
TECHNISCHE UNIVERSITÄT MÜNCHEN
MASTER’S PROGRAM IN TRANSPORTATION SYSTEMS

Master’s Thesis

Analysis and Development of Car-Following
models using xFCD

Mohd Shareef Adil

Supervised by:
Dr. Tao Ma

Univ.-Prof. Dr. Constantinos Antoniou
External - M.Sc. Michael Harth (AUDI AG)

March 31st, 2020

Disclaimer

I confirm that this master’s thesis is my own work and I have documented all sources and
material used..

Munich, March 31st, 2020 Mohd Shareef Adil

Acknowledgments

I would like to express my sincere appreciations to Dr. Tao Ma and Prof. Constantinos
Antoniou for accepting the thesis topic and supervising it. Their support, guidance and
valuable feedback throughout the work was crucial in the successful completion of the work.

I would like to thank M.Sc Michael Harth and Dr. Wolfram Remlinger of Audi AG, for
hiring me into an amazing research project - SAVe. They have constantly supported and
mentored me through out the time.

Finally all this would not been possible without the support of my family, my father, my
mother, my brother and sister. I would like to specially thank my wife, Ilma Khan. She always
have stood by me in the most lowest points and encouraged me to keep going.

Abstract

Car following is one of the primary driving tasks observed in traffic flow and is thus an
important part of traffic flow modelling, traffic operation and control. Conventional car
following models like IDM, the Krauss model and the Wiedemann model are based on
mathematical equations and are derived from the traffic flow theory. Although these models
have been extensively used over the years until today, they however are currently in use but
have limitations to incorporate any additional information. Technological development in
data collection and validation techniques motivate the researchers to use real driving data
to calibrate the existing models, understand the dynamics of human drivers and develop
data-driven models. One such data collection method is Extended Floating Car Data (xFCD)
which allows to capture the naturalistic driving behaviour of the driver. The xFCD data can
be used to develop an alternative approach of data-driven car following models which can
capture the real driving behaviour of drivers. The data-driven car-following models also offer
more flexibility and allow to integrate additional information to models.

In this thesis, firstly, a state machine based methodology is developed to extract the car-
following data from the raw xFCD . The car-following traces extracted in this study are
focused on an urban environment. The extracted car-following traces are then used to
analyse the three conventional car-following models, namely the Krauss model, IDM and
the Wiedemann model. The analysis is done by calibrating the parameters of the mentioned
car-following models using a real-coded genetic algorithm. The performance of each of
the car-following model is evaluated on the basis of their ability to simulate the observed
velocity, acceleration, gap and the trajectory of the following vehicle. Then an LSTM based
car-following model is proposed in this study to capture the dependency of the driver’s
memory in the car-following behaviour. The LSTM model is trained with multiple lengths
of the input sequence (driver’s memory length) and results show that the driver’s memory
plays an important role in car-following behaviour. The results show that the LSTM based
car-following model outperforms the three conventional car-following model in simulating the
observed acceleration and velocity of the following vehicle. A permutation feature importance
method is applied to find the importance of the different input features in LSTM based
car-following model and results show that to simulate the observed acceleration, the most
important features are: acceleration, velocity, relative velocity and distance gap.

Keywords: car-following model, genetic algorithm, state machine, LSTM, acceleration
prediction, data-driven, Krauss model, IDM, Wiedemann model, permutation feature impor-
tance.

iii

Contents

Disclaimer i

Acknowledgments ii

Abstract iii

1. Introduction 1
1.1. Background and Motivation . 1
1.2. Research Objective and Questions . 3
1.3. Contribution . 3
1.4. Thesis Framework and Report Outline . 4

2. Preliminary Studies 6
2.1. Car-Following Models . 6

2.1.1. Krauss Model . 7
2.1.2. Intelligent Driver Model . 8
2.1.3. Wiedemann Model . 10

2.2. State Machine . 11
2.3. Genetic Algorithm . 12
2.4. Neural Network . 13

2.4.1. Convolutional Neural Network (CNN) 14
2.4.2. Recurrent Neural Network (RNN) . 14
2.4.3. Long Short-Term Memory (LSTM) . 17

3. Literature Review 19
3.1. Car-Following Scenario Extraction . 19

3.1.1. Rule Based Methods . 20
3.1.2. Machine Learning based Methods . 21

3.2. Analysis and Improvement of Existing Car-Following Models 21
3.3. Data-Driven Development of Car-Following Models 24
3.4. Research Gap and Conclusion . 29

4. Data Collection 33
4.1. Data Collection Overview . 33
4.2. Meta Details of the Raw xFCD . 36

4.2.1. Information about the surrounding vehicles 38
4.3. Comparison Study with Other Datasets . 39

iv

Contents

4.4. Conclusion . 40

5. Methodology 41
5.1. Software and Tools . 41
5.2. Car-Following Data Extraction from xFCD . 41

5.2.1. Goal . 41
5.2.2. Preliminary Data Exploration . 44
5.2.3. Development of the Visualisation Tool 47
5.2.4. Data Pre-Processing . 48
5.2.5. Development of State Machine . 49
5.2.6. Data Analysis and Processing . 52

5.3. Analysis of the Existing Car-Following Models Using xFCD 52
5.3.1. Goal . 52
5.3.2. SUMO Network Development for the Different Car-Following Trajectories 52
5.3.3. Development of the Car-Following Models in Python 56
5.3.4. Calibration of Car-Following Models . 56
5.3.5. Evaluation . 62

5.4. Data Driven Development of Car-Following Model 62
5.4.1. Goal . 62
5.4.2. Model Development . 64
5.4.3. Data Preparation . 66
5.4.4. Evaluation . 66

5.5. Comparative Study . 67
5.6. Conclusion . 67

6. Data Analysis and Processing 68
6.0.1. Data Analysis . 68
6.0.2. Data Post Processing . 72

7. Results 74
7.1. Analysis of Car-Following Models . 74

7.1.1. Calibration Results . 74
7.1.2. Evaluation of Performance of Calibrated Models 82

7.2. Data Driven Car-Following Model . 93
7.2.1. Input Features and Model Structure . 94
7.2.2. Sequence Length and Input Features . 94
7.2.3. Evaluation of Models . 95
7.2.4. Feature Importance . 98

7.3. Comparative Study . 99
7.4. Main Findings . 105

8. Conclusion 106
8.0.1. Limitations and Future Work . 107

v

Contents

List of Figures 108

List of Tables 111

Bibliography 112

A. Appendix 117
A.1. The Wiedemann Model Acceleration Calculations 117

vi

1. Introduction

This chapter begins with the thesis background followed by the research objectives, questions
and contribution. In the end, the thesis framework and the report structure are summarised.

1.1. Background and Motivation

Car-following models are an essential part of all traffic simulation software. They play a very
vital role in traffic flow modelling, traffic operation and control. These models define the
interaction of drivers in the traffic stream by defining the driving behaviour of the subject
vehicle with respect to the preceding vehicle ahead in the same lane (Olstam & Tapani, 2004).

Car-following models have been in research from almost half a decade. The first car-
following model was proposed by Pipes in 1953 (Pipes, 1953). Since then a number of
car-following models have been developed based on different logical approaches like safe
distance, collision avoidance, optimal velocity, psycho-physical etc. (Olstam & Tapani, 2004).
The Krauss model (Krauss, 1998) and the Wiedemann model (Wiedemann & Reiter, 1992)
are two such models in which the former is dependent on the safety distance and the later
is based on the physcho-physical approach. These models are the default models of widely
known traffic simulator software. The Krauss model is the default car-following model of
SUMO traffic simulation software and the Wiedemann model is the default car-following
model of PTV VISSIM software. These conventional car-following models are based on a set
of mathematical equations with some tunable parameters. This dependency on the set of
mathematical equations limit these models to incorporate any new additional information.

The recent development in the data collection techniques have contributed to record very
detailed car-following data. Next Generation Simulation (NGSIM) (FHWA, n.d.) is one such
dataset which is predominantly used in the studies related to car-following models (Hao
et al., 2018), (Zhao et al., 2018), (D. Yang et al., 2019), (Zhou et al., 2017), (Mitra & Eric, 2018).
One important data that is used in traffic engineering is Extended Floating Car Data (xFCD).
The NGSIM dataset and the xFCD can be classified as trajectory data and floating car data.
The trajectory data contains the time series of the longitudinal motion of each vehicle in an
observed spatio-temporal area (Kesting, 2007). The trajectory data are extracted from the high
frequency digital images or videos recorded from an elevated observer position, e.g. high
rise building (NGSIM, (FHWA, n.d.)) or drone or helicopter (HighD (Krajewski et al., 2018)).
Trajectory data contains the complete information of all the vehicles on a certain road section
(Kesting, 2007). On the other hand, floating car data is recorded by the vehicle that floats with

1

1. Introduction

the traffic and serves as measuring station (Kesting, 2007). Floating car data usually contains
the position (GPS) and the speed information of the vehicle. The xFCD is an extended form
of floating car data. The xFCD contains the information from the Controller Area Network
(CAN) bus of the subject vehicle which precisely records the detailed information related
to the subject vehicle plus the information about the surrounding vehicles. The vehicles
collecting the xFCD are usually equipped with stereo vision sensors for detecting the local
traffic around the sensor equipped vehicle (Chen, 2015). (Vinagre Díaz et al., 2012) used
the xFCD to propose a novel approach to the level-of-service (LOS) calculations. (Astarita
et al., 2020) used the xFCD to develop an adaptive traffic light signal. (Treiber & Kesting,
2013) used the xFCD to calibrate and validate the car-following model. (Treiber & Kesting,
2013) compared the xFCD data with the NGSIM dataset and found that the NGSIM dataset
contains more noise and discontinuities.

Due to the availability of the high quality datasets, an approach to data-driven car-following
models is extensively explored in recent times. The data-driven models provide more
flexibility compared to conventional car-following models. They also allow to integrate
additional information which is not possible for the conventional car-following models. Recent
researches show that the machine learning and neural networks methods are extensively
explored to develop the car-following models. (Zhu, Wang, & Wang, 2018) proposed a novel
car-following model using Deep Reinforcement Learning (DRL) using the naturalistic driving
data. (Zhou et al., 2017) developed a recurrent neural network (RNN) based microscopic
car-following model to predict the traffic oscillations using NGSIM dataset. (Khodayari et al.,
2012) developed a modified neural network model using NGSIM dataset.

Most of the studies done on the analysis and development of car-following models have
used the trajectory data. Nowadays, intelligent vehicles are equipped with sophisticated
sensors to record the xFCD. These collected xFCD data are raw and contain the naturalistic
driving behaviour. Contrary to the trajectory data, the raw xFCD data is not location specific,
as they are recorded by the fleet vehicle which can drive anywhere in the city. There are very
few studies done using the raw xFCD to analyse and develop a car-following model. Since
the raw xFCD captures the naturalistic driving behaviour of the driver, the data in the raw
xFCD is not labelled for car-following scenarios as the raw xFCD contains the information
of all the surrounding vehicles and not necessarily the leading vehicle (vehicle ahead in the
same lane of the subject vehicle). Therefore, a methodology to extract the car-following traces
out of raw xFCD needs to be defined. Conventional car-following models capture the traffic
characteristics and driver’s car-following behaviour well if correctly calibrated. Therefore the
performance of conventional car-following models on the extracted naturalistic car-following
traces need to be evaluated. Machine learning allow to develop car-following models with
a certain set of input features. These features can be different to those of the conventional
car-following models, e.g. the presence of the vehicle on the left and right lane of the subject
vehicle. Also, the conventional car following models describe the relationship between a
following and leading vehicle as the response and stimulus. The response of the driver in the

2

1. Introduction

conventional car-following model is instantaneous without considering the historical traffic
information. (G. Lee, 1966) introduced a memory function in the linear car-following theory
that defines a way in which the following driver processes his information. The historical
vehicle pair information between perceiving stimuli and predicting time is closely related
to the driver’s subsequent behaviour, but this information is missing in the conventional
car-following models. The relationship between the historical traffic information and the
car-following behaviour can be modelled using the recurrent neural networks, as they are
capable to model the sequential data. This sequential data can be the short term historical
information of the driver which can be termed as the driver’s memory.

1.2. Research Objective and Questions

Based on the discussion above, the research objective of the study is to determine how the
raw xFCD data can be used for the analysis and development of a car-following model. The
main objective of the study is associated with the following research questions:

• What methodology should be developed for the extraction of car-following data extrac-
tion from the raw xFCD?

• How will the conventional car-following models perform on naturalistic driving data
captured by xFCD?

• Is the driver memory relevant in driver’s behaviour in car-following and what other
features can be used as input in the data-driven car-following model?

These research questions lead to some secondary research questions:

• Which method to use for the analysis of conventional car-following models?

• Which data-driven technique to be used to develop the car-following model?

1.3. Contribution

This study has attempted to make the following contributions:

• Development of a methodology to extract out the car-following data from the raw xFCD.

• Analysis of the performance of conventional car-following models by calibrating them
using xFCD.

• Data-driven development of a memory based car-following model.

• Analysis of the input feature’s importance for the data-driven development of a car-
following model.

3

1. Introduction

1.4. Thesis Framework and Report Outline

The thesis frame work is shown in Figure 1.1.

In line with the defined objective and research questions and following the thesis framework,
this report will be organized as follows. Firstly, a preliminary study (chapter 2) is conducted
regarding the car-following models and neural networks. Afterwards, a detailed literature
review on methods of car-following data extraction, analysis of car-following models and
development of car-following models is done in chapter 3. Then, chapter 4 presents the data
collection method and an overview of the raw xFCD data used in this study. Chapter 5 then
presents the methodology adopted in this study. The first part of the methodology deals
with the extraction of car-following data from the raw xFCD. The second part contains the
methodology adopted to analyse the three conventional car-following models, namely IDM,
the Krauss model and the Wiedemann model. The last part of the methodology presents
the development of a new data-driven car-following model using the xFCD data. Thereafter,
chapter 6 describes the analysis and processing of the extracted car-following traces from the
xFCD. Then, the results (chapter 7) of the analysis and the development of new car-following
model are presented. Finally, the results of the study are summarised and its limitations and
future work is discussed in chapter 8.

4

1. Introduction

Figure 1.1.: Thesis Framework.

5

2. Preliminary Studies

This chapter provides an overview of the previous research in car following models and
methods applied in this study such as genetic algorithm (GA) and neural networks (NN).

2.1. Car-Following Models

Figure 2.1.: A typical car-following situation (Kesting, 2007)

Car-following is a process which determines, how drivers follow each other in the traffic
stream. Car-following theory describes the relationship between a following and the leading
vehicle as a response of the following vehicle to the stimulus of leading vehicle. Thus, the
following vehicle reacts to the stimulus of the leading vehicle with changes in acceleration or
deceleration. A typical car-following situation is presented in Figure 2.1, where the following
vehicle is shown in red color and the leading vehicle is shown in blue colour.

Car-following theory was initially proposed by Pipes in 1953 (Pipes, 1953), He considered
only the relative velocity between the follower and the leader vehicle, without including the
impact of the distance between them. Since then, a large number of car-following models have
been developed, e.g., Gazis-Herman-Rothery (GHR) model (Gazis et al., 1961), the Optimal
Velocity Model (OVM) (Bando et al., 1995), Gipps model (Gipps, 1980), Wiedemann model
(Wiedemann & Reiter, 1992) etc. Technically the car-following models are classified into 5
categories:

• Stimulus based models

• Safety distance models

• Desired measure models

• Optimal velocity models

• Psycho-physical models

6

2. Preliminary Studies

In stimulus based models, the acceleration of a following vehicle is determined by the
driver’s reaction to the speed and position differences of the leading vehicle (May, 1990).
The General Motors models are well known representatives of stimulus-based models. They
have been under development since 1950s, with one of their latest modifications proposed by
Ozaki (Ozaki, 1993).

The safety-distance models are based on the idea that the driver of a following vehicle
would adopt a speed and maintain a distance such that the driver can bring the vehicle to a
safe stop if the leading vehicle applies sudden brakes. The Gipps model (Gipps, 1980) is such
a model which is based on the safety-distance idea.

The desired measures models assume that the driver has a preferred situation represented
by certain measures (e.g., following distance and following speed) and the driver continuously
attempts to eliminate the difference between the preferred and the actual situation. The
intelligent driver model (IDM) (Treiber & Kesting, 2013) is one of the most widely used model
based on the desired measure theory.

The optimal velocity models assume that each following vehicle has an optimal safe velocity
that depends on the relative distance between the following and the leading vehicle. The
acceleration of the following vehicle can be determined according to the difference between
the actual velocity and the optimal velocity (Saifuzzaman et al., 2015).

The psycho-physical models are based on the fact that the driver’s behaviour varies
depending on the present driving regime. These regimes can be free-flow, approaching the
vehicle in front, following the vehicle in front, or braking. The boundary conditions defining
the different regimes are usually expressed as a combination of relative speed and relative
distance to the leading vehicle (Wiedemann & Reiter, 1992). Wiedemann model is one of the
best-known psycho-physical model.

2.1.1. Krauss Model

The Krauss model (Krauss, 1998) was developed by Krauß in 1997. It is a microscopic,
space-continuous car-following model which is based on safe speed. SUMO traffic simulation
software uses this model as its default car-following model for microscopic simulations. The
safe speed of krauss model is calculated as represented in Equation 2.1 (Krauss, 1998).

vsafe = vl(t) +
g(t)− vl ∗ tr
vl(t)+vf(t)

2b + tr

, (2.1)

where vl(t) represents the speed of the leading vehicle in meter per second (m/s) at time t,
vf(t) represents the speed of the following vehicle in meter per second (m/s) at time t, tr is
the reaction time of the driver in seconds (s), b is the maximum deceleration of the vehicle in

7

2. Preliminary Studies

meter per second square (m/s2) and g(t) is the gap in meters (m) between the leading vehicle
and the follower vehicle at time t which is calculated as :

g(t) = xl(t)− xf(t)− l , (2.2)

where xl(t) is the position of the leading vehicle at time t, xf(t) is the position of the following
vehicle at time t and l is the length of the vehicle in meters (m)

The calculated vsafe can be greater than the speed limit of road/street type or higher than
the vehicle’s capability. Therefore, the desired speed is calculated using Equation 2.3 which is
minimum of the given three values: maximum speed of the street, the vehicle’s maximum
capable speed, and the vsafe calculated by Equation 2.1.

vdes(t) = min[vmax, v(t) + a ∗ ∆t, vsafe(t)] , (2.3)

The final velocity (v(t + ∆t)) and the position (xf(t + ∆t)) at the next simulation step (t + ∆t)
are updated using Equation 2.4 and Equation 2.5 respectively, where η represents the random
perturbation to allow deviation from the optimal driving and ∆t represents the step length of
the simulation.

v(t + ∆t) = max[0, vdes(t)− η] , (2.4)

xf(t + ∆t) = xf(t) + v(t + ∆t) ∗ ∆t (2.5)

2.1.2. Intelligent Driver Model

The Intelligent Driver Model (IDM) (Treiber & Kesting, 2013) is a time-continuous accident
free model which produces realistic acceleration profiles and plausible behaviour in all single
lane traffic situations. IDM can be defined mathematically as :

v̇ = a

[
1−

(
v(t)
v0(t)

)δ

−
(

s*(v(t), ∆v(t))
s(t)

)2]
, (2.6)

where v̇ represents the calculated acceleration of the following vehicle in meter per second
squared (m/s2) , a represents the maximum acceleration of the following vehicle in meter
per second squared (m/s2), v(t) represents the velocity of the following vehicle in meter
per second (m/s) at time t, ∆v(t) represents the velocity difference of leading vehicle and
the following vehicle at time t, δ is the acceleration exponent, s(t) represents the distance
in meters (m) between the leading and the following vehicle at time t and s*(v(t), ∆v(t))
represents the desired distance at time t which is calculated as:

s*(v(t), ∆v(t)) = s0 + max
(

0, v(t)T,
v(t)∆v(t)

2
√

ab

)
, (2.7)

8

2. Preliminary Studies

where T represents the time headway in seconds (s) and b represents the maximum
deceleration of the following vehicle in meter per second squared (m/s2).

Equation 2.6 explains that the acceleration is divided into two parts. The first part defines
the desired acceleration on a free road which compares the current speed v to the desired
speed v0. The acceleration on a free road decreases from the initial acceleration a to zero
when approaching the desired speed v0. The second part defines the braking deceleration
induced by the front vehicle which compares the current distance s to the desired distance
s*. In case the actual gap s(t) is approximately equal to s*, then the braking deceleration
essentially compensates the free acceleration part, so that the resulting acceleration is nearly
zero (Treiber & Kesting, 2013). In addition, analysing Equation 2.7 gives an interpretation
that s* corresponds to the gap when following a vehicle in steadily flowing traffic. s* increases
dynamically when approaching a slower vehicle and decreases when the front vehicle is faster.
IDM has in total 6 parameters which are listed below.

