of the surrounding

vehicle (depicted with gray). In this scenario, the predicted maneuver of the surrounding vehicle is to

keep its current lane. However, if the surrounding vehicle performs an unexpected maneuver, for example

by changing lanes, the ego vehicle may not be able to find a further feasible trajectory (not even an

emergency maneuver) such that a collision can be avoided.

The main objective of this chapter is to design a motion planner that guarantees an emergency maneu-

ver for each time instance that can bring the ego vehicle to a safe state (e.g., standstill), without colliding

with other traffic participants. Note that in order to guarantee safety, all possible future maneuvers of

other traffic participants must be considered when calculating an emergency maneuver of the ego vehicle.

However, although an emergency maneuver is kept available at each time instance, this does not imply

that it must be engaged.

Moreover, depending on the current traffic situation, generating an emergency maneuver at each time

instance may not be required (e.g., if the ego vehicle is driving at a large distance with respect to the other

traffic participants). In order to optimize computing time, instead of generating an emergency maneuver

at each time instance, we calculate the maximum time the ego vehicle can follow a given trajectory, while

guaranteeing a safe emergency maneuver exists by the end of this time.

Let us provide some preliminaries and notation used throughout this chapter. In the following, the

area defined by the left and right boundary of a road is referred to as lane. We do not differentiate between

the vehicles driving in different lanes for the problem we want to tackle in this chapter1. Therefore, in

this chapter, we denote the number of the considered surrounding vehicles by N .

To generate a safe emergency maneuver, the uncertainties introduced by the unknown behavior of

other traffic participants and by the measurements of the environment (e.g., static obstacles or moving

surrounding vehicles) must be considered. For this purpose, we calculate the overapproximation of the

future occupancies of the other traffic participants, as described in [10] and implemented by the tool SPOT

[101]. For more details on the generation of overapproximative occupancy sets of other vehicles, the reader

is referred to Chapter 3. We denote by Occ(Vk, τi), k ∈ {1, 2, . . . , N} the overapproximative predicted

occupancy of a surrounding vehicle Vk. This is computed for a given time interval τi = [ti, ti +∆t],

which encloses all possible occupancies complying with the considered set of traffic rules2. We define

Γ(Vk, τi) :=
⋃

t∈τi

Γ(Vk, t) as the union of the occupancy sets of the vehicle Vk corresponding to the time

interval τi. Then, we can define the relation between the occupancy Γ(Vk, τi) and overapproximative

1We differentiate between vehicles driving on different lanes only in the lane-following mode (see Chapter 2), where
different control strategies are generated depending whether there is a vehicle following driving situation, or a cut-in
maneuver is performed by a surrounding vehicle.

2For more information regarding the considered traffic rules, the reader is referred to Chapter 3.
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occupancy set Occ(Vk, τi) as the following:

Γ(τi) ⊂ Occ(τi), ∀τi = [ti, ti +∆t], (4.1)

as illustrated in Fig. 4.2.

Occ(τi)

lane boundaries

Γ(ti) Γ(ti +∆t)

Figure 4.2: Occupancy and overapproximative occupancy of a vehicle.

Let us denote the optimal trajectory of the ego vehicle asXopt(t) = [xopt(t), xopt(t+∆t), · · · , xopt(Topt)],
where ∆t is the time step, Topt = nopt ·∆t is the time horizon for generating the optimal trajectory,

Topt ∈ R+, and nopt ∈ N is a given parameter. Similarly, we denote by Xemg(t) = [xemg(t), xemg(t+∆t), · · · ,
xemg(Temg)] the emergency maneuver initiated at time t, where Temg = nemg ·∆t represents the time hori-

zon for generating the emergency maneuver, with nemg ∈ N.

We denote by t∗ the maximum time horizon for which the ego vehicle can follow a given optimal

trajectory while guaranteeing safety. To guarantee safety, the following two constraints must be satisfied:

1. The occupancy associated with states within the optimal trajectory Γ(xopt(ti)), ∀ti ≤ t∗, 0 ≤ i ≤ nopt

must not intersect with the corresponding overapproximative occupancy set of other traffic partic-

ipants Occ(Vk, τi), k ∈ {1, · · · , N}.

2. There exists an emergency maneuver initiated at t∗ whose corresponding occupancy Γ(xemg(tj)),

∀j ∈ {i, . . . , nemg} must not intersect with the corresponding overapproximative occupancy set of

other traffic participants Occ(Vk, τj), t
∗ ≤ tj ≤ Temg, k ∈ {1, · · · , N}.

The objective of this chapter is twofold: first, we propose a motion planning framework that guarantees

the safety of the ego vehicle. That is, an emergency maneuver that considers all maneuvers of the

surrounding vehicles is guaranteed to exist at each time instance. Second, since generating an emergency

maneuver at each time instance is computationally expensive and often not required, we want to determine

the maximum time the ego vehicle can safely follow the long-term trajectory. That means that there

exists an emergency maneuver to be initiated at the end of this time horizon that can steer the ego vehicle

towards a safe state.
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We denote by ⌈ · ⌉ the ceiling operator which provides the least integer greater than or equal to the given

parameter. Using the above notations, the addressed problem can be formulated as follows:

t∗ = max
0≤i≤nopt

ti,

subject to ∀k ∈ {1, · · · , N} ∀r ∈ {0, · · · , i− 1},

∀j ∈ {i, · · · , nemg}, ∃Xemg(t
∗) :

Γ(xopt(τr)) ∩Occ(Vk, τr) = ∅ ∧

Γ(xemg(τj)) ∩Occ(Vk, τj) = ∅,

nopt =

⌈

Topt
∆t

⌉

, nemg =

⌈

Temg

∆t

⌉

.

(4.2)

4.3.1 Vehicle System Dynamics

Since we consider that the ego vehicle can follow its own lane and change its lane as well, the kinematics of

lateral vehicle motion must be taken into consideration. In contrast to Chapter 2, different motion model

is used for the ego vehicle such that steering is considered as well. For this, we extend the longitudinal

dynamics used in Chapter 2 to a kinematic bicycle model (see Fig. 4.3) as presented in [194]:

ṡx = v cosψ, (4.3)

ṡy = v sinψ, (4.4)

ψ̇ =
v δ

l

[

1 +

[

v

vch

]2
] , (4.5)

δ̇ = u1, (4.6)

v̇ = u2, (4.7)

where the x- and y-positions sx, sy, velocity v, yaw angle ψ, and steering angle of the wheels δ determine

the state variables, as illustrated in Fig. 4.3. The control inputs are the steering rate u1 and the accelera-

tion u2. Let us define the current state of the ego vehicle as x = [sx, sy, ψ, δ, v]
T , and the input vector as

u = [u1, u2]
T . Additionally, the dynamics of the ego vehicle depend on two parameters, the wheel base l,

and the characteristic velocity1 vch.

To consider the vehicle’s physical limitations, as well as the safety-related ones, the following constraints

on state and input variables are imposed:

0 ≤ v ≤ vmax, (4.8)

1The characteristic velocity vch depends on the mass and the cornering stiffness of the vehicle, which characterizes the
dynamics of the bicycle model [194].
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l

ψ

δ

[sx, sy]

x

y

Figure 4.3: Kinematic bicycle model.

amin ≤ u2 ≤ amax. (4.9)

Γ(xego, t) ∈ lanes, (4.10)

δmin ≤ δ ≤ δmax, (4.11)

δ̇min ≤ u1 ≤ δ̇max. (4.12)

The inequalities (4.8), (4.9), (4.11), and (4.12) refer to physical constraints, i.e., the possible values of

the velocity, acceleration, steering, and steering rate, respectively. The other constraint (4.10) refers to

safety which states that the ego vehicle shall not exit the lanes’ boundaries. The central safety constraint

(see the formulated problem described in (4.2)) refers to the intersection between the occupancy set of

the ego vehicle and the overapproximative occupancy sets of the surrounding vehicles.

