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Abstract— Self-localization is a key component of au-
tonomous vehicles in urban scenarios. In this work, we proposed
a localization system which is based on pole-like objects such as
trees and street lamps. Pole-like objects are extracted from 3D
LiDAR point cloud using a cluster-based method. Based on the
pole detection results, we propose a new map representation
which consists of numerous local grid maps. In order to tackle
the data association problem caused by the ambiguity of pole-
like landmarks, the detected poles are directly transformed to
the local grid map to define a cost function without pole-to-pole
matching. The subsequent non-linear optimization method is
utilized to minimize the cost function and generate the vehicle
pose. We evaluate our localization system on our self-collected
dataset. And the proposed system achieves a root mean square
error of less than 18 cm for position and less than 0.52 ◦ for
yaw.

I. INTRODUCTION

Autonomous vehicles have gained great attention over the

few years. Among all the fundamental components (e.g., per-

ception, decision making, motion planning and localization)

in the field of autonomous vehicle, localization is one of the

most important and challenging problems.

The most common method to obtain the position of au-

tonomous vehicle is using Global navigation satellite system

(GNSS). And the performance can be further improved via

fusion with Inertial navigation system (INS) [1]. However,

the accuracy of low-cost GPS is meter-level [2], which can

not meet the requirements of autonomous vehicles and high

accurate GNSS systems with centimeter-level accuracy like

RTK-GPS is extremely expensive. Moreover, GNSS signal

is not stable in urban scenarios due to the signal block.

Map-based method is a choice to perform high-accuracy

localization. There are two types of maps: dense maps [3]–

[5] and landmark maps [6]–[13]. Dense maps like point

cloud map or grid map require a large amount of memory

to store. As a result, the size of the map will quickly be

unacceptable in large scale environments. Comparatively,

landmark maps are more compact and requires much less

memory resource. In urban scenarios, pole-like objects such

as trees and street lamps are suited to be used as landmarks

due to their commonality, distinction and stability [6]–[11].

However, an obvious drawback of pole-like objects is that

they lack distinctive features to perform data association.

Most of the existing works utilize nearest neighbor search
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to perform pole-to-pole matching, which requires that the

detected poles are close enough to the poles in the pre-

built map. Nevertheless, the prerequisite will not be satisfied

when the vehicle movement is slightly large or the poles

are extremely dense and the algorithm can easily fail due to

mismatching.

In this work, we presented a 2D pole-based vehicle lo-

calization system in urban environments. In order to solve

the mentioned data association problem, we do not perform

a pole-to-pole matching. Instead of that, we propose a new

pole map representation which consists of numerous local

grid maps. Each cell in the grid map contains a value which

is relative to its distance to the closest pole in the map. The

detected poles are projected into the local grid map frame

based on the current vehicle pose and a cost function is

defined to evaluate the matching between the detected poles

and the local grid map. Then the cost function is optimized

using non-linear optimization method to obtain the vehicle

pose. Compared to the map with discrete locations of poles,

the proposed map is smoother. Moreover, the cost function

considers the overall matching results rather than pole-to-

pole matching, which is more robust to misdetected poles

and avoids the problem of mismatching.

The proposed localization system is evaluated in the self-

collected dataset and shows a great performance. Our main

contributions are:

1) A new landmark map representation which consists of

numerous local grid maps is proposed for pole-based

localization.

2) A cost function is defined based on the local grid map

to perform the pose optimization.

II. RELATED WORKS

Vehicle localization using LiDAR can be divided into two

categories: point cloud map-based and landmark-based. More

relevant to this work is landmark-based localization methods,

especially pole-like landmark-based methods. We will briefly

review landmark-based localization methods in this section.

