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Abstract

This thesis is the result of a 4-year collaboration between the Technical University of Munich
and the BMW Group. The goal was to apply substructuring methods to the Noise Vibra-
tion Harshness (NVH) engineering needed for integrating electric climate compressors in
upcoming vehicles. The compressor is one of the major contributors to the cabin noise in
battery electric vehicles (BEVs). An accurate yet practical development process for its ve-
hicle integration is crucial for industry. Specifically, the aim was to simulate the compressor
noise in the cabin for different, virtual design variants of the isolation concept. Therefore,
the methods from two broader fields were applied: First, the excitation of the compressor
was modeled with component transfer path analysis (TPA) methods. Second, the full trans-
fer path from the compressor to the driver’s ear is assembled from multiple subcomponent
models, via dynamic substructuring (DS).

For accomplishing the above mentioned goals, different gaps in the current technology have
been identified, which will be addressed in this thesis. With frequency based substructuring
(FBS), a subclass of DS, it is possible to couple experimental and numerical substructure
models in a virtual assembly. For the compressor, it was found that including rigid body
models in the transfer path is a valuable addition. The proper formulation and integration
of rigid body models in the framework of FBS will be presented. Another bottleneck at the
onset of this project, was the proper modeling of rubber bushings in the transfer path. A
novel method for experimentally identifying accurate substructure models of rubber isolators
was developed. The rotating components in the compressor introduce gyroscopic effects
that influence its dynamics. A novel substructuring method for virtually coupling gyroscopic
terms to a component could prove that these effects are not relevant for the compressor
case. The compressors excitation is described by blocked forces. Applying the blocked
forces to the substructured transfer path of the assembly allows to simulate the sound in
a virtual prototype. One goal was to make the simulated results audible to non-acoustic
experts, which required the creation of sound files. This allowed for a subjective comparison
of different designs at an early development stage. Since the noise predictions with TPA
are typically in the frequency domain, some signal processing is required to create sound
files in the time domain. Different methods for auralization will be compared, which could
not be found in the existing TPA literature. Due to the inverse process for identifying the
blocked forces, measurement noise can be amplified to unacceptably high levels, which are
audible in the sound predictions. Regularization methods have the potential to significantly
suppress the noise amplification, which is explained and exemplified for blocked force TPA.
Additionally, it was found that only the structure-borne sound transmission was not sufficient
to describe the compressor noise in the cabin. The compressor is also directly radiating
air-borne sound from its housing, which will be included in the NVH model by means of
equivalent monopoles. The application examples at the thesis’ end are extending the current
state-of-the-art, by showing how the modular vehicle models can be used for early phase,
parametric design optimizations on a complex NVH problem.
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Zusammenfassung

Die vorliegende Arbeit entstand während eines 4-jährigen Kooperationsprojekts zwischen
der TU München und der BMW Group. Das Ziel war die akustische Integration von elek-
trischen Klimakompressoren, in einer frühen Entwicklungsphase, durch virtuelle akustische
Prototypen. Dies wurde durch Substrukturierungsmethoden erreicht. Der Klimakompressor
ist eine der dominantesten Geräuschquellen in batterie elektrischen Fahrzeugen. Daher ist
es essenziell für Automobil-Hersteller die akustische Integration in einem genauen und prak-
tisch umsetzbaren Entwicklungsprozess zu beherrschen. Das konkrete Vorhaben war das
Kompressor-Geräusch im Innenraum virtuell für verschiedene Isolationskonzepte vorherzu-
sagen und somit Optimierungen am virtuellen Prototyp durchzuführen. Dies wurde durch
Anwendung von Methoden aus zwei Forschungsfeldern erreicht: Zuerst wird die Anregung
des Kompressors mit Methoden der Komponenten-basierten Transfer Pfad Analyse (TPA)
modelliert. Anschließend wird der komplette Übertragungspfad vom Kompressor bis zum
Fahrerohr aus mehreren Einzelkomponenten, durch dynamische Substrukturierung (DS),
virtuell zusammengebaut.

Um die oben genannten Ziele zu erreichen, wurden einige Beiträge zum aktuellen Stand
der Technik geleistet, welche in dieser Arbeit beschrieben werden. Durch frequenz-basierte
Substrukturierung (FBS) ist es möglich experimentelle und numerische Substruktur-Modelle
virtuell miteinander zu koppeln. Für den Kompressor stellte sich heraus, dass es von großem
Vorteil ist auch Starrkörper-Modelle in den Übertragungspfad zu koppeln. Die Herleitung ei-
ner Formulierung zur akkuraten Integration von Starrkörpermodellen in den Übertragungs-
pfad ist Teil dieser Arbeit. Zu Beginn der Arbeit war nicht klar wie Gummilager mit aus-
reichender Genauigkeit für eine Substrukturierung modelliert werden können. Eine neue
Methode zur experimentellen Identifikation von Gummilagermodellen wurde entwickelt, um
diese Anforderung zu erfüllen. Die rotierenden Teile im Kompressor erzeugen Kreiselef-
fekte, welche die Dynamik des Systems beeinflussen. Eine neue FBS basierte Methode
wurde entwickelt um die Kreiseleffekte virtuell an ein System zu koppeln, wobei nachge-
wiesen werden konnte, dass diese für den Fall der Klimakompressor-Akustik nicht rele-
vant sind. Die Anregung des Kompressors wird durch sog. „blocked forces“ beschrieben.
Werden diese auf die substrukturierte Übertragungsfunktion des Gesamtfahrzeugs ange-
wendet, kann der Schall im Innenraum vorhergesagt werden. Ein Ziel der Arbeit war es
diese Ergebnisse auch Nicht-Akustikern zugänglich zu machen. Dies geschieht durch das
Erstellen von Sound-Dateien mittels derer die Ergebnisse für unterschiedliche virtuelle Kon-
zepte subjektiv verglichen werden können. Da die TPA Ergebnisse üblicherweise im Fre-
quenzbereich vorliegen, ist es notwendig Signalverarbeitungs-Methoden anzuwenden um
die Sound-Dateien im Zeitbereich zu erstellen. Verschiedene Methoden zum Erstellen der
Zeitsignale werden in dieser Arbeit erklärt und verglichen, was oft in der TPA Literatur nicht
beschrieben wird. Bei der Ermittlung der „blocked forces“ wird eine Matrix invertiert, was
das Messrauschen in den aufgenommenen Signalen hörbar und inakzeptabel stark verstär-
ken kann. Regularisierungs-Methoden können dieses Problem signifikant reduzieren, was
an einigen konkreten Beispielen erklärt und demonstriert wird. Für den Kompressor ist der
über die Struktur übertragene Schall nicht ausreichend, um den Schalldruck im Innenraum
vollständig zu beschreiben. Der direkt vom Kompressor-Gehäuse abgestrahlte Schall wird
zusätzlich über äquivalente Monopole in das akustische Modell eingebaut. Die Beispiele am
Ende der Arbeit zeigen wie die entwickelten, modularen Akustik-Modelle schon in frühen
Entwicklungsphasen für eine parametrische Optimierung des Systems eingesetzt werden
können.
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Nomenclature

Matrices will be denoted with bold upper case characters, e.g. Y. Vectors will be dispayed as
bold lower case characters, e.g. q. Scalars are denoted by plain letters, e.g. Ψ. Throughout
the document, the convention is used that differentiation of a scalar with respect to a vector,
yields a row vector, e.g.:

∂Ψ

∂q
=
[
∂Ψ
∂q1

∂Ψ
∂q2

... ∂Ψ
∂qn

]

Differentiation of a vector, e.g. u, by another vector, e.g. f , yields a matrix corespondingly

∂u

∂f
=




∂u1
∂f1

∂u1
∂f2

... ∂u1
∂fn

...
. . .

∂um
∂f1

∂um
∂fn




The substructures that are being coupled to each other can be modeled with different ap-
proaches. They are indicated by the following symbols:

Substructure modeled analytically as rigid body

Substructure modeled numerically with the finite element method

Substructure modeled experimentally

In the following Nomenclature, the symbol (?) is a place holder for any type of variable. It is
used for explaining sub- or superscripts.

Mathematical Symbols

(Y)+ Pseudo inverse of matrix Y

(Y)−1 Standard inverse of matrix Y

(Y)# Regularized inverse of matrix Y

(?)∗ Complex conjugate of scalar, or conjugate transpose of vectors and matrices (aka.
Hermitean)

∆ Laplace operator ∆ =
(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)

δ(t) Dirac impulse

1



2 Nomenclature

ηr Modal coordinate for eigenmode r of the system

∀ for all

γ2 Coherence function with γ2 ∈ [0, 1]

?̂ Noise free signal

C Set of complex numbers

R Set of real numbers

R+ Set of positive real numbers

ΘQ Rotational inertia tensor of a body around point Q

rQX Position vector from point Q to point X

∇ Nabla operator ∇ = [ ∂∂x
∂
∂y

∂
∂z ]T

Ω Discrete increment in frequency domain (aka. frequency resolution)

Ψ Objective/Cost function which is to be minimized by coresponding variable choice

ρ Density

?̃ Slightly perturbed quantity

B Signed Boolean matrix (i.e. containing only −1, 0, 1)

ef , eu Random error on e.g. the force or acceleration channels

F Filter matrix

f Force

p Sound pressure

R IDM matrix

T Transformation matrix

u, u̇, ü Displacement, velocity or acceleration

x Vector of design variables

xr Vibration eigenmode r of the system

YA
21 Admittance matrix structure A, relating input in DoFs 1 to output in DoFs 2

ZA21 Dynamic stiffness matrix strucutre A, relating input in DoFs 1 to output in DoFs 2

θ Vector containing the small rotations of a rigid body around the coordinate axis
(Cardan angles)

a := b "a is by definition equal to b"

z, ż, z̈ Volume displacement, velocity or acceleration



Nomenclature 3

Abbreviations

APS Auto-power spectrum

ATF Airborne transfer function [Pa s2 / m3]

BEV Battery electric vehicle

CMS Component mode synthesis

CPS Cross-power spectrum

DFT Discrete Fourier transform

DoF Degree of freedom

DS Dynamic substructuring

EMA Experimental modal analysis

EMPC Equivalent multiple point connection

FBS Frequency based substructuring

FEM Finite element method

FFT Fast Fourier transform

FIR Finite impulse response

FRF Frequency response function

GA Genetric algorithm

ICC Interface completeness criterion

IDM Interface displacement mode

IS Inverse substructuring

ISD Inverse substructuring diagonal

KKT Karush Kuhn Tucker conditions

LS Least squares

NTF Noise transfer function [Pa/N]

ODS Operational deflection shapes

OSI Operational system identification

RDoF Rotational degree of freedom

SEMM System equivalent model mixing

SEREP System equivalent reduction and expansion

SH Shore hardness

SNR Signal to noise ratio



4 Nomenclature

SQP Sequential quadratic programming

SVD Singular value decomposition

TPA Transfer path analysis

TSVD Truncated singular value decomposition

VP Virtual point

VPT Virtual point transformation



Chapter 1

Introduction

Contents:
1.1 The art of NVH engineering: designing comfort with minimal resources . . . . . . . . . 6
1.2 Modular NVH design methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 In a nutshell: creating virtual acoustic prototypes . . . . . . . . . . . . . . . . . . . . . 9
1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 How to read this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

All too often people shy away from innovation due to fear of failure or short-sighted argu-
ments, like losing jobs in case of a successful try. The latter seems almost ironical, consid-
ering the fact that we face a demographic problem in the western world and in Germany in
particular. Once the "baby boomer" generation starts to retire, we will see a shrinking work-
force paralleled by a significantly increasing pensioner number. There are two genuinely
unattractive options if we stick to the status quo: higher workload for the young, or lower
pensions for the elder. Most likely it would be a balance of both, and finding that balance is
going to be a generational fight which we should ultimately try to avoid. No wishful thinking
or printing of money is going to solve the underlying problem. So the only way around it is
to innovate, and thereby sustain or hopefully improve our living standard with the decreased
workforce. Advances in the way we design and produce products has proven to be a viable
way of achieving this goal. With this thesis, the author hopes to contribute a tiny piece to
solve the puzzle, by giving a perspective on how to design quiet and pleasant products in a
more effective manner.
Talking of the future, there is no doubt that we are currently seeing a strong push towards
battery electric vehicles (BEVs) within the automotive industry. BEVs offer a better energy
efficiency than combustion engine vehicles, especially when driving in urban areas. At the
same time, most people are enthusiastic about BEV’s after getting acquainted with their
"fun-to-drive" vehicle dynamics, due to the instant torque and low center of gravity. Currently
the lower range for long distance trips is a concern for many potential customers (rightfully or
not). So next to increasing battery capacities, engineers are trying to push the envelope in
terms of their efficiency even further. Typical approaches include better aerodynamcis, more
intelligent recuperation strategies but also higher thermal efficiency. The electric climate
compressor, originally only used for cooling the interior, can additionally be used as a heat
pump for warming the driver’s cabin. This results in significantly improved energy efficiency
in colder weather [95]. Many automotive companies are offering this option for their vehicles,
like the BMW i3, the Hyundai Kona or the VW e-Golf just to name a few. Also Tesla recently
introduced a heat pump in the Model Y. A leaked document claimed that the VW ID.3’s
optional heat pump results in a range increase by 60km at a temperature below 5◦C, which
would corespond to almost 20% range increase [117]. In long range BEVs, the compressor
is also responsible for cooling the battery pack during fast charging, or heating it to optimal
operating temperature in colder weather. As a result of these additional tasks, the climate
compressor is going to be running in almost all operational conditions of the vehicle.

5



6 1 Introduction

What the mode of transport is going to be in the far future is not known for sure. What we
do know for sure now, is that no one will want a climate compressor that is blaring at him
while driving or spending time at the charging station. The methods explained in this thesis
are generally applicable, but will be exemplified on the engineering example of the climate
compressor’s noise and vibration performance.

1.1 The art of NVH engineering: designing comfort with minimal
resources

Noise vibration harshness (NVH) is a field of engineering which designs the vibro-acoustic
properties of different machines for maximum comfort and reliability. NVH engineers work
on a great variety of products, ranging from house hold appliances like fridges to different
means of transport like airplanes, trains and passenger cars. Most often the result of an
NVH engineer’s effort cannot not be noticed directly, since in the majority of cases the goal
is to make the product as silent as possible. But NVH engineering is unmistakably noticed by
the user when comparing a well-designed product to a bad one. A well-designed machine
with good NVH characteristics simply offers a relaxed experience and high quality percep-
tion. My wife and me just had a train trip from Munich to Hamburg in an intercity express
(ICE) of the currently newest generation, the ICE4. We perceived the train as considerably
more silent than its predecessors, which resulted in a very comfortable ride and us arriving
relaxed after six hours of traveling. This is the intrinsic goal of NVH engineering: creating
pleasant and appealing products.

However, it is not the only goal of an NVH engineer to make a machine as silent as possible.
In fact, it is quite easy to get any noisy and vibrating machine silent, by simply introducing
heavier counter masses or more insulation material. Just recently, our neighbor bought a
new washing machine of a brand which is renowned for high quality and low operational
noise and vibration (and high prices). After helping him carry the machine, the author had a
pretty good idea why the machine is so silent: it had a weight of 95kg compared to typical
weights of other machines in the range of 70kg. For passenger cars, weight is definitely an
important design criterion, so simply adding mass for vibration isolation is not a successful
strategy. Next to that, the automotive business is all about volume production. For example,
the E90 generation of BMW’s 3 series was sold 3.1 million times in the years 2007-2012
[162]. One can imagine that introducing an acoustic counter measure which costs say 30
euro per unit, will result in serious discussions about its necessity during the design process.
Alternatively, if one can prove that there is a clever design that can achieve the same NVH
performance with no extra cost, one can gain a lot of new friends within the company. An in-
telligent design could utilize the mass of existing components for vibration isolation, e.g. the
12V battery. Or one could attach the vibration source to parts of the vehicle that are already
very stiff, e.g. for crash reasons. One could also utilize the masking effects that other noise
sources produce (e.g. only start the compressor after the fan already started blowing). So
this is really the art of NVH engineering: designing comfort with minimal resources.

One often hears that cost savings, even if they are significant, are a not a societal relevant
challenge. However, this is not true in an overall picture. The author likes to think about
money as an abstract time-store of human effort. What happens if a company can figure
out a clever design, so that a certain isolation mass is not needed? Well, the superficial
answer is a saving in terms of money. But the underlying origin of that saving is the human
effort which is spared by not having to mine the needed raw materials, producing the excess
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part and not requiring the operators on the assembly line to lift and mount a heavy part.
Over time, the lighter car has reduced energy consumption and if the NVH engineering is
done right, the reduced vibrations result in a longer product live. Considering the matter
from this perspective, it becomes apparent that an NVH engineer does indeed have some
key responsibilities: in terms of resource efficiency, solving our demographic "lack-of-labor"
problem, and providing mental well-being to the product user. Modernizing the way we do
NVH engineering therefore seems like a meaningful endeavor.

1.2 Modular NVH design methods

In order to fully exploit the potential of better designs, it is essential to have flexible and
accurate NVH development tools, which help to make reasonable design choices early in
the development stage. If the engineer is free to play with different designs, without actu-
ally having to build them (prototpyes are expensive and take forever!), this will provide the
required freedom for discovering the best solution. Therefore, the NVH model needs to be
precise, so one can clearly distinguish a good from a bad design early in the development.
The NVH model also needs to be accurate: if the models noise predictions reach the design
goals (with some safety margin), also the physically built up prototype needs to be within the
target range.
Unfortunately, NVH problems are in practice often encountered late in the development pro-
cess. Most of the design is already fixed at this point, and the introduced counter measures
are often a result of trouble-shooting efforts. The time to fix the problem is very limited at this
point, since the one thing that is almost certainly more costly than a bad design, is a delay
in the start-of-production date. Not only is this trouble-shooting phase stressful to every-
one involved, but the resulting solutions are often exactly the ones we want to avoid for the
reasons stated above: excess isolation material, additional masses and dynamic absorbers.
New techniques, which do not default to overly simplified models, are needed for early phase
NVH development.

The above stated difficulties in early phase NVH design are, in the authors opinion, a result
of multiple reasons which can be grouped into two general categories:

1. Complex transfer paths: The vibration behavior of the full assembly is hard to simu-
late, since it depends on all components in the transfer path from the source to receiver,
and there are multiple unknown parameters. These include materials which are hard
to model, unknown friction in joints or high modal density of subcomponents, just to
name a few. Even if these parameters were known, it would be a lengthy and tedious
task to create a trustfull numerical model with it, especially if manufacturing tolerances
shall be considered as well.

2. Complex excitation mechanisms: The internal forces of a machine are often hard to
model accurately, or simply not known since the noise source is a supplier part. For
the electric climate compressor, the internal forces are due to unbalance in the rotor,
periodic excitations of the motor pole-pairs passing each other, compression shocks
in the refrigerant fluid, high frequency excitations from the power electronics, etc.

In this thesis, the above stated problems are treated with strategies coming from two fields
of research:

1. Dynamic Substructuring: A typical way to solve a large problem, like the assembly
of a full vehicle, is to break it into smaller pieces and solve them individually. Dy-
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namic Substructuring (DS) is the analogue to this "divide and conquer" strategy in the
field of vibration analysis [5, 31]. In fact, the underlying idea of solving a large and
difficult problem by finding the solution to several easier sub-problems has evolved
over a long time. Its conceptual start is often seen as Schwartz’ [154] solution of a
Poisson problem on a complex domain. He solved the problem on two easier overlap-
ping subdomains that constitute the whole domain, and could prove the method would
eventually converge to the true solution. This was already in the late 19th century. It
was followed by the Rayleigh-Ritz method [47, 143, 146] where the vibration solution
is approximated with only a few admissible functions (at the beginning of the 20th cen-
tury). A further development of the idea (by mathematicians like Courant [28]) led to
the finite element concept which constrained the admissible functions to smaller, finite
element domains (around the 1940s). Literally subdividing a structure into smaller sub-
structures was introduced in the 1960s to solve systems, which would have otherwise
not been computable with the limited computer memory at that time [29]. In the 1980s
and 1990s, these techniques were further developed so that problems with billions of
degrees of freedom could be efficiently solved on multi-processor computer architec-
tures [5]. With the availability of increasingly accurate measurement equipment at the
beginning of the 21st century, the field of DS has seen a push towards experimentally
modeled substructures which can be coupled to each other [85, 109, 157].

Let us consider the brief evolution of DS (which can be read in much more detail in
[31]), in the light of above stated problem 1: complex noise transfer paths in vehicles.
It seems natural to build the whole vehicle transfer path from individual subcomponent
models. Components with a large complexity can be abstracted by experimental mod-
els, while components that are easy to describe with a computer model are included
as such. This is precisely how the first challenge, i.e. the complex transfer paths, will
be approached in this thesis.

2. Component TPA: No matter how complex the excitation mechanisms in the source
component, they ultimately have to enter the receiver structure over the connection
points. The field of transfer path analysis (TPA) describes a set of different methods
[159] which are, in some way, abstracting away the complex source excitation mecha-
nism. The underlying ideas can be traced back to electrical network theory [171]. This
abstraction is often achieved by focusing on the vibrations that are transferred over the
connection points.

Some of the first TPA applications to machine sound were focused on understanding
and reducing the vibration transfer from a military ship’s engine to the hull, to make it
stealthy. See e.g. Verheijs PhD thesis [184]. Nowadays, classical TPA methods are
widely adopted in the automotive industry [139] where they help understanding the
cause of vibration problems by finding the critical vibration transfer paths. Classic TPA
is mostly used as trouble-shooting tool, applicable when the prototype already exists. A
current trend is to move to component TPA methods for early phase development [85,
109, 157, 199]. Within the family of component TPA methods, the source excitation
is often described with blocked forces [119, 120]. With this equivalent force quantity,
it becomes possible to simulate the NVH properties of a given source in an assembly
which does not yet exist.

The blocked force concept will be utilized in this thesis to abstractly describe the source
excitation of the compressor.

Combining the concept of Dynamic Substructuring and Component TPA allows to build vir-
tual acoustic prototypes. This combination is an up-and-coming set of methods [85, 109,
157, 198], with the vision to make accurate, early phase NVH design a reality.
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1.3 In a nutshell: creating virtual acoustic prototypes

At this point it is important to paint a clearer picture of the proposed NVH development
process. Simulating the acoustical responses on machines which do not yet exist is called
virtual acoustic prototyping [122]. The proposed workflow is explained with the brief overview
given in figure 1.1.

Source A Receiver B

Transfer Path Analysis

Signal Processing
and Audio playback

f bl2

fA1 YAB
32

uB3

pB3

z̈bl

YAB
3z̈

Substructuring

Figure 1.1: Overview of air- and structure- borne transmission of source vibrations.

A source component A is integrated in an assembly with a receiver structure B. Within the
source, some internal forces fA1 are acting. These are the internal excitation mechanisms
of the source. The subscript (?)1 indicates that these internal forces are acting at a subset
of DoF, denoted as 1. The superscript (?)A indicates that they are acting within the source
component A. The resulting responses on the receiver can equivalently be simulated with
the virtual quantity of blocked forces f bl2 , which would be acting on the set of interface DoF
2. The resulting vibrations and sound pressures on the receiver are denoted by uB3 and pB3
at the receiver DoF 3. These responses on the receiver can be predicted by knowing the
blocked forces f bl2 and the transfer function YAB

32 from the interface to the receiver points
(subscript (?)32). The superscript (?)AB denotes that the transfer function is a property of
the assembly (source A with receiver B). The assemblies transfer function YAB

32 can be
obtained by dynamic substructuring. The source A and the receiver B can be coupled to
each other by having an accurate model of their dynamics at the interface and enforcing the
coupling conditions between them. In fact, the receiver can itself be an assembly of multiple
substructures which can virtually be modified or exchanged. Thereby, the responses to a
given source component in different receiver designs can be simulated. A virtual acoustic
prototype.
For making the responses uB3 and pB3 audible, some signal processing is needed, to get the
results from the frequency domain to audio files in the time domain.
For having a complete description of the receiver response, it was found necessary to also
include the airborne source contribution of the compressor. The airborne contribution is due
to the directly radiated sound pressure from the compressor housing. Said differently, the
airborne contribution is what you would hear if the compressor was only held in place, with-
out any structural connections to the vehicle. This contribution is described by modeling the
airborne excitation with equivalent monopoles. The volume accelerations of these virtual
monopoles is denoted as z̈bl. They will be called "blocked volume accelerations", in analogy
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to the blocked forces, since the underlying ideas are common. With the airborne transfer
function YAB

3z̈ and the blocked volume accelerations z̈bl, the resulting contribution of the air-
borne path can be simulated.

The proposed workflow yields a modular assembly of the full machine, and makes it possible
to virtually predict the acoustical performance of different designs. This can be done, by
modifying the structure-borne transfer path YAB

32 with a virtual exchange of parts in the
assembly. Often, this is a modification of rubber bushing stiffnesses or modifications on the
FEM models of suspension structures. This could also be done by determining the blocked
volume accelerations z̈bl for different sound insulation materials on the source’s surface. The
success of these virtual design changes can be evaluated without needing to build a new
prototype, since the complex parts of the transfer path have been modeled experimentally
and remain unchanged.
This provides the requested flexibility in the early design stage, so that the best design can
be found (from a performance and cost perspective). It also provides a clear way of collab-
oration for products which are designed by multiple engineering teams including suppliers.
The teams can individually work on their subcomponents, suppliers can provide the blocked
forces for their source component, and the full vehicle acoustics team can assemble the full
system, simulate the receiver responses, and raise a red flag if the current design is missing
the acoustic targets.
This way of working also makes the development less costly. Consider a company that has
5 variants of a given source component, say an electric motor, that goes into 20 different
vehicle variants. If all combinations of source and receiver need to be tested, this would
require 100 different vehicle tests. In case one of the variants turns out to miss the acoustic
targets, one would not fully understand the system yet and need to go into trouble-shooting
mode. Now turn the situation around: The excitation of the 5 e-motor variants is known via
their blocked forces, and the 20 vehicle variant’s transfer functions are known, by substruc-
turing each e-motor into an experimental vehicle model. In total, this would require only 25
measurements (5 for the blocked forces and 20 for the experimental vehicle models). Ad-
ditionally, a faulty design can be detected earlier in the design process and dealt with, by
virtually introducing counter measures to the vehicle. The growing library of substructures
and source descriptions would over the years also provide a plentiful database for investi-
gating completely new design concepts by means of a few mouse clicks.
The contents of this thesis summarize a few techniques that were found necessary to imple-
ment such a procedure for the electric climate compressor.

1.4 Outline of the thesis

Part I describes the necessary tools for assembling full structural vibration paths from in-
dividual component models. The assembled system is versatile in the sense that each
component can be modeled with the most suitable approach, which can be a finite element,
a multi-body1, or an experimental model. In the end, it doesn’t matter how the relationship
between applied forces and the resulting vibrations was obtained. The assembly is modu-
lar in the sense that individual component models can be reused in other projects or easily
replaced by other components to simulate the effect of design modifications. For coupling
subcomponents it is necessary to have an accurate description of their linearized dynamics
on the connection interfaces. Once that is established, the coupling merely comes down

1In this thesis, a multi-body model means a lumped element model consisting of multiple simple elements,
like rigid bodies and analytical joint elements.
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to enforcing that the structures have the same vibration on the interface (by computing the
necessary coupling forces). Therefore, Part I is split into four chapters:

• Chapter 2: Structural Dynamics
This chapter is not a replacement for a good course or book on structural dynamics [29,
47]. But if the reader has some training, most of the equations should look familiar. The
chapter starts with structural dynamics in the well known format of mass, damping and
stiffness matrices. From that, a modal, frequency and impulse based representation
of the system is derived. The aim is, aside from introducing the notation, to show
that all mathematical representations of structural dynamics are equivalent, provided
the modeling is done right. This will serve as a reference for the upcoming chapters,
when the models of individual components are explained. Hence, the equations are
formulated such that they are easily usable in the substructuring framework. A special
emphasis is put on the acquisition of high quality experimental models (data quality is
key!). Additionally, the proper formulation of rigid body models for use in substructuring
is explained.

• Chapter 3: Substructuring
The dynamic models of individual components can be coupled by enforcing the same
vibration on the interface. Since experimental substructure models naturally come in
the form of frequency response functions (FRFs), the coupling is formulated in the
frequency domain. Finite element and multi-body models can easily be transformed
to the frequency domain. The coupling process will be called frequency based sub-
structuring (FBS) and some details regarding implementation and interpretation will be
discussed. The chapter also explains the virtual point transformation (VPT), which al-
lows to project experimentally measured FRFs on a common set of interface degrees
of freedom (DoF). The same set of interface DoF can be obtained from all modeling ap-
proaches, also rigid bodies and finite element models, and thus the structures can be
coupled. Again, a focus is on the physical properties that a high quality experimental
substructure model should possess.

• Chapter 4: Experimental rubber element models
One of the key pieces in a structural vibration path (which frequently causes headaches
to the engineer modeling it) are rubber mounts. This chapter presents a comparatively
easy approach to obtain high quality experimental substructure models of available
rubber mounts. These yield good results up to high frequencies (ca. 3kHz), which is
validated by comparison to stiffnesses obtained from a hydraulic test machine and a
validation where the rubber isolator models are used for substructuring. One aspect
that currently receives high attention, are the dynamic stiffening effects, which start
occurring at high frequencies (typically around 500Hz - 1kHz). This is an important as-
pect when designing the noise isolation for high frequency noise sources, like electric
motors.

• Chapter 5: Gyroscopic effects,
These effects are well known to every structural dynamics student from the experi-
ments with a revolving bicycle wheel on an axis. And yes, the compressor running
at full speed shows the same, tangible, behavior. Whether this effect is important for
correctly modeling the vibrations of the system was unclear at the beginning of the
project, and left the author restless. Long story short: it is not a relevant effect for
e-compressor NVH. But the chapter lays out the modeling that lead the author to this
conclusion. It might provide a helpful tool to others trying to find out if the gyroscopic
term is important for their system (e.g. fast revolving e-motors).
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Part II contains the necessary tools for understanding an equivalent source description with
blocked forces, and determining them with high accuracy. The source’s excitation, combined
with modular transmission paths, allows for prediction of sound and vibration levels on virtual
prototypes.

• Chapter 6: Transfer path analysis
The chapter contains a brief explanation of the difference between classical TPA and
component TPA. The thought concept underlying blocked forces is explained, so that
the reader understands why blocked forces can describe a source independently of a
specific receiver structure. This enables sound predictions after virtual design changes.
An experimental example is used to explain some practicalities.

• Chapter 7: Auralization of TPA results
The TPA and substructuring results are typically in the frequency domain. For com-
municating simulation results to non-acoustic experts, it is useful to provide audio files,
i.e. signals in the time domain. This chapter compares different methods for creating
these sound files. A non-cyclic convolution with finite impulse responses was found to
yield the best results.

• Chapter 8: Regularization methods for component TPA
The blocked forces are often obtained with a matrix inverse applied to recorded vi-
bration signals. All inverse methods that deal with measurement data are concerned
with the topic of noise amplification due to bad conditioning of the matrix. This chapter
explains the effects that lead to this noise amplification. This is exemplified with the
virtual noise prediction on the e-compressor example from chapter 6. Different reg-
ularization methods are explained and compared, where some did provide effective
remedies to the noise amplification for the e-compressor. The audible improvement in
the sound predictions is demonstrated with sound files.

Part III introduces the field of direct airborne sound radiation. This is the last missing link for
predicting the sound pressure in the drivers cabin. Eventually all vibrations caused by the
source are radiated from structural surfaces, creating small air pressure fluctuations that the
ear can perceive.

• Chapter 9: Vibro-acoustics
The chapter starts with the derivation of the Helmholtz equation, which governs the
sound pressure in air. It was chosen to show the derivation, instead of referencing
it, since this is important for the following explanation of airborne transfer function
(ATF) measurements. Next to that, it can be explained from the derivation, and shown
with the example of a measured ATF, that the volume accelerations are a frequency
unbiased proxy for the sound pressure. This was important for the cost function in the
design optimization shown in chapter 12. The topic of reciprocal noise transfer function
(NTF) measurements is also briefly explained.

• Chapter 10: Airborne TPA
The e-compressor sound that is introduced via its structural connections to the car
body can be predicted with the methods shown in the previous chapters. This con-
tribution is called the structure borne sound. The compressor is also directly radiat-
ing sound from its housing, which is called the airborne sound. This transfer path is
important to consider for a complete description of the e-compressor acoustics. For
describing the airborne path, the compressor is abstracted with a number of equivalent
monopoles. This chapter describes the chosen approach.
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Part IV applies the introduced methods to relevant engineering examples.

• Chapter 11: Automotive application example
In this chapter the methods explained in Part I - III are applied to the NVH design of
the e-compressor isolation in a prototype of a long range battery electric vehicle (BEV).
The structure borne transfer path is obtained by coupling an analytical rigid model of
the compressor, experimental rubber isolator models, a FEM model of a carrier and
an experimental model of the vehicle via FBS. The FBS model was validated by FRF
measurements on the fully assembled system, where a very good agreement with
the reference measurement was found. Additionally, it was found that the FBS model
allows to predict noise transfer functions from the compressor into the drivers cabin
which would otherwise not be measurable on the full assembly (due to too low input
energy of excitation equipment or space restrictions in the final assembly). Substruc-
turing allowed to measure/model each subcomponent individually, with a good signal
to noise ratio, and virtually couple them. The structure and airborne path contributions
could be separated, which allowed for a deeper insight in the important paths at differ-
ent operating speeds. The effect of virtual design modifications to the structure borne
path are simulated by exchanging subcomponents in the transfer path. Changes to
the airborne transfer path are simulated by applying blocked volume accelerations of a
compressor with and without an airborne insulation capsule. Sound files are provided
to give a better impression of the results.

• Chapter 12: Parametric design optimization on virtual acoustic prototypes
The combination of a modular FBS model and component TPA lends itself naturally
to parametric NVH design optimizations. The transfer path model is parametrized by
design variables. For example, on FEM modeled subcomponents or a parametrized
change of rubber bushings. Applying the blocked forces allows to predict sound and
vibration on the modified receiver. A suitable objective function decides if one design is
better than the other. An optimization algorithm then explores the design space to find
the best design. Thereby, NVH issues can be solved earlier in the development cycle
and the manual design iterations can be sped up. This chapter explains the proper
choice of an objective function and what kind of optimization algorithm is applicable on
a minimal example. The optimization is then applied to a compressor NVH isolation
concept that was investigated on a testrig. Three of the designs found by the algorithm
are physically build up and used for comparing reference measurements to the simu-
lation results. It is found that the opitmization can predict the NVH performance within
a margin of ±4 dBA (considering the whole compressor run-up), and it was confirmed
that the optimal design found by the algorithm is indeed performing better than the
other designs.

Part V concludes the thesis with a summary and a few further research directions that the
authors deems promising.
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1.5 How to read this thesis

Understanding is, after all, what science
is all about — and science is a great
deal more than mindless computation.

Roger Penrose

Time is precious, we all know that. This thesis is longer than the author initially aimed
for, but this was found necessary for a full explanation of the methods described above.
However, as an experienced engineer or executive, the thesis summary given in the previous
sections should already suffice to understand most of the results shown in chapters 11 and
12. This would provide a quick overview of the current capabilities of the methods and give
a picture on the concrete application to industry relevant challenges. If the ideas underlying
substructuring and component TPA are of general interest, maybe read chapters 3 and 6
first.
However, if the implementation details are of interest, e.g. to a researcher, then there is no
way around reading the chapters consecutively, since the theory introduced in each chapter
builds on the previous ones.

1.6 Thesis contributions

This thesis summarizes a 4 year research project at the Chair for Applied Mechanics which
took place in collaboration with the BMW group. Research is an iterative process, where
one needs to come up with solutions, test them, acknowledge when they fail and try to un-
derstand the reasons, so one can come up with another solution. Some of the intermediate
results have already been published [54–60, 177]. Some, but not all, of these publication’s
findings are embodied in this thesis. The developments should also be seen in a longer line
with previous research in the field, a few recent examples being [85, 109, 157, 198].
The following work performed in this thesis extends the current state of technology:

• Rigid body models are an easy way of describing a structures dynamics, and often
valid for compact structures up to an upper frequency limit. In section 2.7 the neces-
sary equations for including rigid body models in an FBS assembly are derived.

• This thesis has a clear focus on so called hybrid substructuring, where the engineer
can freely chose the modeling approach for individual substructures: rigid body, finite
element or experimental models. The contents of chapter 2 focus on the translation
of each modeling approach to the frequency domain, so these can be coupled via
FBS. The applications shown in chapters 11 and 12 are examples for the successful
realization of this hybrid approach.

• Chapters 2 and 3 devote a fair share of their pages to experimental modeling quality.
There are various checks one can perform during the measurement of an experimental
substructure model, which the author could not find in this composition anywhere else
(though [5, 157, 158] contain a number of these checks already).

• Chapter 4 explains a novel, experimental method for obtaining rubber element mod-
els. They comprise six degrees of freedom on either connection point and yield good
results in an FBS assembly up to the kilohertz range.
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• Chapter 5 lays out a novel method for analytically checking if the presence of gyro-
scopic effects, due to revolving machinery, is important to consider for a certain struc-
ture.

• Chapter 7 compares and formulates different methods for an auralization of TPA re-
sults. The author could not find a similar compilation of auralization methods, espe-
cially in the field of TPA, where the implementation details of auralization is often not
mentioned.

• Chapter 8 is a first investigation of regularization methods applied to the inverse prob-
lem for computing the blocked forces. Inverse methods are unfortunately tending to
amplify the measurement noise of experimental equipment. To make things even more
challenging, the transfer of blocked forces to a different, virtual design can amplify the
measurement noise even more. These issues are addressed in this chapter, and a
first application and comparison of regularization to blocked force TPA is shown.

• Chapters 11 and 12 contain an application of FBS and component TPA to a complex
vehicle design, where the virtual design changes and the parametric optimization of
the assembly can be considered new applications.





Part I

Substructuring: Modular assembly
of structural vibration paths
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Chapter 2

Structural dynamics
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Basically, I believe in nothing but "force
equals mass times acceleration". The
rest follows from that.

Prof. Daniel Rixen,
first lecture of the semester

The purpose of this chapter is certainly not to give a textbook overview of classical Newto-
nian mechanics. It shall rather recap the findings which are relevant for creating the com-
posite models of vibro-acoustic transfer paths treated in this thesis. In sound and vibration
engineering, and classical mechanics generally, one tries to compute the change of some
variables u, that describe the motion of a given system of particles, due to some applied
forces f . This is a fascinating field with an immense wealth of insight and implication for en-
gineering and science. It is astonishing that basically all followed from Newtons three simple
axioms. Very good textbooks on fundamental findings in classical mechanics are [47, 91].
Special application to the theory and computation of vibrations can be found in [29, 47].
Multibody dynamics are treated in [136, 163].
In the following, some approaches for mathematically modeling the vibration of structures
are presented. These descriptions are often called different domains and in theory they are
all equivalent representations of the same physical relationships. This will be emphasized
with small examples, which will be needed for modeling the transfer paths later in this thesis
anyway. The choice of which domain to use depends upon; i) the availability of experimental
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or computational resources, ii) the degree to which one is able to model the relevant physical
phenomena, iii) the required type of analysis, and iv) perhaps also personal preference.
Models in one domain can also be transferred to the other domains. The frequency domain
is arguably the most important one in this thesis, since most of the coupling and sound
prediction operations will be performed here. Therefore, special attention will be given to the
transformation of models from other domains into the frequency domain. This chapter also
serves to introduce the notation that is used throughout the thesis.

2.1 Physical domain

In the physical domain, the motion of a structural system is described with time t dependent
degrees of freedom u(t), that result from applied forces f(t). If the system undergoes only
small oscillations around a stable equilibrium position, a linearization of the, generally non-
linear, equations of motion is admissible. This is typically a valid assumption in the analysis
of sound and vibration. Linearizing the equations of multi-body systems, or using finite
element modeling (FEM), yields the well known system of equations:

Mü(t) + Cu̇(t) + Ku(t) = f(t) with u(t), f(t) ∈ Rn, (2.1)

where u̇ and ü denote the first and second time derivatives of the degrees of freedom u.
The physical domain has its name, since the matrices involved relate to physically intuitive
and meaningful quantities, like the mass matrix M, the damping matrix C and the stiffness
matrix K. It is important to note that the mass matrix is a symmetric positive definite matrix,
i.e.:

u̇TMu̇ > 0, ∀u̇ 6= 0, (2.2)

which is easily understood from the fact that the above quantity is the kinetic energy (mul-
tiplied by two), which can never be negative by definition. The symmetry of the matrix is a
result of its derivation from the linearized Lagrange equations (the kinetic energy is derived
with respect to the same vector of variables twice see [47, section 2.1]), or by the derivation
from the discretized weak form in the FEM (see e.g. [202, chapter 2 & 16]). Additionally, the
stiffness matrix of a stable system is also a symmetric positive (semi-) definite matrix:

uTKu ≥ 0, ∀u 6= 0, (2.3)

where the existence of vectors u for which the term in equation (2.3) is equal to zero, indi-
cates the existence of rigid body motions. After all, the above quantity is (twice) the elastic
energy stored in the body, which is always greater than zero, unless the body is able to
move without deformation. A rigid body mode. The damping matrix C is generally also sym-
metric and positive (semi-) definite, for a passive system (i. e. no internal energy sources).
Additionally, the system is assumed to not undergo any transport motion, i. e. it is at rest for
u̇ = ü = 0. This is true for most systems. As an exception, one could consider a rotor that
revolves at a given rotational speed, even if all variables u(t), chosen for modeling its mo-
tion, are zero. Thereby, gyroscopic effects would be introduced, which are treated in chapter
5 for the case of the climate compressor.
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2.2 Modal domain

The set of equations in (2.1) tends to be very large for modern FEM simulations. Even
modestly sized problems often have a number of equations in the order of n > 106. However,
the response of a system in the audible frequency range, can often be represented by much
fewer variables in the modal domain. The eigenmodes of the undamped system are the
harmonic solutions to:

Mü(t)︸ ︷︷ ︸
inertia forces

+ Ku(t)︸ ︷︷ ︸
elastic forces

= 0, (2.4)

which can be understood as a free motion (i. e. no external forces f(t)) of the undamped
system (no damping matrix C), where the inertia forces are in balance with the elastic forces
for all time. Assume that one can represent the solution as a harmonic motion:

u(t) = x e−iωt (2.5)

where x is a vector containing the vibration amplitudes in the degrees of freedom. We can
solve equation (2.4) by the eigenvalue problem:

(
−ω2M + K

)
x = 0. (2.6)

There is much to say about computationally efficient algorithms to solve this problem, where
the Lanczos eigensolver [90] is probably one of the most efficient methods (see e.g. [47,
chapter 6] and [29, chapter 15]). There are in total n solutions to equation (2.6), which are
called the eigenmodes xr and eigenfrequencies ωr. The eigenmodes have the important
property of orthogonality, which can be shown by inserting one solution r out of the n so-
lutions, i. e. the eigenvector xr and its corresponding eigenfrequency ωr, in equation (2.6).
Subsequent premultiplication with the eigenvector xs of another eigenfrequency ωs 6= ωr,
gives:

xTs Kxr = ω2
rx

T
s Mxr. (2.7)

Equally, inserting the solution xs and ωs in equation (2.6) and premultiplying with xr yields

xTr Kxs = ω2
s xTr Mxs (2.8)

Subtracting equation (2.8) from equation (2.7) gives:

0 = (ω2
r − ω2

s)︸ ︷︷ ︸
6=0

xTs Mxr, (2.9)

where the symmetry of the stiffness and mass matrix, K and M, as well as the fact that
ωs 6= ωr has been used. Therefore one can deduce that,

xTs Mxr = 0, ∀s 6= r with ωs 6= ωr. (2.10)

Inserting the result in (2.10) in equation (2.7) also means that:

xTs Kxr = 0, ∀s 6= r with ωs 6= ωr. (2.11)
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These properties show that the eigenmodes of the problem are orthogonal to the mass and
stiffness matrix1. For the damping matrix C, one is often assuming a similar orthogonality
property, since this makes the solution of the equations much simpler.

xTs Cxr = 0, ∀s 6= r with ωs 6= ωr. (2.12)

This assumption is often called modal damping. Additionally, one defines the scalar modal
parameters,

xTr Mxr = µr, xTr Cxr = βr, xTr Kxr = γr, (2.13)

where µr, βr and γr are called the modal mass, damping and stiffness respectively. Often
the eigenmodes xr are normed by requiring that:

xTr Mxr = µr
!

= 1. (2.14)

These orthogonality relations are a fundamental finding which help decoupling the n coupled
equations in (2.1) and therefore greatly simplify their solution. The eigenmodes xr can be
used as a basis to represent any solution u(t), so that

u(t) =

n∑

r=1

xr ηr(t) (2.15)

where ηr(t) are the time dependent coordinates in modal space. This is a powerful repre-
sentation, since inserting (2.15) in equation (2.1) and premultiplying with xs yields

xTs

(
M

n∑

r=1

xr η̈r(t) + C

n∑

r=1

xr η̇r(t) + K

n∑

r=1

xr ηr(t)

)
= xTs f(t), (2.16)

µsη̈s(t) + βsη̇s(t) + γsηs(t) = xTs f(t), for s = 1, ..., n. (2.17)

This means that by knowing the eigenmodes and eigenfrequencies of the system, one can
solve a set of decoupled scalar equations in the modal domain, equation (2.17), instead of
a set of n coupled equations in the physical domain, equation (2.1).

2.3 Frequency domain

As already mentioned, the predominantly used domain for modeling structural dynamics in
this thesis is the frequency domain. The Fourier transformation can represent any, infinitely
long, time-signal as a superposition of infinitely many sinusoidals. This representation is
called the frequency domain2.
For the Fourier series, it is assumed that the signal in the time-domain, e. g. the external
forces f(t) in our case, are periodically repeating after a certain time period T . Again, they
can be represented by superposition of harmonically oscillating sinusoidals with different

1If the structure has some form of symmetry, then there might be modes with the same eigenfrequency
ωs = ωr with different mode shapes xs 6= xr. Also for these cases the mode shapes can be chosen as to satisfy
the orthogonality in (2.10) and (2.11), see the degeneracy theorem [47, section 2.3].

2As widely accepted as the Fourier transform is today, when Joseph Fourier presented it for the first time,
there was a big dispute about the validity of his claim, that you could represent any time-signal with a super-
position of sinusoidals. In fact even his former teachers, Joseph-Louis Lagrange and Pierre-Simon Laplace
argued that it is impossible to represent functions with corners (e.g. a rectangular window) with a superposition
of smooth sinusoidals [185].
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amplitudes, e. g. f(ω) for the forces. This is a good assumption for e. g. the rotational orders
of an electric motor and the sound resulting from it. These frequency dependent amplitudes
of the Fourier series can be found from the real time-signal with:

f(ω) =
1

T

∫ τ+T

τ
f(t) e−iωt dt, with ω = n

2π

T
=: nΩ, and n ∈ Z, (2.18)

and for the inverse transformation,

f(t) =
∞∑

n=−∞
f(ω) eiωt, with t ∈ [τ, τ + T ], (2.19)

The frequency dependent force amplitudes are denoted as f(ω) and τ is some starting time.
The frequency resolution is denoted as Ω, which is the lowest frequency for a sinusoidal that
would still have one full period in the time length T . The amplitudes in f(ω) are generally
complex numbers. They describe the amplitude and phase of a spectral component in f(t).
Remember Euler’s great formula3:

eiωt = cos(ωt) + i sin(ωt). (2.20)

From it, it also follows that the amplitudes in f(ω) are the complex conjugates of f(−ω). This
can be seen directly from equation (2.18) and the fact that eiωt is the complex conjugate of
e−iωt. With this in mind it also becomes clear that the result of the inverse Fourier transform
in (2.19) yields a real number again, namely:

f(ω)eiωt + f(−ω)e−iωt = 2Re[f(ω)] cos(ωt)− 2Im[f(ω)] sin(ωt), (2.21)

where Re[?] and Im[?] denote the real and imaginary part of a complex number.

2.3.1 Impedance and admittance notation

The fundamental advantage of the frequency domain is that the second order differential
equation in time (2.1) is transformed to an algebraic equation. Since we can represent
the force time signal f(t) as a sum of sinusoidals (see equation (2.19)), and the differential
equation (2.1) is linear, one can solve the equations for each of the force sinusoidals f(ω)eiωt

separately, and then add each of these solutions to end up with the full solution4. Assume
that the displacement solution to this spectral component also has the form u(ω)eiωt. Insert-
ing that in equation (2.1), yields:

(
−ω2M + iωC + K

)
︸ ︷︷ ︸

=Z(ω)

u(ω) = f(ω), (2.22)

where Z(ω) is typically called the dynamic stiffness. If instead of displacement amplitudes
u(ω), the amplitudes of velocity u̇(ω) or acceleration ü(ω) are sought, the transformation is
done easily:

3A good explanation for this identity is provided by Strang on the MIT open course ware [166].
4Fourier’s series were initially introduced for this reason, in a paper where he was solving the heat equation

with a superposition of sinusoidals (The earths temperature with the day and night cycles combined with the
summer and winter cycle). Fourier is also believed to be the first one who found that there must be some form of
greenhouse effect, since during his research he found that the earth would be much colder if it was only warmed
by the heat radiation coming from the sun.
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Dyn. Stiffness Z conversion Admittance Y conversion
dynamic stiffness f/u 1 receptance, compliance u/f 1

impedance f/u̇ 1/iω mobility u̇/f iω

apparent mass f/ü 1/− ω2 accelerance ü/f −ω2

Table 2.1: Terminology for different frequency response functions often used in the description of
structural dynamics.

u̇(t) =
∂

∂t

∞∑

n=−∞
u(ω) eiωt =

∞∑

n=−∞

u̇(ω)︷ ︸︸ ︷
iωu(ω) eiωt, (2.23)

ü(t) =
∂2

∂t2

∞∑

n=−∞
u(ω) eiωt =

∞∑

n=−∞

ü(ω)︷ ︸︸ ︷
−ω2u(ω) eiωt. (2.24)

Different names for the dynamic stiffness have found their way into the technical vocabulary,
depending on the time derivative of the displacement quantity. This can be confusing at
first. In table 2.1 an overview of the most commonly encountered terms is given. In case
of velocity outputs, Z(ω) is called the mechanical impedance, following the naming conven-
tions in electrical network analysis (the product of current and voltage yields power, just like
the product of velocity and force). In practice, one is often interested in the inverse of the
dynamic stiffness, which is termed the mechanical admittance:

Z−1(ω)f(ω) = Y(ω)f(ω) = u(ω), (2.25)

where Y(ω) is the mechanical admittance. In table 2.1 the most common admittance names
are listed. Both, Z(ω) and Y(ω), can be called frequency response functions (FRF), since
they both represent a relation of an input in the frequency domain to an output in the fre-
quency domain. The mechanical admittance is often advantageous, since it directly allows to
predict the vibration levels due to an applied force. More importantly, it is often also the only
quantity that may be acquired experimentally (see section 2.4). Therefore, all the coupling
operations between single substrucutres will be performed with their admittance matrices
Y(ω), as will be explained in chapter 3. Also the term FRF most often refers to a mechnical
admittance in the rest of this thesis.

2.3.2 Admittance matrices from mode synthesis

If the admittance Y(ω) shall be obtained from a finite element model, the full matrix inver-
sion as denoted in equation (2.25) is not efficient, since it would require inverting a ma-
trix with a large number of degrees of freedom n for each frequency ω. As was shown in
equation (2.15), the solution u(t) can also be written in terms of the single decoupled modal
contributions ηs(t). When applying the Fourier transformation to the decoupled modal equa-
tions (2.17) one gets:

(
−ω2µs + iωβs + γs

)
ηs(ω) = xTs f(ω), for s = 1, ..., n, (2.26)

and hence the solution for a single modal coordinate ηs(ω) in the frequency domain is:

ηs(ω) =
xTs f(ω)

−ω2µs + iωβs + γs
. (2.27)
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When representing the physical displacements u(ω) as a superposition of the modal solu-
tions ηs(ω), as in equation (2.15), this yields:

u(ω) =

n∑

s=1

xsx
T
s

−ω2µs + iωβs + γs
︸ ︷︷ ︸

=Y(ω)

f(ω). (2.28)

With the above expression one can represent the admittance matrix Y(ω). Note that for
doing this in an efficient way, only a small number of the most important modes m� n can
be used. With the convention that all modes xs are scaled such that µs = 1, it follows that
γs = ω2

s . Hence, one can approximate equation (2.28) with just m modes as:

u(ω) ≈
m∑

s=1

xsx
T
s

(ω2
s − ω2) + 2iωωsεs

︸ ︷︷ ︸
≈Y(ω)

f(ω), with m ≤ n, (2.29)

where εs is called the modal damping ratio and relates to βs as: εs = βs/2ωs. As a rule of
thumb, it is sufficient to include only modes with eigenfrequencies up to twice the maximum
frequency of interest in the analysis. Eigenfrequencies ωs that are much higher have a low
contribution to the admittance matrix, since the denominator in equation (2.29) grows very
large due to the term (ω2

s−ω2). The modal damping ratio is in fact just a handy approximation
to the complex phenomena leading to damping in the material. It is a dimensionless quantity,
usually given in percent, since for ε ≥ 100% the aperiodic case of vibration is reached (i.e.
a non-zero initial displacement will directly go back to the equilibrium position, instead of
first crossing the equilibrium position and perform some decaying oscilattions around it, as
would be the case for ε < 100%). For typical structures encountered in engineering, values
for the modal damping ratio range from 0.1% < εs < 10% [29, chapter 10.3]. They can either
be found from literature suggestions or from experiments ([29, chapter 18], [40]). From the
authors personal experience, a modal damping ratio of ε = 0.1% is a good first guess for
plain structural components made from e.g. aluminium or steel. For more complex structures
(e.g. including bolted joints, different materials, interfaces or discrete damping elements),
correctly modeling the damping is harder. This is usually circumvented in this thesis by using
experimental models of these structures right away. If they need to be modeled numerically,
a modal damping ratio of ε = 3% is usually a good first guess from the authors experience.
If only a small subset of inputs j and outputs i is needed in the FRF matrix (as is most often
the case), then one can evaluate only the needed entries of the admittance matrix Yij as,

Yij(ω) =
m∑

s=1

xs,ixs,j
(ω2
s − ω2) + 2iωωsεs

. (2.30)

In combination with efficient numerical algorithms to solve the eigenvalue problem (2.6) (e. g.
the Lanczos algorithm), this is an efficient way to compute the admittance matrices of large
FEM systems, especially if one is interested in a large frequency range. All FEM models in
this thesis will be transformed to admittance FRFs with (2.30).

2.4 Experimental acquisition of frequency response functions

For many mechanical systems, creating a trustworthy numerical model is either very cum-
bersome, or just not possible in the relevant frequency range (an example for a full vehicle
will be shown in chapter 3). Therefore, it is often desirable to obtain the frequency dependent
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Analog filter
(anti-alias)

Digital Signal Processing

1. Time sample
2. Digitize values
3. Window

4. Transform (DFT/FFT)
5. Compute APS/CPS
6. Estimate FRF

ui(t)

t = 0 t = Tt = 0

ui(t)

t = T

||ui(nΩ)||

ui(n∆t)

∠(ui(nΩ))

Figure 2.1: Schematic overview of signal processing for FRF estimation. Analog filtering of time
domain signals is performed to prevent aliasing. The continuous signal is then sampled and digitized.
The digital time signal is eventually windowed to prevent leakage. Subsequently it is transformed to
the frequency domain (DFT or FFT algorithm). Form there on, all APS/CPS spectra for estimating
the transfer functions can be computed.

admittance experimentally. One column j of the mechanical admittance matrix Y(ω) can be
identified by applying a force signal fj(t) and recording the response ü(t) with multiple ac-
celeration sensors5. The time signals of the force and acceleration sensors are sampled,
digitized and transformed to the frequency domain. The general procedure of the involved
data processing is shown in figure 2.1.
This section will not go into detail on all the signal processing applied to the continuous time
signals of the outputs ü(t) and the input fj(t). For well written books explaining the theory,
see [99] for digital signal processing and [21] for the application to vibration analysis. Other
books that describe practical issues and tips on how to perform clean measurements are
e.g. [10, 40]. An enjoyable side-read are the "Modal space" articles by P. Avitabile [9].
For brevity, we assume for the rest of this section that the signals of the force input f and
one sensor channel output u were already transformed to the frequency domain. Therefore,
the explicit dependence on frequency ω is omitted. It will also not be distinguished between
displacement, velocity and acceleration anymore, since those can be easily transferred into
each other (equations (2.23) and (2.24)). This section will shortly discuss the determination
of a single admittance matrix entry, which will be called "the FRF Y ". All entries in the whole
FRF matrix can then be obtained from the same procedure.
Measurements are always subject to small errors (external measurement noise or inac-
curacies due to the manual conduction of the experiments). Therefore, the admittance is
estimated from multiple measurements. The two most common FRF estimators, namely the
H1 and H2 estimator, and the so called coherence function will be introduced.