The boundary parameters for the velocity vmax, the acceleration amin, amax, the steering angle δmin,

δmax, and steering rate δ̇min, δ̇max are assumed to be given. These values can follow either from the

vehicle’s physical capabilities, or they can be defined as safety measures (e.g., maximum admissible

velocity vmax). In the following, we denote by X ⊂ R5 the set of states, and by U ⊂ R2 the set of inputs

that satisfy the corresponding state/input inequalities (4.8)-(4.12).

4.4 Fail-safe Motion Planner

In this section, a framework for motion planning with safety guarantees of the ego vehicle is presented.

Similar to adaptive cruise control with safety guarantees (see Chapter 2), the primary goal of the pro-

posed motion planner is to achieve safety, by foreseeing possible unexpected maneuvers of other traffic

participants and having the ability to avoid any collision with them. Moreover, when possible, comfort

should not be jeopardized.
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To consider both safety and comfort, a method similar to the one presented in Chapter 2 is proposed.

However, unlike the adaptive cruise control approach, where the ego vehicle can only follow its own lane,

here, the ego vehicle can perform lane changes as well. Therefore, a more sophisticated prediction of other

traffic participants is required. To achieve comfort, a long-term trajectory is generated for the ego vehicle

by considering the most likely behavior of other traffic participants. When the long-term trajectory is

no longer feasible, a precomputed emergency maneuver that accounts for every possible behavior of the

other traffic participants is engaged.

The main idea is to design a three-step motion planner that accounts for changes in the environment

and at the same time, maintains comfortable driving. First, the most likely maneuver of each relevant

surrounding vehicle is computed. Then, an optimal trajectory of the ego vehicle is generated for a given

time horizon Topt, so that no collision occurs according to the assumed behavior of surrounding vehicles,

as illustrated in Fig. 4.4. In the second step, an emergency maneuver is generated that can bring the ego

vehicle to a safe state (see Fig. 4.4). To guarantee safety, all possible future maneuvers of surrounding

vehicles must be considered. To this end, an overapproximative occupancy set which encloses all possible

occupancies is computed (as previously described in Chapter 3) for a given time horizon Temg.

We denote the first part of the optimal trajectory computed for a given time interval [t, t + t∗] as

a ( see Fig. 4.4(a)). Then, we generate a collision-free emergency maneuver b , such that the fail-safe

trajectory determined by the concatenation of a and b does not intersect with the occupancy set

of the surrounding vehicles, for any intermediate time interval up to the time horizon Temg. Thus, for

a given time horizon, no matter the trajectories of the surrounding vehicles, there exists an emergency

maneuver that can safely bring the ego vehicle to a safe state, as depicted in Fig. 4.4(a). Here, an optimal

control-based method is used to generate the emergency maneuver, however, any other approach that can

guarantee the occupancy sets of the surrounding vehicle are not violated, can be used as well. Lastly, after

the current traffic scenario is updated and new measurements are collected, the decision of whether the

ego vehicle can still follow the optimal long-term trajectory is made, or else the precomputed emergency

maneuver is engaged to avoid a possible collision.

To summarize, we first predict the most likely maneuvers of other traffic participants. Then, an

optimal long-term trajectory is generated for the ego vehicle such that the corresponding occupancy sets

of the ego vehicle, do not intersect with the occupancy sets associated with the most likely prediction

of the surrounding vehicles. However, the long-term plan is not followed unless a fail-safe emergency

maneuver is guaranteed to exist such that the ego vehicle will not collide with the surrounding vehicles.

To check whether there exists a safe emergency maneuver, we compute the overapproximative sets of

the other traffic participants, and verify if there is an intersection between these sets and the occupancy

corresponding to the emergency maneuver of the ego vehicle. The general architecture of the presented
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(a) t = ti

E: Ego

V�: Surrounding vehicle

tt V�: occupancy set V�: most likely path

E: optimal trajectory

t+ Topt

t+ Topt

E: emergency maneuver

t+ Temg

t+ Temg

a

bt+ t∗

Topt > Temg

(b) t = ti + t∗

t

t

t+ Temg

t+ Temgt+ t∗

a′
b′

E: available pre-computed emergency maneuver

t+ Topt

t+ Topt

Figure 4.4: At each time step, an emergency maneuver that accounts for every possible maneuver of the
leading vehicle is available. If there is no other further trajectory available, the emergency maneuver is
applied, which can safely bring the ego vehicle to a standstill.
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approach is illustrated in Fig. 4.5. In the following subsections, we describe the generation of the optimal

and emergency trajectories in more detail.

4.4.1 Optimal Trajectory Generation

Since the long-term, optimal trajectory is being followed only after it is verified as safe (recall the online

verification concept of a given trajectory in Fig. 3.2), formal predictions for the other traffic participants

are not required for planning of this trajectory. Instead, we use the most likely maneuver of the relevant

surrounding vehicles, as a non-formal, long-term prediction. Various approaches for computing the most

probable trajectory of the leading vehicle already exist, for example, by assuming constant yaw rate and

acceleration (CYRA) [24] or by using a maneuver recognition module (MRM) [75]. Since MRM shows

higher accuracy compared to CYRA for a longer time horizon prediction [75], the MRM approach is

subsequently used to generate the most probable trajectory for each surrounding vehicle. Nevertheless,

any non-formal approach that predicts the most likely behavior of the surrounding vehicles can be used

as well.

In [75], the goal is to generate a trajectory prediction based on the detection of the target lane, i.e. the

lane towards which a vehicle is driving. Three basic maneuvers are considered: keep lane, change lane,

and turn. Obviously, other possible maneuvers can be seen as a combination of those basic maneuvers.

It is assumed that for any maneuver execution, the target position of a vehicle is along the center-line

of a lane. Then, to compute the most likely trajectory of a surrounding vehicle, a comparison between

the current path of the vehicle and the center-line of a given lane is performed. The prediction of the

most likely trajectory is computed for each time ti over a given time horizon Topt. For more details, the

reader is referred to [75]. Since the target architecture of the proposed framework is highly modular (see

Fig. 4.5), the approach used for the detection of the most likely maneuver of the surrounding vehicles

can be easily interchanged with another appropriate method. For each traffic participant, a polygon

that represents the corresponding non-formal predicted occupancy is associated with each position of the

computed trajectory Γ(V�, ti), for each time instance ∀ti, 0 < ti ≤ Topt. The predicted polygons of the

surrounding vehicles are then embedded as constraints in the trajectory generation problem of the ego

vehicle, as will be subsequently described.

Next, a long-term, optimal trajectory that considers the non-formal prediction of other traffic partic-

ipants is generated for the ego vehicle, for a given time horizon Topt. Generating trajectories that utilize

optimal control or MPC, which must satisfy a set of given constraints, is already a mature research field.

In this chapter, an approach inspired by [194] is used to generate the trajectory of the ego vehicle. Any

other trajectory planning approach can be used as well (see the related approaches in Sec. 4.1). The

goal of the work described in [194] is collision avoidance through velocity reduction. On the other hand,

in this thesis, the aim is to generate a smooth trajectory that avoids high jerk values and that tracks
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Sec. 4.4.1 Sec. 4.4.2

Sec. 4.4.3
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V�: Maneuver prediction V�: Occupancy set
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Figure 4.5: General architecture of the proposed approach for fail-safe motion planning.

the given reference path. Recall that we assume that a route planner is available to the ego vehicle,

which provides the relevant reference path that must be followed in order to reach the navigation goal.

