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Introduction
Motivation
•Significant gap in communities:

Machine Learning (ML)↔ high-performance computing (HPC)
•ML needs considerable computing power
→ we need adequate software!
•ExaNIML: Library with algorithms

– with modern applications from ML community
– with enough concurrency for next generation distributed computing systems

Approach
•Methods from scientific computing domain

– “Undervalued” near-linear complexity methods (fast multipole methods)1

– Adaptive sparse grids to mitigate curse of dimensionality2

•HPC: Exploit potential of supercomputers
– Concurrency: Choose suitable algorithms for parallel computing
– Extract computational bottlenecks as low-level drivers in C++ or Kokkos
– Performance Portability in-light of the upcoming new GPU and CPU

architectures

Classification with Kernel Methods
Kernel Matrix

Occurs in many domains . . .

•multi-class classification
•model-order reduction
• uncertainty quantification
• partial differential equations

Example: Binary classification

Ridge regression

•N data points xi ∈ Rd and N binary labels yi

• f (x) = sign(
N∑
i=1

k(x, xi)wi)→ u = f (xtest) = K ∗ w

•Solving a linear system: kernel matrix K
often not stable, nearly singular.
Solve K̃ → K + λI instead

Our approach: Kernel Matrix Approximation

•Often K is a dense N-by-N matrix; this quadratic
complexity often is the computational bottleneck
•To reach O(N) algorithms it requires approximation
•For the majority of applications off-diagonal blocks of
K admit good low-rank approximations

Many ML libraries offer Kernel methods: to our knowl-
edge none of them offer kernel matrix approximation

K
ernelM
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Geometry-oblivious Fast Multipole Method1

•Hierarchically off-diagonal low-rank
•Speeds up algebraic operations
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Dependency graph for asynchronous task analysis

4-process distributed H-Matrix compression. Mixed
colored sections and factors are shared for dis-
tributed nodes

First scalability results
Multiplication1

192-core 384 768 1536 3072 6144

Neighbor Tree Skeletonization
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O(N) linear solver3
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Dimensionality Reduction
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Reduce the dimensionality of dataset
Manifold Learning Algorithms
• (Kernel) Principal Component Analysis
• Isomap algorithm
•Hessian local eigenmaps, ...

Classification on Embedded Space

•Example forced to 2D manifold (plotting)
•Classification on lower dimensional man-

ifold

→ Sparse grid classification4

Approximation with Sparse Grids
Sparse grids
•Reduce number of grid points
•One approach: Combi-Technique

Combine Full Grids (red and blue, c.f.
figure on right)
•Suitable for 5-20 dimensions

Sparse Grids in Embedded Space
1. Manifold learning algorithm for coarse

embedded space
2. Fine approximation in embedded space

with Sparse Grids

Synergy between Point-based and Grid-
based Methods
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parse
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Interfaces

Kernel Matrix Approxima-
tion Manifold Learning

Deep Learning
ResNet, MobileNet,. . .

Sparse grid library
Data mining with
Sparse grid density esti-
mation

Conclusion

•Method design
– Run prominent models from current machine learning peers
– Combine models with hierarchical kernel and sparse grid methods
• Library design

– Community/reproducibility: ExaNIML library for others to play
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