A. Pole-like Landmark-based Methods

Most of the existing methods utilize particle filter(PF)

or kalman filter(KF) to perform Pole-like landmark-based

localization, the main difference of these methods is their

pole detection methods. [8] voxelizes the space to numerous

voxels and then seeks out the lowest and highest grids that

has a density larger than a threshold. If the height satisfies the

condition and the point cloud within the entire height range

satisfies the density condition, the points are considered as
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pole points. The data association in [8] is performed via

nearest neighbor search and the localization framework is

based on particle filter. In [6], the input point cloud is

projected onto a horizontal grid and the neighboring cells are

clustered based on occupancy and height, then a cylinder is

fitted. Similar to [8], the authors also use nearest neighbor

search to solve the data association problem, and use particle

filter to implement the localization framework. [7] is the first

one to detect the poles not only consider the point cloud,

but also the free space in between the laser sensor and the

laser endpoints. They also use nearest neighbor search and

particle filter. [9] uses also poles as landmarks. However,

the author extract poles from stereo camera images rather

than LiDAR point cloud. Different from the above methods,

[10] performs an optimization-based method like our system.

Besides poles, they also utilize facades and road markings as

the landmark. In order to solve the data association problem,

they accumulating the landmarks detected during the past

timesteps to a local map and project the local map to the

global map to identify the most probable correspondence

hypothesis. [11] use local pole patterns to solve the data

association problem. One local pole pattern contains several

poles and is more robust than single pole-to-pole matching.

B. Other Landmark-based Methods

Besides poles, there are also other landmarks such as road

markings and curbs can be utilized in vehicle localization.

[12] uses road markings as landmark to perform their particle

filter-based localization method. [14] utilizes road markings

and road borders as landmark. The Monte Carlo vehicle lo-

calization method in [13] is based on curbs and intersections.

III. APPROACH

A. Overview

The architecture of the pole-based localization system is

shown in Fig. 1. The localization system is divided into

a mapping process and a localization process. During the

mapping process, the detected poles are registered to a global

map via a given ground-truth vehicle pose. The global map is

further converted to numerous local grid maps. Compared to

the map with discrete points, the proposed map is smoother

and more robust to misdetected poles. During the localization

process, we utilize an optimization-based method instead of

traditional filter-based methods. Local grid map search is first

performed to find the closest local grid map. The detected

poles are transformed into the local grid map frame based

on the current vehicle pose, and a cost function is defined.

Then subsequent non-linear optimization method is utilized

to optimize the cost function and generate vehicle pose.

B. Pole Detection

The pole detection method is based on the approach

in [15]. The method consists of three steps: voxelization,

horizontal cluster and vertical cluster.

TABLE I

PARAMETERS OF POLE DETECTION

xres yres zres tv ts1 ts2 Hmin tr

0.2m 0.2m 0.2m 5 15 3 1.0m 1.5

1) Voxelization: The ground plane is removed first and the

input point cloud is restrict in a certain spatial range. Then

the point cloud is voxelized to numerous voxels to make the

input data structured. The resolution of three directions of

the voxel grid are (xres,yres,zres). If the number of points in

the voxel is greater than a certain threshold tv, the voxel is

marked as valid, otherwise invalid.

2) Horizontal cluster: The 3D grid is further divided

into several horizontal layers in its vertical direction. The

horizontal sections of poles have several obvious features:

the area is within a certain range and isolation. We first

simply aggregate all the connected valid voxels to a segment.

And the segment is kept if the number of voxels in the

segment is smaller than a threshold ts1. Then the isolation

of the segment is checked. For each segment, we selected

two boxes centered on the segment center. Based on the

isolation, all voxels of the segment should be included in

the smaller box and there should be no valid voxels between

the smaller and the larger boxes. However, we find that given

a certain threshold ts2 of the number of valid voxels between

two boxes would make the method more robust. Segments

that pass the above checks are marked as valid.

3) Vertical cluster: After horizontal cluster, several valid

horizontal segments are obtained. Then these segments

would be further clustered in the vertical direction. Similar to

horizontal cluster, connected valid segments are aggregated

to a cluster. There may be discontinuities in vertical direction

because 3D LiDAR is relatively sparse in its vertical direc-

tion. So the vertical search range is expanded to two layers

above and below. And the vertical search range should be

adjusted according to the number of scan lines of the LiDAR.

Then the height and the height to width ratio of the vertical

cluster is checked. If the height is larger than Hmin and the

ratio is larger than tr, the cluster is considered as a pole.