Thus, the cost function from [194] is modified accordingly by penalizing any deviation from the reference

trajectory (here, the reference trajectory is considered as the centerline of the target lane).

We denote by Γ(V�, ti) the occupancy sets corresponding to the most likely maneuver of the surround-

ing vehicle V� at the time step ti. To generate a trajectory for the ego vehicle that avoids collisions with

the surrounding vehicles, we introduce constraints regarding the distance between the occupancy corre-

sponding to the generated trajectory of the ego vehicle and the future predicted occupancy sets Γ(V�, ti)

corresponding to the other traffic participants. Here, the minimum Euclidean distance di between the

occupancy Γ(E, ti), which encloses the ego vehicle, and the predicted occupancy Γ(V�, ti), is given as
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(see Fig. 4.6):

di = min
i

distance(Γ(E, ti), Γ(V�, ti)), (4.13)

where both occupancy polygons Γ(E, ti) and Γ(V�, ti) are computed for each time step ti.

To prevent collisions with the other traffic participants, the following constraint is set:

di ≥ dmin, ∀ti, 0 < ti ≤ Topt, (4.14)

where dmin is a given parameter. Of course, more sophisticated safe distance measures can be embedded

here as well for both the longitudinal and lateral directions1. However, in this chapter, a simple parameter-

based approach is used for both longitudinal and lateral directions, in order to focus on the novel aspects

of the proposed framework.

Finally, the control inputs — steering rate u1 and acceleration u2 — are calculated such that the

proposed cost function Jopt is minimized. Here, the cost function Jopt penalizes variations of the steering

rate, acceleration, and steering angle, together with the deviation of the heading and position with respect

to the reference trajectory2:

Jopt =

t+Topt
∫

t

[

γ1u
2
1 + γ2u

2
2 + γ3(θ − θr)2 + γ4δ

2 + γ5d
2
r

]

dτ,

subject to: (4.3), (4.8)− (4.12), (4.13),

where θr is the orientation of the reference trajectory, dr is the distance to the reference trajectory, and

γi, i ∈ {1, . . . , 5} are weighting parameters corresponding to each term of the cost function.

l

w
dr

di
Γ(E, ti)

Γ(V�, ti)

centerline of the reference lane

Figure 4.6: Obstacle avoidance constraint corresponding with time instance ti.

1The approach for calculating the safe distance for the ACC setup could be used for the longitudinal direction. In
contrast, a parameter-based approach may be more appropriate for the lateral direction.

2Here, the reference trajectory is considered the centerline of the desired lane. It is assumed that there exists a tactical
planner that decides which is the desired lane.
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4.4.2 Emergency Trajectory

The long-term, optimal trajectory does not consider all possible behaviors determined by infinitely many

maneuvers1 of the surrounding vehicles, but only the most probable one. However, not considering all

possible maneuvers of the other traffic participants may result in an imminent collision. That is, the ego

vehicle may get into a traffic situation where an emergency maneuver could only mitigate the collision

effects.

In Chapter 3, we have presented a method for computing an overapproximative occupancy prediction

for the other traffic participants that encloses all possible trajectories for a given time horizon. Recall that

the overapproximative sets are calculated for a given time horizon Temg, for consecutive time intervals

τi, τi ≤ Temg, for each surrounding vehicle. To this end, different abstracted models of the surrounding

vehicles are considered. These models consider the constraints derived from the traffic rules listed in the

Vienna Convention on Road Traffic [176] and physical constraints. Then, a collection of overapproximative

reachable sets is calculated for each time interval τi, with respect to each considered abstracted model.

In [6], it is proven that the intersection of the reachable sets corresponding to different abstracted models

provides the overapproximative occupancy of the real model of other traffic participants. For a more

detailed description, the reader is referred to [6, 7] and Chapter 3.

There is much research on emergency trajectory generation. However, a crucial issue common to

the previous work on the generation of emergency maneuvers is that not all possible trajectories of the

surrounding relevant vehicles are considered. Most of the previous work assumes that the surrounding

vehicles are moving with constant acceleration and constant yaw rate or only considers static obstacles.

Note that, even if a more sophisticated approach for predicting the future behavior of the other traffic

participants is used, some unexpected maneuvers may still not be considered.

Similar to the previous step (see Sec. 4.4.1), after the prediction of the other vehicles is computed, a

collision-free trajectory is generated for the ego vehicle. The major differences introduced by computing

the emergency maneuver instead of an optimal trajectory are that the velocity must be reduced, and

corresponding predicted occupancy set of the surrounding vehicles must be avoided.

To generate the emergency maneuver, an optimal control-based approach similar to the one presented

in [194] is used. To guarantee safety, the predicted occupancy sets of other traffic participants are

embedded in the constraint function. The cost function Jemg is similar to the one used for optimal

trajectory generation, as described in (4.4.1). The difference is that driving along a reference trajectory

is no longer desired, but rather minimizing the velocity vego:

1These infinitely many maneuvers are, of course, limited by the physical capabilities of the system.
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Jemg =

t+Temg
∫

t

[

γ1u
2
1 + γ2u

2
2 + γ3δ

2 + γ4v
2
ego

]

dτ,

subject to: (4.3), (4.8)− (4.12),

Γ(E, t) ⊂ lanes\Occ(V�, τ). (4.15)

4.4.3 Maneuver Selection

In the previous two sections, Sec. 4.4.1 and Sec. 4.4.2, an optimal trajectory and an emergency maneuver

are generated for the ego vehicle, considering the most probable future behavior and the predicted over-

approximative occupancy sets of the surrounding vehicles, respectively, as illustrated in Fig. 4.4. The

next step is to decide which maneuver must be applied at each time step to guarantee safety and ensure

comfort.

After new measurements are received1 (see Fig. 4.5), it is evaluated whether a dangerous traffic sit-

uation has occurred, and the precomputed emergency maneuver should be executed, or the optimal

trajectory is still safe (with respect to the updated traffic scenario). If several feasible trajectories are

found, the optimal one is chosen. Otherwise, if no further collision-free trajectory exists, then the previ-

ously computed emergency maneuver is engaged. In order to check whether the safety of the long-term

optimal trajectory has been affected due to the updated traffic situation, let us first define what a safe

trajectory represents.

Let us denote by XC = XAXB the concatenation of trajectories XA = [xA(t0), xA(t1), xA(t2), . . . ,

xA(tA)], XB = [xB(t0), xB(t1), xB(t2), . . . , xB(tB)], where tA and tB represent the time horizon corre-

sponding to each trajectory, XA and XB, respectively, such that the concatenated trajectory is XC = [xA(t0),

xA(t1), xA(t2), . . . , xA(tA), xB(t0), xB(t1), xB(t2), . . . , xB(tB)].

Definition 4.1. [Safe trajectory] A given trajectory X a is verified as safe if a further emergency

trajectory X
b

exists, which is concatenated with the previous one, can steer the ego vehicle into a safe

state (e.g., standstill). The second condition that must be fulfilled is that the corresponding occupancy

of both trajectories Γ(X a ) and Γ(X
b
) must not intersect with the corresponding occupancy prediction

sets of the surrounding vehicles, i.e.,

1New measurements with respect to the other traffic participants are assumed to be available to the ego vehicle at each
time instance, through onboard sensors.
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Xsafe = X a X b
,

subject to ∀k ∈ {1, · · · , N} ∀r ∈ {0, · · · , i− 1},

∀j ∈ {i, · · · , n}, ∃Xemg(ti) :

Γ(X a (τr)) ∩Occ(Vk, τr) = ∅ ∧

Γ(X
b
(τj)) ∩Occ(Vk, τj) = ∅.