5This is part of the reason why it is almost impossible to directly measure a mechanical impedance matrix
Z(ω) in practice. For measuring a column of the impedance, one would need to apply a motion uj(t) at one
point while locking the motion at all other points (ui 6=j(t) = 0) and measuring the resulting reaction forces fi(t).
This is practically infeasible. On the other hand, applying a force at one point with no applied force at other
points, i.e. measuring one column of the admittance matrix Y(ω), is much easier.
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2.4.1 Plain averaging

The simplest approach would use only one force and displacement spectrum uk and fk,
where k stands for the experiment number, and take their ratio as FRF estimate: Y =
uk/fk. If the structure was perfectly linear and there was no external noise and measurement
inaccuracy, the FRF resulting from multiple tests navg would always be the same:

Y =
uk
fk
, ∀k ∈ [1, ..., navg], (2.31)

and therefore one would get the same FRF from averaging:

Y =
1

navg

navg∑

k=1

uk
fk
. (2.32)

Equivalently one could write:

Y =

∑navg
k=1 uk∑navg
k=1 fk

. (2.33)

The statement in (2.33) is the basis for the H1 and H2 FRF estimators. It is true, since the
ratio of output uk and force fk is constant for all k. So, all uk and fk can be represented as
the product of e.g. the first u1 and f1 with a scalar constant ck, so that:

uk = cku1, fk = ckf1, with ck ∈ C, (2.34)

and therefore,

1

navg

navg∑

k=1

uk
fk

=
u1

f1

1

navg

navg∑

k=1

ck
ck

︸ ︷︷ ︸
=1

, (2.35)

which is equivalent to:
∑navg

k=1 uk∑navg
k=1 fk

=
u1

f1

∑navg
k=1 ck∑navg
k=1 ck︸ ︷︷ ︸
=1

. (2.36)

2.4.2 FRF estimators and coherence

Plain averaging for determining the FRF, like in equation (2.33), is not used in experimen-
tal practice, since usually there is some noise included in the signals of input and output
channels:

fk = f̂k + ef,k, uk = ûk + eu,k, (2.37)

where ef,k and eu,k denote random measurement errors in the input and output channels
and f̂k and ûk denote the "noise-free" signals, which are unfortunately not measurable.
These errors can cause significant problems in the computation of the FRF. Therefore, one
estimates the FRFs with dedicated averaging schemes. When multiple measurements navg
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are performed on the structure, one can define the so called auto-power spectra Guu and
Gff , and the cross-power spectra Guf and Gfu:

Guu =
1

navg

navg∑

k=1

uk u
∗
k, Gff =

1

navg

navg∑

k=1

fk f
∗
k , (2.38)

Guf =
1

navg

navg∑

k=1

uk f
∗
k , Gfu =

1

navg

navg∑

k=1

fk u
∗
k, (2.39)

where (?)∗ denotes the complex conjugate. The estimation of the FRF is using the auto- and
cross-power spectra, since they average out the uncorrelated, random measurement noise.
If the errors are randomly distributed around a zero mean value, this means:

1

navg

navg∑

k=1

eu,k = 0,
1

navg

navg∑

k=1

ef,k = 0, for navg →∞. (2.40)

In the terminology of uncertainty quantification, this is merely saying that the expected value,
or mean value of the measurement noise is zero. If they are also uncorrelated to each other
and the noise-free signals, this also means:

1

navg

navg∑

k=1

eu,k ef,k = 0, for navg →∞, (2.41)

1

navg

navg∑

k=1

ûkef,k = 0, for navg →∞, etc. (2.42)

Now one could rightfully ask the question: If the measurement errors average out in equation
(2.40), why not just use equation (2.33) as an estimator in the determination of the FRF?
The problem with equation (2.33) is that also the mean value of ûk and f̂k goes to zero.
As an example, say the FRF shall be determined by a shaker test with a random signal.
The resulting ûk and f̂k in each experiment, or time block, k would have a random phase.
Therefore, the averages of ûk and f̂k individually would go to zero, and equation (2.33) is not
a meaningful way to estimate the FRF. However, the phase reference and amplitude ratio
between ûk and f̂k is constant in each experiment (it is the sought FRF Y ). The estimation
of the FRF with the auto- and cross-power spectra is taking advantage of this fact, as will be
seen next.
One can deduct that for a sufficient amount of averages navg the auto and cross power
spectra in equation (2.38) and (2.39) will average out the uncorrelated terms, i.e.:

Guf ≈
1

navg

navg∑

k=1

ûk f̂
∗
k = Gûf̂ , (2.43)

Gfu ≈
1

navg

navg∑

k=1

f̂k û
∗
k = Gf̂ û, (2.44)

Guu ≈
1

navg

navg∑

k=1

||ûk||2 + ||eu,k||2 = Gûû +Geueu , (2.45)

Gff ≈
1

navg

navg∑

k=1

||f̂k||2 + ||ef,k||2 = Gf̂ f̂ +Gef ef . (2.46)
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So the random errors in the force and acceleration channels will eventually average out in
the cross power spectra Guf and Gfu, see equation (2.43) and (2.44). Provided the signal
to noise ratio is good, the errors will at least be small in the auto power spectra due to the
squaring, see equation (2.45) and (2.46). In experimental dynamics it is common to work
with the so called H1 and H2 estimators of the FRFs, which are defined as:

H1 estimator: H1 =
Guf
Gff

≈
Gûf̂
Gf̂ f̂


 1

1 +
Gef ef
Gf̂ f̂


 = Y


 1

1 +
Gef ef
Gf̂ f̂


 ≤ Y, (2.47)

H2 estimator: H2 =
Guu
Gfu

≈ Gûû
Gf̂ û

(
1 +

Geueu
Gûû

)
= Y

(
1 +

Geueu
Gûû

)
≥ Y. (2.48)

Note, that the terms Gûf̂/Gf̂ f̂ and Gûû/Gf̂ û correspond to the ’true’ FRF Y . They contain the
noise free signals f̂ and û, and are basically the same as the averaging formula given in
equation (2.33) with some post multiplied constant ck. Unfortunately, one can only measure
the signals with the noise. Hence the H1 and H2 estimators are helpful for averaging out
random measurement noise and provide an upper and lower bound to the ’true’ value of Y .
The coherence γ2 is defined as a quality indicator for the measured FRF:

γ2 =
H1

H2
with: γ2 ∈ [0, 1]. (2.49)

Especially for hammer impact testing, one uses the H1 estimator for the FRF, since there
the signal to noise ratio in the force channel is very good. Thus the term Gefef/Gf̂ f̂ in
equation (2.47) is small and it gets closest to the true FRF.
For shaker tests, a long time series of (often random) force signals is applied to the struc-
ture. The navg single spectra for averaging in equation (2.38) and (2.39) are obtained from
cropping many, possibly overlapping, time blocks out of the long recorded signal and trans-
form them to the frequency domain individually. This process is called the Welch method
for obtaining the cross- and auto- power spectra [191]. This method will also be used for
measuring airborne transfer functions with volume sources, as explained in chapters 9 and
10.

Remark 2.1: It was shown that the H1 estimator can average out random measure-
ment noise on the output channels, as the number of averages navg increases. This
is a very valuable tool when measuring e. g. noise transfer functions (NTFs) on a ve-
hicle, i. e. performing impacts on the vehicle body and recording the resulting sound
pressures in the driver’s cabin. Often the signal to noise ratio on the microphones is
poor. People then often tend to choose only a few similar impacts, in order to have a
higher coherence on these measurements. However, in these cases it is not useful
to chose the impacts that go into the averaging based on coherence. Basically one
is then choosing the impacts where the stochastic noise on the microphones was by
chance similar. In these cases, the author found that it is most useful to include as
many impacts as possible in the estimation of the FRF, i. e. have a high number navg.
While including more and more impacts into the H1 estimator one can usually ob-
serve how a previously very "peaky" or "noisy" looking NTF becomes smoother and
more physical. So keep in mind that trying to get a maximum coherence is not always
the goal, even though it is a good indicator for finding and excluding extreme outliers
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during structural FRF testing.

2.5 Time domain

The term "time domain" for this section is somewhat sloppy. One could argue the variables in
the physical domain u(t) (section 2.1) or in the modal domain ηs(t) (section 2.2) are also time
dependent variables, and therefore would fit some definition of being in the "time domain".
In the context of this thesis, having a model in the time domain is rather related to the use of
impulse response functions (IRFs) Y(t) which are closely related to the frequency response
functions Y(ω) as the notation already indicates.

2.5.1 Impulse response functions

An impulse response describes the vibration response of a system to a unit force impulse
fimp(t) applied at a certain position.

fimp(t) = δ(t), with:
∫ T

−T
δ(t) = 1, and δ(t) =

{
∞ if t = 0,

0 otherwise.
(2.50)

As already mentioned in section 2.3, all signals in time can be represented by a superpo-
sition of sinusoidals. The superposition of sinsoidals for the unit impulse, i. e. its Fourier
transform is:

fimp(ω) =
1

T

∫ T

0
fimp(t) e

−iωt dt =
1

T

∫ T

0
δ(t) e−iωt dt =

1

T
. (2.51)

The delta function δ(t − τ) (also called Dirac impulse) in an integral is basically ’sampling’
the integrand at time τ . In equation (2.51) it samples e−iωt at t = 0, which is just 1. This also
means that the response to a unit impulse in the frequency domain is:

uimp(ω) = Y (ω) fimp(ω) =
1

T
Y (ω), (2.52)

and thus the time response to a unit impulse is the inverse Fourier transform, given as:

uimp(t) =
1

T

∞∑

n=−∞
Y (ω) eiωt

︸ ︷︷ ︸
=Y (t)

with ω = n
2π

T
= nΩ, and n = 0,±1,±2, . . . (2.53)

2.5.2 Convolution with input forces

Impulse response functions (IRFs) are generally useful when the conditions for a treatment
with the Fourier series in the frequency domain are not given. This is the case if the input
force is not repeating after a time period T (e. g. transient signals, like rattling noises or
engine runups), or the effect of initial conditions has not yet dampened out.
Any given time signal of an input force f(t) can also be represented as a sequence of small
impulses, see figure 2.2. The response of the system u(t) can then be represented as a
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f(τ)

τ

∆τ → 0

Figure 2.2: Representation of any input force signal as a series of force impulses.

sum of the responses to all these small force impulses. Eventually, the impulse at time τ
becomes the small differential f(τ)dτ . At time t > τ , this differential impulse happened
t − τ seconds ago, and thus the response to this small impulse at time t is Y (t − τ)f(τ)dτ .
Summing, or more precisely integrating, over all small impulses that happened some time
ago, gives for the response u(t):

u(t) =

∫ t

0
Y (t− τ)f(τ)dτ (2.54)

This can be generalized to the case of multiple input forces and output signals to the matrix
representation:

u(t) =

∫ t

0
Y(t− τ)f(τ)dτ (2.55)

This computation of a vibration response u(t) resulting from a force input f(t) will be impor-
tant for the auralization of sounds in chapter 7.

2.6 Application example

The purpose of this section is twofold. First, some of the modeling concepts discussed so
far are exemplified on one structure. It is shown that experimental and finite element models
can be used interchangeably for simple structures. Second, some important features of
FRFs that are useful for checking the physical validity of experimental models are explained.
The example is the aluminum plate shown in figure 2.3a.

2.6.1 Experimental and FEM model description

During the experimental tests, the plate was equipped with 14 triaxial acceleration sensors
(PCB Model TLD356A32), and the impacts were performed with an impact hammer (PCB
Model 086C03). The signals were recorded with a Mueller-BBM MKII data acquisition sys-
tem, which includes a hammer measurement module for applying appropriate window func-
tions and computing the H1 estimator and coherence. This equipment was used for all
structural dynamics measurements in this thesis. It is important to choose the total record-
ing time T long enough, so that all the system vibration has died out till the end of the time
window (T = 8s in this case, which is quite long but necessary due to the low damping
of the structure). At least navg = 3 impacts were used for the estimation of each FRF (for
simple structures with a good signal to noise ratio this is typically enough). The H1 FRF
estimates and coherences were exported to a Matlab toolbox, developed for performing all
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(a) (b)

Figure 2.3: Application example of a plate. (a) During experimental FRF testing. (b) Modeled with
finite elements (Viewer in Matlab toolbox, FE nodes on the surface are indicated as black dots).
The symbols below indicate experimental and numerical models. These symbols will be used
throughout this thesis to indicate the modeling approach which was used to obtain a specific sub-
structure model.

operations described in this thesis. This includes the important checks on physical validity
of the experimental models.
The plate was also modeled with the FEM in ANSYS. The obtained mass and stiffness
matrices and the accompanying node, element and position information were exported to the
Matlab toolbox (using the Harwell Boeing exchange format). The FEM model had 177.375
degrees of freedom (DoF) and standard material properties for aluminum. The FRFs were
synthesized from the first 250 modes6 with a modal damping ratio of εs = 0.1% for all modes.
The total mass of the plate was 18.7kg. The mass of one sensor with cable-connector was
measured on a fine scale to 7.51g, so their total added mass to the plate was 105.14g.
This contribution to the total mass might seem small. However, it often turned out that
considering the added mass of the sensors helps refining the numerical or analytical models
to a significantly better level of accuracy (which is also recommended by [9]). The mass of
the sensors was considered by adding a lumped mass contribution to the three DoF of the
geometrically nearest node in the mass matrix of the FEM model.
The comparison of a synthesized FRF from FEM, with and without considering the sensor
mass, and the experimental reference is shown in figure 2.4. The shown FRF is a so-called
a "driving-point" FRF, which simply means that the input and output DoF are the same (this
would correspond to Yii in equation (2.30)). It is the driving-point FRF for the out-of-plane
direction at the upper right plate corner in figure 2.3a. Here the benefits of including the
sensor mass becomes apparent, since the experiment fits the FEM synthesized FRF better.
Especially for the higher frequency modes the prediction is significantly better if the sensor
masses are included (the mass effects contribution to the dynamic stiffness is proporional ω2

, see equation (2.22)). As explained in section 2.5, the impulse responses can be obtained
from the FRFs in a straight forward manner. The positive effect of considering the sensor
masses in the model can also be seen in the IRFs, see figure 2.5. It can thus be argued
that, provided the modeling is done right, numerical and experimental models can be used
interchangably for describing the same structural system.

6ω250 = 29.3kHz, so one could have used less modes.
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Figure 2.4: Comparison of experimentally obtained FRF and an admittance synthesis of FEM
modes.
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Figure 2.5: Comparison of impulse responses from experimental and numerical models. (a) Impulse
response of only the experimental measurements, to see that it takes much longer than 1 second until
all the vibration response has damped out. (b) Short term response of experimental and numerical
models.
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2.6.2 Error checks for accurate FRF models

A driving point FRF Yii has some properties which can, and should, be used to check the
physical correctness of FRF models, especially experimental ones. The following have been
found to be valuable during this project, but more in depth understanding of correct FRF
measurements can be found in [9, 40].

• Driving point passivity: In the mode synthesis of a driving point FRF Yii (equation (2.30)),
one can see that the enumerator has to be positive (x2

s,i). The damping term iωωsεs
is always a positive imaginary number (frequencies are positive and the modal damp-
ing has to be positive). Therefore, one can say that the compliance (displacements
u) FRF at a driving point must always have a negative imaginary part (positive real
number divided by an imaginary number with positive imaginary part). In terms of the
phase, this means that it should always be between 0◦ and −180◦. For mobility (u̇) and
accelerance (ü) FRFs, one can deduce similar bounds on the phase of driving point
FRFs:

∠Yii(ω)





∈ [−180◦, 0◦] for an admittance/receptance FRF
∈ [−90◦, 90◦] for a mobility FRF
∈ [0◦, 180◦] for an accelerance FRF

∀i. (2.56)

In figure 2.4, which shows an acclerance FRF, one can see that this condition is fulfilled
perfectly for the FEM model and only violated slightly for the experimental FRF at
around 200Hz. This is an important check that one should carry out, for validity checks
on either model. While impact testing a structure, it is also valuable to monitor the FRF
to the sensor channel which is closest to the impact hammer and points roughly in
the same direction (which can be considered a driving point). This phase criterion
should usually be fulfilled for these FRFs. This comes with the advantage that most of
the sensor channels are checked for validity during the measurement campaign, and
provides some entertainment during a repetetive task.

• (Anti-) Resonance Pattern: At a resonance frequency ω = ωr the most significant
contributor to the FRF, in the sum over the modes (2.30), is the resonant mode r. The
real part of the numerator vanishes, and the imaginary part (damping) of the numer-
ator is comparatively small. When the excitation frequency ω passes the resonance
frequency ωr the real part of enumerator changes from a small positive number to a
small negative number. Hence one sees sudden phase changes of approximately 180◦

at all resonances. After ω passed the resonant frequency ωr, the negative real part of
mode r in the sum (2.30), will eventually be canceled out by the growing positive real
part of the next mode ωr+1. At this frequency an anti-resonance, i.e. a sharp drop in
the FRF magnitude occurs. Also the phase changes by approximately 180◦ (for small
damping) at the anti-resonance. This pattern, of each resonance being followed by an
anti-resonance can be seen on all driving point FRFs (cf. figure 2.4). For non-driving
point FRFs, this is not necessarily the case, since there the enumerator xr,ixr,j can
have a different sign for each mode r.

• Free-Free Structures: Driving point FRFs Yii on structures with rigid body modes
should always start with a constant accelerance FRF at ω = 0 (like the freely hung up
plate in figure 2.4). This constant accelerance FRF should always be followed by first
an anti-resonance and then the first resonance. It should be remarked, that in practice
it is not possible to measure on a freely floating structure, so most often it is suspended
with very soft rubber bands. So what one typically sees is some low frequent rigid body
modes, followed by the constant line described above.
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• Supported Structures: Structures without rigid body modes, e.g. on a clamped
testrig, should always start with a zero accelerance at ω = 0. After the zero mag-
nitude at ω = 0, the magnitude should increase a with a slope of ω2. This can be
checked most easily in a magnitude plot with logarithmic frequency and magnitude
axes.

Before even conducting the full suite of experimental FRF measurements, there are some
pre-checks that turned out to be valuable habit:

• Sensor Isolation: Check if the housing of all ICP sensors is isolated from the test
structure (this can either be done with a multi-meter, or be detected from a higher noise
floor on these sensors). The twisted coax cables which would usually suppress induc-
tion from electro-magnetic noise fields do not work if the sensor housing is grounded
via the test structure.

• Sensor Noise Floor: Check the noise floor in all channels before the measurement.
When the structure is at rest, the live FFT results in all sensor channels should be
checked. When using the same sensors, all the noise floor levels should be in the same
order of magnitude. Channels with higher noise floors can indicate broken measure-
ment channels, or non-sufficient isolation of the sensor housing from the test structure.

• Sensor Orientation: Look at the so called operational deflection shapes (ODS) of
the acquired FRFs. The ODS for a lower frequency should show a pure rigid body
motion for a freely suspended part. Often it is easy to find wrong sensor orientations
and interchanged cables quickly and intuitively by looking at the ODS. Software that
provides this feature greatly improves the error avoidance when performing large tests
with many measurement channels.

2.7 Rigid body models

During the course of this research project, it turned out that it is of great practical advantage
to have analytical rigid body models for some substructures in the "toolbox". Substructures
modeled as rigid bodies will be denoted with the symbol shown in figure 2.6b throughout
the document. This is probably the easiest way to model a substructure, but it requires that
the assumption of rigidity is valid in the frequency range of interest. The specific form of the
following derivation could not be found in the standard literature, though the developments
in [163, section 3.8] are similar. Therefore, the proper formulation of the mass matrix for a
rigid body, with special attention to the practical needs for substructure coupling, shall get
some attention here. This means the linearization of the Newton-Euler equations to get the
mass matrix of the rigid body. For substructuring, the rigid body often needs to be coupled to
another substructure at a point Q, which is not its center of gravity. Therefore, the rotational
inertia tensor around point Q has to be derived from the rotational inertia around the rigid
body’s center of gravity C ′ (e.g. from a CAD model). Then additional point masses ms have
to be included, to account for the mass of acceleration sensors (see figure 2.6a).

2.7.1 Analytical mass matrix of rigid bodies

For describing the motion of a rigid body, we define a reference point Q, see figure 2.6a.
The whole motion of the body can be described by the translation of the reference point uQ
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Q
θ

uQ

C

rQSi

mS

(a) (b)

Figure 2.6: (a) Schematic overview of quantities and points on rigid body. Center of gravity without
applied sensors is C ′ and with the attached sensor mass mS it is C. The reference point Q and
its small translation uQ as well as the rotations θ define the vibration motion of the whole body. (b)
Symbol which will be used to denote substructures that are modeled as rigid body (will be used
throughout the document).

and a rotation vector θ around that point. Normally, the angles contained in the vector θ
would have to be accompanied by a specific parametrization of the rotation (e.g. Euler or
Cardan angles). However, in NVH typically only small vibrations are considered. Therefore,
θ will be seen as small rotation angles of the body around the x, y and z axis (this can
be seen as a linearized version of the Cardan angle parametrization). The inertial frame of
reference and the body fixed frame of reference are approximately equal for small uQ and
θ. The displacement of each point X on the body can be written as:

uX = uQ + θ × rQX , (2.57)

where rQX is the vector from the reference point Q to the point X and × denotes the cross
product. The Newton-Euler equations for a rigid body in three dimensional space are (see
e. g. [137, section 3.3]):

mtot(üQ + θ̈ × rQC + θ̇ × (θ̇ × rQC)) = fQ,

mtotrQC × üQ + Θtot
Q θ̈ + θ̇ ×Θtot

Q θ̇ = mQ,
(2.58)

where mtot is the total mass of the rigid body and Θtot
Q is its total rotational inertia around

point Q. The term "total" is used in this context to denote that for accurate modeling the
mass of applied acceleration sensors should be included (see section 2.7.2). The externally
applied forces and moments around point Q are denoted as fQ and mQ respectively. Con-
sidering that uQ represents small displacements and θ small rotations, and that also their
time derivatives are small, one can drop the second order terms in equation (2.58). One can
then write the linearized version of the Newton-Euler7 equations as:

[
mtotI −mtotr̃QC

mtotr̃QC Θtot
Q

]

︸ ︷︷ ︸
M

[
üQ

θ̈

]

︸ ︷︷ ︸
u

=

[
fQ

mQ

]

︸ ︷︷ ︸
f

, (2.59)

where I is the 3×3 identity matrix. This equation has the desired form including the mass ma-
trix M. The dynamic stiffness Z(ω) matrix can directly be computed from it (equation (2.22)),

7Note for the derivation that a cross product a×b can be written as ã b, where ã is a skew-symmetric 3× 3
matrix. Skew symmetric implies that ãT = −ã, and thus the mass matrix in (2.59) is symmetric. Additionally,
note that a× b = −b× a.
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and since it is only a 6× 6 matrix, the admittance Y(ω) can be obtained by simply inverting
it (no solution for eigenmodes required).

2.7.2 CAD data and sensor mass loading

Another practical aspect, often encountered in the course of this research project, is the
proper computation of the total rotational inertia Θtot

Q around a given point Q. Usually, one
gets the rotational inertia of a rigid body ΘC′ , which is computed around its center of gravity
C ′ (e.g. from a CAD model) without applied sensor masses. The general definition for the
rotational inertia of a body with density ρ around any point Q is (see e.g. [163, section 3.8]):

ΘQ =

∫

Ω
ρ
(
||rQX ||2I− rQXrTQX

)
dV with X ∈ Ω, (2.60)

where X is some point on the body and Ω is the whole volume of the body, over which
the integration is applied, see figure 2.6a. As already said, most often the rotational inertia
around the plain bodies center of gravity ΘC′ is known from CAD. But the rotational inertia
around a given point of interest Q is sought, e.g. since the body shall be coupled at this
point to another structure. Before proceeding, it is important to remember the definition of
the center of gravity C ′, namely:

rQC′ =
1

mb

∫

Ω
ρ rQX dV with X ∈ Ω, (2.61)

where mb is the total mass of the body without the sensors. The vector rQC′ is also known
from the CAD model. Any vector rQX in equation (2.60) can be written as the vector sum
rQX = rQC′ + rC′X , where rQC′ is constant for all X in the integration. Inserting this in
equation (2.60), yields the rotational inertia ΘQ around a general point Q:

ΘQ =

∫

Ω
ρ
(
||rQX ||2I− rQXrTQX

)
dV

=

∫

Ω
ρ||rQX ||2IdV −

∫

Ω
ρ rQXrTQXdV

=

∫

Ω
ρ(||rQC′ ||2I + 2rTQC′rC′XI

︸ ︷︷ ︸
vanishes in integral

+||rC′X ||2I)dV−

∫

Ω
ρ(rQC′r

T
QC′ + rQC′r

T
C′X︸ ︷︷ ︸

vanishes in int.

+ rC′XrTQC′︸ ︷︷ ︸
vanishes in int.

+rC′XrTC′X)dV

= ΘC′ +mb(||rQC′ ||2I− rQC′r
T
QC′),

(2.62)

where the indicated terms drop out due to the definition of the center of gravity in equation
(2.61). Therefore, the inertia tensor of the body around a given point Q can be computed
from the inertia tensor around the center of gravity ΘC′ and the position of Q with respect to
the center of gravity C ′ (which is usually both obtained from CAD models):

ΘQ = ΘC′ +mb(||rQC′ ||2I− rQC′r
T
QC′). (2.63)

Lastly, for an accurate model it is also necessary to consider the mass loading of acceleration
sensors on the rigid body. The rotational inertia is defined as an integral over the whole body
Ω (equation (2.60)). Integrals are additive, and thus one can add the inertia contributions of
the sensors (treated as point masses). The resulting total rotational inertia of the rigid body
with acceleration sensors around point Q is:
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Θtot
Q = ΘC′ +mb(||rQC′ ||2I− rQC′r

T
QC′)︸ ︷︷ ︸

rot. inertia of body around Q

+

ns∑

i=1

ms(||rQSi ||2I− rQSir
T
QSi)

︸ ︷︷ ︸
rot. inertia of sensors

, (2.64)

where ms is the mass of a single sensor and ns is the number of sensors on the rigid body.
The vector from point Q to each sensor is denoted as rQSi . The total mass of the rigid body
with attached sensors is then:

mtot = mb + nsms. (2.65)

Due to the addition of the sensor masses, the position of the total center of gravity C, will be
different from the center of of gravity of the plain rigid body C ′. It can be computed by:

rQC =
1

mtot

[
mbrQC′ +

ns∑

i=1

msrQSi

]
. (2.66)

With these definitions and the rigid body model in equation (2.59) accurate models of simple
substructures can be obtained. Fortunately, the position of the sensors has to be known
anyway (for a process called virtual point transformation, as will be seen in section 3.3) and
the sensor masses are easily measured, so the procedure can be implemented straightfor-
wardly in software.

2.7.3 Application example: rigid crosses

For experimentally measuring full six degrees of freedom at a connection point of a structure
(e.g. a car body or a rubber mount), it was often advantageous to screw a rigid cross to that
connection point. The cross is equipped with accelerometers in each corner, and the FRF
measurements can be done by impacting on this cross. Instead of modeling the crosses
with the FEM or even measuring their FRF experimentally, it is more time efficient to use
a rigid body model as described above8. The crosses have to be designed such that they
behave rigidly in the frequency range of interest, since this is a basic assumption underlying
the virtual point transformation explained in section 3.3.
The example shown in figure 2.7 is an aluminium cross that was used for obtaining exper-
imental rubber bearing models in chapter 4. The single cross weighed about 750 gram,
where the accelerometers weighed 7.51 gram each. Its first resonance is at approximately
4600 Hz (validated by FEM and experiment) and the maximum frequency of interest was
2000 Hz. The comparison of the driving point accelerance for the rotation around the z-axis
in figure 2.7b shows that the analytical models can be just as accurate as experimental mod-
els. The inclusion of the sensor masses yields the last bit of desired accuracy. Analytical
models are definitely easier to obtain and less prone to errors that could be encountered in
experimental models.

8A coarse FEM model is then merely required for assuring that they behave as a rigid body in the frequency
range of interest. A rule of thumb is that the first resonance frequency of the cross should be at least twice
the maximum frequency of interest. This will also be shown with the consistency measure in introduced in
section 3.4.3.
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Figure 2.7: (a) Schematic depiction of a rigid cross equipped with acceleration sensors (b) Driving
point admittance (rotation around z-axis, left figure) of a measurement on the cross vs. the analytical
rigid body model with and without consideration of the sensor masses.
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Nothing is particularly hard if you divide
it into small jobs.

Henry Ford

The contents of this chapter were published in similar form in [54, 57, 60]. The text hereafter
has been modified and adapted to the thesis.

The goal of this chapter is to outline how different substructures can be coupled to each
other, in order to predict the dynamics of a whole assembly. In the previous chapter, differ-
ent approaches for modeling the dynamic behavior of single substrucutres were explained. It
was shown that numerical models from the FEM, experimental tests or analytical rigid body
models can represent the dynamics of substructures equally well (provided the underlying
modeling assumptions are valid). So each substructure can be modeled with the preferred
or most efficient approach. The substructure models can be in different domains, and it was
already pointed out that for this thesis the frequency domain is the most important one. The
reason for this is found in the complexity of large assembled structures like cars. A typi-
cal ’vibro-acoustic’ FRF of a modern car is shown in figure 3.1. Vibro-acoustic means that
the input quantity was a hammer impact on the car body in the front compartment and the
output was a microphone inside the drivers cabin (measuring the dynamic sound pressure
response in [Pa = N/m2]). The impact measurements were performed with an automatic
hammer [100] and 5 averages were used for the estimation of the FRF. As can be seen in
the coherence γ2 in figure 3.1b, the measurements are highly repeatable, resulting in a co-
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Figure 3.1: (a) Vehicle on a testrig for acoustic FRF measurements. Sensors and automatic hammer
are placed under the bonnet in the front compartment and microphones are mounted inside the
drivers cabin. (b) Example of a vibro-acoustic FRF from an impact on the car body to a microphone
inside the driver’s cabin.

herence close to one over almost the entire frequency range (significant drops in coherence
can only be seen at frequencies were the overall FRF magnitude is low, and hence the sig-
nal to noise ratio is low). Nevertheless, the shape of the FRF is quite complex, and no clear
resonances as in figure 2.4 can be found. If fact, the FRF of a whole vehicle is dependent on
a myriad of small influences. There are many different contacts between bolted, glued and
welded parts, which are hard to model accurately, but crucial for the overall damping of the
structure. Additionally, the sound absorption of e.g. interior materials in the drivers cabin,
or the dynamic material properties of many different parts might be unknown. Therefore,
it is often desirable for an NVH engineer to use an experimentally obtained model for the
final transfer path in the car body. All other substructures, like e.g. rubber bearings, carrier
structures or the climate compressor, are then virtually coupled to the experimental vehicle
model. Also new design concepts can be judged virtually, by changing e.g. the rubber stiff-
ness or the carrier structures in the assembly model (in chapter 11 this will be exemplified).
As experimental models of the vehicle are naturally in the frequency domain, in the form
of admittance matrices Y, the coupling equations between different substructures will also
be formulated in the frequency domain. A process called frequency based substrucutring
(FBS).

3.1 Frequency based substructuring

The family of dynamic substructuring (DS) methods, have become a well accepted frame-
work for numerically assembling subcomponents, potentially developed by different design
teams, and finally predicting the dynamic behavior of the complete product. Variants for cou-
pling in different domains (e.g. the physical, modal and frequency domain) can be derived in
a straight forward manner [31] and can equivalently be used for decoupling of structures [4,
186]. For a broad overview of current developments in substructuring generally see e.g. [5].
Getting an accurate physical M,C,K model of a whole car is often infeasible, as explained
above. Also, extraction of the modes from an FRF measurement like in figure 3.1b with
experimental modal analysis is virtually impossible. Therefore, coupling in the physical or
modal domain is not useful for creating the virtual acoustic prototypes that this thesis aims
for. The obtained FRFs could potentially be transformed to impulse response functions and
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(a) Primal: uncoupled systems A and B.
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(b) Primal: coupled assembly AB.

Figure 3.2: General overview of the substructuring problem for two substructures in the primal for-
mulation, i.e. based on their dynamics stiffness matrices ZA and ZB .

substructuring could be performed in the time domain [150, 180] (impulse based substruc-
turing), but this approach will not be followed in this thesis. The method of choice, FBS, was
first published by Jetmundsen [73] (although similar methods where proposed earlier [30]).
It is well suited for inclusion of experimentally obtained substructure models. One advantage
of directly using frequency response functions (FRFs) is that the measurement data already
contains residual terms from higher order modes.
The coupling operation is first shown in the primal formulation with dynamic stiffness matri-
ces Z, as this is also the most intuitive method and well known from e.g. FEM assembly.
Thereafter, the dual formulation with admittance matrices Y is explained, since this is the
most convenient method for including experimental substructure models.

3.1.1 Primal (de-) coupling

Consider the general depiction of two subsystems shown in figure 3.2a. They will be called
A and B in the remainder of this chapter. Their DoFs have been grouped into two sets for
each substructure: a set of DoFs that are not on the coupling interface and thus internal
to each substructure (the DoFs (?)A1 on substrucutre A and (?)B3 on substructure B), and
a set of DoFs which are on the coupling interface ((?)A2 and (?)B2 ). Their dynamic stiffness
matrices can thus be partitioned into these DoF sets :

ZA =

[
ZA11 ZA12

ZA21 ZA22

]
, ZB =

[
ZB22 ZB23

ZB32 ZB33

]
, (3.1)

where the explicit dependence on the frequency ω has been dropped for brevity. With the
dynamic displacements u and external force vectors f in either group of DoFs, one can write
the dynamic equations for both systems. In the coupled configuration, there will also be
connection forces g2 acting on the interface between both substructures, see figure 3.2a:




ZA11 ZA12 0 0

ZA21 ZA22 0 0

0 0 ZB22 ZB23

0 0 ZB32 ZB33







uA1
uA2
uB2
uB3


 =




fA1
fA2
fB2
fB3


+




0

gA2
gB2
0


 . (3.2)

When coupling any two structures to each other, the following two conditions must be ful-
filled: compatibility of displacements and equilibrium of forces. Compatibility states in the
above case that uA2 = uB2 . When using the so called ’primal’ assembly1, the two separated

1The notion of ’primal’ assembly is related to the fact that the displacements u are usually the ’primal’ vari-
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variables on either side of the interface are replaced by one global variable uAB2 := uA2 = uB2 ,
so that the compatibility condition is automatically fulfilled:




ZA11 ZA12 0

ZA21 ZA22 0

0 ZB22 ZB23

0 ZB32 ZB33







uA1
uAB2

uB3


 =




fA1
fA2
fB2
fB3


+




0

gA2
gB2
0


 (3.3)

The next coupling condition is the equilibrium, requiring that the coupling forces on either
side of the interface are equal in magnitude, but have opposite sign: gA2 = −gB2 . Actio est
reactio. Adding the second and third line of (3.3) and considering the equilibrium condition
yields the coupled stiffness matrix:




ZA11 ZA12 0

ZA21 ZA22 + ZB22 ZB23

0 ZB32 ZB33




︸ ︷︷ ︸
ZAB




uA1
uAB2

uB3


 =




fA1
fA2 + fB2

fB3


 , (3.4)

which corresponds to the stiffness matrix assembly well known from e.g. finite element
modeling. The interface forces vanished from the equations due to the equilibrium condition.
This basically corresponds to d’Alemberts principle that "reaction forces (gA2 and gB2 ) do not
produce any work in the direction compatible with the constraints (uA2 = uB2 )". Formulated
loosely, when coupling dynamic stiffness matrices, the coupling process comes down to just
"adding the overlapping matrix parts". Knowing how to couple two substructures is enough
for creating arbitrarily complex assemblies. Each coupled substructuring result can itself be
regarded as a single substructure, which could be coupled to yet another component.
As can be seen from (3.4), the uncoupled stiffness ZA can be found from "subtracting" the
dynamic stiffness ZB from ZAB. Alternatively, for decoupling one could start with the same
uncoupled notation as in equation (3.2) including the assembled ZAB and the negative −ZB,
and then perform the same coupling steps, i.e. enforcing equilibrium and compatibility in the
shared DoFs (?)2 and (?)3.

3.1.2 Dual (de-) coupling

The dual formulation of FBS aims at deriving the admittance of an assembled system YAB

from the separate admittances of two subsystems YA and YB. Consider the situation de-
picted in figure 3.3a. The admittances of both subsystems YA and YB are known, and
their DoF are again grouped into some internal and common DoF on the interface. The
admittance of the uncoupled substructures can be written in block diagonal form YA|B. The
following equations are the starting point for coupling YA and YB, and also aim at clarifying
the notation in verbose (3.5) and compact form (3.6):

ables for which the equations are being solved in mechanics. The ’dual’ variables are the (connection) forces,
which can be solved for in a post procesing step. For an interesting discussion regarding the distinction be-
tween primal and dual variables in engineering generally, see [165, chapter 2.5]. For further explanation of the
distinction between primal and dual variables in dynamic substructuring see the book [5] or the publication [149].
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(a) Dual: uncoupled systems A and B.
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(b) Dual: coupled assembly AB.

Figure 3.3: General overview of the substructuring problem for two substructures in the dual formu-
lation, i.e. based on their admittances YA and YB .




YA
11 YA

12 0 0

YA
21 YA

22 0 0

0 0 YB
22 YB

23

0 0 YB
32 YB

33










fA1
fA2
fB2
fB3


+




0

gA2
gB2
0





 =




uA1
uA2
uB2
uB3


 , (3.5)

YA|B (f + g) = u, (3.6)

where g again denotes the yet unknown reaction forces acting between the two substruc-
tures. The two substrucutures have to fulfill continuity on the interface again, which can also
be written as uA2 − uB2 = 0. The reaction forces g needed for achieving continuity fulfill actio
est reactio, i.e. they are equal in magnitude but have opposite signs (gA2 = −gB2 ). They
can thus be denoted by a single vector of reaction forces λ. These conditions result in the
following set of equations:

YA|B (f + BTλ︸︷︷︸
=g

) = u, (3.7)

Bu = 0, where B =
[
0 I −I 0

]
, (3.8)

so that in the dual coupling formulation, the reaction forces g = BTλ in (3.7) automatically
fulfill actio est reactio. The statement in (3.8) enforces continuity. The matrix B is commonly
called a ’signed Boolean matrix’. Inserting (3.7) in (3.8) and solving for λ yields:

λ = −
(
BYA|BBT

)−1
BYA|Bf = −

(
YA

22 + YB
22

)−1

︸ ︷︷ ︸
Zint

BYA|Bf
︸ ︷︷ ︸

∆u2

, (3.9)

where the term ∆u2 denotes the interface gap which would result between both structures
if they where uncoupled (due to the externally applied forces f ). The term Zint can be
interpreted as the ’interface stiffness’ that relates the interface gap ∆u2 to the reaction forces
λ needed for ’closing the gap’. Reinserting (3.9) in (3.7) yields the admittance matrix of the
assembled system YAB:

(
YA|B −YA|BBT

(
BYA|BBT

)−1
BYA|B

)

︸ ︷︷ ︸
=YAB

f = u. (3.10)
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In fact primal and dual assembly are mathematically equal, as long as no DoF reduction is
performed on the interface [5]. If an interface DoF reduction is performed, then the dual sub-
ustructuring is weakening the interface condition (mechanically one could think about having
flexibility in the directions not covered by the interface reduction, see [148] and section 3.3.3
of this thesis). The primal assembly is artificially stiffening the interface in case an interface
reduction is performed (setting all motion in the directions not included in the reduction basis
to zero, i.e. a stiffening of the substructures). The primal assembly ensures the fulfillment of
the continuity a priory, by choosing a common variable for the interface displacement uAB2 .
The dual assembly satisfies the equilibrium a priory by choosing a common variable for the
interface forces λ.
For decoupling a substructureB from an assemblyAB, one can use the same equations as
above, just putting the positive YAB and the negative −YB into the uncoupled block notation
in equation (3.10). As primal and dual assembly are in fact mathematically equivalent, one
can deduct that if inserting a negative −ZB in the primal formula yields a decoupling of
structure B, this means that inserting a negative YB in the dual formula equivalently yields
a decoupling of B. A more elaborate and mechanically insightful discussion of decoupling
in the dual formulation can be found in [186].

3.2 Interpretation of the dual coupling

This section is intended to answer some questions which are either frequently asked by stu-
dents (which included the author at the beginning of his project), provide helpful insights for
implementation of the method, or just give further understanding of the dual FBS formula-
tion. They could not be found explicitly in other literature and therefore it was decided to
include them here.

3.2.1 Redundant rows and columns in dual assembly

Note that the assembled matrix YAB in (3.10) still has the same size as the unassembled
block matrix YA|B. Writing down (3.10) in the verbose form indicated in (3.5) yields:

YAB =




YA
11 −YA

12ZintY
A
21 YA

12 −YA
12ZintY

A
22 YA

12ZintY
B
22 YA

12ZintY
B
23

YA
21 −YA

22ZintY
A
21 YA

22 −YA
22ZintY

A
22 YA

22ZintY
B
22 YA

12ZintY
B
23

YB
22ZintY

A
21 YB

22ZintY
A
22 YB

22 −YB
22ZintY

B
22 YB

23 −YB
22ZintY

B
23

YB
32ZintY

A
21 YB

32ZintY
A
22 YB

32 −YB
32ZintY

B
22 YB

33 −YB
32ZintY

B
23




(3.11)

Notice that the second and third row of YAB should be equal as a direct consequence of the
continuity (uA2 = uB2 ). Take e.g. the first column terms of the second and third row in (3.11)
and subtract them from each other:

(YA
21 −YA

22ZintY
A
21)︸ ︷︷ ︸

=YAB
21

− (YB
22ZintY

A
21)︸ ︷︷ ︸

=YAB
31

= YA
21 − (YA

22 + YB
22)Zint︸ ︷︷ ︸

=I, see (3.9)

YA
21 = 0, (3.12)

which proves that these two terms are equal. This can be done similarly for all terms in the
second and third row. Additionally, notice that the second and third column in YAB are equal,
meaning that the external forces on the interface fA2 and fB2 both have the same effect on the
response of the assembled system. It is thus common practice to remove these redundant



3.2 Interpretation of the dual coupling 47
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Figure 3.4: Simple example for dual FBS. (a) separate subsystems of two discretized bars with
their mass and stiffness matrices. (b) FRFs of coupled system Y AB11 and uncoupled systems Y A11,
Y B11 . Drops in the smallest singular value of the interface admittance σmin(Yint) can clearly detect
resonances of the coupled system. At these frequencies the interface forces λ become large and
drive the separate systems A and B to high response amplitudes.

rows and columns from the final matrix YAB, thereby also making it invertible again and
treating the interface dofs as the common quantities they are:

uA2 = uB2 =: uAB2 , and fA2 + fB2 =: fAB2 . (3.13)

This can be implemented in the final software for performing the coupling and decoupling.

3.2.2 Resonances of the coupled system

The resonances of the coupled system will generally be different from the original reso-
nance frequencies of the separate subsystems A and B. Consider the system shown in
figure 3.4a. The two bars A and B are discretized with three DoF each and the mass and
stiffness matrices are given in figure 3.4a. The corresponding admittance matrices YA and
YB are computed from these (no damping) and coupled in all DoF with the dual FBS given
in equation (3.10). In figure 3.4b, the driving point FRF at the first degree of freedom for the
coupled and both uncoupled systems is shown. It can be seen that the resonances of the
coupled system are distinct from the resonances of the uncoupled systems. The resonances
of the coupled system can be explained with a singular value decomposition2 (SVD) of the
’interface admittance’ Yint:

Yint = YA
22 + YB

22 = UΣV∗, with:

U∗U = I, V∗V = I, Σ = diag(σmax, ..., σmin), so that:

Zint = Y−1
int = VΣ−1U∗,

(3.14)

2Initially, the author was tempted to include an explanation of the SVD in the Appendix of this thesis, like it is
done in many other texts. After all, this endeavor was considered to be a futile attempt to write something that
is only close to the clarity of the SVD derivation in Strangs textbooks [165, 167], or his MIT open courseware
lectures on linear algebra which are freely accessible videos on the internet.
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where (?)∗ denotes the hermitian of a matrix (complex conjugate and transposed matrix).
The minimum singular value σmin of the interface admittance will exhibit significant drops
at the resonances of the coupled system. In figure 3.4b, the value of σmin is also plotted
over frequency. The mechanical interpretation is straightforward: if a gap ∆u2 between
the uncoupled systems has a non-zero contribution in the vector of U corresponding to the
minimal singular value σmin(Yint), then the resulting interface force λ to close this gap is
very large, provided σmin(Yint) is very low. This in turn leads to a large response in both
systems and thus a resonance of the assembly. This can also be seen as having a large
interface stiffness Zint in this direction, since σmax(Zint) = (σmin(Yint))

−1, as indicated in
equation (3.14).
In case of a single uncoupled subsystem resonance, the maximum singular value of the
interface σmax(Yint) would be large (it is dominated by the substructure in resonance). The
interface stiffness in this direction would thus be small. This means that a large gap ∆u2,
which is a result of the subsystem in resonance, could be countered by a small interface force
λ and the response of the coupled system stays bounded at this frequency. I.e. resonances
of subsystems are not necessarily also a resonance of the coupled system3.
The fact that the resonances of the new system arise at the points were the interface flexi-
bility has sharp drops in its lowest singular value is unfortunate for experimental measure-
ments, since at frequencies where the response of both substrucutres is low, and thus also
the signal to noise ratio in the measurements is low, the random errors in the measurement
can lead to matrix components that cancel out mutually leading to small singular values and
thus to spurious peaks. This and other challenges related to experimental FBS will be dis-
cussed in section 3.4. Also some important error checks will be given to limit these problems
in practice.

3.2.3 Practical reason for dual coupling with experimental models

An often encountered question is: Why is the distinction between primal and dual assembly
important? After all, they are mathematically equivalent. They only yield different results if
an interface reduction is performed, as was already stated and is described in [5]. But there
is a practical reason for the dual assembly, when dealing with experimental substructures.
If one would prefer to couple the substructures with the primal formulation (3.4), one would
have to invert the measured Y matrices to get the dynamic stiffnesses Z which can then be
coupled:

ZA =

[
YA

11 YA
12

YA
21 YA

22

]−1

, ZB =

[
YB

22 YB
23

YB
32 YB

33

]−1

. (3.15)

In practice however, there is often only measured inputs at the connection points, but outputs
also at internal DoF, resulting in rectangular admittance matrices Y. Say in a practical
example one has a vibration source admittance YA, which is only measured on its interface
DoF. The final receiver B, to which A shall be coupled, is the vehicle. For the vehicle FRF
one applied input forces only at the coupling interface, but additionally measured the transfer
functions to some microphones and acceleration sensors inside the driver’s cabin (this would
be internal DoF to B). The admittances look like:

3Writing this down for e.g. a small system with only one interface DoF and performing a limit calculation is
also well possible, but spared at this point. Note that with noisy measurement data, there are spurious peaks
developing also at the resonances of the uncoupled substructures [147].
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YA =
[
YA

22

]
, YB =

[
YB

22

YB
32

]
. (3.16)

Since YB is rectangular it cannot be simply inverted, as in equation (3.15), for getting the
dynamic stiffness ZB and performing a primal coupling4. With the dual formulation however,
one can couple them easily with a slight amendment of the dual FBS formula (3.10). The
Boolean matrices for ensuring the compatibility and distributing the interface forces, Bu and
Bf respectively, would have different shapes since the number of input and output DoF is
different now. Writing the dual coupling problem again with the amended matrix shapes
yields:

YA|B =




YA
22 0

0 YB
22

0 YB
32,


 , (3.17)

Buu = 0, with Bu =
[
I −I 0

]
(3.18)

g = BT
f λ, with Bf =

[
I −I

]
(3.19)

which can be solved the same way as before resulting in the dual coupling:

(
YA|B −YA|BBT

f

(
BuY

A|BBT
f

)−1
BuY

A|B
)

︸ ︷︷ ︸
=YAB

f = u. (3.20)

Getting this result with primal assembly would also be possible but is quite cumbersome in
the equations and is therefore omitted here. The dual formulation as in equation (3.20) is just
more elegant and practical, for which credit has to be given to De Klerk who first formulated
the coupling in this form [87].

3.3 Virtual point transformation

The content of this section was published in [60]. The text hereafter has been modified and
adapted to the thesis.

In the previous section, it was implicitly assumed that the DoFs uA2 and uB2 are in the same
position and direction once the substructures are coupled, see figure 3.3. This way the en-
forcement of continuity on the interface, equation (3.8), is meaningful. The same is true for
the external forces fA2 , fB2 and the coupling forces λ on either side of the interface. In nu-
merical modeling with the FEM, the need for compatible interface DoF is usually solved by
using the same mesh on either side of the interface. More advanced methods to couple also
non-matching finite element meshes would be e.g. the mortar method [140]. When coupling
elements like screws or spot welds are part of the connections, one also uses separately
modeled connection elements [79]. However, in experimental models the problem is rather

4SubstructureA would be ok, since ZA = ZA22 =
(
YA

22

)−1. But for substructureB the driving point admittance
YB

33 could not be determined, unless performing an exmerimental modal analysis (which is not possible for a full
vehicle in higher frequencies, as discussed in the beginning of this chapter). The missing off-diagonal term could
be obtained from considering reciprocity YB

23 =
(
YB

32

)T (i.e. that the admittance matrix must be symmetric), see
equation (2.30).



50 3 Substructuring
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Figure 3.5: Assembly problem in experimental dynamic substructuring. Sensors u2 and force inputs
f2 on either side of the interface are non-matching.

the non-matching positions of impact and sensor locations, see figure 3.5. Quite often it is
not even possible to have sensor and impact positions to be geometrically coinciding on ei-
ther side of the interface. Thus, they can not be coupled by simply enforcing equality in each
DoF, as in numerical analysis and the definition of the interface coupling in experimental FBS
therefore remains challenging. The method for modeling the interface DoF of experimental
substructures, used in this thesis, is called the ’virtual point transformation’ (VPT). Before
the underlying transformations and the mechanical interpretation of this coupling variant is
explained, a brief overview of other methods described in the literature shall be given.

3.3.1 Coupling interface description with experimental data

One challenge of describing coupling interfaces of experimental substructures properly is
measuring and exciting rotational degrees of freedom (RDoF) on the interface. Sensors that
can actually measure RDoF have been discussed for a long time and can even be found
in textbooks [40, p.166ff] and [104, p.197ff]. However, rotational acceleration sensors are
still exotic and not commonly available. An example for the application of a rotational ac-
celerometer, with application to FBS and promising results can be found in [22, 34]. This
sensor can measure the rotational acceleration around one axis and weighs around 18.5
gram. Measuring all 3 rotations around one interface point would thus require 3 sensors,
or remounting and repeating the measurements 3 times (roving sensor). Despite the chal-
lenges of measuring them, including RDoF in the coupling process has been shown to be
crucial for accurate results [36, 39, 48, 86, 98, 113]. After all, coupling only the translational
directions at a connection point would correspond to a ball joint instead of the needed rigid
connection for e.g. the beam shown in figure 3.5.
Therefore, different methods have been developed to implicitly measure and include rota-
tions in the coupling. A large class of methods tries to infer the rotational motion on the
interface by using free vibration modes of the substructures to be coupled. They are thus
closely related to the component mode synthesis (CMS) techniques, well known from numer-
ical modeling [29, chapter 17]. The ’system equivalent reduction and expansion’ (SEREP)
procedure [129] is an elegant way to infer full motion data of the structure (including RDoF
on the interface) by measuring with translational sensors only at a few measurement points.
An application to experimental DS can be found in [195]. An advantage of these techniques
is that the mode identification processes has a ’smoothing effect’ on the frequency response
functions that are being coupled. It is thereby avoiding some of the numerical instability
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issues that are common in FBS [147]. However, a precondition to applying these methods
is having a reasonably accurate FEM model of the structure. If a FEM model is available,
also the ’system equivalent model mixing’ (SEMM) method [82] could be used for inferring
rotational DoF from only a few measurements on the structure.
To account implicitly for the RDoF on the coupling interface, some methods have used mul-
tiple connection points on the interface that are simultaneously coupled [36, 103], which has
been called ’equivalent multiple point connection’ (EMPC) [86]. However, coupling too many
points can result in an overdetermination and a bad conditioning of the interface coupling
equations. Some of the equations are then almost redundant and cause numerical instabili-
ties (see the discussion about small singular values on the interface matrix in section 3.2.2).
Additionally, the direct use of experimentally obtained data in the FRFs inherently causes
numerical instabilities [147]. An interesting depiction of different methods, their problems
and remedies can be found in the companion publications [4, 103], where it was found that
enforcing the coupling in only a ’weak’ least squares sense in many (modal) DoFs, can
significantly improve the substructuring results.
The approach used in this thesis is called ’virtual point transformation’ (VPT). It can be seen
as a combination of the CMS and EMPC methods above. It is using ’interface displacement
modes’ (IDMs) which aren’t free vibration modes of the whole structure, but rather kinematic
assumptions of the local displacement field directly at the interface. The IDMs can be con-
structed without the need of building a finite element model or performing an experimental
modal analysis. However, the transformation of measured FRFs on IDMs can also provide
some numerical smoothing if the transformation is overdetermined. This method has first
been used in [86] with driving point FRFs and was extended in [155] to allow for different
positions in sensors and force impacts, which is making it more feasible experimentally (see
figure 3.5). Earlier, in [67] the VPT concept (though under a different name) has already
been described for designing a 6 DoF force and acceleration sensor. In [158] the trans-
formation matrices necessary for transforming the measured FRF matrices on generalized
IDMs where derived using Moore-Penrose pseudoinverses. This also allowed for a different
weighting of physical DoFs in the transformation on the IDMs. In this chapter, the transfor-
mation matrices will be derived from a minimization point of view, to more clearly show how
the weighting matrices can be utilized to further improve the transformation and coupling
process. It will additionally be shown that the transformation of the measured DoFs to the
virtual point DoFs has a ’weakening’ effect on the interface compatibility (which is fulfilled
only in a ’least squares’ sense).

3.3.2 Transformation of FRF matrices

As explained above, it is not possible to enforce continuity and equilibrium directly between
two experimental substructure models. With the VPT, the measured sensor motion u2 and
the force inputs f2 are projected on some generalized IDMs. The resulting generalized dis-
placements q and generalized forces m are matching on either side of the interface and can
thus be coupled as explained in section 3.1. The transformation will take the following form
[158]:

Yqm = TuY22T
T
f , (3.21)

where Y22 denotes the measured FRF matrix in the nonmatching interface dofs u2, f2 and
Yqm denotes the transformed FRF matrix in the (matching) generalized coordinates. Tu and
TT
f are the transformation matrices:



52 3 Substructuring

qvx

qvy

qvθz

rh
eh fh

rk

ekx
eky

Figure 3.6: General interface connection point. Exemplary quantities for one sensor k and one force
input h.

q = Tuu2; f2 = TT
f m. (3.22)

The transformation in this section will only concern the interface submatrices Y22, the trans-
formation of the whole matrix YA or YB including also non-transformed internal DoF is
straight forward then (see sec. 3.3.3).