• the desired speed when driving on free road, v0

• the desired safety time headway when following other vehicles, T

• the maximum acceleration of the vehicle , a

• comfortable braking deceleration, b

• minimum bumper to bumper distance to the leading vehicle, s0

• acceleration exponent, δ

To realise the simulation with ∆t as the simulation time step, Equation 2.8 is used to
calculate the speed of the following vehicle at time step (t + ∆t). Where, v(t + ∆t) is velocity
of the vehicle in meters per second (m/s) at time step (t + ∆t), v(t) is velocity of the vehicle
in meters per second (m/s) at the previous simulation step, v̇ is the calculated acceleration
using Equation 2.6.

v(t + ∆t) = v(t) + v̇ ∗ ∆t , (2.8)

Equation 2.9 is used to calculate the new position of the following vehicle, where xf(t +
∆t) is the position of the following vehicle at time step (t + ∆t), xf(t) is the position of the
following vehicle at previous time step, v̇ is the calculated acceleration using Equation 2.6.

x f (t + ∆t) = x f (t) + v(t) ∗ ∆t + 0.5v̇ ∗ ∆t2 , (2.9)

Equation 2.10 is used to calculate the new gap between the leading and the following
vehicle at time step (t + ∆t), where s(t + ∆t) is the new position of the following vehicle at
time step (t + ∆t), xl(t + ∆t) is the position of the leading vehicle at time step (t + ∆ t), xf(t

9

2. Preliminary Studies

+ ∆t) is the position of the following vehicle vehicle at time step (t + ∆t) calculated using
Equation 2.9 and Ll is the length of the leader vehicle in meter (m).

s(t + ∆t) = xl(t + ∆t)− x f (t + ∆t)− Ll . (2.10)

2.1.3. Wiedemann Model

The Wiedemann (Wiedemann & Reiter, 1992) car-following model is a typical psycho-
physiological model which was originally formulated in 1974 by Rainer Wiedemann. It
is the building block of the widely used microscopic traffic simulation tool, PTV VISSIM.
The Wiedemann model describes the psycho-physiological aspects of the driving behaviour
in terms of four discrete driving regimes: (i) free flow, (ii) approaching slower vehicles, (iii)
car-following near the steady-state equilibrium and (iv) critical situation requiring stronger
braking actions (Wiedemann & Reiter, 1992). Figure 2.2 shows a graphical representation
of the Wiedemann car-following model. The different thresholds are shown with a certain
shape that can only be amplified during the calibration procedure. Figure 2.2 is explained by
analysing the trajectory of the following vehicle shown in black colour. Initially, the following
vehicle approaches the leading vehicle (The gap between the leading and the following vehicle
(∆x) decreasing due to higher speed of the following vehicle shown by a positive relative
velocity ∆v), then it enters the perception area after crossing the SDV threshold, where it has
to reduce the speed. The follower vehicle then crosses another threshold (CLDV) where it
reacts and reduces speed even further to enter an unconscious reaction car-following regime.
The follower vehicle then continues the unconscious car-following regime as long as it remains
bounded by the thresholds OPDV, SDX, and SDV.

Figure 2.2.: Car-following logic of the Wiedemann model. (PTV Vissim, 2011)

According to (Wiedemann & Reiter, 1992), in each of the regimes a different acceleration
function a(s,v,∆v) is applied which is a function of the gap between the leading and the

10

2. Preliminary Studies

following vehicles, the speed of the following vehicle and the relative speed of the following
vehicle. The boundaries between the regimes are given by a non-linear equation of the form
f(s,v,∆v) = 0 defining curved areas in three-dimensional spaces (s,v,∆v). The (Wiedemann &
Reiter, 1992) defines each of the thresholds as :

• AX: It is the desired distance between the front of the two successive vehicles in a
standing queue.

• ABX: It is the desired minimum following distance which is a function of AX, a safety
delta distance BX, and the speed of the vehicle.

• SDV : It is the action point where the driver consciously observes that he approaches
the slower leading vehicle, SDV increases with increasing speed difference ∆v.

• OPDV : It is the action point where the following vehicle driver notices that he is slower
than the leading vehicle and starts to accelerate again.

• SDX : It is the perception threshold to model the maximum following distance which is
about 1.5 - 2.5 times of ABX.

Complete flow chart to calculate the acceleration of the Wiedemann model is attached as
Appendix A.

2.2. State Machine

A state machine (SM) is a mathematical abstraction model that represents a limited number
of states and behaviour, such as actions and transition between those states. The basic
building blocks of a state machine are states and transitions. A state is a situation of a system
depending on previous inputs and causes a reaction on following inputs. One state is marked
as the initial state, in which the execution of the machine starts. A state transition defines for
which input a state is changed from one to another. Depending on the state machine type,
states and/or transitions produce outputs.

State machines with finite number of states are called finite state machines (FSM) and they
can be defined as a triple, T = (Q, I, φ) (Gladyshev & PA, 2005), where

• I is the finite set of all possible events,

• Q is the finite set of all possible states and

• φ : I x Q→ Q is a transition function that determines the next state for every possible
combination of event and state.

Consider the simple state machine in Figure 2.3. It consists of two states, namely Off
and On. On is the initial state here, that is activated when the state machine is executed.
The arrows between the states denote the possible state transitions. They define for which

11

2. Preliminary Studies

Figure 2.3.: A simple state machine

input a state change occurs. Here, the active state is changed from On to Off for the input,
"ButtonPressed", and back again to On for the same input.

2.3. Genetic Algorithm

A genetic algorithm (GAs) is a search technique which is used to find the true or the
approximate solutions of optimisation and search problems. A genetic algorithm is essentially
a type of evolutionary algorithm (De Jong, 2012). GA is different to the traditional optimisation
techniques as it works with coding of the parameters instead of the parameters themselves.

In GA, the decision variables are encoded into finite-length strings of alphabets of certain
cardinality. These alphabets are called genes and the finite length strings, which are the
candidate solutions of the optimisation problems, are called chromosomes (Sastry et al., 2005).
GA unlike traditional methods relies on the population of the candidate solution and the size
of the population is determined by the user. The population size is an essential part of GA
as it affects the scalability and performance of the algorithm (Sastry et al., 2005). A smaller
population size may lead to early convergence and does not yield the optimum solution. In
order to find the best solution, GA uses the fitness value of each candidate solution. The
fitness is calculated by defining a mathematical objective function related to the optimisation
problem. Once the decision variables are encoded and the objective function for the fitness is
defined, the GA evolves using the followings steps (Sastry et al., 2005):

• Initialization: The initial population of the candidate is generated across the search
space defined by the user for each parameter.

• Evaluation: Once the population is initialised or the offspring population is created, the
fitness value of each candidate solution is calculated.

• Selection: Selection is a process in which the concept of survival of the fittest is realised
by imposing higher number of copies of the solutions having higher fitness. The main

12

2. Preliminary Studies

idea of selection process is to select the better fitting solution compared to the worse
ones. There are various types of selection processes in GA, e.g. roulette-wheel selection,
stochastic universal selection, ranking selection and tournament selection.

• Crossover: Crossover is also called recombination. It is an important step of GA in
which two or more parental solution are combined to create a new and potentially
better solution. This new and better solution is called offspring in GA terminology. In
GA, there are various ways to implement the crossover operation, some of them are
listed below:

– K-point crossover

– Uniform crossover

– Uniform order-based crossover

– Order-based crossover

– Partially matched crossover

– Cycle crossover

• Mutation: Mutation is one of the important steps in GA. It essentially modifies a
solution randomly. It improves the chances of the algorithm not to get stuck in the local
solutions by providing diversity to the population.

• Replacement: Once the steps of selection, crossover and mutation are done, a new
population called offspring population, replaces the original parental population. Elitist
replacement, generation-wise replacement and steady state replacement methods are
some of the widely used ones.

• The steps 2-6 are repeated in the evolution of the GA until the termination condition
is met. The termination condition is determined by the user. It can be either a
maximum/minimum fitness value or a maximum number of generations (iterations).

2.4. Neural Network

Deep learning is considered as reliable technique to solve computationally intensive and
challenging problems. Today the base for deep learning is an Artificial Neural Network
(ANN), which is a computing system inspired by the structure of the human brain.

The basic structure of an ANN is a network of small processing units called nodes which
are arranged in layers and connected by weighted connections. The network is activated
by providing inputs to the first layer and this activation is spread through out the network
using the weighted connections (Kuri-morales, 2014). The first layer is called the input layer,
followed by one or more hidden layers and finally an output layer. A typical structure of an
ANN is shown in Figure 2.4.

13

2. Preliminary Studies

Figure 2.4.: A simple Artificial Neural Network (Kuri-morales, 2014)

Multiple variants of ANNs have been developed depending on different types of problems
and datasets. A Convolutional Neural Network is such a class of ANNs, which is predomi-
nantly used when the dimensions of input data is too large, a typical example is computer
vision applications. Another class called Recurrent Neural Network are used for solving the
sequential data problems. An overview of these ANNs is given in next sub-sections.

2.4.1. Convolutional Neural Network (CNN)

A Convolutional Neural Network is realised by adding an additional convolution operator to
a classic Neural Network. A convolution operator is a special kind of linear filter which maps
the input vector or matrix to a smaller output based on the individual weights. The most
important feature of a convolution operator is that, it allows the models to extract spatial and
temporal features of the input data. This allows the model to reduce the dimensionality of
the data without loosing the important features and emphasizing only on important features.
This makes the training faster and enhances the performance of the neural network.

2.4.2. Recurrent Neural Network (RNN)

Recurrent Neural Network (RNN) (Afshine & Shervine, 2020) is a class of an artificial neural
network architecture that is inspired by the cyclical connectivity of neurons in the brain,
which uses iterative function loops to store information. This means, RNN introduces the
concept of memory. In normal Neural Network architecture, it is assumed that all inputs and
outputs of the network are independent of each other, whereas in RNN the output of the
previous layer is used as input for the subsequent layers. Both inputs and outputs to RNN

14

2. Preliminary Studies

are typically sequences. An input sequence can be denoted as (x<1>), x<2>, x<3>...x<T>), where
each element in an input sequence is a vector and a target sequence can be denoted as (y<1>,
y<2>, x<3>...y<T>). There are multiple variants of RNN architecture depending on the output,
e.g. One-to-One, Many-to-Many, Many-to-One, shifted Many-to-Many. Different architectures
have different applications, e.g. Many-to-One is used for the time series prediction, Many-to-
Many is used to solve sequence to sequence prediction problems and Shifted Many-to-Many
can be used to solve the problems of language translations.

A simple One-to-One architecture is shown in Figure 2.5, where ’X’ is the input at each
time step and ’Y’ is the output. ’A’ is the computational unit that receive the input X(t) from
the current timestamp and a hidden state h(t-1) from the previous timestamp to calculate the
output Y(t) for the current timestamp and hidden state h(t) for the next timestamp.

Figure 2.5.: A simplified One-to-One RNN model, adopted from (Afshine & Shervine, 2020)

15

2. Preliminary Studies

Figure 2.6.: Internal Structure of the computational unit A of a simple RNN, adopted from
(Afshine & Shervine, 2020)

The structure of the computational unit is shown in Figure 2.6. There are two operations
performed in the computational unit, one is to predict the current output Y and the other
is to compute the hidden state for the next timestamp. During computation, each neuron
shares two types of weights. Weight w(1) is associated with the current input and the other
w(2) is associated with the hidden state of the previous timestamp. The formulas for the
computational unit can be summarised by Equation 2.11 and Equation 2.12 .

Yt = Relu(w1xt + w2ht-1) , (2.11)

ht = tanh(w1xt + w2ht-1) , (2.12)

where the Relu function is defined as:

Relu(z) = max(0, z) , (2.13)

and tanh, called hyperbolic tangent, is defined as:

tanh(z) =
ez − e-z

ez + e-z =
e2z − 1
e2z + 1

. (2.14)

RNNs have several properties that make them an attractive choice for sequence data
prediction. They are flexible in their use of context information because they can learn what
to store and what to ignore. They accept many different types and representations of data and
they can recognise sequential patterns in the presence of sequential distortions. Depending on
the structure and computation complexity of the computation unit ’A’, RNNs have different
variants and one such variant is Long Short Term Memory architecture of RNN. The following
is described in the next subsection.

16

2. Preliminary Studies

2.4.3. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) network is a special kind of Recurrent Neural Networks
which are capable of learning long term dependencies (Hochreiter & Schmidhuber, 1997).
LSTMs also have a chain like structure similar to RNNs but with modifications in the
computational unit. A typical LSTM cell is shown in Figure 2.7 which contains a memory cell.
It controls the flow of information by using input, forget and output gate layers which discard
the non-essential information and memorize only essential information. These operations in
the LSTM cell can be represented by the following set of equations (Olah, 2019).

Figure 2.7.: The internal structure of the computational unit of an LSTM, adopted from (Olah,
2019)

f orgetgate, ft = σ(xtU f + ht-1W f) , (2.15)

inputgate, it = σ(xtUi + ht-1W i) , (2.16)

g = tanh(xtUg + ht-1Wg) , (2.17)

cellupdate, ct = ct-1. f + g.i , (2.18)

outputgate, o = σ(xtUo + ht-1Wo) , (2.19)

ht = tanh(ct).o , (2.20)

17

2. Preliminary Studies

where, xt is the current input, ht-1 is the last hidden state, U and W are the weighting
matrices and i, f, o are the input, forget and output gates respectively.

The gates here are referred to sigmoid functions which can be defined Equation 2.21, It
essentially maps the input to a scalar between 0 and 1.

sigmoid(z) =
1

1 + e-z (2.21)

To understand the working of an LSTM computational unit, the first step is to define which
information is not needed in the cell state and this decision is made by forget gate layer.
It looks at the input xt and hidden state ht-1 then by using sigmoid. It outputs a number
between 0 and 1, where 0 means forget completely. The next step is to decide how much is
the new information or the current input is allowed to pass for the calculations of the internal
states. This operation has two parts, one is handled by an input gate which decides which
value to be updated and the other is handled by tanh layers (Equation 2.17) that creates a
vector of new candidates that could be added to the state. Then the cell update operation is
done which updates the old cell state ct-1 to the new cell update ct. Finally, the output of the
memory cell needs to be calculated which is the current output yt and the hidden state for
the next layer ht which are calculated using the Equation 2.19 and Equation 2.20 respectively.

In summary, LSTM cell can learn to recognize a certain input with the help of an input
gate, store this input in the long-term state, learn to preserve it for as long as necessary with
the help of the forget gate and extract it on demand. This ability of LSTM cells makes them
suitable for capturing the long-term patterns in time-series data.

18

3. Literature Review

In recent years, researchers have proposed various methods to extract the car-following
scenarios, analyse the performance of existing car-following models and develop new car-
following models. This chapter gives an overview of the different researches done to realise
the above mentioned tasks. In Section 3.1 different techniques that researchers have used to
extract the driving scenarios from the data are explained. Section 3.2 discusses the recent
researches in the area of analysis and improvement of existing car-following models. Recent
developments towards data-driven car-following models are explained in Section 3.3 and
Section 3.4 summarises the literature.

3.1. Car-Following Scenario Extraction

During driving, a driver performs various maneuvers, e.g. changing lanes, turning left or
right and following a leading vehicle. These maneuvers are broadly classified as driving
scenarios. Figure 3.1 gives a classification of the normal scenarios a driver undergoes.

Figure 3.1.: Scenarios and scenario classes in a typical driving (Roesener et al., 2016)

Car-following is one of the essential driving scenarios. Various studies in the past have
been done to classify, predict and extract driving scenarios for the research purposes. The
subsequent subsections discuss the rule based methods and machine learning methods used
by the researchers for car-following extraction and classification.

19

3. Literature Review

3.1.1. Rule Based Methods

Rule based methods use logical rules to solve the problems, e.g. classification of driving
regimes. They are simple and easy to implement. Knowing the structure of the data and the
problem statement, one can define a set of rules to get the desired output of the modelled
system. Researchers have used these methods to solve multiple types of problems and
extraction of car-following scenarios is also one of them.

A study done on the car-following modelling was done by (Chong et al., 2013). They
used the data from the Naturalistic Car Driving Study (NCDS) collected by Virginia Tech
Transportation Institute. The NCDS data consists of 2 million vehicle kilometers and 43,000
hours of driving. The data was collected using 100 different drivers. Measured data consisted
of speed, longitudinal and lateral acceleration, yaw angle, brake status, relative distance to the
leader vehicle, relative speed to the leader vehicle and azimuth (the horizontal direction of the
front vehicle). Car-following data was then extracted using the below listed conditions/rules:

• Radar target ID > 0.

• Radar range 6 120 m.

• 1.9 m < ∆x * Sin(Azimuth) < 1.9 m, ∆x is the relative distance of the following vehicle
to the leading vehicle.

• Speed > 20 km/h.

• Duration of car-following period > 30 seconds.

After the implementation of above rules to extract the car-following data, the processed data
was manually verified using the video, which was recorded at the time of data collection.

Another study (Zhu, Wang, & Wang, 2018) was done to develop a human-like car-following
model using Reinforcement Learning (RL) method. Data collected for the Shanghai Naturalis-
tic Driving Study was used in the study. Five vehicles were used to collect the driving dataset
with 60 different drivers across a total distance of 161,055 Kilometers. The collected dataset
consisted of the position, longitude and lateral accelerations, steering and throttle angle of the
instrumented vehicle, relative distance between the instrumented and the surrounding vehicle
and speed of the instrumented and surrounding vehicle. The dataset was collected using the
radar system and four synchronised cameras. The video data was also recorded. The four
synchronised cameras recorded the videos of face and hand movements of the driver, front
and rear view of the vehicle. To extract the car-following data, the listed rules were proposed.

• Radar identification number.

• Relative Distance of the instrumented vehicle to surrounding vehicle < 120 meters.

• Lateral distance < 2.5 meters.

20

3. Literature Review

• Duration of car-following period > 15 seconds.

The results of the extraction were then analysed with the video recorded during the data
collection.

Another study done by (Hülnhagen et al., 2010) introduced fuzzy reasoning in recognition
of only turn scenarios. The dataset considered for the study was collected using a driving
simulator. (Gerdes, 2006) introduced a probabilistic Bayesian model. The study was done to
identify the lane change scenario. The output of the system was the identified lane change
with a confidence level.

3.1.2. Machine Learning based Methods

(Tango & Botta, 2009) classified different driving scenarios using a simulated dataset. The
research was done in the Human Machine Interaction Laboratory in University of Italy to
collect the dataset using the driving simulator. The driving simulator was used to collect
the data for lane change and car-following scenarios. The car-following labelled scenario
was then classified using Support-Vector Machine (SVM) and Neural Network (NN) models.
SVM is a machine learning algorithm that is used in supervised classification problems. SVM
classifier performed better than NN classifier with an accuracy of 97% for the car-following
instances.

(Roesener et al., 2016) classified the driving scenarios in real driving data using time series
classification of human-driving behaviour. The driving data was classified into 3 driving
scenarios, namely lane change, free driving and cut-in using three different classification
algorithms: Naive Bayes, Ada Boost and Medium tree algorithms respectively. First, the data
was manually labelled each scenario and then this labelled dataset was used to train the
above listed classification algorithms. Each separate algorithm gave satisfactory results for
each of the scenarios.

Some recent studies focused on classification of scenarios like lane change and cut-in were
proposed using machine learning algorithms. (Tang et al., 2018) proposed an adaptive fuzzy
neural network to predict the steering angle and thus the lane change scenario. However,
none of the study was done to extract the car-following scenario using unlabelled naturalistic
driving dataset.

3.2. Analysis and Improvement of Existing Car-Following Models

Car-following models are researched for more than half a century. The performance of these
models is very essential, not only for realistic traffic simulations but also for the research in
the field of autonomous driving. The initial proposed car-following models were discussed in

21

3. Literature Review

chapter 2, apart from them many researchers have invested their crucial time and energy in
analysing, calibrating and improving those models and those researches are discussed in this
section.

(Mitra & Eric, 2018) calibrated the traditional car-following models; the IDM, Wiedemann
model and Krauss model. They used the Next Generation Simulation (NGSIM) (FHWA, n.d.)
dataset to analyse the performance of different car-following models. A Genetic algorithm
was used for the research objective but information regarding the mutation, crossover and
selection types of genetic algorithm was not provided. The result showed that amongst the
three driving models, the calibrated IDM model fitted best to the real world trajectories while
the Krauss model fitted worst.

One analysis study of car-following models using trajectory data was done by (Zaky et al.,
2016). Author developed the methodology to classify different driving regimes during car-
following and calibrated the IDM for each driving regime. Markov-regime switching model
was used to classify driving regimes. Markov-regime switching is a non-linear time series
model (Kuan, 2002). To realise the Markov-regime switching model, velocity of the following
vehicle was considered as the time series variable and acceleration, distance headway and the
velocity difference were considered as exploration variables. The mathematical representation
is shown in Equation 3.1.

vt+1 = φ1, st ∗ at + φ2, st ∗ dvt + φ3, st ∗ hj,t + εt , (3.1)

where vt+1 is the velocity of the following vehicle, at is the acceleration of the vehicle, hj,t is
the gap, φ represents the coefficients and ε is the error term.

They used the Robert Bosch GmbH research group dataset. The dataset had stop-and-go
speed profiles of the following vehicle on a single lane road. The dataset was explicitly
recorded for the car-following behaviour and hence the dataset had traces with 250, 400 and
300 seconds of car-following behaviour. The results showed that the IDM model calibrated
for different regimes fitted better to the trajectories in comparison to the model fitted for the
whole trajectory. The approach has one drawback that, changing parameters for each time
step in running simulation is a cumbersome task.

Another similar study was done by (Ma & Andréasson, 2007). The author implemented a
fuzzy clustering algorithm to classify the regimes during the car-following behaviour. The
dataset was collected with an instrumented vehicle from Volvo. Two video cameras with lidars
were installed to record the vehicles at the rear and front of the instrumented vehicle. The
data was collected explicitly to record the car-following behaviour with a set of five different
drivers. The Volvo ERS software was used to synchronise the video and the car-following and
lane changing situations. The data was recorded at a sample rate of 50 Hz. However, none of
the existing car-following models was analysed with these regimes and hence the study did
not confirm the effect of these classified regimes in improvement of the car-following models.

