
ExaNIML
An Exascale Library for Numerically Inspired Machine Learning
Severin Reiz§, Hasan Ashraf§,Tobias Neckel§, George Biros†, Hans-Joachim Bungartz§
§ Technical University of Munich, † University of Texas at Austin, reiz@in.tum.de, ashraf@in.tum.de, neckel@in.tum.de, gbiros@ices.utexas.edu, bungartz@in.tum.de

Introduction
Motivation
•Significant gap in communities:

Machine Learning (ML)↔ high-performance computing (HPC)
•ML needs considerable computing power
→ we need adequate software!
•ExaNIML: Library with algorithms

– with modern applications from ML community
– with enough concurrency for next generation distributed computing systems

Approach
•Methods from scientific computing domain

– “Undervalued” near-linear complexity methods (fast multipole methods)1

– Adaptive sparse grids to mitigate curse of dimensionality2

•HPC: Exploit potential of supercomputers
– Concurrency: Choose suitable algorithms for parallel computing
– Extract computational bottlenecks as low-level drivers in C++ or Kokkos
– Performance Portability in-light of the upcoming new GPU and CPU

architectures

Classification with Kernel Methods
Kernel Matrix

Occurs in many domains . . .

•multi-class classification
•model-order reduction
• uncertainty quantification
• partial differential equations

Example: Binary classification

Ridge regression

•N data points xi ∈ Rd and N binary labels yi

• f (x) = sign(
N∑
i=1

k(x, xi)wi)→ u = f (xtest) = K ∗ w

•Solving a linear system: kernel matrix K
often not stable, nearly singular.
Solve K̃ → K + λI instead

Our approach: Kernel Matrix Approximation

•Often K is a dense N-by-N matrix; this quadratic
complexity often is the computational bottleneck
•To reach O(N) algorithms it requires approximation
•For the majority of applications off-diagonal blocks of
K admit good low-rank approximations

Many ML libraries offer Kernel methods: to our knowl-
edge none of them offer kernel matrix approximation

K
ernelM

ethodsKey Computational Bottlenecks

Geometry-oblivious Fast Multipole Method1

•Hierarchically off-diagonal low-rank
•Speeds up algebraic operations

iSend and iRecv

Telescope 
Skeleton Weights

Pack Skel 
Weights

Telescope
Skeleton Potentials

Unpack Skel
Weights

Reduce 
Skeleton Potentials

l

r

p

q

{𝛂}

u

{β}

{θ}

{π}

v

r

l

p

q

{𝛂}

{β}

{θ}

{π}

u

v

u

{β}
r

l

Dependency graph for asynchronous task analysis

4-process distributed H-Matrix compression. Mixed
colored sections and factors are shared for dis-
tributed nodes

First scalability results
Multiplication1

192-core 384 768 1536 3072 6144

Neighbor Tree Skeletonization

192-core 384 768 1536 3072 6144

GFLOPS Sync Async

12%14%16%

26%27%29%29% 27% 26%

16% 14% 12%

60s 
44s

38s 
23s

27s 
12s

18s 
10s

13s 
6s

10s 
4s

52s 
19s 

210s

28s 
12s 

110s

16s 
8s 

55s

9s 
5s 

30s

5s 
3s 

17s

4s 
2s 
9s

#01 #02 #03 #04 #05 #06 #07 #08 #09 #10 #11 #12

120s (y-axis) 40s (y-axis)

90s (y-axis) 30s (y-axis)

Time for compression (left) and multiplication
(right) for a 6-d gaussian kernel matrix of 64M-
by-64M

O(N) linear solver3

192-core 384 768 1536 3072 6144

Efficiency Factorize

15.3%
20.3%

25.5%27.5%28.9%30%30% 28.9% 27.5% 25.5%
20.3%

15.3%

192-core 384 768 1536 3072 6144

Efficiency Solve

7.3%
12.2%

16.2%16.2%16.5%16.6%16.6% 16.5% 16.2% 16.2%
12.2%

7.3%

1.41s 0.71s 0.36s 0.18s 0.12s 0.10s 11.07s 5.75s 3.01s 1.63s 1.02s 0.68s 
#01 #02 #03 #04 #05 #06 #07 #08 #09 #10 #11 #12

1.0s

0.1s

Time for ULV-Factorization (left) and forward-
solve (right)

Dimensionality Reduction

10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

Components

R
el

at
iv

e
S

in
gu

la
r

Va
lu

es

−6 −4 −2 0 2 4 6

−5

0

5

First Component

S
e
co

n
d

C
o
m

p
o
n

e
n
t

Embedded Space
0
1
2

Reduce the dimensionality of dataset
Manifold Learning Algorithms
• (Kernel) Principal Component Analysis
• Isomap algorithm
•Hessian local eigenmaps, ...

Classification on Embedded Space

•Example forced to 2D manifold (plotting)
•Classification on lower dimensional man-

ifold

→ Sparse grid classification4

Approximation with Sparse Grids
Sparse grids
•Reduce number of grid points
•One approach: Combi-Technique

Combine Full Grids (red and blue, c.f.
figure on right)
•Suitable for 5-20 dimensions

Sparse Grids in Embedded Space
1. Manifold learning algorithm for coarse

embedded space
2. Fine approximation in embedded space

with Sparse Grids

Synergy between Point-based and Grid-
based Methods

S
parse

G
rids

Interfaces

Kernel Matrix Approxima-
tion Manifold Learning

Deep Learning
ResNet, MobileNet,. . .

Sparse grid library
Data mining with
Sparse grid density esti-
mation

Conclusion

•Method design
– Run prominent models from current machine learning peers
– Combine models with hierarchical kernel and sparse grid methods
• Library design

– Community/reproducibility: ExaNIML library for others to play

References

[1] C. D. Yu, S. Reiz, and G. Biros, “Distributed-memory hierarchical compression of dense SPD matrices,” in Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage, and Analysis, SC ’18, (Piscataway, NJ, USA), pp. 15:1–15:15, IEEE Press, 2018.

[2] H.-J. Bungartz and M. Griebel, “Sparse grids,” Acta numerica, vol. 13, pp. 147–269, 2004.

[3] D. Y. Chenhan, S. Reiz, and G. Biros, “Distributed o (n) linear solver for dense symmetric hierarchical semi-separable matrices,” in 2019 IEEE 13th
International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), pp. 1–8, IEEE, 2019.

[4] B. Peherstorfer, D. Pflüger, and H.-J. Bungartz, “Density estimation with adaptive sparse grids for large data sets,” in Proceedings of the 2014
SIAM international conference on data mining, pp. 443–451, SIAM, 2014.