(4.16)

If the ego vehicle follows the trajectory determined by concatenation of X a and X
b

(see Fig. 4.4),

no collision will occur since the available emergency maneuver can safely bring the ego vehicle to a safe

state, even if the surrounding vehicles perform unexpected maneuvers. To decide if the pre-computed

emergency maneuver must be engaged, we first verify if there exists any further fail-safe trajectory at

each time step ti. Finally, we define the trajectory segment X a =Xopt[t0, t
∗] as being safe if:

∀t ∈ [t0, t
∗] Xopt(t) ∩Occ(Vk, t) = ∅ ∧ ∀t ∈ [t∗, Temg] Xemg(t) ∩Occ(Vk, t) = ∅ (4.17)

where the value of t∗ can be initially set to ∆t.

4.5 Computing the Maximum Time Horizon t
∗ to Safely Follow

a Trajectory

In the previous section, we presented a method that verifies whether a given trajectory can be safely

followed. Next, instead of verifying at every time step whether the state of the trajectory to be followed

is safe, we determine the maximum time horizon t∗ to safely follow the given trajectory, as formulated in

(4.2).

To calculate the aforementioned maximum safe time horizon t∗, we propose a four-step algorithm,

as illustrated in Fig. 4.7. In Sec. 4.4, we already solved the first two steps, that is, generating both

a long-term trajectory Xopt(t) based on the most likely trajectory of other traffic participants, and an

emergency maneuver Xemg(t) calculated by considering the overapproximative occupancy sets of other

traffic participants (see Fig. 4.7a and Fig. 4.7b). Since it is neither desirable, nor required, to generate

an emergency maneuver at each time step, we first prune the time interval bounded by the current time

step t0 and the end of the planning horizon Topt. The resulting bounded time interval is determined by

a lower and upper bound, between which it is guaranteed that an emergency maneuver exists.

The upper bound tup of the time interval [t0, Topt] represents the latest time for which the ego vehicle

can follow the long-term trajectory without intersecting the corresponding occupancy set of the other

vehicles. However, there is no guarantee that an emergency maneuver exists that can bring the ego vehicle

to a safe state at time tup. Thus, all states within the long-term trajectory corresponding to t > tup

are not safe, since an intersection between the occupancies of the intended trajectory and of other traffic
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(a) Long-term, optimal trajectory computation for the ego vehicle.

Occ(τ1)

Occ(τ2)
Occ(τ3)

Occ(τ4)
Occ(τ5)

Occ(τ6)

(b) Overapproximative occupancy sets of the surrounding vehicle.

tlow

tup

(c) The upper bound tup and the lower bound tlow of t∗ computation.

t∗

(d) Finding t∗ within time vector {tlow, . . . , tup}.

ego vehicle

surrounding vehicle

most likely behavior of the surrounding vehicle

overapproximative occupancy set of the surrounding vehicle

optimal trajectory of the ego vehicle
safe emergency maneuver of the ego vehicle
future occupancy of the ego vehicle

Figure 4.7: Computation of the maximum time horizon t∗ to safely follow a trajectory.
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participants exists. The lower bound tlow represents the latest time at which full braking can be initiated

so that standstill is reached before or at tup. Both tup and tlow are illustrated in Fig. 4.7c. Computing

the lower and the upper time, tlow and tup, corresponds to the third step within the proposed algorithm.

Finally, in the fourth step, the maximum time horizon t∗ is calculated using binary search [99] within

the interval [tlow, tup] (see Fig. 4.7d). In the following, a detailed description of every step of the proposed

algorithm (as illustrated in Fig. 4.8) is provided, such that the problem described in (4.2) is solved.

4.5.1 Computation of the Upper Bound tup

The upper bound tup represents the latest possible time for which the planned trajectory of the ego

vehicle does not intersect with the corresponding occupancy prediction of the surrounding vehicles, which

is described as follows:

tup = max
0≤i≤m

ti,

subject to ∀k ∈ {1, · · · , p}, ∀r ∈ {0, · · · , i− 1} :

Γ(xopt(τr)) ∩Occk(τr) = ∅.

(4.18)

To calculate tup, we iteratively check for collisions for each time step ∆t starting at t0. If no intersection

exists at the current time step, we further check for tup := tup +∆t until tup = Topt. If the entire time

horizon is reached at tup = Topt and no collision is found, each value within the time interval [t0, Topt]

is a possible candidate for the maximum time t∗. However, to further prune this time interval, a lower

bound is later computed, as presented in Sec. 4.5.2.

Moreover, if no further emergency maneuver is found and thus, tup := t0, the current trajectory is not

verified as safe, and the precomputed emergency maneuver must be engaged, as illustrated in Fig. 4.8.

4.5.2 Computation of the Lower Bound tlow

The lower bound tlow represents the latest time the ego vehicle can initiate an emergency maneuver along

the optimal trajectory, such that it can safely stop before tup. Thus, the value of tlow already corresponds

to a safe state. In comparison, the state corresponding to tup has no safety guarantees, since one cannot

guarantee that an emergency maneuver exists at that point in time. Although the lower bound tlow is

safe, it is not necessarily the optimal value of t∗, that is, the last safe emergency maneuver could be

found at a later point in time tlow ≤ t∗ ≤ tup. Thus, every state xopt(t), t0 ≤ t ≤ tlow is safe, since there

exists at least one safe emergency maneuver starting at tlow. Hence, those states can be discarded from

the search interval of t∗.

To find tlow, we generate the optimal velocity profile backwards in time along the given path (the

optimal trajectory Xopt). For this, we assume that v(tup) = 0. The generated optimal velocity profile

guarantees minimal time when traveling along the given path starting from a standstill at the position
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Start

Generate xopt(ti), ∀i ∈ {0, . . . ,m}

Compute occupancy sets Occk(τi)

Compute tup

Compute tlow

Apply binary search

to find t∗

t∗ == t0

Follow xopt(t), t0 ≤ t ≤ t∗

End

tup == t0

Apply emergency

maneuver

yes

yes

no

no

Sec. 4.5.1

Sec. 4.5.2

Sec. 4.5.3

Figure 4.8: Algorithm for computing the maximum time horizon t∗ to safely follow a trajectory.

of xopt(tup), towards the position of xopt(t0). To generate this optimal velocity profile that provides the

shortest trip time for curved paths, the method presented in [187] is used. For a path with negligible
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optimal velocity required to stop at the position of Xopt(tup)
velocity corresponding to Xopt(t)

v

ttlow tup0

0

Figure 4.9: Computation of tlow.

curvature, full deceleration amin would provide the fastest emergency maneuver. Finally, the lower bound

tlow represents the time where the velocity profile of the optimal trajectory xopt intersects with the optimal

velocity for decelerating to a standstill at the position of xopt(tup) as shown in Fig. 4.9.

4.5.3 Binary Search of t∗

After the interval around t∗ is pruned to [tlow, tup], we search for the maximum time within which a

feasible emergency maneuver exists. To find t∗ within the interval [tlow, tup], any search algorithm can be

used. Here, a binary search [99, Sec. 6.2.1] is applied due to its efficiency (O(log n) complexity) compared

to the sequential search (O(n) complexity).