22

3. Literature Review

(Y. Zhang et al., 2017) presented an improved version of Full Velocity Difference (FVD)
model by incorporating the driver’s characteristics and the leading vehicle’s acceleration. The
data used in the study was Next Generation Simulation (NGSIM) (FHWA, n.d.). The driver’s
characteristics were determined by clustering the recorded data using k-means clustering
algorithm. The speed of the leading vehicle and the space between the leader and the follower
vehicle were used as input features for the clustering algorithm. The proposed model was
then analysed using numerical simulations. The result concluded that the introduction of
the leading vehicle acceleration can contribute to avoid the negative velocity which possibly
appears in FVD. The performance of the proposed model compared to the real world data
was not investigated in the study.

A recent study on the improvement of the existing car-following model was done by (Zhao
et al., 2018). The Full Velocity model (FVD) was extended by considering the acceleration of
the leading vehicle in the equation of the existing FVD model as presented in Equation 3.2.

an(t) = κ (V(∆xn(t))− vn(t)) + λ∆vn(t)

+µ1H(−∆vn(t))(∆xn(t)− µ2) + µ3H(∆vn(t))an-1(t) ,
(3.2)

where, λ and κ are the parameters of the model, ∆xt represents the gap between the
following and the leading vehicle, vn(t) is the velocity of the following vehicle at time t, ∆vn(t)
is the velocity difference between the leading and the following vehicle at time t, an-1(t) is
the acceleration/deceleration of the leading vehicle at time t, µ1 is the sensitivity parameter
of the distance headway when the vehicle gathers at an intersection, µ2 is the safe driving
distance headway, µ3 is the sensitivity parameter of the acceleration/deceleration of the
leading vehicle.

The research objective was to improve the performance of the model on intersections.
The performance of the existing FVD and the proposed model were analysed during the
deceleration and acceleration profiles of vehicles at an intersection/junction approach. The
NGSIM (FHWA, n.d.) data was used for the analysis where the trajectories near to the
intersection were considered. The main finding of the results showed that the proposed model
could distinguish the vehicles that gather and dissipate near to the intersection depending
on the velocities of the leader and the following vehicles. The results also showed that the
improved model output fits better to the observed data than the existing car-following model.
The model also had shortcomings when the author tried to fit the model to the long car-
following trajectories. The author claimed that the additional parameters which are coefficient
of an-1(t) and the µ2 might be the reason for the irregularities in the final fitness of the model.
The parameter µ2 defines the average safe driving distance headway and since different
drivers have different characteristics, the parameter µ2 needs to be dynamically calibrated as
per the driver’s characteristics which again is a tedious task during the simulation runs. The
model also showed the problem of advance acceleration profiles during the dissipation of
vehicle at intersection.

23

3. Literature Review

3.3. Data-Driven Development of Car-Following Models

Each of the car-following models presented in the previous section either consists of one or
more equations to predict the driver’s behaviour. Due to their dependency on fewer equations,
those models are easier to present and understand. However, it is difficult to capture human
driver behaviour with these fixed sets of equations because of the broad scope and variance
of human driving. Recent development in the data collection techniques, such as Extended
Floating Car Data (xFCD) allows researchers to use real world data to analyse and model the
car-following behaviour in a more advanced way. Several data-driven researches have been
done using machine learning techniques like fuzzy logics, Neural Networks, Reinforcement
Learning etc. which are discussed in this section.

Driver understanding and behaviour is qualitative and sometimes the actions are based on
a set of rules. For example, during the deceleration step, if the driver is close to the vehicle
ahead and with its current speed if the driver gets further close (closing). Then, the driver
may decide and act according to the experience, logic and judgement instead of exact relative
speed and spacing between the vehicles (Aghabayk et al., 2015). In these kinds of situations
the "close" and "closing" is basically a fuzzy value and the deceleration is a fuzzy decision
making. To consider the fuzzy perception and driver’s decision, several fuzzy logic based
models were developed in the field of car-following behaviour modelling.

(Kikuchi & Chakroborty, 1992) proposed a fuzzy logic based car-following model which is
consisted of two modules, a fuzzy inference system (shown in Figure 3.2a) and the system that
executes the inference system (shown in Figure 3.2b). In the inference system they defined
the two rules ’Premise’ and ’Consequences’.

(a) Formation of rules (b) Execution of fuzzy inference system

Figure 3.2.: The fuzzy logic based car-following model (Kikuchi & Chakroborty, 1992)

For the premise rule, they used the three input variables, namely the relative distance ∆x
, the relative velocity ∆v and the acceleration a of the leading vehicle and grouped each of

24

3. Literature Review

the first two input variables into six natural-language based categories while the acceleration
was grouped into twelve (six for acceleration and six for deceleration). Each of these grouped
categories comprises the fuzzy set. The consequence was dependent on premise rule. It
was the acceleration or the deceleration rate of the following vehicle which was expressed
in fuzzy quantity. Each fuzzy quantity was represented by a natural language term such as
"VERY STRONG DECLARATION". The results showed that the reaction of the following
vehicle was similar to the leading vehicle’s action but there was no successful implementation
due to the lack of calibration of the model itself. Further, many other car-following models
based on fuzzy logic rules were developed. (Won et al., 2006) used the fuzzy approximate
reasoning to find the driver’s sensitivity with the traffic situation. The driver based conditions
were driver’s gender, age, experience, vehicle specific information like year of manufacture,
engine volume etc. However, amongst all the proposed models using fuzzy logic, the most
common problem was to determine the fuzzy rules as used by humans. If the rules are not
set appropriately, the model will predict inappropriate results.

A method called Rough set theory which is closely related to Fuzzy logic was also applied
in car-following behaviour modeling. Rough set theory is a mathematical tool for dealing
with vague, imprecise, inconsistent and uncertain knowledge (Q. Zhang et al., 2016). (Hao
et al., 2018) developed a data-driven car-following model based on rough set theory. The main
idea of the research was to extract out the optimal decision rules from the raw data using
the rough set theory and determine the follower’s behaviour in the next time step. NGSIM
(FHWA, n.d.) 180-1 data was used in the research. The model used the status of the follower
and the leader at time t plus the traffic situation as an input for the decision system to predict
the velocity of the follower at time t+1 using the optimum decision rule set proposed by the
author. The study showed that the data-driven car-following model performed better than the
conventional full velocity difference model (FVDM). Due to the dependency of the proposed
model on existing decision rule set, the model had a drawback of poor performance under an
unrealistic decision rule set.

(Papathanasopoulou & Antoniou, 2015) developed a non-parametric data-driven car-
following model based on a locally weighted regression (loess) model. The methodology
consisted of two parts, namely training and application. In the training part the recorded
data was used to fit the macroscopic traffic models and later in the application part the fitted
traffic models were used to predict the speed. They considered velocity of the following
vehicle, velocity of the the leading vehicle and the distance between the two vehicles as an
input feature. The output response of the model was the estimated velocity of the following
vehicle at the next time step. The biggest advantage of the proposed method was that it does
not require a specific function to fit a model simultaneously to all the data points. The model
was compared to the Gipps (Gipps, 1980) model as reference and the results showed that
machine learning models can outperform traditional car-following models. Although the
proposed model does not considered the impact of other input features on the car-following
behaviour which gives a research gap to work in those aspects.

25

3. Literature Review

Another technique called Artificial Neural Networks (ANN) has been extensively applied
in the last decade in the field of transportation. (Panwai & Dia, 2007) developed a neural
agent car-following model. The model was based on desired distance headway. They used
the speed of the leading and following vehicle and the distance headway to model the
car-following behaviour using the ANN. AIMSUN traffic simulator was then used to evaluate
the performance of the proposed model. They compared the fuzzy logic based model and
the Gipps model as reference to evaluate the performance. The results showed a good fit of
the simulated result to the observed data but the model failed to replicate the car-following
behaviour during the stop and start phase of the vehicle. A similar study was done by (S. Lee
et al., 2019), where they developed an integrated deep learning and stochastic car-following
model. A multi-lane stochastic optimal velocity model (SOVM) model was integrated to a
Convolutional Neural Network (CNN). SOVM was used to model the car-following behaviour
and CNN to predict the lane change.

(Khodayari et al., 2012) developed a modified neural network model. They proposed
a new idea to calculate the instantaneous reaction time and use it along with the relative
distance, the relative velocity and the velocity of the following vehicle as an input to predict
the acceleration of the following vehicle. Figure 3.3 shows the basic architecture of the Neural
Network used in the study. The model was tested with fixed reaction times of 0.1 seconds, 0.2
seconds and 0.6 seconds and results showed that the model with instantaneous reaction time
performed better as compared to the fixed reaction times. The model was neither compared to
any existing car-following models nor was integrated to any of the traffic simulation software.

Figure 3.3.: Neural Network structure for a car-following model (Khodayari et al., 2012)

Apart from these, multiple studies in the past used different forms and architectures of
neural networks. (Jia et al., 2003) applied the ‘back propagation’ algorithm to develop a
car-following model using data collected by a technique named ‘five-wheel system’. The
model predicted the acceleration or deceleration values in response to the distance headway

26

3. Literature Review

and the velocity difference of the leading and the following vehicle. The model lacked the
generalisation capability due to the dataset used by the researcher.

Machine learning models can capture more complex relations as compared to fixed mathe-
matical equation based models, but some researchers argue that machine learning models
can fail when it comes to test safety aspects. So, a model combining machine learning and a
kinematic model was developed by (D. Yang et al., 2019). Their main research aspect was
to overcome the machine learning based model’s output in uncommon situations like an
accident during the automated driving. They combined two machine learning techniques
namely, the Back-Propagation neural network and the random forest with the Gipps Model
(Gipps, 1980) (Kinematic Model). Next Generation Simulation (NGSIM) (FHWA, n.d.) dataset
was used for calibration and modelling. For the testing, a ring-test was performed by creating
a pseudo ring having the perimeter of the same length of a vehicle platoon extracted from
the NGSIM dataset at a particular time instant. On the proposed ring, the congestion area,
stable time and crash rates were calculated. The model showed improved safety results as
compared to the Gipps model.

Reinforcement Learning is one of the most actively researched domains in the present
situation. It has been used widely in artificial intelligence research. (Zhu, Wang, & Wang,
2018) proposed a novel car-following model using Deep Reinforcement Learning (DRL). They
used the Shanghai Naturalistic Driving data which was predominantly collected on freeways
and highways. This data was fed into a simulation environment where the Reinforcement
Learning agent learned from trial and error based on a reward function. The reward function
signals how much the agent deviates from the recorded data. The conceptual methodology of
the model is shown in Figure 3.4.

27

3. Literature Review

Figure 3.4.: Conceptual Diagram of the Deep Reinforcement learning based Car-Following
Model (Zhu, Wang, & Wang, 2018)

They proposed Deep Deterministic Policy Gradient to develop the Reinforcement Learning
algorithm, where the critic network approximates the action-value function and the actor
network represents the agent’s current policy for the Q-function (part of Reinforcement
learning) which is used to map the state of the environment to an action of an agent. The
agent here refers to the driver.

Through this learning policy they developed a car-following model that can predict the
acceleration of the following vehicle given the speed of the following vehicle, velocity dif-
ference and gap between the two interacting vehicles. They compared the proposed model
with the Intelligent Driver Model (IDM) and the Deep neural network based model. The
numerical simulation results showed better performance as compared to the two considered
models on highway car-following scenarios. The integration of the proposed models was not
investigated with any traffic simulator.

Recent studies are using Recurrent Neural Networks (RNNs) to capture the car-following
behaviour. (Zhou et al., 2017) developed an RNN based microscopic car-following model to
predict the traffic oscillations. The RNN model developed predicted the gap between the
vehicles. Author found that the existing models were not able to be calibrated for the traffic
oscillations. Author’s RNN model outperformed the conventional calibrated IDM model. The
data used in the research was the NGSIM dataset.

28

3. Literature Review

3.4. Research Gap and Conclusion

Car-Following Scenario Extraction

Table 3.1 summarises the literature on the extraction of car-following scenarios from the
different datasets. It is clear that most of the studies used the datasets which are recorded for
the driving behaviour studies. The rule based methods are used for the unlabelled datasets
where as the machine learning based methods are used for the labelled datasets. There are
only few studies done on the raw xFCD. Therefore, there is a need to develop a methodology
to extract the car-following scenarios from raw xFCDs.

Analysis and Development of car-following models

Table 3.2 and Table 3.3 summarise the studies related to the analysis and data-driven develop-
ment of car-following models respectively. It is clear from the studies that most of the studies
used the NGSIM trajectory data while there are very few studies which are focused on the
raw xFCD. Apart from this, most of the studies used the binary-coded genetic algorithm for
the calibration of car-following models, whereas the calibration task of car-following models
is a continuous real value optimisation problem. There is a need to study the performance of
the convolutional car-following models by calibrating them using the real-coded algorithms
on the car-following traces extracted from the raw xFCDs, as the xFCDs can have unbiased
naturalistic driving behaviour since the drivers are unaware of the data recordings and its
purpose. Also, the studies show that the machine learning is an actively researched field
in the development of data-driven car-following models. The machine learning models are
much more flexible than the mathematical equations based conventional car-following models.
So, the extracted car-following traces can be used to model a new data-driven car-following
model. The researches show that the additional information like the presence of the vehicle
on the left and right lane of the following vehicle is not explored much in the given studies.
Also, since the driving task can be considered as time series modelling problem as suggested
by (Zaky et al., 2016). The impact of the the time series sequence length on the driver’s
behaviour is also not explored much. This sequence length can be defined as the historical
information that the driver processes to take a decision for the next time step. Machine
learning models like RNNs/LSTMs allow to explore the sequential data, so there is a need
to explore the impact of the historical information on the performance of the data-driven
car-following model.

RNN is an actively used machine learning technique to explore sequential data. Since, the
driving task is considered in this thesis as a sequential task, RNNs capability to model the
sequential data provides the motivation to explore its application in car-following modelling.
However, since LSTM can learn long-term dependency in the dataset, the LSTM seems to be
a better choice than RNN.

29

3. Literature Review

O
bj

ec
ti

ve
M

et
ho

d
Te

ch
ni

qu
e

D
at

a
us

ed
La

be
ll

ed
D

at
as

et
ra

w
xF

C
D

us
ed

So
ur

ce
C

ar
-f

ol
lo

w
in

g
ex

tr
ac

ti
on

R
ul

e
Ba

se
d

St
at

e
M

ac
hi

ne
re

al
dr

iv
in

g
7

7
(C

ho
ng

et
al

.,
20

13
)

C
ar

-f
ol

lo
w

in
g

ex
tr

ac
ti

on
R

ul
e

Ba
se

d
St

at
e

M
ac

hi
ne

re
al

dr
iv

in
g

7
7

(Z
hu

,W
an

g,
&

W
an

g,
20

18
)

D
ri

vi
ng

sc
en

ar
io

s
cl

as
si

fic
at

io
n

M
ac

hi
ne

le
ar

ni
ng

SV
M

a ,N
N

b
si

m
ul

at
ed

X
7

(T
an

go
&

Bo
tt

a,
20

09
)

D
ri

vi
ng

sc
en

ar
io

s
cl

as
si

fic
at

io
n

M
ac

hi
ne

le
ar

ni
ng

N
B

c ,A
B

d
re

al
dr

iv
in

g
X

7
(R

oe
se

ne
r

et
al

.,
20

16
)

Ta
bl

e
3.

1.
:A

gg
re

ga
te

d
st

ud
ie

s
on

ca
r-

fo
llo

w
in

g
sc

en
ar

io
ex

tr
ac

ti
on

a Su
pp

or
t

Ve
ct

or
M

ac
hi

ne
b N

eu
al

N
et

w
or

k
c N

ai
ve

Ba
ye

s
d A

da
Bo

os
t

30

3. Literature Review

O
bj

ec
ti

ve
M

et
ho

d
Te

ch
ni

qu
e/

A
lg

or
it

hm
D

at
as

et
ty

pe
M

od
el

s
ra

w
xF

C
D

us
ed

So
ur

ce
Pe

rf
or

m
an

ce
A

na
ly

si
s

C
al

ib
ra

ti
on

G
A

a
tr

aj
ec

to
ry

ID
M

b ,W
c ,K

d
7

(M
it

ra
&

Er
ic

,2
01

8)
Pe

rf
or

m
an

ce
A

na
ly

si
s

dr
iv

in
g

re
gi

m
e

ca
lib

ra
ti

on
G

A
,M

R
Se

re
al

dr
iv

in
g

ID
M

7
(Z

ak
y

et
al

.,
20

16
)

Pe
rf

or
m

an
ce

an
al

ys
is

M
od

el
Im

pr
ov

em
en

t
ch

an
ge

in
m

od
el

eq
ua

ti
on

tr
aj

ec
to

ry
FV

D
f

7
(Y

.Z
ha

ng
et

al
.,

20
17

)
Pe

rf
or

m
an

ce
an

al
ys

is
M

od
el

Im
pr

ov
em

en
t

ch
an

ge
in

m
od

el
eq

ua
ti

on
tr

aj
ec

to
ry

FV
D

7
(Z

ha
o

et
al

.,
20

18
)

Pe
rf

or
m

an
ce

an
al

ys
is

C
al

ib
ra

ti
on

G
A

re
al

D
ri

vi
ng

,t
ra

je
ct

or
y

ID
M

X
(T

re
ib

er
&

K
es

ti
ng

,2
01

3)
Pe

rf
or

m
an

ce
an

al
ys

is
C

al
ib

ra
ti

on
G

A
re

al
D

ri
vi

ng
ID

M
,W

,G
g

7
(Z

hu
,W

an
g,

&
W

an
g,

20
18

)

Ta
bl

e
3.

2.
:A

gg
re

ga
te

d
st

ud
ie

s
on

an
al

ys
is

an
d

im
pr

ov
em

en
t

of
th

e
ca

r-
fo

llo
w

in
g

m
od

el
s

a G
en

et
ic

A
lg

or
it

hm
b In

te
lli

ge
nt

D
ri

ve
r

M
od

el
c W

ie
de

m
an

n
m

od
el

d K
ra

us
s

M
od

el
e M

ar
ko

v
R

eg
im

e
Sw

it
ch

in
g

f Fu
ll

Ve
lo

ci
ty

D
iff

er
en

ce
m

od
el

g G
ip

ps
M

od
el

31

3. Literature Review

O
bj

ec
ti

ve
M

et
ho

d
Te

ch
ni

qu
e/

A
lg

or
it

hm
m

od
el

le
d

pa
ra

m
D

at
a

D
at

a
Ty

pe
ra

w
xF

C
D

us
ed

So
ur

ce
D

at
a-

dr
iv

en
de

ve
lo

pm
en

t
M

L
a

Fu
zz

y
lo

gi
c

ac
ce

le
ra

ti
on

7
(K

ik
uc

hi
&

C
ha

kr
ob

or
ty

,1
99

2)
D

at
a-

dr
iv

en
de

ve
lo

pm
en

t
M

L
R

ou
gh

se
t

th
eo

ry
ve

lo
ci

ty
,o

pt
im

um
de

ci
si

on
ru

le
N

G
SI

M
tr

aj
ec

to
ry

7
(Q

.Z
ha

ng
et

al
.,

20
16

)
D

at
a-

dr
iv

en
de

ve
lo

pm
en

t
R

eg
re

ss
io

n
lo

es
s

b
ve

lo
ci

ty
re

al
dr

iv
in

g
re

al
dr

iv
in

g
7

(P
ap

at
ha

na
so

po
ul

ou
&

A
nt

on
io

u,
20

15
)

D
at

a-
dr

iv
en

de
ve

lo
pm

en
t

M
L

A
N

N
c

ve
lo

ci
ty

re
al

dr
iv

in
g

7
(P

an
w

ai
&

D
ia

,2
00

7)
D

at
a-

dr
iv

en
de

ve
lo

pm
en

t
M

L
C

N
N

d
ve

lo
ci

ty
N

G
SI

M
tr

aj
ec

to
ry

7
(S

.L
ee

et
al

.,
20

19
)

D
at

a-
dr

iv
en

de
ve

lo
pm

en
t

M
L

A
N

N
ac

ce
le

ra
ti

on
,i

ns
ta

nt
an

eo
us

t r
e

N
G

SI
M

tr
aj

ec
to

ry
7

(K
ho

da
ya

ri
et

al
.,

20
12

)
D

at
a-

dr
iv

en
de

ve
lo

pm
en

t
M

L
BP

f ,
R

Fg
ac

ce
le

ra
ti

on
N

G
SI

M
tr

aj
ec

to
ry

7
(D

.Y
an

g
et

al
.,

20
19

)
D

at
a-

dr
iv

en
de

ve
lo

pm
en

t
M

L
R

Lh
R

L
le

ar
ni

ng
po

lic
y,

ac
ce

le
ra

ti
on

ow
n

te
st

ve
hi

cl
e

re
al

dr
iv

in
g

7
(D

.Y
an

g
et

al
.,

20
19

)
D

at
a-

dr
iv

en
de

ve
lo

pm
en

t
M

L
R

N
N

i
ga

p
N

G
SI

M
tr

aj
ec

to
ry

7
(Z

ho
u

et
al

.,
20

17
)

Ta
bl

e
3.