Displacement modes

In the case of nonmatching sensor DoFs on the interface u2, one can choose to represent
the interface motion by some general interface displacement modes (IDMs) and the corre-
sponding generalized coordinates q. The number of IDMs is typically lower than the number
of measured interface DoFs:

u2 ∈ Cnu , q ∈ Cp, with p ≤ nu.
Consider the single interface connection point depicted in figure 3.6. When assuming for
example that the interface behaves almost rigid in the frequency range of interest, one can
compose the generalized coordinates of a translational part qvt = [qvx q

v
y q

v
z ]T and a rotational

part qvθ = [qvθx q
v
θy
qvθz ]

T . The superscript (?)v denotes the virtual coupling point v, of which
there may be multiple on a structure. These coupling points are often called virtual points
since they can generally be at geometric positions where no physical sensors or inputs are
[86, 155, 158]. Such virtual points do not even need to be a material point of the substruc-
ture, as for instance the point inside a U-shaped connector in the right part of figure 3.5.
Assume the displacement ukx measured in x-direction of sensor k (see figure 3.6) shall be
computed from the six rigid motion coordinates qv. The relation between the motion in this
single sensor channel and the generalized coordinates can easily be found, provided we
know the orientation of the sensor’s x-axis ekx and its distance from the virtual point rk:

ukx = (ekx)T
(
qvt + qvθ × rk

)
= (ekx)T




1 0 0 0 rkz −rky
0 1 0 −rkz 0 rkx
0 0 1 rky −rkx 0







qvx
qvy
qvz
qvθx
qvθy
qvθz




= Rukx
qv, (3.23)
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where Rukx
is a 1 × 6 matrix relating the generalized coordinates qv to the displacement in

the sensor’s x-channel. Note that this is essentially the same as the rigid body kinematics
stated in equation (2.57), where the virtual point would correspond to the reference point Q.
The displacements in all sensor channels can be reconstructed for a given qv following a
similar procedure. Stacking all sensor transformation matrices for all virtual points (see also
[158]), yields:

u2 = Ruq with Ru ∈ Rnu×p. (3.24)

This can be seen as representing u2 by a reduced basis contained in the matrix Ru. Note
that the reduced basis Ru may contain arbitrary other interface displacement modes, not just
the rigid modes for a virtual point as discussed above. Any modes other than the rigid ones
that might be of importance can be included as a column in Ru (see e.g. [133]). However,
the general form of (3.24), i.e. the reduction of sensor DoFs, will remain the same.

Displacement transformation

In reality, the response in the sensor channels u2 will not behave perfectly as indicated in
(3.24). This means that one can only represent a measured u2 with the IDMs up to a certain
residual µ, which contains e.g. the non-rigid motion or measurement noise.

u2 = Ruq + µ → µ = u2 −Ruq. (3.25)

However, if the kinematic assumption of the interface motion, contained in Ru, is good
enough in the frequency range of interest (e.g. the rigid body assumption on a virtual
point as shown above), then the residual µ is likely to be very small and contains mostly
measurement noise or results from sensor positioning uncertainties. See e.g. [157, 158]
for some indicator functions to check for the validity of the kinematic assumption in a given
measurement.
With a given reduction basis Ru, one wants to find the q that best approximates the mea-
sured response u2. This can be done by minimizing a cost function Φ(q), which is merely
the residual µ weighted by a symmetric weighting matrix Wu

5. The weighting can be chosen
from an engineering point of view (some possible choices for Wu can be found in [60]). The
scalar to minimize with the transformation from u2 to q is:

Φ(q) = 1
2 µ

TWuµ =1
2(u2 −Ruq)TWu(u2 −Ruq) (3.26)

=1
2


qTRT

uWuRuq︸ ︷︷ ︸
quadratic in q

− 2uT2 WuRuq︸ ︷︷ ︸
linear in q

+ uT2 Wuu2︸ ︷︷ ︸
constant


 .

If the quaratic term of this function is convex (i.e. the Hessian matrix RT
uWuRu is positive

definite), one can simply find the minimum of Φ(q) by setting its first derivative to zero:

(
∂Φ

∂q

)T
= RT

uWuRuq−RT
uWuu2

!
= 0, (3.27)

where it was already assumed that Wu is symmetric. This means for the sought transfor-
mation matrix Tu:

5Also frequently called weighted least squares [165].
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q =
(
RT
uWuRu

)−1
RT
uWu︸ ︷︷ ︸

Tu

u2, (3.28)

where q represents the ’optimal’ solution, which is minimizing the cost function (3.26), and
approximates a given u2 with the IDMs. This transformation matrix is the same as the Moore
Penrose pseudoinverse in [158]. The weighting matrix can e.g. be chosen to be a diagonal
nu × nu identity matrix, apart from weights lower than 1 for those measurement channels
that were found to be very noisy or not as trustworthy during the tests. More choices can be
found in [60].

Remark 3.1: The positive definiteness of the Hessian matrix shall get some brief
attention here. In simple least squares, the Hessian matrix is RT

uRu, which is always
positive definite if the IDMs contained in Ru are independent, i.e. Ru has full rank.
Thus:

Ruq 6= 0; ∀q 6= 0

qTRT
uRuq =: xTx > 0; ∀q 6= 0

The positive definiteness of the Hessian matrix, can also be shown if the weighting
matrix Wu is a symmetric positive definite matrix. Then Wu can be factored in its (all
positive!) eigenvalues Λ = diag(λii) and the orthonormal eigenvectors Q. Thus:

qTRT
uWuRuq =: xTWux > 0; ∀q 6= 0

Obviously, one could also add multiple weighting matrices to include different quality
criteria in the transformation, e.g. Wu = Wu,1 + Wu,2; as long as Wu,1 and Wu,2 are
also symmetric positive definite.

Force modes

The same kinematic assumptions as for the displacements are made for the forces. The
number of force inputs nf is typically higher than the number of IDMs p. Their position must
also be carefully chosen, so that all IDMs are excited [158].

f2 ∈ Cnf , m ∈ Cp, with p ≤ nf .
Consider again the example in figure 3.6, with a locally rigid interface on virtual point v. All
input forces f2 will result in a force mv

t and a moment mv
θ around the virtual point. For a

single force input fh this can be expressed by:

mv =

[
mv
t

mv
θ

]
=

[
I

rh × I

]
ehfh = RT

fh f
h, (3.29)

where RT
fh

denotes the 6 × 1 matrix representing the virtual point load mv resulting from
a unit force input in fh and eh denotes the direction vector in which the force was applied.
The virtual point loads resulting from the other force inputs can be found following a similar
procedure. Putting each contribution in a column of RT

f , one can write
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Figure 3.7: Exemplary nullspace vector for input forces.

m = RT
f f2 with RT

f ∈ Rp×nf . (3.30)

Notice that RT
f is written transposed since it would directly correspond to the transpose

of Ru in (3.24) if the measured FRF contains only driving point DoF, i. e. if all force inputs
would have a corresponding sensor channel in the same geometric position and in the same
direction. However, it is a great practical advantage that different DoFs can be used for force
inputs and displacement outputs.

Force transformation

In order to transform a measured FRF matrix according to (3.21), a force transformation
matrix TT

f is needed. It transforms a given load in the generalized forces m, to an equivalent
vector of input forces f̃2:

f̃2 = TT
f m, (3.31)

where: RT
f f̃2

!
= m. (3.32)

The problem in (3.31) and (3.32) is fundamentally different from the displacement trans-
formation, stated in (3.25). The requirement in (3.32) is an underdetermined problem and
there are infinitely many possible solutions for f̃2 that fulfill this requirement. Any vector in
the nullspace of RT

f , lets call an example vector f̃2,null, could be added to f̃2 to produce yet
another possible solution to (3.32). For the assumption of a locally rigid interface, all f̃2,null

would be exciting only flexible modes. Figure 3.7 shows a depiction of such a possible f̃2,null

which would excite a local bending, which is not contained in the rigid basis.
The question for the transformation is: how to find a solution f̃2 from those possible combi-
nations, which is ’good’ from an engineering point of view? One can state a standard convex
optimization problem where the goal is to minimize a scalar cost function Φ(f̃2), while the
optimum solution f̃2 is subject to constraints g(f̃2):

Minimize: Φ(f̃2) = 1
2 f̃T2 Wf f̃2, (3.33)

Subject to: g(f̃2) = RT
f f̃2 −m = 0, (3.34)
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where the force weighting matrix Wf was introduced for the cost function. Following the
same arguments as in the transformation of the displacements, one can state that Φ(f̃2) has
only one global minimum, if the weighting matrix Wf is positive definite. In the standard
optimization formulation for finding a constrained minimum6, i.e. forming the Lagrangian
L(f̃2,λ) and search for its stationary point, this yields:

L(f̃2,λ) = Φ(f̃2) + λTg(f̃2), (3.35)
(
∂L
∂ f̃2

)T
= Wf f̃2 + Rfλ

!
= 0, (3.36)

(
∂L
∂λ

)
= RT

f f̃2 −m
!

= 0, (3.37)

where (3.37) is basically enforcing the constraints. Equation (3.36) states that at the op-
timum, the gradient of Φ(f̃2) can be expressed as a linear combination of the constraint
function gradients. The weights for this linear combination are in λ. This effectively means
that, at the optimum f̃2, there is no ’direction’ ∆f̃2 that could improve the value of Φ(f̃2) with-
out changing/violating one of the constraints in g(f̃2) (see e.g. also [165, pp.603ff] or any
standard text on optimization). Using (3.36) to solve for f̃2 = −W−1

f Rfλ and inserting this
in equation (3.37) to solve for the Lagrange multipliers λ, yields:

λ = −(RT
f W−1

f Rf )−1m, (3.38)

which, reinserted in equation (3.36), means for the ’optimal’ solution f̃2:

f̃2 = W−1
f Rf (RT

f W−1
f Rf )−1

︸ ︷︷ ︸
TTf

m, (3.39)

where TT
f is the transformation matrix for transforming a VP load m to an equivalent f̃2 in the

force DoFs (which were actually physically measured in Y22). Note that it is easy to verify
that this solution f̃2 satisfies the constraints (3.34). The above transformation matrix can
also directly be seen as a right Moore-Penrose pseudoinverse as used in [158]. Effectively,
the weighting matrix could be used to ’penalize’ impact positions which were e.g. not as
trustworthy as the others (e.g. due to bad coherences there or hard to reach points on the
structure). Penalizing means in this context, that these entries in f̃2 for representing a given
m should be small. In order to do this one could choose Wf to be a diagonal identity matrix
apart from numbers larger than 1 on the diagonal entry for the force inputs which are not
trusted as much. Note that this is in contrast to the displacement transformation were a lower
number than 1 should be chosen for the untrusted measurement channels. More possible
choices for defining the force weighting matrix can be found in [60].

3.3.3 Virtual point transformation as a weakening of compatibility

In the last subsection, the transformation matrices for projecting the interface DoFs u2, f2 on
the generalized DoFs q,m were derived. Substructure A’s full admittance matrix YA may
thus be transformed to virtual point DoF on the interface without changing the internal DoF:

6A great resource for getting an intuitive understanding of constrained optimization with the concept of a
Lagrangian function is the 50 minute lecture from the MIT open course ware by Auroux [8].
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ỸA =

[
YA

11 YA
1m

YA
q1 YA

qm

]
=

[
I 0

0 TA
u

][
YA

11 YA
12

YA
21 YA

22

][
I 0

0 (TA
f )T

]
, (3.40)

where ỸA denotes the transformed substructure matrix. An analogous expression would
yield ỸB, the transformed admittance matrix of substructure B. The two transformed ma-
trices can directly be coupled to each other, as shown in section 3.1.2. The rigid modes on
both sides were created with the virtual points being in the same position, so the generalized
DoFs on either side of the interface are matching:

ỸAB = ỸA|B − ỸA|BBT
(
BỸA|BBT

)−1
BỸA|B,

where ỸA|B =

[
ỸA 0

0 ỸB

]
.

(3.41)

This is generally what is done when coupling with experimental substructures in this the-
sis. It will now be shown that coupling the virtual point transformed matrices of A and B
corresponds to a weakening of the interface compatibility condition.
Assume the non-transformed (i. e. measured) admittance matrices, written in block diagonal
form YA|B as in (3.20) shall be coupled. However, compatibility is only enforced in directions
of the generalized DoFs q and reaction forces are only the generalized forces m:

YA|B (f + BT
f λ︸︷︷︸

=g

) = u, where Bf =
[
0 TA

f −TB
f 0

]
, (3.42)

Buu = 0, where Bu =
[
0 TA

u −TB
u 0

]
. (3.43)

Inserting (3.42) in (3.43) yields7:

λ = −
(
BuY

A|BBT
f

)−1

︸ ︷︷ ︸
Zint

BuY
A|Bf

︸ ︷︷ ︸
∆q

(3.44)

= −
(
YA
qm + YB

qm

)−1

︸ ︷︷ ︸
Zint

[
0 TA

u −TB
u 0

]
︸ ︷︷ ︸

=Bu

YA|Bf

Reinserting λ in (3.42) yields the ’weakly coupled’ admittance YAB
weak:

(
YA|B −YA|BBT

f

(
BuY

A|BBT
f

)−1
BuY

A|B
)

︸ ︷︷ ︸
YAB
weak

f = u. (3.45)

Notice that YAB
weak has the same size as the non-transformed block matrix YA|B. However, as

opposed to YAB in (3.10), when writing down YAB
weak in the verbose 4×4 block matrix notation

(shown in section 3.2.1) we would notice that the second and third row are not identical. This
means that the displacements uB2 and uA2 are not perfectly coupled, but remain uncoupled

7Notice that the matrices Bu and Bf for requiring compatibility and equilibrium are not ’signed boolean’
anymore now. This makes the naming ’B-matrix’ somewhat meaningless, but this notation is so common that it
will be kept.
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in the residual directions of the transformation µ. Inserting (3.28) in (3.25), we can write for
the interface residuals µ:

µ = (I−RuTu) u2. (3.46)

These ’residual motions’ µ may be present on either side of the interface as a part of the
real motion u2 = Ruq +µ. However, when transforming the residual parts µ in (3.46) on the
IDMs, we see that of course Tuµ = 0. When looking at the last part of (3.44), this means
that the residual motions on either side are not producing any reaction force λ and are thus
remaining uncoupled.
This weakly coupled YAB

weak may then be transformed to the generalized DoFs via:

ỸAB =




I 0 0 0

0 TA
u 0 0

0 0 TB
u 0

0 0 0 I




YAB
weak




I 0 0 0

0 (TA
f )T 0 0

0 0 (TB
f )T 0

0 0 0 I



, (3.47)

which can be verified to be the same matrix ỸAB from equation (3.41). This result is pointing
out two important assumptions when two virtual point transformed admittances are coupled:

• Substructures are left uncoupled in the directions not contained in the IDMs.

• All important motion is contained in the IDMs and thus external excitations and motions
in directions not contained in the IDMs are negligible or not of special interest.

The result of (3.45) can also be used to purposely couple two substructures only in specific
directions or modes, while leaving their full set of DoFs in the resulting model (e.g. for
structures containing relatively loose joints in certain directions). In fact, this is an important
insight for understanding how to couple e.g. gyroscopic effects. These can be important for
substructures with internally rotating parts, while their FRFS were measured in an idle state
(like e.g. the climate compressor). The gyroscopic effects are coupled to only the directions
that are actually tilting the rotation axis (this will be explained in chapter 5).
The findings of past publications, such as ’that the lack of RDOF data underestimates in
frequency the correct predictions [of the coupled system resonances, M.H.].’ [36], can be
clearly attributed to the weakening effect on the interface compatibility when leaving out the
rotational IDMs.
Mayes and Allen have clearly shown in [4, 103] that solving the compatibility condition in ex-
perimental substructuring only in a least squares way (called ’MCFS’ in these publications),
can dramatrically improve the results. This is also an encouraging result for the coupling
of substructures in a ’weak’ manner as in the projection developed in [86, 155, 158] and
described here.

3.4 Error checks for accurate experimental substructure mod-
els

The VPT yields experimental substructure models that are compatible with other structures
on the interface. Thus, for coupling them, it does not matter if these structures are obtained
from experiments or from numerical/analytical modeling. However, it is crucially important
to check the quality and physical validity of each model before coupling them via FBS. The
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Figure 3.8: Example of bad sensor placement. Sensors are close to a common line through their
center points. Rotations around this axis can barely be observed and random measurement noise in
the sensor channels is amplified.

measurements have to be conducted with great care. E.g. in [20] it is shown that a wrong
positioning of 35mm or a wrong orientation of 15◦ will change the FRF from source to mi-
crophones in the vehicle by roughly 5dB. In section 2.6, some checks that should be per-
formed on pure FRF measurements were already proposed. After performing the VPT of
the experimental models, there are additional valuable checks for obtaining most accurate
experimental models. These shall be mentioned here.

3.4.1 Observability of interface displacement modes

Especially when applying the VPT for the first time, it is a common error that the sensors and
impact positions are not setup correctly in order to observe and excite all rigid motion on the
interface. If three triaxial acceleration sensors are placed on the interface (nine DoFs) it is
still possible that the observability of the rigid motions is bad, e.g. if the sensors all lie close
to a straight line through their centers (see figure 3.8). The problem in this case is that a rigid
rotation around this line/axis would result in almost no signal in the sensor channels. This
direction may thus be severely contaminated by measurement noise. Also small positioning
errors of the sensors would cause large bias errors in the estimated rotation around this
axis. The same is true for the force application points. They must be able to excite all rigid
interface modes without the need for extremely high forces to excite specific rigid body loads.
A quick and handy check is the condition number of the IDM matrices Ru and Rf . In the
case that one direction cannot be observed or excited properly, the resulting condition num-
ber in the corresponding IDM matrix would be very high. As a rule of thumb, it turned out that
the condition number of the IDM matrix should be below 1000 in any case8. Otherwise one
should rethink the positioning of sensors and impacts. In case of a good distribution of sen-
sors and forces around the virtual point, the condition number of the IDM matrices should be
in the order of 100 or below. Consider e.g. the rigid cross already discussed in section 2.7.3
(see figure 3.9 for the applied sensors and force input points). It was specifically designed,
so that the sensors and impacts can observe and excite all rigid motion very well. As a
result, the condition numbers of the IDM matrices are comparably low, cond(Ru) = 18.6 and
cond(Rf ) = 26.6.

8(All guidelines here for measuring displacements in meter and rotations in radians)
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Figure 3.9: Rigid cross with measured sensor accelerations u, applied hammer impacts f , trans-
formed rigid body DoF q and forces and moments m around virtual point (indicated as green point).

3.4.2 Noisy channels effect on the virtual point transformation

As mentioned in in section 2.7.3, before performing the measurement, one should also
check the noise level in the single sensor channels. During impact measurements on the
cross in figure 3.9, it was found that the noise in one sensor channel was around 50dB
higher than for all others. Interchanging cables and connectors on the data acquisition sys-
tem led to the conclusion that it was actually an issue in one channel on the sensor. The
FRFs measured with this sensor channel reflected the significantly higher noise level. In
figure 3.10a, two different FRFs that should be equal (due to symmetry of the cross) are
compared: one measured with the noisy channel and the other with an intact sensor9. Due
to over determination of the VPT (12 sensor channels transformed to only 6 rigid DoF), it
was not necessary to keep the defect sensor channel in the transformation. In this case,
it is recommended to take this channel completely out of the transformation (deleting the
corresponding row from Yuf and Ru). The result of a virtual point transformed FRF which is
particularly influenced by the response in the noisy channel is shown in figure 3.10b, once
for keeping and once for neglecting the broken sensor channel. The condition number of the
sensor IDM matrix Ru did only deteriorate slightly by neglecting the data measured with this
channel, hence throwing this sensor out of the transformation was possible. Otherwise, it
would have been an option to put a lower weight on the diagonal weighting matrix Wu for this
sensor channel. One can also observe the ’smoothing’ effect that the VPT inherently has on
the data, even when keeping the broken sensor channel in the transformation (compare the
’noisiness’ of the purely measured FRF in figure 3.10a to the virtual point transformed FRF
in figure 3.10b).

3.4.3 Consistency of the transformation

Even with perfect observability of all rigid IDMs on the interface and low noise in all channels,
it is still possible that the transformation is not valid, since e.g. the interface simply does not
behave rigidly over the whole frequency range. Therefore, one should check the consistency
of the transformation, as defined in [158]. A filter matrix Fu that filters out all motions not
contained in the reduced basis Ru, and a filter matrix Ff that filters out all excitations not
contained in the reduced basis Rf , is defined:

9This measurement was performed on an assembly of two crosses with a rubber bearing in between (see
figure 4.1). Hence, the FRF matrices are not just flat lines as would be expected for a freely hung up cross which
is just a rigid body. But this does not matter for the point being made here about good experimental models.
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Figure 3.10: (a) FRF measured with a noisy channel compared to intact channel. (b) Virtual point
transformed FRF for a rotational DoF which is particularly affected by the noisy channel. Once for
keeping the broken sensor channel in the transformation and once for neglecting the data measured
with it.

ũ = Ruq = RuTu︸ ︷︷ ︸
=Fu

u, f̃ = TT
f m = TT

f RT
f︸ ︷︷ ︸

=FTf

f , (3.48)

where ũ and f̃ represent the filtered motions and forces respectively. If the interface was
indeed perfectly rigid, then the mesured FRF matrix would be invariant to these filtering
operations, i.e. filtering out the non-rigid motion of u would not change the vector, since it
does not contain any non-rigid motion anyway (µ = 0 in equation (3.25)). Also the response
to a force vector f would be the same as to the filtered force vector f̃ . The forces f̃ might
differ in their individual entries of single forces from f , but are effectively applying the same
load to the virtual point in the reduced basis as f does (same forces and moments in case of
a rigid interface). To check the consistency of the sensor transformation one can therefore
check if:

Sensor consistency: Ỹ = FuY
?
= Y, (3.49)

Impact consistency: Ỹ = YFT
f

?
= Y. (3.50)

These checks are best performed by defining coherence-like functions that allow to compare
the similarity of two complex numbers (the filtered and unfiltered entries of the FRF matrix).
The coherence-like functions yield a value of 1 for perfect equality of the two numbers and a
value close to 0 if they are very different. Two of many possible choices for comparing two
complex numbers a and b are:

cohθ(a, b) =
(a+ b)(a∗ + b∗)

2(aa∗ + bb∗)
, (3.51)

cohA(a, b) = 1− (||a|| − ||b||)2

||a||2 + ||b||2 =
2||a|| ||b||
||a||2 + ||b||2 , (3.52)
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Figure 3.11: Depiction of the defined coherence functions for comparing the similarity of two complex
numbers a and b. (a) Differnces in complex amplitude between a and b. (b) Differences in phase angle
between a and b.

where cohθ is the coherence-like function already defined in [157, 158]. It is more sensitive
to phase differences. The coherence-like function cohA is a bit more sensitive to differences
in amplitude between the numbers a and b. The behavior of these functions for differences
in angle and amplitude of a and b can be seen in figure 3.11.
Each of these functions can then be choosen to depict the consisteny of the sensor and
impact transformation,

consistθ(Ỹij , Yij) = cohθ(Ỹij , Yij), consistA(Ỹij , Yij) = cohA(Ỹij , Yij), (3.53)

Sensor consistency: Ỹ = FuY, (3.54)

Impact consistency: Ỹ = YFT
u . (3.55)

These can then be checked over the whole frequency range for individual FRF matrix entries
Yij or averaged over the frequency range of interest and plotted in a tile-like overview plot
for all matrix entries. In figure 3.12a, the sensor consistency of a single entry Yij from the
measured FRF matrix on the freely hung-up cross (figure 3.9) is shown. It can be seen
that the consistency is good until around 2000 Hz. In this case, this is not a problem since
the frequency range of interest was only up to 2000 Hz and it was well known that the first
flexible mode of the cross would be in the region of 4600 Hz. It is also important to have some
engineering judgment while checking these consistency functions. E.g. FRF matrix entries
where the applied force simply does not excite the specific sensor channel will not only show
a poor coherence γ2, but also a poor consistency of the VP transformation. This is not a
problem. Also drops in the consistency close to anti-resonances are rather natural. Low
consistencies over the whole frequency range for one sensor channel, and consistencies
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Figure 3.12: (a) Consistency of the VPT of one FRF measurement on the rigid crosses (input f1 and
output z-direction of adjacent sensor, see figure 3.9). (b) Symmetry symmθ(Yij , Yji) of virtual point
transformed FRF matrix of rigid cross. Averaged over the frequency range 0-2000Hz.

that never quite reach the value 1 for all other sensor channels on the same virtual point,
usually mean that the position or orientation of this sensor channel is not fitting the assumed
position and orientation used for constructing Ru. Looking at the plausibility of an operational
deflection shape animation helps fixing these issues.

3.4.4 Symmetry of FRF matrix

Interchanging the output DoF i and input DoF j on an FRF matrix yields the same FRF,
i.e. Yij = Yij . This is also known as ’reciprocity’ principle and can directly be seen from
equation (2.30) for the synthesis of an FRF matrix entry. For usual FRF measurements this
is not really a valid check, since the inputs and outputs (i.e. hammer impact and sensor
positions) are typically not all in the same position and directions so they do not really rep-
resent the same DoF (see figure 3.5). After performing the VPT however, the transformed
matrices give the relation between virtual point inputs and outputs defined around the same
point and in the same directions. They should thus be symmetric. This symmetry can be
tested with the coherence functions defined above,

symmθ(Yij , Yji) = cohθ(Yij , Yji), symmA(Yij , Yji) = cohA(Yij , Yji), (3.56)

This frequency dependent value for the symmetry can then be averaged over the frequency
range of interest and plotted in a tile plot for each entry of the transformed FRF matrix. In
figure 3.12b, the symmetry for the virtual point transformed experimental FRF of the rigid
cross is shown. Note that, at first sight, it looks like the symmetry is bad for many entries,
but in fact most of the rigid body DoF on this cross are uncoupled from each other. E.g. a
force in z-direction (see figure 3.9) would cause only a response acceleration in z-direction.
The x- and y -translation and all rotations should be zero, and are mostly noise and thus
comparatively low in magnitude. The only directions which are coupled for the free cross is
the x-translation and the rotation θy, as well as y-translation and the rotation θx, since the
center of gravity C of the cross does not correspond to the virtual point Q (see figure 2.7a).
These entries show almost perfect symmetry in figure 3.12b and thus this model would be
considered valid. Note that one could also force symmetry on the transformed matrix by
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Ysym = YT + Y. But to the authors experience this does not improve any results, and one
should rather try to obtain a symmetric matrix by performing a good measurement.

3.4.5 Passivity of FRF matrix

Another property that the virtual point transformed FRF matrix should fulfill is passivity. A
passive structure without any internal energy sources must only dissipate energy and not
produce any. The phase requirements for driving point FRFs were already discussed in
section 2.6.2. However, the right phase relations on driving point FRF matrix entries are not
sufficient for assuring that the structure behaves passive. The principal requirement is that
the power input to a passive system must always be positive, i.e. there can be no net power
output from the system. This can be expressed in the frequency domain as: The real part
of any external input force m times the velocity q̇ resulting from it must be positive (scalar
product). Assuming we have a mobility FRF matrix, i.e. the velocity as output, one can say
that for a passive system:10

Real (m∗ q̇) = Real (m∗ Yq̇m(ω) m) ≥ 0 ∀ω,m, (3.57)

where (?)∗ indicates the hermitian, and Yq̇m represents the virtual point transformed, inter-
face FRF matrix in mobility format. Note that this requirement can be violated even if the
passivity requirements on the driving points are fulfilled. The topic of FRF matrices passivity
has had some attention in the past. Especially with respect to Substructuring. E.g. in [164]
the authors give a good discussion about the passivity requirement for a symmetric FRF
matrix. They show that for passivity, the real part of the mobility FRF matrix needs to be
positive definite, which would translate to corresponding requirements for receptance and
accelerance. Also in [24], this requirement is shown for symmetric FRF matrices with modal
damping. Ín [24], the authors propose to perform an eigenvalue decomposition on the real
part of the FRF matrix and then replace all the negative eigenvalues (the ones associated
with the negative damping) by zero. Here it is tried to not limit the property to symmetric
matrices since, as we have seen in the previous subsection, the resulting matrices from
the virtual point transformation are in general not perfectly symmetric. In [96], the authors
show that experimental modal analysis (EMA) methods, which are pure curve fitting tools,
also fit measurement errors and thus produce slightly non-passive estimates for the modal
properties (eigenvalues and eigenvectors). They propose an elegant method for a minimal
correction of mode shape vector entries, so that the passivity of the main diagonal entries
Yii in equation (2.30) is valid again (see section 2.6.2). One of the goals with the VPT is to
save the extra step of an EMA, in order to be applicable to complex structures without clear
modal behavior. Hence, the following discussion is included in this thesis.

Passivity from the SVD

In order for the passivity requirement in (3.57) to hold, it is useful to look at the singular value
decomposition of the virtual point mobility matrix:

Yq̇m = UΣV∗, where U,V ∈ Cnq×nq , Σ ∈ Rnq×nq . (3.58)

where nq is the number of VP interface DoF. The left and right singular vector matrices U
and V are complex unitary matrices (i.e. their column vectors are orthogonal to each other

10These definitions are well known in electrical engineering. The real part is called active or "real" power (really
consumed by the device). The imaginary part is called the "complex" or reactive power (cyclically absorbed and
released by the device).



3.4 Error checks for accurate experimental substructure models 65

and have unit length). Notice that it was not assumed that the virtual point matrix Yq̇m is
symmetric. This is generally not the case for experimental FRF matrices after VPT (see e.g.
figure 3.12b), so U 6= V. The singular values from the SVD, σi in Σ, are always positive real
[51, p. 80]. Any input force vector m can be expressed with the complete basis V, i.e. as
a combination of the unit basis vectors vi. So it is sufficient to show passivity for each input
vectors vi. Assume a force m = vi is applied, then:

Yq̇mvi = UΣV∗vi = uiσi. (3.59)

All singular values σi are positive. So for satisfying the general statement of passivity in
equation (3.57) for any possible m, it needs to hold that:

Real (v∗i ui) ≥ 0 ∀i = 1, ..., nq. (3.60)

The criterion holds for all mobility FRF matrices, but can be generalized to the other repre-
sentations as before:

∠ (v∗i ui)





∈ [−180◦, 0◦] for an admittance/receptance FRF
∈ [−90◦, 90◦] for a mobility FRF
∈ [0◦, 180◦] for an accelerance FRF

∀i, (3.61)

Passivity from real part of mobility matrix

One can also play with the general formulation of equation (3.57). For any complex number
a, one can say that:

Real(a) =
1

2
Real(a+ a∗), (3.62)

which means for the condition in (3.57):

0 ≤ Real (m∗ Yq̇m m)

=
1

2
Real

(
m∗ Yq̇m m + m∗Y∗q̇m m

)

=
1

2
Real

(
m∗

(
Yq̇m + Y∗q̇m

)
m
)
.

(3.63)

Now one needs to verify that the matrix
(
Yq̇m + Y∗q̇m

)
is positive definite, which is easy to

verify since it is Hermitian. One could check if all eigenvalues are positive, or one could look
at the LU-factorization and check if there are any negative pivots occuring (this maybe more
effective numerically).
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Research is like looking for the needle
in a haystack. But sometimes while
searching the needle, you will find the
handsome daughter of the farmer. Then
you do some math to prove it was clear
from the beginning that it would work.

Prof. Wolfgang A. Wall,
during a FEM lecture

The contents of this chapter were published in similar form in [54]. The text hereafter has
been modified and adapted to the thesis.

A crucial part of this project was the development of sufficiently accurate dynamic models
for rubber mounts, since most of the isolation concepts for the structure borne sound were
based on them. Unfortunately, commercial off-the-shelf rubber isolators often come with
no additional information other than the static stiffness in three translational directions. Hy-
draulic testing machines can be used to obtain frequency dependent dynamic stiffnesses of
rubber isolators in translational DoF. Alternatively, DS based methods can be used, which
can additionally identify the dynamic stiffness in rotational DoF while requiring only standard
vibration testing equipment. In this chapter, results of two substructuring methods will be
compared to those from a hydraulic machine. Both of the presented methods use the rigid
crosses, already presented in section 2.7.3 and section 3.4, mounted to the bottom and top
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68 4 Experimental rubber element models

of the isolators. Frequency based substructuring (FBS) requires knowing the fixtures dynam-
ics to decouple them. Inverse substructuring, also called in-situ decoupling, does not require
knowing the fixtures dynamics, but is assuming negligible mass and a special stiffness ma-
trix topology of the rubber isolator. Both methods produce accurate results for translational
DoF up to the kilo Hertz range, which is confirmed by comparison to measurements on the
hydraulic machine. However, FBS does not rely on specific assumptions about the isolator,
like inverse substructuring. The limits of inverse substructuring’s underlying assumptions
are shown theoretically and in the measurements presented here. We propose two exten-
sions to compensate for the assumptions and present their results. However, FBS seems
to be more appropriate for including the identified rubber element models in a larger sub-
structured assembly. The advantage of FBS over inverse Substructuring is also confirmed in
this chapter, with a small example. The experimental rubber element models, obtained with
either method, are tested in a substructuring prediction of a coupled frequency response
function (FRF) which is compared to reference measurements. Therefore, the FBS based
rubber models will be used for the applications shown in chapter 11 and 12.

4.1 Review of rubber dynamics and outline of the chapter

Optimizing the vibration behavior of a mechanical system frequently requires knowledge
about rubber isolators’ dynamic properties. They have thus been the subject of many studies
over the past years. The following discussion gives an overview of the dynamic properties
of rubber, the goal of the methdods presented in this chapter, and how it relates to existing
work in the field.

4.1.1 Dynamic behavior of rubber isolators

The vibration stiffness of rubber isolators depends on many different factors, such as static
preload [1], temperature [52, 76, 151], vibration frequency [35, 80, 88, 184] and vibration
amplitude [65, 69, 127, 151].

• Static Preload: Changes in dynamic stiffness due to static preload are mainly caused
by significant non-linear changes of the isolators geometry, e.g. a stiffening due to
increased cross sectional area of the preloaded rubber isolator. From the results of
this study and also the results reported in [1], they start affecting the isolator properties
if the material strain ε from the static preload exceeds approximately ε > 5%.

• Temperature: The rubber temperature has a significant influence on the dynamic
properties of the material, which is mainly caused by the constitutive change from the
"rubber region" to the "glassy region" in the material, see e.g. [76, 151].

• Frequency: With varying excitation frequency ω, a rubber isolator also changes its
stiffness [1, 35, 80, 88, 184]. Partly, this is due to changes in the material properties,
like the complex Youngs modulus. However, this effect seems to be not prominent in
the typical frequency range of interest for noise and vibration engineering. E.g. in [88],
it was found that the rubber material could well be modeled with frequency independent
material parameters (up to about 1000Hz). In [88], the dominant effects changing the
isolator stiffness were continuum (anti-) resonances in the rubber geometry (found
at about 1200Hz in [88]). See e.g. [1] for a simulation and depiction of the internal
resonances in a given rubber isolator element. Especially for frequencies up to the kilo
Hertz range these effects are important to consider.
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• Amplitude: The overall vibration amplitude in the time domain is changing the dy-
namic stiffness of rubber isolator elements [65, 69, 127, 151]. Rubber generally be-
haves stiffer if the maximum transient displacement in time is small. For example, in
a harmonic shaker test with only one excitation frequency ω and a vibration amplitude
A, the overall transient vibration in time is smaller than for a superposition of multiple
excitation frequencies which still contain the single excitation at frequency ω with am-
plitude A. E.g. in case of an impact or many excitation orders of a motor, the maximum
vibration amplitude in time is higher, and the rubber material behaves softer compared
to the case where it would be tested with a shaker that is stepping through the sin-
gle excitation frequencies and amplitudes individually. This "material softening" with
higher transient displacements can be attributed to the elastomer molecule chains in
the material, which start to unfold from a compact packaging in the undeformed po-
sition, to a more flexible structure for large dynamic displacements. For a detailed
discussion of this effect see [65].

For modeling the dynamic behavior of rubber isolators with given geometry, many researchers
investigated methods for identifying the frequency dependent stiffness and damping (usu-
ally represented by a complex modulus) of the rubber material. In [88], the authors compare
different formulations for the complex modulus whose parameters are fitted to FRF mea-
surements on a rubber specimen placed between two masses. The results are validated by
using the identified modulus in a FE-model of the same setup.
In [1] and [85, section 7.3], the authors follow a similar approach: Experimentally obtained
material parameters are used for a non-linear FE-model of the rubber bushing. The FE-
model is then subjected to a non-linear preloading step. Subsequently, a harmonic vibration
is superimposed on the static preload in a linearized analysis. Thereby, a frequency and
preload dependent super-element with six DoF on the upper and lower connection is con-
structed (i.e. twelve DoF in total).

4.1.2 Goal: experimental identification of rubber isolator models using sub-
structuring

Methods for identifying the material properties, like modulus and loss factor of the rubber,
are very valuable if the intent is to model and modify the geometry of the rubber mount
for a specific application. However, the goal in this chapter is not to model the material of
the rubber, but more globally, to identify the dynamic properties of readily available isola-
tor elements with different materials and geometries. Since, in general, the manufacturers
do not provide material properties nor CAD models of the isolators, it is often impossible
to build trustful numerical models of rubber mounts. Therefore the models in this chapter
shall be obtained experimentally. Thereby, one is saving the effort of identifying all material
properties and setting up a model for each geometry. This also avoids possible errors due
to approximations inherent in numerical models and constitutive laws. The experimental
models shall then be used in a larger substructured model, e.g. the suspension concept for
vibration sources in a car. The rubber element models should consider effects that depend
on the excitation frequency ω, like frequency dependent material properties and internal
resonances of the isolators, since the sources contain high frequency excitations, typically
seen for example in an electric motor. Another goal of this study was to develop models of
the rubber mounts which contain six degrees of freedom on either end of the connection, so
that a complete description of the vibration transmission from the source to the receiver is
possible. Consider the depiction of a rubber element in figure 4.1c, where q1 is the vector
containing the 6 rigid body motions (3 translations plus 3 rotations) on the upper connection
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of the rubber element. The upper connection is indicated by the subscript (?)1. Likewise,
m1 is a vector containing the three forces and three moments that can be applied at the
upper connection. The desired rubber isolator model is determined by the frequency depen-
dent 12× 12 dynamic stiffness matrix ZI(ω), that relates the rigid motions to the forces and
moments on both connections, (?)1 & (?)2:

[
ZI11(ω) ZI12(ω)

ZI21(ω) ZI22(ω)

]

︸ ︷︷ ︸
ZI(ω)

[
qI1(ω)

qI2(ω)

]
=

[
mI

1(ω)

mI
2(ω)

]
(4.1)

where the superscript (?)I denotes that the quantity belongs to the "isolator". E.g. ZI21 is the
6 × 6 submatrix that relates a motion at the upper connection qI1 to the reaction forces and
moments at the lower connection, i.e. mI

2 = ZI21q
I
1 for the case that qI2 = 0. This rubber

mount model can then be used for assembling a larger substructured model and allows
for testing different noise reduction concepts, e.g. by playing with different combinations of
available rubber isolators. The temperature is assumed to be constant, but the method for
obtaining the rubber element models described in this chapter can be applied at different
temperatures. The tests can also be performed for different transient vibration amplitudes,
though this is a little harder to achieve (discussed in the conclusion). For the specific rubber
isolators used in this chapter, the expected effects of static preload were not considered to
be relevant since the expected material strain ε from the preload was well below 5%.

4.1.3 Existing work on experimental rubber mount models

Some studies (e.g. [32, 97, 189]) investigate the rubber isolators dynamic stiffness only
in the axial direction (the vertical direction in figure 4.1c). The authors of [97] for example
perform shaker and hammer measurements on a mass sitting on top of the rubber mount.
They compare different methods for identifying the complex stiffness of the mount in this
single DoF configuration. It is proposed to use a complex stiffness, which is a piecewise
frequency dependent polynomial, fitted to the measurement data. Thereby, the entry for the
axial direction of the matrix ZI11 from equation (4.1) is determined.
Verheij in his PhD thesis of 1982 [184, section 2] designed a test rig for obtaining the trans-
fer isolator stiffness ZI21 in six degrees of freedom. Similar to the methods compared in this
chapter, the rubber mount is fitted between two rigid masses whose properties are known.
The rubber mount stiffness is then determined from the transmissibility, i.e. the ratio of the
accelerations measured on either mass. This approach is an approximation valid for a cer-
tain minimum weight of the masses on top and bottom (an analytical error analyis is carried
out in [184, section 2]). Additionally, this rubber mount model is only valid for assuming
a negligible mass of the rubber mount itself. In [184], also depictions and summaries are
given, which show the different terms in the matrix ZI21 that should be equal or vanish for
different standard shapes of rubber isolators (e.g. cylindrical, block rectangular, etc.).
Recently, some research was focused on identifying isolator properties from pure frequency
response function (FRF) measurements of an assembly containing the rubber elements
[107, 109, 123]. This method is therefore coined in-situ identification. The method is math-
ematically equivalent to (and relies on the same assumptions as) the method developed in
[188, 201], where it is called inverse substructuring. However, the mathematical develop-
ments in [188, 201] are lengthier and arguably more intricate than in [107, 109, 123]. Either
way, these methods assume a special topology of the isolator stiffness matrix and negligible
mass of the rubber isolators, which is further explained in section 4.3.1 and appendix A.
In [78, 94, 111, 112, 135] the same assumptions are used to identify the properties of the
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structures connected by the isolators. However, in [78] the equations are reformulated so
that only a smaller sub-matrix needs to be inverted, which makes the operation less sensitive
to measurement noise.
In [80], a method to identify the full dynamic rubber mount stiffness ZI from equation (4.1)
was proposed. That method can be understood as a substructure-based decoupling tech-
nique using the same assumptions and theoretical basis as the frequency based substruc-
turing (FBS) technique applied in this chapter. Therefore, although the mathematical deriva-
tion is done in a much simpler manner in the present chapter, it is to be assumed that both
methods are theoretically equivalent. It seems like the method in [80] uses more matrix in-
versions of measured data than the FBS method presented here, making it potentially more
vulnerable to measurement errors. Comparisons to dynamic stiffnesses obtained from a hy-
draulic testing machine are also shown in [80] and good agreement is found, though some
"smoothing" of the frequency dependent stiffness needs to be applied due to detrimental
effects of measurement noise. In the formulation of the FBS approach the VPT is used,
which inherently applies an overdetermination of many measurements to mitigate random
measurement errors. In [80], a minimum number of measurements was used which could
explain the need for smoothing there, which we found to be unnecessary over most parts
of the frequency range. In addition to the fact that a more systematic and compact expla-
nation of the decoupling technique is proposed, also a comparison to the so-called inverse
substructuring approach is given. The comparison includes the theory (section 4.3) and an
experimental validation of their appropriateness for substructuring assemblies (section 4.5).

4.1.4 Outline of the chapter

Section 4.2 describes the experimental FRF measurements for obtaining the desired 12×12
matrices as well as the validation measurements on the hyropulse. Section 4.3 describes
and compares a FBS approach and an inverse substructuring approach for obtaining rub-
ber isolators dynamic stiffnesses ZI . The identified stiffnesses are then compared to that
obtained from a hydraulic testing machine. Especially, the assumptions underlying inverse
substructuring are examined. In section 4.4, we propose some enhancements to the meth-
ods for overcoming the shortcomings identified in section 4.3. In section 4.5, the resulting
rubber mount models are used for predicting the dynamics of a different assembly, to as-
sess the models’ appropriateness for being used in substructuring. The conclusions and
recommendations for the use of the rubber models are given in section 4.6.

4.2 Experimental data

This section gives an overview of the performed measurements and introduces the nota-
tion used throughout the chapter. This includes the dynamic models of the rubber mounts
between two rigid crosses section 4.2.1 and an explanation of the validation measurements
performed on a servo hydraulic testing machine (section 4.2.2).

4.2.1 Experimental measurement setup

As hammer impacting directly at the end of a rubber isolator I is practically infeasible, it was
attached to two fixtures in the form of crosses, which are assumed to be rigid bodies in the
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Figure 4.1: (a) Measurement setup: rubber isolator between upper and lower fixture hung up with
rubber bands. (b) Schematic: free-free measurement of isolator I between fixutures A and B, result-
ing in the FRF matrix of the assembled system YAIB . (c) Admittance YI of the sole rubber isolator
which is to be determined. Vectors q1 and q2 describe the rigid body responses at the top and bot-
tom of the rubber isolator respectively. Vectors m1 and m2 contain the translational and rotational
excitations.

frequency range of interest. An upper cross A and a lower cross B, resulting in the assembly
AIB (see figure 4.1b).
The crosses were designed so that one can apply hammer impacts that excite all translations
and rotations at the connection to the rubber isolator. The sensors are mounted at well-
defined positions which can observe all translations and rotations of the cross (cf. figures
4.1a and 3.9). During the impact measurements on the freely suspended assembly AIB
(cf. figure 4.1a), 16 points on the upper cross A and 16 points on the lower cross B were
excited with hammer impacts (see also figure 3.9). Responses were measured with 4 triaxial
accelerometers on either cross, resulting in a 24× 32 FRF matrix YAIB

uf , so that

u = YAIB
uf f , (4.2)

where u indicates the responses in all 24 sensor channels and f denotes the excitation
amplitudes at all impact positions. The rubber temperature during the measurements was
21◦C. Each FRF was estimated from at least 3 averages with an H1-estimator. The DoF on
the upper cross will be given the subscript (?)1 and the ones on the lower cross the subscript
(?)2. The measured FRF is partitioned as:

YAIB
uf =

[
Y11 Y12

Y21 Y22

]AIB

uf

. (4.3)

The measured FRF matrix YAIB
uf is transformed with the VPT (see section 3.3) to YAIB

qm

which relates translational and rotational responses q to applied loads and moments m,

YAIB
qm = TuY

AIB
uf TT

f . (4.4)

The overdetermination involved in transforming the 24× 32 FRF matrix YAIB
uf to the 12× 12

FRF matrix YAIB
qm helps reducing random measurement and positioning errors, see [158] or

figure 3.10. For the rest of the chapter the subscript (?)qm will be dropped, assuming all DoF
are the rigid body motions in the two virtual points.

Analytical model of the crosses
The crosses where designed to behave like a rigid body in the frequency range of interest,
which is an important precondition for the validity of the VPT. The crosses dynamics where
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freq. range [Hz] freq. resolution [Hz] vibration amplitude [mm]
lower 3− 200 1 0.1

medium 20− 400 10 0.03

higher 100− 900 20 0.01

Table 4.1: Test cycles performed on the rubber isolator with the hydropulse machine.

q̂1

m2

(a) (b) (c)

Figure 4.2: Overview of the hydropulse measurements. (a) Measurement principle with controlled
vibration q̂1 on the top and force measurement m2 at the bottom. This corresponds to measuring
single entries in the off-diagonal stiffness matrix Z21. (b) Measurement setup for radial stiffness
measurement. (c) Measurement setup for axial stiffness measurement.

modeled by their mass and rotational inertia from the CAD model, and an additional correc-
tion for the mass of the sensors (see section 2.7). The rigid body assumption was found to
be reasonable up to 2000Hz, as can be seen in the consistency of the VPT that was already
shown as an example in figure 3.12a.

4.2.2 Validation measurements on hydropulse

For validation of the two methods, the rubber isolators where tested on a servo hydraulic
testing machine, or in short: "hydropulse". The machine controls the vibration amplitude
and frequency q̂1 on the upper connection bolt of the rubber mount, and measures the
reaction force m2 on the lower connection (see figure 4.2a for a schematic depiction of the
measurement principle). The controlled vibration amplitude is measured within the hydraulic
cylinder at the top of the machine. The fixtures needed for mounting the rubber isolators in
the machine are considered to be rigid in the frequency range of interest. If this assumption
holds, then the displacement of the upper isolator connection bolt is the same as the one
controlled in the hydraulic cylinder. The rubber mount stiffnesses were measured in the axial
(z-direction in figure 3.9) and radial direction (since the rubber mount is axis-symmetric, any
direction in x− y plane in figure 3.9). The setups for the radial and axial measurements can
be seen in figure 4.2b and figure 4.2c respectively. During the measurements, the preload of
the rubber isolators can be adjusted, so that the dynamic stiffnesses are measured around
this operating point. In all reference measurements shown, the preload was 20N (radial and
axial). Depending on the frequency range of interest, the vibration amplitude was adjusted.
In total, 3 different frequency ranges where tested with stepped sine testing (see table 4.1).
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4.3 Substructuring methods for identification of rubber isolator
properties

The goal of this section is to introduce the two methods that were investigated for obtaining
the dynamic properties of a rubber isolator from the virtual point transformed FRF matrix
YAIB. In section 4.3.1, the specific assumptions for the inverse substructuring method
are explained and the results are compared to the hydropulse measurements. In section
4.3.2, these assumptions are tested for validity by comparing them to the results obtained
from a decoupling of the crosses (via FBS), which does not rely on any assumptions about
the isolator. In section 4.3.3 some general observations regarding the results of the two
substructuring approaches are discussed.

4.3.1 Inverse substructuring

The description in this section is following [111]. Assume the dynamic stiffness matrix of
the rubber isolator ZI shall be coupled to the upper and lower cross, ZA and ZB. This
corresponds to the FBS coupling in the primal formulation shown in section 3.1.1, and yields
the coupled impedance matrix ZAIB

ZAIB =

[
ZA11 + ZI11 ZI12

ZI21 ZB22 + ZI22

]
. (4.5)

When coupling two substructures via a resilient isolator, the assembled ZAIB will always
have the form of equation (4.5). Experimentally, one can measure the FRF matrix and invert
it to obtain the dynamic stiffness of the assembly ZAIB = (YAIB)−1. Inverse substructuring
uses the fact that the off-diagonal terms in (4.5) are a property of the rubber isolator alone:

ZAIB21 = ZI21, ZAIB12 = ZI12. (4.6)

In the recent publications on the identification of rubber mounts [107, 109, 123], it is assumed
that:

ZI11 ≈ −ZI12 ≈ −ZI21 ≈ ZI22. (4.7)

For the identification of the rubber mount, the fully populated 6 × 6 submatrices ZI12 or ZI21

are used to recreate the full 12 × 12 rubber stiffness matrix ZI by placing the off-diagonal
submatrices with a negative sign on the main diagonal, for example:

ZI ≈
[
−ZI12 ZI12

ZI21 −ZI21

]
(4.8)

This method for modeling the rubber element will be referred to as inverse substructuring
(IS) model in the validation section 4.5. This method is also known as the in-situ identification
as explained earlier. Note that Z21 and Z12 could be used interchangeably, since according
to the assumptions underlying inverse substructuring they should be equal1. The statement
in equation (4.7) is an assumption, and is not generally true for arbitrary numbers of DoF
with possible cross couplings on the rubber isolator. Additionally, it is assumed that the
joint element (i.e. the rubber mount) has negligible mass. The assumptions underlying this
inverse substructuring approach are further elaborated in appendix A. In [107, 109, 123],

1For the general case without any assumptions, they should be the transposes of each other.
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q1,x q1,y q1,z q1,θx q1,θy q1,θz

q2,x q2,y q2,z q2,θx q2,θy q2,θz

Figure 4.3: Schematic depiction of the assumed "DoF to DoF " topology of the joint elements for the
inverse substructuring diagonal (ISD) approach.

this method was used for rubber isolators with a maximum of 2 DoF on either connection
point (the axial displacement and one rotation around a radial axis, which would correspond
to the displacement in the z direction and e.g. the rotation around the x axis in figure 3.9).
These two DoF have no cross coupling, so the underlying assumptions had no effect, see
appendix A with the example of a beam element stiffness matrix.
The statement in (4.7) would be valid if the isolator connected the DoF of the two virtual
points with the special topology shown in figure 4.3, i.e. each DoF on one side of the in-
terface is only coupled to one DoF on the other side and there are no cross couplings with
any other DoF . The depiction of springs in figure 4.3 is just for didactic purposes. Of course
there can be any kind of frequency dependent stiffness and damping properties inherent in
the links depicted as mere springs. If such a model is assumed, then the stiffness matrix of
the rubber isolator has the properties stated in equation (4.7). Additionally, due to the DoF
to DoF coupling (figure 4.3), ZI11 and therefore also ZI12 would be diagonal matrices. The
model for the rubber isolator could then be obtained by approximating the rubber stiffness
matrix by e.g.:

ZI ≈
[
−diag(ZI12) diag(ZI12)
diag(ZI21) −diag(ZI21)

]
. (4.9)

This method for modeling the rubber element will be referred to as inverse substructuring
diagonal (ISD) model in the validation section 4.5. Either way, using equation (4.8) or (4.9),
one can approximate the whole rubber isolator by simply inverting the measured FRF matrix
of the assembly YAIB to ZAIB, and utilizing the off-diagonal blocks ZAIB12 and ZAIB21 alone
(provided that the assumptions hold). The name inverse substructuring given in [188, 201]
probably stems from this inversion of the measured admittance YAIB.
In this case, one can also derive the dynamic stiffnesses of the two separate substructures
A and B from the measurements:

[
ZA11 0
0 ZB22

]
=

[
ZA11 + ZI11 ZI12

ZI21 ZB22 + ZI22

]
−
[
ZI11 ZI12

ZI21 ZI22

]

︸ ︷︷ ︸
from (4.8) or (4.9)

. (4.10)

This comes with the great practical advantage that it is not necessary to know anything about
the dynamic properties of the two structures A and B which are coupled by the isolator.
Thus, one is able to identify the dynamic properties of all involved substructures A, B and I
separately from only one set of measurements performed on the assembly AIB.
Also the hydropulse identifies the off-diagonal stiffness terms ZI21 (see figure 4.2) of the
isolator in the axial and radial direction. In figure 4.4, the hydropulse measurements (details
listed in table 4.1) are compared to the results from the inverse substructuring approach in
axial direction. In the figure, both entries containing this axial-axial stiffness from the two
off-diagonal matrices Z12 and Z21 are shown. In figure 4.5, the results in the radial direction
are compared.
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Figure 4.4: Axial direction: Comparison of hydropulse with inverse substructuring results.

104

105

106

107

108

S
tif

fn
es

s
[N

/m
]

Inv. Subst.ZI
12 Hydro higher Hydro lower

Inv. Subst.ZI
21 Hydro medium

101 102 103
−180
−90

0
90
180

Frequency [Hz]

A
ng

le
[◦

]

Figure 4.5: Radial direction: Comparison of hydropulse with inverse substructuring results.
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Figure 4.6: Axial direction: Comparison of off-diagonal (ZI12, ZI21) and diagonal (ZI11, ZI22) entries.

As can be seen in figure 4.4, the magnitude of the axial stiffness identified from the inverse
substructuring fits the hydropulse measurements well for frequencies above 30Hz. The
phase, which is important for a good damping estimate, is more difficult. This is assumed
to be due to slight phase errors in the FRF measurements (this will be further discussed
in sections 4.3.3 and 4.4.3). For the radial direction in figure 4.5, the magnitude of the
stiffness also fits well for lower frequencies. However, for higher frequencies the deviation of
stiffness magnitude between hydropulse and the inverse substructuring is higher (which is
also further discussed in section 4.3.3).

4.3.2 Primal disassembly & review of inverse substructuring assumptions

The dynamic stiffness of upper and lower cross, ZA and ZB respectively, is known from
analytical rigid body modeling (see section 2.7). Therefore, it is straightforward to perform
the decoupling of both crosses in the primal FBS formulation:

[
ZI11 ZI12

ZI21 ZI22

]
=

[
ZA11 + ZI11 ZI12

ZI21 ZB22 + ZI22

]
−
[
ZA11 0
0 ZB22

]
. (4.11)

Obviously, the entries on the off-diagonals are unchanged by the decoupling, but it is now
possible to investigate the assumptions underlying the inverse substructuring approach, e.g.
by comparing the main- and off-diagonal entries.

Negligible mass assumption

In figure 4.6, the axial stiffness values taken from the diagonal (ZI11 and ZI22) are compared
to those from the off diagonal terms. If the assumption of negligible rubber element mass
holds, then they should be the same apart from a negative sign, i.e. a 180◦ phase shift
(see equation (4.7)). This is true for the low frequency spectrum up to around 100Hz. For
higher frequencies, there is a clear resonance (showing as a dip in the stiffness magnitude)
visible in the entries of the main diagonal. A quick investigation of this resonance can be
done assuming the rubber isolator to be a lumped mass and stiffness model. When using
the static axial stiffness and half of the rubber isolator mass mr (including bolts and nuts,
see figure 4.1c), one can compute the resonance of a single DoF oscillator resulting in
257Hz. The actual resonance appearing in figure 4.6 is at 278Hz. The higher value may be
attributed to dynamic stiffening of the rubber and the fact that the mass of the rubber isolator
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Figure 4.7: Rotation around z: Comparison of off-diagonal (ZI12, ZI21) and diagonal (ZI11, ZI22) entries.

is not lumped but continuously distributed. The slope of the main diagonal entries for higher
frequencies in figure 4.6 is indicating a quadratic increase of stiffness with frequency, typical
for a "mass line". The results for the radial directions show similar behavior.
In figure 4.7, the off-diagonal and main diagonal entries for the rotational stiffness around
the z-axis are compared. Similar effects can be observed here: up to around 100Hz, the off-
diagonal terms deviate only in a 180 phase shift from the main diagonal entries, as expected.
So, it may be argued that the rubber isolator mass could play a significant role for the rubber
mount stiffness at higher frequencies.