The search interval is denoted by tsearchVect = [tlow, tlow +∆t, · · · , tup]. Let us now introduce the

operator idx(e, v), which provides the index of the element e within a vector v. We denote by ⌊ · ⌋ the

floor operator, which provides the greatest integer less than or equal to the given parameter.

Subsequently, in Alg. 3, the computation of t∗ is explained in detail. First, an initialization is done

by adding a label visit(ti)← 0, which is a Boolean variable, for each element ti ∈ tsearchVect. An element

ti ∈ tsearchVect is assigned the label visit(ti)← 1 if an emergency maneuver starting with that element is

verified whether or not to exist.

To check if an emergency maneuver exists, an optimal control-based method already described in Sec. 4.4.2

is used. The considered objective function to be minimized is provided in (4.15). To solve (4.15), we

apply Sequential Quadratic Programming (SQP) [144], since this method provides an efficient solution

of constrained nonlinear optimization problems.
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Algorithm 3 Search of t∗ within [tlow, tup].

Input: tup, tlow, ∆t, timeVect

Output: t∗

1 forall ti ∈ tsearchVect do

2 visit(ti) ← 0

3 while true do

4 ilow ← idx(tlow, tsearchVect)

iup ← idx(tup, tsearchVect)

imid ←
⌊

ilow + iup
2

⌋

tmid ← tsearchVect[imid]

if ∃(Xemg(tmid)) then

5 s← idx(tmid +∆t, tsearchVect)

if visit(ts) == 1 then

6 t∗ ← tmid

break

7 else

8 tlow ← tmid

ttemp ← tsearchVect

[

⌊

ilow + iup
2

⌋

]

visit(ttemp)← 1

9 else

10 s← idx(tmid −∆t, tsearchVect)

if visit(ts) == 1 then

11 t∗ ← tmid −∆t

break

12 else

13 tup ← tmid

ttemp ← tsearchVect

[

⌊

ilow + iup
2

⌋

]

visit(ttemp)← 1

14 return t∗

4.6 Numerical Experiments

We demonstrated our proposed approach for fail-safe motion planning by using real traffic data. To

this end, detailed vehicle trajectories are used, that are taken from a dataset that is part of the Federal
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Highway Administration’s (FHWA) Next Generation Simulation (NGSIM)1 project, as already described

in Sec. 3.5.3. We continuously plan a fail-safe motion accounting for all possible behaviors of other traffic

participants (captured by our set-based prediction, as described in Chapter 3) to guarantee collision

avoidance. In this demonstration, we use a standstill as a safe final state of the fail-safe trajectory.

Table 4.1: Parameters used for fail-safe motion planning simulations.

Parameter ∆t l w vch
(unit) (s) (m) (m) (m/s)

Value 0.1 4 2 20

4.6.1 Simulation Results: Fail-Safe Motion Planning

In our simulation setup, the vehicles whose trajectories were recorded are considered to be the surrounding

vehicles. The ego vehicle is positioned behind the surrounding vehicle(s) and the initial velocity and

acceleration are arbitrarily chosen within the given limits. In Table 4.1, the parameters used for the

generation of fail-safe trajectories are given. In Table 4.2, the admissible ranges of variables are listed.

Table 4.2: Ranges of variables used for fail-safe motion planning simulations.

Parameter v δ δ̇ a
(unit) (m/s) (rad) (rads) (m/s2)

Interval [0,30] [-π/2,π/2] [-π/8, π/8] [-10,10]

Next, we consider three traffic scenarios based on the NGSIM dataset, as follows: In the first scenario,

only one surrounding vehicle is considered and in the second and third investigated scenarios, multiple

surrounding vehicles are considered.

Scenario 1. Here, a scenario with only one surrounding vehicle is considered. Initially, both the ego

and the other vehicle are travelling in the same lane at a 37m apart. The initial velocity for the ego and

the lead vehicle is 20m/s and 13.5m/s, respectively. At time 4.5s (t9), the other vehicle begins to perform

an unexpected maneuver and steers towards the left lane, where the ego vehicle is driving in, at that

time. However, at each time step, a feasible emergency maneuver is available for the ego vehicle, which

considers all possible maneuvers of the surrounding vehicle. The unexpected behavior of the other traffic

participant triggers an emergency maneuver for the ego vehicle, such that a possible collision is avoided,

as depicted in Fig. 4.10a. The inputs used to control the ego vehicle are presented in Fig. 4.10. The

control inputs u1 and u2 are large due to the fail-safe maneuver, which is only executed in an emergency

situation.

1http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm
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Surrounding vehicle. Ego vehicle. Driving direction.
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Figure 4.10: Scenario 1. Simulation results.

Scenario 2. In this scenario, two surrounding traffic participants are taken into account. The scenario

considers the initial distances between the ego vehicle and the surrounding vehicle as 37m and 49m, and

the initial velocities of other vehicles as 13.5m/s and 13m/s, respectively. Fig. 4.11a shows the measured

position of the surrounding vehicles at each time step, together with the generated path of the ego vehicle.

The values of control inputs u1 and u2 are presented in Fig. 4.11.

The lead vehicle #1 (see Fig. 4.11a) performs an unexpected maneuver at time t9 towards the left

lane, where the ego vehicle is driving. The ego vehicle successfully avoids the collision by applying the

available emergency maneuver. Next, at time t22 the lead vehicle #2 starts a lane change maneuver. At

the next time step, the lane change maneuver is aborted, and the ego vehicle continues driving along the

planned trajectory.

Scenario 3. The basis of the third scenario originates from the US 101 dataset with two surrounding

vehicles (vehicle #1 and vehicle #2) and the ego vehicle, as shown in Fig. 4.12. The initial velocities of

vehicle #1, vehicle #2, and the ego vehicle are are 12.0 m/s, 15.9 m/s, and 20 m/s, respectively. The

time horizons considered for the occupancy prediction and the long-term trajectory are tshort = 0.5 s,

tlong = 5 s, respectively. The simulation of the whole scenario with continuous updates of the occupancy

prediction is performed for 10 s. Our intended trajectories consist of the first 0.2 s of the long-term

trajectory followed by the planned fail-safe trajectory. Our objective function for the long-term plan

penalizes the distance from the center of the lane and the variation of the yaw angle whereas the objective

function for the fail-safe trajectory penalizes the velocity.

In order to create a more challenging scenario, we partially modified the recorded motion of vehicle #1,
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Vehicle #1. Vehicle #2. Ego vehicle. Driving direction.
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Figure 4.11: Scenario 2. Simulation results.

while the recorded motion of vehicle #2 is unchanged. The first modification occurs at time step 2 when

vehicle #1 suddenly steers towards the left lane and quickly returns to its original lane (see Fig. 4.12).

However, the verification procedure of the ego vehicle determines that the long-term trajectory continues

to be safe so that it is continued. At time step 8, the second modification occurs: vehicle #1 again steers

towards the left lane and quickly returns to its original lane which causes a dangerous situation. This time,

the ego vehicle must execute its fail-safe trajectory to avoid a potential collision. The fail-safe trajectory is

executed until a new safe trajectory is generated for the ego vehicle. This demonstration shows the benefit

of keeping a fail-safe trajectory based on a set-based prediction of other traffic participants available.

vehicle #1

vehicle #2

ego vehicle

driving direction

Figure 4.12: Scenario 3. Fail-safe motion planning using predicted occupancy sets; the numbers represent
the time steps ti.
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Scenario suite #1: v = 20m/s, d = 18m.

Scenario suite #2: v = 20m/s, d = 12m.

Scenario suite #3: v = 16m/s, d = 18m.

Scenario suite #4: v = 16m/s, d = 12m.