Generally the point cloud of the pole should be fitted with

a cylinder model. However, the fitting can be difficult and

unstable even with help of RANSAC due to the presence

of outliers. So we directly take the middle layer of the

point cloud of the detected pole in the vertical direction and

calculate the mean position of the points as the position of

the pole.

The values of the parameters mentioned above for Velo-

dyne VLP-16 are summarized in Table I. The parameters

should be adjusted according to the specific point cloud.

Several examples of the results of pole detection on our self-

collected dataset can be seen in Fig. 2.

C. Mapping

After detecting the poles, the 2D locations of the centers

of the poles are calculated and stored. Given the ground-truth
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Fig. 1. The overview architecture of the pole-based localization system.

Fig. 2. The results of pole detection on the self-collected dataset. The first row is the input point cloud and the ground plane has been removed here.
The second row is the detection results, the blue boxes is the detected bounding boxes of poles. The detection algorithm basically detects all poles in the
point cloud (best viewed in color).

pose of the vehicle, the 2D locations is further transformed

into the world coordinate frame. After a long trajectory, a

global map with numerous points is created, and each point

represents the location of poles. Due to the uncertain of

vehicle pose and the detection results, the locations of the

same pole on different vehicle poses would not be exactly

the same. So a DBSCAN-based clustering method is utilized

to obtain clusters of pole locations. And the center of each

cluster is considered as the actual location of a single pole.

Generally, the mapping process ends here and we will get

a map consists of a number of discrete points. Under this

form of map, the pole-to-pole matching is difficult because

of the lack of distinctive features. Previous works usually

implemented it by performing nearest neighbor search. As

mentioned before, this method is unreliable when the vehicle

has a large displacement or the poles are extremely dense.

Misdetected poles or mismatched pairs can have a large

impact on the localization results. And the match between

single poles does not make good use of the geometric

relationship between the locations of poles. Based on the

above considerations, we propose a new map representation.

A typical characteristic of vehicle movement is that it moves

on the road. As a result, most of the regions on the global

map make no sense. Only the landmarks around the road

should be focused on. So we break the global map into

many discrete local maps along the vehicle path (i.e., along

the road), each local map has a location (xm,ym,θm). The

distance between each local map should be chose according

to the density of poles. And the distance should not be too

large to ensure that there are sufficient overlaps between

the detected poles and the local map even when the vehicle

matched to a wrong local map because of a large movement.

And the spatial size of the local map should be same as the

receptive field of LiDAR. The local map is further converted

to a grid map. The choice of resolution of the grid map

should consider both accuracy and efficiency. It is worthy

noting than the localization result can be more precise than

the resolution of grid map under the optimization-based

framework. The value of each cell in the grid is related to its

distance to the closest pole. The value can be also considered

as the probability that the cell contains pole. Suppose there

are N poles in the local grid map and di represents its distance

to the i−th pole, the calculation equation of the value of each

cell can be seen in Eq. 1.

value = max{ 1

1+αd1
, ...,

1

1+αdN
} (1)

The 1 in the denominator is to ensure that the value will

be not larger than 1. α is a coefficient to control the

decay rate of the values. Another explanation is that α
reflects the uncertainty of pole detection and α = 4 in our

implementation. Intuitively, the closer the cell to the closest
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Fig. 3. Two examples of local grid maps. The left column is the original
map and the black points represent the locations of poles. The right column
is our local grid map, the gray value of the local grid map represents the
value of the cell. The farther the cell from the pole, the lighter the color,
which represents that the smaller the value of the cell. Visually, the right
column is smoother than the left column and also reflects the uncertainty
of pole detection.

pole, the larger the value of the cell and the cell contains a

pole has a value of 1. Two examples of local grid maps are

shown in Fig. 3.

D. Localization

The vehicle pose is initialized using GPS. After initializa-

tion, our localization system can run without GPS signal at

all. Given a pre-built map, we first perform local grid map

search to find the closest local grid map based on the current

vehicle pose. And the detected poles are transformed into

the local grid map frame with the vehicle pose and the local

grid map location. After that, an interpolation is performed

to obtain the corresponding values in the local grid map and

a cost function is defined based on the values. At last, the

new vehicle pose can be obtained by optimizing the cost

function. The details are below.