No cross-coupling

In figure 4.8, the coupling stiffness between the x-translation and y-rotation in the main di-
agonal submatrices Z11 and Z22 are compared. When looking at an animation of the oper-
ational deflection shapes of the experiments, one can observe that there is a clear coupling
between the radial directions and the rotation around the axis perpendicular to it. This is
by no means surprising since it is the normal behaviour of e.g. a beam. See also the stiff-
ness matrix of a 3 dimensional beam element in appendix A. However, this would violate
the no-cross coupling assumption of the inverse substructuring diagonal (ISD) approach in
equation (4.9) (see figure 4.3).

4.3.3 Discussion: stiffness from both substructuring methods compared to
hydropulse

In this section, some of the observations that can be made from comparing the stiffnesses
identified by the two methods to the stiffnesses measured on the hydropulse shall be dis-
cussed.

Rigidity of Hydropulse fixtures

It is not sure whether the fixture, connecting the amplitude controlled hydraulic cylinder with
the rubber isolators upper bolt, is behaving rigidly in the whole frequency-range (see the dis-
cussion in section 4.2.2). This may be an explanation for the deviations between the inverse
substructuring results and the hydropulse measurements at higher frequencies. Especially
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Figure 4.8: Coupling stiffness between translations in x direction and rotations around y axis.

the rigidity of the fixture that holds the rubber isolator during the radial stiffness measure-
ments seems to be questionable for high frequencies (see figure 4.2b and the results in
figure 4.5).

Non-linear effects in dynamic behavior of rubber isolators

The rubber temperature for all tests performed was kept constant. The frequency depen-
dent effects due to internal (anti-)resonances are automatically included in the rubber mount
models obtained from FBS or inverse substructuring (see these effects at high frequencies
in figure 4.4 and 4.5). The remaining two effects which are hard to control with the methods
presented in this chapter are:

• Preload: When testing the freely hung-up rubber mounts with crosses (see figure 4.1a)
there is no preload on the rubber isolator. As has been mentioned in section 4.2.2, the
measurements on the hydropulse have been performed with a static preload of 20N.
They have also been tested with a preload of 120N, which was the expected static
load from the later assembly (shown in chapter 12). This did not yield significantly
different results compared to the 20N preload. In [1], it was found that only the axial
direction stiffness is susceptible to preload, but only for large deformations. In [1], tests
were performed with a material strain of ε = 6%, 12% or 18%. The deviations from the
stiffness with no preload compared to the ε = 6% preload deformation were still very
limited. Especially when compared to the stiffness changes over frequency due to
the internal resonances in the isolator. The expected static deformation of the rubber
bearings in this test was in the order of ε = 1.5%, so these effects were not considered
to be important.

• Amplitude: Rubber generally behaves stiffer if the maximum transient displacement
in time is small (see section 4.1.1), e.g. in a harmonic test with only one excitation
frequency like on the hydropulse (see table 4.1). In [69], it is shown that this change
of stiffness is more prominent for higher frequencies than for lower frequencies. This
effect might explain the higher stiffness measured with the hydropulse in the high-
frequency-range when compared to inverse substructuring (see figure 4.4 and 4.5).
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Phase errors and damping estimates

The phase of a driving point, i.e. a main diagonal entry in the stiffness matrix ZI , should
be between 0◦ and 180◦ for a rubber isolator with positive damping (see the discussion in
section 2.6.2 or [164]). Put differently, the imaginary part (iωd) of these terms should al-
ways be positive, since the damping d is always positive. In the results of the substructure
decoupling (e.g. the main diagonal entries from ZI11 and ZI22 in figure 4.6), there seems to
be an error of a few degrees in the phase over the whole frequency range. The phase is
not between 0◦ and 180◦ for the low frequency range (below 40Hz) and for a higher fre-
quency band (300 to 600Hz), which is not a physical behaviour as it would indicate negative
damping. For the rotation around the z-axis (cf. figure 4.7) the phase error is more ap-
parent and the magnitude seems more affected by noise than in the axial direction. The
raw measured FRFs before VPT are also showing these errors in the identified phase. An
accelerance driving point FRF (

[
m
Ns2

]
) should always have a positive phase for a positive

damping (see section 2.6.2). A quick check on a FRF in the measured matrix YAIB
uf which

is approximately a driving-point (impact f10 and the coressponding channel of the adjacent
sensor, see figure 3.9) shows a negative phase of about 2◦ at 500Hz which is growing to
approximately 7◦ at 2000Hz. The VPT seems to be helpfull by averaging out the different
phase errors of single sensors, but also here some driving point FRFs in YAIB

qm have a neg-
ative phase (growing from about −0.8◦ at 500Hz to −2◦ at 2000Hz). Manufacturers specify
different maximum phase errors for their sensors (values found on the internet are ranging
from 2.5◦ to 10◦). However, manufacturer specifications for the sensors used in this chapter
could not be found. The decoupling of the cross masses amplifies slight errors in the phase
even more, which we will explain and attempt to remedy in section 4.4.3.

4.4 Variants and extensions to the methods

In this section, suggestions to remedy to some of the previously identified shortcomings
of the methods are made. Namely, this will be a correction term for the neglected rubber
isolator mass in inverse substructuring (section 4.4.1), a correction to account for the cross
coupling between translational and rotational directions which is otherwise neglected in in-
verse substructuring (section 4.4.2) and a way to bound the phase errors in the identified
rubber element models (section 4.4.3). The performance of the rubber element models with
and without these modifications is going to be evaluated in section 4.5, by using them in
substructuring and validate them against a reference measurement.

4.4.1 ISD: correction terms for the rubber isolator mass

In figures 4.6 and 4.7, we saw that the mass of the rubber element itself had an influence
on the stiffness of the main diagonal elements. In this subsection, we try to account for the
neglected mass of the rubber element (IS and ISD models), with a simple mass correction
that is lumping half of the rubber elements mass on either virtual point. The total mass of
the rubber elements mr can be measured on a scale. The dimensions of the threaded stud,
the halved rubber clylinder and the position and weight of the nut can also be measured.
The density of steel and rubber is known from literature. The position of the center of gravity
G as well as the rotational inertia around the virtual point ΘV can then be calculated from
elementary geometric shapes. The threaded stud and the rubber where therefore modeled
as cylinders and the nut was treated as a point mass. The lumped mass matrix for a halved
rubber element as seen in figure 4.9 can then be stated as:



4.4 Variants and extensions to the methods 81

V

G

Figure 4.9: Half of the rubber element, which is used for creating a lumped mass correction for the
inverse substructuring rubber element model.

Mr =

[
mr
2 I −mr

2 r̃V,G
mr
2 r̃V,G ΘV

]
. (4.12)

The mass correction term can then be applied to e.g. the ISD model for the rubber bearings:

ZI =

[
−diag(ZAIB12 ) diag(ZAIB12 )

diag(ZAIB12 ) −diag(ZAIB12 )

]

︸ ︷︷ ︸
ISD model

−ω2

[
Mr 0
0 Mr

]

︸ ︷︷ ︸
correction

. (4.13)

4.4.2 ISD: accounting for cross coupling stiffness

In figure 4.8, we saw that the rubber bearings have a cross coupling stiffness between the
radial displacements (x and y direction in figure 3.9) and the rotation around the radial axis
perpendicular to that. This is the normal behaviour that is also known from beam theory
(see appendix A). In this subsection, we are concerned about the coupling terms between
the translation and the rotation. They show up on the off-diagonal terms of ZAIB12 and ZAIB21 .
However, they are placed with the wrong sign in the main diagonal matrices Z11 and Z22

by following the IS approach in equation (4.8) (compare to the full stiffness matrix of a 3
dimensional beam in the appendix). Since the rubber bearings are cylindrical, all coupling
terms between rotation and translation (e.g. Zx1,θy1 and Zy1,θx1) are equal in magnitude, and
possibly differing in sign.
The sign and position of the translation-rotation coupling-stiffness terms could then be de-
fined in a matrix P:

P =




· · · · 	 · · · · · 	 ·
· · · ⊕ · · · · · ⊕ · ·
· · · · · · · · · · · ·
· ⊕ · · · · · 	 · · · ·
	 · · · · · ⊕ · · · · ·
· · · · · · · · · · · ·
· · · · ⊕ · · · · · ⊕ ·
· · · 	 · · · · · 	 · ·
· · · · · · · · · · · ·
· ⊕ · · · · · 	 · · · ·
	 · · · · · ⊕ · · · · ·
· · · · · · · · · · · ·




, (4.14)

where a · represents zero and the plus and minus represent a positive and negative one
(the representation was chosen for a clearer overview). The plain ISD model for the rubber
element stiffness matrix may thus be modified by:
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Figure 4.10: Schematic depiction of the complex stiffness values on the main diagonal and the
decoupling process in the primal formulation. The rubber element stiffness, damping and mass
are denoted as kr, dr and mr respectively, resulting in the complex rubber element stiffness ZI

(blue arrows in complex plane). The cross mass is denoted as mc (green arrow) and the measured
complex stiffness of the assembly is denoted as ZAIB , including possible phase errors ∆φ (orange
arrows) in the measurements.

ZI =

[
−diag(ZAIB12 ) diag(ZAIB12 )

diag(ZAIB12 ) −diag(ZAIB12 )

]

︸ ︷︷ ︸
ISD model

+PijZ
AIB
ij P

︸ ︷︷ ︸
correction

with: P(i, j) 6= 0. (4.15)

The indices i, j can be chosen to take the matrix entry from ZAIB12 or ZAIB21 which looks
physically most meaningful or has the best signal to noise ratio. However, as an error check,
one should always verify if all these entries have identical magnitude and possibly differing
sign as in equation (4.14) (see e.g. figure 4.8).
The representation of the cross coupling terms in equation (4.14) is valid for a cylindrical
rubber bearing. For different shapes (e.g. cubic rubber blocks) similar expressions can be
derived, which has already been done in [184, section 2.2].

4.4.3 Frequency based substructuring: reducing phase errors

As discussed in section 4.3.3, the magnitude of the estimated stiffness seems to match
well with the measurements performed on the hydropulse. The phase however, which is
important for the damping estimate, is not physically meaningfull over parts of the frequency
range at the driving points. In order to explain the reason for the phase errors, we need to
get a clearer grasp on the operations involved in the decoupling and the raw measurements.

Amplification of phase errors by the method

In figure 4.10, we show a schematic depiction of the decoupling process in the primal formu-
lation on a driving point. The dynamic stiffness of the crosses is only their mass (−ω2mc) if
we model them as a rigid body. It is subtracted from the measured stiffness of the whole as-
sembly ZAIB to get the stiffness of the rubber element ZI , see equation (4.11). The rubber
element stiffness at a driving point should always have a positive imaginary part, since the
damping term iωd is always positive. However, the measured ZAIB is subject to modeling
and measurement errors, which induce an error on the phase, denoted as ∆φ in figure 4.10.
If the mass of the cross has the largest contribution to the measured stiffness of the assem-
bly ZAIB (which is the case either for crosses that are very heavy or for high frequencies
ω), then even slight phase errors ∆φ will have a large influence on the identified damping of
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Figure 4.11: Driving point accelerance (rotation around z-axis, cf. figure 3.9) of the measured alu-
minium cross vs. the analytical cross model from section 2.7 with and without consideration of the
sensor masses

the rubber isolator. In this case, the phase of ZAIB approaches 180◦, and even small phase
errors ∆φ are large enough to cause ZAIB having a negative imaginary part. Then also the
estimated damping for the rubber mount will be negative, which is unphysical. In general,
it can be said that the initial small phase errors ∆φ in the measurements of the coupled
system ZAIB are being amplified to large phase errors of ZI during the decoupling process,
especially for high frequencies.

Phase errors in raw measurement data

After explaining this amplification of a wrong phase, we will now further investigate the actual
phase drifts in the experimental models. Figure 4.11 shows the accelerance of the analytic
cross model (M−1 from equation (2.59)), once with and once without the correction term
for the sensor’s masses. It is compared with a measurement of the crosses accelerance,
i.e. the crosses hung up freely without the rubber isolator in between. It can be seen that
the magnitude of the accelerance fits well, especially if the correction terms for the sensor
masses are included. However, the phase of the measurement is not as expected (just
a constant 0◦), but seems to deviate more and more from 0◦ for higher frequencies. This
phase drift is assumed to be due to multiple reasons. One is thought to be a constant time
delay between the signals of the sensor channels and the force channel. A constant time
delay between the signal of two channels will show in the FRF between them as a linearly
increasing phase drift with frequency [44]. Note the linear frequency axis in figure 4.11
instead of a logarithmic axis as in the other plots. This way one can see that indeed the
phase of the measured crosses seems to decrease linearly with frequency, apart from a
deviation at the first cross resonance at 4489Hz and very low frequencies. In [44, 178], the
authors use a phase correction term, which is linearly increasing with frequency, on a driving
point measurement to compensate for this effect. In the case of [178], this resulted in a valid
estimation of damping and thus a meaningful calculation of structural power flow. However,
in the example presented here, there are multiple measurements involved which are not
only pure driving points as in [44, 178]. If the time delay which causes the linear phase
deviation in figure 4.11 was only due to a constant time delay between the channels of the
measurement equipment, then the phase drift should be the same for a fixed combination
of the hammer channel and one sensor channel (i.e. same phase drift on Yij for all impact
positions j measured with the same sensor channel i = const.). However, this is not the
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longitudinal transversal one sample delay
4cm 4.57◦ 9.29◦

21.97◦
10cm 11.42◦ 23.22◦

Table 4.2: Estimation of phase drift at 2000Hz, resulting from different sources of time delays. The
time delays are calculated for a distance of 4cm or 10cm and with the speed of either a longitudinal
or transversal wave in aluminum. The resulting phase error at 2000Hz from a one sample glitch in
the measurement system at a sampling rate of 32768Hz is also given.

case for the measurements performed for this chapter. It is assumed, that the time delays
are also related to the time it takes for the elastic wave to travel from the impact to the
sensor position. This time delay obviously also changes with the position of the hammer
impact. Further investigations are possible, but a small plausibility calculation is provided
here. The distance from an impact position to a sensor varied between roughly 4 − 10cm.
The speed for a transversal and longitudinal wave in aluminum can be approximated with
3100ms and 6300ms respectively. The resulting phase drift at 2000Hz due to the time delays
from the elastic wave traveling through the material are listed in table 4.2. An estimate
for the phase error which would result from a glitch of one sample on the data acquisition
system is also provided (the sampling rate in the measurements was 32768Hz). It can be
seen that the resulting phase drifts at 2000Hz are all of the same order of magnitude as
we see them in the measurements shown in figure 4.11. If the errors were due to random
sample glitches in the measurement system, then we would have seen a linear drop in
the coherence of the measurements, which was not the case. Thus, it is believed that the
effect can be explained by the elastic waves travel-time and constant time delays in the
measurement equipment. Note that the travel time for a wave in the material is of course
not an error in the measurements. It is rather the assumption of local rigidity with the virtual
point transformation that is violated in this case. For a truly rigid structure, the wave speed
would be infinity and the time delays would therefore be zero.

Attenuating phase errors in practice

A remedy to the phase errors which was found to work best is described in the following.
After performing the measurements on the assembly to get YAIB, one can perform the
same measurement on the freely hung up crosses (same impacts and sensor positions as
for the case with the rubber bearings in between, see figure 3.9) to obtain YAB. This can
then be inverted to the measured stiffness ZAB of the crosses alone, and then used in the
decoupling from the assembly ZAIB, equation (4.11). In this case, the measured stiffness
ZAB is already containing similar phase errors as in the measurement of ZAIB. After all, the
measurement equipment and impact positions were the same, so possible time delay issues
between sensor channels during the measurement are affecting ZAB and ZAIB equally.
Therefore, the phase error on the identified rubber mount stiffness ZI is being reduced,
since e.g. a negative imaginary part in ZAB is being subtracted from a similar negative
imaginary part in ZAIB. Figure 4.12 shows the rubber mount driving point stiffness in the
axial direction. Indeed, the phase errors for the higher frequencies can be removed to a large
extent by decoupling the measured instead of the analytically modeled cross stiffness ZAB.
Especially between approximately 300 and 600 Hz the damping estimate is now physically
meaningfull, since now the identified driving point stiffness of the rubber mount phase is
between 0− 180◦.
What might also be seen as an advantage of this variant, is that the mass of the sensors is
automatically being considered, since they are part of the measured system. So no analytic
modeling (section 2.7) has to be done. In theory, it is also more precise, since the crosses
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Figure 4.12: Driving point stiffness in axial direction: Comparison of decoupling the measured
crosses vs. decoupling analytical cross model (see section 2.7). Phase errors are reduced by de-
coupling a measured model of the crosses.

were hung up with rubber bands. These rubber bands are not part of the description in the
analytical model, but are very well included in the measurements of the crosses when hung
up freely. The measurement effort however increases twofold.
Note that at lower frequencies, below ca. 30Hz in figure 4.12, the phase and the rubber
stiffness is dropping which is un-physical. It is believed that this effect is due to the bad
visibility of the flexible modes, that contain the rubber stiffness. At the lower frequencies the
whole FRF is dominated by the rigid body modes of the whole assembly AIB.

4.5 Validation: rubber isolator models in substructuring

The goal of developing the rubber isolator models is to use them in a larger assembly of
subcomponents which are coupled via substructuring. Here, the predicted FRF of an as-
sembly, which includes the rubber models, is then compared to a reference measurement of
that assembly. The accordance between reference and prediction can be seen as a quality
indicator for the different rubber mount models.
The crosses used for measuring YAIB and then identifying the rubber elements stiffness
were made of aluminum. Here, crosses (Ã and B̃) with the same geometry, but this time
made of steel, are connected to the rubber isolators as a validation measurement. The
different methods for obtaining the rubber isolator stiffness are then used to predict the ac-
celerance FRF YÃIB̃ of the rubber element coupled to the steel crosses. Either primal or
dual substructuring can be used to couple an analytical model of the steel crosses to the
different rubber isolator models. Figure 4.13 shows a comparison of the reference and pre-
dictions for driving point FRFs (i.e. input and output on the upper cross). As expected, these
FRFs start with a horizontal line, representing the rigid body motion of the whole assembly
ÃIB̃ in the corresponding direction. This is followed by the resonances and subsequently
a horizontal line which is just the rigid body motion of a single cross. This is also expected,
since for higher frequencies the rubber stiffness is negligible compared to the dynamic stiff-
ness of the crosses mass. Figure 4.14 shows a comparison of the reference and predictions
for the transfer FRFs (i.e. input on the upper cross and output on the lower cross). For
higher frequencies these FRFs tend towards zero which is the desired ’dynamic isolation’.
This is what the engineer usually wants to achieve between source and receiver with the use
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of rubber isolators. Notice the highly damped peaks at higher frequencies (approx. 700Hz)
caused by the internal resonances in the rubber isolator.
In the axial direction both rubber models (from FBS (left column) or inverse substructuring
(right column) in figures 4.13 and 4.14) seem to be well able to predict the FRF of the coupled
system. For inverse substructuring, the mass correction (as proposed in section 4.4.1) does
not seem to make a significant difference when compared to the model without the correction
term. This is not a surprise, since the weight of a single steel cross was 2.2kg compared to
the overall weight of a rubber bearing of only 150g. In the radial direction, the models from
FBS perform noticeably better, since the frequencies of the resonances are all accurately
predicted. For the inverse substructuring models, the correction term for the cross coupling
(see section 4.4.2) seems to improve the results, though the overall result is still worse then
for FBS. The same can be said for the rotation around a radial direction. Decoupling the
measured instead of the analytically modeled cross model in the FBS approach seemingly
improves the damping estimate in the radial translation and rotation directions (which can be
seen by the height of the first resonance peak and the phase curve). For the axial direction
however it seems like the damping estimate is actually worse for decoupling the measured
crosses instead of the analytically modeled crosses. This should be further investigated.

4.6 Conclusion and recommendations

This chapter investigated the performance of two groups of experimental techniques for
identifying 12-DoF dynamic models of rubber isolators: Frequency based substructuring
(FBS) and inverse substructuring (IS). The results suggest that it is possible to identify valid
stiffness magnitudes up to the kilo-Hertz frequency range with both methods. It is thereby
possible to obtain dynamic stiffness values of rubber isolators in more degrees of freedom
and up to a higher frequency range than usually possible, even with an expensive hydropulse
testing machine. The axial and radial stiffness values have been successfully validated
against hydropulse measurements. No smoothing or curve fitting had to be applied on the
measurement data. Careful examination of the measurements and the averaging inherent
to the virtual point transformation (section 4.2.1) was sufficient.
One important advantage of the IS method compared to FBS is that no dynamic model of
the connected structures is needed to determine the dynamics of the isolator. For the FBS
approach, the quality of the identified rubber model depends on the accuracy of the dynamic
model of the fixtures. That is one of the reason why, in this work, the fixtures were taken as
crosses that could be assumed rigid in the frequency range of interest. Thereby, an accurate
dynamic model could be easily obtained analytically.
The limits of the assumptions underlying the inverse substructuring method were investi-
gated. First, the mass of the rubber isolators seems not negligible on the main diagonal
stiffness entries (figure 4.6). However, the influence of the neglected rubber mass on the
models performance in substructuring depends on the ratio of the rubber mass compared to
the mass of the system to which the rubber isolators are assembled later. If the rubber mass
is negligible compared to this mass, then the assumption would not cause big deviations
in the substructuring results, as can also be seen in the results presented in section 4.5.
Second, the coupling stiffness for radial displacements and the rotations around the per-
pendicular axis are not zero (see figure 4.8). This is clearly understandable, considering
that the topology of the identified rubber isolator stiffness matrix is similar to that of a three
dimensional beam element (see appendix A). With plain inverse substruturing, some of the
translation-rotation coupling terms are either placed with the wrong sign on the main diag-
onal blocks, or neglected completely for the inverse substructuring that accounts only for



4.6 Conclusion and recommendations 87

Axial-Axial (z1-z1) Driving Point Accelerance YÃIB̃
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Figure 4.13: Rubber isolator models performance in substructuring for driving point FRFs. The left
column shows the results with the FBS rubber isolator models (equation (4.11)), either decoupling
the measured or the analytically modeled aluminum crosses. The right column shows the results
of inverse substructuring (IS) models (equation (4.8)) and ISD models (equation (4.9)). Also the
extension of ISD with the mass correction (equation (4.13)) and with the compensation for the cross
coupling (equation (4.15)) is shown.
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Figure 4.14: Rubber isolator models performance in substructuring for predicting transfer FRFs. The
left column shows the results with the FBS rubber isolator models (equation (4.11)), either decoupling
the measured or the analytically modeled aluminum crosses. The right column shows the results
of inverse substructuring (IS) models (equation (4.8)) and ISD models (equation (4.9)). Also the
extension of ISD with the mass correction (equation (4.13)) and with the compensation for the cross
coupling (equation (4.15)) is shown.
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the diagonal terms (IS and ISD in figures 4.13 and 4.14). Additionally, the rotation-rotation
coupling stiffness terms for the radial directions, are placed with a wrong magnitude and
sign on the main diagonal blocks. This seemingly affects the assembly results of the in-
verse substructuring models (see figures 4.13 and 4.14). It is therefore recommended to
use a classical decoupling, i.e FBS, to obtain rubber element models that can be used for
modeling a larger assembly and the full six DoF shall be used on either connection of the
isolator.
For the specific usecase in this chapter, it was not important to consider the effect of preload
(see section 4.1.1 and 4.3.3). However if it was, the tests suggested in this chapter would
have to be amended. The rubber temperature was kept constant, but the models can eas-
ily be obtained at different temperatures with the same procedure. Obtaining the stiffness
for different vibration amplitudes is harder, since it would require adjusting the hammer im-
pact magnitudes in a precise manner. A solution to this could be the use of an automatic
impacting device, like the low-cost design proposed in [100].
The models developed in this chapter have shown their value in other applications already
(see chapter 11 and 12). Therefore, the chapter shall be concluded with a few recommen-
dations for conducting the measurements and designing the tests for obtaining the rubber
models:

• Cross Design: The crosses should generally be as light as possible. The influence
of phase errors can be effectively attenuated, if the mass of the cross structures is de-
creased (see section 4.4.3). Additionally, the crosses should also fulfill the rigidity as-
sumption that is the basis for the virtual point transformation (VPT, see section 4.2.1).
This means for the first flexible eigenfrequency to be approximately 2-3 times higher
than the desired frequency range of the rubber mount model. The VPT assumption
also presumes, that the stiffness against local deformation in the vicinity of the ham-
mer impacts is high. So especially the region around the hammer impacts should be
"bulk material".

• Cross model: If possible, a direct measurement of the free-free crosses YA and YB,
which is later transformed to virtual points, is to be preferred over an analytical model
of the crosses. In this way, the structures being decoupled (YA and YB) already
contain the same phase error, as the ones present in the measurements of YAIB (see
the discussions in section 4.4.3). Thereby, similar measurement errors are subtracted
from one another, and the resulting phase error in YI is reduced (see figure 4.12).

• Non rigid fixtures: In theory, one could also use structures other than the rigid crosses
presented here. As long as their dynamic stiffness is known, they can still be decou-
pled to obtain the rubber models. However, for obtaining the rotational degrees of
freedom, one will likely use either the virtual point transformation or a finite difference
approach, for each of which the assumption of at least local rigidity is mandatory. Ad-
ditionally, for non-rigid fixtures, one might run into signal to noise issues if one of the
structures has an antiresonance at a connection point. In this case, no energy can be
inserted into the rubber at the antiresonance frequency. See the results reported in
[107] for using a plate and a beam on the connection points to the rubber element.

• Low frequency stiffnesses: If the measurements are performed with standard ac-
celerometers, the signal to noise ratio (SNR) for frequencies below approx. 20Hz can
be too low, resulting in noisy measurements. Additionally, in the low frequency re-
gion (below approximately 30Hz) the stiffness of the rubber models can drop (see
e.g. figure 4.4), which is unphysical. This could be a problem of low frequency rigid
body resonances of the whole assembly AIB in the rubber bands (see figure 4.1a), a
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decreased SNR at lower frequencies, or undetected overload issues during the mea-
surements. However, from experience and also the results that can be seen in the
hydropulse measurements (e.g. figures 4.4 and 4.5), the rubber isolators stiffness is
almost constant for lower frequencies2. So from experience, it is a valid assumption
to extrapolate the determined rubber mount stiffness from a frequency range of e.g.
50-100Hz back to the low frequency range of 0-50Hz. This is further confirmed by the
comparison of the rubber models with and without this low frequent extrapolation in
chapter 12 (see figures 12.10 and 12.12). Similarly, also Verheij suggested in [184,
section 2.4] to extrapolate the stiffness from 80-160Hz back to the range below 80Hz.

2This may be different for rubber isolators with internal fluid channels. Their intrinsic eigenfrequency is lower
due to the higher dynamic mass of the accelerated fluid.
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Shift happens...

unknown Master student

The contents of this chapter were published in similar form in [55]. The text hereafter has
been modified and adapted to the thesis.

Frequency response functions (FRFs) often serve as a basis for predicting sound and vibra-
tion levels at a receiver position, with a known excitation at a source position. As explained in
chapter 3, dynamic substructuring allows to build the FRFs of a complex assembly from the
measured or modeled FRFs of its subcomponents. However, in the case of subcomponents
with revolving parts, the task is further complicated due to gyroscopic effects. These cause
a changing FRF matrix of the subcomponent depending on its operating speed. A correct
approach would require measuring the FRFs of the rotating machinery at each operating
speed, which is a difficult and tedious task. Thus, the unmeasured gyroscopic effects are
often neglected, but not always negligible, in practice. In this chapter a dynamic substructur-
ing based approach is proposed, which allows to analytically couple the gyroscopic reaction
moments to an FRF matrix that describes the idling subcomponent. Gyroscopic terms only
influence subcomponent motions that are tilting the rotation axis. The proposed method will
thus be interpreted and derived as a coupling in the subspace of this tilting motion. An an-
alytical testcase is used to exemplify and validate the proposed method in section 5.1. The
tilting angles can be determined from an overdetermined set of measured sensor motions,
via the virtual point transformation (see section 3.3). The gyroscopic effects can be coupled
to the full FRF matrix, by coupling only in the tilting subspace of the matrix, as will be shown
in section 5.2. Thereby, an FRF matrix with a large set of DoF can be augmented with a
speed dependent gyroscopic term. This is based on the kinematic assumption of rigidity.
The validity of this assumption certainly influences the solution, which will be shown on the
example in section 5.3. However, in practice the gyroscopic effects mainly influence the
FRF matrix in the lower frequency region, where the rigidity assumption is mostly valid. The
necessity of including gyroscopic correction terms to the compressor in free-free conditions
will be checked in section 5.4.

Chen [25] has designed a dedicated testrig which experimentally proved the validity of the
proposed method. This was done by coupling the gyroscopic effects to an FRF that was

91
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measured on the idling testrig, and validating the results with a reference FRFs measured
on the operating testrig. Reichart [144] has investigated the need for this correction term on
a compressor testrig design. It was found that on a testrig which does not allow for com-
pressor rigid body motion, the gyroscopic effects can be neglected. Janssens and Verheij
noted in their paper [71] about operational load indentification1:

"Further, the source mobility YA also may be affected by the operational conditions. For
instance in rotating machinery the dynamics in a stationary case can differ from the running
case. Common linear theory as in Section 2.1 will fail for such situations. In these situations,
a remedy is to look in more detail to the source generating mechanism inside the source, as
is also suggested in [49]. Little is known about how often such effects play a role in practice."

In this chapter however, it will be shown that the gyroscopic effects can be included in linear
theory. Literature can be found on modal testing of rotating structures, which aims at ex-
tracting the modal properties of a rotating structure from a set of measurements. See e.g.
[23] for a comprehensive review on the topic. However, the measured FRFs of the structure
will still change depending on the operating speed of the machine. Also a change of rotation
direction (forward or backward) will alter the measured FRFs. An approach solely based on
testing is thus very time consuming. To make matters worse, it is non-trivial to get a clean
FRF measurement on a machine while it is in operation. All sorts of operational excitations,
coming from the internals of the machine, are masking the sensor response to e.g. a shaker
input. Some techniques are available for performing these measurements, like e.g. the
operating system identification (OSI) method [85], but the involved signal processing and
averaging prolongs the FRF determination time. These issues are removed by the proposed
approach, since FRF measurements can be done on the idle machine, and the gyroscopic
effects are analytically modeled, by knowing the operational speed and rotational inertia of
the rotating parts.

5.1 Coupling gyroscopic effects

The FBS approach explained in section 3.1 allows to couple the dynamic behavior of two
separate structures. This approach can equivalently be used for coupling non-measured
gyroscopic effects to an FRF matrix measured on the idle component. To make the deriva-
tions more tangible, the theory shall be discussed on an example, namely a wind turbine like
structure, shown in figure 5.1a. The windturbine is mounted on a flexible support, allowing it
to rotate around the longitudinal axis (spring stiffness cγ , angle γ) and to tilt forward (spring
stiffness cβ, angle β). The vector of unconstrained DoF is q =

[
γ β

]T . The system consists
of two bodies, the tower (mass mt, inertia tensor Θt) and the rotor (mass mr, inertia tensor
Θr) with their centers of mass being at height ht and hr respectively2. The rotor can rotate
at varying operational speeds Ω. For simplicity, the distance of the rotors’ center of mass
to the vertical axis is assumed to be zero. Hence, the system is in equilibrium position for
qequil. =

[
0 0

]T , where the springs are undeformed. For studying the vibrations around this

1Notation adapted to this thesis.
2Since in this thesis noise and vibrations shall be studied with linear theory, it is assumed that the motions

of this system are small and both rotational inertia tensors Θt and Θr are constant over time. For the tower
and rotor, this is valid if the motions q are small. Thereby, the inertial coordinate systems I and the tower
fixed coordinate system T shown in figure 5.1a are equal. For the rotor, one is additionally assuming that the
rotational inertia measured in the inertial frame of reference I is constant while the rotor is revolving. This is true
for typical 3 bladed designs, and for the e-compressor as well, see remark 5.1.
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equilibrium position, the linearized equations of motion can be written as:

(
−ω2M + iωG + K

)
︸ ︷︷ ︸

=:Zop(ω)

q = m, (5.1)

with the system matrices for this example being3:

M =

[
Θt,zz + Θr,zz 0

0 Θt,yy + Θr,yy +mth
2
t +mrh

2
r

]
,

G =

[
0 −ΩΘr,xx

ΩΘr,xx 0

]
, K =

[
cγ 0
0 cβ − (mtht +mrhr)g

]
.

(5.2)

External moments in the respective DoFs are denoted by m. Matrices M,G,K denote the
mass, gyroscopic and stiffness matrix respectively. Note that the gyroscopic matrix G is
skew symmetric, i.e. the reciprocity property of FRFs is not valid for systems with rotating
components. The system matrices can be combined in the dynamic stiffness Zop(ω), where
the superscript (?)op indicates that the matrix is dependent on the operating conditions, i.e.
the speed of the rotor Ω. The excitation frequency is denoted by ω, which will be omitted
for clarity of notation. The admittance matrix which could be measured on the idling system
is Y0, where the superscript (?)0 denotes the idling component. However, one is interested
interested in obtaining the admittance matrix of the operating system Yop. The individual
FRFs needed can be written as:

Y0 =
(
−ω2M + K

)−1
, Yop =

(
−ω2M + iωG + K

)−1
, Ygy = (iωG)−1 . (5.3)

The gyroscopic effects, not measured on the idle component, can be seen as an additional
substructure admittance Ygy which can be coupled to the idle component Y0 in a post
processing step via FBS. The two matrices to be coupled and the Boolean matrix B for the
compatibility can be inserted in the FBS equation (3.10):

YA|B = Y0|gy =

[
Y0 0
0 Ygy

]
, and B = [I − I], (5.4)

with which one obtains for the coupled matrix Yop:

Yop = Y0 −Y0
(
Ygy + Y0

)−1
Y0, (5.5)

where the redundant DoFs have already been removed (see section 3.2.1). Note that in
equation (5.5) the roles of Y0 and Ygy could be interchanged (removing the other redundant
DoFs in the coupled equation). One can show that the FBS result in (5.5) is equivalent to
directly assembling the operational dynamic stiffness Zop = Z0 + Zgy and inverting it. One
needs to show that:

(
Z0 + Zgy

)
︸ ︷︷ ︸

Zop

−1 = Y0 −Y0
(
Ygy + Y0

)−1
Y0 (5.6)

In order to show this, it is useful to note that:
3The system of equations can be derived by setting up all energies of the system and applying the Lagrange

formalism to it [136]. These equations of motion can then be linearized around the equilibrium state qequil., in
order to obtain the system matrices.
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Y0
(
Ygy + Y0

)−1
=
(
Ygy Z0 + I

)−1
, (5.7)

which can be verified by left multiplying both sides of the above equation with the term(
Ygy Z0 + I

)
. A proof that was already used in [147]. Inserting equation (5.7) to the right

side of equation (5.6) yields:

Y0 −Y0
(
Ygy + Y0

)−1
Y0 =

(
I−

(
Ygy Z0 + I

)−1
)

Y0

=
(
Ygy Z0 + I

)−1 (
Ygy Z0 + I− I

)
Y0

=
(
Ygy Z0 + I

)−1
Ygy

=
(
Z0 + Zgy

)−1
�

where the last two lines can again be proven by using the identity in equation (5.7). This
completes the desired proof to show that equation (5.6) is true. Note that a similar result
for the coupling of gyroscopic terms was found in [23, appendix C], though not derived from
FBS but from pure linear algebra.

Remark 5.1: Note that above it was implicitly assumed that the rotor’s inertia tensor
Θr is independent of the actual rotation angle Ωt (i.e. Θr,zz = Θr,yy = const.) and that
frame of reference T is a principal axes system for the inertia tensor (Θr is a diagonal
matrix). These properties are true for components which are often referred to as
’isotropic rotating component’ [23]. The gyroscopic matrix G of the above example is
representative for these isotropic rotation components, as can be seen from the Euler
equations for the rotor (second line of equation (2.58)):

Θr θ̈op + θ̇T ×Θr θ̇op = m,

where θ̇op = [Ω β γ]T is the angular velocity of the rotor, and θ̇T = [0 β γ]T

is the angular velocity of the tower fixed coordinate system T . In a linear analysis,
one considers only small rotations and a constant rotor operating speed, i. e. γ � 1,
β � 1 and Ω = const., which means θ̈op = [0 β̇ γ̇]T . Inserting this in the above Euler
equations for the rotor yields:




0

Θr,yyβ̈
Θr,zzγ̈


+




(Θr,zz −Θr,yy)β̇γ̇
ΩΘr,xxγ̇

−ΩΘr,xxβ̇


 =




0
mβ

mγ


 .

With the degrees of freedom q =
[
γ β

]T and linearizing for only small pertubations
(i.e. assuming small β̇ and γ̇ and neglecting terms of higher order), we get the same
gyroscopic matrix G as in (5.2).

5.2 Coupling gyroscopic effects to measured FRFs

The gyroscopic effects contained in the 2 × 2 matrix Ygy can be analytically modeled by
knowing the rotational inertia of the rotor around its rotation axis, i. e. Θr,xx, and the opera-
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tional speed of the component Ω. So far, the system matrices Y0 and Yop were also both
2× 2 matrices and the DoF were only the two rotations that actually tilted the rotational axis
in space, so the gyroscopic effects could be directly coupled. However, in practice the ma-
trices Y0 and Yop will likely contain a larger set of DoF and the gyroscopic effects shall only
be coupled in the DoF subspace that is tilting the rotational axis of the rotor. This will be
explained in the following.
Consider the situation depicted in figure 5.1b. The wind turbine is equipped with a rigid
fixture on which some sensors (indexed with k) are mounted and some force inputs (in-
dexed with h) can be applied. Usually, the set of measurements is performed on the idling
component and the single measurement channels, grouped in the vector u, do not directly
correspond to the tilting angles of the rotor axis q. Likewise, the applied forces, grouped in
the vector f , do not directly correspond to the tilting moments of the rotor axis m. Consider
the kinematic assumption of rigidity for the wind turbine to be valid. Then the linearized
response in e.g. the z-channel of sensor k due to a small β and γ is:

ukz =
(
ekz

)T ([
0 β γ

]T × rk
)

=
(
ekz

)T


rkz −rky
0 rkx
−rkx 0



[
β
γ

]
. (5.8)

The resulting moments mh in the axis tilting directions, due to one force input fh are:

mh =

[
mh
β

mh
γ

]
=

[
rhz 0 −rhx
−rhy rhx 0

]
ehfh, (5.9)

where r denotes the position vectors of sensors / forces and e denotes their unit direction
vectors (see figure 5.1b). Similar to (5.8) and (5.9), one finds general expressions between
all sensor channels / force inputs (u and f ) and the tilting angles / tilting moments (q and
m). This is equivalent to the VPT explained in section 3.3, when the IDM matrices are con-
structed with only considering the tilting rotation angles. Thus, for the wind turbine example,
one can find the FRF matrix Y0

uf , measured between force impacts and sensor channels,
from the 2× 2 FRF matrix in the subspace of the tilting angles Y0

qm:

u = Ruq, m = RT
f f , Y0

uf = RuY
0
qmRT

f , (5.10)

q =
(
RT
uRu

)−1
RT
u︸ ︷︷ ︸

=:Tu

u, f = Rf

(
RT
f Rf

)−1

︸ ︷︷ ︸
=:TTf

m, (5.11)

where Ru and Rf contain the kinematic assumption for relating the tilting angles and tilting
moments to the set of measured channels. As in section 3.3, the matrices Tu and TT

f are
the pseudo inverses of Ru and Rf (i.e. TuRu = TfRf = I, with the weighting matrices W
chosen to be the identity.).
Tu transforms measured signals u to the tilting angles q, and TT

f determines a minimal
set of forces f for producing a specific tilting moment m. The subscript (?)uf refers to the
FRF matrix being measured between force inputs and sensor channels. The subscript (?)qm
denotes a FRF matrix being measured in the subspace of the tilting angles, i. e. the 2 × 2
matrices that have been treated in section 5.1. The goal is to predict the FRF matrix of
the operating system Yop

uf from the measured FRF matrix of the idling component Y0
uf and

the known gyroscopic admittance Ygy
qm. The FBS coupling needs to ensure compatibility be-

tween the tilting angles of the idling component (inferred from the measured sensor channels
u via (5.11)) and the tilting angles of the ’gyroscopic substructure’ Ygy

qm. This compatibility
is stated in equations (5.12) and (5.13). The gyroscopic reaction moments needed for en-
suring compatibility are denoted as λ. The reaction moments have to be projected to an
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equivalent set of forces for applying them to the measured FRF Y0
uf (via TT

f , which is stated
in (5.12)). The formulation of the coupling is stated as:

Y0|gy (f + BT
f λ
)

=

[
Y0
uf 0

0 Ygy
qm

]([
f0

0

]
+

[
TT
f λ

−λ

])
=

[
u0

qgy

]
= u, (5.12)

with:

Buu = 0,

where Bu =
[
Tu −I

]
, and Bf =

[
Tf −I

]
.

(5.13)

This coupling corresponds to the weak coupling already shown in section 3.3.3 (see equa-
tion (3.45)). The coupling of two substructures is performed only in the subspace of the axis
tilting directions. Solving the system in equation (5.12) (e.g. by inserting into equation (3.45)),
results in:

Yop
uf = Y0

uf −Y0
ufT

T
f

(
Ygy
qm + TuY

0
ufT

T
f

)−1
TuY

0
uf . (5.14)

Only the resulting part of the full DoF matrix Yop
uf has been stated, since this was the desired

outcome. Note that there are no external moments on the ’gyroscopic substructure’, only
the reaction moments λ for enforcing compatibility (see the ’zero’ entry in the external forces
f in (5.12)).

Remark 5.2: For the example of the wind turbine, the above result is equal to just
expanding the matrix of the operational system from (5.5), which is restated here:

Yop
qm = Y0

qm −Y0
qm

(
Ygy
qm + Y0

qm

)−1
Y0
qm

The expansion of a matrix to the sensor channels and force inputs can be done via:

Yop
uf = RuY

op
qmRT

f Y0
uf = RuY

0
qmRT

f

Starting from (5.14) with the definitions of the transformation matrices in (5.11) it is
easy to show:

Yop
uf = Y0

uf −Y0
ufT

T
f

(
Ygy
qm + TuY

0
ufT

T
f︸ ︷︷ ︸

=Y0
qm

)−1
TuY

0
uf

= Y0
uf − Y0

ufT
T
f︸ ︷︷ ︸

=RuY0
qm

(
Ygy
qm + Y0

qm

)−1
TuY

0
uf︸ ︷︷ ︸

=Y0
qmRT

f

= Ru

(
Y0
qm −Y0

qm

(
Ygy
qm + Y0

qm

)−1
Y0
qm

)

︸ ︷︷ ︸
Yop
qm

RT
f �
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Figure 5.2: FRF between impact point h in y-direction and sensor k in y-direction (cf. figure 5.1b).
Comparison of idle FRF Y 0

uf , reference solution Y opuf which is obtained for solving the full system
without the kinematic assumption of rigidity, and the dynamic substructuring result Y op,DSuf , obtained
with equation (5.14).

5.3 Analysis of kinematic assumptions

In the previous section, it was shown that the suggested FBS approach yields the exact
solution, provided the kinematic assumption of rigidity, for relating the axis tilting motion to
the sensor motion, is valid. This section shall highlight the importance of this assumption
for the quality of the results. Consider the situation in figure 5.1c, with a spring cϕ between
the tower and the rotor. Assume the FRF measurements Y0

uf between the sensors and
impacts on the tower as shown in figure 5.1b, shall still be used for coupling the gyroscopic
effects Ygy

qm. The kinematic assumption of a rigid connection between the sensors and the
rotor axis will be deteriorated as cϕ is reduced. In fact, the system has three coordinates
now q = [γ β ϕ]T , where ϕ describes the absolute angle of the rotor as it tilts over. For a
very stiff cϕ, the coordinates β and ϕ will be almost identical, which means the kinematic
assumption of rigidity is valid. However, for a reduced cϕ the kinematic assumption can
become unacceptably violated. The result for an arbitrary choice of parameters4 is shown
in figure 5.2. It can be seen that the response of the idle system shows only one resonance
peak, since in the case shown, with an excitation in the y-direction, one is only exciting a
rotation around the z-axis (i.e. the coordinate γ). The rotations of the two free coordinates
(β and ϕ) are decoupled from each other in the idle case. The gyroscopic reaction moments
introduce a DoF coupling and their resonances start to show up in this FRF as we introduce
a rotor velocity Ω 6= 0. Due to the significant difference between idle and operational FRF,
it can be argued that a consideration of the gyroscopic effects in this case is essential for
an accurate estimate of the FRF at different operating speeds. The results for differing
stiffnesses cϕ (cf. figure 5.2a and figure 5.2b) also show that an accurate consideration of
the structure kinematics is vital for good results.
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z
y x
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VP 4

VP 2

VP 3

(a) electric climate compressor (b) rotating part

Figure 5.3: Schematic depiction of the compressor with the four virtual points for coupling indicated
as VP. The rotating part of the compressor was disassembled, weighed on a scale and the dimen-
sions were taken with a caliper. Thereby the rotational inertia of the rotating part could be estimated
from superposition of simple geometric shapes (disks, hollow cylinders, etc.).

5.4 Free-free compressor

For obtaining an accurate substructured FRF of the compressor assembled to a vehicle,
or accurate blocked forces (see section 6.2) for a source description, it is important that
the FRF of the compressor is valid. In general, one would make an error when coupling
the compressor to a structure or computing blocked forces with an FRF that was recorded
on the idling component. Reichart [144] has shown that on a relatively stiff compressor
testrig, which does not allow for compressor rigid body motion, the gyroscopic effects can be
neglected. This becomes clear from the basic equations of linear dynamics in the frequency
domain:

(
−ω2M + i ω(C + G) + K

)
u(ω) = f(ω), (5.15)

where M,C,G,K are the mass, damping, gyroscopic and stiffness matrix respectively. For
higher frequencies the mass term −ω2M in the equations dominates the dynamic stiffness.
For a stiff design without rigid body motion, the stiffness term K will dominate in the lower
frequency region. However, in case of a freely hung up compressor (e.g. for obtaining the
blocked forces, as will be done in chapter 11) or for a compressor which shall be suspended
with relatively soft rubber bushings (which will be the case in the vehicle example in chapter
11), the gyroscopic effects might have to be considered.
The necessity for coupling the gyroscopic terms for these cases, will be checked in this sec-
tion. Therefore, the FRF of the idle compressor was modeled from its rigid body properties
(taken from the CAD model), since it was known that the compressor can be modeled as a
rigid in the lower frequency region. It was intended to couple the compressor at 4 points,
which are all treated as a full virtual point with six DoF, resulting in a 24×24 compressor FRF
matrix ready for FBS coupling (see figure 5.3a). The gyroscopic effects can be modeled by
the rotational inertia and operational speed of the rotating parts. These were estimated from
the weight and geometric dimensions of the compressor rotor, see figure 5.3b. The speed
dependent gyroscopic matrix Ygy

qm can then be coupled to the full FRF matrix of the com-
pressor, via equation (5.14). Some of the resulting FRFs for the minimum and maximum
speed of the compressor can be seen in figure 5.4. It can be seen that for higher operational

4All parameter appearing in the system matrices of (5.2) are set to 1 apart from: cγ = cβ = 10;hr = 2,Ω = 10.
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Figure 5.4: Compressor FRFs for maximum and minimum operational speed, 8600rpm and 860rpm,
for certain DoF which can be seen in figure 5.3a.

speeds the gyroscopic effects clearly influence the FRFs at lower frequencies5 up to about
30Hz. For higher frequencies they become negligible again, due the the dominating mass
term in the dynamic equations (see equation (5.15)).

5.5 Conclusion

It was shown how gyroscopic effects of rotating components in a substructure can signifi-
cantly alter its dynamic behavior. The proposed method can be used as a comparatively
easy way for considering these gyroscopic effects in a dynamic model, without the need for
performing a new set of measurements for each operating speed. It is well suited for provid-
ing the doubting engineer with evidence regarding the importance of gyroscopic effects in
a specific design. The presented method could prove particularly valuable for components
that are relatively compact, e.g. electric motors and compressors in stiff housings. Though
not shown in this chapter, the kinematic assumptions, for inferring the rotor tilting angles from
a set of measurement channels, doesn’t have to be rigidity. If e.g. a finite element model of
the component is available, one might determine the modal participation of important modes
from a set of measurements and get the tilting angles from those modal participations (re-
duction matrices Ru and Rf would change). Also the general idea of this chapter, namely
to use concepts from dynamic substructuring for coupling a non-measurable physical effect
to a measured substructure, may also be transferable to other problems.
For the compressor though, it was decided to not consider the gyroscopic effects further
in the analyses. The reason for this decision is that the important excitation frequencies

5This effect can be felt very clearly, when trying to tilt the freely hanging compressor while it is in operation.
This personal experience was one of the reasons for the author to investigate this effect in more detail. Note
that this manual experiment was of course done with all necessary personal precautions, but not trying it was
not an option due to curiosity of the author.
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of the compressor start at the first operational order. As the rotational speed of the com-
pressor is increased, the gyroscopic effects gain importance (see figure 5.4). At the same
time however, the first order of the compressor increases as well. For 8600rpm the first
compressor order is at ca. 143Hz, which is well above the frequency where the gyroscopic
effects still have a significant influence on the FRFs, see figure 5.4. The same is true for all
other operational speeds and therefore it was chosen to not consider these effects anymore.
Nevertheless, it is reassuring to have clarity on this point.





Part II

Independent modeling of structural
source excitation

103





Chapter 6

Transfer path analysis

Contents:
6.1 Classical TPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2 Blocked force TPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3 Example: in-situ determination of blocked forces . . . . . . . . . . . . . . . . . . . . . 108
6.4 Computing blocked forces from long time records . . . . . . . . . . . . . . . . . . . . . 112

You shouldn’t do things differently just
because they’re different. They need to
be... better.

Elon Musk

The contents of this chapter were published in similar form in [59]. The text hereafter has
been modified and adapted to the thesis.

In part I, it was shown how to obtain the transfer functions of a whole assembly, from coupling
the FRF matrices of the sub-components. The FRF matrices of the sub-components can be
obtained from either experiment or analytic/numerical models (see chapter 2). For predicting
the expected sound and vibration of the assembly, it is now important to investigate the origin
of the vibrations, namely the vibration source. The general problem can be described by the
situation shown in figure 6.1a. An assembly AB contains a vibration source A which is
subject to internal loads fA1 . These forces are transferred to the DoF uB3 in the receiver, via
the transfer function YAB

31 of the coupled system:

uB3 = YAB
31 fA1 . (6.1)

In the specific case of this thesis, the source A is an electric climate compressor, but it could
be any other active component. The internal forces fA1 are caused by imbalance in the rotor,
the motor pole-pairs passing each other, compression shocks in the refrigerant fluid, high
frequency excitations from the inverter, etc. However, in many practical cases, the source is
a supplier part or is developed by a different department. The exact mechanisms creating
the internal forces fA1 and the location of their DoF might then be unknown or cumbersome
to model. It is therefore desirable for an NVH engineer to find another more abstract, yet
complete description of the source. This is a typical situation where transfer path analysis
(TPA) can be employed.
TPA has established in industry as a tool for NVH trouble shooting. A broad review and com-
parison of methods in a unified notation can be found in [159]. There, important pioneering
publications are referenced and put in context. In general, with TPA one studies machines
that are actively exciting a final assembly and thereby causing noise and vibrations. As one
of the first applications, Verheij described the transmission of vibrations from a ship engine
to the hull by interface forces transmitted over the rubber isolators [184]. TPA is nowadays
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Figure 6.1: Overview of the source receiver problem and the description of the vibration transmission
on the interface by classic and the blocked force TPA.

commonly applied in NVH engineering of vehicles [139, 183]. Classically, TPA has been
used as trouble shooting tool, using interface forces to understand the transmission of vibra-
tions from the source to the receiver. A current trend is to use approaches which describe
the source independently from a specific receiver via blocked forces [39, 93, 160]. A popular
method for obtaining the blocked forces is the in-situ method [120], which will also be used
in this thesis.

6.1 Classical TPA

All excitation from the source has to enter the receiver over the interface DoF, subscript (?)2.
The classic approach to TPA describes the excitation that source A excerts on the receiver
B, via the interface forces λ (see figure 6.1b):

uB3 = YB
32 λ, (6.2)

where YB
32 is the transfer function of the receiver B alone, i. e. decoupled from the source.

The above statement is the response on structure B for the case that the interface forces
λ are known (e.g. from substructuring, equation (3.9)). It is assumed that the receiver B is
a purely passive structure with no external forces (i.e. fB2 and fB3 are zero in the verbose
equation (3.5)). With classical TPA, one compares the contribution of each interface force,
contained in the vector λ, to the final vibration response uB3 . A common way of trouble
shooting NVH problems is to decreas the coupling stiffness between source and receiver
in the interface DoF with the highest contribution to the response uB3 . This is done by e. g.
introducing (softer) rubber bearings in these connection points and directions [139]. When
the internal DoF and their exciation fA1 are known, the interface forces can be computed by
equation (3.9). As already discussed, this is most often not the case so different methods
for obtaining λ can be applied in practice. An overview of methods can be found in [159].
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6.2 Blocked force TPA

As already mentioned, the classical TPA approach is often used as a trouble-shooting tool in
the late development phase. The identified interface forces λ cannot be used for simulating a
substantial design optimization of the receiver B. They are dependent on a specific version
of B. This can be seen from equation (3.9), where the formula for computing λ also contains
the admittance of the receiver YB. In practice, this means that the interface forces that were
once identified in a specific design are not valid for a modified design. This makes intuitive
sense. Consider an initial connection between source and receiver that is dynamically ’stiff’.
The interface forces λ will have a certain magnitude. If the coupling stiffness is decreased,
the magnitude of the interface forces will diminish (or ultimately tend to zero if the connection
is loosened completely).
This is a typical case where using the so-called ’blocked force’ or ’component based’ TPA
should be used. Consider the following thought experiment: The operating source is rigidly
clamped on its interface so that the interface vibration uA2 is zero, see figure 6.1c. The
reaction forces in the clamped support are called ’blocked forces’ f bl2 and ensure that:

0
!

= uA2 = YA
21f

A
1 + YA

22f
bl
2 . (6.3)

If f bl2 could be applied as an external load in the interface between source and receiver
(remember this is just a thought experiment) then they would act on the source, just like
before, as a perfect clamping support. The motion on the interface of the assembly AB
would thus also be zero:

0
!

= uAB2 = YAB
21 fA1 + YAB

22 f bl2 . (6.4)

However, if the assembly AB has no motion on the interface, and there is no other vibration
source on the receiver B, then also the vibration at all other points in the receiver uB3 would
be zero:

0
!

= uB3 = YAB
31 fA1 + YAB

32 f bl2 . (6.5)

The blocked forces act like a noise cancellation on the source. Another way to get to this
result is to see that the interface gap ∆u2 in equation (3.9), and thus also the Lagrange
multipliers λ would be zero. This is the theoretical basis for the blocked force concept (or in
fact all equivalent force concepts in TPA, see [159]). Of course, the discussion so far was
just a thought experiment (artificially applying the blocked forces to the interface DoF of the
assembly AB is usually not possible). However, since the assembly AB is modelled as a
linear time invariant system, it is allowed to add and subtract the effect of the blocked forces
from the original problem in equation (6.1) without modifying the outcome (superposition
principle):

uB3 = YAB
31 fA1 +

=0︷ ︸︸ ︷
YAB

32 f bl2 −YAB
32 f bl2 . (6.6)

Using the blocking effect on the original exciation fA1 from equation (6.5), one finds that:

uB3 = −YAB
32 f bl2 . (6.7)

Notice that the derivation did not specify which particular receiver structure B is used. The
blocked forces are thus a valid source description for any receiver B. Also note that the
blocked forces are a property of the source alone, see equation (6.3). A thorough derivation
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of the concept, as well as different methods for obtaining the blocked forces in practice, are
described in [159] and a theoretical comparison of these methods is given in [149].