Scenario suite #5: v = 20m/s, d = 40m.

driving direction (all four lanes in the considered scenarios have the same driving direction)
emergency maneuver of the ego vehicle
optimal trajectory of the ego vehicle
actual occupancy of the surrounding vehicle

Figure 4.13: Simulation results for scenario suites #1 - #5.

4.6.2 Simulation Results: Maximum Safe Time Horizon

4.6.2.0.1 Simulation setup. Six scenario suites are analyzed to validate our approach, that is, to

calculate the latest point in time where an emergency maneuver exists (so-called maximum safe time

horizon). The first five suites consider only one surrounding vehicle, whereas the last one considers three

surrounding vehicles. We start by selecting an initial frame from the data set and mark it as the initial

simulation time. Then, we extract the corresponding information regarding the other traffic participants

at each future time step ti.

The constraints on the velocity, steering rate, and acceleration, as well as the length, width, and

characteristic velocity used for the ego vehicle, are shown in Table 4.1. Additionally, the weighting

parameters used in the optimization problem are set to the following values: γ1 = 80, γ2 = 10, γ3 = 1,
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driving direction
emergency maneuver
optimal trajectory
surrounding vehicle #1
surrounding vehicle #2
surrounding vehicle #3

Figure 4.14: Simulation result for scenario suite # 6.

and γ4 = 0. The initial velocity v of the ego vehicle and the initial smallest distance d to any surrounding

vehicle are defined by the user. In the simulation, different initial values of v and d are considered. In

scenario suite #1 and #2, v is set to 20m/s and d is 18m and 12m, respectively, while in scenario suite

#3 and #4, v is set to 16m/s and d is 18m and 12m. The initial velocity of the surrounding vehicle is

12.19m/s in scenario suites #1 – #4. In scenario suite #5, v is 20m/s and d is 40m.

In scenario suite #6, the ego vehicle has an initial velocity v = 20m/s. We obtain the initial velocities

of surrounding vehicles #1, #2, and #3 from the NGSIM dataset, which are 12.19m/s, 14.62m/s, and

10.92m/s, respectively. The distance between the ego vehicle and the closest surrounding vehicle is 18m.

Fig. 4.13 and 4.14 show the simulation results for each considered scenario suite. For illustration purposes,

the position of the surrounding vehicle is shown only for every 0.5 seconds, and not for every ∆t. Here,

to generate a long-term plan for the ego vehicle, an RRT-based method [104] is applied. Other trajectory

generating algorithms can be used as well.

Simulation Results. Fig. 4.15 illustrates the computed values of t∗ for each scenario suite, which

represents the latest point in time when an emergency maneuver would be required. Taking scenario

suite #3 as an example, the ego vehicle can safely follow the long-term trajectory over the following time

interval [0, 2] since an emergency maneuver is kept available at t∗1 = 2s. Meanwhile, new measurements are

collected, and a new safe interval is computed as [2, 3.4]. A safe emergency maneuver is pre-computed

after t∗2 = 1.4s. Considering the new acquired information regarding the behavior of the other traffic

participants, we compute a new safe time horizon, as well as an evasive maneuver starting at the end of

the computed time interval, which guarantees to bring the ego vehicle to a safe state.

If we would have used the approach from our previous work [120], a total of 95 emergency maneuvers

would have been generated, one for each time step. However, with the method proposed in this chapter,

only 7 emergency maneuvers are needed for the same scenario suite. Therefore, our algorithm is indeed

capable of significantly reducing the required number of emergency maneuvers. Similarly, in scenario
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Figure 4.15: Values of t∗ for the considered scenarios suite. After each t∗, the current traffic scenario is
updated and we check if the current optimal trajectory is still feasible. If it is not, and there exists no other
new optimal trajectory, the precomputed emergency maneuver is engaged until a new optimal trajectory is
found. Otherwise, a new t∗ is computed, during which the ego vehicle can safely follow the optimal trajectory.

suite #6, we only need to generate 8 emergency maneuvers, while by using our previous approach, it

would have required 56 maneuvers, since one maneuver is generated at each time step.

In conclusion, the simulation results demonstrate that our algorithm can indeed automatically adapt

the frequency of generating emergency maneuvers, based on the current traffic situation (e.g., distance to

the surrounding vehicles and relative velocity), which can be seen when comparing scenario suites #1 to

#2 and #3 to #4. When the ego vehicle gets closer to a surrounding vehicle, t∗ becomes smaller. More

frequent emergency maneuvers are generated in order to account for the future possible behavior of other

traffic participants. Scenario suite #5 shows this more obviously — when the ego vehicle is approaching

the surrounding vehicle in the longitudinal direction, emergency maneuvers are generated more often, to

account for a possible dangerous situation.

4.7 Summary

Guaranteeing safety and comfort for motion planning in a dynamic environment is a major challenge

due to the uncertainties introduced by the infinite number of possible trajectories of other traffic par-

ticipants. However, most of the time, comfort and safety are contradictory requirements. While much

work already exists on both emergency maneuver and optimal trajectory generation, motion planning

that simultaneously considers safety and comfort has not yet been addressed.

In this chapter, a fail-safe motion planning approach for autonomous vehicles is presented, that

considers both comfort and safety. The optimality of the generated trajectory is achieved by considering

the most likely trajectory of the surrounding vehicles. Moreover, safety is guaranteed by keeping an

emergency maneuver available that accounts for every possible trajectory of the surrounding vehicles
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over a given time horizon. Thus, the main asset of our technique is that we are able to bring the ego

vehicle to a safe state, no matter what the future maneuvers of other traffic participants may be.

Since keeping available an emergency maneuver at each time step is computationally expensive, and

often not required, an algorithm for computing the maximum time horizon during which a vehicle can

safely follow a given trajectory is proposed. Instead of generating emergency maneuvers at each time step,

we determine the maximum time horizon during which the ego vehicle can follow a trajectory without

need of applying an emergency maneuver. To truncate the search interval for finding this maximum time

horizon, a lower and an upper bound are computed. After the search interval is pruned, we apply binary

search to find the maximum time horizon for which a given trajectory can be safely followed. At the end

of this time horizon, only one emergency maneuver is generated.

The fail-safe motion planning approach was tested using real traffic data, and it shows that safety can

indeed be achieved by considering all possible maneuvers of the surrounding vehicles. Furthermore, the

frequency of the generated emergency maneuvers is highly reduced, while safety is still guaranteed. The

simulation results show that our approach performs well under different traffic scenarios by adapting the

frequency of generating emergency maneuvers according to the current traffic situation.
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Chapter 5

Concluding Remarks

Lastly, a summary of this thesis is presented. First, the major contributions introduced in each chapter

are highlighted. Then, the possible future research directions conclude this thesis.

5.1 Summary and Contributions

In this thesis, we have motivated the need for new methods and decision algorithms for motion

planning of autonomous vehicles that can formally guarantee safety. Although motion planning, in

general, is a mature research field, the existing planning techniques for autonomous vehicles in mixed

traffic scenarios cannot guarantee safety with respect to the other traffic participants.

There are two major reasons for this problem. On the one hand, when generating a motion plan for an

autonomous vehicle, only a limited set of the most likely behaviors of the other traffic participants is

taken into consideration. Therefore, in the situation that a misinterpretation of the future behavior of

other vehicles occurs, the ego vehicle may end up in an unsafe situation. On the other hand, when a

dangerous traffic situation occurs, an emergency maneuver should be generated. However, it is possible

at that point in time that no further emergency maneuver capable of avoiding a possible collision exists;

instead, the generated maneuver would just decrease the impact of the collision. Collision mitigation

is its own research field with the main goal of minimizing the collision results, rather than preventing

hazardous situations from occurring. These issues have been already identified in self-driven prototype

vehicles [190], but also in vehicles equipped with driving assistance systems1.