3.
:A

gg
re

ga
te

d
st

ud
ie

s
on

th
e

da
ta

-d
ri

ve
n

de
ve

lo
pm

en
t

of
ca

r-
fo

llo
w

in
g

m
od

el
s

a M
ac

hi
ne

Le
ar

ni
ng

b lo
ca

lly
w

ei
gh

te
d

re
gr

es
si

on
c A

rt
ifi

ci
al

N
eu

ra
lN

et
w

or
k

d C
on

vo
lu

ti
on

al
N

eu
ra

lN
et

w
or

k
e R

ea
ct

io
n

ti
m

e
f Ba

ck
Pr

op
og

at
io

n
g R

an
do

m
Fo

re
st

h R
ei

nf
or

ce
m

en
t

Le
ar

ni
ng

i R
ec

ur
re

nt
N

eu
ra

lN
et

w
or

k

32

4. Data Collection

This study uses the Raw Extended Floating Car Data (xFCD) collected by Audi AG using their
endurance test vehicles. The SAVe project team from Audi provided the dataset explicitly for
this study.

4.1. Data Collection Overview

The data is collected and distributed by Audi AG. The number of cars used to collect the
dataset is not known. The vehicles used in the data collection were the test vehicle from the
endurance testing of Audi. The endurance testing is a part of vehicle testing which could
be summarised as a sub-part of the vehicle development process. The data is not collected
specifically for the purpose of car-following or any other scenario study. So, the sensors in
these vehicles are not designed for any specific task and thus are normal sensors. Each of
the vehicles is equipped with a camera and radar in the front part of the vehicle. So, they
are capable of detecting the other vehicles in front of the test vehicle. Figure 4.1a shows the
field of view of the sensors of the test vehicles and Figure 4.1b shows the visualisation of the
data using the visualisation tool developed for this thesis. The reference for the dataset is
the vehicle’s own coordinate system as shown in Figure 4.2. Usually, the origin is located in
the middle of the rear axle, The x-axis points towards the forward direction of the vehicle
and z-axis points upwards. Apart from the information about surrounding vehicles, the
data of the test vehicle is also recorded and it contains the information of speed, lateral and
longitudinal accelerations, heading, position, day and time etc. The drivers of these vehicles
are not aware of the purpose of the data collection. Therefore, the collected dataset captures
the naturalistic driving behaviour of different drivers.

33

4. Data Collection

(a) Field of view of sensors with
sensor coordinate system

(b) Visualisation of data

Figure 4.1.: Field of view of sensors in the test vehicle

34

4. Data Collection

Figure 4.2.: Example vehicle coordinate system

In this study the data from the urban environment is used. Since Audi headquarter is
located in Ingolstadt (Germany), a lot of vehicle development and testing process take place
here. Therefore, the xFCDs from the Ingolstadt city were filtered first for the further study
and analysis. The bounding box for the filtering process is shown in Figure 4.3. A total of 40
hours of driving data was first received for the study which later filtered to 23 hours of the
driving data from the city of Ingolstadt.

Figure 4.3.: Study Area Bounding Box (blue) and an example vehicle trace (red)

35

4. Data Collection

4.2. Meta Details of the Raw xFCD

Each vehicle delivers one file, called trace, mostly generated during an 8-hours shift. Each
trace (dataset) contains information regarding the test vehicle, environment, e.g. lanes and
surrounding vehicles, e.g. speed, location in Cartesian coordinate system etc. The dataset in
the Audi vehicles is collected using the FlexRay Protocol. FlexRay is an automotive network
communication protocol developed by FlexRay Consortium to given on-board automotive
computing. The Audi xFCD dataset consists of two FlexRay buses namely "FRIA" and
"FRIB". The FRIA consist of the data of the test vehicle, for example, speed, location in GPS
coordinates, timestamp, lateral and longitudinal acceleration, heading, etc. FRIA also contains
the information about the surrounding vehicles and the information of the environment if the
information is extracted from the images captured by the camera using the image processing.
If the information about the surrounding vehicles and the environment is calculated using
the sensor data fusion of the image and the radar signals, then the information is stored
in the FRIB bus. There are more than 2000 signals recorded at each timestamp. Different
signals in the FlexRay bus system may have different sampling rates. This means that the
signals are recorded with different frequencies. So, there are chances that some signals can
be empty at every timestamp. The vehicles contain the Protocol Data Units (PDU). These
PDUs schedule the sending frequency of the signals, e.g. signals like speed and acceleration
are transmitted more frequently than the other signals, like the location signal of the vehicle.
Besides this, since the sensors are not designed to capture data for any specific task, they
have some instabilities and some signal channels do not contain any information. Therefore a
manual check of the signals is necessary.

Table 4.1 is a snippet of the original data (the actual signal names are simplified for better
understanding), where, T is the timestamp in milliseconds, Vel is the velocity of the test
vehicle in kilometers per hour (km/h), Lat is the geo-coordinate latitude of the test vehicle,
Accx is the longitudinal acceleration of the test vehicle in meter per second squared (m/s2), a
street category is the street/road type and obj1x is the x-coordinate of the surrounding vehicle.
The Table 4.1 shows that the sampling frequency of the velocity signal is 40Hz, whereas
the sample frequency of acceleration is 20Hz. Apart from this, it can be noticed that the
street category signal is empty, which indicates that all signals do not have valid information.
Hence, the selection of the important signals and their processing is required. An overview
of different signals selected for the further study related to test vehicle and environment
are compiled in Table 4.2 and Table 4.3 respectively. Information related to the surrounding
vehicles is described in the next section.

36

4. Data Collection

Table 4.1.: A snippet of the raw xFCD dataset.

T (ms) Vel
(km/h)

Accx(m/s2) Lat street
category

obj1x(m)

0 21.42 -0.009 49.194073 null 10.11
25 21.42 null null null 11.2
50 21.41 0.0599 null null 13.5
75 21.43 null null null 13.9
100 21.435 0.044 null null 15.8
125 21.445 null null null 16.2
150 21.44 -0.0049 null null 16.5
175 21.435 null null null 16.7
200 21.455 0.0399 null null 15.9
225 21.459 null 49.194073 null 15.4

Table 4.2.: Signal overview of the test vehicle.

Description Unit

The recorded time [ms]
latitude position [geo]
longitide position [geo]
speed [km/h]
Longitudinal acceleration [m/s2]
Lateral acceleration [m/s2]
Heading of the vehicle in the driving direction reference to north [rad]
Date [-]
Time [-]
Street category [-]
No. of lanes [-]

37

4. Data Collection

Table 4.3.: Signal overview of the environment.

Description Unit

X position of the start of left lane marking w.r.t ego vehicle [m]
position of the start of the left lane w.r.t test vehicle [m]
Yaw angle of the left lane marking [rad]
Curvature of the left lane marking [-]
X position of the end of left lane marking [m]
X position of the start of right lane marking w.r.t ego vehicle [m]
Y position of the start of the right lane w.r.t test vehicle [m]
Yaw angle of the right lane marking [rad]
Curvature of the right lane marking [-]
X position of the end of right lane marking [m]

4.2.1. Information about the surrounding vehicles

In xFCD dataset of Audi, the information of the surrounding vehicle is stored as objects.
As mentioned earlier, the data set has two FlexRay buses and depending on the process of
information extraction about the surrounding vehicles they could be stored in either of the
two. The data about the objects is stored in the memory slot which has a capacity of 10. It
means that at a single timestamp the data can give a maximum of 10 objects (surrounding
vehicles) information. These slots during the data recording can be filled in parallel. Objects
have two most important signals. One is their unique ID and other is the history signal.
Objects are always identified with their unique IDs and the history provides the information
if the object with given ID is registered for the first time or has been tracked for a long time.
So, to track each surrounding vehicle the history information with the ID of the object is very
essential. This information is of great importance as the object’s information is not fixed in a
particular memory slot. Rather, it can change during the entire tracking time. An example of
how these memory slots are filled and how the information of different object rotates inside
the memory slot is shown in Figure 4.4. The figure shows an example of a rotation of three
objects with ids 1, 6 and 224. As it can be seen that the object can jump from one slot to a
different slot on every timestamp. Therefore, the history signal and the understanding of
memory slot organisation in the dataset play a very vital role in tracking different objects to
extract car-following data from the traces. Table 4.4 compiles the different signals/features
about the surrounding vehicles.

38

4. Data Collection

Figure 4.4.: Rotation of object (surrounding vehicle) information in the memory slots

Table 4.4.: Signal overview of the surrounding vehicles (object in the description refers to the
surrounding vehicle)

Signal Description
Unit

Unique ID of the object [-]
Y position of the object w.r.t test vehicle [m]
X position of the object w.r.t test vehicle [m]
Orientation of the object w.r.t to test vehicle [rad]
History signal of the object [-]
Object class, for example car or truck etc [-]
Longitudinal speed of the object [Km/h]
Lateral speed of the object [Km/h]
Longitudinal acceleration of the object [m/s2]
Lateral acceleration of the object [m/s2]
Width of the object [m]

4.3. Comparison Study with Other Datasets

As observed in the literature review chapter, most of the researchers have used the Next
Generation Simulation (NGSIM) (FHWA, n.d.) dataset for the data-driven development of
car-following models. A comparison of the NGSIM dataset with the Audi xFCD dataset is
given in Table 4.5. The Audi xFCD data set is the floating car data while the NGSIM dataset
is the trajectory data. The Audi xFCD dataset is larger in number of hours of recording. Audi
xFCD dataset is also not location dependent, as the data is recorded from the car. Since, the
drivers are unaware about the recording purpose, the dataset captures naturalistic driving
behaviour of different drivers in different traffic condition in the entire city. Contrarily in the
NGSIM dataset, the data is captured using a set of cameras over a fixed stretch of freeway
section. The number of lanes in the Audi xFCD datasets is not fixed as the car could drive
in any region of the city and thus have road sections with 1 lane, 2 lanes and 3 lanes. Since
the NGSIM dataset is recorded from the fixed section of road the lane number does not vary
that much. There are various studies using the NGSIM dataset (Hao et al., 2018) (Zhao et al.,

39

4. Data Collection

2018) (D. Yang et al., 2019) (Zhou et al., 2017) (Mitra & Eric, 2018). But with the raw xFCD
dataset, there are very few studies related to analysis or development of car-following model.

Table 4.5.: Comparison of NSGIM and Audi xFCD dataset.

Features NGSIM Audi xFCD

Total duration 1.5 hours > 20 hours
Number of Locations 2 Location independent
Lanes per direction 5-6 1-3

Length of Road section 0.5 - 1.0 Km Driving data over the whole
city, no fixed length of the

road
Recording Frame Frequency 10 Hz 25 Hz

4.4. Conclusion

The Audi xFCD has a large number of recordings of vehicles over different times and days of
the week. This captures naturalistic driving behaviour in different parts of the city as well as
on highways (freeways and highway dataset is not included in the study), which is significant
to capture the realistic driving behaviour in car-following situations over all the city areas.
Apart from this, very few studies use the raw xFCD dataset for the data-driven development
of car-following models.

40

5. Methodology

This chapter presents the methodology to achieve the objectives of this study. The method-
ology consists of three modules, namely extraction of car-following scenarios from xFCD
data, analysis of existing car-following models using xFCD data and finally the third is the
development of a data-driven car-following model using xFCD data. A complete overview of
the methodology is given in Figure 5.1.

5.1. Software and Tools

Python programming language is predominantly used in this study. Python is widely used
in the scientific community because of its extensive collection of libraries for data processing,
visualisation and computation. Apart from this, python’s machine learning framework is
quite mature and this allows it to be used widely in the scientific community. The list of the
python libraries used in this study are given below:

• Visualisation and plotting : Matplotlib and Seaborn

• Computation: Numpy

• Data Handling and processing: Pandas

• Genetic Algorithm: Deap

• Deep Learning: Scikit learn and Keras (Tensorflow backend) with GPU extension.

The hardware used in this study is a Dell Workstation with i7 processor, 16 GB RAM and
NVIDEA GeForce GTX 980 graphical processor unit (GPU).

5.2. Car-Following Data Extraction from xFCD

The methodology flowchart is shown in Figure 5.2. The discussions on the steps in the
flowchart is explained in the following subsections.

5.2.1. Goal

The goal is to develop a methodology to extract the car-following traces from the raw xFCD.
Previous researches have shown that machine learning techniques are good for classifying
events like lane-change, cut-in etc. Car-following, on the other hand, is a complex scenario
which comes under the scenario of free-following. In this study, a state machine technique is
used to extract the car-following traces from the raw Extended Floating Car Data (xFCD).

41

5. Methodology

Figure 5.1.: Thesis Methodology.

42

5. Methodology

Figure 5.2.: Flow chart for car-following traces extraction

43

5. Methodology

5.2.2. Preliminary Data Exploration

It is important to have an overview of the available dataset for the study. This step includes
the initial data exploration. It is necessary to get an overview of the different signals (fea-
tures/attributes) available in the raw Extended Floating Car Data (xFCD). Features/attributes
or signals here means information like acceleration, velocity, lane information, surrounding
vehicles related information etc. The different signals related to the test vehicle, environment
and surrounding vehicles are analysed. As already explained in Data Collection chapter
that many of the signal values are empty and not all the signals are important for this study.
So, the raw xFCD data is transformed to a new definition which is explained in the next
sub-section.

Data Transformation

The raw xFCD dataset is transformed to a new dataset. In this step, the raw xFCD data is
divided into two separate csv files. One contains the information of the test vehicle and the
environment and it is named "ego.csv", The other contains the information of the surrounding
vehicles and it is named "surrounding_vehicle.csv". A new and simple naming convention of
the signals is also adopted to transform the dataset, few examples of which are given in the
Table 5.1.

Table 5.1.: Examples of the new naming convention of signals

New Signal Name Description Units
ego_speed Speed of the test vehicle m/s

ego_accel_ x Longitudinal acceleration of
the test vehicle

m/s2

lat latitude position of test
vehicle

geo location

pos_x X position of the object 1 m
...

The flow-chart of the data transformation is shown in the Figure 5.3. The flow-chart
executes for all the traces available in the raw xFCD data.

44

5. Methodology

Figure 5.3.: Data transformation flow chart

"ego.csv" Extraction : The ego vehicle here refers to the test/following vehicles. A python
script is developed to transform the dataset. Each trace of the raw xFCD data is passed to a
python script where the attributes related to the test vehicle and environment are extracted.
Each row of the raw xFCD data is considered as frame. For each frame, the signals listed in
the Table 4.2 and Table 4.3 are separated and stored. The velocity signal is also transformed
from km/h to m/s. The timestamp signal of the raw xFCD data is replaced by the frame
number in the new dataset definition. A snippet of the ego.csv is shown in the Table 5.2.

Table 5.2.: A snippet of "ego.csv" file

ego_speed(m/s) ego_accel_x(m/s2) lat t_headway

12.89 0.83 48.806232 2.46 ...
12.95 0.72 48.806232 2.461 ...
13.004 1.01 48.806232 2.457 ...
13.055 1.23 48.806232 2.452 ...
13.125 1.38 48.806232 2.445 ...

...

"surrounding_vehicle.csv" Extraction: To extract the surrounding vehicles, a need for a

45

5. Methodology

concrete methodology was realised. Since this study is focused on the car-following scenarios,
the first and the foremost thing to construct the database for surrounding vehicles is to track
them. The logic for storing the information of different surrounding vehicles information was
already explained in subsection 4.2.1. To have any car-following vehicle scenario, it is decided
that the surrounding vehicle must be tracked for a minimum duration of 10 seconds and only
the information of these surrounding vehicles is stored. This helps in reducing the size of the
database and contains only important data. The algorithm developed for object tracking is
explained below.

Object Tracking Algorithm: The object tracking algorithm extracts data for each object
that is either detected using the image processing technique or the sensor data fusion. The
object here refers to the surrounding vehicles. The most important signals for the tracking
algorithm are object ID and object history. With these signals in hand for each object, the
following steps are executed to track the objects:

• Step 1: If the history signal is 0, save the associate object ID and the current slot
(subsection 4.2.1 explains the slot and the ID). Then create one data object in which the
information can be saved and fill it with the current information.

• Step 2: Iterate in the current slot until the object ID does not equal current ID and
always save the information required for the recognized object.

• Step 3: In the next step, check whether current ID is found on another slot, if the current
ID is not found in other slots then the algorithm terminates and returns the information
collected about the recognized object.

• Step 4: If there is another slot in which the current ID is shifted and if the history signal
is 1, then set the current slot to the slot in which the object is now located. then go to
step 2 and repeat until the termination criteria as described in step 3 is met.

When evaluating the entire trace, iterate through it as well as through all available slots.
This ultimately results in the measured value of all the objects detected during the entire
journey, which is then stored in the surrounding_vehicle.csv file. Then the question arises
that what information is important for the car-following study. Basically, all the attributes that
can be detected by the sensors and thus all the information listed in the Table 4.4 is extracted
and saved in surrounding_vehicle.csv file with the criteria of minimum tracking duration of
10 seconds which is determined by the number of frames the object was tracked. Since each
frame corresponds to 25 ms so a minimum of 250 continuous frames is necessary for the object
to be stored in the surrounding_vehicle.csv file. A snippet of the surrounding_vehicle.csv file
is given in Table 5.3

46

5. Methodology

Table 5.3.: A snippet of "sorrounding.csv" file

obj_id speed_x(m/s) accel_x(m/s2) pos_x ...

2 14.571 0.75 25.95 ...
2 14.559 -0.56 26.00 ...
2 14.53 -0.78 26.04 ...
2 14.50 -0.92 26.09 ...
2 14.46 -0.98 26.13 ...
...

5.2.3. Development of the Visualisation Tool

As the video is not recorded while collecting the raw xFCD data, the need of a visualisation
tool was realised to assess the quality of the data of the surrounding vehicles and also to
validate the extracted car-following traces.

To develop the visualisation tool, the newly constructed database containing "ego.csv"
and "surrounding_vehicle.csv" are considered. For each frame from ego.csv, the information
of the test vehicle and the environment is plotted. To visualise the lane markings in the
plot, the trajectory of the lane markings needs to be computed. Equation 5.1 is then used to
calculate the trajectory using three signals: ego_lane_left_distance_y, ego_lane_left_curvature and
ego_lane_left_end_x. The equation is given for the left lane marking and the same equation is
used for the right lane markings.

Y = ego_lane_le f t_distance_y + ego_lane_le f t_curvature ∗ (x− 2)2

2
,

f or, x ⊆ [0, ego_lane_le f t_end_x]
(5.1)

The visualisation tool plots the information frame by frame. This information is important
to plot the objects (surrounding vehicles). For each frame, the "surrounding_vehicle.csv" file
is checked and if there is any object tracked for the current frame, the particular object is
plotted in the visualiser with its x and y positions. Figure 5.4 shows the visualisation tool
example, the unit of x-axis and y-axis in the tool is in meter (m), and the centre of the ego
vehicle is located at the origin (0,0).

47

5. Methodology

Figure 5.4.: Visualisation of the raw xFCD

During the visualisation of raw data, several problems were encountered. Capacity of the
sensor hardware, instabilities in the algorithms, noise interference or different sensor steps
may lead to these problems in the recorded dataset. The main problem encountered during
the visualisation is of the surrounding vehicles. The position signals especially has lot of
instabilities. The jump between the x and y location for two consecutive frame was unrealistic
and irregular. This problem may lead to severe problem in car-following trace extraction.
Apart from this, the other problem is related to the missing values, like the latitude and
longitude signals of the test vehicle have the sample rate of 5 Hz and on the other hand the
sample rate of other signal is 25Hz. So, the position signals of the test vehicles were missing
in between.

5.2.4. Data Pre-Processing

As described in the previous section, two major problems were found during data visuali-
sation. Hence, mathematical methods are applied to clean the dataset. In this section, the
two mathematical processes used for data pre-processing are discussed: Smoothing and
Interpolation.

Smoothing

The location signal of surrounding vehicle, i.e. the x and y position data of the surrounding
vehicle have high level of noise. This noise can be considered as white noise because it is
mostly caused by disturbances of the environment, instabilities of hardware and algorithms
which extract this data either from images or from the sensor fused data. A technique called
smoothing is applied to recover the reliable data for the surrounding vehicles. A 1D-Gaussian

48

5. Methodology

filter with adjustable window length is applied to prevent the shift after filtering. This helps
in effective noise reduction. The formula of the Gaussian filter (Steger, 1996) is:

G(x) = (1/
√

2πσ)e- x2 / 2 σ2
, (5.2)

where µ is the mean and σ is the standard deviation.

For each frame, x and y location data of the surrounding vehicle is assigned a new filtered
value which is a function of the original value of that frame and the surrounding frames. The
Gaussian kernel allows the frame at the centre of the filter window to have higher weight
than those at the periphery. Boundary effects at the beginning and end of the output signal
are minimised by introducing a reflected window length.

Interpolation

To mitigate the problem of intermediate missing values in the dataset, especially for the
location of the following vehicle. Linear interpolation technique is used. It fills new values
for the frames where the signal value is missing using the linear polynomials. Equation 5.3
represents the formula of linear interpolation, which interpolate the value y1 of point x1

located between the known points (x0, y0) and (x2, y2)

y1 = y0 +
(y2 − y0)

(x2 − x0)
∗ (x1 − x0) , (5.3)

5.2.5. Development of State Machine

The state machine for the extraction of car-following traces is developed. The flowchart of the
state machine is given in the Figure 5.5. The explanation of the flow-chart is summarised in
the following step.