1) Local grid map search: As mentioned before, the pre-

built map is represented as numerous discrete local grid

maps. The vehicle pose relative to the world coordinate frame

is defined as (tx, ty,θ), where (tx, ty) is the 2D location and θ
is the yaw angle. Given the current pose (tx, ty,θ), a nearest

neighbor search is performed to find the closest local grid

map. Even if the vehicle movement is large and a wrong

local grid map is matched to the current vehicle pose, the

overlap of the current detections and the local map is still

sufficient to perform optimization.

2) Poles transform: Denote the location of the pole in ve-

hicle frame as (xp,yp), the current vehicle pose as (tx, ty,θ),
and the location of the local grid map as (xm,ym,θm), then the

vehicle pose relative to the local grid map can be calculated

as (txrel , tyrel ,θrel) = (tx−xm, ty−ym,θ −θm). The location of

the pole (xpm,ypm) in the local grid map frame can be easily

calculated based on the transformation.

3) Interpolation: After transforming the detected poles

into the local grid map frame, the next step is to obtain the

value of the local grid map on the transformed location. An

obvious way is to round the position directly and query it in

the local grid map to get the corresponding value. However,

this method is not smooth and the localization accuracy

will be severely limited by the resolution of the local grid

map. Moreover, the round operation is not convenient to

perform non-linear optimization because the gradient is hard

to express. In order to solve the problem, we utilize bicubic

interpolation like [16]. The bicubic interpolation is easy to

implement because Ceres [17] has already integrated the

interpolation method.

4) Pose optimization: We represent the pose estimation as

a non-linear optimization problem and the problem is solved

using Ceres [17]. The key of the optimization problem is the

cost function. We denote the location of the i− th detected

poles in the local grid map frame as Xi and the interpolated

value as f (Xi). The definition of local grid map ensures

f (Xi)≤ 1. The cost function is defined as Eq. 2. Note that we

do not use the quadratic form cost function like [16] here. We

tested several forms of cost function such as quadratic form

(∑N
i=1(1 − f (Xi))

2) and root form (∑N
i=1

√
1− f (Xi)). The

results shows that the proposed cost function achieves better

performance. Intuitively, when the transformed location of

the detected poles is closer to the poles in the pre-built map,

the corresponding value in the local grid map is larger so

the cost function is closer to 0. When the cost function is

0, the current detections are exactly coincides with the local

grid map. In this form of map, detection errors and map

errors are allowed and the vehicle pose will converge to a

condition with the best overall matching with these errors.

As a result, the vehicle pose can be obtained by optimizing

the cost function. Although the resolution of the local grid

map is limited, the optimization results can be more accurate

than the resolution.

N

∑
i=1

(1− f (Xi)) (2)

As mentioned before, it is difficult to perform pole-to-pole

matching because they don’t have distinctive signatures like

SIFT for visual points. Generally, nearest neighbor search is

performed to solve the data association problem. However,

the method is not robust when the vehicle has a large

movement or the poles are too dense. For example, when the

current detected pole is exactly in the middle of two poles

in the map or even more close to the wrong one because of

a large movement in this frame, the nearest neighbor search

would give out a wrong matching, which has a serious impact

on the result. Comparatively, the proposed method consider

the matching from an overall perspective rather the pole-to-

pole matching. As a result, the proposed method will not

suffer from mismatching problem and is also more robust to

misdetected poles as long as sufficient poles are detected.
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IV. EXPERIMENTS