Therefore, in this thesis, we propose a method for motion planning of autonomous vehicles that can

formally guarantee safety, by considering all possible future behaviors of other traffic participants and

keeping available an emergency maneuver that can bring the controlled vehicle to a safe state.

1https://www.wabco-auto.com/americas en/Our-Solutions/Bus-solutions/Bus-Safety/Advanced-Driver-Assistance
-Systems/OnGuard-Collision-Mitigation-System-Bus
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Safe Longitudinal Control of Autonomous Vehicles

The objective of this chapter is to provide a framework that generates longitudinal control input for an

autonomous vehicle in a traffic scenario where maintaining the current lane is the desired maneuver.

Although there already exists systems that assist a human-driver with longitudinal driving functions

(e.g.: cruise control or adaptive cruise control), there is a distinct lack of formal safety guarantees. That

is, those existing systems cannot prove safety in an unexpected traffic situation. They can, at most,

activate a mitigation maneuver, and hand further responsibility over to the human-driver. For vehicles

with a higher level of autonomy, however, the system takes over the driving responsibility from the driver.

Therefore systems that can formally guarantee safety are required.

The primary contribution in this chapter is represented by a novel control scheme that consists of a

nominal controller, which is supervised by an emergency controller that is activated once the nominal

controller is no longer feasible. To generate an emergency maneuver that can bring the ego vehicle into

a safe state, we first calculate the required safe distance with respect to the vehicle driving ahead. To

do this, we not only consider the most likely behavior of the leading vehicle, but the worst-case situation

where a full braking maneuver is engaged. Therefore, even in this case, the precomputed emergency

maneuver can guarantee that the ego vehicle is brought to a safe state.

In a typical leading-follower setup (e.g.: ACC systems), the ego vehicle (the follower) keeps a safe distance

only to the vehicle driving ahead. However, in the situation that the closest leading vehicle is performing

a lane change due to a slower vehicle or a static obstacle ahead, the ego vehicle must be prepared to react

as well, to avoid a potential collision. To guarantee that we can still find an emergency maneuver that is

able to bring the ego vehicle to a safe state, we not only calculate a safe longitudinal input corresponding

to the closest leading vehicle, but consider all traffic participants that can affect the safe distance of the

ego vehicle.

Another traffic scenario where the safe distance may be violated is represented by cut-in vehicles aiming

for the inter-vehicle gap between the ego vehicle and its closest leading vehicle, but also in a general case,

where a vehicle driving in an adjacent lane is performing a lane change towards the ego vehicle’s lane.

First, in order to have a smoother response to a cut-in maneuver, the ego vehicle should react before

the lane change is actually completed. Therefore, when a cut-in maneuver is predicted, the calculation

of a clearance acceleration has already begun, and the safe distance could be restored in a specified time

horizon.

Finally, since a control input is calculated for each relevant vehicle, we select the one which does not

jeopardize the safe distance with respect to the other traffic participants. Therefore, we select the

acceleration command that produces the most defensive behavior to achieve safety corresponding to all

relevant surrounding obstacles.
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Overapproximative Occupancy Set Computation of Traffic Participants

The drawback of the framework presented in the previous chapter is that only the longitudinal motion

problem is addressed. For more complex traffic scenarios (e.g. the ego vehicle performs a lane change

maneuver), however, it is not enough to guarantee safety only with respect to the vehicles driving in the

ego lane. Therefore, a more complex prediction of the behavior of other traffic participants is required.

In previous work, this problem was solved by generating either the most likely behavior — determined by

one or more possible maneuvers or by calculating the probability distribution of the future occupancy of

other traffic participants over time. Since the prediction generated by these approaches does not consider

all possible behaviors of the other traffic participants, the generated trajectory of the ego vehicle cannot

be guaranteed to be collision-free.

In this chapter, we address the above-mentioned issue. Instead of calculating only a set of the most

likely maneuvers, we calculate consecutive overapproximative occupancy sets that contain all possible

behaviors of surrounding traffic participants, for a given time interval.

This chapter is an extension of the work published by Matthias Althoff in [7,9], where it has been shown

that the overapproximative occupancy sets representing the prediction of other traffic participants can be

calculated in a formal manner. This is computed by intersecting the occupancy corresponding to different

abstractions of the vehicle model. In the previous work, however, only single lane roads were considered.

The main contribution presented in this chapter is represented by a framework that can formally calculate

the predicted occupancy sets of surrounding traffic participants on arbitrary road networks.

Another improvement presented in this chapter represents an algorithm that calculates in an efficient

way an overapproximation of the fastest way through a lane, whereas in the previous work, the shortest

path through a lane was assumed to exist.

Finally, we have validated our approach for computing overapproximative occupancy prediction sets

against real traffic data in order to show that our prediction always encloses the actual occupancy resulting

from the recorded trajectories.

Fail-Safe Motion Planning

After an efficient algorithm to calculate the overapproximative occupancy sets of other traffic participants

was presented in the previous chapter, here, the main focus is to include the computed prediction sets

into the planning algorithm, such that we can guarantee safety.

Our proposed method for fail-safe motion planning of the ego vehicle is similar to the one presented in

Chapter 2 and consists of two main steps. First, a long-term, optimal trajectory is calculated considering

the most likely behavior of the other traffic participants. This trajectory, however, cannot be guaranteed

to be collision-free. Moreover, when a dangerous situation is detected, an emergency maneuver may not

exist anymore during replanning. To avoid this, before following the generated optimal trajectory, we
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check if it is verified as safe. We define an intended trajectory as safe if there exists another trajectory

corresponding to an emergency maneuver that, concatenated with the intended trajectory, can bring the

ego vehicle to a safe state, no matter what the future behavior of the other traffic participants is.

In order to generate the trajectory corresponding to the emergency maneuver, we use the predicted

overapproximative occupancy sets of the other traffic participants as constraints, such that any possible

collision can be avoided, even when the surrounding vehicles perform unexpected maneuvers.

Therefore, an emergency maneuver starting at each state of the optimal trajectory is generated and kept

available. This precomputed maneuver is engaged, however, only if no further safe emergency maneuver

is found. Safety is thus guaranteed, since the previous emergency maneuver accounts for all possible

behaviors of the surrounding traffic participants, by incorporating the overapproximative predicted sets

as constraints.

Nevertheless, keeping an emergency maneuver available at each time instance can be computationally

expensive and most of the time it is not required. The second contribution presented in this chapter

represents an algorithm that calculates the maximum time horizon the ego vehicle can safely follow a

trajectory with the guarantee that at the end of this time horizon an emergency maneuver that can bring

the ego vehicle to a safe state exists.
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5.2 Possible Future Directions

5.2 Possible Future Directions

In the following, the possible future directions are discussed separately for each chapter.

Safe Longitudinal Control of Autonomous Vehicles

The main asset of the proposed algorithm is to guarantee safety with respect to the other traffic partic-

ipants. The switch between the nominal controller that achieves comfortable driving and the engaged

emergency maneuver to ensure safety is mainly triggered by how accurate the assumptions on the be-

havior of the surrounding vehicles are. Therefore, the more accurate the prediction of future maneuvers

is, the less frequently the emergency maneuver is engaged. Consequently, one obvious direction would

be to use more sophisticated algorithms for the non-formal prediction. Lately, trajectory prediction ap-

proaches based on artificial intelligence methods [94,114] has gained a lot of attention due to their ability

to consider a variety of external factors and to cope with different levels of uncertainty.