• Step 1: Load the database containing the "ego.csv" and the "surrounding_vehicle.csv".

• Step 2: Group the "surrounding_vehicle.csv" by the object IDs using the python pandas
function called "groupby". This function essentially divides the whole data into smaller
data-frames of each object corresponding to the unique object IDs.

• Step 3: For each object data-frame, extract the initial frame number which corresponds
the frame number when it was recognised first time by the test vehicle. Apart from this,
also extract the last frame number which corresponds to the last frame of its tracking.

• Step 4: Separate out the information from the "ego.csv" files lying between the initial
frame and the last frame obtained in step 3.

• Step 5: Set the initial state from the first frame of the object data-frame as "Not
Following".

49

5. Methodology

• Step 6: For each frame, create a bounding box using the lane information signals.
The trajectory of the left lane marking and the right lane marking is calculated using
Equation 5.1 and with the calculated trajectory a polygon is created which is used
as bounding box. Note, the length of the bounding box is considered as 60 meters
and 100 meters. The 60 meter is considered when the vehicle is driving in the urban
environment and 100 meters is considered when the vehicle is driving in the highways
within the study area.

• Step 7: Check whether the position data of object, i.e. X and Y are lying inside the
bounding box for each frame.

• Step 8: If "Yes", set the state of the particular frame as "Car-Following", and go to step 6
and 7 again to check for the next frame until all the frames of the particular object are
iterated through.

• Step 9: If "No", set the state of the particular frame as "Not Following". Then go to
step 6 and 7 and check for the next frame. Also, if the state has already been triggered
once from "Not Following" to "Car-Following", then count the number of continuous
frames for which the algorithm says "Not Following". If the continuous counting of
the frame exceeds the number 25, which corresponds to 1 second of data, then do
nothing, else, if the continuous number is less than 25, set the state of all these frames
as "Car-Following".

• Step 10: Go to step 2 for other object IDs in the data set, if all the data-frames of different
objects are processed. Go to step 1 to load a new database.

50

5. Methodology

Figure 5.5.: Flow chart of the state machine development to extract the car-following traces
from raw xFCD data.

51

5. Methodology

5.2.6. Data Analysis and Processing

This step analyses and processes the different signals extracted in the car-following tra-
jectories. Apart from the analysis, data post-processing is also done. The velocity signal
and the acceleration signal of the test vehicle are analysed and in case of any anomalies,
the corresponding signals are smoothed using a Gaussian filter (explained in section 5.2.4).
Similarly, the acceleration signal and velocity signal of the leading vehicle are analysed and
smoothed and in last if found necessary the gap between the vehicles, which is the x-distance
of the leading vehicle is filtered and smoothed.

5.3. Analysis of the Existing Car-Following Models Using xFCD

The method flowchart is shown in Figure 5.6. The subsequent subsections explains each part
for the flowchart.

5.3.1. Goal

The goal here is to evaluate the performance of the existing car-following models on the
extracted car-following traces. The selected exisiting models in this study are, the Krauss
model, the Wiedemann model and the IDM, because the Krauss model is the default model
of SUMO traffic simulation software and the Wiedemann model is the default car-following
model of PTV VISSIM traffic simulator and the IDM model performed best on calibration as
per (Mitra & Eric, 2018).

5.3.2. SUMO Network Development for the Different Car-Following Trajectories

The extracted car-following trajectories are from all the regions of Ingolstadt city. In order to
run the simulation for these trajectories, an algorithm to create a SUMO network for each
trajectory is developed.

The Figure 5.7 shows the flow-chart used to develop the SUMO network and run the
simulation for each trace using the developed SUMO network. A python script is developed
to create the SUMO network and run the SUMO simulations autonomously. The python
script is run with two arguments, first is the address of car-following trace and second is
the name of the car-following model. Then, this argument information is passed to another
developed python class to create the SUMO network. This python class firstly extracts the
geo-locations of the following and the leading vehicle from the car-following trace. Then the
first geo-position of the following vehicle is considered as the starting node position of the
network and the last geo-position of the leading vehicle is considered as the last node position
for the network. In this way the node file is defined for the creation of the SUMO network.
Then using all the geo-locations of following and the leading vehicle, the shape of the edge
connecting the starting and the ending node is computed. This gives the edge file needed to
create the SUMO network. In last, the node file and the edge file are used to create the SUMO

52

5. Methodology

Figure 5.6.: Flow chart of the methodology of conventional car-following models analysis.

53

5. Methodology

network using the SUMO inbuilt program called "netconvert". Then, the developed network
is used to create the route file for the leading and the following vehicle. Finally, the SUMO
configuration file is generated to run the simulation using the created network file generated
and the route file. To run the simulations for the car-following traces, another python script
is developed. This python script runs the SUMO simulation with "TraCI". TraCI stands for
Traffic Control Interface. TraCI allows the user to interact with the SUMO simulation using
an external controller. The external controller here is the python script. In the beginning
of the simulation both the leading and the following vehicle start with zero velocities. The
python script initially gets the velocity of the leading vehicle from the simulation for each
simulation step and compares it with the leading vehicle velocity from the first frame of the
car-following trace. Once the velocity becomes equal, the python script takes the control over
the simulation. The python script sets the location of the following and leading vehicle at the
start of the network with the gap taken from the first frame of the car-following trace. The
simulation then gets the velocity of the leading vehicle from the python script using TraCI
interface and the simulation returns the velocity of the following vehicle to the python script
for each simulation step. The obtained velocity of the following vehicle is then saved and in
this way, the behaviour of the following vehicle is recorded.

The approach when tested worked fine. This approach of simulation has one problem.
When analysing all the traces of the car-following, this approach takes a lot of time to simulate.
Apart from this, the later part of the analysis is the calibration of parameters. The calibration
is an iterative task and calibrating each parameter of each model will take a lot of time with
this approach. So, instead of using this approach a numerical simulation of each model is
considered. To realise the a numerical simulation, each of the car-following models, namely
the Krauss model, the Wiedemann model and the IDM are developed using python language.

54

5. Methodology

Figure 5.7.: Flow chart for the development and simulation of SUMO network from the car
following trace.

55

5. Methodology

5.3.3. Development of the Car-Following Models in Python

To run the numerical simulations of the three car-following models, python script for each
model is developed. This saves a lot of time to run the simulation for each trace. The SUMO
simulation takes more time than the numerical simulation using the python script for each
model for each trace. Apart from this, in SUMO simulation, to simulate each trace, the
warm-up time of the simulation also needs to be considered. Contrarily this is not needed in
the numerical simulation. For the development of IDM and the Krauss model, the equations
explained in the chapter 2 for each of the model are used. To develop the Wiedemann model
script, the flow chart in the Appendix A is used.

5.3.4. Calibration of Car-Following Models

All car-following models have certain set of parameters, these parameters play an essential
role in the performance of the model. Every model has default values for its parameter set.
These default values when used in the simulation, the model shows the generic behaviour,
but to analyse the performance of car-following models on the real world data, calibration of
the car-following models is important. It means for every car-following trace, an optimised
set of parameters for each car-following model needs to be calculated. Typical calibration
technique includes manual methods, derivative based optimisation algorithms, metaheuristics
approaches, and other techniques (Lidbe et al., 2017).

Manual methods are based on trial and error. Judgemental values of each parameter and
feasible combination of multiple parameters are taken during each trial and the corresponding
results are analysed for the error between the simulated output and the observed values.
The derivative based, also called gradient based algorithms use the information of gradients.
They are efficient as local search algorithms, but have disadvantages of being trapped in a
local optimum if the optimisation problem is not convex (X. S. Yang, 2011). The objective
function must be sufficiently smooth, i.e. its first and second derivative must exist to apply
the gradient based optimisation algorithms. Opposite of derivative based algorithms are
derivative free algorithms. In case of discontinuities in the objective function, they perform
better than their counterpart. One drawback of these algorithms is that these algorithms
are deterministic. They usually have disadvantages in dealing with highly non-linear global
optimisation problems (X. S. Yang, 2011). Metaheuristic algorithms are one of the most
powerful optimisation techniques. They are often inspired by the nature and are suitable
for non-linear global optimisation problems. Many metaheuristic algorithms implement
some kind of stochastic optimization, so that the final solution found is dependent on the
randomly generated values. Metaheuristic algorithms search the solution over a large set of
feasible solutions and thus, can often result good solutions with less computational effort
than optimization algorithms or iterative methods. A Genetic algorithm is one of the most
widely used metaheuristic algorithm in car-following model calibration (Mitra & Eric, 2018),
(Zaky et al., 2016), (Lidbe et al., 2017). This offers the reliability of using it in this study.

56

5. Methodology

Basics of the genetic algorithm were explained in section 2.3. A genetic algorithm can be
classified as binary-coded genetic algorithms and real-coded genetic algorithms. Binary-coded
genetic algorithms have shown good results when used in car-following models calibration
(Zaky et al., 2016), (Lidbe et al., 2017). Binary coded genetic algorithms have discrete search
space. The performance of the algorithm largely depends on the coding used to represent
the problem variables and on the crossover operation which is very essential to create the
children strings (children solutions) from the parent strings. To solve optimisation problems
with continuous search space, binary-coded genetic algorithms discretize the search space by
encoding the problem variables in binary strings. These binary strings are of finite lengths.
Coding the real valued variables in finite length strings causes a number of difficulties: fixed
mapping of problem variables, inability to achieve arbitrary precision in the obtained solution,
inherent cliff problem because of binary coding (Deb & Bhushan Agrawal, 1995). Since,
the parameters of the car-following models can take continuous values, real-coded genetic
algorithm is adopted in this study. The approach to define the population, mutation, crossover
and selection operation used in this study are explained below.

Population Generation

The IDM, the Wiedemann model and the Krauss model have a different set of parameters.
These parameters can take the continuous values between the upper and the lower bound
defined for each parameter. To realise the real-coded genetic algorithm, the upper bound
and the lower bound of each model’s parameters are defined. The method used to define the
initial population of parameters for each model is defined below.

Intelligent Driver Model: To calibrate the IDM, maximum acceleration a in (m/s2),
maximum comfortable deceleration b in (m/s2), gap at standstill s0 in (m), time headway T in
(s) and acceleration exponent δ are chosen for the optimisation. The upper and lower bounds
of the parameters are selected from the (Mitra & Eric, 2018) which are shown in Table 5.4.

Table 5.4.: Upper bound and lower bound values of IDM parameters

Parameters Lower Bound Upper Bound

T (s) 0.7 3
a (m/s2) 0.1 5
b (m/s2) 0.1 5

s0 (m) 0.5 3
(δ) 3 5

To generate the population of the solutions, an individual needs to be defined first. The
individual solution for the IDM is a set of the given five parameters which can be realised
as [a, b, s0, T, δ]. To create this individual, a, b, s0, T and δ need to be defined. Since,

57

5. Methodology

real-coded genetic algorithm is used in this study. Value for each parameters is chosen from a
uniform distribution of the values between the upper and the lower bound. The probability
distribution of the uniform distribution is defined as:

p(x) =

{
1/(b− a), if ∀x ∈ [a, b)

0 otherwise
(5.4)

where, b is the upper bound and a is the lower bound.

After the creation of an individual, the population of the solutions is created by an iterative
process and the number of iterations are defined by the population size. The size of the
population is a user defined variable. The population size of 100 is used in this study. So, 100
individual solutions are created using the above defined approach of individual definition to
create an initial population of solutions.

Wiedemann Model: All 10 parameters of the Wiedemann model, namely standstill gap
CC0 (m), time headway CC1 (s), following variation CC2 (m), threshold entering following
CC3 (s), negative following threshold CC4 (m/s), positive following threshold CC5 (m/s),
speed dependency of oscillations CC6 (rad/s), oscillation acceleration CC7 (m/s2), standstill
acceleration CC8 (m/s2) and acceleration at 80 km/h CC9 (m/s2) are calibrated in this study.
The process of creation of an individual and the creation of initial population is same as
explained for IDM population creation. The upper bound and the lower bound values of the
parameters are shown in Table 5.5.

Table 5.5.: Upper bound and lower bound values of the Wiedemann model parameters

Parameters Lower Bound Upper Bound

CC0 (m) 0 5
CC1 (s) 0.5 3
CC2 (m) 0 25
CC3 (s) -20 0

CC4 (m/s) -1.5 0
CC5 (m/s) 0 5

CC6 (rad/s) 0 20
CC7 (m/s2) 0 1
CC8 (m/s2) 0 8
CC9 (m/s2) 0 8

Krauss Model: The parameters maximum acceleration a in m/s2, maximum comfortable
deceleration b in m/s2 and reaction time τ of the driver in s are chosen for the calibration
of the Krauss model. The process of creation of an individual and the creation of initial

58

5. Methodology

population is same as explained for IDM population creation. The upper bound and the
lower bound values of the parameters are adopted from (Mitra & Eric, 2018) which are shown
in Table 5.6.

Table 5.6.: Upper bound and lower bound values of Krauss model parameters

Parameters Lower Bound Upper Bound

a (m/s2) 0.01 5
b (m/s2) 0.01 5

τ (s) 0.2 3

Fitness Function Definition

Fitness function is an essential part of a genetic algorithm. The fitness function plays an
important role in the process of selection of an individual solution for the next generation
of solutions in a genetic algorithm. To calibrate a car-following model, the fitness function
acts as an objective function of the optimisation problem which either can be minimized or
maximized by an optimisation algorithm. In this study the Root Mean Square Percentage
Error (RMSPE) is used to define the fitness function. The RMSPE is defined as:

RMSPE =

√
∑n

i=1(Ŝi − So
i)

2

∑n
i=1(So

i)
2 , (5.5)

where, Ŝi is the simulated value, So
i is the observed value and n represents the number of

observations.

The RMSPE between the simulated and the observed velocity of the following vehicle
and the RMSPE between the simulated and the observed gap between the leading and the
following vehicle are used. Fifty percent weight to both of the RMSPEs is given and the
genetic algorithm is then designed to minimize these error. The equation used for the defined
fitness function is given below.

Fitness = 0.5 ∗ RMSPEv-follow + 0.5 ∗ RMSPEgap , (5.6)

where RMSPEv-follow is the RMSPE between the simulated and observed velocity of the
following vehicle and RMSPEgap is the RMSPE between the simulated and observed gap
between the leading and following vehicle.

Selection

Selection is a step in a genetic algorithm where the individual solutions are chosen from
the population for the next steps of the genetic algorithm. Selection operation improves the

59

5. Methodology

quality of the next generation population by giving higher probability to individuals of higher
quality from previous population. The quality of an individual is measured by a fitness
function. The selection operator can be represented mathematically as:

s : Pold− > Pnew, (5.7)

where the Pold represents the population before selection and Pnew represents the population
after selection.

In this study the tournament selection algorithm with elitism is used. In tournament
selection algorithm, the size of the tournament (t) is defined first, then in an iterative process
for n times, where n is the size of the population, (t) individuals are selected from the previous
population Pold and the best individual amongst them is copied to the next generation and
hence creates a new population Pnew. But this process does not guarantee the survival of
the best individual through the selection process. So, an elitism strategy is adopted which
guarantees the preservation of the fittest individual of the population. With elitism, the best
individuals of the old population are copied directly to the new generation.

Crossover

The crossover operator is the main search operator in the working of a genetic algorithm
(Deb & Bhushan Agrawal, 1995). The purpose of the crossover operator is to combine the
good portion of parent solutions to create better children solutions for the next generation of
the population. For binary-coded genetic algorithms, there are single point crossover and
multiple point crossover. In single point crossover, a random cross-site along the length of the
string of the parents solution is chosen and the bits on one side of the cross site of one parent
are swapped with the other side of the cross site of another parent (Deb & Bhushan Agrawal,
1995) to produce the children solutions. In multiple point crossover, the cross-site are more
than one.

In this study, a real-coded genetic algorithm is used. So, instead of single point or multiple
point binary coded crossover operators, the simulated binary crossover operator is used
given by (Deb & Bhushan Agrawal, 1995). The simulated binary crossover operator uses a
probability distribution, where a large probability is assigned to a point close to the parent
solution and small probability to a point away from the parent solution. The probability
distribution is controlled by the user defined parameter called crowding degree η of crossover.
Simulated binary crossover is implemented parameter wise, that is, for parameter A in range
([lowerbound, upperbound]), two parent values of that parameter Parent1 and Parent2 are
recombined to create the two children solutions child1 and child2 as follows (Deb, 2012):

child1 =
Parent1 + Parent2

2
− βL

Parent2 − Parent1

2
, (5.8)

child2 =
Parent1 + Parent2

2
+ βR

Parent2 − Parent1

2
, (5.9)

60

5. Methodology

where the parameters βL and βR depend on the random numbers uL and uR both in the
range [0,1], and are defined as:

βL =

(2uL(1− αL))
1/(1+η), for 0 6 uL 6 0.5/(1− αL) ,

1
2(1−uL(1−αL))

1/(1+η) , for 0.5/(1− αL) < uL < 1
(5.10)

βR =

(2uR(1− αR))
1/(1+η), for 0 6 uR 6 0.5/(1− αR) ,

1
2(1−uR(1−αR))

1/(1+η) , for 0.5/(1− αR) < uR < 1
(5.11)

where, αL and αR are defined as,

αL =
0.5

(1 + 2(Parent1 − lowerbound)/(Parent2 − Parent1))(η+1) , (5.12)

αL =
0.5

(1 + 2(upperbound− Parent1)/(Parent2 − Parent1))(η+1) , (5.13)

The above equations ensure that the child1 and child2 does not lie outside the parameter’s
bounded values ([lowerbound, upperbound]).

Mutation

Mutation operation in a genetic algorithm primarily maintains the diversity in the population
(Deb & ayan Deb, 2014). Mutation operates on one individual of the evolving population
at a time and modifies it independent to the other members. In this study, the polynomial
mutation operator suggested by (Dobnikar et al., 1999) is used. The polynomial function
similar to simulated binary crossover has a user defined parameter called spread factor η.

A polynomial probability distribution is defined which is used to perturb a solution in a
parent solution vicinity. The probability distribution in both left and right of a parameter
value is adjusted so that no value outside the specified range [lowerbound, upperbound] is
created by the mutation operator. For a given parent solution A ∈ [lowerbound, upperbound],
the mutated solution Amutated is created for a random number u in range [0,1] as (Deb &
ayan Deb, 2014):

Amutated =

{
A + δL(A− lowerbound), for u 6 0.5

A + δR(upperbound− A), for u > 0.5 ,
(5.14)

where the parameters (δL,δR) are calculated as:

δL = 2u1/(1+η) − 1 , for u 6 0.5, (5.15)

δR = 1− (2(1− u))1/(1+η) , for u > 0.5. (5.16)

In this study, the parameter η is chosen 10.

61

5. Methodology

5.3.5. Evaluation

To evaluate the calibrated models, models with the optimum parameters are simulated on 10
different car-following trajectories. The performance of each model is evaluated by calculating
the model’s accuracy in replicating four different profiles of the following vehicle, namely:

• Acceleration

• Velocity

• Gap between the following and leading vehicle

• Trajectory of the following vehicle

The accuracy is evaluated using the Root Mean Percentage Square Error (RMSPE), as
defined in Equation 5.7.

5.4. Data Driven Development of Car-Following Model

In this section, the approach to select the machine learning model to develop the data-driven
car-following model is discussed, along with the dataset preparation for the selected model.
The methodology flowchart is shown in figure Figure 5.8

5.4.1. Goal

The goal is to develop a data-driven car-following model, using xFCD. The method to develop
the model is based on the objectives of this study, that is to find the driver’s memory impact
in the car-following behaviour. Apart from this, the impact of the features other than the
velocity difference and the gap between the leading and following vehicles.

62

5. Methodology

Figure 5.8.: Flow chart for Data-Driven Car-Following Development

63

5. Methodology

5.4.2. Model Development

The car-following behaviour of a driver can be considered as a combination of time series
of acceleration, velocity, gap between leading and following vehicle etc. So the problem of
estimation of car-following parameters, like velocity or acceleration of the following vehicle
can be modelled as time series prediction problem. Since the predicted parameter, like
acceleration or velocity of the following vehicle, can take continuous real values, the car-
following model is formulated as time series prediction problem, in which the past values of
the time series along with explanatory time series (gap, time headway etc.) past values are
used to predict the next timestamp value of car-following parameter.

The RNN or LSTM are suitable for the sequence prediction problem. Further, LSTM is
capable of learning long-term dependencies. Therefore, LSTM is used as the primary model
to realise the car-following model in this study. The main parameters of the LSTM neural
network are as follows:

• Number of LSTM layers

• Number of memory cells in each LSTM layer

• Learning rate

• Optimizer

• Cost function

The basic architecture of the neural network used in this study is shown in Figure 5.9.
The first layer is the convolutional layer, followed by the deep architecture of LSTM layers.
The final output layer is a dense layer with one output which is the predicted parameter of
car-following model. To achieve the best combination of the number of layers and the number
of LSTM cells in each layer, multiple combinations are tested.

64

5. Methodology

Figure 5.9.: Basic architecture of LSTM neural network used in this study

Learning rate of the neural network determines the step-size while changing the weights
of the model parameters based on the value of cost function. A large learning rate might
not lead to the discovery of local minima, whereas a small learning rate might lead to a very
slow convergence. In this study, the learning rate of the model is optimized by using the
ADAM (Kingma & Ba, 2015) optimiser. The ADAM optimiser is an adaptive learning rate
optimisation algorithm. Its name is derived from adaptive moment estimation. ADAM uses
estimations of first and second moments of a gradient to adapt the learning rate for each
weight of the neural network. Where Nth moment of a random variable is defined as the
expected value of that variable to the power of n (Kingma & Ba, 2015).