Remark 6.1: An important assumption for the derivation of the blocked force concept,
is that the internal source excitation fA1 is independent of the source mounting, i.e.
the receiver B. This is (to the authors experience) a good assumption for the climate
compressor and electric motors, but it may not be justified for other sources. Consider
a gearbox whose housing is rigidly connected to a stiff receiver. Due to manufactur-
ing tolerances, the housing is slightly deformed after assembly with the receiver. The
resulting misalignment of the gears would be an important mechanism changing the
internal loads fA1 , which is dependent on the specific receiver (how much is the hous-
ing deformed by the mounting?). Care has to be taken so that this assumption is not
violated.

Remark 6.2: The blocked force concept, as well as another component based TPA
concept commonly called ’free velocites’, are special cases of the two equivalent rep-
resentations of a forced vibration developed in [18]. They are in fact equivalent to the
developments in [18], for the special case where the receiver structure has no external
excitations. However, in [18] the framework is extended to cases where one is also
interested in the vibration on the source itself, or for cases where there are multiple
sources. The paper is an interesting read for those involved with method development
in the TPA field.

6.3 Example: in-situ determination of blocked forces

The method used for obtaining the blocked forces in this thesis is called the in-situ blocked
force method, to the authors knowledge first introduced in [120]. There, the source is
mounted to a structure R which is, in its dynamical behavior, already similar to the final
design, see figure 6.2a. The reciever structure R could be a testrig, the final receiver itself,
or an early prototype of the final receiver.
Thereby, detrimental effects from a possible violation of the blocked force assumption in
remark 6.1 is reduced. The author thinks that this is one of the reasons, why the in-situ ap-
proach often yields better results than other approaches for determining the blocked forces.
In the example shown in figure 6.2b, the testrig R is equipped with additional sensors that
record the vibration while the source is in operation uR4 . The compressor is connected with
3 bolts to the receiver. The receiver consists of connectors which are themselves bolted to
a plate. The plate is bolted to four steel arms which are clamped to a rigid test bed. The
test bed is floating on air-springs. Each of the 3 compressor connection points could be
treated as a virtual point as described in section 3.3, so the blocked force vector f bl2 would
contain 18 forces and moments in total. This approach can be necessary for describing the
high frequent behavior, but can cause stability issues in the solution (this is further treated in
chapter 8). In this chapter, the compressor was treated as a rigid body, so only one virtual
point is defined in the middle of the compressor housing and in total 6 blocked forces have
to be determined. The FRFs from hammer impacts at the interface (see lower right part of
figure 6.2b) to all acceleration sensors, i.e. FRF matrices YAR

42f
and YAR

32f
, are determined by
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Figure 6.2: Overview of the performed in-situ determination for the blocked forces. a) schematic
overview b) picture of the testrig, with attached climate compressor. Lower right part of the figure
gives an overview of the connection points between compressor and the testrig, including the sensors
for recording uR4 and the positions for applying hammer impacts.
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hammer impact testing. The hammer inputs are then transformed to virtual point loads, by:

YAR
32m = YAR

32f
TT
f , YAR

42m = YAR
42f

TT
f . (6.8)

The number of input columns is thereby reduced from 76 in YAR
42f

to 6 in YAR
42m . The trans-

formed matrices with the 6 virtual point loads as input are simply stated as YAR
42 and YAR

32

in the following1. The sensors for identifying the blocked forces on the interface uR4 were
placed as close as possible to the interface with the source, i.e. the compressor (see lower
right part of figure 6.2b). This is in accordance with the findings in [192], where the authors
investigated the optimal placement of sensors for ’observing’ the blocked forces and found
that close to the interface generally yields the best results. In total, the vector uR4 consisted
of 36 signals from 12 triaxial accelerometers. When artificially applying the blocked forces
f bl2 to the interface, they would have to cancel out all vibration on the receiver (as discussed
in section 6.2):

0
!

= YAR
41 fA1︸ ︷︷ ︸
uR4

+YAR
42 f bl2 , (6.9)

which means for the calculation of the blocked forces,

f bl2 = −
(
YAR

42

)+
uR4 , (6.10)

where (?)+ indicates the least squares pseudo inverse. The pseudo inverse has to be used
since the system of equations is overdetermined (YAR

42 is a 36 × 6 matrix). The pseudo
inverse can either be built with least squares, or with a regularized inverse to suppress the
detrimental effects of measurement noise even more than with least squares. Some variants
for regularizing the inverse problem will be explained and compared in chapter 8.
An initial check that can be done with the computed blocked forces is often called On-
Board validation (see e.g. [168]). The blocked forces, computed with the signals uR4 on
the testrig, can be used to predict the vibration at other sensors uR3 which were also at-
tached to the testrig (see figure 6.2). These signals were recorded during the same oper-
ational measurements as uR4 , but were not used for the calculation of the blocked forces in
equation (6.10). The response in these channels is predicted with the blocked forces, similar
to equation (6.7). If the description of the interface is complete, this should yield vibration
levels equivalent to the ones actually recorded during the measurement. Comparing the
measured uR3 and the TPA prediction with the blocked forces, i.e.:

uR3
?
= −YAR

32 f bl2 , (6.11)

then serves as an initial validity check of the computed blocked forces. In case the de-
scription of the interface loads is inappropriate, e.g. since an important transfer path on
the interface was neglected, this would manifest in a bad predictability of the measured uR3 .
Figure 6.3 exemplarily shows the on-board validation for one of the channels in uR3 , in a
third octave plot, a narrowband plot and a hearing comparison in two separate sound files.
The prediction is found to be good (also in the other channels), so the blocked forces are
assumed to describe the excitation of the compressor sufficiently. Another valuable check
for testing the ’completeness’ of the interface description can be given by the interface com-
pleteness criterion (ICC), as introduced in [113]. Note that the two negative signs in the
blocked force identification (6.10) and prediction of responses with the blocked forces (6.11)

1In chapter 8, each connection is treated as a full virtual point, hence the larger number of impacts.
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Figure 6.3: On Board validation of in-situ TPA measurements. The operational data was captured
at 60% of the compressors maximum rotational speed (first order at 86Hz). The blocked forces are
calculated according to equation (6.10) from the data recorded with accelerometers uR4 . All plots
are showing the prediction for one sensor in the set of uR3 (global z-direction of left most sensor in
figure 6.2b). (a) Third Octave plot of operational measurement and the prediction via the blocked
forces (left and right part of equation (6.11) respectively). (b) Narrow band plot, vertical lines indicate
the compressor orders. (c) Sound file of TPA prediction and operational measurement. For audio
playback, click on the respective loudspeaker symbol (Adobe Acrobat reader version 9.0 or newer is
needed).
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are annihilating each other. In the rest of this thesis, the negative sign in the identification
and prediction is therefore often dropped for simplicity.

6.4 Computing blocked forces from long time records

So far, all equations and quantities have been stated in the frequency domain, i.e. uR4 meant
the frequency dependent amplitudes uR4 (ω), which are obtained from a recorded time signal
uR4 (t). The frequency resolution of the Fourier transform uR4 (ω) depends on the timeblock
length T which is taken from a longer time record uR4 (t), see equation (2.19). For a time
block length T = 1s, one would have a frequency resolution of 1Hz, for T = 2s a frequency
resolution of 0.5Hz, and so on. Of course the frequency resolutions of YAR

42 and uR4 have to
be equal to perform the operation in equation (6.10) for each frequency.
However, if the frequency resolution of the measured YAR

42 is 1Hz, as is the case in this ex-
ample, then also the timeblocks that are taken from uR4 (t) must be one second long. Simply
taking the long time signal uR4 (t) and transforming it to the frequency domain would require
to increase the frequency resolution of the inverted matrix YAR

42 . Since this would require to
invert the matrix at more frequencies, it would result in longer program run-times. Addition-
ally, the blocked force result would not be meaningful for e.g. a run-up of the compressor. If
a longer time period shall be included in the blocked force estimation (e.g. for a runup of the
compressor), then the signal is cropped into Nb, possibly overlapping, time blocks and the
blocked forces are computed for each of these timeblocks individually, see figure 6.4. The
frequency dependent signal uR4 (ω, b) and computed blocked forces f bl2 (ω, b) are thus also
dependent on the specific time block b for which they were computed.
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Figure 6.4: Schematic depiction of the blocked force computation for longer operational sequences.
The original time signal in all channels uR4 is cropped in toNb possibly overlapping time blocks. These
are transformed to the frequency domain where a set of blocked forces is computed for each time
block from the operational signal.
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A good acoustic engineer uses his ears
as a primary instrument for analysis;
the measurement technology merely
serves to confirm already-formed
presumptions.

Maarten V. van der Seijs in [157]

Ultimately, all efforts in NVH engineering are dedicated to maximize the comfort and qual-
ity perception of the product user. The inputs to the human hearing system are air pres-
sure fluctuations at both ears in the time domain. However, so far all computations for the
coupling of substructures and the computation of the blocked forces were stated in the fre-
quency domain. The numerical evaluation in the frequency domain offers great advantages
for computation (a differential equation can be treated as an algebraic equation). Also for
understanding issues in the design phase, the frequency domain is well suited (phenomena
can be attributed to e. g. resonances). Nevertheless, a result plot in the frequency domain
can never fully convey the human impression of the analysis results. For example, humans
can perceive frequency differences in individual tones up to 3Hz at a frequency around
1000Hz. This minimum perceivable tone difference increases towards higher frequencies
[153, 190]. The field of psycho-acoustics [42] has made great advances in describing the
hearing impression of signals represented in the frequency domain by defining quantities
such as e.g. loudness, sharpness, roughness and tonality. However, in order to make the
results more tangible to non-acoustic experts it was found indispensable to present results
in terms of sound files that can be played back in an adequate environment. E.g. when
communicating analysis results to vehicle development project managers. Hearing exam-
ples greatly simplify the discussions during the NVH development of new products [12, 187,
200]. This invariably means to provide the TPA results in the time domain. This chapter
treats the proper handling of this issue. For an undistorted hearing experience, at least a
binaural hearing needs to be provided, i. e. at least two channels [46, 132]. Everything in
this chapter will be explained on the basis of one input and output channel for clarity of the
presentation, but is generally applicable to multiple input and output channels.

115



116 7 Auralization of TPA results

The most complete overview on auralization that the author could find is [187]. From [187,
chapter 9]:

"If the source signal and the system’s transfer function or impulse response are obtained
separately, the resulting output signal can be calculated by convolution. The convolution
can be processed in various ways, either directly in the time domain by using FIR filters or
by using FFT convolution. In the latter case, however, it should be kept in mind that FFT re-
quires fixed block lengths and is related to periodic signals. Time windows might be required
for reducing artefacts from discontinuities."

This chapter will summarize the experiences of the author with the use of FFT (cyclic) con-
volution and FIR filters (non-cyclic convolution). Additionally, some specialties related to the
inverse force identification in the blocked force approach will be explained. The author wants
to thank Dr. Maarten van der Seijs, Dr. Georg Eisele, and Prof. Bernhard Seeber for the
personal communication on this issue.

7.1 Literature on auralization for TPA

Reichart [144] identified the direct airborne radiation of the compressor via its emitted sound
power. The sound power lacks information of the signals phase. Thus a method for auraliza-
tion that assigns a random phase to the individual components was applied [11]. However,
the influence of the time windows and the tonal spectrum of the compressor made the au-
ralization difficult. Benner [14] investigated the use of overlapping Hanning windows (see
section 7.4) and using time window lengths that were adapted to fit the order frequency
of the compressor. The latter approach provided insight but proved infeasible for practical
application. Auweraer [181] applies a time domain convolution for auralization. In [182]
the authors propose a cyclic convolution for stationary machine operating conditions and a
non-cyclic convolution for transient operating conditions, e.g. a run-up.

7.2 Cyclic and non-cyclic convolution

It is not the intent of this chapter to go into full detail on digital signal processing (see e.g.
[99]). The basics of the needed computations for creating TPA results in the time domain
will be explained in this section. Therefore, a short numeric example in Matlab™ notation is
given (following [165, chapter 4]). Assume a simple one degree of freedom system with a
discrete impulse response Y (n) and a force input f(n), represented in matrix notation as:

Y (n) =
[
2 3 1

]
, f(n) =

[
5 3 2

]
. (7.1)

The answer to a single unit impulse, Y (n), is 3 samples long. That means a force input f(n)
with 3 impulses will create a response, u(n), that is 5 samples long. It can be obtained by
convolution with the impulse response:

u(n) =
n∑

τ=1

Y (n+ 1− τ) f(τ), resulting in: (7.2)

u(n) =
[
10 21 18 9 2

]
. (7.3)
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This is commonly called standard FIR-filtering or non-cyclic convolution. FFT convolution,
also called cylclic convolution, is assuming that the force input f(n) is periodically repeating
after a number of samples (see section 2.3). Assume this is the case and:

f(n) =
[
... 5 3 2 5 3 2 ...

]
. (7.4)

The result of this force input f(n) could be split into overlapping blocks of the responses to
the repeating input blocks in f(n) which were computed in equation (7.3). These need to be
added in the overlapping parts, to yield the response for a periodic excitation:

u(n) = ... 10 21 18 9 2 ...

+ ... 10 21 18 9 2 ...

+ ...

= ... 19 23 18 ...

(7.5)

where the response of the previous input block overlaps with the response of the new input
block. This part is cyclically repeating since each input block of the force is the same. The
result of this repeating part of the answer can be obtained by using the computationally more
efficient approach via the FFT. Again in Matlab™ notation this would mean:

Y (ω) = fft(Y (n)), f(ω) = fft(f(n)), (7.6)
u(ω) = Y (ω) . ∗ f(ω), u(n) = ifft(u(ω)), (7.7)

assuming the input of equation (7.1) this would result in:

u(n) =
[
19 23 18

]
, (7.8)

which is equal to the periodically repeating part of the overlapping block responses that
one would get from a partitioned non-cyclic convolution (equation (7.5)). This approach
is computationally very efficient and fits perfectly into the framework for the blocked force
evaluations based on individual frequency blocks (see figure 6.4).

7.3 TPA Auralization by cyclic convolution

As mentioned, the cyclic convolution is computationally very efficient but is assuming a peri-
odically repeating force input. For the case of the compressor, this means one is assuming
that the operating speed is very stable and each time block is covering an integer number
of cycles. For investigating the appropriateness of this assumption, the blocked force work-
flow shall be re-enacted on a simple example in this chapter. The time signal used here
was recorded while the compressor was running with 90% of its maximum speed in a freely
hung up condition (7740rpm). For the sake of presentation, the signal of one accelerome-
ter channel attached to the compressor was extracted, low-pass filtered (8-pole Butterworth
filter, cut off frequency 1000Hz), and used as "operational signal" uA, see figure 7.1.
Assume this signal was recorded on a simple analytically modeled source A that shall be
used for force identification, see figure 7.2a. With its FRF Y A (see figure 7.2c)1 and the
operational signal uA, this means for the blocked forces f bl:

f bl =
(
Y A
)−1

uA, (7.9)
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Figure 7.1: Acceleration signal of the freely hung up compressor at 90% of its maximum speed
(7740rpm, 129Hz first order). This will be used as example signal uA used for the blocked force
calculation.
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Figure 7.2: Schematic drawing of (a) source with operating signal uA and FRF Y A, (b) source
attached to receiver with FRF Y AB and response uB that is to be predicted by blocked force TPA,
and (c) the FRFs Y A and Y AB .
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where the above equation is in the frequency domain. The identified blocked forces f bl shall
be transferred to a design where the source is attached to a receiver, yielding the modeled
source receiver assembly AB, see figure 7.2b. The vibration uB that would be recorded on
this assembly with FRF Y AB (see figure 7.2c) can be computed in the frequency domain as:

uB = Y ABf bl. (7.10)

The FRFs Y A and Y AB are modeled with a frequency resolution of 1Hz. For performing the
blocked force identification and transfer (equation (7.9) and (7.10)), the operational signal
uA is cut into 1 second long time blocks. These are transformed to the frequency domain,
resulting in frequency blocks with a resolution of also 1Hz. The computations are then
performed per frequency and block (see figure 6.4). This results in a response uB in multiple
frequency blocks. For the cyclic convolution, one is assuming that each of these blocks is
equal, or at least very similar. The time blocks are successively cut out of the long time
signal uA with no overlap between the individual blocks. For the auralizing the signal uB with
the cyclic convolution, two approaches will be compared:

• Repeated Block: Only the first time block of the signal uA is extracted and processed.
The back transformed time block of uB is then repeated 7 times, so the resulting audio
file is 7 seconds long.

• Subsequent Blocks: The first 7 time blocks of the signal uA are extracted and pro-
cessed. The 7 back transformed time blocks of uB are appended to each other, so the
resulting audio file is 7 seconds long.

The resulting signals and auralizations can be seen in figure 7.3. It can be clearly seen
and heard that the resulting audio files are contaminated by jumps in the time signal, which
occur at the bounds of the time blocks. These result in spurious clicks in the audio signal.
For the results of the repeated block, the jumps result from a violation of the assumption
that the compressor is performing an integer number of operational cycles in the time block
(leakage). For the subsequent blocks of the signal, also small variations in the operational
speed of the compressor come into play, which results in even larger jumps at the time block
bounds. Note also that the predicted time signal of uB is larger at the beginning of each
new time block, and smaller at the end of a time block. This phenomenon is also related to
leakage. In the cyclic convolution the computation is assuming that the signal is periodic.
The identified forces feq need to enforce the jumps at time block bounds so the forces are
large at the beginning and end of the time block. This can be seen when plotting one time
block of the identified forces, see figure 7.4.

1Notice that these simple FRFs are in displacement over force format. This is however not impairing the
general results of the derivations in this chapter.
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Figure 7.3: Results of the cyclic convolution. Clear "clicks" can be heard in the audio and observed
in the timeplots at the bounds between individual time blocks.
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Figure 7.4: Time block of the identified blocked forces f bl for the rectangular windows cut from the
signal for uA. Large increases at the start and end of the force block are needed to force the signals
discontinuity at the time block bounds.
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Figure 7.5: Overlapping Hanning windows and sum of the windows

Remark 7.1: One solution for creating sound files without "clicks" is to process the
whole operational signal uA in only one large time block and transforming this into
the frequency domain. Since the frequency resolution is then increased, also the
FRF needs to be adjusted to the larger frequency resolution (e.g. by interpolation).
Nevertheless, this approach results in very large program run times and is infeasible
in practice, where a larger matrix YAR

42 needs to be inverted. The number of matrices
to be inverted (at each frequency!) simply becomes too large.
Benner [14] investigated using an order tracking algorithm [116], for identifying the
exact speed of the compressor in each time block and adjust the time block length
accordingly, so that the leakage phenomenon is not an issue anymore. However,
especially for lower operational speeds of the compressor, the order frequency is very
unstable (see [14]). The frequency resolution adjustments to the FRF matrix in each
block were found to be infeasible in practice.

7.4 TPA Auralization by cyclic convolution with overlap-add

A well known remedy to leakage is the application of windows to the time blocks. They
typically force the signal to zero at the beginning and end of the time blocks. A Hanning
window of length N is defined by:

w(n) = 0.5− 0.5 cos
(

2πn
N

)
. (7.11)

Assume the sum of the overlapping windows is equal to one. Then the reassembly of the
windowed time blocks into a long time series comes down to time correct adding of the single
blocks. When superposing two consecutive Hanning windows that overlap by a shift of N

2 ,
i.e. 50% of the time block length, the sum of the windows is equal to one:

w(n) + w
(
n+ N

2

)
= 0.5− 0.5 cos

(
2πn
N

)
+ 0.5− 0.5 cos

(
2π(n+

N
2 )

N

)

= 1− 0.5 cos
(

2πn
N

)
+ 0.5 cos

(
2πn
N

)

= 1,

(7.12)

since the cosine is point symmetric around half a period. The sum of consecutive Hanning
windows that overlapp by half of the window length N is thus equal to one, apart from a
fade-in and fade-out at the beginning and end of the time series, see figure 7.5. Applying
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a window with this property to overlapping time blocks, resulting from frequency domain
data, is called constant overlap add (short COLA) [3, 50, 61, 101], and is often used for
creating sound files without spurious clicks at the block bounds. For the example treated in
this section, two different approaches are compared:

• Pre Hanning windowing: The sources operational signal uA is cut into 50% overlap-
ping blocks and a Hanning window is applied. The force identification and response
prediction is done per block in the frequency domain (equation (7.9) and (7.10)). The
resulting frequency blocks for uB are transformed back to the time domain and added
with the same 50% overlap to yield the time signal for the response uB that can be
auralized.

• Post Hanning windowing: The sources operational signal uA is cut into 50% overlap-
ping blocks and no window is applied to them. The force identification and response
prediction is done per block in the frequency domain (equation (7.9) and (7.10)). The
resulting frequency blocks for uB are transformed back to the time domain and a Han-
ning window is applied to them. They are added with the same overlap to yield the
time signal for the response uB that can be auralized.

The results of these two approaches can be seen and heard in figure 7.6. It can be seen
that for the post Hanning windowed results, the results still show the cyclical increases and
decreases that are related to the leakage effect (as explained in section 7.3). This is due to
the fact that the blocked forces are still computed with unwindowed time blocks. The signal
is nevertheless free of spurious clicks, since the Hanning windows that are applied to the
resulting blocks of uB are forcing any possible jumps in the signal to zero. The resulting
sound file sounds like a signal with a beating phenomenon.
For the pre Hanning windowed results in figure 7.6, it can be seen that the cyclic increases
and decreases are eliminated. The leakage phenomenon is remedied by applying the Han-
ning window to the source signal uA before the identification of the blocked forces. Never-
theless, the resulting time blocks of uB are not zero anymore at the beginning and end of
the block. This results in small, but still well audible clicks in the operational signal. Note the
slight jump in the signal at 1.5 seconds in figure 7.6.

7.5 Filtering of discontinuities at timeblock bounds

The signal resulting from the pre-Hanning windowed time blocks was leakage free (see
section 7.4). This was considered promising, so it was tried to remove the small but audible
jumps in the time signal by two different approaches:

• Polynomial fitting: 5 samples left and right of each timeblock bound were taken (so
in total 11 samples) and a fourth order polynomial was least squares fitted to the initial
data.

• Low pass filtering: Since the jumps introduce an impulse like signal, containing
higher frequencies, the whole reconstructed time series of uB was again low pass
filtered (8-pole Butterworth filter, cut off frequency 1000Hz).

The results of these filtering approaches on the timeblock bounds can be seen and heard
in figure 7.7. Both approaches can dampen the spurious clicks in the audio file to a large
extent, where the low pass filtering approach seems to be more successful from the hearing
examples. Nevertheless, with both approaches the slight clicks at the time block bounds
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Figure 7.6: Cyclic convolution results with overlap add and the "pre" Hanning windowing on uA and
"post" Hanning windowing on uB .
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Figure 7.7: Filtering of discontinuities at the time block bounds. Once with a least squares fitted
fourth order polynomial over 11 samples, and second with a low pass filter applied to the whole time
series.

can still be heard2. The anomalies at the block bounds in the time signal are virtually non-
visible in the time plots after both filtering approaches (this has been checked at all time
block bounds). The fact that the human ear can still capture them, still amazes the author.
This was one of the reasons for the quote at the chapter beginning.

7.6 TPA Auralization by non-cyclic convolution

Obviously, the approach of non-cyclic convolution to the auralization task is still an option.
Here no assumption about the periodicity of the signal has to be made, so it is generally
also applicable to transient sounds like rattling, or a run-up of a motor. The frequency do-
main operations of the blocked force TPA can be combined in one operation, yielding the
transmissibility TAB|A:

uB(ω) = Y AB(ω)
(
Y A(ω)

)−1

︸ ︷︷ ︸
=:TAB|A(ω)

uA(ω). (7.13)

This operation in the frequency domain can be executed in the time domain by transform-
ing the transmissibility to a finite impulse response (FIR) filter and performing a non-cyclic
convolution with the time signal uA, to obtain directly the time signal of uB:

uB(t) =

∫ t

τ=0
TAB|A(t− τ)uA(τ)dτ. (7.14)

For a computationally efficient implementation of this convolution, a block-wise FFT based
convolution [45, 75, 114] can be used (which is strongly recommended for better perfor-
mance). In this block-wise computation, it is possible to adapt the transmissibility over time,
due to e.g. changing transfer functions of the system during an operational cycle (see [194]
for the example of a steering system). When the impulse response of the transmissibility
TAB|A is plotted over time, see figure 7.8, one notices that, unlike the expected exponen-
tially decaying oscillation, the impulse response is increasing again towards the end of the
time block. This is related to the inverse force identification involved in the TPA approach.
From a physical point of view, the forces f bl which are identified by the inverse FRF have

2Generally it was found that very simple ear plug headphones give a clearer impression on these clicks, than
over-ear headphones or loudspeakers.
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Figure 7.8: Impulse response function of the transmissibility TAB|A(t).
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Figure 7.9: Impulse response function of the transmissibility TAB|A(t) with a time shift applied to
make the filter causal again.

to act first in time before one observes a signal response uA. This phenomenon is called a
non-causal filter in control theory. To remedy this issue, one can apply a slight time-shift to
make the filter causal again, as also mentioned in [181]. Applying a time-shift of 0.1s directly
to the IRF, results causal impulse response is shown in figure 7.9.
The results of the non-cyclic convolution with the causal and non-causal FIR filter are shown
in figure 7.10. The resulting sound files do not contain any spurious clicks. However, it
seems that the convolution with the causal filter yields a sound that is closer to the one
from the pre-Hanning windowed approach (see figure 7.10). Note that as the FIR filter in
this case has a length of 1 second and the non-cyclic convolution is not assuming a steady
state. Hence the first and last second of the resulting time signal uB cannot be used for
auralization, since the signal is fading in and out of the FIR filter.

7.7 Conclusion and final notes

The block-wise auralization with cyclic convolution was found to be hindered by discontinu-
ities at time block bounds. These disturb the auralized audio files by spurious "clicks". This
is related to the non-periodic operational state of the compressor (and most likely any other
imaginable machine). From the authors experience, the constant overlap add (COLA) ap-
proach with Hanning windows often produces sound files without the spurious clicks when
an on-board validation is auralized. For a transfer validation, like shown here on a simple ex-
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Figure 7.10: Results of the non cyclic convolution with the impulse response TAB|A(t) and the
impulse response that was made causal by applying a slight time shift.

ample, it does not yield satisfactory results. The exact reason for this difference in on-board
and transfer validation is not yet clear and is up to further investigation. The non-cyclic con-
volution was found to be the only reliable method for creating sound files that are free of
signal processing artifacts such as the clicks. Due to the inverse force identification involved
in the TPA method, the resulting filter showed a non causal behavior. This was remedied by
applying a time-shift to the resulting filter.
The simple example in this chapter had only one input and output channel, but the time
domain auralization is also applicable to multiple input and output channels. For an in-
situ blocked force identification on a testrig assembly AR with transfer to a new receiver
assembly AB, this can be written as:

pB3 = YAB
32

(
YAR

42

)+
︸ ︷︷ ︸

=:TAB|AR

uR4 (7.15)

where the transmissibility matrix TAB|AR can be transformed to a FIR filter matrix, made
causal by a time shift, and convoluted with the testbench time signal uR4 (t), to yield the
predicted sound in the final receiver pB3 (t):

pB3 (t) =

∫ t

τ=0
TAB|AR(t− τ)uR4 (τ). (7.16)

To the authors experience, it is best to first use all available checks in the frequency domain
and make sure that the results make sense there. After that the final step of the auralization,
equation (7.16), can be taken. The auralization with the non-cyclical convolution has the
additional advantage that it also allows to auralize non-stationary machine sounds, like run-
ups or rattling of components.
Two practical notes for aiding the interpretation of the sound files provided in this document
should be made:

Conversion to sound files and comparability of individual sound files

All sound files embedded in this document are in MP3 format, which is a lossy compression
but was chosen to keep the file size of this document low. Both, the MP3 format and the
lossless WAV format, allow the time signal values to vary only in a range of [−1, 1]. Therefore,
the time series results of the TPA auralizations have to be scaled and shifted such that this
dynamic range of [−1, 1] is fully used. It is thus not possible to convey information about
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the absolute sound pressure level in the form of an MP3 or WAV file. In order to make the
TPA results comparable to each other, the same scaling has to be applied to all individual
time series. All results of uB in this chapter are created with the same scaling and are thus
comparable to each other. In the rest of this thesis, only the sound files in one tabular frame
are comparable to each other (see e.g. the comparison between the reference measurement
and on-board validation in figure 6.3).

Listening to and interpreting the sound examples

An valuable tool during the hearing comparisons in this thesis can be provided by spectrum
analyzers which are available for all smartphones in the respective app stores. Placing
the spectrum analyzer next to the loudspeaker while listening to the sound files can provide
additional information about the spectral content of the signals. However, most loudspeakers
have their own transfer function and distort the sound somewhat with respect to the real
sound which was recorded/predicted. According to [42], headphones, even rather cheap
ones, typically have a flat transfer function and give more accurate hearing impressions than
loudspeaker boxes.
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The singular value decomposition
(SVD) is the swiss army knife of
engineering.

Prof. Klaus Diepold,
panel discussion with Cleve Moler [118]

The method which is predominantly used for obtaining the blocked forces f bl2 in this thesis
is the in-situ TPA method, as explained in chapter 6. A matrix (pseudo-) inverse is used for
the blocked force determination: f bl2 = (YAR

42 )+uR4 . This inverse makes the method poten-
tially sensitive to measurement noise in the vibration signals. Relatively small noise levels
in uR4 can get amplified to large errors in the computed blocked forces f bl2 , if the problem
is ill-posed and has a high condition number. This might be a cause for obtaining different
blocked forces, even when measuring the same source component in the same operational
condition but on different test rigs. In theory (which often means: without noise), this should
not be the case. This effect potentially distorts the predicted sound and vibration when ap-
plying the blocked forces to a modified receiver design. A possible remedy is to replace the
pseudo-inverse (YAR

42 )+ by a regularized inverse (YAR
42 )#, which is less sensitive to mea-

surement noise and yields more stable and transferable results. This is important for reliable
sound prediction in early NVH engineering or target setting for collaboration with component
suppliers.

129



130 8 Regularization methods for blocked force TPA

Section 8.1 summarizes the standard solutions to inverse problems, like the classical pseudo-
inverse. These solutions can be sensitive to measurement noise amplification, and related
terms like "ill-posed" and the "condition number" are introduced in section 8.2. The effects on
the blocked force computation are shown by an experimental example of the e-compressor
in section 8.3. Thereby, it is also shown that common quality checks on the blocked forces
(like the on-board validation, see section 6.3) can lack the sensitivity to detect this issue. The
background on regularization methods and some tools for investigating the properties of in-
verse problems are explained in section 8.4. The principle of some regularization strategies
is then explained and applied to the compressor example in section 8.5. The comparison
of different regularization schemes is an excerpt of the methods compared in Felix Benners
master thesis [15]. Some of these techniques are used for the application examples at the
end of this thesis. A summary and some practical recommendations on regularization are
given in section 8.6.

8.1 Standard solutions of inverse problems

For solving inverse problems, different approaches can be used. For the in-situ blocked force
TPA, the inverse problem (for each frequency) is:

f bl2 = (YAR
42 )+uR4 , with: uR4 ∈ Cm, YAR

42 ∈ Cm×n, f bl2 ∈ Cn and m ≥ n. (8.1)

The pseudo inverse of the matrix is indicated by the superscript ’plus’. Common approaches
for computing it are explained in the following.

Regular inverse

If the number of indicator channels is equal to the number of sought forces, i.e. m = n, the
regular inverse of the FRF matrix can be used for computing the blocked forces:

f bl2 =
(
YAR

42

)−1
uR4 . (8.2)

This solution requires the matrix YAR
42 to have full rank. Most often this is the case, due to the

presence of some measurement noise, but the matrix is often ill-conditioned which causes
stability issues in the results (see section 8.2).

Least squares inverse

In the literature on TPA and inverse force identification, it is almost always suggested to use
an overdetermined problem [33, 68, 71, 72, 77, 141, 172, 174, 192, 193], i.e. m > n. In fact,
the author could not find a single publication that advised against using overdetermination.
In [174], it is found that, up to an over-determination of m

n ≈ 1.5, the results of the inverse
force identification can be improved. In [192], it is suggested to use at least a factor of over-
determination of 1.5. To the authors experience an over-determination of factor 2 should
be used if channel count is not a limitation, lower then 1.5 should be avoided. Solving an
overdetermined problem, is often done by the least squares method. There is less degrees
of freedom in the forces than in the measured responses, m > n, so the solution to f bl2 can
only reproduce the measured responses uR4 up to a certain residual µ:

uR4 = YAR
42 f bl2 + µ (8.3)
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The least squares solution is the blocked force vector which minimizes the square norm of
this residual ||µ||2. This is the same procedure as in the virtual point transformation of the
sensor signals (see section 3.3.2), yielding:

f bl2 =
[
(YAR

42 )∗ YAR
42

]−1
(YAR

42 )∗ uR4 , (8.4)

for the computation of the blocked forces.1 This method requires the matrix YAR
42 to have at

least full column rank, i.e. rank(YAR
42 ) = n. Otherwise, the inverse in equation (8.4) does

not exist.

SVD based pseudo-inverse

The SVD based pseudo-inverse removes the requirement of full column rank on the matrix,
i.e. a solution for the blocked forces can be found even if rank(YAR

42 ) < n. Additionally, it
allows for a deeper insight into the behavior of the inverse problem, as will be seen in the
following sections. The SVD of the FRF matrix always yields [165, 167]:

YAR
42 = UΣV∗, (8.5)

with:

U ∈ Cm×m, Σ ∈ Rm×n+ V ∈ Cn×n, and (8.6)

U∗U = I, Σ =




σ1 · · · 0
...

. . .
0 σn
0 · · · 0
...

. . .
0 0




V∗V = I. (8.7)

The matrix U contains a set of orthonormal vectors ui in its columns, i.e. vectors that all
have unit length and are orthogonal with respect to each other. They form a complete basis
for representing any vibration that could possibly be recorded by the sensor channels in
uR4 . Similarly, the matrix V contains a set of orthonormal vectors vi, which form a complete
basis for all possible blocked forces f bl2 . The upper n× n part of the singular value matrix Σ
contains the singular values σn on its diagonal. The lower (m−n)×n part of Σ contains only
zeros. The singular values are by definition all positive or zero and ordered in descending
magnitude [51]:

σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0. (8.8)

If one of the singular values is zero, the matrix is rank deficient. The SVD based pseudo-
inverse is:

f bl2 = VΣ+U∗ u4, (8.9)

1As in section 3.3.2, one might also use a weighting matrix in the computation of the least squares solution,
then commonly called weighted least squares [165]. Thereby, the residual in individual channels might be
weighted more compared to others. This might be useful e.g. in case of different physical units contained in uR4 ,
e.g. accelerations and strains, or if individual channels exhibit significantly lower vibrations levels in operation
which are nevertheless well above the noise floor [71].
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with,

Σ+ =




1
σ1
· · · 0 0 · · · 0

...
. . .

...
. . .

0 1
σn

0 0


 . (8.10)

If the matrix is rank deficient, i.e. one of the singular values is zero, σi = 0, then the
corresponding term 1

σi
in equation (8.10) is replaced by zero. The singular value σi = 0

means that a vibration uR4 which is in the same direction as the basis vector ui (the i-th
column vector in U) cannot be reproduced by a blocked force component in the direction of
the vector vi. A vibration in the direction of ui is in the nullspace of the matrix. If the matrix
has full rank (rank(YAR

42 ) = n), it is easy to show that the SVD based pseudo-inverse yields
the same result as the least squares solution:

[
(YAR

42 )∗YAR
42

]−1
(YAR

42 )∗ = [(UΣV∗)∗UΣV∗]−1
(UΣV∗)∗ = VΣ+U∗. (8.11)

One could say that the SVD-based pseudo-inverse finds the solution with a minimal residual
||µ||2, which is equivalent to the least squares solution if the problem has full rank. In case
the problem is rank deficient, the SVD solution has a minimal residual ||µ||2 with the minimum
blocked forces ||f bl2 ||. The components of the blocked forces in the null space of YAR

42 , are
set to zero.

8.2 Ill-posed problems

Before introducing the term of an ill-posed inverse problem, it is useful to define well-posed
problems. According to [63], a well-posed problem means that small changes in the ob-
served data also cause small changes in the solution, i.e. if:

f bl2 = (YAR
42 )+ uR4 and f̃ bl2 = (YAR

42 )+ ũR4 , (8.12)

with only a small difference in the input data, uR4 ≈ ũR4 , then also the computed solution
should be similar f bl2 ≈ f̃ bl2 . Think about the fact that all measurements are subject to mea-
surement noise, i.e.:

uR4 = ûR4 + eu, (8.13)

where uR4 is the recorded signal, ûR4 is the noise free signal and eu is random measurement
noise. If the problem is ill-posed, this would mean that the random measurement noise eu
could completely alter the solution for the blocked forces. The solution of the inverse problem
can be split (it is a linear problem) into the noise free blocked force solution f̂ bl2 and the noise
solution ef :

YAR
42

(
f̂ bl2 + ef

)

︸ ︷︷ ︸
=fbl2

= ûR4 + eu︸ ︷︷ ︸
=uR4

. (8.14)

The so-called condition number is representative for a "worst case" scenario regarding the
relative amplification of the measurement noise eu to blocked force noise ef . For this worst
case, assume all of the noise free operational signal ûR4 is in the direction corresponding to
the first and largest singular value σ1:

ûR4 =̂ ||ûR4 || u1, (8.15)
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where u1 is the first column vector of the matrix U from the SVD in equation (8.5). Then the
solution for the blocked forces, according to (8.9), would be:

f̂ bl2 = v1
||ûR4 ||
σ1

. (8.16)

In fact, this is the f̂ bl2 solution with the lowest possible magnitude, for an observed vibration
with amplitude ||ûR4 ||. For an FRF matrix, the vector u1 is often very similar to the mode
shape of the closest frequency mode [2]. The vector v1 represents the set of forces that
excite this mode shape. Mechanically speaking, this direction is the most "flexible" direction
of the system at a given frequency, since a small force input in the direction v1 can cause a
high response in the direction u1 (amplified with the highest singular value σ1). Therefore,
the lower bound for the blocked forces magnitude of the noise free signal is:

||f̂ bl2 || ≥
1

σ1
||ûR4 ||. (8.17)

The worst case scenario for the noise amplification would be, if all the noise eu is in the
mechanically "stiffest" direction, i.e un. So the upper bound for the blocked force noise is:

||ef || ≤
1

σn
||eu||. (8.18)

Taken together, one can define an upper bound for the maximum amplification of the relative
error in the acceleration signals to a relative error in the force signals:

||ef ||
||f̂ bl2 ||︸ ︷︷ ︸

relative error fbl2

≤ σ1

σn︸︷︷︸
=cond(YAR

42 )

||eu||
||ûR4 ||︸ ︷︷ ︸

relative error uR4

. (8.19)

This maximum amplification of relative errors is called the condition number of the matrix
cond(YAR

42 ). An ill-posed problem is typically regarded as one where this maximum amplifi-
cation of errors is high, i.e. systems YAR

42 with a high condition number. One could also say
that the condition number is an upper limit to how much the SNR is decreased during the
data inversion.
In [63], one makes the distinction between rank-deficient and ill-posed problems. A rank-
deficient problem would be one, where the effective rank of YAR

42 is smaller than n, i.e. the
number of blocked forces to compute. This would be the case if e.g. the FRF matrix YAR

42

was measured on a system which is essentially behaving like a rigid body in the frequency
range of interest, but more than six forces shall be identified. This could be identified by
observing a group of 6 large singular values in the matrix, followed by a "gap" till the rest
of the smaller singular values follow. These problems could be solved by either modelling
the system with an appropriate number of degrees of freedom, or using regularization (see
section 8.5).
An ill-posed problem is one where there is no clear "gap" between groups of singular values.
Rather the ratio between subsequent singular values is approximately constant and they
are sequentially getting lower and lower. The problems in this thesis are often found to be
ill-posed, which can be seen in large parts of the frequency region in figure 8.2, which is a
plot of all singular values over frequency. Only in the lower frequency region in figure 8.2
one could argue that the problem is rank deficient.
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Figure 8.1: Depiction of the different plate designs mounted to the configuration shown in figure 6.2.
Left plate is made of full material and considered to be the "testrig". The right plate is milled out in
certain regions and significantly lighter and considered the final "receiver". The blocked forces are
computed on the testrig plate with a pseudo- and a regularized- inverse. The resulting blocked forces
are validated by performing an on-board validation on the testrig design and a transfer validation to
the receiver design. The flow of evaluations is shown in the figure.

8.3 Example: noise amplification in e-compressor blocked forces

The example case, for the rest of this chapter, is the same setup as in section 6.3. In
figure 6.2, one can see the test design containing the compressor. Unlike in section 6.3,
in this section there are two different designs of the plate. They can be seen in figure 8.1.
The blocked forces of the compressor shall be computed with one of the plates and then
transferred to the setup with the other plate. Thereby, the transferability of the blocked
forces from one design to the other is checked and the success of different regularization
strategies can be studied. One of the plate designs will be considered to be the testrig (left
part of figure 8.1). The blocked forces are identified in this configuration and are used for
predicting the vibration levels on the testrig itself (on-board validation) and on the receiver
design (transfer validation). In both tested designs, the compressor measurements were
taken under the same operational conditions (speed, pressures, temperature, oil amount,
etc.). Different to section 6.3, the blocked forces in this chapter are not containing only 3
forces and 3 moments in the center of gravity of the compressor. In this chapter, each of the
three connection points is treated as a full virtual point, so in total f bl2 contains 18 entries and
the matrix YAR

42 has 18 non-zero singular values. The singular values of the matrices YAR
42

and YAB
42 are plotted over frequency in figure 8.2 together with their condition numbers. The

problem is still overdetermined, since uR4 contained 36 channels (over-determination factor
of 2).
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Figure 8.2: Singular values and condition numbers over frequency for YAR
42 and YAB

42 .

8.3.1 On-board and transfer validation results

The compressor was tested with a predetermined set of operating conditions on each of the
designs. For simplicity, only the results of the compressor running at 80% of its maximum
speed (or 6880rpm) are shown in this section. The first order of the compressor is at ca.
115 Hz. The general findings are similar for all other tested operating conditions. During the
operational measurements, the signals uR4 were recorded. The blocked forces were iden-
tified with and without regularization, which will be denoted with f bl+2 for the unregularized
pseudo-inverse and f bl#2 for the regularized inverse (see the evaluation flow in figure 8.1).
The method used for the regularization is the SNR based Tikhonov regularization, which will
be explained in section 8.5.3. It is not necessary to understand its implementation for now,
as it serves only to demonstrate the effects of regularization at this point in the chapter.
In figure 8.2, the singular values and the condition numbers of the matrices YAR

42 and YAB
42

are plotted over the frequency range from zero to 2000 Hz. In the left half of figure 8.3, the
on-board validation on the testrig uR3 is shown. For simplicity, the on-board validation is
shown only for one channel in the set of uR3 (triaxial sensor to the very right in figure 6.2b,
channel in the global y-direction). Again, the principal findings are similar for all receiver
channels. In the third octave plot in the left part of figure 8.3, one can see that both TPA
predictions uR,TPA+

3 and uR,TPA#
3 match the validation measurement uR3 quite well. The

prediction with the standard pseudo-inverse uR,TPA+
3 shows some larger deviations from

the reference measurement at frequencies which are not excited by one of the compressor
orders. E.g. in the frequency region below 115 Hz, the solution computed with the pseudo-
inverse uR,TPA+

3 is too high in amplitude, whereas the regularized solution uR,TPA#
3 matches

the validation uR3 better. However, the vibration levels at these frequencies are still more than
40dB lower than the dominant first order peak at 115Hz where the pseudo and regularized
inverse predict the vibration levels equally well. The sound files provided in the lower left
part of figure 8.3 confirm that the dominant parts of the signal can be reproduced by both
approaches, as the predictions sound very similar to the on-board validation uR3 .
The same validation channel is used for the transfer validation (see right part of figure 8.1).
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Figure 8.3: Third octave plots of blocked force predictions with validation measurements in the range
0 − 2000Hz. Sound files of predictions and validation measurements are provided below. All sound
files were created with the FIR-filter approach explained in chapter 7 (only the on-board validation
would have yielded no artificial clicks with the overlap-add method). Left part : On-board validation
of blocked forces on the testrig. Right part : transfer validation of blocked forces from the testrig
transfered to the receiver design.
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Figure 8.4: Narrow band plots of blocked force predictions with validation measurements in the range
0− 400Hz. Sound files of predictions and validation measurements provided below. Vertical dashed
lines indicate the order frequencies of the compressor. All sound files had to be created with the
FIR-filter approach explained in chapter 7 to avoid spurious clicks in the signals. Left part : On-board
validation of blocked forces on the testrig. Right part : transfer validation of blocked forces from the
testrig transfered to the receiver design.

The results are shown in the right part of figure 8.3. The difference between the predic-
tions with the regularized and non-regularized blocked forces are more prominent here. The
predicition uB,TPA+

3 is too high in magnitude, especially in the lower frequency region. This
is now clearly audible in the sound predictions in the lower right part of figure 8.3. The
prediction uB,TPA+

3 contains clearly audible low frequent sound, which is neither present in
the regularized solution uB,TPA#

3 nor in the validation measurement uB3 . Nevertheless, both
blocked force predictions are too high in the upper frequency region.
In figure 8.4, a focus on the frequency region 0− 400 Hz is plotted in narrow band represen-
tation. The sound files in the lower right part of the figure make this low frequent difference
between the regularized and non-regularized transfer predictions even more apparent. In
the narrow band frequency plot of the transfer validation (upper right part of figure 8.4), one
can observe distinct frequencies where the standard pseudo-inverse solution is significantly
higher than the reference measurement.

8.3.2 Interpretation of the results

In the narrow band on-board validation (left part of figure 8.4), there are two distinct frequen-
cies where the non-regularized uR,TPA+

3 is significantly higher than the reference uR3 . These
are around 148Hz and 182Hz. These frequencies do not show as resonances in the testrig
FRF matrix YAR

42 . At these frequencies, the FRF matrix is rather showing a drop in some
lower singular values, which are the dynamically ’stiff’ directions. This could be interpreted
as an anti-resonance of the system in certain directions. As explained in section 8.2, the
random measurement noise eu (equally distributed), is amplified to high blocked force errors
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in the ’stiff’ directions. This is causing errors in the on-board validation, see e.g. the left part
of figure 8.2 and figure 8.3, in the lower frequency region. However, to the authors expe-
rience, this amplification of measurement noise eu to blocked force noise ef is usually not
an issue in the on-board validation. The on-board validation usually looks good, since the
blocked force noise ef which is high in the stiff directions of YAR

42 , then gets multiplied with
the FRF matrix of the same system YAR

32 , which typically has the same stiff directions. So
the resulting noise contamination of uTPA3 is typically very limited again.
During a transfer validation, the picture can be different. When inspecting the results of the
blocked force transfer closer, one finds that the frequencies where the over-prediction with
the standard pseudo-inverse is dominant, often correspond to the eigenfrequencies of the
receiver design YAB

42 . In the upper right part of figure 8.4, one can see that uB,TPA+
3 is sig-

nificantly too high at e.g. 54Hz, 94Hz and 194Hz. All these frequencies are eigenfrequencies
of the final receiver design, which can be seen in the increase of the first singular value of
YAB

42 in figure 8.2. Unfortunately, there is no guarantee that the mechanically stiff directions
of the testrig YAR

42 , where the blocked force noise was amplified, will also be stiff directions
on the final receiver YAB

32 . In the worst case, the receiver has a resonance that is excited by
the blocked force noise.
Effectively, the sensor channel noise eu is then amplified twice: first in a stiff direction of the
testrig and second in a resonance direction of the final receiver. This noise amplification
can cause problems as shown in the right part of figure 8.4. In fact, the spurious noise,
which can be heard in the hearing examples of uB,TPA+

3 in figure 8.4, sounds similar to an
auralization of the FRF’s in YAB

32 in this frequency range (not shown here).
In figure 8.5, the blocked force estimates computed on both configurations are shown. It
can be observed that the blocked forces computed on both configurations are equal at the
order frequencies of the compressor (as they should, since the blocked forces are a prop-
erty of the compressor and independent of the receiver). The frequency regions between
the order frequencies contain mostly inverted measurement noise. The magnitude of this
inverted measurement noise becomes lower with increasing frequency. This corresponds to
the increase in the lower singular values of the FRF matrix over frequency (see figure 8.2).
Regularization of the inverse problem provides a way to filter out the noise in the stiff direc-
tions of the testrig, and therefore limit the detrimental effect of measurement noise on sound
predictions for a new receiver. In figure 8.5 one can see that the regularized result for the
blocked forces is equal at the order frequencies of the compressor, but significantly lower at
the frequencies between the orders, where the noise is prominent. These effects and issues
will be explained in the following section.

8.4 Theoretical background on regularization for inverse force
estimation

In the last sections, it was explained and exemplified how particularly the small singular
values of YAR

42 can amplify the unavoidable measurement noise eu during inversion. Reg-
ularization methods reduce the noise amplification in these dynamically stiff directions in
a (hopefully) sensible way. Thereby, a more stable solution for the blocked forces and the
transfer validation results is obtained. This section explains some basic background neces-
sary for understanding the working principles of different regularization strategies. In [64],
regularization methods are grouped into three different groups:

1. Direct regularization: These methods compute a regularized solution, with no fore-
knowledge of the actual data to invert (uR4 or eu). They thus find a regularized solution
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Figure 8.5: Narrow band plots of computed blocked forces. Vertical dashed lines indicate the order
frequencies of the compressor. The plotted forces represent the norm of the x, y, z translational
forces on the front connection point of the compressor (Left connection point, in the lower right part
of figure 6.2b). The plotted moments represent the norm of the moments around the x, yz axis at the
same connection point.
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Direct regularization Parameter choice Iterative regularization

(YAR
42 )# = f

(
YAR

42

)
(YAR

42 )# = f
(
YAR

42 ,u
R
4 , eu

)
(YAR

42 )#
i = f

(
YAR

42 ,u
R
4 , eu, i

)

Weighted least squares (LS) Tikhonov SNR Iterative Tikhonov

Truncated SVD (TSVD) Tikhonov error balance Landweber iterations

Tikhonov regularization L-curve method

Cross validation

Discrepancy principle

Minimal covariance LS

Table 8.1: Overview of regularization methods grouped according to [64].

with the same regularized inverse matrix (YAR
42 )# for all operational data uR4 .

2. Parameter choice: These methods provide a rule for computing the regularized solu-
tion depending on the measured data uR4 and (an estimate of) eu.

3. Iterative regularization: These methods are computing a regularized solution in each
iteration, and a stopping criterion defines the best solution. The advantage of these
methods is that often no decomposition of the matrix is required. This is a computa-
tional advantage when dealing with very large problems.

Direct regularization and parameter choice methods are also called a priori and a posteriori
regularization methods in the literature [145]. In table 8.1, different methods are classified
according to this grouping. In Benners master thesis [15], many of the methods shown in
table 8.1 are tested on the same e-compressor example as shown here. The intention of
this chapter is mainly to explain the working principles of different regularization strategies,
so individual implementations can be understood in a common framework and notation. The
methods from [15] which particularly highlighted the differences between individual regular-
ization principles will be presented in section 8.5. Before that, some basics for understanding
regularization methods are explained.

8.4.1 Singular value truncation and Tikhonov regularization

In section 8.1, the SVD based pseudo-inverse was explained. If YAR
42 has singular values

that are equal to zero (i. e. there is a null-space), the blocked force solution is set to zero
in the null-space directions (equation (8.10)). With the truncated SVD (TSVD) the blocked
force solution is additionally set to zero in directions corresponding to singular values below
a lower threshold lσ, i.e.:

Σ+ =




1
σ1
· · · 0 0 · · · 0

...
. . .

...
. . .

0 1
σn

0 0


 , with: 1

σi

!
= 0, for: σi ≤ lσ. (8.20)

Thereby, the solution in the dynamically stiffest directions is artificially set to zero. Choosing
lσ depends on either experience of the NVH engineer or some fixed rule. The TSVD is often
implemented in commercial tools for classical TPA, but (to the authors experience) choosing
the lower threshold lσ is often done by trial and error, until the on-board validation of the TPA
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synthesis yields the best results. As explained in section 8.3, a good on-board validation is
not necessarily enough for obtaining good results when blocked forces shall be transferred
to a new design.

Tikhonov regularization is redefining the plain minimization of the residual ||µ||2, which
lead to the least squares and SVD pseudo-inverse solution. Additionally to the minimiza-
tion of the residual, the blocked force magnitude shall not become to large (e.g. due to
noise amplification). The Tikhonov regularization, the blocked forces are estimated by the
minimization problem,

minimize: ||uR4 −YAR
42 f bl2 ||2 + α||f bl2 ||2, (8.21)

where α is usually called the regularization parameter.2 After solving equation (8.21), one
obtains for the forces:

f bl2 =
[
(YAR

42 )∗YAR
42 + αI

]−1
(YAR

42 )∗u4, (8.22)

which can easily be verified since (8.21) is a positive definite and quadratic problem, so one
can take the first derivative and set it to zero. Choosing α can be done by various methods.
Some will be shown in section 8.5. Generally in literature it is noted that,

"Choosing the parameter α wisely is often the hardest part." [165, section 8.2].

Also according to [152], the pivotal point in Tikhonov regularization is to find a suitable and
stable manner of determining α.

8.4.2 Filter Factors

The standard SVD based pseudo-inverse in (8.9) can be written as a sum over the singular
values:

f bl+2 =

p∑

i=1

vi
1

σi

(
u∗iu

R
4

)
, with p = rank(YAR

42 ), (8.23)

where ui and vi are the column vectors of the matrices U and V respectively. The effect
of regularization strategies can be visualized with the definition of filter factors [64]. The
Tikhonov solution (8.22) can be written as:

f bl#2 =

p∑

i=1

vi
σi

σ2
i + α

(
u∗iu

R
4

)
, (8.24)

which can be rewritten as:
2Just for general interest, the Tikhonov regularization is often found in this generalized form:

Find f to minimize: ||u−Yf ||2 + α||d−Af ||2,

where A is a matrix that either comes from a physical model or acts as a weighting on the sought solution f . The
vector d can be used, if there exists some pre-knowledge of what the solution f should look like, and therefore
also minimize this deviation. E.g. in state estimation for control applications, one is often assuming that the state
of a system in a new time step should not deviate wildly from the state in the previous time step. The factor
α can be used to control the strength of this additional term in the solution of the inverse problem. If α → ∞,
then the solution of f needs to obey Af = d. The rest of the solution is then minimizing the ||u −Yf ||2 in the
nullspace of A.
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Figure 8.6: Schematic depiction of filter factors for the TSVD and Thickhonov regularization.

f bl#2 =

p∑

i=1

vi
ρi
σi

(
u∗iu

R
4

)
with ρi =

σ2
i

σ2
i + α

. (8.25)

The filter factors ρi take a value between zero and one (α is always positive). The least
squares solution in the direction vi is filtered (reduced) by the factor ρi. If the filter factor ρi is
equal to one for all singular values, one obtains the least squares solution. For the TSVD the
filter factor would be one for all singular values above lσ, and zero for all below. The filtering
of singular values for the TSVD and the Tikhonov regularization is schematically shown in
figure 8.6.
In the problems treated in this thesis, the Tikhonov regularization can be interpreted as
adding the same amount of artificial flexibility to each force input direction of the system.
The regularized system is more flexible particularly in the previously very stiff directions
(small singular values). Larger singular values are only marginally affected by this, but the
small singular values are significantly changed and the error amplification (but also the true
solution) in these directions is filtered out significantly.