In order to evaluate the proposed localization system, we

perform several experiments in the Jading campus of Tongji

University in Shanghai. The point cloud is collected using a

Velodyne VLP-16 LiDAR sensor, which is mounted on the

roof of the vehicle. The ground truth pose is obtained using

the LiDAR odometry algorithm: LeGO-LOAM [18]. It is

worth noting that the short-term accuracy of LeGO-LOAM

is guaranteed, and the cumulative error has little effect on

the evaluation of our localization system. All the algorithms

is implemented with help of ROS (Robot Operating System)

framework. The pole detection module is implemented us-

ing PCL [19] toolkit and the pose optimization module is

implemented with the help of Ceres [17]. In all our tests,

we did not use data from sensors other than the LiDAR and

the initial pose of the vehicle is supposed to be known by

default. The computing platform is a PC with an Intel core

i7-9700K CPU at the clock speed of 3.60 GHz. The average

computing time for pose optimization is about 15ms, which

depends on the pose difference between two consecutive

frames. Intuitively, the larger the relative distance, the more

steps it takes to converge to the optimal pose, which results

in a longer time. Notice that we do not use GPS and IMU

in our test, the computing time for pose optimization can be

shorter if a better initial pose is given from the fusion of

GPS and IMU.

As shown in Fig. 4, four sequences are selected to evaluate

our method. The four sequences represent four different

shaped trajectories: straight, small angle turn, right-angle turn

and continuous turn. It is obvious that the curves of ground

truth pose and the curves of localization results roughly

coincide. Thanks to the proposed map representation, the

proposed method achieves good performance even when the

poles are extremely dense (e.g., the corner of Sequence 3).

Besides, the system also demonstrates its robustness when

the poles are relative sparse (e.g., Sequence 4). For more

accurate analysis of system performance, we respectively

calculate the mean absolute errors of longitudinal, lateral,

position and yaw.

We also calculate Root-Mean-Square Error (RMSE) for

longitudinal (denoted as RMSElon), lateral direction (denoted

as RMSElat), position (denoted as RMSEpos) and yaw (de-

noted as RMSEyaw). RMSE simultaneously measures the

accuracy and robustness of the system, which is used as the

final evaluation standard. As shown in Table II, the proposed

system shows a good performance in all the four sequences.

The performance in Sequence 4 is the worst and the RMSE of

yaw reached 0.516. The reason may be that the vehicle turns

many times and the poles are sparse in this sequence. Except

for Sequence 4, the proposed localization system achieves a

RMSE of less than 0.18 m for position and less than 0.35
◦ for yaw. It is worth noting that the difference between

RMSE and the mean absolute error of the proposed system

is relatively small, which means that the number of outliers

in the localization results is small, which also demonstrates

the good robustness.

V. CONCLUSION AND FUTURE WORK

In this paper we propose a pole-based vehicle localization

system in urban scenarios. The main contribution is a new

landmark map representation, which gives a new idea of

data association of landmark matching. The new map repre-

sentation enables us to perform an overall matching instead

of pole-to-pole matching. Moreover, the map representation

can be extended to other landmarks, such as road marking.

The evaluation on the self-collected dataset has shown the

accuracy and robustness of our system. The localization

system achieves a RMSE of less than 0.18 m for position

and 0.52 ◦ for yaw.

However, the proposed system have several aspects can

be further improved. First, the proposed system is basically

a local optimization algorithm, which requires a good ini-

tialization for pose estimation. As the result, GPS and IMU

data should be integrated into the entire system to improve

the efficiency and accuracy. Then, other landmarks can be

introduced to improve the performance such as curbs or road

markings. Third, the proposed system can be extended to a

SLAM (Simultaneous localization and mapping) system by

introducing matching and pose estimation between frames.
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[7] A. Schaefer, D. Büscher, J. Vertens, L. Luft, and W. Burgard, “Long-
term urban vehicle localization using pole landmarks extracted from
3-d lidar scans,” in 2019 European Conference on Mobile Robots
(ECMR), 2019, pp. 1–7.

[8] L. Weng, M. Yang, L. Guo, B. Wang, and C. Wang, “Pole-based real-
time localization for autonomous driving in congested urban scenar-
ios,” in 2018 IEEE International Conference on Real-time Computing
and Robotics (RCAR), 2018, pp. 96–101.

[9] R. Spangenberg, D. Goehring, and R. Rojas, “Pole-based localization
for autonomous vehicles in urban scenarios,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2016, pp. 2161–2166.
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