A cost function measures how good the neural network trained with respect to the expected
output. It can be defined as:

C(W, b) = (Ŷ−Y)2 , (5.17)

where Ŷ denoted the predicted value and the Y represents the observed value. Since the
predicted value in this study is a continuous real value, the cost function in this case is called
the mean squared error (MSE), which helps in learning the weights of the model through
back-propagation.

65

5. Methodology

5.4.3. Data Preparation

The LSTM model learns the sequential data. The input data to the LSTM neural network is
reshaped in a way that the neural network understands. Before the reshaping of the data,
the data needs to be divided into a test and a training set. The training set is the data on
which the model learns and the testing data set is the unseen data to the model on which the
performance of the model is evaluated. There are 1453 extracted car-following traces. These
1453 traces are divided into training and testing traces with the ratio of 80-20. That is, eighty
percent of the traces are used to build the training dataset and the remaining twenty percent
of these traces are used to test the model performance.

The traces of the training dataset are then concatenated and further divided into training
and the validation set in the ratio of 80-20. Before reshaping the dataset, the training dataset
is standardized. Standardizing of the dataset involves the re-scaling of the distribution of
different feature values of the dataset, so that the mean of the feature value is zero and
the standard deviation is 1. Feature here refers to the signals/attributes that the data have,
like acceleration, velocity etc. Standardization assumes that the values of the features fit a
Gaussian distribution. The formula used to standardize the dataset is:

Y = (X− µX)/σX , (5.18)

where Y is the standardize feature, X is the feature input to be standardize and µX is the
mean of the X and σX is the standard deviation of X.

The data is standardized feature wise, because different features have different value ranges.
Once the dataset is standardized, the dataset looks like a table, where we have the target
column and the other columns are the input features which are also called the independent
variables. As already mentioned, an LSTM learns the sequences. So, to train LSTM models
the input data need to be reshaped into a three dimensional tensor. An n-dimensional tensor
is technically an n-dimensional matrice. This three dimensional input tensor has a shape
which can be represented as : [dataset size, window length, feature dimensions], The first
dimension corresponds to the size of the dataset, here it is the number of training data points.
The second dimension is the window length, which corresponds to the sequence length. The
third dimension is the feature dimension, which is the number of input features.

5.4.4. Evaluation

The performance of the trained model is then evaluated on the test data set traces. The
model performance is evaluated by evaluating the errors in replicating the four profiles of the
following vehicle.

• Acceleration

• Velocity

66

5. Methodology

• Gap

• Trajectory

The errors are calculated using the Root Mean Square Percentage Error (RMSPE) as defined
in Equation 5.7.

5.5. Comparative Study

The best LSTM neural network based car-following model is then compared to the three
conventional car-following models, namely the Krauss, the Wiedemann and the IDM model
based on the evaluation strategies explained in subsection 5.4.4.

5.6. Conclusion

The methodology presented here provides the general methods and formulation to extract
car-following traces from the raw xFCD data, analysis of the three conventional car-following
models (IDM, Krauss model and Wiedemann model) and the data-driven development of a
car-following model.

67

6. Data Analysis and Processing

This chapter provides preliminary explanatory data analysis of the extracted car-following
traces. The results of the post-processing of the data applied in the study are shown and
discussed.

6.0.1. Data Analysis

The explanatory data analysis of the extracted car-following traces is done. This helps in
gaining the understanding of the data and discovering the patterns. The data for the following
vehicle and the leader vehicle is analysed. The summary statistics of the following vehicle
and the leading vehicle data is shown in Table 6.1 and Table 6.2 respectively. The extracted
car-following dataset contains 1453 car-following traces. Since the dataset is recorded at 25
Hz frequency, one second of data for the vehicle generates 25 data points. The total data
points as shown in the statistics table are 1188516. The longitudinal velocity of the following
vehicle varies from 2.77 m/s to 34.6 m/s with a mean close to 14.8 m/s. The velocity of the
leading vehicle varies between 10.01 m/s and 36.6 m/s with a mean value close to 14.5 m/s.
The x and y position of the leading vehicle defines its position with respect to the following
vehicle. The x position varies between 3.265 m and 100.03 m with a mean value of 38.9 m. The
y position of the leading vehicle varies between -0.32 m and 2.5 m with a mean value of -0.06.
The negative value of y position corresponds to the left side of the following vehicle whereas
the positive value corresponds to the right side of the following vehicle. The statistics of the
lateral acceleration, longitudinal acceleration, time headway and the relative velocity can also
be seen in these tables.

The plots for a sample car-following trace from the extracted car-following traces is plotted
for the analysis and the data quality check. Figure 6.1 shows the longitudinal velocity,
longitudinal acceleration, trajectory of following and leading vehicle plot with the relative
distance vs. relative velocity plot of the following vehicle. The elliptical shape plot of the
relative velocity vs. gap between the vehicles shows the interaction of the leading and the
following vehicle. The plot show the changes in the response of the driver’s speed of following
vehicle in relation to the gap between the leading and the following vehicle. Figure 6.2 shows
the initial 150 plotted data points of velocity, acceleration and trajectory of the following and
the leading vehicle for a closer look at the relationship between these signals. The plots shows
that the acceleration profile of the following vehicle is very noisy. Also, if the acceleration
profile of the leading vehicle is observed, it shows that the behaviour is very digital in nature,
The changes in the values are step changes and not smooth. The same observation is also
valid for the velocity profile of the leading vehicle. Further, Figure 6.3 figure shows the

68

6. Data Analysis and Processing

comparison of the calculated acceleration from the following vehicle velocity vs. the observed
acceleration in the car-following trace. The noisy calculated acceleration profile in Figure 6.3
leads to a conclusion that the observed velocity of the following vehicle is also noisy. Only
one trace is shown here to avoid repetition. To de-noise this data, data processing is required
which is explained in the next section.

Table 6.1.: Description of the features of following vehicle

vx (m/s) ax (m/s2) ay (m/s2) v-diff t-
headway(s)

count 1188516 1188516 1188516 1188516 1188516
mean 14.8 -0.094 0.05 -0.338 2.97

std 6.209 0.65 0.46 2.19 5.08
min 2.77 -9.38 -6.48 -0.203 0.17
25% 1.07 -0.25 -0.17 -1.03 1.78
50% 1.44 -0.085 0.08 -0.05 2.37
75% 1.93 0.175 0.265 0.77 3.43
max 34.6 5.19 4.85 16.7 12.3

vx, ax: longitudinal velocity and acceleration; ay: latitudinal acceleration; v-diff: relative ve-
locity of the following vehicle w.r.t leading vehicle; t-headway: time headway of the following
vehicle; 25%, 50% and 75% represents the first, seconds and third quartiles respectively.

Table 6.2.: Description of the features of leading vehicle

x (m) y (m) vx (m/s) vy (m/s) ax (m/s2)

count 1188516 1188516 1188516 1188516 1188516
mean 38.9 -0.06 14.5 -0.12 -0.034

std 23.02 1.9 6.53 3.56 0.533
min 3.265 -0.32 10.01 -4 -7.5
25% 22.4 -0.04 10.3 -0.9 -0.125
50% 32.8 -0.002 14.6 0 0
75% 48.9 0.42 19.1 0.675 0.125
max 100.03 2.5 36.6 3.8 5.625

x, vx, ax: position, velocity and acceleration respectively; y, vy: latitudinal position and
velocity.

69

6. Data Analysis and Processing

Figure 6.1.: Velocity, acceleration, trajectory and speed-drift plots of a sample car-following
trace

70

6. Data Analysis and Processing

Figure 6.2.: Velocity, acceleration and the trajectory plots of following and the leading vehicle
of a sample car-following trace

71

6. Data Analysis and Processing

Figure 6.3.: Observed acceleration vs. the calculated acceleration from the observed velocity
of the following vehicle

6.0.2. Data Post Processing

During the data analysis, it is observed that the velocity and the acceleration values from the
dataset are very noisy. The processing of this data is very important. These errors may lead
to bad results in the analysis and development of car-following models.

The data collection procedure explains that the data collected for the surrounding vehicles
is either using the image processing technique or data fusion technique. These techniques
to collect the data may lead to an error in the velocity, acceleration and position data of the
leading vehicle. Apart from this, the measurement noise can lead to an error in the data
collected for the following vehicle. To remove this noise, data processing using a Gaussian
filter is done. A Gaussian filter is applied on the data of longitudinal velocity of the following
and the leading vehicle. Then using this filtered values of the velocity, the acceleration values
for the following and the leading vehicles are calculated. The gap between the following
vehicle and the leading vehicle is then smoothed using the smooth acceleration and velocity
of the leading and the following vehicle.

The plots of the smoothed acceleration of the leading and the following vehicle of the
sample car-following trace are shown in Figure 6.4 and Figure 6.5. The plots are shown only
for one trace to avoid the repetition.

72

6. Data Analysis and Processing

Figure 6.4.: Smoothed acceleration of the following vehicle

Figure 6.5.: Smoothed acceleration of the leading vehicle

73

7. Results

This chapter summaries the results and finding of this study.

7.1. Analysis of Car-Following Models

The results of the analysis of calibrated car-following models is presented in this section. The
results are shown in two parts. The first part presents the finding of the calibration of each
of the three car-following models, namely the IDM, the Krauss model and the Wiedemann
model. The second part shows the performance of the calibrated car-following models on the
10 traces chosen out of total 1453 car-following traces.

7.1.1. Calibration Results

The three mentioned car-following models are calibrated with a real-coded genetic algorithm.
The parameters selected for the genetic algorithm are shown in Table 7.1.

Table 7.1.: Parameters of genetic algorithm used to calibrate the car-following models

Genetic Algorithm Parameter Value

Population Size 100
Generation Size 100

Crossover Spread Factor (η) 10
Mutation Spread Factor (η) 10

Crossover Probability 0.9
Mutation Probability 0.5

Figure 7.1 show the plot of the inverse of the average fitness of the population and the
inverse of fitness of the best individual of each generation while calibrating the IDM. The
plots with a population size of 30, 50 and 100 are shown. The results converge much faster
with a population size of 100 as compared with the population size of 30 and 50. Also, the
best fitness is achieved with the population size of 100 and thus it is used for calibration in
this study for all the three car-following models.

Table 7.2, Table 7.3 and Table 7.4 shows the summary of the results of calibrated parameters
of IDM, the Krauss model and the Wiedemann model respectively.

74

7. Results

Figure 7.1.: Fitness curve while calibrating IDM using genetic algorithm

Table 7.2.: Summary of the calibrated parameters of IDM

Parameters Mean Value Std

T 1.9041 0.78
a (m/s2) 2.064 1.74
b (m/s2) 2.423 1.86

s0 (m) 5.10 2.76
(δ) 3.919 0.87

Error 0.0606 0.0770

Table 7.3.: Summary of the calibrated parameters of the Krauss model

Parameters Mean Std

a (m/s2) 1.13 1.56
b (m/s2) 1.24 1.64

τ (s) 1.880 0.93
Error 0.06 0.10

75

7. Results

Table 7.4.: Summary of the calibrated parameters of the Wiedemann model

Parameters Mean Std

CC0 (m) 3.86 1.56
CC1 (s) 2.36 0.82
CC2 (m) 17.14 8.55
CC3 (s) -4.37 5.61

CC4 (m/s) -0.54 0.50
CC5 (m/s) 2.36 1.48

CC6 (rad/s) 6.78 6.62
CC7 (m/s2) 5.17 3.07
CC8 (m/s2) 2.53 2.64
CC9 (m/s2) 2.83 2.41

Error 0.09 0.13

Figure 7.2 shows the distributions of the optimal parameters of the IDM car-following
model namely, maximum acceleration a in m/s2, maximum comfortable deceleration b in
m/s2, gap at standstill s(0) in m, time headway T in s and acceleration exponent δ. The
histogram plots give the idea of the frequency of values of each parameter for all the 1453
traces while the cumulative distribution function (CDF) gives an overview of the statistical
summary of the parameter values. The graph shows that the about eighty percent of the
traces have a value less than 4 m/s2 but it also shows that around thirty percent of the traces
have values either close to 0 m/s2 or close to 5 m/s2. The values close to 0 m/s2 can be
considered of the traces with fewer changes in the acceleration during driving and the values
close to 5 m/s2 can be considered of the traces in which vehicle starts from zero velocity and
accelerates to gain the desired velocity. The plot of maximum comfortable deceleration also
has the same profile with a difference that nearly twenty percent of the traces have a value
near to 5 m/s2. Around 30 percent of the traces have values less than 3 m/s2. The distribution
of standstill gap s(0) gives some interesting results. Around ten percent of the traces have the
value near to zero which can be considered of those traces in which the vehicle either follows
too closely or the driver characteristics can be considered as aggressive. Also, eighty percent
of the traces have values more than 2 m and nearly twenty percent are those traces in which
the value of s(0) is near to 8 m describing the larger percentage of careful drivers. The time
headway T have a mixed distribution and for nearly twenty percent of the traces have a value
near to 3 s. The distribution of acceleration exponent δ does not seem to vary much and lies
either close to 3 or near to 5 for almost sixty percent of the traces. These distributions of the
parameters can be used directly when allocating different driver’s profiles in the simulation
and the values can be chosen using this distribution.

76

7. Results

Figure 7.2.: The distribution of the optimal parameters of IDM

77

7. Results

The Figure 7.3 shows the distribution of the optimal parameters of the Krauss model,
namely maximum acceleration a in m/s2, maximum comfortable deceleration b in m/s2 and
reaction time τ of the driver in s. The results show that a and b although having the same
meaning to that of maximum acceleration and maximum comfortable deceleration parameters
of IDM but have different distributions. This might be because these values of the optimal
parameters are the outcome of the optimisation algorithm. The combination of values of the
parameters that minimize the objective function and the value of the certain parameters is
affected by the value of the other parameter within the model, for example, reaction time in
the Krauss model. The results show that the more than sixty percent of the car-following
traces have reaction time of more than 4 s. This reaction time τ is defined as the driver’s
attempt to maintain the minimum gap of τ seconds between the following and the leading
vehicle. The value of more than 4 s for sixty percent of the traces explains that most of the
drivers are careful drivers.

Figure 7.4 and Figure 7.5 show the distribution of 10 parameters of the Wiedemann model,
namely standstill gap CC0 (m), time headway CC1 (s), following variation CC2 (m), threshold
entering following CC3 (s), negative following threshold CC4 (m/s), positive following
threshold CC5 (m/s), speed dependency of oscillations CC6 (rad/s), oscillation acceleration
CC7 (m/s2), standstill acceleration CC8 (m/s2) and acceleration at 80 km/h CC9 (m/s2).
The distribution shows that most of the parameters do not show much variation except, the
parameter CC5 and CC7. The distribution of parameter CC9 shows half of the values near to
zero as the traces are from an urban environment and there are very few traces in which the
vehicle speed is near to 80 km/h.

78

7. Results

Figure 7.3.: The distribution of the optimal parameters of the Krauss model

79

7. Results

Figure 7.4.: The distribution of the optimal parameters of the Wiedemann model (CC0 - CC4)

80

7. Results

Figure 7.5.: The distribution of the optimal parameters of the Wiedemann model (CC5 - CC9)

81

7. Results

7.1.2. Evaluation of Performance of Calibrated Models

The performance of the three models with the optimal parameters for 10 chosen car-following
traces is evaluated. The 10 car-following traces are chosen from the test car-following traces
which are divided while creating the test dataset and training dataset for the training of the
LSTM model as explained in subsection 5.4.3. The details of the 10 car-following traces is
given in Table 7.5

Table 7.5.: Details of the selected car-following traces for evaluation.

Traces No. of data points Mean - Speed Speed - Std

CF_338345 1863 25.40 3.14
CF_613037 1419 20.40 1.216
CF_140528 1428 11.55 3.30
CF_881846 1972 11.51 3.47
CF_324484 5987 17.9 4.29
CF_744052 4549 21.14 1.8
CF_275974 826 13.40 0.8
CF_507728 3989 17.18 1.78
CF_785485 2788 10.89 3.89
CF_014816 1075 12.44 3.91

The Figure 7.6 shows the comparison of fitness (RMSPE as described by Equation 5.6)
while calibrating the different models on these traces. The figure shows that the Wiedemann
model’s calibration error is worst amongst all the three models while the Krauss and IDM
have comparable results. For the five traces, namely CF_338345,CF_140528, CF_275974,
CF_785485 and CF_014816, the Krauss model error is lowest as compared to the other three
models while the IDM has the lowest error for the traces rest five traces.

82

7. Results

Figure 7.6.: RMSPE comparison of the genetic algorithm calibration for test car-following
traces.

The evaluation of the calibrated models is then done on the basis of their ability to replicate
the velocity, acceleration, gap between the following vehicle and the leading vehicle and
the trajectory of the following vehicle. Figure 7.7 shows the comparison of the RMSPE
between the simulated velocity and the observed velocity of the following vehicle for the
three calibrated models. The figure explains that the Wiedemann model performs worst
in replicating the velocity of the following vehicle for the selected car-following trajectories
while the IDM and Krauss model performance is comparative. IDM model perform best for
the trace CF_613037.

Figure 7.8, Figure 7.9 and Figure 7.10 show the RMSPE comparison of the acceleration of
the following vehicle, gap between vehicles and trajectory of the following vehicle predicted
by the three calibrated models. The results of the acceleration profiles shows that the IDM
performs best amongst all three models, while the Krauss model performs worst. This is
because the Wiedemann and the IDM predict the acceleration as their output while the Krauss
predicts the velocity as the model output. The simulated gap between the following and
the leading vehicle shows that the IDM and Krauss model performs comparable while the
performance of the Wiedemann model is worst among all. The same observation holds true
for the predicted trajectory of the following vehicle.

car-following trajectories CF_613037 and CF_785485 are further analysed because the IDM
performs best for trace CF_613037 and as per the Figure 7.6 Wiedemann has the worst fitness
value. But, Figure 7.7, Figure 7.8, Figure 7.9 and Figure 7.10 show that the Wiedemann

83

7. Results

performance is comparable to the other two models. Apart from this, the simulated/predicted
velocity RMSPE is also highest for this trace for all the three models.

Figure 7.7.: RMSPE comparison of the velocity predicted by calibrated models.

84

7. Results

Figure 7.8.: RMSPE comparison of the acceleration predicted by calibrated models.

85

7. Results

Figure 7.9.: RMSPE comparison of the gap between the following vehicle and the leading
vehicle predicted by calibrated models.

86

7. Results

Figure 7.10.: RMSPE comparison of the trajectory of the following vehicle predicted by cali-
brated models.

To analyse the behaviour of car-following models on the selected car-following traces
CF_613037 and CF_785485, the simulated results of the models are plotted against the
observed values. Figure 7.11 and Figure 7.12 show the plots for the simulated velocity of
the following vehicle for the three car-following model against the observed velocity of the
following vehicle for the traces CF_613037 and CF_785485 respectively. The plots show that
the velocities simulated by the Krauss model do not seems to be smoothed. This is because the
Krauss model output is directly the velocity which is the reason for the occurring fluctuations.
The Wiedemann models also shows the fluctuation because of the way the Wiedemann model
works. The Wiedemann model has defined thresholds and that is why the output of the
Wiedemann can have sharp changes. The IDM model velocity profile, on the other hand,
shows a smooth profile. One important observation in Figure 7.11 and Figure 7.12 is that the
trace CF_785485 has oscillations in the velocity profile which neither of the model is capable

87

7. Results

to simulate.

Figure 7.11.: Simulated velocities of the three car-following models against the observed
velocity for trace CF_613037

Figure 7.12.: Simulated velocities of the three car-following models against the observed
velocity for trace CF_785485

88

7. Results

Figure 7.13 and Figure 7.14 show the plots for the simulated acceleration for the three
car-following model against the observed acceleration for the traces CF_613037 and CF_785485
respectively. Since the IDM and the Wiedemann model predict directly the acceleration, the
profiles of these models seem to fit better to the measured values than those predicted by the
Krauss model. The Krauss model has very sharp changes in the predicted acceleration profiles
which is because of the fluctuations in the velocity predicted by the Krauss model. Apart
from this, the Figure 7.14 shows that the Wiedemann predicts a much closer acceleration
profile in case of oscillations. On the other hand, the IDM model is not able to model these
sharp changes in the acceleration. Figure 7.14 also shows one sharp change in the predicted
acceleration near to the time frame 2500. This can be because of the different thresholds in
the Wiedemann model.

Figure 7.13.: Simulated acceleration of the three car-following models against the observed
acceleration for trace CF_613037

89

7. Results

Figure 7.14.: Simulated acceleration of the three car-following models against the observed
acceleration for trace CF_785485

Figure 7.15 and Figure 7.16 show the plots for the simulated gap between the following and
the leading vehicle for the three car-following models against the observed gap for the traces
CF_613037 and CF_785485 respectively. Figure 7.15 shows that the IDM model performs
best among all the three models, while the performance of the Wiedemann model is worst
in replicating the gap profile. Figure 7.15 on the other hand shows that the Krauss model
and the IDM have comparable performance in replicating the gap. The Krauss model output
is understandable as, during simulation the Krauss model always tries to maintain the safe
distance to the front vehicle and predicts the velocity in correspondence to this gap. If the
gap is too large, the Krauss model velocity does not show much variation as can be seen in
Figure 7.11 and Figure 7.15. The velocity increases util the time frame 400 and once the gap
reaches 50 m, the Krauss model velocity response shows the variation.