8.4.3 Regularization error and the L-curve

Regularization yields a solution f bl#2 which differs from the least squares solution f bl+2 . A new
regularization error is introduced, while the data error resulting from amplified measurement
noise eu is reduced. The overall error in the estimated blocked forces ef is composed of
these two contributions [165, section 8.2]:

||ef || = ||f̂ bl2 − f bl#2 || = || f̂ bl2 − f̂ bl#2︸ ︷︷ ︸
Regularization error

+ f̂ bl#2 − f bl#2︸ ︷︷ ︸
Data error

||, (8.26)

where f̂ bl2 denotes the true blocked forces that would have been computed from a noise free
signal,

f̂ bl2 = (YAR
42 )+ûR4 , (8.27)

and f̂ bl#2 are the forces computed from a noise free signal with the regularized inverse matrix:

f̂ bl#2 = (YAR
42 )#ûR4 . (8.28)

The term f bl#2 denotes the actual result of the computation, namely the blocked forces com-
puted from the noisy signal uR4 with the regularized matrix.
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Figure 8.7: The L-curve resulting from computing the solution f bl#2 for different values of α. Notice
the log-log scale.

f bl#2 = (YAR
42 )#uR4 . (8.29)

The goal of all regularization strategies is to balance the regularization error and the data
error such that the overall error ||ef || is minimized. Of course, both of these errors cannot
be computed or compared directly. For doing this, one would need to know the noise free
solution, which would render the whole discussion of this chapter pointless.
However, for starting with a low regularization parameter α which is slowly increased, one
can often observe a fast decrease in the magnitude of ||f bl#2 || if the least squares solution
f bl+2 is contaminated by amplified measurement noise. Simultaneously, the residual of the
regularized solution ||µ#|| will increase with an increasing α.

||µ#|| = ||uR4 −YAR
42 f bl#2 ||. (8.30)

Both quantities, the residual ||µ#|| and the solution magnitude ||f bl#2 ||, can be computed for
different values of α. When they are plotted into a figure for increasing values of α, this
results in the so called L-curve plot, see a schematic depiction in figure 8.7. This curve can
be used for parameter choice in the Tikhonov regularization. It is assumed that the solution
with an optimal balance of the regularization and data error is found were the curvature of
the L-curve is greatest, see figure 8.7. One parameter choice method is thus to compute the
solution for many different values of α and then find the point with the strongest curvature in
the L-curve to find the optimal value of α. For an easy to read, but insightful overview of the
L-curve see [62].
In figure 8.8, the L-curves for the inverse force identification at different frequencies are
shown (109 - 119 Hz). It can be observed that for some frequencies, both the residual ||µ#||
and the blocked force magnitude ||f bl#2 || is high (see the three curves in the upper right part
of figure 8.7). These are the three discrete frequencies around the first compressor order
(115Hz), where the signal to noise ratio is high. For an increase of α one can observe only
a small initial drop in the blocked force magnitude. Further increasing α mainly results in
an increased residual ||µ#||. In the lower left corner of figure 8.8 one finds the frequencies
where both the residual and the blocked force magnitude is low. At these frequencies, the
operational signal is low since they are not at a compressor order (see e.g. figure 8.4).
For an increase of α one can observe a large initial drop in the blocked force magnitude.
The L-curve method would thus suggest using a larger regularization parameter α at the
frequencies with a lower signal to noise ratio (SNR). Conversely, for frequencies with a high
SNR a lower α should be chosen.
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Figure 8.8: Exemplary plot of L-curves for the problem introduced in section 8.3. L-curves are
plotted for frequencies from 109Hz - 119Hz, the first order of the compressor was around 115Hz. The
regularization parameter α was varied from 10−7 to 10−1 with 200 steps and a logarithmic spacing.

8.4.4 The discrepancy principle

The idea behind the discrepancy principle is to avoid an over-fitting to noisy data, by having
an estimate of the measurement noise eu [165, section 8.2]. The estimate of eu could e.g.
be obtained by recording the signal in all channels while the source is switched off. If the
residual ||µ|| would be lower than the measurement noise magnitude ||eu||, one could expect
to perform just a mathematical fit of the blocked forces to measurement noise. Therefore,
the residual of the problem should only be smaller than some multiple η of the measurement
noise magnitude ||eu||:

||uR4 −YAR
42 f bl#2 || ≤ η||eu||, (8.31)

where η is a scalar parameter to control the degree up to which the noise shall be fitted. The
main idea of the discrepancy principle is to chose the regularization parameter such that the
residual approximately equal to η||eu|| [64].

8.5 Comparison of regularization methods for e-compressor TPA

Sections 8.2 and 8.3 explained of how measurement noise can affect blocked force predic-
tions. Section 8.4 introduced the basic concepts to understand how regularization methods
work and how their effect on force identification can be visualized. In this section, different
regularization strategies are introduced and applied to the compressor example. The com-
pared methods are by no means exhaustive, as there have been many methods suggested
in the field of noise handling in inverse problems. Therefore, a short literature review shall
be given first.

8.5.1 Literature review on noise handling in inverse force identification

One of the first regularization applications to force identification in the frequency domain is
Powell [141] in 1984. He used the condition number and the SVD to identify ill-posed prob-
lems. Based on the coherence of the FRF matrix, he defines a threshold for filtering small
singular values. His method is a TSVD which can be classified as a direct regularization
method (see table 8.1).



8.5 Comparison of regularization methods for e-compressor TPA 145

For inverse force identification at lower frequencies, it is reported that strain/force FRFs yield
better results than acceleration/force [33, 68]. According to [68], this relates to the fact that
at lower frequencies only a small number of modes is contributing to the response. The con-
tribution from higher frequency modes is barely contained in acceleration signals and can
be better observed with strain measurements. The generally more complex mode shapes of
high frequency modes create a larger strain. In [77], these findings in favor of using strains
are confirmed on a range of analytical examples. In [77], it is recommended to use the con-
dition number of the FRF matrix as an indicator for the accuracy of the force identification,
which is also found by [174]. In the literature, it is generally recommended to use over-
determination of the problem (see section 8.1). In [71, 72], an estimated error matrix Eij for
the measurement errors of each FRF matrix entry Yij is computed, using the FRF magni-
tude, the number of averages and the coherence (see [13]). The largest singular value of
this error matrix is used as a threshold for rejecting small singular values in the inversion of
the FRF matrix (TSVD). Compared to the least squares solution, significant improvements
in the on-board validation are reported. The authors of [71, 72] also propose to compute
a covariance matrix of the indicator signals uR4 . The covariance matrix is computed from
multiple time blocks recorded during stationary operation of the source. The covariances
of uR4 can be propagated to covariances of f bl2 and uB3 . From the propagated variances,
confidence intervals for the predicted receiver responses uB3 can be computed and plotted
with the results. A valuable indication for the predictions trustworthiness3.
In the companion papers [172, 173], different regularization methods of the inverse problem
are compared on an analytical and experimental case of a plate. In [172], two TSVD meth-
ods are proposed for the regularization. One lower threshold lσ is also based on the largest
singular value of the error matrix, just like in [71, 72]. The other rejection threshold in [172]
is based on the variance of the operational signal uR4 . The regularized results are improved
compared to the least squares solution. Nevertheless, the authors suggests in [172] that a
criterion based on both errors, would be required, since neither one is universally applicable.
In the second paper [173], the authors used two Tikhonov regularization techniques, where
α is chosen via ordinary cross validation [64], or an iterative regularization technique. These
methods were found to yield better results than the TSVD methods tested in [172]. In [26,
81], the authors compare the Generalized Cross Validation (GCV) and L-curve method for
inverse source identification. A recent review on inverse force identification techniques can
be found in [152]. For methods identifying forces in the time domain see Sturms PhD thesis
[169].

8.5.2 Truncated singular value decomposition (TSVD)

The concept of the TSVD was already introduced in section 8.4.1. The lower threshold lσ is
often found in a manual process, by tuning lσ until the on-board validation uR,TPA#

3 matches
the measurement uR3 as well as possible. In classical interface force TPA, the on-board
validation was the only validation one could do anyway. This manual approach was also
applied here, see left part of figure 8.9, and for this operational condition of the compressor,
yielded lσ = 2 · 10−2.
While tuning lσ in the on-board validation, it was found that the prediction with f bl#2 is higher
than the prediction with f bl+2 at the first compressor order (ca. +1dB in some channels).
When increasing lσ further, e.g. to lσ = 6 · 10−2, this over prediction increased to ca. +3dB.
It seems that the solution in the stiff directions is canceling out part of the solution uR3 at the

3In fact the authors of [71] don’t compute blocked forces, but a set of forces that are called pseudo-forces
which can be seen as a generalization of the blocked force concept [159].



146 8 Regularization methods for blocked force TPA

TSVD on-board validation TSVD transfer validation

31 62 125 250 500 1000 2000

60

80

100

120

140

160

Frequency [Hz]

A
cc

el
.[d

B
,r

ef
10

−
6
m s
2
]

uR
3 uR,TPA+

3 uR,TPA#
3

31 62 125 250 500 1000 2000

60

80

100

120

140

160

Frequency [Hz]

uB
3 uB,TPA+

3 uB,TPA#
3

Figure 8.9: On-board and transfer validation results for the TSVD
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Figure 8.10: Number of rejected singular values for the TSVD regularization with lσ = 2× 10−2.

first order (opposite phase). In the transfer validation (right part of figure 8.9) one can see
that this regularization method is not yielding optimal results. Choosing one fixed rejection
threshold lσ is effectively applying same regularization at all frequencies, irrespective of the
signal to noise ratio. Additionally, as the singular values are increasing over frequency (see
figure 8.2), one fixed lσ is effectively only regularizing in the lower frequency region. This can
be seen from the number of rejected singular values over frequency in figure 8.10. Another
disadvantage of the method is the manual labor required for chosing lσ at each operating
condition, which is prone to human errors and a repetitive task.

8.5.3 Tikhonov: parameter choice from signal to noise

Wernsen suggested a filter in his thesis [193], which also takes the operational signal into
account. This method could thus be grouped into the parameter choice methods in table
8.1. The method is based on the frequency dependent signal to noise ratio (SNR), which is
estimated from the operational signal of the compressor uR4 and the signal eu recorded in
the same channels but with the compressor switched off (see figure 8.11):
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Figure 8.11: Signal uR4 recorded during operation and noise eu recorded with compressor switched
off (exemplary channel). Dashed vertical lines indicate the compressor orders.

SNR =
||uR4 ||
||eu||

. (8.32)

With Wernsen’s filter the regularization parameter α is defined as the inverse of the signal to
noise ratio.

α =
1

SNR
. (8.33)

This regularization was found to work well for the climate compressor, due to the tonal ex-
citation. The main excitation of the compressor is at the order-frequencies, see figure 8.11
where the SNR is high. Thus, the solution at the compressor orders is only marginally reg-
ularized. Conversely, at all non-order-frequencies, the SNR is low and the regularization
parameter α is high, so the measurement noise is not amplified to spuriously large forces
This can be seen by plotting the filter factors for this regularization, see figure 8.12. Note
how the filter factors drop at multiples of 50Hz which is the ground frequency of the power
grid. For the channel shown in figure 8.11, one can not see a strong increase in background
noise, but in other channels there is probably some grounding issue. The recorded noise eu
is higher at these frequencies. At the lower frequencies, there are 6 singular values that are
not filtered. These are corresponding to the rigid modes of the compressor. This regulariza-
tion method was used for obtaining the regularized solutions in section 8.3. So the results
for applying this filter can be seen and heard in figure 8.3, 8.4 and 8.5.

8.5.4 Tikhonov: parameter choice from error balancing

In section 8.4.3, it was explained how the regularization introduces a new regularization error
next to the data error. In [165, section 8.2], Strang suggested to derive upper bounds for
both of these errors, and set them equal to obtain an α that achieves a balance between
both.

Upper bound regularization error

The regularization error is defined as ||f̂ bl2 − f̂ bl#2 ||, see equation (8.26). The regularization
affects the smallest singular value σn most. Thus the regularization error is greatest if all of
the noise free signal ûR4 would be in this mechanically stiffest direction un, i. e. if:
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Figure 8.12: Filter factors ρi for individual singular values obtained by choosing α according to
Wernsen’s signal to noise ratio filter (8.33). Note that ρ1 ≥ ρ2 ≥ ... ≥ ρn. Vertical dashed lines
indicate the order frequencies of the compressor.

ûR4 =: ||ûR4 || un. (8.34)

The noise-free blocked force solution without and with regularization, f̂ bl2 and f̂ bl#2 , are:

f̂ bl2 = vn
1

σn
||ûR4 || f̂ bl#2 = vn

σn
σ2
n + α

||ûR4 ||, (8.35)

which means for an upper bound of the regularization error:

||f̂ bl2 − f̂ bl#2 || ≤
(

1

σn
− σn
σ2
n + α

)
||ûR4 || ≤ α

σ3
n

||ûR4 || (8.36)

Upper bound data error

The data error is defined as ||f̂ bl#2 − f bl#2 ||, see equation (8.26). This error depends on the
amount of noise eu. The data error is greatest for a yet unknown relation between α and "a"
singular value σi, which is to be found. If all the operational signal is in this direction, we get:

f̂ bl#2 = vi
σi

σ2
i + α

||ûR4 || f bl#2 = vi
σi

σ2
i + α

||ûR4 + eu||. (8.37)

with these definitions, the maximum data error is:

||f̂ bl#2 − f bl#2 || = ||f bl#2 − f̂ bl#2 || ≈ σi
σ2
i + α

||eu||. (8.38)

Since the measurement noise eu is fixed (it was recorded), the first term needs to be maximal
for finding an upper bound of the data error, i. e. :

σi =
√
α for maximizing:

σi
σ2
i + α

. (8.39)

For the upper bound of the data error this means (insert (8.39) in (8.38)):

||f̂ bl#2 − f bl#2 || ≤ 1

2
√
α
||eu|| (8.40)
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Figure 8.13: Filter factors ρi for individual singular values obtained by choosing α according to the
error balance, equation (8.42). Vertical dashed lines indicate the order frequencies of the compres-
sor.

Choosing the regularization parameter for error balance

The upper bounds for both errors are set equal in order to obtain a balance of both errors in
the regularization:

1

2
√
α
||eu|| =

α

σ3
n

||ûR4 ||, (8.41)

which means for the α that achieves this balance:

α =

(
σ3
n

||eu||
2||ûR4 ||

)2/3

≈
(
σ3
n

1

2 SNR

)2/3

, (8.42)

where it was assumed that ||ûR4 || ≈ ||uR4 ||, since the noise free signal is unknown. Equation
(8.42) is the same solution as found in [165, section 8.2]. The SNR can be computed as in
equation (8.32). Note that, with this method, the regularization parameter α becomes lower
if the smallest singular value σn gets lower, in order to keep the regularization error low. As
with Wernsen’s method, α becomes larger for a lower SNR.
When inspecting the results of this parameter choice, one finds that the solution is virtually
the same as the unregularized solution. This parameter choice results in a too weak reg-
ularization, see the filter factors in figure 8.13. Apparently, it puts too much emphasis on
keeping the regularization error low.

8.5.5 Tikhonov: parameter choice from discrepancy principle

In [115], the problem of finding a regularization parameter α that satisfies:

||uR4 −YAR
42 f bl#2 ||

!
≤M ||f bl2 || ≤ F (8.43)

is approximated by:

α =

(
M

F

)2

, (8.44)

where it is shown in [115] that this choice for α violates the constraints in (8.43) maximally
by a factor of

√
2. For the discrepancy principle (8.31), one requires that:
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||uR4 −YAR
42 f bl#2 ||

!
≤M = η||eu||. (8.45)

One does not want any bound on the blocked force solution, so one can choose F to equal
the natural upper bound on the blocked force magnitude:

F =
||ûR4 ||
σn

(8.46)

which yields:

α = η2
( σn
SNR

)2
(8.47)

This regularization choice is also not regularizing enough. The results are again almost
identical to the results of the normal pseudo-inverse, and are therefore not shown here. The
author thinks that using the recordings when the compressor is switched off as an error
estimate for eu might be the problem. One can observe in figure 8.11 that even at the non-
order frequencies the operational signal is still a lot higher than the noise eu. This issue
should be investigated further. It could be related to leakage in the FFT transformation
or to machine precision errors in the 24 bit discretization of the measurement system (the
discretization error is higher for larger overall vibration levels in the time domain).

8.5.6 Tikhonov: parameter choice from L-curve

The L-curve was introduced in section 8.4.3. The parameter choice based on the L-curve
method finds the α in the "corner" of the L-curve, i. e. where the curvature is maximum. It
is assumed that there the transition from a dominant data error to a dominant regularization
error occurs. The method was first proposed by Hansen [63]. For an easy to read and
insightful overview of the L-curve method see [62]. In the application here, the method was
executed with a set of 70 values for α at each frequency. These 70 values were in a range
of:

α ∈
[
σn
10 , σ1

]
, (8.48)

with a logarithmic spacing. The regularized solution was computed for each of these α
values. In the resulting L-curves the curvature at each point was computed by using a
circle fit with 3 neighboring points (i.e. 3 consecutive values of α). The point of maximum
curvature is chosen by the L-curve method, see figure 8.14 for a depiction of this process at
a few frequencies. Note how the point of maximum curvature occurs at low α values for the
curves in the upper right part of figure 8.14. These frequencies are around the first order,
and thus α should be low. At the non-order frequencies (the curves in the lower left part of
figure 8.14), the point of maximum curvature occurs for higher values of α.
The resulting filter factors are plotted in figure 8.15. It can be seen that the filtering is not
as stable as with the SNR-filter in figure 8.12. From other applications [26, 81], it is known
that the L-curve method is well applicable to rather well-posed problems where data noise
eu is the dominant problem. However, the predictions for the transfer validation show similar
improvements as the SNR filter, which can be seen and heard in figure 8.16. The regu-
larization at higher frequencies was overall very low. When plotting the L-curves for higher
frequencies, one could clearly see that mostly the lowest α was chosen. The L-curve method
takes more time to compute, since many different values of α have to be tested at each fre-
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Figure 8.14: L-curves and points of maximum curvature (black circles) for frequencies from 109Hz
- 119Hz. The first order of the compressor was around 115Hz. The regularization parameter α was
varied from σn

100 to σ1 with 70 steps and a logarithmic spacing.
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Figure 8.15: Filter factors ρi for individual singular values obtained by the L-curve method. Vertical
dashed lines indicate the order frequencies of the compressor.

quency4. The L-curve method can be executed without an estimate of the measurement
noise eu, which can be seen as an advantage.

8.5.7 Iterative Tikhonov: Discrepancy principle as stopping criterion

The idea behind an iterative Tikhonov regularization is to start with filter factors that corre-
spond to a large regularization α1. The filter factors are iteratively decreased until a certain
stopping criterion is fulfilled. The starting value α1 chosen here was:

α1 =
( σ1

SNR

)2
. (8.49)

In the first iteration k = 1, all filter factors are corresponding to α1. During the iterations with
increasing k the filter factors are converging to 1, i.e. the regularization is reduced, according
to the rule:

ρki = 1−
(

1− σ2
i

σ2
i + α1

)k
, (8.50)

4The overall run-time on the authors laptop was still reasonable (ca. 20 minutes).
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Figure 8.16: Blocked force predictions with validation measurements for the L-curve method. Left
part : Narrow band signals from 0-400Hz. Right part : Broad band signals from 0-2000Hz.

where ρki is the filter factor for singular value i in iteration k. It is easy to verify that for k = 1
the filter factors correspond to a standard Tikhonov regularization with α1. The convergence
behavior of the filter factors is further discussed in [15]. The iterations are stopped after a
stopping criterion is fulfilled. This could be done with the discrepancy principle as stated in
equation (8.31). However, it was found that even with the least squares solution f bl+2 , the
residual is higher than the noise level. The least squares residual ||µ+|| is defined as:

||µ+|| = ||uR4 −YAR
42 f bl+2 ||. (8.51)

It is plotted against the noise level ||eu|| in figure 8.17. It can be seen that ||µ+|| is greater
than ||eu|| at all frequencies. Especially at the orders of the compressor the least squares
residual ||µ+|| is large. As a stopping criterion for the iterations k, it was therefore chosen to
include the least squares residual in the stopping criterion (as suggested in [15]):

increase k until: ||µ#|| ≤ ||µ+||+ η||eu||, (8.52)

where the regularized residual ||µ#|| is defined as in equation (8.30), and η has to be chosen
by the user. In figure 8.18, the resulting filter factors for η = 10 are shown. This η was cho-
sen, since it was observed that the least squares residual is roughly an order of magnitude
higher than the noise floor at the non-order frequencies. Therefore, the regularized solution
is given some ’slack’ to double the least squares residual at the non-order frequencies. In
figure 8.18, the resulting filter factors for the iterative Tikhonov method are shown. It can be
observed, that the regularization is strong at the non-order frequencies, particularly at the
frequencies where the measurement noise was large (multiples of the power grid frequency
50Hz). With increasing frequency, the filter factors for the lower singular values increase,
since more degrees of freedom are needed to represent the compressor excitation. This
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Figure 8.17: Least squares residual magnitude ||µ+|| versus noise measurement magnitude ||eu||.
Dashed vertical lines indicate the compressor orders.

is to be expected, since for higher frequencies more modes are contributing to the overall
motion. In figure 8.19, the results of the transfer validation can be seen. The prediction is
improved especially in the lower frequency region. The sound files are not included, but the
audible prediction improvement is similar to the SNR based filter in figure 8.3 and 8.4.

8.6 Conclusion

Regularization was found to be an essential tool for improving the blocked force estimation
of the climate compressor. Note that in this chapter all results were shown only for one
receiver channel, at one operating condition of the compressor. The channel was chosen
since it highlighted the effects of the regularization best. It was the channel pointing in the
global Y-direction of the sensor on the right arm (see the set of uR3 in figure 6.2b). The largest
operational vibration levels were observed in the channels pointing in the global Z-direction
of the two sensors on the arms. The results in these channels are shown in figure 8.20. It
can be seen that the deviations between blocked force predictions uB,TPA3 and the reference
measurement uB3 are significantly smaller in the higher frequency region. The overall finding
for the improvements in the lower frequency region remain the same. It can be concluded
that regularization can take care of the needed DoF in the lower frequency region, since the
vibration behavior there is dominated by only a few modes. In section 8.2 this was termed
as a rank-deficient problem. At the start of this project, the author often thought it would
be necessary to describe the compressor with a smaller set of DoF in the lower frequency
region, and a larger set of DoF in the upper frequency region. Regularization turned out to
be a handy tool to take care of this issue automatically, so the source can be modeled with
the same (larger) set of DoF over the whole frequency range.
To the authors experience, the on-board validation is a valuable tool for finding general er-
rors in the measurement setup or the code. But is not able to detect the issue of noise
amplification if the blocked forces shall be transfered to a different design (see section 8.3).
An applicable regularization method should require only knowledge of data obtained on a
testrig (as is the case with the methods applied here). However, for the source of interest
it should be verified at least once that the chosen regularization method yields satisfactory
results, by performing a transfer validation. The compressor is a source component with
a highly tonal excitation, and the SNR based filter suggested by Wernsen [193] yields sta-
ble results with minimal computing time (see section 8.5.3). Other than that, the iterative
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Figure 8.18: Filter factors ρi for individual singular values obtained by the iterative Tikhonov method.
Vertical dashed lines indicate the order frequencies of the compressor.
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Figure 8.19: Blocked force predictions with validation measurements for the iterative Tikhonov
method. Left part : Narrow band signals from 0-400Hz. Right part : Broad band signals from 0-
2000Hz.
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Figure 8.20: Blocked force predictions with validation measurements for the highly excited receiver
channels. The regularized solution was computed with the SNR based Tikhonov regularization from
section 8.5.3. Left part : sensor channel in globel +Z direction on right arm (see figure 6.2b). Right
part : +Z channel of sensor channel on left arm (see figure 6.2b).

Tikhonov method (see section 8.5.7) was found to yield stable results, albeit taking longer to
compute and converge. Which method works the best is however highly case specific and
depends on the source type. For more broadband source excitation, the right regularization
method might be different. The author would suggest a proper bench-marking of individual
methods, if the blocked forces shall be computed for many specimens or variants of a given
source component (e.g. as part of an end-of-line test or a bench-mark of different suppliers).
This is in line with Hansen [64, chapter 7]:

"Our experience is that it may often be advantageous to monitor several strategies and base
the choice of regularization parameter on the output of all these strategies."

Therefore, the focus of this chapter was pointed to the understanding of regularization meth-
ods and their effects particularly on blocked force TPA, rather than testing the countless
other possibilities for implementation of a regularization strategy. All regularization methods
can help suppressing the effect of unavoidable measurement noise. However, the author
wants to stress that there is no way around taking proper measurements and all possible
precaution when conducting the tests.
In this chapter, the fact that also the FRF matrix is subject to measurement errors was
not discussed. This can be seen as a future field of study and the publications [71, 72,
141], which take the coherence of the FRF matrix into account for the regularization, can be
seen as a good starting point. All FRF measurements had a good coherence in the shown
frequency range and all error checks shown in section 2.6.2 and 3.4 have been validated.
The regularization can be interpreted as an added mechanical flexibility in all directions of
the inverted matrix. The solved inverse problem is thus behaving less stiff. Regularization
can also be used in FBS for solving the inverse problem determining the interface forces,
equation (3.9). Thereby, the error propagation of measurement errors in the uncoupled FRF
matrices YA and YB to variances in the coupled matrix YAB (the uncertainty propagation is
described in [177]) can effectively be bounded, which was shown in Trainottis’ master thesis
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[176], but is beyond the scope of this thesis.
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Vibro-acoustics
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[...] if you demonstrate that you’re
willing to be wrong in pursuit of finding
right - and freely admit if you are wrong
- everybody else relaxes and feels free
to put themselves out there in that
same search.

Adam Stelzner,
in "The right kind of crazy"

The contents of this chapter were published in similar form in [59]. The text hereafter has
been modified and adapted to the thesis.

Eventually, all structural vibrations are radiated from some structural surface and cause small
fluctuations of air pressure that our ears can perceive, pleasant or unpleasant. Section 9.1
recaps the derivation of the Helmholtz equation which governs the sound pressure p(t) as
a primary variable in a given domain filled with air. The boundary conditions imposed on
an acoustic field are explained in section 9.2, where the volume accelerations are identified
as the Neumann boundary condition that is typically imposed to the sound pressure field at
vibrating structural surfaces. The experimental measurement of airborne transfer functions
with volume sources is briefly explained and exemplified in section 9.3. These experiences
and findings were important for identifying the surface acceleration as the structural quantity
which is the frequency un-biased driver of the sound pressure, at least in anechoic conditions
(shown in section 9.4). This finding was an important reason for the decision to minimize
surface acceleration instead of velocity in chapter 12. As velocity is the most commonly
minimized quantity in the literature on acoustic optimization, the author puts the choice of
accelerations up for questioning, but the following derivation, and the arguments in chapter
12 have been prepared as careful as possible. In section 9.5 the reciprocity principle for
measuring transfer functions between structural and acoustic quantities is explained, since
it was used for obtaining some of the transfer functions in the vehicle application described
in chapter 11.

159



160 9 Vibro-acoustics

v

p
ρ

Figure 9.1: Fluid velocity v, density ρ and pressure p on small volume (Eulerian point of view).

9.1 Helmholtz equation

The derivation will involve all quantities in the time domain. For a clearer distinction to the
quantities in the frequency domain the explicit dependence on time t is stated.
The conservation of mass in a small control volume, see figure 9.1, that is fixed in space
(Eulerian point of view) states that [131]:

∂ρ(t)

∂t
+∇ · (ρ(t) v(t)) = 0, (9.1)

where ρ(t) is the density of the fluid and v(t) is the velocity. The term ∂ρ(t)
∂t describes the

change of density in the small control volume over time. For mass conservation, this has
to be compensated by the in/out-flowing mass ∇ · (ρ(t) v(t)). The nabla operator ∇ =
[ ∂∂x

∂
∂y

∂
∂z ]T describes the gradient in 3 dimensional space and · denotes the scalar product.

Newtons second law, the conservation of momentum or ’force equals mass times accelera-
tion’, for the particles in the small volume (also from an Eulerian point of view) states:

ρ(t)

(
∂v(t)

∂t
+
[
v(t)∇T

]
v(t)

)

︸ ︷︷ ︸
particle acceleration

= −∇p(t), (9.2)

where p(t) is the pressure in the fluid. The term ∂v(t)
∂t describes the acceleration of par-

ticles in the small volume due to change of time. The term
[
v(t)∇T

]
v(t) describes the

acceleration that the particles undergo due to changing their position in space (’convective
acceleration’). The velocity gradient in space is the 3x3 matrix

[
v(t)∇T

]
, i.e. the three

spatial components of the velocity vector v(t) derived with respect to the x, y, z-position.
The particles flow with the velocity v(t) to the next position, and thus undergo a convective
acceleration.
The external forces causing the particle acceleration are the pressure differences in space
−∇p(t). In acoustics, it is assumed that there are no other forces on the particles. E.g. the
shear forces in air are assumed to be negligible. Further, it is assumed that the changes in
pressure, density and velocity are only small pertubations ˜(?) around a mean value (?)0 that
is constant in space and time.

p(t) = p0 + p̃(t), (9.3)
ρ(t) = ρ0 + ρ̃(t), (9.4)
v(t) = v0︸︷︷︸

=0

+ ṽ(t), (9.5)

where the mean value of velocity in air v0 is set to zero. With the assumption of small
perturbations in equation (9.3) - (9.5), one can linearize the conservation of mass (9.1):
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∂ρ(t)

∂t
+∇ · (ρ(t) v(t)) =

∂ρ(t)

∂t
+∇ρ(t) · v(t) + ρ(t) ∇ · v(t)

=
∂ρ̃(t)

∂t
+∇(ρ̃(t) + ρo) · ṽ(t) + (ρ̃(t) + ρo)∇ · ṽ(t)

' ∂ρ̃(t)

∂t
+ ρ0∇ · ṽ(t) = 0 ,

(9.6)

where the last line is the linearized version of the conservation of mass. The terms ˜(?)
are assumed to be small, and thus also their gradients ∇ ˜(?) are small. A term of second
order like ∇ρ̃(t) · ṽ(t) drops out when linearizing around these small pertubations and only
the first order terms remain1. If the linearization is then applied in the same manner to the
conservation of momentum in equation (9.2), this yields:

ρ0
∂ṽ(t)

∂t
= −∇p̃(t) . (9.7)

A relation between the pressure p(t) and the density of the fluid ρ(t) is obtained for assuming
that the state changes in the fluid volume happen as an adiabatic processes, i.e. without
heat exchange to the surroundings. Consider a small number of particles (this corresponds
to a Lagrangian point of view). As mentioned, their state changes happen without exchange
of heat to the surrounding particles, but only due to mechanical work, e.g. the compression
due to pressure fluctuations p̃(t). The entropy in this small number of particles is then
constant and the state changes in the fluid are reversible. This is a good assumption for
changes in the fluid that happen quite fast, so there is not enough time to exchange heat.
An adiabatic change from state (?)1 to state (?)2 in air, assumed to be an ideal gas, can be
described by:

p2

p1
=

(
V1

V2

)γ
, (9.8)

where e.g. p1 is the pressure in state 1 and V2 is the volume in state 2. The heat capacity
ratio is denoted as γ, where for air at room temperature γ ≈ 1.4. The mass m of the fixed
number of particles is constant, and thus the product of density ρ and volume V is constant.

ρ1V1 = ρ2V2 = const., (9.9)

which can be inserted in equation (9.8) to get the relation between pressure and density:

p2

p1
=

(
ρ2

ρ1

)γ
. (9.10)

With the small perturbations defined in equation (9.3) - (9.5) one can chose state 1 in
equation (9.10) to be the state at rest (i.e. p1 = p0 and ρ1 = ρ0) and the second state is
during some small non-zero pertubation (i.e. p2 = p0 + p̃(t) and ρ2 = ρ0 + ρ̃(t)). Inserted in
equation (9.10):

p0 + p̃(t)

(ρ0 + ρ̃(t))γ
=
p0

ργ0
= const. (9.11)

This value has to stay constant for all time, since the mean values ρ0 and p0 are constant in
time and space. This yields equivalently,

1This linearization is valid for up to about 130dB sound pressure level [41], which is a sound level that NVH
engineers (hopefully) never encounter anyway.
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p0 + p̃(t) =
p0

ργ0
(ρ0 + ρ̃(t))γ . (9.12)

If the right hand side of the above equation is approximated with a Taylor expansion around
the point ρ̃(t) = 0 one gets:

p0 + p̃(t) =
p0

ργ0

(
ργ0 + γργ−1

0 ρ̃(t) +O(ρ̃(t)2)
)
. (9.13)

since ρ̃(t) describes small changes, the terms of higher order O(ρ̃(t)2) vanish and one gets
a relation between the small pressure and density fluctuations:

p̃(t) = γ
p0

ρ0
ρ̃(t) = c2

0 ρ̃(t) , (9.14)

where c0 turns out to be the speed of sound. For the Helmholtz equation, one wants to
eliminate velocity v(t) and density ρ(t) from the equations and express everything in terms
of the primal variable: the pressure p(t). For doing so, one can take the time derivative of
the linearized conservation of mass (9.6):

∂2ρ̃(t)

∂t2
+ ρ0∇ ·

∂ṽ(t)

∂t
= 0, (9.15)

and then replace ∂ṽ(t)
∂t in (9.15) with a pressure dependent term, so that the conservation of

momentum equation (9.7) is automatically fulfilled. From equation (9.7) it follows that:

∂ṽ(t)

∂t
= − 1

ρ0
∇p̃(t). (9.16)

which inserted in equation (9.15) yields:

∂2ρ̃(t)

∂t2
−∇ · ∇︸ ︷︷ ︸

=∆

p̃(t) = 0, (9.17)

where ∆ is the Laplace operator ∆ =
(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
. When additionally inserting the

relation between density ρ̃(t) and pressure p̃(t) from equation (9.14) one gets the famous
Helmholtz equation:

∂2p̃(t)

∂t2
= c2

0∆p̃(t) . (9.18)

In summary, one could say that the Helmholtz equation is a result of the original conserva-
tion of mass (9.1) (a scalar equation), where the velocity has been replaced by a pressure
dependent term that automatically fulfills the conservation of momentum, and the density
has been replaced by a pressure dependent term as well (since air is assumed to be an
ideal gas and the state changes happen adiabatic). All quantities are assumed to be only
small pertubations around a state of equlibrium so that a linearization is applicable. The
Helmholtz equation is governing the sound pressure distribution in the air, which is the input
for the human hearing system.

9.2 Pressure boundary conditions

Like with any differential equation, it is essential to consider the boundary conditions that are
imposed on the pressure field. A direct boundary condition on the primal variable, the sound
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Figure 9.2: Radiating surface S with surface normal n, surface vibration u and surrounding sound
pressure field p.

pressure p(t), is commonly called a Dirichlet boundary condition. It is e.g. often assumed
at open ends of vibrating volumes. E.g. the classic academic example of an open ended
tube, where the boundary condition at the open end is prescribed to equal the pressure of
the surroundings.
Boundary conditions on the spatial gradient of the primal variable∇p̃(t) are commonly called
Neumann boundary conditions. They are often imposed at the surface of vibrating struc-
tures. On the radiating surface of the structure, it is assumed that the structure and air
particles have the same displacement (and thus also velocity and acceleration) in the direc-
tion normal to the surface.2 One can thus say that:

∂u(t)

∂t
· n = u̇(t) · n = ṽ(t) · n, on radiating surface S, (9.19)

where u(t) is the displacement of the structure, n is the normal vector on the radiating sur-
face S and ṽ(t) is still the small velocity perturbations in air, see figure 9.2. When inserting
that into the linearized conservation of momentum equation (9.7), one finds:

n · ∂
2u(t)

∂t2
= n · ü(t) = −n · 1

ρ0
∇p̃(t), on radiating surface S. (9.20)

Thus, the accelerations ü(t) on the vibrating structure are imposing a Neumann boundary
condition on the sound pressure field. The input quantity of acoustic fields are thus often
described as either volume-displacement, -velocity, or -acceleration which will be denoted
as z, ż and z̈ in the remainder of this thesis. It is the normal component of the structural
vibration integrated over the radiating surface.

9.3 Measurement of airborne transfer functions

For measuring the dynamic transfer functions in air, one can use acoustic sources like the
ones shown in figure 9.3a and figure 9.3b.
The acoustic sources used in this thesis are from the LMS Siemens Q-Source series. Their
excitation is following an amplified signal generator input. The excitation strength is mea-
sured with a calibrated sensor in the source and recorded with the DAQ system.
In figure 9.3a, the small, low to mid frequency source, called Q-IND, is shown. It is close to
the climate compressor in an anechoic chamber. According to the manufacturer specifica-
tions, it is capable of exciting the frequency range 50− 1000 Hz. For measuring an acoustic
transfer function (ATF) in the anechoic chamber, the source was fed with a band noise signal
from 50 − 1000 Hz. The signal from the Q-IND source input channel is a volume displace-
ment z. The transfer functions were estimated with an H1 estimator (see section 2.4) where

2In the tangential surface directions, it is assumed that structure and air do not necessarily undergo the same
motion. This is due to the assumption of negligible viscosity in air.
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(a) Q-IND (b) Q-MHF

Figure 9.3: Acoustic sources for airborne transfer function measurements. (a) Q-IND source behind
the compressor wrapped in a sound-insulation capsule. (b) Q-MHF source with the long hose under
the compressor.

the auto and cross power spectra of source and microphone signals were obtained from 500
timeblocks of T = 1s length, with a 66% overlap and Hanning windows applied to the time-
blocks. In figure 9.4, the FRF measured between the Q-IND source and one microphone is
shown. It can be seen that the coherence γ2 is good from 100 − 1000Hz (also for the other
microphones).
For the mid to high frequency range, a source called Q-MHF is used (see the tube shown
in figure 9.3b). According to the manufacturer specifications, it is capable of exciting a fre-
quency range from 200Hz to 10 kHz. It is also fed with a band noise signal in this frequency
range and the same settings for the H1 estimation of the FRF are used. The input signal
from the Q-MHF source is a volume acceleration z̈. In figure 9.5 the FRF measured between
the Q-MHF source and the same microphone as before is shown. The Q-MHF source was
placed at the same position as the Q-IND source for the FRF measurement in figure 9.4. It
can be seen that the coherence γ2 is good in the range of approx. 400Hz-10kHz (also for the
other microphones).
For merging the two measured transfer functions, the volume displacement input z from the
Q-IND source, was transformed to a volume accleration input z̈ in the frequency domain by:

p

z̈
=

1

−ω2

p

z
(9.21)

The resulting 2 FRFs are shown in figure 9.6 and can subsequently be merged to only one
FRF for the whole frequency range. For the measurements in this case, this was done by
performing a linearly fading merge in the frequency range of 500− 900 Hz.
One can see, that the FRF between volume displacement z and sound pressure p in figure 9.4
has a slope of ω2 in the frequency domain. The FRF between volume acceleration z̈ and
sound pressure p in figure 9.6 is approximately a constant over frequency, which is expected
since z̈ is the quantity imposing a direct Neumann boundary condition on the sound pres-
sure field (see equation (9.20)). Also in [125, section 3.3] it is shown that for a monopole
source in a free field:

"The sound pressure versus frequency characteristics p ∼ jωQ = bS are proportional to
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Figure 9.4: FRF measurement from small acoustic volume displacement source Q-IND in
figure 9.3a. According to data sheet FRFs measurable in the frequency range 50 - 1000 Hz.

acceleration b."

were Q is the volume velocity (Q =
∫
S n · u̇sdS), S is the vibrating surface area and ∼

means "proportional to". The constant FRF can easily be understood by thinking about
a Dirac impulse at the input point (constant amplitude for all frequencies in the frequency
domain) which would create an impulsive pressure wave that travels with sonic speed to the
surrounding microphones and yields a dirac impulse in sound pressure measured there. In a
perfect anechoic chamber, all sound that could be reflected is absorbed by the walls. So the
only signal in the microphone channel would be this initial Dirac impulse. The time delay that
the wave needs to travel is what causes the linear phase increase with frequency that can
be seen in figure 9.6. The slight ’waviness’ of the magnitude in figure 9.6 is caused by non-
perfect sound absorbtion of the anechoic chambers walls. Some sound was still reflected by
the wall. If the reflected sound wave arrives with the same phase at the microphone as the
primary sound from the source, it adds to the magnitude. If it arrives with an opposite phase
of 180◦ it cancels out some of the direct sound from the source (dip in magnitude). The
frequency distance of these "dips" and "ups" can be calculated from the distance between
source, microphone and wall and fit the measurements well, which fits very well with the
measurement (see [126]).

9.4 Frequency (un)biased relation of structural and acoustical
quantities

One question that arose during the conduction of this research project was: What quan-
tity on a radiating structure surface should be minimized, when the goal is to minimize the
"annoyance" that the customer perceives? This included the question of what frequency
dependent weighting should be applied to the identified structural quantity, in order to best
capture the annoyance. This problem often arises in structural acoustic optimization, where
one may not know the transfer function from a radiating surface to the microphones at po-
sitions of interest. In section 9.2, it was shown that the surface acceleration is the quantity
that imposes a Neumann boundary condition on the sound pressure field. In section 9.3,
one could observe that the FRF between a volume acceleration z̈ and the sound pressure
p in an anechoic chamber (free-field conditions) is approximately constant over frequency
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Figure 9.5: FRF measurement from acoustic volume acceleration source Q-MHF in figure 9.3b.
According to the data sheet, with the 2m long tube FRFs are measurable in the frequency range 200
- 10000 Hz. Input was a band noise from 400 - 10000 Hz.
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(a) (b) p (c) ü (d) u̇

Figure 9.7: Hearing comparison of acceleration and velocity with sound pressure signal. Signals are
for 60% of the compressors maximum rotational speed (approximately 5160 rpm). The auralization
of the acceleration sensor signals are all for the x-channel of the sensor (see figure 9.7a). The con-
version from acceleration to velocity was done in the frequency domain. (a) Figure of measurement
setup, (b) Recorded microphone signal, (c) Acceleration measured in adjacent sensor, (d) Velocity
measured in adjacent sensor.

(see figure 9.5). A hearing comparison of i) a sound pressure measurement, ii) an adjacent
acceleration measurement, and iii) a velocity signal (computed from the acceleration sig-
nal), is given in figure 9.7. The measurements were recorded in the same setup as shown
in figure 6.2. One can clearly hear that the lower frequency content is much more prominent
in the velocity signal when compared to the sound pressure and acceleration.
The fact that the surface accelerations ü (resulting in volume accelerations when multiplied
with the vibrating surface area) are the frequency unbiased input to the sound pressure field
is by no means new (see e.g. [197] or the Siemens PLM forum post [138] on the topic).
Therefore, in chapter 12 it was chosen to minimize the surface acceleration. The need
for explaining this quantity for minimization in such detail arose from the fact that most of
the literature on structural acoustic optimization minimizes velocities (as will be explained in
chapter 12). However, the author is open for discussion on this choice, since it is uncommon.

9.5 Structural-acoustical transfer functions and reciprocity

Measuring so called structural-acoustical transfer functions means, a structural input (a force
fj at some point j) and an acoustical output (a sound pressure pi at another point i). This can
be done by hammer impacting the structure at point j, measuring the microphone response
at i, and computing the FRF estimate. These transfer functions are of special interest in the
realm of this thesis, since they allow to predict the sound at a microphone that originates
from a structural vibration source attached to the car body (see e.g. the FRF in figure 3.1).
However, often the physical space at the attachment points of the source is limited and
performing shaker or impact tests there is cumbersome or impossible. The reciprocity of
the transfer functions helps is this case. According to Wolde [196], reciprocity means that
"[...] the transmission of vibration from an arbitrary position i to an arbitrary position j has
a simple relation to with the transmission from position j to position i". For purely structural
FRFs, it holds that the transfer function Yij is equal to Yji, as can be seen from the modal
superposition in equation (2.30). For structural-acoustical transfer functions, it means that
one can also place an acoustic excitation zi at the receiver position i, e.g. the drivers ear,
and measure the structural response at the source position j, with e.g. accelerometers in
the front compartment of the car. For structural-acoustical transfer functions it holds true
that [41, 170, 196]:


7.2


7.2


7.2
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pi
fj︸︷︷︸

direct

= −uj
zi

= − u̇j
żi

= − üj
z̈i︸ ︷︷ ︸

reciprocal

, (9.22)

where uj , u̇j , üj is structural displacement, velocity and acceleration and zi, żi, z̈i is air vol-
ume displacement, velocity and acceleration. For a derivation and experimental proof of the
reciprocity principle see Wolde’s PhD thesis [170], in which the topic of reciprocal transfer
function measurements with applications to ship acoustics is treated. For systems with only
a primal and dual field variable3 [170, chapter 2] shows the reciprocity from the symmetry of
the system matrices. The proof can be shown in general from linear network theory where
it is assumed that the product of primal and dual variable at each point gives the power fed
to the system. Note that the symmetry of the system matrices was also used for the deriva-
tion of the orthogonality of the eigenmodes in section 2.2, and is therefore also essential for
showing the reciprocity with equation (2.30). This is however different from the proof given in
[170, chapter 2]. Surprisingly, for a coupled structural-acoustical system, it is not as straight-
forward to prove that the coupled system matrices are symmetrical. In [41], the symmetry
of the system matrices is shown by the derivation of the systems equations from potential
fields V and the fact that:

∂

∂xj

(
∂V
∂xi

)
=

∂

∂xi

(
∂V
∂xj

)
. (9.23)

However, the discussion in [196] and [41] shows that the applicability of reciprocity for
structural-acoustical transfer functions includes a history of scientific debate. In [196], one
finds an overview of reciprocity relations in common engineering systems (structural, fluid,
electrical systems and coupled variants of these) which is taken from the appendix of Ver-
heijs PhD thesis [184].

3This can be velocities and forces in mechanics, pressure and volume-velocity in acoustics or voltage and
current in electric networks.
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The blocked forces f bl2 can predict the sound and vibrations in the receiver B, which are
introduced over the structural connection points with the source component A (see chapter
6). This contribution to the receiver noise will be called structure borne sound in the rest of
this thesis. The airborne sound describes noise which is directly radiated from the housing
of the source component, i.e. the compressor. In other words, the airborne contribution
is what one would hear if the compressor was levitated in its place without any physical
connection to the vehicle. Depending on the mounting conditions of the source, this can
be a dominant transfer path. In [144], the compressor was rigidly connected to the front
axle carrier, which resulted in a dominant structure borne contribution to the drivers’ cabin
sound. In the example shown in chapter 11, the compressor is isolated with two stages
of soft rubber bushings from the front axle carrier, which lead to a relevant contribution of
the airborne path to sound in the drivers’ cabin. Therefore, the airborne path needs to be
modeled for a complete modular sound and vibration engineering.
As with the structure borne TPA, the goal of this chapter is to circumvent modeling the exact
source internal mechanisms which create the airborne excitation. A set of interface quanti-
ties shall be chosen, which describe the transmission of the airborne excitation equivalently,
and can be transferred to a different design. This will be achieved with a set of equivalent
monopoles describing the airborne compressor excitation.

10.1 Literature review and previous work

For airborne source description of a component, its emitted sound power can be utilized,
see e.g. [121]. The method for evaluating the sound power is standardized in [17]. An eval-
uation of potential errors resulting from different ways to conduct and evaluate the sound
power measurements can be found in [7]. In [92], the sound power was computed from
direct velocity measurements on the radiating surface of an e-axle drive. The radiation effi-
ciency was estimated from the recorded vibration shapes. Reichart [144] used the emitted
sound power for airborne source description of the compressor. The sound power was mea-

169



170 10 Airborne transfer path analysis

z̈A

pR

Figure 10.1: Schematic measurement setup for airborne source identification.

sured with a sound intensity probe, that was swept over an area enclosing the compressor.
A dodecahedral loudspeaker was used as an acoustic excitation mechanism. Its emitted
sound power was also measured while driven with white noise signal. Thereby, acoustic
transfer functions between sound power and receiver microphones in the vehicle could be
measured. Together with the measured sound power of the compressor, a prediction for the
airborne noise was possible. However, the compressor was thereby effectively modeled as
a monopole which turned out to be insufficient for higher frequent sound. Additionally, the
missing phase information in the sound power made an auralization of the airborne transfer
contributions difficult.
Based on these experiences, Müller [126] used an inverse method for identifying multiple
equivalent monopoles as a proxy for the compressors airborne excitation, as previously de-
scribed in [16, 124, 130, 181]. The airborne excitation of the compressor was modeled by
six monopoles. The source strengths of the individual monopoles is described by volume
accelerations contained in the vector z̈A, see figure 10.1. This approach is in principle very
similar to the transfer path method used for the structure borne sound. This identification
method will be explained in the following, and is applied to a vehicle development project in
chapter 11. The inverse identification makes this method sensitive to measurement noise
[27], hence a regularization strategy was applied. Berckmans [16] compared different reg-
ularization schemes for this inverse airborne source identification on the example of tire
rolling noise. It was found, that an over-determination of at least a factor of two should be
used, which was also recommended in [181]. In [106], it was shown that the airborne source
description with equivalent monopoles is independent of the environment in which it was
measured and is therefore transferable to other environments. Since in [106] no over deter-
mination was used, the beneficial effects of regularization where particularly large. The goal
in this thesis was also to obtain an airborne source description of the compressor which can
be obtained in a component testing environment, and can be transferred to different vehicle
designs.

10.2 Airborne source identification & measurement setup

For identifying an equivalent airborne source description of the compressor, the airborne
FRF matrix YAR

pz̈ is measured. It describes the transfer from multiple volume acceleration
points close to the compressor to surrounding microphones. As for the blocked force iden-
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tification, A denotes the source component and R denotes the testrig environment. The
compressor is then run in various operational conditions and the volume accelerations z̈bl,
which would have equally caused the recorded sound pressures at a subset of indicator
microphones pR4 , are computed via:

z̈bl =
(
YAR

4z̈

)+
pR4 , (10.1)

where YAR
4z̈ is the part of the matrix describing the sound transfer to the indicator micro-

phones. The volume accelerations z̈bl can equivalently describe the airborne excitation of
the source. This can be seen and derived from the same reasoning as the blocked forces
(see section 6.2), which is not repeated here. The z̈bl represent the volume accelerations
needed for counteracting all volume accelerations radiated off the compressor surface1. The
negative signs needed are omitted for brevity, as explained in section 6.2. The identified z̈bl

can therefore also be called blocked volume accelerations. They would in theory act like an
active noise cancellation on the source and block/cancel all sound pressure at the surround-
ing microphones. This is based on the following assumptions:

1. As for the blocked forces, one assumption is that the internal source mechanisms
(e.g. the imbalance, electromagnetic forces, etc.) are independent of the mounting
condition. The compressor was intended for mounting with soft rubber isolators, see
chapter 11, so this assumption was assumed valid.

2. Additionally, one is assuming that the whole "interface" of the compressor with the sur-
rounding air is controllable by the chosen monopoles. This is much harder to achieve,
since the interface in acoustic fields is a continuous surface. The representation with
only a few monopoles is therefore subject to an inherent upper frequency limit.

3. If the compressor was mounted rigidly against a stiff receiver, the vibrations on the
compressor housing would change. Therefore, one is assuming that the surface vibra-
tions of the freely hung up compressor are the same as in the vehicle. In the specific
case of this application, the compressor is mounted with very soft rubber bushings in
the vehicle. Therefore, this assumption was considered to be valid (in the vehicle mea-
surements this was validated by comparing the vibrations levels with the freely hung
up compressor).

The measurement setup for identifying the blocked volume accelerations is shown in figure
10.2. The measurements were conducted in an anechoic room. In total, 14 microphones
were placed on a spherical surface around the compressor (see also the schematic setup in
figure 10.1). Two kinds of microphone sizes were used: 12 1/2” microphones (a mix of B&K
TYPE 4955 and PCB 377B11), and 2 1/4” microphones (PCB 378C01). Unfortunately, the
1/4” ICP microphones with only a quarter inch membrane diameter had a high base noise
level (42 dB(A) base noise level is specified for the PCB 378C01, compared to 14dB(A)
for the PCB 377B11). To the authors belief this is one of the reasons why a regularization
had to be applied (see section 10.3). The transfer functions were measured with a low
frequency and a mid to high frequency volume source, and the FRFs where merged in the
overlapping frequency region, as explained in section 9.3. Thereby, a frequeny range from
50Hz - 10kHz could be measured. In total six input positions for the volume velocity source
were measured. If one places an imaginary box around the compressor, then one volume
acceleration monopole was placed in the middle of each box face. The compressor has a

1Remember from section 9.2, that in acoustic fields the volume acceleration corresponds to the force in
structural dynamics, i.e. they are the dual variables. The primal variable in acoustics is the sound pressure,
which is the displacement in structural dynamics.
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Figure 10.2: Measurement setup for airborne source identification of the compressor.

dimension of roughly 20 × 15 × 15cm3. For the operational measurements, the compressor
was connected to a high voltage power supply and load unit from IPEtronik. The hoses and
cables were guided through an air ventilation duct to a neighboring room, so the side noise
from the load unit was not audible in the anechoic chamber. A suite of operating conditions
was recorded with the microphones:

• Constant operating speeds from 10% to 100% of the compressors maximum speed
(8600rpm), with speed increments of 10%.

• Runups from 10% to 100% compressor speed in 60 and 120 seconds.

• Noise measurements with the compressor switched off.

These measurements were conducted once with an acoustic capsule (see figure 9.3a) and
once without an acoustic capsule (see figure 9.3b) for the compressor. The performance of
the acoustic capsule was tested in the vehicle in chapter 11.

10.3 On-board validation & regularization

For an initial check on the validity of the obtained results, one can perform an on-board vali-
dation, just like for the blocked forces (see section 6.3). In order to do this, one microphone
in the anechoic chamber was left out of the inversion and could therefore be used as an on
board validation signal pR3 . The signal recorded on this microphone can be predicted with the
blocked volume accelerations. The accordance to the validation measurement pR3 serves as
an initial check on the quality of the identified z̈bl. The blocked volume accelerations used
for the on-board validations were once computed with, and without regularization:



10.3 On-board validation & regularization 173

100 200 300 400 500 600 700 800 900 1,000 1,100 1,200
0

0.2

0.4

0.6

0.8

1

Frequency [Hz]

Fi
lte

rf
ac

to
rs
ρ
i

Figure 10.3: Filter factors ρi for individual singular values for the airborne inter-order filter at a op-
erational speed of 8600rpm. Vertical dashed lines indicate the order frequencies of the compressor
with the first order at around 143Hz

z̈bl+ =
(
YAR

4z̈

)+
pR4 , z̈bl# =

(
YAR

4z̈

)#
pR4 , (10.2)

pR,TPA+
3 = YAR

3z̈ z̈bl+, pR,TPA#
3 = YAR

3z̈ z̈bl#. (10.3)
(10.4)

For the regularization, Wernsen’s signal to noise ratio filter from section 8.5.3 was adapted.
The algorithm follows the following steps:

1. Find the first order of the compressor from the recorded signal. We used the bary
center method [116] for finding the "exact" compressor first order frequency, from the
two frequency bins surrounding it. There are however numerous other methods for
order detection, see the appendix of [99].

2. Apply a Tikhonov regularization with α being the inverse of the SNR at all frequencies
(equation (8.33)), except for the frequencies close to a multiple of the first compressor
order. Close means, that the frequencies within a range of ± 4 Hz of the compressor
order were left unregularized.

This resulted in the filter behavior which can be seen from the filter factors in figure 10.3 (see
the definition of filter factors in equation (8.25)). Note that the filter factors below 50Hz are
not representative, since the volume source input spectrum ended there, and the FRFs are
mostly noise (see figure 9.4). It can be observed from the filter factors that there is only one
dominant singular value for lower frequencies, which indicates that the compressor could be
modeled with just a monopole in this frequency region. For higher frequencies, the other
five singular values become larger, and the compressor should therefore be modeled with
all six (or even more) monopoles. The regularization is suppressing the sound which is not
at a multiple of a compressor order. The on-board validation results can be seen and heard
in figure 10.4. As for the structure borne sound, the regularization helps to suppress the
effects of inverted measurement noise in the lower frequency region, whereas the results
in the higher frequency region are mostly unchanged. When listening to the predictions in
figure 10.4, one can hear this inverted measurement noise as ambient white noise in the
results of the pseudo inverse pR,TPA+

3 . As the airborne noise contribution was found to be
mostly dominant for higher speeds of the compressor, the prediction results for 90% and
100% of the compressor speed are shown in figure 10.5.
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Figure 10.4: On Board validation for 80% of maximum compressor speed.
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Figure 10.5: On Board validation for (a) 90% and (b) 100% of maximum compressor speed.
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Figure 10.6: Modified room.