Since selfish driving actions lead to increased traffic congestion on highways [160], another possible im-

provement would be to combine the proposed safe longitudinal control with cooperative motion planning,

for not only trucks but also passenger vehicles.

Overapproximative Occupancy Set Computation of Traffic Participants

It is clear that the approaches mentioned above for prediction (e.g., based on artificial intelligence meth-

ods) cannot replace the formal prediction introduced in this chapter. Nevertheless, the proposed method

can improve the accuracy of its results by considering the following points.

As already mentioned in the corresponding chapter, the more traffic rules are considered, the more accu-

rate the predicted occupancy sets are. Therefore, to reduce the error introduced by the overapproximative

prediction approach, one may consider adding multiple traffic rules. For example, we could integrate the

safe distance calculation presented in Chapter 2 as a required traffic rule that must be kept with respect

to the leading vehicle. Rules that result from markings on the road (e.g., solid lines) could further prune

the resulting occupancy sets. Another future direction could consider the interaction between surround-

ing vehicles (started in [100]) such that traffic behavior is anticipated more accurately. This would allow

the ego vehicle to plan a smoother and more comfortable trajectory.

Different traffic regulations may be considered depending on the type of vehicle the future occupancy is

predicted for. Various traffic signs imply different regulations for separate categories of vehicles (e.g., truck

vs. passenger vehicle). In the same direction, different sets of parameters (e.g., maximum deceleration

or acceleration values) could be considered depending on the type of the vehicle, or on the perceived

environment conditions (which provides the friction coefficient).
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Fail-Safe Motion Planning

This chapter proposed a method for fail-safe motion planning, where an evasive maneuver is kept available,

that can steer the ego vehicle to a safe state if required. The main objective of the evasive maneuver was

to reduce the velocity of the ego vehicle. However, there may be situations where the best reaction to

a dangerous situation is not to engage a braking maneuver, but rather to accelerate to leave the unsafe

area. Hence, a possible future direction would be to integrate more sophisticated methods for generating

evasive maneuvers into the proposed fail-safe motion planning framework, depending on the current traffic

scenario.

In our approach, we assumed that the desired lane where the ego vehicle should drive, is available.

There exists a lot of work on deciding which maneuver (keeping the current lane or changing the lane) is

more beneficial, when concerning improved comfort or optimization the trip’s duration. These methods,

however, could also be integrated into the evasive maneuver generation to enhance overall comfort and

safety. Moreover, traffic regulations such as driving in the rightmost lane, when possible [34, Section 1],

could be integrated in the decision-making towards which lane the evasive maneuver should be performed.
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Appendix

Subsequently, the evaluated hypothesis, the considered traffic scenarios, and the questionnaire used in

the user study — which are taken from [123] — are listed.

Scenarios considered in the user study

Scenario 1. [Emergency brake of the first leading vehicle] The ego vehicle drives behind another

vehicle that suddenly performs an emergency brake, until it reaches standstill.

Scenario 2. [Standstill second leading vehicle] The ego vehicle drives behind another vehicle. Due

to a standing-still second leading vehicle, the first leading vehicle performs a lane change. This

results in a situation where the ego vehicle must react to a static obstacle that is entering the field

of view.

Scenario 3. [Aggressive cut-in maneuver] A vehicle that was initially driving on an adjacent lane

performs an aggressive cut-in maneuver, aiming for the inter-vehicle gap between the ego vehicle

and the leading vehicle. During the maneuver, the cut-in vehicle is also braking.

Scenario 4. [Long cut-in maneuver] This traffic scenario is similar to the previous. The difference

is that the cut-in vehicle accelerates during the lane change maneuver.

Scenario 5. [Entering a traffic jam] The ego vehicle reaches the beginning of a traffic jam area.

User study questionnaire

1. How do you rate the distance to the leading vehicle: very short — short — appropriate — large —

very large ?

2. How do you rate the safety feeling provided by the algorithm: very low — low — appropriate —

high — very high?

3. Did you want to intervene, but in the end not do so: yes — no?

4. Did the algorithm slow down unnecessarily or slow down too strongly: yes — no ?
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5. How do you rate the comfort of this algorithm: very low — low — appropriate — high — very

high?

6. How do you assess the timing of the braking maneuver: very early — early — appropriate — late

— very late?

The possible answers to the questions #1, #2, #5, #6 have been encoded as numerical values from 1 to

5, whereas for the questions #3 and #4 the possible answers have been encoded as 0 and 1.

Evaluated hypothesis

Hypothesis 1: By using the safe ACC the user feels at least as safe as by using the state-of-the-art

ACC;

Hypothesis 2: The comfort feeling provided by the safe ACC is at least as high as by using the

state-of-the-art ACC.
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[111] S. Lefèvre, D. Vasquez, and C. Laugier. A survey on motion prediction and risk assessment for

intelligent vehicles. ROBOMECH journal, 1(1):1–14, 2014. 46

[112] S. Li, K. Li, R. Rajamani, and J. Wang. Model predictive multi-objective vehicular adaptive cruise

control. IEEE Transactions on Control Systems Technology, 19(3):556 – 566, 2011. 12, 13

[113] M. Liebner, C. Ruhhammer, F. Klanner, and C. Stiller. Generic driver intent inference based on

parametric models. In Proc. of the 16th International IEEE Conference on Intelligent Transporta-

tion Systems, pages 268–275, 2013. 46

[114] L. Lin, S. Gong, and T. Li. Deep learning-based human-driven vehicle trajectory prediction and its

application for platoon control of connected and autonomous vehicles. In The Autonomous Vehicles

Symposium, 07 2018. 113
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[180] H. Täubig, U. Frese, C. Hertzberg, C. Lüth, S. Mohr, E. Vorobev, and D. Walter. Guaranteeing

functional safety: design for provability and computer-aided verification. Autonomous Robots,

32(3):303–331, 2012. 48

[181] C. Tomlin, J. Lygeros, and S. Sastry. A game theoretic approach to controller design for hybrid

systems. Proceedings of the IEEE, 88(7):949–970, 2000. 12

[182] A. Vahidi and A. Eskandarian. Research advances in intelligent collision avoidance and adaptive

cruise control. IEEE Transactions on Intelligent Transportation Systems, 4(3):143–153, 2003. 11

[183] F. A. M.-B. M. W. B. van Arem; Riender Happee. Design and analysis of full range adaptive cruise

control with integrated collision a voidance strategy. In Proc. of the IEEE International Conference

on Intelligent Transportation Systems, pages 308 – 315, 2016. 13

[184] J. van den Berg, D. Ferguson, and J. Kuffner. Anytime path planning and replanning in dynamic

environments. In Proc. of the International Conference on Robotics and Automation, pages 2366–

2371, 2006. 48

[185] B. Vanholme, D. Gruyer, B. Lusetti, S. Glaser, and S. Mammar. Highly automated driving on high-

ways based on legal safety. IEEE Transactions on Intelligent Transportation Systems, 14(1):333–

347, 2013. 48

[186] D. Vasquez, T. Fraichard, and C. Laugier. Incremental learning of statistical motion patterns

with growing hidden Markov models. IEEE Transactions on Intelligent Transportation Systems,

10:403–416, 2009. 46

[187] E. Velenis and P. Tsiotras. Optimal velocity generation for given acceleration limits: Theoretical

analysis. In Proc. of the IEEE American Control Conference, pages 1478–1483, 2005. 99

[188] K. Vogel. A comparison of headway and time to collision as safety indicators. Accident Analysis &

Prevention, 35:427–433, 2003. 47
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