90

7. Results

Figure 7.15.: Simulated gap between following and leading vehicle of the three car-following
models against the observed gap for trace CF_613037

Figure 7.16.: Simulated gap between following and leading vehicle of the three car-following
models against the observed gap for trace CF_785485

91

7. Results

Figure 7.17 and Figure 7.18 show the plots for the simulated trajectory of the following
vehicle for the three car-following models against the observed trajectory for the traces
CF_613037 and CF_785485 respectively. The Figure 7.17 shows that all the three models
performs comparable and good, because there are no oscillations in the velocity and the
acceleration profiles in trace CF_613037. While for the trace CF_785485, the oscillations can
be observed in both the velocity and the acceleration profile and hence the result for the
trajectory also does not seems to be as exact as that of trace CF_613037. This again confirms
that none of these three models are good in simulating the naturalistic driving data if the
data have oscillations or sudden changes in it.

Figure 7.17.: Simulated trajectory of the three car-following models against the observed
trajectory for trace CF_613037

92

7. Results

Figure 7.18.: Simulated trajectory of the three car-following models against the observed
trajectory for trace CF_785485

7.2. Data Driven Car-Following Model

The finding of the analysis of the three car-following models shows that the three models are
not suitable to simulate the xFCD data. The RMSPE error for the acceleration and velocity
profiles is considerable high. Apart from this, the models are not able reproduce in case
of sharp changes or oscillations in the acceleration or the velocity profiles in the observed
data. One more finding is that the Krauss model output, which is velocity, is very fluctuating.
These types of fluctuations are never seen in the real world driving data.

To develop the data-driven model, the LSTM neural network is used which is a type of
Recurrent Neural Networks. LSTM is chosen because of its ability to learn the long term
dependencies in the data. The results of the data-driven car-following model are summarised
on the basis of the followings:

• Input features and model structure.

• Sequence length / window length.

• Evaluation of the best model on test car-following traces.

• Feature importance.

93

7. Results

7.2.1. Input Features and Model Structure

To model the LSTM based car-following model, seven input features are considered in this
study. The input features are as follows:

• Longitudinal acceleration of the following vehicle.

• Longitudinal velocity of the following vehicle.

• Relative velocity of the following vehicle w.r.t. the leading vehicle.

• The gap between the following and the leading vehicle.

• Time headway of the following vehicle.

• Presence of the vehicle on the left lane of the following vehicle.

• Presence of the vehicle on the right lane of the following vehicle.

The output of the LSTM based car-following model is considered as the acceleration of the
following vehicle for the next time step.

Once the input and the output features are finalised, the best configuration of the LSTM
neural network model is identified by its performance on the validation dataset and the
training time. The adopted model consists of the first layer as convolutional layer. The layer
has a filter size of 8 with a kernel size of 2. Apart from this, the model consists of two hidden
LSTM layers with the first containing 256 LSTM cells and the second containing 128 LSTM
cells. The batch normalisation and dropout layers are also inserted after each LSTM layer.
Dropout deactivates a percentage of neurons of each layer randomly on per epoch. Therefore,
during the training of the neural network these neurons are not used on that specific epoch.
This avoids over-fitting of the model on training dataset. Batch normalization adds a little
noise to the network and hence adds some regularisation. The layers are stacked on top of
each other to enable the model to learn a higher level of temporal dependencies. The second
LSTM layer after the dropout and batch normalisation layer is connected to a dense layer
with 1 neuron. This dense layer is the output layer with a linear activation function.

Note: The filter size and the kernel size of the convolutional layer is changed for the dataset
with 40 ms of sequence length. The kernel size used for the dataset with 40 ms sequence
length is 1 with a filter size of 4.

7.2.2. Sequence Length and Input Features

To train the model, four different sequence lengths are chosen. The idea here is to find the
importance of historical data in the car-following behaviour of the driver. The chosen four
sequence lengths are:

• 0.04 s : 1 data point

94

7. Results

• 1 s : 25 data points

• 2 s : 50 data points

• 3 s : 75 data points

The results of the training loss and the validation loss of these sequence lengths is shown
in Figure 7.19.

Figure 7.19.: Loss during training and validation of LSTM neural network for different input
sequence lengths

The curve shows that the model structure and the data input is fine, as there is no overfitting
of any model. Apart from this, the loss curve also shows that the LSTM model learns best with
the input sequence length of 2 s. Further analysis of the four different models with different
sequence length is also done on the 10 selected car-following traces which is explained in the
next sub-section.

7.2.3. Evaluation of Models

The evaluation of the LSTM based car-following model is done on the 10 selected car-following
traces as mentioned in subsection 7.1.2. Figure 7.20 shows the comparison of the RMSPE
between the predicted and the observed velocity of the following vehicle from the ten test
car-following traces (Table 7.5).

It can be observed that the model with the input sequence length of 2 s performs better
than the other three models. The error profile of the model with an input sequence length of

95

7. Results

3 s shows very bad results which is shown in a black bar in the Figure 7.20. This means that
either the dependencies are too long to be learned by the LSTM model or the driver behaviour
does not depend on very long historical data, such as 3 s. Further, if we compare the error
profiles of models with an input sequence length of 1 s and 40 ms with the error profile of the
model with an input sequence of 2 s, it can be observed that the performance of the former
two models is worst than the later one. This implies that there is a dependency between the
driver’s past driving manoeuvres and the current driving state. The Figure 7.21, Figure 7.22
and Figure 7.23 show the comparison of RMSPE profiles of the predicted acceleration of
the following vehicle, the gap between the vehicles and trajectory of the following vehicle
respectively. These figures also show that the model with an input sequence of 2 s is
performing more realistic than the other three models. This explains that, in a car-following
scenario, the driver’s behaviour is dependent on the historical data inputs and the optimum
value is 2 s for the dataset used in this study.

Figure 7.20.: RMSPE comparison of the velocity predicted by LSTM based car-following
model.

96

7. Results

Figure 7.21.: RMSPE comparison of the acceleration predicted by LSTM based car-following
model.

Figure 7.22.: RMSPE comparison of gap between the following vehicle and the leading vehicle
predicted by LSTM based car-following model.

97

7. Results

Figure 7.23.: RMSPE comparison of trajectory of the following vehicle predicted by LSTM
based car-following model.

7.2.4. Feature Importance

Machine learning methods allow to find the importance of each feature in predicting their
output. A permutation feature importance is implemented in this study. This Permutation
feature importance measures the percentage increase in the prediction error, if any of the
input features is shuffled randomly. This allows to find the relationship between the input
feature and the outcome of the machine learning method.

In this study, seven input features are considered to predict the acceleration of the following
vehicle using the LSTM neural network. To implement the permutation feature importance,
the validation dataset is considered. Seven different datasets are created, each dataset with
one of the feature randomly shuffled. The model with input sequence length of 2 s is then
used to find the loss on validation dataset and all the seven datasets with shuffled inputs.
The percentage increase in the loss is then calculated using the formula:

Importance =
(loss_with_shu f f led_dataset− loss_with_validation_datastet)

loss_with_validation_datastet
, (7.1)

The results of the permutation importance are shown in Table 7.6. The results show that
the historical data of acceleration is the most important feature to predict the acceleration of
the following vehicle in the next time step. Shuffling the input acceleration values of the input
sequence leads to 80% increase in the model’s prediction loss. The second most important
feature is the input velocity of the following vehicle while the third and the fourth important
features are the relative gap between the vehicle and the relative velocity of the following

98

7. Results

vehicle with respect to the leading vehicle. The time headway shows very less importance and
just contributes to 0.5 percent increase in the loss. The input features about the presence of a
vehicle on the left and the right lane of the following vehicle does not seem to be important.
An explanation can be given on this aspect when analysing the presence of this data in the
input car-following traces. Table 7.7 shows the comparison of the number of data points in
which the vehicle is present on either the left or right lane of the following vehicle in the
training dataset. The vehicle is present on the left lane for only 0.64 percent of total data
points while on the right lane it is present for only 1.78 percent. This low percentage leads to
the imbalance in the training dataset and can be considered as one of the reasons for the low
importance of this feature.

Table 7.6.: Feature importance of input features of LSTM based car-following model

Input Feature Importance

Acceleration of following vehicle 80%
Velocity of following vehicle 27%

Gap between vehicles 20%
Time headway 0.5%

Relative velocity 10%
Vehicle present on left 0.01%

Vehicle present on right 0%

Table 7.7.: Counts of the data points where a a vehicle is present on the left lane or the right
lane of following vehicle

Presence Counts Percentage

Vehicle present on left lane 7660 0.64
Vehicle absent on left lane 1180856 99.36

Vehicle present on right lane 21089 1.78
Vehicle absent on right lane 1167427 98.22

7.3. Comparative Study

The Comparative study of the best LSTM based car-following model, i.e. model with an
input sequence of 2 s is done with the calibrated IDM, the Wiedemann model and the Krauss
model.

Table 7.8 shows the comparison in the RMSPE of the predicted velocity. The LSTM based
car-following model outperforms every other model. Similarly, Table 7.9 shows the RMSPE
comparison of the predicted acceleration and the LSTM model have the least RMSPE than

99

7. Results

all the traces. Table 7.10 and Table 7.11 show the RMSPE comparison of the predicted gap
between the vehicles and predicted trajectory of the following vehicle respectively. The
performance of the LSTM based car-following model is comparable for most of the traces
except trace CF_338345, CF_324484 and CF_744052 where the error of LTSM is not the lowest
but slightly higher than those of Krauss model. The RMPSE of the predicted trajectory is the
lowest for all the traces of the LSTM based car-following model.

Table 7.8.: RMSPE comparison of the predicted velocity of the following vehicle

Car-Following
Trace

RMSPE-IDM RMSPE-Krauss RMSPE-
Wiedemann

RMSPE-LSTM
(2s)

CF_338345 0.037 0.034 0.140 0.009
CF_613037 0.006 0.03 0.02 0.001
CF_140528 0.05 0.04 0.06 0.005
CF_881846 0.06 0.07 0.08 0.004
CF_324484 0.036 0.064 0.061 0.009
CF_744052 0.034 0.04 0.035 0.012
CF_275974 0.017 0.017 0.13 0.009
CF_507728 0.04 0.058 0.053 0.003
CF_785485 0.17 0.13 0.19 0.036
CF_014816 0.14 0.13 0.17 0.01

Table 7.9.: RMSPE comparison of the predicted acceleration of the following vehicle

Car-Following
Trace

RMSPE-IDM RMSPE-Krauss RMSPE-
Wiedemann

RMSPE-LSTM
(2s)

CF_338345 0.53 0.93 1.9 0.05
CF_613037 0.28 1.9 1.1 0.06
CF_140528 0.62 0.63 0.9 0.04
CF_881846 0.65 0.74 1.09 0.031
CF_324484 0.58 1.67 0.67 0.031
CF_744052 0.60 1.50 0.74 0.04
CF_275974 0.73 2.5 1.42 0.011
CF_507728 0.91 2.91 1.23 0.05
CF_785485 0.74 0.91 0.82 0.038
CF_014816 0.85 1.06 0.75 0.05

100

7. Results

Table 7.10.: RMSPE comparison of the predicted gap between the following and the leading
vehicle

Car-Following
Trace

RMSPE-IDM RMSPE-Krauss RMSPE-
Wiedemann

RMSPE-LSTM
(2s)

CF_338345 0.30 0.19 2.69 0.415
CF_613037 0.008 0.06 0.07 0.006
CF_140528 0.12 0.04 0.15 0.04
CF_881846 0.17 0.19 0.26 0.033
CF_324484 0.12 0.17 0.33 0.36
CF_744052 0.17 0.19 0.28 0.36
CF_275974 0.06 0.06 0.89 0.04
CF_507728 0.13 0.13 1.29 0.12
CF_785485 0.23 0.13 0.48 0.13
CF_014816 0.22 0.12 0.38 0.06

Table 7.11.: RMSPE comparison of the predicted trajectory of the following vehicle

Car-Following
Trace

RMSPE-IDM RMSPE-Krauss RMSPE-
Wiedemann

RMSPE-LSTM
(2s)

CF_338345 0.01 0.006 0.10 0.01
CF_613037 0.0006 0.004 0.005 0.0004
CF_140528 0.007 0.003 0.008 0.002
CF_881846 0.005 0.006 0.009 0.001
CF_324484 0.002 0.003 0.006 0.007
CF_744052 0.003 0.004 0.006 0.008
CF_275974 0.01 0.009 0.13 007
CF_507728 0.003 0.006 0.007 0.003
CF_785485 0.01 0.01 0.03 0.01
CF_014816 0.02 0.14 0.04 0.007

The simulated results of all the four car-following models, namely LSTM, IDM, Krauss
and Wiedemann, are also visualised for the traces CF_613037 and CF_78548 as shown in
Figure 7.24, Figure 7.25,Figure 7.26, Figure 7.27, Figure 7.28, Figure 7.29.

The Figure 7.24 and Figure 7.25 show the comparison of the simulated velocity of the
following vehicle using all the four models for the traces CF_613037 and CF_78548 respectively.
As can be seen from the Figure 7.24 that the LSTM based car-following model with an input
sequence of 2 seconds outperforms all the other three car-following models for both traces.
Also, the LSTM based model is able to model the oscillations in the velocity profile which is
present in trace CF_78548. Figure 7.26 and Figure 7.27 show the comparison of the simulated

101

7. Results

acceleration of all four models. The LSTM based car-following model simulates smooth
acceleration profiles. Since the LSTM based car-following model predicts the acceleration, the
predicted acceleration profile is very close to the observed acceleration profile.

Figure 7.24.: Simulated velocity of the four car-following models against the observed acceler-
ation for trace CF_613037

Figure 7.25.: Simulated velocity of the four car-following models against the observed acceler-
ation for trace CF_785485

102

7. Results

Figure 7.26.: Simulated acceleration of the four car-following models against the observed
acceleration for trace CF_613037

Figure 7.27.: Simulated acceleration of the four car-following models against the observed
acceleration for trace CF_785485

103

7. Results

Figure 7.28.: Simulated gap between following and leading vehicle of the four car-following
models against the observed gap for trace CF_613037

Figure 7.29.: Simulated gap between following and leading vehicle of the four car-following
models against the observed gap for trace CF_785485

104

7. Results

7.4. Main Findings

Firstly, the calibrated conventional car-following models, namely the Krauss model, IDM
and the Wiedemann model, are not able to perfectly simulate the observed car-following
traces extracted from the raw xFCD data. The conventional car-following models show
problems when simulating the oscillations in the observed car-following data, meaning by
the conventional car-following model are not fit well to the observed data if the data have
sharp changes in the acceleration or the velocity profiles. Secondly, the LSTM based car-
following model outperforms all the conventional car-following models. The comparison
of the LSTM based car-following model with 40 ms, 1 s, 2 s and 3 s input sequence length
shows that the driver’s behaviour in car-following situation is dependent on the historical
manoeuvres/traffic information. The optimal value of the input sequence length to model
car-following behaviour using the LSTM neural network is 2 s for the dataset used in this
study. The presence of a vehicle on the left lane or the right lane of the following vehicle
does not play any role as per the data used in this study whereas the most important features
found are acceleration, velocity of the following vehicle and the relative velocity.

105

8. Conclusion

Extended Floating Car Data (xFCD) is a data collection technique which also captures the
naturalistic driver behaviour. This data can be used to model the data-driven car-following
models close to the realistic natural behaviour of different drivers. However, the way the data
is stored in the raw xFCD data is not straight forward. The methodology presented in this
study to extract the car following models works well. The analysis presented in chapter 6 on
a sample trace shows that the methodology successfully extracts out the car-following traces
out of raw xFCD.

The analysis of the three calibrated conventional car-following models summarises that
the Wiedemann model performs worst in simulating the naturalistic driving behaviour. The
reason can be the large number of parameters of Wiedemann model that have to be calibrated.
Apart from this the Krauss model and the IDM model show a comparable performance.
For some traces, the performance of the IDM is better than the other two while for other
the performance of the Krauss model is best. The real-coded genetic algorithm used in this
study seems to successfully calibrate the three car-following models. As, despite the errors
in replicating the velocity, acceleration, gap and trajectory, the plots of the simulated results
show that the models are capable to follow the trends. The models are hard to calibrate if the
traces contain sharp changes in the acceleration or velocity profile of the following vehicle.

The LSTM based car-following model shows a significant increase in performance when
compared to the conventional car-following models. The input sequence of 40 ms, 1 s, 2 s and
3 s, when used to train the LSTM based car-following model, shows that the driver behaviour
is actually dependent on the historical data, here it means the memory. The LSTM model
with an input sequence of 2 s produces best results in this study. Apart from this, the feature
importance shows that the acceleration of the following vehicle, velocity of the following
vehicle, the relative velocity and the gap between the following the leading vehicle are the
most important features, whereas the time headway does not seem to be that important. The
results also show that the presence of the vehicle on the left and right side of the following
vehicle are not significant. This is because of the lack of data available for these two cases
during the car-following scenario in the data used in this study. The performance of the
LSTM model in predicting the acceleration is best amongst all the other models, whereas for
a few traces, the Krauss model performance is comparable in simulating the gap between the
vehicles.

106

8. Conclusion

8.0.1. Limitations and Future Work

The presented research is not without its own limitations. The data used to train the LSTM
based car-following model is explicitly from the Audi fleet. Since the performance of the
data-driven car-following model is highly dependent on the kind of the dataset they are
trained on. The model needs validation with different kinds of datasets. Also, the LSTM based
car-following model is not integrated into any of the traffic simulation software. The model
also needs analysis and validation of its performance when used in the traffic simulation
software.

Car-following is the sub-scenario of free flow driving. In this study, only the traces of the
car-following are considered during the training of the LSTM based car-following model. So,
for future work, the LSTM based car-following model needs to be developed for the free flow
driving conditions to be successfully integrated into any traffic simulation software.

The evaluation of the performance of the LSTM based car-following model to replicate the
traffic flow theory is also not done in this study which can be considered as the future work
in this direction.