10.4 Transfer validation

In section 8.3 it was explained that an on-board validation can potentially give a too optimistic
impression on the quality of the identified blocked forces. Therefore, also for the airborne
source identification a transfer validation was performed. This was achieved by modifying the
anechoic chamber with metal shelf boards placed on the walls, see figure 10.6. These plates
increased the reflections in the room and thereby changed the acoustic transfer functions. In
figure 10.7 the same FRF measured in either configuration of the room is compared. It can
be seen that the "waviness" of the FRF is increased by adding the metal plates to the walls.
This is expected, since the "waves" in the FRF magnitude are caused by reflections on the
wall. The transfer validations were computed with the blocked volume accelerations obtained
from the measurements in the anechoic chamber without the metal plates (section 10.3).
The results can be seen and heard in figure 10.8. The results of the transfer validation
showed roughly the same quality as the on-board validation.

10.5 Conclusion

In this chapter the airborne source modeling of the compressor by blocked volume accel-
erations z̈bl was explained. The results proved to be promising for quantifying the airborne
sound radiation of the compressor. This was shown by an on-board and a transfer valida-
tion. Due to a higher noise level on some microphones, a regularization which filters the
non-order components of the compressor sound was applied. This resulted in clearer au-
ralizations of the TPA predictions. The source description is limited in frequency, since the
discretization with six monopoles is assumed to be insufficient for higher frequencies. From
previous experience it was known that the compressor sound was only audible up to around
2kHz in the vehicle. The discretization with six monopoles was assumed to be valid in this
frequency range (the compressor dimension is roughly 20× 15× 15cm3 and the wavelength
at 2kHz is ca. 16.5cm).
During the measurements, it was noted that towards higher frequencies, the influence of
positioning errors on the volume source become more apparent. In figure 10.10, the same
FRF with the orifice of the volume source moved ± 3cm is shown. When conducting the
volume source measurements in the vehicle, it was found that positioning the volume source
properly is often not possible due to space limitations, and the repositioning for measuring
all six monopoles is labor intensive. In order to avoid this, in [126] an artificial compressor
was developed, to speed up the measurements and reduce positioning errors. The artificial
compressor is shown in figure 10.6. The first results showed an improved prediction quality,
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Figure 10.7: Comparison of anechoic room FRF with the same FRF in the room that was modified
by metal plates on the wall.
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Figure 10.8: Transfer validation for 80 percent of maximum compressor speed.
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Figure 10.9: Transfer validation for (a) 90 and (b) 100 percent of maximum compressor speed.
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Figure 10.10: Positioning influence on the FRF measurements with the Q-MHF source.

but the artificial compressor will not be further treated in this thesis.



Part IV

Application to e-compressor NVH

179





Chapter 11

Automotive application example

Contents:
11.1 Structure borne: substructuring of transmission path . . . . . . . . . . . . . . . . . . . 182

11.1.1 Rigid body compressor model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
11.1.2 Experimental rubber models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
11.1.3 FEM carrier model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
11.1.4 Experimental vehicle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
11.1.5 Substructuring result and validation . . . . . . . . . . . . . . . . . . . . . . . . 191

11.2 Structure borne: source identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
11.3 Air borne: transmission path & validation . . . . . . . . . . . . . . . . . . . . . . . . . . 195

11.3.1 Transfer function measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 195
11.3.2 Validation air borne TPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

11.4 Phase correct adding of structure - & air - borne contribution . . . . . . . . . . . . . . 198
11.5 Validation of air- and structure-borne paths . . . . . . . . . . . . . . . . . . . . . . . . 199
11.6 Virtual Design modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
11.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Scientists study the world that exists,
engineers create the world that never
was.

Adam Stelzner,
in "The right kind of crazy"

In the preceding chapters, the required methods for building a modular virtual acoustic pro-
totype have been explained in some detail. This included the virtual assembly of individual
component models to obtain the full transmission path, and a vibration source description
which is transferable from a source component testrig to a final receiver design. This was
achieved by substructuring (see part I) and blocked forces (see part II). For the airborne path
contributions, the measured airborne transfer paths1 can be combined with blocked volume
accelerations (see part III) to predict the sound pressure transmitted by a source over an
acoustic path.
The interplay of these methods shall be exemplified on an industry relevant example in
this section. The case shown here is a prototype of a long range battery electric vehicle
(BEV). The focus was on studying the NVH performance of the electric climate compressor
mounting concept. The goals of this study can be summarized as:

• Build up a modular model for the structure borne sound transfer path YAB
32 with sub-

structuring. Each substructure shall be described with the most appropriate method.

• Use a transferable source description for the structural excitation of the compressor, in
the form of blocked forces f bl2 .

1Substructuring of airborne transmission paths is challenging due to the continuous interfaces between the
individual "substructures". For promising advances on this topic see [53].
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Figure 11.1: Schematic overview of the vehicle development example for e-compressor NVH. The
small figures under the components indicate the modeling approach for each substructure. Rigid
body model for compressor, experimental models for rubber isolators and vehicle, FEM model for
carrier.

• Measure the airborne noise transfer functions YAB
3z̈ in the vehicle prototype and pre-

dict the airborne path contribution with the blocked volume accelerations z̈bl of the
compressor.

• Validate the results with reference measurements in the vehicle prototype, and obtain
a ranking of structure and air borne path contributions.

• Apply virtual design modifications to the structure borne path, by modifying compo-
nents in the substructured model. Modify the airborne path contribution by applying
blocked volume accelerations of a compressor with and without a sound insulation
capsule2 .

For confidentiality reasons the actual vehicle can not be shown, but the general setup of the
isolation concept is shown in figure 11.1. The compressor is doubly isolated via two levels
of rubber bushings from the car body. A component called "carrier" (see figure 11.1) serves,
among other functions, as an intermediate isolation mass. The concept design was already
given at the beginning of the campaign, so the goal was to validate the set of developed
methods and to gain a deeper insight into the performance of the design (and discover
potentials for design simplifications and cost savings).

11.1 Structure borne: substructuring of transmission path

From previous investigations, it was known that the compressor’s structure borne contribu-
tion to cabin noise was well below 1000Hz. The frequency range of interest is an important
aspect before performing any substrucuring and blocked force TPA project, since it defines
the models that can be used and how the experiments shall be performed. In the follow-
ing, all employed substructure models are explained before the substructured end result is
validated with reference measurements on the prototype assembly in section 11.1.5.
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Figure 11.2: Compressor model. (a) Depiction of the four connection points on the compressor
indicated as VP1 to VP4. (b) Compressor with rigid crosses which were attached to apply enough
sensors and impacts for obtaining the substructure model experimentally.

11.1.1 Rigid body compressor model

The compressor is isolated from the carrier at four points with rubber isolators, see figure
11.2a. Each of these connections shall be coupled via FBS to the rubber bushing models.
The full degrees of freedom were taken into account, so each connection point was mod-
eled as a full VP with six DoF, resulting in a 24 × 24 compressor FRF matrix YC . Initially,
it was unclear if an experimental, numerical or analytical model would best describe the
compressor. Therefore, the intended compressor FRF was obtained experimentally first.
Four crosses, rigid in the frequency range of interest3, were attached at the four VPs of the
compressor, see figure 11.2b. Thereby, enough sensors and impacts could be applied to
each cross. Applying the virtual point transformation to the measured FRF, allowed to obtain
the desired 24 × 24 FRF model of the compressor. The crosses could be modeled as rigid
body components (see section 2.7). This allows decoupling them from the FRF measured
on the compressor with the crosses (the same way as it is done for the rubber models in
section 4.3.2). Upon inspection of the obtained FRFs, it was noted that at around 700Hz not
the compressor had a first resonance, but the crosses had a tilting mode on the protruding
connection points. This hindered obtaining a clean experimental compressor substructure
model. The flexibility of the protruding connection points is part of the compressor, but the
substructuring results obtained with this experimental model of the compressor were not as
good as with with a rigid body model (not shown in this chapter).
It was therefore decided to treat the compressor as a rigid body. The experimentally obtained
accelerances where just a constant over frequency up to 500Hz (see figure 11.3) and with
the rigid body model assumed to be the same also above this frequency. Since the lower
frequency region matched very well with an analytical rigid body model, it was chosen to
model the compressor this way. The mass matrix of the compressor MC , in the center of
gravity, can be built from its mass mC (measured on a scale) and its rotational inertia tensor
ΘC (taken from the CAD model):

2This is assuming that the surface vibrations of the compressor, which cause the blocked volume accelera-
tions, are not altered by the modified structural suspension. In the simulated cases, the compressor was always
mounted with very soft rubber bushings in the vehicle. Therefore, this assumption was considered to be valid.

3Validated by FEM, see also the discussion in section 2.7 on these helper crosses.
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Figure 11.3: Rigid body model of compressor versus measured substructure model with the crosses
shown in figure 11.2b. The shown FRF is a driving point FRF on VP1 for excitation and response in
+X direction, see figure 11.2a.

MC =

[
ImC

ΘC

]
, (11.1)

ỸC =
(
MC

)−1
and: ỸC ∈ R6×6. (11.2)

The mass matrix MC is the same as in equation (2.59) without the off-diagonal terms, since
the point of reference Q is equal to the center of gravity C, and therefore rQC = 0. The
accelerance FRF of the rigid compressor ỸC is obtained by simply inverting the mass matrix.
In order to obtain the desired 24× 24 FRF matrix of the compressor, the 6× 6 admittance in
the in the center of gravity ỸC , needs to be expanded to the desired coupling points. This is
done by:

YC = RuỸ
CRT

f with: YC ∈ R24×24, and: rank(YC) = 6. (11.3)

This operation could be called an "inverse virtual point transformation", where one is starting
with a lower set of DoF and projects them to multiple coupling points on the rigid body. The
projection matrices Ru and Rf can be constructed in a similar way as in the VPT shown in
section 3.3.2. In figure 11.3 this model is compared to the experimentally measured FRF on
VP1 in +X direction. The tilting modes of the crosses appear at around 700Hz on each cross
individually (see the few consecutive resonances in the "Experiment" FRF in figure 11.3).
When the "Experimental" FRF matrix is averaged over the frequencies, in the frequency
range from 50-250Hz, and this constant value is taken for all frequencies, this results in the
curve called "Experiment RB" in figure 11.3. Note that this fits very well with the analytical
compressor model stated in equation (11.2) and (11.3). Thus, for the further coupling, the
analytical rigid body model of the compressor will be used.

11.1.2 Experimental rubber models

As already mentioned, the compressor is isolated with two stages of rubber isolators from
the vehicle. The sets of rubber isolators will be called "level 1" and "level 2" isolators in the
following. They decouple the compressor from the carrier (level 1) and the carrier from the
vehicle (level 2). The rubber bushings in one level are all equal in geometrical dimension,
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Figure 11.4: CAD model of the rubber experiments and images of the measurement setup for both
levels of rubber elements.

but two different materials / shore hardness (SH) are used in each level (due to heat stability
and static load reasons). The substructure models of the rubber isolators were obtained
as described in chapter 4. The setup with the cross fixtures for obtaining the experimental
substructure models is shown in figure 11.4. The rubber elements are pressed into the
upper cross, and then screwed to the lower cross, just like in the vehicle.
The crosses were analytically modeled as rigid bodies, including the added mass of the
sensors (see section 2.7). Since it was known that the structure borne model shall be valid
up to 1000Hz, the crosses were designed so that their first resonance frequency is well
above 2000Hz. This was checked initially by FEM analysis, and thereafter by performing an
FRF measurement on the freely hung up crosses. In figure 11.5, one FRF of each of the
upper crosses is shown. It can be seen that their first resonances are both above 2500Hz. In
figure 11.5, the consistency measure, as defined in section 3.4.3, is shown for the depicted
input/output pair. As indicated as a rule of thumb in section 4.6, the crosses can be treated
as a rigid body up to about half the frequency of the first resonance. This can be seen in the
consistency of the crosses, which starts to drop after approximately 1250Hz.
The crosses were then decoupled from the measurements of rubber bearing with crosses
via substructuring (equation (4.11)). This process resulted in a 12× 12 FRF matrix for each
rubber bushing, which is ready for coupling via FBS. The resulting dynamic stiffness in the
radial and axial direction are shown in figure 11.6a and figure 11.6b respectively. It can be
seen that their stiffness is approximately constant up to 100Hz, but starts to increase towards
higher frequencies. In the radial stiffness of the level 1 natural rubber (NR) bushing, a clear
dynamic stiffening at ca. 600Hz can be seen. The two different shore hardness (SH) for the
level 2 bushings did not result in a significantly different dynamic stiffness.
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Figure 11.5: FRFs measured on the freely hanging crosses (upper crosses for pressing in the rubber
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Figure 11.6: Stiffness or rubber mounts, where L1 denotes the mounts for level 1 and L2 denotes the
mounts for level 2. The mounts employed for level 1 differed in material, EPDM and natural rubber
(NR). The mounts for level 2 also differed in material, shore hardness (SH) 40 and 45. Directions
according to figure 11.4.
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11.1.3 FEM carrier model

The carrier serves as an intermediate isolation stage, amongst other functions. Its "default"
variant is from cast iron without any mechanical joints which could complicate the numerical
modeling. Such structures can usually be modeled very accurately and without major effort
by FEM. This comes with all advantages of good FEM models, e.g. the ease of investigat-
ing parameter changes to the design (as will be explored in section 11.6). The carrier was
designed such that its first resonance is above the first compressor order at maximum op-
erational speed. An initial FEM model, with standard material parameters from the ANSYS
material library for cast iron, predicted a first resonance at 161Hz (already considering the
added mass effect of the sensors, which can have a big effect on higher frequency modes,
see figure 2.4). Once the first prototype was available, the first resonance was measured
at 169Hz. The prototype was weighed on a scale, and the density of the FEM model was
adjusted so the model mass matched the scale measurement (decrease of 3% from the
material library value). An additional adjustment of the Youngs modulus (increase of 6%
from the material library value), shifted the first FEM model resonance to the experimental
reference4. In figure 11.7 this is shown as "FEM" for the model with the standard material
parameters and "FEM updated" for the FEM model with the updated parameters. This is
probably the easiest imaginable FEM model updating method, but served the purpose of
this study well.
For using the model in substructuring, the coupling points where the rubber isolators shall
be connected were equipped with RBE3 elements (see left part of figure 11.7)5. The carrier
connected to four rubber isolators in level 1 with the compressor, and 3 isolators in level 2 for
connection with the vehicle. The model therefore contained 7 RBE3 elements. The required
42 × 42 FRF matrix for FBS, was synthesized from the first 200 modes of the FEM model
via equation (2.28). The frequency of the 200th mode was over 20kHz, so an additional
compensation for higher order terms was not carried out. A modal damping of 0.1% was
used, which fitted well with the experiment. As will be shown in section 11.6, one goal of
this study was to apply virtual design changes to the structure borne transfer path. An easy
change to the carrier is a simple material change, from cast iron to aluminum (which would
result in a lower mass of the system). Therefore, one resulting FRF for changing the material
of the carrier to aluminum is shown alongside in the right part of figure 11.7.

11.1.4 Experimental vehicle model

The last substructure for the full structure borne path, is the vehicle. This model needs
to include the local dynamic FRFs on the coupling points with the level 2 rubber isolators.
This meant 3 coupling points on the front axle carrier, shown in figure 11.8a. The noise
transfer functions (NTFs) to microphones inside the vehicle were measured simultaneously,
shown in figure 11.8b. For measuring the full 6 DoF at each connection point on the front
axle carrier, rigid crosses where connected to these points which could be decoupled from
the FRFs to obtain the FRF matrix without the added mass of the crosses. An automatic

4Note that the differences between the initial model and the first prototype could have also been due to
geometrical deviations between CAD model and prototype. But adjusting the density and Youngs modulus was
more practical.

5The ANSYS built-in RBE2 elements set all flexible motion in the remote point area to zero, and thus stiffen
the connection area. RBE3 elements compute the rigid body motion in a least squares sense like the VPT, and
do not constrain the connected nodes to only rigid motion. For all FE models in this thesis the RBE3 formulation
was used. For the carrier this makes sense, since the metallic carrier was barely constraint by the attached
rubber.
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Figure 11.7: Left: Connection point of the carrier to the rubber models with 6 DoF RBE3 element.
Right: Example driving point FRF of different carrier versions: initial cast iron model before material
parameter update (FEM), material parameters updated with first prototype of carrier (FEM updated),
and virtual change of material (FEM Aluminum).

Crosses attached
to coupling points

Automatic hammer

(a) (b)

Figure 11.8: (a) Front axle carrier with crosses attached to each coupling point. The automatic
hammer can be seen in the upper right part of the figure. (b) Multipe microphones in the driver’s
cabin which recorded the NTFs while impacting with the automatic hammer. The stand between
driver and co-driver seat was to hold a 3D virtual reality microphone.
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Figure 11.9: Driving point FRF on front axle carrier, once measured with the automatic and once
with a manual hammer. The FRF shown is before decoupling the crosses.

hammer [100] was used for impacting on the crosses, which can be seen in figure 11.8a.
One advantage of the automatic hammer is that after it has been positioned, the bonnet can
be closed. Thereby, the transfer functions can be measured in a more realistic vehicle state.
It was also easier to apply more repeatable impacts on the connection points, resulting in
overall better coherences for the NTFs to to microphones inside the driver’s cabin. On each
cross, 9 impact positions with at least 5 averages were carried out, and four triaxial sensors
were connected. After the VPT, this FRF model had the desired 6 DoF on each coupling
point, making it ready for substructuring.
While inspecting the driving point FRFs measured with the automatic hammer, it was found
that, though the coherence was very good, the measured FRFs in the lower frequency re-
gion did not make physical sense. Only the sensor channels on the cross that was directly
impacted showed this unphysical behavior. For a structure without rigid body modes, as
the vehicle is, an accelerance FRF should decrease quadratically towards lower frequencies
(see section 2.6.2). This was not the case, see the "Automatic" FRF in figure 11.9. Rather
the FRF seemed to be constant at lower frequencies, which would be typical for a freely
suspended structure with rigid body modes. It was chosen to repeat the measurements with
a manual impact hammer, also shown in figure 11.9 as "Manual". This FRF showed the ex-
pected behavior in the lower frequency region and was therefore considered more physical.
An animation of the vibration shapes measured with the automatic hammer confirmed this
finding. In the lower frequency region, the FRFs corresponding to the sensors on the cross
that was directly impacted with the automatic hammer, made no physical sense6. It can
also be seen that the FRFs measured with the automatic hammer matched well for higher
frequencies (starting at ca. 200Hz) where the signal to noise ratio is better again. Therefore,
the FRFs measured with the manual and automatic hammer were merged between 200 and
300Hz (linearly fading merge, with the manual hammer FRFs for the lower and the automatic
hammer FRFs in the higher frequency region).
In figure 11.10, a NTF from the same impact position on the front axle carrier to a micro-

6The reason for this behavior of the automatic hammer FRFs is not yet clear. The author presumes that the
hammer induces a small, impact like disturbance in the sensor signal close to the hammer (only in the sensors
at the driving point). This impulse like signal could be of electromagnetic nature (the hammer is shot forward
by an electrically powered coil). It could also be due to the acoustic pressure wave that is emitted when the
hammer hits its stop position (this happens with an audible click). Further investigation is needed on this topic.
It seems that this disturbance is very repeatable and not of a random nature, since the coherence is still very
good.
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Figure 11.10: Vibro-acoustic FRF from front axle carrier to microphones in driver’s cabin. Once
measured with the "Manual" hammer (bonnet needed to be open for impacting) and twice with the
automatic hammer (vehicle bonnet open and closed).
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Figure 11.11: Transfer Functions at the driving points before and after decoupling the crosses.

phone is shown, measured with the manual hammer and the automatic hammer (once with
closed and open bonnet). During the manual hammer measurements, the bonnet naturally
had to be open, since the test engineer needed to lean forward into the front compartment to
perform the impacting. It can be seen that the NTFs for open versus closed bonnet are not
significantly different. This indicates that the main transfer from front axle carrier vibrations
to sound pressure in the driver’s cabin are caused by structural vibrations that are trans-
ferred to surface vibrations in the cabin. The isolation of airborne sound or a stiffening of the
structure by closing the bonnet, did not significantly alter the transfer behavior. It can also
be seen that the NTFs measured with the automatic hammer generally achieved a better
coherence for the NTFs in the higher frequency region.
Lastly, it was found that a decoupling of the crosses from the measured FRFs was indeed
necessary. Initially, it was questioned if this is even needed, since the mass of the aluminum
crosses is small compared to the mass of the front axle carrier. In figure 11.11a, one driving
point FRF on the virtual point transformed FRF on the front axle carrier is shown. It can
be seen that with the added mass of the cross, the FRF is showing some resonances, that
are not visible after decoupling of the cross. In figure 11.11b, a NTF is shown before and
after decoupling the rigid crosses. It can be observed that for higher frequencies (after ca.
300Hz) the added mass of the crosses also alters the noise transfer function into the cabin
significantly.
To summarize the vehicle model for FBS:
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• The FRFs of the vehicle were obtained by impacting on crosses at the front axle car-
rier connection points. The structural FRFs for FBS coupling, including the NTFs to
microphones in the driver’s cabin, were measured.

• The FRFs were measured with a manual and automatic hammer, which were merged
from 200 - 300Hz, and transformed on the connection points via the virtual point trans-
formation.

• The added mass effect of the rigid crosses was removed by decoupling them via FBS.

11.1.5 Substructuring result and validation

The previously described substructure models are compatible on their interfaces with 6 DoF
on each connection point. They can be coupled by FBS, as explained in section 3.1, with
the coupling formula in equation (3.19). The signed Boolean matrices Bu and Bf , for en-
forcing compatibility and equilibrium respectively, have been constructed for each coupling
stage. After coupling all components, the full systems FRF matrix YAB (see figure 11.1)
was obtained. The full system FRF matrix comprised 14 VPs in total:

• 2× 4 VPs on the compressor connection (before and after the bushing).

• 2 × 3 VPs on the connection of the carrier with the vehicle body (before and after the
bushing).

The structural FRF matrix of the coupled system thus had a dimension of 84× 84. Addition-
ally, the full FRF matrix of the coupled system included a number of rows, which described
the transfer to multiple microphones inside the driver’s cabin. For validating the substruc-
tured FRF matrix of the full system, reference measurements on the assebled prototype
were carried out. In the full assembly, not all points were accessible for attaching sensors
and applying impacts. Therefore, only a few points were equipped with sensors and impacts
were applied that would serve as a validation measurement. The validation impacts had to
be carried out with a rubber tip, since the structural isolation over the bushings was so high,
that otherwise it would have been impossible to insert enough energy into the system. For
the H1 estimator, 5 impacts were averaged in each reference FRF measurement. Applying
a shaker was not possible due to physical space restrictions.
The comparison between the substructured FRF and the validation measurement is shown
in figure 11.12. In the upper part of figure 11.12, a force input on the compressor interface
to an acceleration output on the carrier is shown. It can be seen that in the lower frequency
region, the FRF is high in magnitude, as here the carrier and compressor show the typical
resonances of two rigid bodies that are coupled via soft rubber isolators. The animated vi-
bration shapes of the reference measurement and the substructured result showed a good
visual agreement. In the lower frequency region, around 20Hz, it can be seen that the sub-
structured model lacks a resonance that is seen in the reference measurement. The author
believes that this resonance is due to the refrigerant hoses connected to the compressor,
which have not been modeled. Initial results have shown that it is possible to model the pas-
sive dynamics of the refrigerant hoses in a similar manner to the rubber bushings, but this
is not shown here. Towards higher frequencies, the compressor is isolated from the carrier
and the FRF magnitude decreases, until the first resonances of the carrier at 169Hz and
210Hz. For frequencies higher than ca. 200Hz, the input spectrum of the rubber tip hammer
is not enough to measure a clean FRF, as can be seen by the reference coherence in the
lower part of the plot. Note that a nylon tip did not yield better coherences in this frequency
region, the isolation over the rubber isolators was too much. Similar observations can be
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Figure 11.12: Substructuring Validation of structural FRFs with reference measurements
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Figure 11.13: Substructuring Validation of noise transfer functions with reference measurements.
Due to the low coherence and strong isolation of the rubber elements, no appropriately large input
spectrum was achievable in the reference measurement

made for the FRF from an input on the carrier, to an output on the vehicle subframe, shown
in the lower part of figure 11.12. Overall the FRFs in the reference measurements fitted the
substructuring predictions very well, especially in the region with good coherence reference
measurements. For higher frequencies, the substructured FRFs are believed to be more
trustworthy than the reference measurement.
In figure 11.13, the vibro-acoustic NTFs from the reference measurement are compared to
the substructuring results. In the upper part of figure 11.13 the NTF from an input on the
compressor to an output on a microphone in the drivers cabin is shown. It can be seen that it
is not possible to measure this NTF at all by experiment, since the input on the compressor is
isolated over two levels of rubber bushings and the resulting sound pressure is too far below
the noise floor of the microphones. Note that these NTFs from compressor to microphones
are a critical requirement for performing the TPA predictions of the structure borne sound
contribution later. The blocked forces will be applied to the compressor, and the resulting
output on the microphones is predicted. Therefore, substructuring was in this case a critical
enabler, without which the structure borne sound investigations would have been impossible.
In the lower part of figure 11.13, the NTF from an input on the carrier to the microphones is
shown. Despite a still low SNR on the microphones, it can be seen that the H1 estimator
ist still able to average out random measurement noise to some extend. The general trend
of the predicted NTF fits the reference measurement well, and the increase in the NTF at
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210Hz (which corresponds to the second resonance of the carrier) is predicted accurately.
The advantages of substructuring can be summarized as follows:

• An FRF matrix of the whole system is obtained, with six DoF on each structural con-
nection point. This would be unmeasureable due to space restrictions in the vehicle. It
would also be challenging to simulate numerically due to the complexity of the system.

• By substructuring, FRFs that would be unmeasurable on the assembled system can
still be obtained. On the full system, it is not possible to apply enough input energy
on the compressor to measure the NTFs to microphones in the drivers cabin. Sub-
structuring allows measuring or modeling each component individually, with a good
signal to noise ratio, and obtaining the FRF of the assembled system by coupling them
virtually.

• The substructured model is versatile, in the sense that it is easy to modify certain
parameters on individual substructures, and study the effect on the transfer behavior
of the full system.

• The FRF matrix of the full system can be predicted at an earlier stage in the develop-
ment process (before an actual prototype of the full vehicle is available). The substruc-
ture models of the different components also allow for efficient collaboration between
various departments or suppliers working of the individual subsystems.

11.2 Structure borne: source identification

The previous section determined the full transfer path from compressor to sound pressures
in the driver’s cabin. To predict the structure borne path contribution, the structural excitation
of the compressor must now be obtained. This is done by blocked forces, which was in depth
described in part II. Therefore, this section will not go into full detail of all the necessary steps.
The blocked forces were obtained from freely suspending the compressor with rubber bands,
and performing a set of operational runs, again in various conditions:

• Constant operating speeds from 10% to 100% of the compressors maximum speed
(8600rpm), with speed increments of 10%.

• Runups from 10% to 100% compressor speed in 60 and 120 seconds.

• Noise measurements with the compressor switched off.

The compressor was hung up with the crosses shown in figure 11.2b, and the FRF matrix of
compressor with the crosses YAR

42 was obtained experimentally. The operational signals in
the sensor channels uR4 (sensors were applied to the crosses) were then used for inversely
determining a set of 24 blocked forces contained in the vector f bl2 :

f bl2 = (YAR
42 )#uR4 . (11.4)

Wernsen’s SNR filter was applied to the matrix inverse (see section 8.5.3). Leaving one
sensor channel out of the inversion, and applying an on board validation (see section 6.3)
yielded a fairly good prediction, which can be seen in figure 11.14 for two different opera-
tional conditions.
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Figure 11.14: On Board validation for the blocked forces, with uR,TPA3 being the on-board prediction
(uR,TPA3 = YAR

32 f bl2 ) and uA3 being the reference measurement recorded in this sensor channel.

11.3 Air borne: transmission path & validation

Next to the structure borne path, it was known that the airborne sound was a major contrib-
utor to the interior cabin noise. The measurement of airborne transfer functions (ATFs) and
the computation of blocked volume accelerations z̈bl as a component source description was
explained in detail in part III. This section therefore only explains the specific conduction of
measurements and computations for predicting the airborne path contribution in the vehicle.

11.3.1 Transfer function measurements

The ATFs from compressor to microphones inside the vehicle were obtained experimentally.
For the lower frequency region from 50 - 1000Hz a Q-LMF volume source was used. This
volume source is basically a big loud speaker which has the size of a human torso, and
can be placed on the passenger seats. This was placed in the driver’s cabin, as can be
seen in figure 11.15a. Six microphones were attached at the monopole positions around
the compressor (on which the blocked volume accelerations have been determined). The
transfer functions in the lower frequency region were thus measured reciprocally. The ATFs
in the mid to high frequency region (400 - 10kHz) were measured with the Q-MHF volume
source (the source has already been shown in figure 9.3b). The orifice of the Q-MHF source
hose was positioned next to the 6 monopole positions on the compressor. The ATFs to the
microphones in the vehicle could thus be measured directly. An example of one airborne
transfer function measured with both sources is shown in figure 11.16. The ATFs from both
sources were merged between 500 - 900Hz (linearly fading merge on the complex values
of the ATFs, with the Q-LMF for the lower and the Q-MHF measurements for the higher
frequency region). All transfer function measurements were conducted with closed hood.
This yielded the airborne FRF matrix YAB

3z̈ , see figure 11.1. AB indicates the full vehicle
assembly, z̈ indicates the volume accelerations as input and 3 denotes the receiver points,
i.e. the microphones in the vehicle. The ATF matrix YAB

3z̈ thus has 6 columns for applying
the blocked volume accelerations describing the airborne compressor excitation.
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(a) (b)

Figure 11.15: (a) Q-LMF source for reciprocal measurement of ATFs in the vehicle, used for the
frequency range from 50 - 1000Hz. (b) compressor with airborne sound capsule during the mea-
surements of blocked volume accelerations in the anechoic chamber. Notice the single axis ac-
celerometer attached at the front connection point of the compressor, which is needed for phase
correct addition of airborne and structure borne sound contributions.
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Figure 11.16: Reciprocal FRFs with low frequency source Q-LMF and mid to high frequency source
Q-MHF. Measured without the compressor capsule
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Figure 11.17: Validation of the airborne TPA contribution (AB TPA) with reference measurements in
the vehicle (Reference) while the compressor was not touching the car. A noise measurement in the
vehicle with the compressor switched off (Noise) is shown to indicate the noise floor in the vehicle.
One y-axis increment denotes a 10dB difference.

11.3.2 Validation air borne TPA

For an initial validation of the airborne sound predictions with the blocked volume accelera-
tions, the compressor was freely suspended in the vehicle front compartment so it wouldn’t
structurally touch the car at any point. The power supply cable and the refrigerant hoses
were guided out of the car (without touching it) to an external load unit of IPEtronik, which
allowed a controlled and repeatable operation of the compressor. The blocked volume ac-
celerations were determined in the anechoic chamber (see the description in chapter 10).
The sound pressures in the vehicle pB3 were measured during operation of the compressor.
Since the compressor was not touching the vehicle, it could be assumed that all sound in the
driver’s cabin should be a result of the direct airborne radiation from the compressor hous-
ing. The component TPA prediction of the airborne sound was done with the measured FRF
matrix YAB

3z̈ and the blocked volume accelerations z̈bl that were determined in the anechoic
chamber:

pB,TPA3 = YAB
3z̈ z̈bl (11.5)

The validation for one operational condition is shown in figure 11.17. A good agreement
between the reference measurements and the airborne sound predictions with the blocked
volume accelerations could be achieved, especially for higher operational speeds of the
compressor. For lower speeds of the compressor (ca. below 4000rpm) the sound pressure
in the driver’s cabin was barely above the noise level.
The blocked volume accelerations were determined in the anechoic chamber for a com-
pressor with and without a sound insulation capsule (see the description in chapter 10). The
compressor with sound insulation capsule can be seen in figure 11.15b) The performance of
adding a sound insulation capsule can thus be determined, as will be shown in section 11.6.
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11.4 Phase correct adding of structure - & air - borne contribu-
tion

In the previous sections, it was explained how the air and structure borne paths, from com-
pressor to sound pressures in the driver’s cabin can be obtained. Additionally, it was ex-
plained how the blocked forces f bl2 and blocked volume accelerations z̈bl can be used as
an independent description of the sources structure and air-borne excitation. Hence, the
path contributions for the airborne sound can be computed via equation (11.5), and the path
contributions for the structure borne sound via:

pB,TPA3 = YAB
32 f bl2 . (11.6)

Often it is desired to auralize both individual path contributions combined. This will be done
with the non-cyclic convolution explained in section 7.6. The sound files will be provided in
the next section.
However, if the combined predictions of the air and structure borne paths shall be auralized,
additional care has to be taken. The computation of the blocked forces and blocked volume
accelerations were done with operational data from different experiments. Not only is the op-
erational speed of the compressor not perfectly the same during both experiments, also the
phase of the compressor is shifted by an arbitrary amount during both operational measure-
ments. The phase in which the compressor was in the operational measurement, basically
depends on the millisecond in which the test engineer hit the "record" button. For adding the
auralizations of both contributions in the time domain, both time signals have to be aligned in
phase. Otherwise an unwanted amplification, or extinction due to non phase-correct adding
could occur. Therefore, Müller [126] implemented an algorithm to allow this phase correct
adding of air and structure borne contribution. For this, a reference channel on the compres-
sor is needed, which was present in both operational measurements (for the determination
of the blocked forces and the blocked volume accelerations). In this case, the phase in the
+Z direction at the VP1 of the compressor was used (see figure 11.2a). This compressor vi-
bration was recorded during the operational measurements for the blocked force evaluations
and the blocked volume acceleration evaluations (see the accelerometer in figure 11.15b).
The algorithm for aligning the phase of both measurements would basically:

• Determine the exact frequency of the first order f1.Ord. with the bary center method
[116] based on the first frequency block of the each measurement.

• Change the length of the first time block, so that an exact integer number of operational
cycles fits into the time block (preventing leakage and phase distortions).

• Compute the phase of the first order for the airborne operational measurements φA

and the structure borne operational measurements φS .

• Crop the time signal of the structural operational measurements by ∆t, so that both
structure and air borne phases match in the first time block.

The small time ∆t for cropping the structure borne measurements can be computed, by
computing the phase difference between both measurements:

∆φ = φS − φA. (11.7)

The cropping time for the structure borne operational signal can then be computed via:

∆t =
∆φ

2π f1.Ord.
(11.8)
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Figure 11.18: Aligned phase of the compressors first order on VP1 in +Z direction (see figure 11.2a
and the accelerometer in figure 11.15b that was additionally recorded in the anechoic chamber).
Phase is plotted over the individual time blocks during an operational run.

The resulting phase of the structure borne and airborne measurments over the time blocks is
shown in figure 11.18. It can be seen that the phase matches over the first few time blocks,
but starts to drift away over time. This is caused by slight differences in operational speed
during both measurements. However, it allowed for a realistic auralization of the combined
sound over the first time blocks.

Remark 11.1: If the author was to perform the measurement campaign again, he
would directly measure the airborne and structure borne excitation during the same
operational measrurements. During the operational measurements in the anechoic
chamber, additional accelerometers could be attached to the compressor. This way,
the phase of both measurements would automatically be aligned with each other,
rendering the operation discussed in this section superfluous. Since it turned out that
the compressor can be realistically modeled as a rigid body, no impact measurements
would have to be performed. Only the airborne FRFs and one set of operational
measurements on the accelerometers and microphones would be needed, to obtain
both, the airborne and structure borne excitation of the compressor.

11.5 Validation of air- and structure-borne paths

As compressor was mounted in the final suspension concept of the prototype vehicle (as
shown in figure 11.1), the suite of operational measurements was carried out. Again the re-
frigerant and power-supply hoses were guided out of the vehicle, without touching it, to the
IPEtronik load unit. The resulting sound pressures in the driver’s cabin were a combination
of the air and structure borne path contributions. The air and structure -borne contributions
could be predicted via component TPA, see equation (11.5) and (11.6). In figure 11.19, the
comparison of the predicted path contributions are shown with a validation measurement.
The speed of the compressor was comparatively low with 2560rpm and the first compressor
order being at 43Hz. The compressor noise in the drivers cabin ("Validation") is mainly dom-
inated by a low frequency bass sound. It can be seen that the overall sound level is mainly
caused by the structure borne path contribution ("SB TPA") at the first order. Confer also to
the substructured NTF from the compressor to the microphones in figure 11.13. The me-
chanical isolation concept is not fully working at these low speeds of the compressor. Some
resonances of the compressor and carrier oscillating as rigid bodies against each other,
are excited by the first compressor order at 43Hz. Towards higher frequencies the struc-
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Vehicle validation 2560rpm compressor speed
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Figure 11.19: 2560rpm: Third octave plot of sound pressure "Validation" in the drivers cabin and the
airborne "AB TPA" and structure borne "SB TPA" prediction. Additionally, the "Noise Floor" on the
microphone is shown (recorded with compressor switched off). One y-axis increment in the diagram
corresponds to 10dBA. Overall sound pressure levels are given below the diagram, and sound files
of the individual path contributions are provided. The overall sound pressure levels are referenced
to the "Validation" measurement, which therefore has a sound level of 0.0dBA. Note that, as already
mentioned in chapter 7, headphones usually have a "flatter" transfer function and playback the sound
files in a more frequency unbiased manner.

ture borne contribution becomes significantly lower, as the isolation concept is fully working.
Note that in all subsequent validation plots, a noise measurement on the microphone is ad-
ditionally plotted. At this low operating speed of 2560rpm, the validation measurement on
the microphone hits the noise floor at ca. 200Hz. The sound signal shown in all subsequent
plots is always recorded/predicted at the left drivers ear.
In figure 11.20, the compressor at 4300rpm is shown, i.e. its first order was at 72Hz. It
can be seen that the structure borne path contribution is already negligible compared to
the reference measurement. At 72Hz also the first order of the compressor is well isolated
from the receiver. As can be seen and heard in figure 11.20, the dominant path is the
airborne transfer path. Also higher frequencies of the compressor can be heard inside the
driver’s cabin now. Overall, the sound insulation was still very good at this speed, and the
compressor was only mildly audible.
In figure 11.21, the path contributions and validation measurement are shown for the max-
imum operating speed of the compressor at 8600rpm, meaning that the first order is at
143Hz. As expected the structure borne path contribution also negligible at this operating
speed, as the compressor is structurally fully isolated by the two levels of rubber bush-
ings. The resulting sound pressure is mainly caused by the airborne path. At this operating
speed, the compressor was well audible in the driver’s cabin. Note that for all validation
measurements shown in this section, the compressor was not enclosed with an airborne
sound insulation capsule.
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Vehicle validation 4300rpm compressor speed
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Figure 11.20: 4300rpm: Same plot as in figure 11.19, confer to this caption.

Vehicle validation 8600rpm compressor speed
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Figure 11.21: 8600rpm: Same plot as in figure 11.19, confer to this caption.
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Figure 11.22: Virtual Design Modifications for the NTF from an input at the compressor and an output
at a microphone in driver’s cabin. "Cast Iron" being the default design, "Aluminium" representing
the change of the carrier material to aluminum, and "Rubber rem." representing the removal of the
second level of rubber isolators.

11.6 Virtual Design modifications

In the previous section, it was shown that the combination of substructuring, blocked forces
and volume accelerations allows for a deeper insight in the individual path contributions.
The flexibility coming with a substructured model allows for exploring the potential of de-
sign changes. It has been seen that the structure borne excitation was comparatively low,
and only dominant for lower operational speeds of the compressor with the current design.
Typical design goals are to make the assembly lighter or simplifying it, which would re-
sult in reduced cost and assembly time. In order to illustrate the possibilities of a modular
substructured vehicle model, two virtual modifications of the structure borne path shall be
investigated here:

• Changing the material of the carrier from cast iron to aluminum, which would make the
whole design lighter.

• Removing the second level of rubber isolators completely, which would simplify the
design and save costs.

Both of these design changes can be easily simulated, by exchanging the FEM substructure
model of the carrier with one made of aluminum, or coupling the compressor-isolator-carrier
subsystem directly to the vehicle without the second level of isolators. This results in a
modified transfer FRF matrix YAB

32 and the resulting sound pressures can be predicted by
applying the blocked forces f bl2 to them. Again, it is a great advantage that the blocked forces
are a sole property of the compressor, independent of the final receiver (see chapter 6). The
FRF for an input on the compressor and an output at the microphone inside the driver’s
cabin for the original and the modified designs is shown in figure 11.22. It can be seen
that when the carrier material is changed to aluminium, the rigid body modes of compressor
moving against the carrier are shifted to higher frequencies. This results in an isolation of the
compressor that occurs at higher frequencies. For the removal of the second level of rubber
bushings, the isolation of the compressor is less steep with increasing frequency, which is
also expected from basic theory.
In figure 11.23, the predicted structure borne path contributions are shown for the lower
compressor speed at 2500rpm. The reference signal is the recorded microphone signal that
was band pass filtered from 20 to 1000Hz. It can be seen that with the material change to
aluminium the contribution of the first order is increased by ca. 18dB. With the aluminium
carrier, the compressor is exciting a rigid body mode, which in turn causes this significant
increase in sound pressure level. Towards higher frequencies the structure borne sound
contribution becomes negligible again, due to the two stage isolation. Removing the second
level of rubber isolators also results in an increased contribution of the first order by ca.
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Figure 11.23: Virtual prediction of design modifications to the structure borne transfer path, with
"Validation" being the reference measurement in the default design, "Iron" being the default design
with iron carrier and two level isolation, "Alu" being the modified design with aluminum carrier, and
"Rubber rem." being the iron carrier without second level of rubber bushings.

10dB. Additionally, the structure borne path would then also transfer higher frequencies into
the drivers cabin, due the decreased isolation. Of course, simply removing the second level
of rubber isolators or changing the material of the carrier would require further fine tuning
of individual design parameters (e.g. the bushing stiffnesses could be decreased with the
aluminum carrier, since the static load would be less due to the mass savings). However, the
modifications presented here shall merely exemplify the potentials for studying new designs
with substructuring.
As it was shown in the previous section, the airborne contribution of the compressor was a
major contributor to the cabin noise for higher operational speeds. Therefore, the blocked
volume accelerations were also determined for a compressor that was wrapped in a sound
insulation capsule (see figure 11.15b). The compressor with sound insulation capsule was
also tested in the vehicle as a validation measurement. The resulting validation measure-
ments and airborne "AB TPA" predicitions are shown in figure 11.24. Note that the validation
measurements shown in figure 11.24 ("Val. cap." and "Val. no cap.") were both carried out
with the compressor mounted in the vehicle, so the structure borne sound of the default
design (cast iron carrier and two stages of isolation) is still present in these measurements.
However, as was shown in figure 11.20, the structure borne contribution to the cabin noise
can already be considered negligible at this operational speed. In figure 11.24, it can be
seen that the airborne TPA predictions with the blocked volume accelerations are well able
to predict the overall decrease in cabin noise by ca. 3dBA for the design with the sound
insulation capsule.

11.7 Conclusion

In this chapter, the methods introduced in parts I - III of this thesis were applied to an indus-
try relevant vehicle development project. It was shown that substructuring allows to virtually
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Modification air borne path 4300rpm compressor speed
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Figure 11.24: Comparison of design modifications to the air borne transfer path, with "Val. no
cap." being the validation measurement of the compressor without capsule, "Val. cap." the reference
measurement with capsule, "AB no cap." and "AB cap." the airborne predictions with the blocked
volume accelerations.

couple different components, where each component can be modeled with the most ap-
propriate method. Coupling a rigid body model of the compressor, experimental models
of the rubber isolators and vehicle, and a numerical model of the carrier, resulted in clean
and well validated predictions of the structural FRFs and NTFs into the driver’s cabin (see
figure 11.12 and figure 11.13). Additionally, it was possible to predict transfer functions that
are non-measurable with standard measurement equipment, since the signal to noise ra-
tio would have been to low. This was especially the case for the NTFs (see figure 11.13).
The TPA predictions for the the sturcture and air borne path contributions provided a bet-
ter insight in the important mechanisms creating the sound pressure in the drivers cabin.
This approach naturally lends itself to virtual modifications and optimizations on the NVH
concept. Some of these possibilities were outlined in section 11.6.
The potential for using this modular approach to sound and vibration engineering, will be
further explored by setting up a parametric design optimization of the e-compressor isolation
in the next chapter.
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Chapter 12

Parametric design optimization on virtual acous-
tic prototypes
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Schwingungstilger sind die Folge von
nicht optimal durchgeführter
Produktentwicklung.
[transl. Tuned-mass dampers are a
consequence of sub-optimal product
development.]

Prof. Markus Zimmerman
in "Reißwolf Ausgabe (02/18)"

The contents of this chapter were published in similar form in [59]. The text hereafter has
been modified and adapted to the thesis.

In the previous chapter, it was shown how the combination of substructuring and blocked
forces allow for virtual design modifications to explore better designs. This combination lends
itself naturally to parametric NVH design optimizations1. In the authors opinion, parametric
NVH optimization is a major field of application for substructuring and blocked forces, that
should be further used in the future. Thereby, NVH issues can be treated and optimized
early in the development cycle, preventing potential late phase issues and redesigns.
Blocked forces are not dependent on one specific receiver structure, in contrast to interface
forces of classical TPA (see chapter 6). Blocked forces can therefore be used as a source
description in design optimization. For optimizing the assembly, different substructures are
virtually coupled to each other, where each substructure is described by the most appropri-
ate modeling approach. Frequency based substructuring (FBS) allows coupling analytical,

1This was a personal goal of the author since the beginning of his research project, since during his graduate
studies he spend some courses and projects on design optimization algorithms. The author wants to thank
Dawid Kobus [89] for his enthusiasm and the many late hours he spend preparing and updating the ANSYS
models and implementing an efficient interface to Matlab.
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Figure 12.1: General optimization problem overview.

numerical or experimental models to each other (see chapter 3 for the theory and chapter
11 for an application). Numerical models are used for substructures which can be simulated
with high accuracy. These can be parametrized for optimization. Experimental models are
used for substructures that are hard to simulate accurately.
The application example presented here is again the electric climate compressor. The as-
sembly was a testrig for principal investigations on an NVH isolation concept. It consists
of: a) a FEM model of the receiver, b) experimental models of different rubber isolators,
c) a parametrized FEM model for the carrier, and d) a rigid body model for the compres-
sor (see figure 12.1). On the receiver the vibrations uB3 are resulting from the compressor
induced dynamic forces. These vibrations shall be minimized by optimally designing the
carrier structure and suspending it with the right choice of rubber isolators. Applying the
blocked forces to the coupled model, makes it possible to simulate the receiver vibration
uB3 , which can be used for evaluating an objective function. The rubber isolator choice and
the parametrized FEM model of the carrier, are iteratively optimized for minimal structure
borne noise. Virtually coupling the substructures, and applying the compressors blocked
forces to the assembly, makes it possible to simulate the loudness for different design pa-
rameters. The objective function is formulated such that it captures the success or failure
of different designs. The design is then iteratively improved by a suitable algorithm. This
approach seems favorable, as it also keeps the computational effort at a minimum by de-
scribing the complex substructures and the source excitation experimentally. This ultimately
makes a numerical optimization applicable, where many evaluations of the objective function
are required.
In section 12.1, a short review of relevant literature shall be given. Some basics on acoustic
optimization will be explained in section 12.2. In section 12.3, the formulation of an objective
function and the applicability of different optimization algorithms shall be discussed on a
minimal example. In section 12.4 a genetic optimization algorithm is applied minimize the
objective function for the compressor design (figure 12.1) . The simulated predictions for the
optimal parameters are validated with measurements on the physically built design, including
auralization of the results.

12.1 Review of relevant literature

The author could not find existing work that combines blocked force TPA, FBS and para-
metric design optimization for NVH. There are however numerous publications combining
blocked forces and substructuring or performing a parametric NVH optimization.
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Combining blocked forces and substructuring has in recent years been shown in the
literature for some successful applications. The previous chapter in this thesis can be con-
sidered as one example. In [134] an analytical example of a similar approach is presented.
For an experimental proof of concept there are [156] and [108], with promising results. In
[156], the focus is more on a complete 6 DoF description of the interface with the VPT. In
[109, chapter 7] and [110], examples are shown, whose complexity can be compared to
what is encountered in industry. In [109] also the computation of confidence intervals for the
predicted results is outlined.

Parametric NVH optimization for improving the acoustic behavior of structures has been
the topic of many publications, e.g. [19, 37, 74, 102, 142]. Marburg has given an extensive
review of work in the field [102]. In [19], an algorithm for minimizing the velocities on radiating
surfaces due to forces acting in predefined positions is given. In [74], it is claimed that for
minimizing the radiated sound power, one can also minimize the mechanical power that
enters the passive system from the source (which is also found by [84, 179]). Thereby, the
effort of solving the coupled structural and acoustical equations is spared. However, there
are also other methods for getting estimates of radiated sound power from purely structural
simulations [43]. In purely airborne acoustics, applications of topology optimization can be
found [37]. There, the goal is to find the right distribution of material in absorbing layers to
minimize the overall loudness in a given domain, resulting from a predefined source term. In
all of these publications the definition of the dynamic forces causing the vibrations as well as
the receiver systems stay somewhat academic. In [83], the acoustic optimization of a fibre
reinforced plastic oil pan is investigated. As a source term, most often a unit force excitation
over all frequencies in the range of interest or other simplified methods are utilized.
When using component TPA, real world dynamic force signatures of given sources can be
described. Additionally, with FBS the receiver paths can include complex structures, since
their transfer paths can be included from experimentally obtained models. The optimization
algorithm can then focus on improving the part of the structure which can be described by
numerical or analytical models with sufficient accuracy.

12.2 Acoustic design optimization

In this thesis, it was already explained how the noise transfer path of the source coupled to
the receiver can be built up from single substructures in a modular fashion (part I), and how to
model the excitation of a given noise source so that it is independent of the receiver structure
(part II). The receiver can then be parameterized by certain design variables contained in
the vector x. The entries in x could be choosing from a discrete set of rubber bearings
or the position of masses in a given design. The goal is to find the right choice for these
parameters xopt, e.g. optimal position for the masses and optimal choice of rubber bearings,
so that a defined objective function Φ(x) is minimized. The function Φ(x) might describe
the minimization of vibrations at a specific location, or noise at the drivers ear. Alternatively,
Φ(x) could be defined to minimize the assembly mass, where some constraints gi(x) require
that defined levels of noise are not exceeded. In general, optimization problems are stated
in the following manner:

minimize Φ(x),

so that gi(x) ≤ 0 for i = 1, . . . ,m;

and hi(x) = 0 for i = 1, . . . , l;

and xlb ≤ x ≤ xub,

(12.1)
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where gi(x) denotes each of the m inequality constraints, hi(x) each of the l equality con-
straints. The lower and upper boundaries for each entry in the design vector x are contained
in the vectors xlb and xub respectively. The constraint functions gi(x) and hi(x), the objective
function Φ(x) as well as the design variables x are chosen by the engineer to best capture
the possible solution space and the design goals of the specific application. The objective
function used in this chapter is motivated in section 12.2.1. This is also put in context to other
objective functions typically found in the literature on structural acoustic optimization. Once
the problem has been stated, one needs to choose an appropriate optimization algorithm
for finding a solution that minimizes the objective function and satisfies the constraints. In
section 12.2.2, a brief overview of two main classes of optimization algorithms is given. The
applicability of these algorithms to the problem at hand is checked by a minimal example in
section 12.3.

12.2.1 Objective function for NVH optimization

A general task preceding each optimization is the formulation of a suitable objective function
Φ(x). The envisioned goal of the optimization scheme is the reduction of noise perceived by
passengers. The sound pressure in the vehicle is denoted as pB3 in this thesis. The following
quote from [187, chapter 1] sums up the goal of this optimization:

"[...] In acoustics, the sound pressure is typically the leading quantity of interest, mainly be-
cause the human ear is sensitive to sound pressure. Hence, calculations or measurements
of sound pressure yield directly the input quantity of the human hearing system. [...]".

Ideally, the sound pressure spectrum in the driver’s cabin would be simulated in each eval-
uation of a new design x (as it was done in chapter 11). The physical sound pressure
pB3 , being the input to the human hearing system, should then be subjected to some form
of ’transfer function’ that accounts for the human perceived annoyance. There have been
promising advances in the field of psycho-acoustics to study these dependencies [42]. A
simpler construction of an objective function would subject the sound pressure pB3 to e. g.
an A-weighting [38] to account at least for the frequency-dependent human perception of
sound. An objective function could thus be defined as:

Φ(x) =

∫ ωmax

ωmin

||pB3 (ω,x) RA(ω)|| dω with, (12.2)

pB3 (ω,x) = YAB
32 (ω,x) f bl2 (ω), (12.3)

where RA(ω) denotes the frequency dependent A-weighting filter. The filter’s frequency
dependence is the reason why ω is explicitly denoted for all quantities above. The transfer
path from the source to the receiver YAB

32 (ω,x), and thus also the sound pressure pB3 (ω,x),
depend on the design variables x. Note that pB3 (ω,x) is a vector describing the sound
pressure at multiple positions in the drivers cabin. Hence, a norm of the vector is used in
equation (12.2) to end up with a scalar objective function Φ(x). Considering multiple sound
pressures in pB3 (ω,x) is advisable, since otherwise the optimization might find a design that
is only "quiet" at one specific position in the receiver [102, section 2.4]. E.g. by altering the
design such, that many of the acoustic modes have a node at the microphone position.
Unfortunately, for the application example in this chapter, it was only possible to simulate
uB3 (ω,x), i. e. displacements or its time derivatives on the receiver, since the noise transfer
function to microphones inside the driver’s cabin was unknown. Therefore, a short overview
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of literature on NVH optimization based on purely structural vibrations shall be given. Sub-
sequently the reasoning for the objective function chosen in this chapter is outlined.

Objective functions for structural acoustic optimization in literature

When consulting the existing literature on structural acoustic optimization, most authors try
to minimize the level of the surface velocities, which will be denoted as vB3 (ω) in the following.
In [19], various optimizations are performed, where the quantity to be minimized (or bounded
in a constraint), is called the ’mean level of structure-borne sound’ (MLS). Essentially, the
MLS is related to the average squared value of all computed velocities normal to the vibrating
surface, called v2

rms in [19]:

v2
rms(ω) =

1

mi

mi∑

i=1

||u̇i(ω) · ni||2, (12.4)

where the surface velocity vectors u̇i(ω) are a result of a prescribed harmonic force, and ni
denotes the surface normal vector at the respective point. The number of points for which
the velocity is computed is denoted as mi. This quantity is then integrated over the whole
frequency range (without frequency dependent weighting) to yield the MLS in decibel2:

MLS = 10 log

(∫ ωmax

ωmin

v2
rms(ω) dω

)
. (12.5)

Also in [142] "[...] the mean square velocity of the plate is used as an optimization criterion
[...]". Jog [74] claims, that the mechanical power Pmech that enters a passive system from
the source correlates to a high extent with the sound power Prad radiated by the structure
(which is also found by [84, 179]). The mechanical power entering the system would be:

Pmech =
1

2
Re

(∫ ωmax

ωmin

λ(ω)∗ u̇B2 (ω) dω

)
=

1

2
Re

(∫ ωmax

ωmin

(λ(ω))∗ YB
22(ω)λ(ω) dω

)
, (12.6)

where u̇B2 (ω) is the velocity at the interface DoF between source and receiver. YB
22(ω) is the

driving point FRF matrix on the interface between source and receiver and λ are the interface
forces acting on the receiver. The effective power is computed by taking only the real part
Re() of the quantity, and (?)∗ denotes the complex conjugate of a vector. The mechanical
power Pmech entering the system is either dissipated by damping in the structure or radiated
to the surrounding air.
The radiated sound power of a structure can be computed by:

Prad =
1

2
Re

(∫ ωmax

ωmin

∫

S
p(ω)∗ n · u̇(ω) dS dω

)
, (12.7)

where S is the radiating surface, p(ω) the sound pressure, n · u̇(ω) the scalar product of
surface normal and velocity and dS is an infinitesimal part of the surface, see figure 12.2. As
already mentioned, [74] shows that for a few numerical examples Pmech correlates to a high
extent with Prad. It is proposed that, for minimizing Prad, one can also minimize Pmech with
similar success. Thereby, one can save the additional computational effort of solving the
coupled sound field equations, needed for computing p(ω) in equation (12.7). This is related
to the general challenge of a purely structural acoustic optimization, namely that the sound
pressure p(ω) is unknown. In Marburg’s review on strucutral acoustic optimization [102], he

2This is a simplified version of the exact definition given in [19]. However, it differs only by constant terms,
which would not influence the solution found by the optimization algorithm.
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p

Radiating surface S

u̇

n

Figure 12.2: Radiating surface S with surface normal n, surface velocity u̇ and sound pressure field
p.

states that for the objective function:

"[...] Often, the average sound pressure at one or a few points in a frequency interval ac-
counts for the objective function for interior problems, whereas the average sound power is
mostly used for external problems. [...]"