107

List of Figures

1.1. Thesis Framework. 5

2.1. A typical car-following situation (Kesting, 2007) 6
2.2. Car-following logic of the Wiedemann model. (PTV Vissim, 2011) 10
2.3. A simple state machine . 12
2.4. A simple Artificial Neural Network (Kuri-morales, 2014) 14
2.5. A simplified One-to-One RNN model, adopted from (Afshine & Shervine, 2020) 15
2.6. Internal Structure of the computational unit A of a simple RNN, adopted from

(Afshine & Shervine, 2020) . 16
2.7. The internal structure of the computational unit of an LSTM, adopted from

(Olah, 2019) . 17

3.1. Scenarios and scenario classes in a typical driving (Roesener et al., 2016) . . . 19
3.2. The fuzzy logic based car-following model (Kikuchi & Chakroborty, 1992) . . 24
3.3. Neural Network structure for a car-following model (Khodayari et al., 2012) . 26
3.4. Conceptual Diagram of the Deep Reinforcement learning based Car-Following

Model (Zhu, Wang, & Wang, 2018) . 28

4.1. Field of view of sensors in the test vehicle . 34
4.2. Example vehicle coordinate system . 35
4.3. Study Area Bounding Box (blue) and an example vehicle trace (red) 35
4.4. Rotation of object (surrounding vehicle) information in the memory slots . . . 39

5.1. Thesis Methodology. 42
5.2. Flow chart for car-following traces extraction . 43
5.3. Data transformation flow chart . 45
5.4. Visualisation of the raw xFCD . 48
5.5. Flow chart of the state machine development to extract the car-following traces

from raw xFCD data. 51
5.6. Flow chart of the methodology of conventional car-following models analysis. 53
5.7. Flow chart for the development and simulation of SUMO network from the car

following trace. 55
5.8. Flow chart for Data-Driven Car-Following Development 63
5.9. Basic architecture of LSTM neural network used in this study 65

6.1. Velocity, acceleration, trajectory and speed-drift plots of a sample car-following
trace . 70

108

List of Figures

6.2. Velocity, acceleration and the trajectory plots of following and the leading
vehicle of a sample car-following trace . 71

6.3. Observed acceleration vs. the calculated acceleration from the observed velocity
of the following vehicle . 72

6.4. Smoothed acceleration of the following vehicle 73
6.5. Smoothed acceleration of the leading vehicle . 73

7.1. Fitness curve while calibrating IDM using genetic algorithm 75
7.2. The distribution of the optimal parameters of IDM 77
7.3. The distribution of the optimal parameters of the Krauss model 79
7.4. The distribution of the optimal parameters of the Wiedemann model (CC0 - CC4) 80
7.5. The distribution of the optimal parameters of the Wiedemann model (CC5 - CC9) 81
7.6. RMSPE comparison of the genetic algorithm calibration for test car-following

traces. 83
7.7. RMSPE comparison of the velocity predicted by calibrated models. 84
7.8. RMSPE comparison of the acceleration predicted by calibrated models. 85
7.9. RMSPE comparison of the gap between the following vehicle and the leading

vehicle predicted by calibrated models. 86
7.10. RMSPE comparison of the trajectory of the following vehicle predicted by

calibrated models. 87
7.11. Simulated velocities of the three car-following models against the observed

velocity for trace CF_613037 . 88
7.12. Simulated velocities of the three car-following models against the observed

velocity for trace CF_785485 . 88
7.13. Simulated acceleration of the three car-following models against the observed

acceleration for trace CF_613037 . 89
7.14. Simulated acceleration of the three car-following models against the observed

acceleration for trace CF_785485 . 90
7.15. Simulated gap between following and leading vehicle of the three car-following

models against the observed gap for trace CF_613037 91
7.16. Simulated gap between following and leading vehicle of the three car-following

models against the observed gap for trace CF_785485 91
7.17. Simulated trajectory of the three car-following models against the observed

trajectory for trace CF_613037 . 92
7.18. Simulated trajectory of the three car-following models against the observed

trajectory for trace CF_785485 . 93
7.19. Loss during training and validation of LSTM neural network for different input

sequence lengths . 95
7.20. RMSPE comparison of the velocity predicted by LSTM based car-following

model. 96
7.21. RMSPE comparison of the acceleration predicted by LSTM based car-following

model. 97

109

List of Figures

7.22. RMSPE comparison of gap between the following vehicle and the leading
vehicle predicted by LSTM based car-following model. 97

7.23. RMSPE comparison of trajectory of the following vehicle predicted by LSTM
based car-following model. 98

7.24. Simulated velocity of the four car-following models against the observed
acceleration for trace CF_613037 . 102

7.25. Simulated velocity of the four car-following models against the observed
acceleration for trace CF_785485 . 102

7.26. Simulated acceleration of the four car-following models against the observed
acceleration for trace CF_613037 . 103

7.27. Simulated acceleration of the four car-following models against the observed
acceleration for trace CF_785485 . 103

7.28. Simulated gap between following and leading vehicle of the four car-following
models against the observed gap for trace CF_613037 104

7.29. Simulated gap between following and leading vehicle of the four car-following
models against the observed gap for trace CF_785485 104

A.1. The flow chart of the calculation process of the Wiedemann model (Zhu, Wang,
Tarko, et al., 2018) . 118

110

List of Tables

3.1. Aggregated studies on car-following scenario extraction 30
3.2. Aggregated studies on analysis and improvement of the car-following models 31
3.3. Aggregated studies on the data-driven development of car-following models . 32

4.1. Raw xFCD dataset example . 37
4.2. Signal overview of the test vehicle . 37
4.3. Signal overview of the environment . 38
4.4. Signal overview of the surrounding vehicle . 39
4.5. Dataset comparison . 40

5.1. New naming of signals in Transformed dataset 44
5.2. A snippet of "ego.csv" file . 45
5.3. A snippet of "sorrounding.csv" file . 47
5.4. Upper bound and lower bound of IMD parameters 57
5.5. Upper bound and lower bound of the Wiedemann model parameters 58
5.6. Upper bound and lower bound of the Krauss model parameters 59

6.1. Following vehicle data description . 69
6.2. leading vehicle data description . 69

7.1. Parameters of genetic algorithm used to calibrate the car-following models . . 74
7.2. Summary of the calibrated parameters of IDM 75
7.3. Summary of the calibrated parameters of the Krauss model 75
7.4. Summary of the calibrated parameters of the Wiedemann model 76
7.5. Test Dataset . 82
7.6. Feature Importance . 99
7.7. Feature counts - vehicle present on left or right lane 99
7.8. RMSPE comparison of the predicted velocity . 100
7.9. RMSPE comparison of the predicted acceleration of the following vehicle . . . 100
7.10. RMSPE comparison of the predicted gap . 101
7.11. RMSPE comparison of the predicted trajectory of the following vehicle 101

111

Bibliography

Afshine, A., & Shervine, A. (2020). Recurrent neural networks cheatsheet. Retrieved December 30,
2019, from https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-
neural-networks

Aghabayk, K., Sarvi, M., & Young, W. (2015). A State-of-the-Art Review of Car-Following
Models with Particular Considerations of Heavy Vehicles. Transport Reviews, 35(1),
82–105. https://doi.org/10.1080/01441647.2014.997323

Astarita, V., Giofré, V. P., Festa, D. C., Guido, G., & Vitale, A. (2020). Floating car data adaptive
traffic signals: A description of the first real-time experiment with “connected” vehicles.
Electronics (Switzerland), 9(1). https://doi.org/10.3390/electronics9010114

Bando, M., Hasebe, K., Nakayama, A., Shibata, A., & Sugiyama, Y. (1995). Dynamical
model of traffic congestion and numerical simulation. Phys. Rev. E, 51, 1035–1042.
https://doi.org/10.1103/PhysRevE.51.1035

Chen, W. (2015). Vehicular communications and networks: Architectures, protocols, operation and
deployment. Woodhead Publishing.

Chong, L., Abbas, M. M., Medina Flintsch, A., & Higgs, B. (2013). A rule-based neural network
approach to model driver naturalistic behavior in traffic. Transportation Research Part
C: Emerging Technologies, 32, 207–223. https://doi.org/10.1016/j.trc.2012.09.011

De Jong, K. (2012). Evolutionary computation: A unified approach. https://doi.org/10.1145/
2330784.2330914

Deb, K. (2012). Optimization for engineering design: Algorithms and examples. PHI Learning Pvt.
Ltd.

Deb, K., & ayan Deb. (2014). Analysing mutation schemes for real-parameter genetic
algorithms. International Journal of Artificial Intelligence and Soft Computing, 4(1), 1.
https://doi.org/10.1504/ijaisc.2014.059280

Deb, K., & Bhushan Agrawal, R. (1995). Simulated Binary Crossover for Continuous Search
Space, 9, 115–148. https://doi.org/10.1.1.26.8485Cached

Dobnikar, A., Steele, N. C., Pearson, D. W., Albrecht, R. F., Deb, K., & Agrawal, S. (1999). A
Niched-Penalty Approach for Constraint Handling in Genetic Algorithms. Artificial
Neural Nets and Genetic Algorithms, 235–243. https://doi.org/10.1007/978-3-7091-
6384-9_40

112

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Bibliography

FHWA. (n.d.). Ngsim–next generation simulation. http://ops.fhwa.dot.gov/trafficanalysistools/
ngsim.htm.

Gazis, D. C., Herman, R., & Rothery, R. W. (1961). Nonlinear Follow-the-Leader Models of
Traffic Flow. Operations Research, 9(4), 545–567. https://doi.org/10.1287/opre.9.4.545

Gerdes, A. (2006). Automatic maneuver recognition in the automobile: the fusion of uncertain
sensor values using bayesian models. Proceedings of the 3rd International Workshop on
Intelligent Transportation (WIT 2006), 129–133. http://elib.dlr.de/22833/01/AU%
7B%5C_%7DFS%7B%5C_%7DManeuverRecognition%7B%5C_%7DGerdes%7B%5C_
%7D060316.pdf

Gipps, P. G. (1980). Gipps_ABehaviouralCarFollowingModel.

Gladyshev, P., & PA, A. (2005). Finite State Machine Analysis of a Blackmail Investigation.
International Journal of Digital Evidence, 4(1), 1–13. http://www.formalforensics.org/
publications/Finite%20State%20Machine%20Analysis%20of%20a%20Blackmail%
20Investigation.pdf

Hao, S., Yang, L., & Shi, Y. (2018). Data-driven car-following model based on rough set theory.
IET Intelligent Transport Systems, 12(1), 49–57. https://doi.org/10.1049/iet-its.2017.0006

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8),
1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Hülnhagen, T., Dengler, I., Tamke, A., Dang, T., & Breuel, G. (2010). Maneuver recognition
using probabilistic finite-state machines and fuzzy logic. IEEE Intelligent Vehicles
Symposium, Proceedings, 65–70. https://doi.org/10.1109/IVS.2010.5548066

Jia, H., Juan, Z., & Ni, A. (2003). Develop a car-following model using data collected by
"five-wheel system
. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 1, 346–351.
https://doi.org/10.1109/ITSC.2003.1251975

Kesting, A. (2007). Microscopic modeling of human and automated driving: Towards traffic-
adaptive cruise control. Physical Review E, (February), 218. http://www.qucosa.
de/urnnbn/urn:nbn:de:bsz:14-ds-1204804167720-57734%7B%5C%%7D5Cnhttp:
/ / www. qucosa . de / fileadmin / data / qucosa / documents / 842 / 1204804167720 -
5773.pdf

Khodayari, A., Ghaffari, A., Kazemi, R., & Braunstingl, R. (2012). A modified car-following
model based on a neural network model of the human driver effects. IEEE Transactions
on Systems, Man, and Cybernetics Part A:Systems and Humans, 42(6), 1440–1449. https:
//doi.org/10.1109/TSMCA.2012.2192262

Kikuchi, S., & Chakroborty, P. (1992). Car-following model based on fuzzy inference system.

Kingma, D. P., & Ba, J. L. (2015). ADAM: A method for stochastic optimization, arXiv
arXiv:1412.6980v9, 1–15.

113

http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm.
http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm.
http://elib.dlr.de/22833/01/AU%7B%5C_%7DFS%7B%5C_%7DManeuverRecognition%7B%5C_%7DGerdes%7B%5C_%7D060316.pdf
http://elib.dlr.de/22833/01/AU%7B%5C_%7DFS%7B%5C_%7DManeuverRecognition%7B%5C_%7DGerdes%7B%5C_%7D060316.pdf
http://elib.dlr.de/22833/01/AU%7B%5C_%7DFS%7B%5C_%7DManeuverRecognition%7B%5C_%7DGerdes%7B%5C_%7D060316.pdf
http://www.formalforensics.org/publications/Finite%20State%20Machine%20Analysis%20of%20a%20Blackmail%20Investigation.pdf
http://www.formalforensics.org/publications/Finite%20State%20Machine%20Analysis%20of%20a%20Blackmail%20Investigation.pdf
http://www.formalforensics.org/publications/Finite%20State%20Machine%20Analysis%20of%20a%20Blackmail%20Investigation.pdf
http://www.qucosa.de/urnnbn/urn:nbn:de:bsz:14-ds-1204804167720-57734%7B%5C%%7D5Cnhttp://www.qucosa.de/fileadmin/data/qucosa/documents/842/1204804167720-5773.pdf
http://www.qucosa.de/urnnbn/urn:nbn:de:bsz:14-ds-1204804167720-57734%7B%5C%%7D5Cnhttp://www.qucosa.de/fileadmin/data/qucosa/documents/842/1204804167720-5773.pdf
http://www.qucosa.de/urnnbn/urn:nbn:de:bsz:14-ds-1204804167720-57734%7B%5C%%7D5Cnhttp://www.qucosa.de/fileadmin/data/qucosa/documents/842/1204804167720-5773.pdf
http://www.qucosa.de/urnnbn/urn:nbn:de:bsz:14-ds-1204804167720-57734%7B%5C%%7D5Cnhttp://www.qucosa.de/fileadmin/data/qucosa/documents/842/1204804167720-5773.pdf

Bibliography

Krajewski, R., Bock, J., Kloeker, L., & Eckstein, L. (2018). The highd dataset: A drone dataset of
naturalistic vehicle trajectories on german highways for validation of highly automated
driving systems, In 2018 21st international conference on intelligent transportation systems
(itsc). https://doi.org/10.1109/ITSC.2018.8569552

Krauss, S. (1998). Microscopic modeling of traffic flow: investigation of collision free vehicle
dynamics. Forschungsbericht - Deutsche Forschungsanstalt fuer Luft - und Raumfahrt e.V.,
(98-8).

Kuan, C.-m. (2002). Lecture on Markov Regime Switching Models.

Kuri-morales, A. F. (2014). LNAI 8857 - The Best Neural Network Architecture, (1), 72–84.

Lee, G. (1966). A Generalization of Linear Car-Following Theory. Operations Research, 14(4),
595–606. https://doi.org/10.1287/opre.14.4.595

Lee, S., Ngoduy, D., & Keyvan-Ekbatani, M. (2019). Integrated deep learning and stochastic
car-following model for traffic dynamics on multi-lane freeways. Transportation Research
Part C: Emerging Technologies, 106(July), 360–377. https://doi.org/10.1016/j.trc.2019.07.
023

Lidbe, A. D., Hainen, A. M., & Jones, S. L. (2017). Comparative study of simulated annealing,
tabu search, and the genetic algorithm for calibration of the microsimulation model.
Simulation, 93(1), 21–33. https://doi.org/10.1177/0037549716683028

Ma, X., & Andréasson, I. (2007). Behavior measurement, analysis, and regime classification
in car following. IEEE Transactions on Intelligent Transportation Systems, 8(1), 144–155.
https://doi.org/10.1109/TITS.2006.883111

May, A. D. (1990). Traffic flow fundamentals.

Mitra, P., & Eric, B. (2018). Calibration and evaluation of car following models using real-
world driving data. IEEE Conference on Intelligent Transportation Systems, Proceedings,
ITSC, 2018-March, 1–6. https://doi.org/10.1109/ITSC.2017.8317836

Olah, C. (2019). Understanding lstm networks. Retrieved December 10, 2019, from https:
//colah.github.io/posts/2015-08-Understanding-LSTMs/

Olstam, J. J., & Tapani, A. (2004). Comparison of car-following models for simulation.
Transportation Research Record, (1678), 116–127. https://doi.org/10.3141/1678-15

Ozaki, H. (1993). Reaction and anticipation in the car-following behavior.

Panwai, S., & Dia, H. (2007). Neural agent car-following models. IEEE Transactions on Intelligent
Transportation Systems, 8(1), 60–70. https://doi.org/10.1109/TITS.2006.884616

Papathanasopoulou, V., & Antoniou, C. (2015). Towards data-driven car-following models.
Transportation Research Part C: Emerging Technologies, 55, 496–509. https://doi.org/10.
1016/j.trc.2015.02.016

114

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Bibliography

Pipes, L. A. (1953). An operational analysis of traffic dynamics. Journal of Applied Physics,
24(3), 274–281. https://doi.org/10.1063/1.1721265

PTV Vissim. (2011). VISSIM 5.30-05 User Manual, 130–132. https://www.et.byu.edu/%7B~%
7Dmsaito/CE662MS/Labs/VISSIM%7B%5C_%7D530%7B%5C_%7De.pdf

Roesener, C., Fahrenkrog, F., Uhlig, A., & Eckstein, L. (2016). A scenario-based assessment
approach for automated driving by using time series classification of human-driving
behaviour. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC,
1360–1365. https://doi.org/10.1109/ITSC.2016.7795734

Saifuzzaman, M., Zheng, Z., Mazharul Haque, M., & Washington, S. (2015). Revisiting the
Task-Capability Interface model for incorporating human factors into car-following
models. Transportation Research Part B: Methodological, 82, 1–19. https://doi.org/10.
1016/j.trb.2015.09.011

Sastry, K., Goldberg, D., & Kendall, G. (2005). Chapter 4 Genetic Algorithms. Search
Methodologies, 97–125.

Steger, C. (1996). Extracting curvilinear structures: A differential geometric approach. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 1064, 630–641. https://doi.org/10.1007/bfb0015573

Tang, J., Liu, F., Zhang, W., Ke, R., & Zou, Y. (2018). Lane-changes prediction based on
adaptive fuzzy neural network. Expert Systems with Applications, 91, 452–463. https:
//doi.org/10.1016/j.eswa.2017.09.025

Tango, F., & Botta, M. (2009). ML techniques for the classification of car-following maneuver.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 5883 LNAI(1050), 395–404. https://doi.org/10.
1007/978-3-642-10291-2_40

Treiber, M., & Kesting, A. (2013). Traffic Flow Dynamics. https://doi.org/10.1007/978-3-642-
32460-4

Vinagre Díaz, J. J., Fernández Llorca, D., Rodríguez González, A. B., Quintero Mínguez,
R., Llamazares Llamazares, Á., & Sotelo, M. Á. (2012). Extended floating car data
system: Experimental results and application for a hybrid route level of service. IEEE
Transactions on Intelligent Transportation Systems, 13(1), 25–35. https://doi.org/10.1109/
TITS.2011.2178834

Wiedemann, R., & Reiter, U. (1992). Microscopic traffic simulation: The simulation system
mission, background and actual state.

Won, J., Lee, S., Lee, S., & Kim, T. H. (2006). Establishment of Car Following Theory Based on
Fuzzy-Based Sensitivity Parameters (T.-J. Cham, J. Cai, C. Dorai, D. Rajan, T.-S. Chua,
& L.-T. Chia, Eds.), 613–619.

115

https://www.et.byu.edu/%7B~%7Dmsaito/CE662MS/Labs/VISSIM%7B%5C_%7D530%7B%5C_%7De.pdf
https://www.et.byu.edu/%7B~%7Dmsaito/CE662MS/Labs/VISSIM%7B%5C_%7D530%7B%5C_%7De.pdf

Bibliography

Yang, D., Zhu, L., Liu, Y., Wu, D., & Ran, B. (2019). A Novel Car-Following Control Model
Combining Machine Learning and Kinematics Models for Automated Vehicles. IEEE
Transactions on Intelligent Transportation Systems, 20(6), 1991–2000. https://doi.org/10.
1109/TITS.2018.2854827

Yang, X. S. (2011). Optimization algorithms. Studies in Computational Intelligence, 356, 13–31.
https://doi.org/10.1007/978-3-642-20859-1_2

Zaky, A. B., Gomaa, W., & Khamis, M. A. (2016). Car following Markov regime classification
and calibration. Proceedings - 2015 IEEE 14th International Conference on Machine Learning
and Applications, ICMLA 2015, 1013–1018. https://doi.org/10.1109/ICMLA.2015.126

Zhang, Q., Xie, Q., & Wang, G. (2016). A survey on rough set theory and its applications.
CAAI Transactions on Intelligence Technology, 1(4), 323–333. https://doi.org/https:
//doi.org/10.1016/j.trit.2016.11.001

Zhang, Y., Ni, P., Li, M., Liu, H., & Yin, B. (2017). A new car-following model consider-
ing driving characteristics and preceding vehicle’s acceleration. Journal of Advanced
Transportation, 2017. https://doi.org/10.1155/2017/2437539

Zhao, H., He, R., & Ma, C. (2018). An Extended Car-Following Model at Signalised Intersec-
tions. Journal of Advanced Transportation, 2018. https://doi.org/10.1155/2018/5427507

Zhou, M., Qu, X., & Li, X. (2017). A recurrent neural network based microscopic car following
model to predict traffic oscillation. Transportation Research Part C: Emerging Technologies,
84, 245–264. https://doi.org/10.1016/j.trc.2017.08.027

Zhu, M., Wang, X., & Wang, Y. (2018). Human-like autonomous car-following model with
deep reinforcement learning. Transportation Research Part C: Emerging Technologies, 97,
348–368. https://doi.org/10.1016/j.trc.2018.10.024

Zhu, M., Wang, X., Tarko, A., & Fang, S. (2018). Modeling car-following behavior on urban
expressways in Shanghai: A naturalistic driving study (Vol. 93). https://doi.org/10.1016/
j.trc.2018.06.009

116

A. Appendix

A.1. The Wiedemann Model Acceleration Calculations

Figure A.1 shows the flow chart of the calculation process of the acceleration of the Wiedemann
Model.

117

A. Appendix

Fi
gu

re
A

.1
.:

T
he

flo
w

ch
ar

t
of

th
e

ca
lc

ul
at

io
n

pr
oc

es
s

of
th

e
W

ie
de

m
an

n
m

od
el

(Z
hu

,W
an

g,
Ta

rk
o,

et
al

.,
20

18
)

118

	Disclaimer
	Acknowledgments
	Abstract
	Contents
	Introduction
	Background and Motivation
	Research Objective and Questions
	Contribution
	Thesis Framework and Report Outline

	Preliminary Studies
	Car-Following Models
	Krauss Model
	Intelligent Driver Model
	Wiedemann Model

	State Machine
	Genetic Algorithm
	Neural Network
	Convolutional Neural Network (CNN)
	Recurrent Neural Network (RNN)
	Long Short-Term Memory (LSTM)

	Literature Review
	Car-Following Scenario Extraction
	Rule Based Methods
	Machine Learning based Methods

	Analysis and Improvement of Existing Car-Following Models
	Data-Driven Development of Car-Following Models
	Research Gap and Conclusion

	Data Collection
	Data Collection Overview
	Meta Details of the Raw xFCD
	Information about the surrounding vehicles

	Comparison Study with Other Datasets
	Conclusion

	Methodology
	Software and Tools
	Car-Following Data Extraction from xFCD
	Goal
	Preliminary Data Exploration
	Development of the Visualisation Tool
	Data Pre-Processing
	Development of State Machine
	Data Analysis and Processing

	Analysis of the Existing Car-Following Models Using xFCD
	Goal
	SUMO Network Development for the Different Car-Following Trajectories
	Development of the Car-Following Models in Python
	Calibration of Car-Following Models
	Evaluation

	Data Driven Development of Car-Following Model
	Goal
	Model Development
	Data Preparation
	Evaluation

	Comparative Study
	Conclusion

	Data Analysis and Processing
	Data Analysis
	Data Post Processing

	Results
	Analysis of Car-Following Models
	Calibration Results
	Evaluation of Performance of Calibrated Models

	Data Driven Car-Following Model
	Input Features and Model Structure
	Sequence Length and Input Features
	Evaluation of Models
	Feature Importance

	Comparative Study
	Main Findings

	Conclusion
	Limitations and Future Work

	List of Figures
	List of Tables
	Bibliography
	Appendix
	The Wiedemann Model Acceleration Calculations