For the case of an optimization purely based on structural quantities, Marburg [102] states
that one is often minimizing the average squared particle velocity on the structural surface
since this gives an estimate of the radiated sound power. So, implicitly, though often not
stated in the literature, the choice of surface velocity as the minimized quantity relates to the
fact that the radiated sound power Prad shall be minimized. In [84], a more elaborate dis-
cussion and a comparison of quantities that relate purely structural quantities to the radiated
sound power is given.

Objective function for present study

However, the goal for this optimization is not to minimize the sound power radiated by the
structure, but rather to minimize the noise perceived by the passengers. The sound power
may not be the right quantity to choose as an objective function for this purpose. As a prac-
tical example one could think about the electrical power needed by a subwoofer to create
a certain human perceived loudness in the lower frequency region. Then compare that to
the much lower electrical power needed by a high-pitch tweeter to create the same human
perceived loudness or annoyance. For the objective function used here, the boundary condi-
tions imposed by a vibrating structure to the pressure field in the surrounding air were taken
into account. Since the sound pressure is implicitly the quantity of interest, it was tried to find
the structural quantity that is most likely to be a frequency unbiased proxy for sound pres-
sure. Following the reasoning in section 9.4, it was chosen to assume a constant magnitude
transfer function for sound pressure over acceleration, as it would be the case in a free field
(see e. g. the transfer functions in figure 9.5). Since ideally the A-weighted sound pressure
like in equation (12.2) would be minimized, it was chosen to rather minimize the acceleration
levels on the structure3. Therefore, the chosen objective function is:

Φ(x) =

∫ ωmax

0
||üB3 (ω,x) RA(ω)|| dω , (12.8)

where x is the current design vector, and the sub- and superscripts on üB3 refer to the same
structure and points as before in uB3 (see e.g. figure 12.1).

3Note that in a whole vehicle application, one could include the transfer function to microphones in the drivers
cabin (as was done in chapter 11). This would render this discussion superfluous and avoid any assumptions.
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12.2.2 Optimization algorithms

The important question after the definition of an objective function, is how to get from an ini-
tial design x0 to the optimal design xopt. Ideally, this should be done with the least possible
amount of objective and constraint function evaluations, since these are typically computa-
tionally costly and time consuming. A well written book on numerical optimization algorithms
is [128]. A review about optimization applied to structural acoustics can be found in [102].
Here, the basic ideas behind two main classes of optimization algorithms will be discussed.
Then their applicability to the problem at hand is checked in section 12.3 with a minimal
example.

Gradient based, ’local’ optimization

The shape of the objective function Φ(x) over the entire design space (xlb ≤ x ≤ xub) is
unknown and thus the best, or at least a better solution, xopt must be found in an iterative
manner. Algorithms from the so called class of ’local’ optimization algorithms base their
iteration strategy on one of the following methods (or a mix of both) [128]:

• Line Search: Starting from the current design xi, a search direction pi is determined.
One can e.g. compute or approximate the gradient of the objective function with re-
spect to the design variables ∂Φ

∂x

∣∣
xi

=: ∇Φ. The direction of ’steepest descent’ for the
objective function could then be chosen as the search direction, i.e. pi = −∇Φ. Other
potentially more efficient choices for the search direction can be computed with New-
ton, Quasi-Newton or Conjugate Gradient methods [128]. Often the search direction
has to be amended so that the new designs in the direction pi do not violate any of the
constraints. The problem of the optimization then reduces to finding the scalar step
length α:

minimize: Φ(xi + αpi). (12.9)

This can e. g. be done by just testing a few discrete values for α and then choosing the
α which produces the highest decrease in the objective function value without violating
any constraint.

• Trust region: Here the objective function is approximated in the vicinity around the
current design point xi by e.g. a quadratic model of the objective function:

Φ(xi + pi) ≈ Φ(xi) +∇Φpi + 1
2pTi Bipi, with ||pi|| ≤ ∆i (12.10)

In this context the ’trust region’ is defined by the radius ∆i around the current design
point, where the approximation is assumed to be valid. The Hessian matrix (second
derivatives) ∇2Φ is approximated with Bi that is usually obtained from the previous
evaluations of the gradient ∇Φ with the Broyden-Fletcher–Goldfarb-Shanno (BFGS)
formula [128]. This way the excessive effort of directly computing or approximating
the Hessian is avoided, while still being able to achieve a fast convergence of the
algorithm. There are of course many different methods for approximating the objective
function in the trust region.

For example, the Sequential Quadratic Programming (SQP) algorithm computes the search
direction from a local quadratic approximation of the objective function and then determines
the step size from a line search. The applicability of SQP is checked in the minimal opti-
mization example in section 12.3.
The algorithm iterations are terminated once the algorithm can’t find any significant design
improvements or has exceeded the maximum number of iterations. Most algorithms for
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constrained optimizations base their convergence criterion on the fulfillment of the Karush-
Kuhn-Tucker (KKT) conditions, which are mathematically necessary for a local optimum:

∇Φ(xopt) =

m∑

i=1

µi∇gi(xopt) +
∑̀

j=1

λj∇hj(xopt), (12.11)

gi(x
opt) ≤ 0, for i = 1, . . . ,m (12.12)

hj(x
opt) = 0, for j = 1, . . . , ` (12.13)
µi ≤ 0, for i = 1, . . . ,m (12.14)

µi gi(x
opt) = 0, for i = 1, . . . ,m. (12.15)

The first condition of equation (12.11) requires that, at a local optimum xopt, the gradient
of the objective function ∇Φ can be represented as a linear combination of the equality
constraint gradients ∇hi and the inequality constraint gradients ∇gi of the ’active’ inequality
constraints. Loosely formulated, an ’active’ inequality constraint is one whose value is zero
at the optimum (gi(xopt) = 0) and that is actually preventing the objective function from being
further decreased. The values µi and λi are the so called Lagrange multipliers necessary
for fulfilling the linear combination stated in equation (12.11). In practice, equation (12.11)
means that at a local optimum there is no more direction in which the objective function value
could be decreased, without violating the constraints, as all directions perpendicular to the
gradient∇Φ would keep the objective function value constant. Equations (12.12) and (12.13)
just require that the constraints are not violated. Equation (12.14) is taking care of the fact
that the gradient of an ’active’ inequality constraint∇gi (i.e. the direction in which the value of
gi(x) would increase and thus violate the constraint) must be pointing in a direction in which
the objective function would decrease. Otherwise the inequality gi(x) would not be active,
since the value of the objective function could be decreased in a direction that is not violating
the constraint (gi(x) would be decreased in that direction). The last equation (12.15) is often
called the ’complementary slackness’. It is the decisive factor for determining if the inequality
constraint is active, i.e. gi = 0 and thus µi 6= 0 so the gradient must be considered in (12.11),
or inactive, i.e. gi < 0 and thus µi = 0 so the gradient of the inequality constraint is not
considered for the linear combination in (12.11). A good explanation and visualization of
these concepts can be found in a video lecture of the MIT open course ware [8].
The KKT conditions are necessary conditions for a local optimum of the optimization func-
tion, i.e. there is no direction in the vicinity of the found solution xopt which could improve
the objective function any further without violating the constraints. Thus, the found xopt is at
least a local optimum. Gradient-based optimization schemes are very efficiently converging
to such local optima. However, there might still be better designs, which cannot be found
with a gradient-based approach. The applicability of these algorithms thus depends very
much on the shape of the specific objective function. If many local optima exist and the
engineer is unable to identify a starting point x0 that is close to a global optimum, heuristic
optimization schemes might yield better results.

Heuristic, ’global’ optimization

As mentioned above, gradient based algorithms find a ’local’ solution to the optimization
problem, assuring that there is no better feasible solution in the proximity of the found opti-
mum. This is however not necessarily the global solution, i.e. the point in the design space
with the overall lowest objective function value. In practice it is often already enough to find
a design that is better than the initial one. Depending on the case however, significant per-
formance gains of the design might be possible by searching for the overall lowest objective
value. As mentioned, this depends very much on the shape of the objective function over
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the design space, which will be checked for the problem at hand in section 12.3. If the objec-
tive function has a lot of local minima, then chances are that a gradient based optimization
scheme will get trapped in a local optimum.
There are many classes of global optimization schemes, which won’t be explained in detail
here. An overview can be found in [175]. One class of global optimization which will be used
in this chapter are genetic algorithms (GA), which try to mimic evolution in nature. They
create a large set of initial designs x1i which can e.g. be random and uniformly distributed
over the whole design space. This initial set is called the initial population. The (?)1 denotes
the first generation and (?)i is the index for each individual, i. e. each single design vector,
in the population. They then calculate the objective function value Φ(x1i) and the constraint
function values for each of the design vectors in the initial population, to determine a fitness
value for each individual design. Then, some members of the population are transferred to
the ’mating pool’, typically the ones with the best fitness value (e.g. lowest objective function
value without violating constraints). The members of the next generation are created by
recombining the design vector entries from designs in the mating pool. Thereafter, some
statistical variation is performed on the values in the design entries (called mutation). The
algorithm eventually converges when no more designs can be created that are better then
the ones from previous generations.
A practical advantage of this optimization scheme is that it is easy to include integer design
variables (e.g. only a discrete choice of different rubber bearings), since they don’t need
any continuous derivatives of the objective function for finding a search direction. However,
they usually need more objective function evaluations and generally converge slower than
gradient based optimization schemes.

12.3 Choice of compressor operating conditions & optimization
algorithm

In most structural acoustic optimizations the design variables alter the mass and stiffness
distribution of the structure. The optimization tries to find their right distributions to minimize
the vibration at the receiver points. The minimal example presented here aims at answering
the following 2 questions for the optimization of e-compressor NVH:

• What are the right operational conditions of the compressor, for which the blocked
forces are computed, and subsequently used to evaluate the resulting vibrations on
the receiver? Discrete load conditions will be compared to a continuous runup of the
compressor.

• What is the right optimization algorithm for converging to a solution that is not too far
from the global optimum? A gradient based SQP algorithm will be compared to a
global genetic algorithm.

The minimal example here is intended to answer these questions, and provide a clearer
insight than the full example which will be shown in section 12.4. Especially since for the
minimal example it is possible to plot the objective function shape over the whole design
space, since the objective function evaluations are computationally not that demanding.

Minimal example

The example is the truss frame shown in figure 12.3a (taken from [47, section 5.3.4]). The
design vector is composed of two variables x = [x1 x2]. The first design variable x1 is
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x
y

z

f bl2

ü3

b

b

a
a

(a)

Parameter Value
a 2.7183e− 1

b 1.4142e− 1

Avert 3e− 3

Jx,vert 8.73e− 9

Iy,vert x1

Iz,vert 4.5e− 9

Ahorz x2

Jx,horz 7.8e− 9

Iy,horz 4.2e− 9

Iy,horz 2.3e− 9

Variable Lower Upper
x1 1e− 9 1e− 8

x2 1e− 4 4e− 3

(b)

Figure 12.3: Minimal Example from [47] the examination of the objective function shape and testing
different optimization algorithms. a) Overview of the truss frame example with point of application for
the blocked force f bl2 and evaluation of response uB3 . b) Tables with values of variables and upper
and lower bounds for optimization variables. All values in SI units.

the bending stiffness around the global y − axis of all vertical beams, see figure 12.3. The
second design variable x2 is the cross-sectional area of all horizontal beams, which directly
scales with their mass. The FEM model of the structure in figure 12.3 is setup in ANSYS
Mechanical APDL. The beam sections between each intersect are discretized with 30 beam
elements of type beam 189 [6]. For the material typical values for structural steel are chosen,
i.e. a Youngs modlus of 210GPa, a density of 7800 kg

m2 and a Poisson ratio of 0.3. The beam
element cross-sections are chosen as ’arbitrary’ so the parameters like cross sectional area
and bending stiffness can be varied independently from each other. As an excitation, a single
force entry f bl2 from the 6 forces and moments in the equivalent forces f bl2 of the compressor
(see section 6.3) has been used. It is the translational force in z-direction, see figure 6.2b.
This excitation is applied at one point of the structure, see figure 12.3a, and the resulting
acceleration ü3 is computed at another point of the structure. The frequency response
function Y32 that relates the force input to the accelerations is obtained by computing the
first 500 modes of the structure and subsequently synthesizing the FRFs with these modes
(frequency range 0− 500Hz, 1Hz spectral resolution, see section 2.3.2). A modal damping
ratio of 0.1% is assumed. Also the spectrum of the blocked forces has been cropped to
0 − 500Hz, to speed up the calculations. For the objective function, first the A-weighted
signal power of the acceleration P3(x, b) is computed by integrating over frequency:

P3(x, b) =

∫ ωmax

0
||Y32(x, ω) f bl2 (ω, b)︸ ︷︷ ︸

ü3(x,ω,b)

RA(ω)||2 dω, with b = 1, ..., Nb; (12.16)

where f bl2 (ω, b) denotes the blocked force computed for the time block b from the operational
runs of the compressor (see section 6.4). Nb is the total number of time blocks. The root
mean square over all blocks b is then computed:
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P3,rms(x) =

√√√√ 1

Nb

Nb∑

b=1

[P3(x, b)]2. (12.17)

This way the highest responses P3(x, b) from operational conditions in certain time blocks
b, are penalized more in the optimization. The final objective function is then defined as the
level of P3,rms(x) given in decibels:

Φ(x) = 10 log10

(
P3(x)

a2
0

)
, with a0 = 10−6

[m
s2

]
, (12.18)

where a0 is the typical reference value used for computing acceleration levels in decibel.

Operational compressor conditions for evaluation of objective function

For the example, it is possible to visualize the shape of the objective function over the two
design variables (bending stiffness x1 and mass x2). Originally, it was intended to use 10
discrete operating conditions of the compressor for computing the blocked forces. The oper-
ational speeds were 10%, 20%, ..., 100% of the compressor’s maximum speed. 10 time blocks
were taken from each measurement of the 10 operating conditions. So in total Nb = 100 time
blocks were used in each evaluation of the objective function. The resulting objective func-
tion shape is shown in figure 12.4a. It can be seen that the objective function exhibits large
elevations that are on straight lines in the x1-x2 plane. This effect can be explained by the
input spectrum of the excitation force f bl2 (ω, b) and the design variables. Each blocked force
f bl2 (ω, b) was obtained for an integer multiple of the speed 10%. Thus, the compressors or-
der frequencies, at which the blocked forces are particularly high, are exciting always the
same frequencies, with no excitation at the frequencies between. In figure 12.5, the blocked
force in z direction which was computed for compressor speeds that are multiples of each
other are shown to illustrate this matter. If an eigenfrequency of the truss frame structure
coincides with one of these strongly excited frequencies, the objective function value will in-
crease dramatically. These increases are on straight lines in the x1-x2 plane in figure 12.4a,
since x1 is the bending stiffness of the vertical beams and x2 is the mass of the horizontal
beams. A straight line in the x1-x2 plane describes a constant ratio of stiffness and mass,
which means that some modes stay at a fixed frequency.
This objective function behavior is unwanted, since in practice the NVH engineer would want
to design a structure that isolates the force input for all possible compressor operating condi-
tions. The time blocks for computing the forces can also be taken from a runup measurement
of the compressor. For the objective function shown in figure 12.4b, the vibration signal for
computing the blocked forces was recorded during a runup from 10% to 100% speed in 60
seconds. Time blocks of 1 second length each, with an overlap of half a second have been
used, so that Nb = 120. This way, the blocked forces are better representing the compressor
excitation in the whole operating range. It can be seen from the comparison in figure 12.4
that the objective function is somewhat smoothed by this definition, which might also help
the applicability of gradient based algorithms. The objective function used for the rest of the
chapter is computed from the overlapping time blocks taken from this runup measurement.

Choice of optimization algorithm

As discussed in section 12.2.2, optimization algorithms can generally be classified into ’local’
or ’global’ algorithms. On the minimal example sequential quadratic programming (SQP) and
a genetic algorithm (GA) shall be tested as representatives of both classes. In figure 12.6,
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Figure 12.4: Visualization of objective function shape for different choices of compressor operational
conditions used for computing the blocked force f bl2 . (a) blocked forces from discrete compressor
speeds. (b) blocked forces from overlapping timeblocks taken from a compressor runup.
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Figure 12.5: Excitation spectrum for discrete frequencies given in percent of maximum compressor
speed. Vertical lines indicate multiples of the first compressor order at 20% speed. The plotted spec-
trum belongs to the z-direction of the translational forces at the front connection of the compressor.
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Figure 12.6: Performance comparison for different optimization algorithms. All design points evalu-
ated by the algorithms are shown as diamonds in the plot. The color of the diamonds slowly changes
from blue for the first evaluated design, to black for the last evaluated design point. All points are
artificially lifted by 5dBA in the plot, so it is easier to see them. a) sequential quadratic programming
(SQP). b) Genetic Algorithm (GA).

their performance for finding an optimum are compared. The SQP algorithm stops prema-
turely after evaluating only 9 points in the design space at an objective function value of
Φ(xopt) = 145.7 [dBA]. The GA algorithm evaluates 1600 design points (though convergence
was reached after ca. 400 evaluations) with an objective function value of Φ(xopt) = 137.9
[dBA]. It seems that the non-convex shape of the objective function makes it necessary to
use ’global’ optimization algorithms for the application case. In figure 12.7, the starting de-
sign of SQP and the found optima of SQP and GA are compared over the whole runup.
The objective function was computed for each time block b separately. So one can plot its
evolution over the runup for the comparison in figure 12.7. One can observe that the RMS
over the time blocks in equation (12.17) is penalizing time blocks with a particularly high re-
sponse. The solution found by the SQP algorithm has mostly reduced the large peak of the
initial design at around 42 seconds. The solution of the GA is generally lower and is more
effectively preventing outliers of high cost function values over the compressor runup. Un-
der figure 12.7, hearing comparisons of the different designs response to the runup forces
are provided (SQP starting point, SQP optimum and GA optimum). The sound files are a
playback of one ’channel’ or rather FE node direction of the acceleration ü3 in the response
point, namely the x-direction in figure 12.3a. One can hear the slowly increasing speed of
the compressor, with some constant frequency tones in the background, which are related to
the resonances of the system which are always slightly excited by the compressor forces. If
an order frequency of the compressor matches with a resonance frequency of the structure,
a large increase in loudness is audible.

12.4 Application to e-compressor NVH optimization

After examining the optimization algorithms performance on the defined objective function,
the method shall be applied to the actual example where the goal is to find a better support
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Figure 12.7: Comparison of the objective function value over the compressor runup. Objective func-
tion values were computed according to equations (12.16) - (12.18) for each timeblock seperately,
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figure 12.3a. (a)-(c): 0-20sec, 20-40sec and 40-60sec of the SQP starting point design. (d)-(f): 0-
20sec, 20-40sec and 40-60sec of the SQP optimum design. (g)-(i): 0-20sec, 20-40sec and 40-60sec
of the GA optimum design.

for the climate compressor. The modular assembly of different subcomponents is explained
in section 12.4.1. This assembly via FBS will be executed in each optimization run. A val-
idation of the so obtained assembled FRF matrix with a reference measurement is given.
Thereafter, the design variables and the objective function for the optimization are defined in
section 12.4.2. The program and data flow that executes during each run of the optimization
is also briefly explained. Three designs of interest are then compared with reference mea-
surements to assess the quality and reliability of the optimization results in section 12.4.3.

12.4.1 Dynamic model

The assembly which shall be optimized is shown in figure 12.8. The compressor is mounted
under a carrier plate, which also holds a large mass on top of it. This plate is isolated
with rubber bearings in all four corners against a final receiver which has the shape of four
support arms. In this section, the models of the different subcomponents are explained. A
schematic depiction of the compressor suspension was already shown in figure 12.1, where
the small symbols underneath the structures indicate the modeling approach used for each
subcomponent. The compressor is modeled as rigid body, indicated by the symbol under-
neath in figure 12.1. The carrier plate is modeled as a FEM Model, whereas the rubber
bearing model is obtained from experimental tests to save the effort material modeling. The
receiver legs are modeled with the FEM.


20.16


20.16


20.16


20.16


20.16


20.16


20.16


20.16



12.4 Application to e-compressor NVH optimization 219

üB3

Rubber 1
Rubber 2Rubber 3

Rubber 4

x2
x1

out 2

x
y

z

out 1

Figure 12.8: Physical testrig with mass and rubber bearings. Outputs for validation FRF measure-
ments are indicated as ’out 1’ and ’out 2’. The six sensor channels used in the objective function are
indicated as üB3 .

Compressor: dynamic model and excitation

The compressor is modeled as rigid body, as already explained in section 11.1.1. The mass
and rotational inertia are taken from its CAD model. The excitations that the compressor ap-
plies to the whole assembly are described by means of 6 blocked forces, like it was described
in section 6.3.

Model of carrier plate and mass

The compressor is connected to a carrier plate that is also carrying a mass with a flexible
metal sheet support. The model of compressor, carrier plate and mass is directly setup in
ANSYS Workbench, as can be seen in figure 12.9a. The compressor’s rigid body properties
are concentrated in its center of gravity, which is shown as a grey point in figure 12.9a. It is
rigidly coupled to the three bolt holes which the compressor is actually connected to. The
bolt holes for connecting the compressor sit in two lengthy adapters. Each of these adapters
are screwed with two bolts into the carrier plate. The contact area between the adapters
and the plate is modeled as a rigid surface contact in ANSYS (multi point constraint (MPC)
contact). Also the contact areas between the mass and the plate are modeled as rigid
contact.
The degrees of freedom where the FRFs shall be synthesized are the 6 DoF of the rigid
compressor, which are needed for applying the blocked forces, and the 4 connection points
of the plate with 6 DoF each. The resulting FRF is thus a frequency dependent 30×30 matrix.
The four connection points are modeled with ’remote points’ using the RBE3 formulation to
the neighboring nodes [6]. See figure 12.9b for a depiction of one of these 6 DoF remote
points. ANSYS Workbench is then used to compute the first 100 modes of this model.
The eigenfrequencies vary with the position of the mass (which will be part of the design
variables). Typically the first flexible eigenfrequency is around 75Hz and the 100th frequency
around 6500Hz. The computed modes are then used to synthesize the 30 × 30 FRF matrix
in the frequency range 0− 2000Hz with a frequency resolution of 1Hz.

Rubber bearing models

The carrier plate is isolated from the receiver in either of the four corners with a rubber
bearing. The dynamic models of the rubber bearings are obtained with the experimental
identification method explained in chapter 4, which yields a 12 × 12 frequency dependent
FRF matrix for each rubber element. The choice of rubber bearings for this example was
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in 1

(a) (b)

Figure 12.9: Overview of FEM modeling. (a) FEM Model of Carrier plate with mass and compres-
sor. Hammer input point for validation measurements is indicated as ’in 1’ (b) Remote point in one
coupling point for 6 DoF model used in the FBS coupling of each connection.
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Figure 12.10: Comparison of axial transfer stiffness of all rubber bearings.

limited to three discrete rubber elements. In the following they will simply be called ’soft’,
’medium’, and ’hard’ rubber bearings. Their static axial stiffness (the vertical direction in
figure 4.1c) was specified by the manufacturer with 94·103
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]
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]
and 255·103
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respectively. The dynamic stiffness of the three rubber bearings in the axial direction which
were identified with this method are shown in figure 12.10. It can be seen that in the lower
frequency region the rubber bearings have a dynamic stiffness which is similar to the static
stiffness specified by the manufacturer. In the very low frequency region (below approxi-
mately 30Hz), their stiffnesses are dropping, which is unphysical and merely a problem of
low frequency rigid body resonances of the whole assembly (two crosses with rubber bear-
ing in between) in the rubber bands which they were hung up with (see figure 4.1a). These
rigid body resonances were all well below 10Hz. From reference measurements with a hy-
draulic testing machine (see figure 4.4), it was known that the dynamic stiffness of the rubber
bearings is constant over frequency for this low frequency region. A remedy to this issue
is introduced by extrapolating a constant stiffness value, computed as the average stiffness
in the range 60 − 80Hz, down to the lower frequencies. The effect in the axial direction is
shown as dotted lines in figure 12.10, but the procedure is applied to all entries of the 12×12
dynamic stiffness matrix. This matrix can then be converted back to an accelerance matrix
which is suited for FBS with the other components. It can be seen in figure 12.10 that for
the higher frequencies it is desirable to have these accurate frequency dependent models of
the bearings, since there are large stiffness increases and decreases with frequency. These
are mostly a result of (anti-) resonances in the rubber itself. This effect is well known [1, 54],
the earliest publication on the topic we found being of Harris in 1952 [66].
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Figure 12.11: Depiction and validation of FEM model of the support arms, (a) reference FRF mea-
surement on one arm, (b) FEM model of the arm, (c) Comparison of measured and simulated FRF
for the force input and acceleration output shown in figure 12.11a.

Model of carrier arms

The last substructure of the final assembly are the carrier arms. These are the receivers
on which the vibrations caused by the compressor shall be minimized. They are also mod-
eled with the FEM, as can be seen in figure 12.11b. A single, decoupled arm equiped with
sensors for model updating is shown in figure 12.11a, where also the position of a hammer
impact and an output of one acceleration sensor is indicated. For the FRF of this input
and output a comparison between measurement and the FEM FRF synthesis is shown
in figure 12.11c. The arms are clamped with brackets to the testbed, as can be seen in
figure 12.11a. For obtaining the right eigenfrequencies, it was not sufficient to model the
contact with the testbed as a rigid support, but as a flexible support with a certain foundation
stiffness. As can be seen in figure 12.11c, the mode frequencies are similar in the FEM
model and the validation measurement. The modes at approx. 180Hz and 450Hz are both
variants of forward rocking modes of the arm, which are properly excited by the impact loca-
tion shown in figure 12.11a. However, it seems like there are multiple modes around these
frequencies. An evaluation of the operational deflection shapes of the reference measure-
ments show that the excitation on the arm, shown in figure 12.11a, is also transfered via
the testbed to the other arms (there was one sensor still on another arm, which made this
observation possible). It is assumed that the modes of all arms are approximately but not
exactly at the same frequencies. Due to a cross coupling over the not perfectly rigid testbed
and the arms slightly shifted frequencies, it seems like there are multiple smaller peaks over-
layed with the main peak of the FEM model. The FEM model however did not model this
cross coupling between the arms. If it was possible to perform the measurements again, the
author would probably take an experimental model of the arms directly, which would then
include this cross coupling effect. However, the model is considered accurate enough for
obtaining meaningfull predictions. The mode at around 40Hz which can be seen in the ref-
erence in figure 12.11c, is in a direction which should not be excited by the hammer impact,
but due to slight imperfections in the experiment it shows up in the reference measurement.

Validation of FBS assembly model

The FRF matrices of all subcomponents are coupled via FBS to each other. Some of the
possible design choices (the design variables are explained in the next section) were not
only virtually simulated with the FBS approach, but also assembled physically on the testrig
for validation measurements. Part of the validation measurements was a hammer impact
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FRF measurement, where the assembly was impacted in the global x-direction on the front
connection of the compressor, which can be seen in figure 12.9a as ’in 1’. The FRFs to
two output channels of sensors, indicated as ’out 1’ and ’out 2’ in figure 12.8, are com-
pared for the design also shown in figure 12.8. These FRFs are shown in figure 12.12a and
figure 12.12b respectively. Note, that in the simulated FBS Model all DoF are in the form
of virtual point degrees of freedom. Hence, a direct comparison with a measured reference
FRF of a hammer input and sensor channel output is not possible. For the comparisons
shown in figure 12.12, the FRF from the FBS assembly was transformed back to hammer
impacts and sensor outputs with an inverse virtual point transformation:

Yuf = RuYqmRT
f , (12.19)

where Yqm represents the FBS result in terms of virtual point DoF. Ru is the IDM matrix
containing the geometric information about the relation between virtual point motions and
the resulting sensor motion at specific positions (see section 3.3). Similarly Rf is the IDM
matrix containing the information about the virtual point forces and moments that are caused
by a specific hammer impact.
Figure 12.12 shows a comparison for using the plain decoupling models of the rubber bear-
ings (continuous lines in figure 12.10) and the rubber bearing models with the extrapolated
stiffnesses in the lower frequency region (dotted lines in figure 12.10) in the FBS model. It
can be seen in figure 12.12a that the extrapolated rubber models perform significantly better
for predicting the lower frequency modes. The mode shapes of these resonances show the
whole compressor, carrier plate and mass moving like a rigid unit on the flexible support
of the rubber bearings. The first resonance in figure 12.12a is found at 10.5 Hz in the ex-
perimental validation and 9 Hz in the FBS model with the extrapolated rubber stiffness. The
second resonance is at 19 Hz in the experimental validation and 18 Hz in the FBS model with
the extrapolated rubber stiffness. One could argue that these modes are not important from
an acoustic point of view, since they are below the audible range that starts at approximately
20 Hz. Nevertheless, it is valuable to be able to predict these resonances for other issues
(e.g. rattling or fatigue of compoments), so the extrapolated rubber models were used for all
predictions.
In figure 12.12a, it can be seen that the magnitude of the FRF is overall predicted with rea-
sonable accuracy by the FBS modeling, despite the challenge of modelling all connections
between individual parts (multiple screw connections and surface contacts. The mass on
top of the plate was actually glued on with dental cement). The comparison in figure 12.12b
for the output channel shows a more challenging modeling task. First of all, the coherence
of the measurement validation, shown underneath the magnitude plot, is not as good as for
the output on the compressor carrier. This is due to a poorer signal to noise ratio, since
the input energy is isolated with the rubber bearings from the receiver. From experience
the noise floor for experimental FRF measurements with the equipment used is around a
magnitude between 10−2 and 10−3

[
m
Ns2

]
, as can be seen in the coherence in figure 12.12b

as well. In these regions the FBS model is believed to be even more accurate than the
reference model (see e.g. the lower frequency region in figure 12.12b where it is known
that the accelerance of a system without rigid body modes has to approach zero for lower
frequencies). The same can be seen at the antiresonance at around 200 Hz that is shown
by the FBS model but cannot be measured by the measurement equipment due to the noise
floor. The mode around 160 Hz which is showing as two separate peaks in the experimental
validation, but as only one peak in the FBS model, is related to the cross coupling of the
arms over the testbed, as was explained in section 12.4.1. However, the FBS model seems
to have problems predicting the FRF in the higher frequency region above 1000 Hz. In the
experimental validation there are large peaks showing, which are not predicted by the FBS
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Figure 12.12: Validation: dynamic substructuring models with normal decoupling rubber models
(’Decoupl.’) and extrapolation (’Extrapol.’), see figure 12.10 for the lower frequencies, versus Refer-
ence FRF measurement (’Exp.’). Input as can be seen in figure 12.9a as ’in 1’. (a) Output channel
indicated as ’out 1’ in figure 12.8. (b) Output channel indicated as ’out 2’ in figure 12.8.

model. It is believed that this issue is related to the FEM model of the arms. As already
mentioned in section 12.4.1, this subcomponent model is where the author would either put
additional modeling effort in, or use an experimental model, if time had permitted to do so.

12.4.2 Optimization problem setup

After explaining the assembly of the system model with FBS, this section proceeds to the
actual optimization problem. The design vector x is composed of six entries x1, ..., x6, which
describe the following parameters:

• x1: y axis distance of the mass on the plate from the edge point as shown in figure 12.8
in [mm].

• x2: x axis distance of the mass on the plate from the edge point as shown in figure 12.8
in [mm].

• x3: Discrete choice of rubber bearing indicated as Rubber 1 in figure 12.8.

• x4: Discrete choice of rubber bearing indicated as Rubber 2 in figure 12.8.

• x5: Discrete choice of rubber bearing indicated as Rubber 3 in figure 12.8.

• x6: Discrete choice of rubber bearing indicated as Rubber 4 in figure 12.8.

The position of the mass on top of the plate is constrained by upper and lower bounds to
the feasible space. The choice of rubber bearings for each connection point is limited to four
discrete choices:
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Design vector x Objective Fcn. Prediction [dBA] Objective Fcn. Validation [dBA]
x = [54, 157, 4, 4, 4, 4] 139.8 135.9

x = [67, 23, 3, 3, 3, 3] 114.2 114.1

x = [57, 154, 1, 3, 1, 3] 108.8 111.5

Table 12.1: Comparison of predicted and validated objective function value of different designs.

1. : Soft rubber bearing,

2. : Medium rubber bearing,

3. : Hard rubber bearing,

4. : No rubber bearing, i.e. a rigid coupling.

The objective function is defined similarly to the definition in the minimal example in section
12.3. The receiver acceleration signals üB3 which shall be minimized are measured by the
two sensors shown in figure 12.8. The predicted vibrations are subjected to an A-weighting
and integrated over frequency to sum power levels:

P3(x, b) =
1

2

∫ ωmax

0
||Y32(x, ω) f bl2 (ω, b)︸ ︷︷ ︸

ü3(x,ω,b)

RA(ω)||2 dω, with b = 1, ..., Nb (12.20)

This definition is only different by a factor of 1
2 from equation (12.16), since we are taking

into account two acceleration sensors now. The definition of the final objective function Φ(x)
from P3(x, b) in equation (12.20) is then equivalent to equation (12.17) and (12.18).
In each evaluation of the objective function, the program is calling ANSYS for recomputing
the FRFs of the compressor, plate, mass assembly with the updated position of the mass.
The model is then assembled with the right rubber bearings in each connection point in Mat-
lab. The blocked forces from a 60 second runup are applied to the assembled FRF matrix
and the objective function is evaluated. The workflow during one optimization function eval-
uation is schematically shown in figure 12.13, where Matlab successively fills out ANSYS
input file templates with the current design variables, saves them, and executes ANSYS on
these input files in batch mode. ANSYS saves the FRFs in separate FRF files which can
be read in by Matlab. Note, that initially it was tried to read the full mass and stiffness ma-
trix from ANSYS in each optimization run, via writing them into files in the ’Harwell Boeing
Format’. However, this is an ASCII format and the read-in process was way to slow to be
suitable for an optimization. Reading in the synthesized FRFs which are only containing the
virtual points of interest (as explained in section 12.4.1) was almost two orders of magnitude
faster and the amount of data needed is significantly reduced. The optimization algortihm
used is a GA, for the reasons explained in section 12.3.

12.4.3 Results and validation measurements

Of course it is not meaningful to investigate all 1600 results evaluated by the optimization
algorithm, but rather pick out three interesting designs and actually test them in a physical
assembly for comparison. The three designs together with their predicted objective function
value and the measured reference is shown in table 12.1.
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Figure 12.13: Schematic Coupling between ANSYS and Matlab.

The first design is with no rubber bearings (’4’ in the entries of the design vector x for the
rubber bearing choice), i.e. a rigid coupling in each connection of the plate with the arms.
This design was actually not evaluated by the algorithm (since its objective function value is
too high), but it is merely tested for validation purposes. The second design in table 12.1
has the hard rubber bearings in all corners (3 in the last design vector entries). This design
is the one acutally shown in figure 12.8. Reference FRF measurements for this design were
also already shown in figure 12.12. The third design is the optimal design found by the
optimization. Peculiarly enough, it still used the hard rubber bearings for Rubber 2 and
Rubber 4 shown in figure 12.8. For Rubber 1 and 3 the soft rubber bearings were choosen.
This makes sense when considering the position of the reference sensors that measure üB3
for evaluating of the objective function. The arms on which the vibration shall be minimized
are choosen to get the soft rubber bearings for minimal force transmission. The arms on
which the vibration levels do not enter the objective function are choosen to get he hard
rubber bearings then. This is another indicator for how important it is to define the objective
function properly. However, it is not a handicap for the method development shown in this
chapter.
The position of the mass is more centered over the connection point of the compressor
support. This position can be seen in figure 12.9a. From basic NVH development this
solution is also easily understood, as it is increasing the ’input impedance’ of the source.
The compressor under the plate has to work against a heavy mass which keeps the overall
vibration levels lower. So the results of the optimization are not surprising, but easy to make
sense of.
Figure 12.14 shows a validation FRF measurement on the optimal design (third row in table
12.1), for the two outputs shown in figure 12.8 as before. The same arguments as for the
other design in section 12.4.1 could be made. A critical factor is again the higher frequency
region for an output on the receiver arms, as can be seen in figure 12.14b.
The evolution of the objective function over time for both designs is shown in figure 12.15.
They are also compared to the validation measurement with the rigid coupling, to see the
large difference between introducing rubber bearings and rigid coupling. It can be seen
that the objective function value of the optimal design stays below 110 dBA for most of the
compressor runup (figure 12.15b). Conversely, the non optimal design, with the hard rubber
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Figure 12.14: Validation: dynamic substructuring model for the third and best performing design in
table 12.1. Input as can be seen in figure 12.9a as ’in 1’. (a) Output channel indicated as ’out 1’ in
figure 12.8. (b) Output channel indicated as ’out 2’ in figure 12.8.
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Figure 12.15: Validation of objective function over the complete runup. (a) Design x =
[67, 23, 3, 3, 3, 3] (b) optimal Design x = [57, 154, 1, 3, 1, 3]
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Figure 12.16: Comparison of objective function for channel ’out 2’ for the validation measure-
ment of the rigid coupling, the FBS & TPA prediction and validation for the optimized Design
x = [57, 154, 1, 3, 1, 3]. Auralization in the table for the rigid coupling, the validation measurement
on the optimized design and the FBS & TPA prediction of the optimized design.

bearings in each support, starts to yield an objective function value over 110 dBA after
approximately 30 seconds of the runup and then stays above that value for large parts of the
following runup (figure 12.15a).
As can be seen in figure 12.15, there are still some deviations between the prediction of
the objective function value and the validation measurement. These can be due to multiple
reasons. E.g. the compressor is not applying the same excitation forces during each runup.
The pressures in the refrigerant fluid on the high and low pressure port (compression and
suction port) are not perfectly stable during successive runups, though they are controlled
by the load unit that the compressor is connected to. Additionally, the evaluation of the
blocked forces was conducted on a different day than the validation measurements, and the
refrigerant cycle was disconnected and refilled between the seperate measurements. So
slightly different amounts of refrigerant and oil might have been in the system during force
identification and validation measurements. Also the FRF prediction in the higher frequency
region could be improved, if additional modeling effort is put in e.g. the substructure model
of the receiver arms.
Figure 12.16 shows the objective function over time in only the channel ’out 2’ as indicated
in figure 12.8. The rigid connection validation as well as prediction and validation for the
optimal design (third row of table 12.1) is shown in figure 12.16. Taking only one channel
facilitates a hearing comparison on the time signal. In the lower part of figure 12.16 hearing
examples of this channel are provided. It can be heard that the rigid coupling is, as ex-
pected, louder than the design with rubber bearings in the connection. The overall loudness
impression seems comparable for the DS prediction and the validation measurement for
the opimal design. However, the validation exhibits some larger elevations of the objective
function around 27, 34 and 42 seconds which are not heard in the prediction created from
FBS & TPA. These elevations of the objective function are caused by a higher pitch noise
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around 440Hz and some even higher content at 1.3kHz and are not properly predicted by
the simulation. These inaccuracies in the model are related to the lack of accuracy in the
FRF prediction for the higher frequency region (see figure 12.14b), which would have to be
remedied for further accuracy.

12.5 Conclusion

It was shown that the combination of FBS and blocked forces allows for NVH optimization
of complex industrial problems. The vibration on a receiver can be simulated and optimized
for minimum NVH. It was found that formulations of objective functions found in literature on
structural acoustic optimization typically minimize surface velocities. The choice to minimize
accelerations in the objective function was motivated subsequently. However, in a vehicle
application, the final receiver would include the noise transfer functions to the sound inside
the cabin. The vibration isolation mechanism would then directly be optimized for minimal
sound pressure in the cabin, which makes the optimization more effective and render the
question about minimizing velocities or accelerations superfluous.
A minimal example was used to derive guidelines on the e-compressor operating conditions,
which shall be included in the the objective function evaluation. The operating conditions of
the compressor should better be a runup measurement, to cover the whole excitation spec-
trum properly. The applicability of different optimization algorithms to the problem was tested
on the minimal example. It was found that, due to the non-convex nature of the objective
function, ’global’ optimization algorithms are more likely to find a suitable optimum than ’lo-
cal’ gradient based algorithms. Therefore, it was chosen to use a genetic algorithm (GA)
rather than the tested sequential quadratic programming (SQP). The GA could find a solu-
tion which was −7.8dBA lower than the one found by SQP. The method was then applied
to an e-compressor NVH supsension, where the optimal choice of rubber bearings and
position of a mass had to be found. Validation measurements on physically built designs
showed good agreement with the predictions from FBS & TPA. Hearing examples confirmed
this impression. The presented combination of methods was found capable of comparing
the success of different isolation concepts. The overall sound levels can be reasonably pre-
dicted (accuracy of about ±4 dBA considering the whole compressor runup). Keeping in
mind that, for this virtual iterative testing and improving of isolation concepts, no actual pro-
totype of the system (e.g. a whole car) is needed, the method has proven to be valuable in
the early development stage of NVH design engineering.

Hardware
For all measurements a Mueller BBM MKII data acquisition system, PCB Model TLD356A32
acceleration sensors, and a PCB Model 086C03 impact hammer was used. For the example
shown in section 12.4, each evaluation of the objective function took around 3 minutes on
a regular laptop (i7 core, 16GB RAM, SSD drive). The optimization algorithm was stopped
after 1600 evaluations, which took a little longer than 3 days of computing.
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One could summarize the goal stated in the introduction, by shortening the project task to:

Simulate how "loud" the driver will perceive the electric climate compressor, for different
vehicle isolation concepts, at an early-stage in development.

At an early-stage, the design can still be freely explored, which often results in better perfor-
mance and less material consumption. In contrast, finding a noise problem late in the de-
velopment phase, when the full-vehicle prototypes are already available, frequently causes
the formation of task-force teams which need to tackle the problem quickly. The late-phase
solution is often the addition of costly counter masses or dynamic vibration absorbers.
Looking back at the vehicle development example shown in chapter 11, one can say that the
composition of individual methods described in the thesis are a viable approach to solve the
vision for early-phase NVH engineering. The results and insights on the applied methods
will be summarized in the following. An outlook on the practical industry application and
further research directions are given at the end of this chapter.

13.1 Substructuring results

The structure-borne transfer path of the compressor noise was built up from individual com-
ponent models. Provided the modeling assumptions are right, it doesn’t matter if a compo-
nent is represented by a rigid body, a finite element or an experimental model. The inclusion
of rigid body models in the transfer path was found to be a valuable addition to the sub-
structuring ’toolbox’. As a rule of thumb, it was found that up to half of the components’ first
resonance frequency, it can be modeled as rigid mass.
The experimental models for the rubber bushings, introduced in chapter 4, have been suc-
cessfully tested for correctness by analytic developments and an academic experiment. Ad-
ditionally, they have shown their validity in more complex application examples in chapters
11 and 12.
Theoretically, one would need to include the gyroscopic terms in the substructured model,
due to the revolving parts in the compressor. In chapter 5 a method for analytically coupling
the gyroscopic terms to an assembly was developed. It could be shown that the effects are
significant, but only in a lower frequency range and therefore not relevant for the acoustic
prototyping that was the aim of this thesis.
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The examples in chapters 11 and 12 have shown that the hybrid assembly models, con-
sisting of experimental and analytical/numerical models, are valid representations of the full
system. Additionally, it was found that the assembled models can predict noise transfer func-
tions that would not be measurable, even if the full prototype was available for testing. On
the full system, typical measurement equipment applied too little input energy for measuring
the transfer functions from compressor to drivers ear, especially at higher frequencies. In
contrast, the substructuring result consists of component models that where measured indi-
vidually, with a good signal to noise ratio. Thereby, physically valid transfer functions can be
predicted at higher frequencies than previously measurable with standard equipment (see
e.g. the results in figure 11.12).

13.2 Listening to virtual prototypes

Modeling the transfer path of a system is one thing, but for simulating its response in opera-
tion, one needs to model the excitation mechanisms of the noise source. This was done by
means of blocked forces for the structure-borne excitation, and blocked volume accelerations
for the air-borne excitation.
For listening to the NVH simulation results, it is necessary to convert the TPA results from the
frequency domain back to the time domain. Different approaches for doing so are explained
and compared in chapter 7. It was found that all methods based on a block-wise calculation
in the frequency domain produced artifacts in the resulting sound files, clearly audible as
"clicks". The artifacts can be removed by converting the matrix operations in the frequency
domain to a finite impulse response filter, which is convoluted with the test bench signal.
Additionally, the matrix inverse required for determining the blocked forces and blocked vol-
ume accelerations of the compressor, tend to amplify random measurement noise in the
recorded signals. In chapter 8, it was shown how this noise amplification is particularly
prominent in the "stiff" directions of the system, i.e. the ones with the smallest singular
values. Different regularization methods were compared, to deal with this problem. For the
climate compressor, it was found that regularization methods yield the best results if they au-
tomatically increase the regularization at frequencies with a low signal level, but apply only
a small regularization at frequencies with a high signal level (e.g. at the order frequencies of
the compressor). This resulted in an audible reduction of spurious back ground noise in the
sound predictions.

13.3 Early phase NVH optimization

The combination of an equivalent source description (e.g. blocked forces) with a substruc-
tured model of the transfer path not only allows for a prediction of sound in one specific
setup, but in many different potential setups. This was shown in chapter 11 for an example
of a complex vehicle development project, by virtually modifying the structural isolation of
the compressor. Additionally, the blocked volume accelerations for different sound insulation
capsules were applied to the air-borne transfer path.
In chapter 12, the idea was taken one step further, by using a parameterized model of the
substructured transfer path. An optimization algorithm was used to find the "optimal" set of
parameters to minimize the noise at given receiver points. The reference results, created on
a physical realization of some simulated designs, confirmed that the method is well able to
discover a better design and that the simulation can predict the overall cost function value
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with ±4dBA accuracy over the compressor run-up.

13.4 From research to application

What is the fundamental reason for doing research? Well, for some it is the search for
something new, for understanding the existing world and answering the questions that are
important, but complex. This is a wonderful endeavor, and reading the vitas of great historic
scientists is often engaging. Think of Galileo next to his telescope, slowly coming to the
conclusion that he could predict the motion of heavenly bodies with the Copernican theory
[70]. This is probably as exciting (and dangerous) as fundamental research has ever been.
Research in engineering is a rather "applied" science. The fundamental physical relations
are accepted, for applying them to the solution of technically relevant questions. This fre-
quently includes the question of:

"How do we solve the equations of physics on a complex domain?"

See for example the development of variational methods in mechanics [91]. The origin of
these methods lies within the field of engineering: Galerkin applying variational methods to
the static stress solution of a bridge, and later Rayleigh and Ritz applying it to the solution of
vibration problems. In some sense, the methods described in this thesis are also answering
the question stated above, but with a different approach. The fundamental idea is still to
divide the system and then find the solution to smaller subsystems. However, if a subsys-
tem can’t be computed, it will be measured. This "experimental modeling" is an interesting
direction of engineering research, since it allows to include fairly complex substructures in
the full assembly. For NVH, this seems to be a promising approach.
At the time of writing this section, the author has already been out of university for 10 months.
The time spent in industry beckoned the belief that experimental models are a useful addition
to the engineering "toolbox". New methods should be available to the public in a most
accessible way, to further advance technology as a whole. The currently fastest way to
achieve this is software. Despite searching for new solutions, a good engineering scientist
will make his results available in software, so others can build with and on top of it.

13.5 Further research topics

There are still many fields of research to advance and improve the current state of NVH
modeling, of which the author wants to give a few suggestions:

• Amplitude and temperature dependency in rubber models: These non-linear effects
in rubber mounts are well known, but currently not implemented in the substructur-
ing models. The linearized rubber model is a fair start, but the possible simulation
accuracy gains by including non-linear effects should be studied further. The heat de-
pendency could be considered by including the Youngs Modulus’ relation to material
temperature. The amplitude dependence would require an iterative solution of the fi-
nal noise prediction (often done by the harmonic balance method). In principle, both
should be possible to achieve.

• Optimization with sophisticated cost function: Expressing the goal of pleasant acous-
tics in a deterministic cost function is hard. The addition of psycho-acoustic quantities
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to the cost function might improve the optimization results. One could also think about
using a neural net, which has "learned" how a good car sounds, as a cost function.

• Joint identification: The dynamic effects that take place in the coupling area between
two substructures seems to be an important phenomenon. Practical methods for in-
cluding these effects in substructued models are eagerly awaited.

• Regularization: The suppression of amplified measurement noise by regularization
methods, yielded well audible improvements in the prediction quality for the compres-
sor case. The optimal regularization method for a different noise source will most likely
be different. The compressor has a very tonal excitation spectrum, which made signal-
to-noise ratio based regularization methods quite successful. For noise sources with
more broad-band, or impulse like spectra (like road noise or steering gear rattling), the
optimal regularization strategy will most likely be a different one.

• Coupling of stiff structures: The same noise amplification as in the determination of
the blocked forces (see chapter 8), seems to take place in the substructure assembly,
when computing the coupling forces. The coupling of two stiff components with a
modal behavior still frequently poses a challenge to the methods. Investigating the
potential for regularization methods also in the field of substructuring seems a valuable
direction of further research [176].

• Uncertainty Quantification: A model is a model, not the reality. Using the tools of
uncertainty quantification can give the required insights in the simulation robustness.
It could also predict the spread of production vehicles, by including the manufacturing
tolerances in the simulation. Fortunately, this field is already seeing some current
research attention [105, 177].

• Artificial air-borne sound sources: Standard components like the electric climate com-
pressor will be in all vehicle variants. The creation of artificial air-borne sound sources
[126] can speed up the measurements of air-borne transfer paths and the inverse
source identification. These can be a box with multiple loudspeakers, which achieve
the same, if not better, accuracy as the equivalent monopole approach discussed in
chapter 10.

• Source component target setting: This is an industrially important question, but a very
relevant and somewhat difficult one. Usually, one tries to define a noise target at
the drivers ear and cascade it down to targets for the individual components in the
transfer path and the noise source itself. This is inherently challenging, since the noise
at the drivers ear obviously depends on the combination of all components and the
source excitation. Source targets based on the blocked forces are probably not the
right approach. How shall we define upper limits for individual forces, when a noise
source contains e.g. 4 connection points to the vehicle, so that the blocked force vector
contains 12 forces and 12 moments in total? Additionally, the noise amplification in the
matrix inverse might further distort the targets on individual blocked forces (see chapter
8). The use of free-velocities could at least prevent the noise amplification. Using
scalar quantities like energies or directly the sound levels predicted in predecessor
vehicles might be a successful alternative.

Thanks for reading!
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Appendix A

Assumptions underlying inverse substructur-
ing

This section aims at clarifying when the assumption underlying inverse substructuring is
valid or an approximation. The assumption is that the main and off-diagonal block matrices
are equal, apart from a negative sign (see equation (4.7)). This assumption is however not
generally true, even if the isolator elements mass would be negligible. Consider the simple
case shown in figure A.1. Two DoF on either side are connected by two springs k1 and k2

with one spring k3 introducing a cross coupling between the DoF.
The resulting equation and isolator stiffness matrix Z would then write as:

Zu = f , with Z =




k1 0 −k1 0
0 k2 + k3 −k3 −k2

−k1 −k3 k1 + k3 0
0 −k2 0 k2


 (A.1)

It can be seen that even for this simple case Z11 6= −Z12. The reason for this is the cross-
coupling spring k3. If k3 was removed, the assumption underlying inverse substructuring
would be valid again. For that reason, we have assumed for the ISD method a DOF to DOF
model as depicted in figure 4.3.

Reconstructing the stiffness matrix with graph theory

The stiffness matrix of the system shown in figure A.1 could however still be recovered from
only knowing the off-diagonal matrix Z12. The matrices of linear systems with simple nodes
(i.e. DoFs in our case) and edges (i.e. springs in our case) can be constructed from graph
theory (see e.g. [165, section 2]). For directed graphs, the so-called incidence matrix A
describes the connectivity of the nodes. In this case, it computes the elongation of the
single springs from the DoF values. In the example in figure A.1, it would be:

u1

u2

u3

u4

k1

k3

k2

Figure A.1: Simple connection element with three springs connecting two DoF on either side of the
connection element.
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A =



−1 0 1 0
0 −1 1 0
0 −1 0 1


 (A.2)

The product of the incidence matrix and the displacements in the single DoF, Au gives the
elongation in all springs. These elongations can be multiplied with the single stiffness of
each spring contained in the constitutive matrix C to yield the reaction forces within the
spring, i.e. CAu. In this case C would be:

C =



k1 0 0
0 k2 0
0 0 k3


 . (A.3)

These internal forces in the springs then need to be distributed with the right sign to either
connection on the DoFs to yield the applied forces f . The matrix doing this is AT , so:

ATCA︸ ︷︷ ︸
=Z

u = f . (A.4)

This symmetric pattern appears often in nature and engineering (see [165, section 2]). The
important point for this thesis is that one could find the DoF pairs on either side of the
interface which are connected by springs, from identifying the non-zero elements in the
submatrix Z12. The incidence matrix A can be reconstructed from knowing which elements
are non-zero then. The constitutive matrix can then be constructed from the values of the
non-zero entries found in Z12. Thereby, the full stiffness matrix of the system could still be
reconstructed from only knowing the off-diagonal sub-matrix Z12, even though Z11 6= −Z12.
This approach could be used for arbitrarily complex cross couplings also for more DoF on
either side of the interface. For using this with real measurements, one would have to devise
a threshold for deciding what a non-zero element is.
However, this approach would still not be able to identify the system if the following two
assumptions would not be fulfilled:

• The connection element itself has no mass.

• The DoF on the same side have no couplings to each other. E.g. if there was a spring
coupling DoFs u1 and u2 in figure A.1, this could not be seen from merely knowing the
submatrix Z12.

Considering these theoretical limitations, we decided that we would not also try this graph
theory approach on the data presented in this thesis, even though it could help putting the
cross coupling terms in the right positions for the main diagonal submatrices.

Stiffness matrix of a three-dimensional beam element

A relevant theoretical example for a coupling element is that of a three dimensional beam,
see figure A.2. The isolator elements used in this thesis could be seen as an, admittedly
thick, beam. The stiffness matrix for a three dimensional Euler-Bernoulli beam element, with
standard Hermitian polynomials as shape functions, is (see e.g. [29, chapter 14.2] or [47,
chapter 5.3]):
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y1

x1
z1

θy1

θz1
θx1

Figure A.2: Standard 3D beam element (taken from [47])

KeL =




12EI
`3

0 12EI
`3

0 0 EA
` Sym.

0 6EI
`2

0 4EI
`−6EI

`2
0 0 0 4EI

`

0 0 0 0 0 GJx
`

−12EI
`3

0 0 0 6EI
`2

0 12EI
`3

0 −12EI
`3

0 −6EI
`2

0 0 0 12EI
`3

0 0 −EA
` 0 0 0 0 0 EA

`

0 6EI
`2

0 2EI
` 0 0 0 −6EI

`2
0 4EI

`−6EI
`2

0 0 0 2EI
` 0 6EI

`2
0 0 0 4EI

`

0 0 0 0 0 −GJx
` 0 0 0 0 0 GJx

`




where we have adopted the coordinate system to the definitions used throughout the rubber
chapter, and assumed that the beam has the same cross-section inertia for the bending
around the y and the z axis, like the rubber elements presented here. Remember the 12
DoF definition of this presentation of rubber models, i.e. q1 = [x1 y1 z1 θx1 θy1 θz1] and
q2 accordingly (refer to the coordinate system in figure 3.9). One can see that for a beam
element, neither the inverse substructuring assumption is fulfilled, i.e. Z11 6= Z21, nor could
one identify the whole stiffness matrix with graph theory, due the cross couplings between
the DoFs on the same interface side. The only approach that would (at least theoretically)
be correct, is to identify the beam properties from the off-diagonal matrix Z12, and then
place these in the right positions on the main diagonals. This could then be done for a
few regular shapes of isolator elements, like cylinders or cubic blocks, similar to Verheijs
approach [184].
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