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Abstract

This thesis investigates the semi-inclusive photon energy spectrum for the dark matter
annihilation process χ0χ0 → γ + X, where χ0 denotes the dark matter particle which
is assumed to be non-relativistic and have a mass in the TeV-range. The focus lies on
the pure wino and Higgsino DM models. For non-relativistic heavy particles annihilating
into light energetic states, the annihilation cross section is affected by large quantum
corrections associated with the Sommerfeld effect and electroweak Sudakov logarithms.
The Sommerfeld effect is well-understood and will be included at leading-power. This
work primarily concentrates on the resummation of electroweak Sudakov logarithms, at
NLL’ accuracy. This is currently the most accurate prediction for the production of high-
energy photons from wino and Higgsino dark matter annihilation.

The calculations are performed assuming narrow Eγres ∼ m2
W /mχ and intermediate

Eγres ∼ mW energy resolutions and will thus be relevant for current and next-generation
Imaging Air Cherenkov Telescopes. For both models, we are able to show that the compu-
tations of the narrow and intermediate energy resolution cross sections match well, which
means that the results shown here provide an accurate representation up to energy reso-
lutions of about 300 GeV. The matching of the cross sections at different resolutions is
analysed analytically for wino dark matter. Lastly, we also investigate power corrections
in mW /mχ for both dark matter models and are able to show why they can safely be
neglected.

iii





Zusammenfassung

Diese Dissertation untersucht das semi-inklusive Photon-Energiespektrum für den Stre-
uprozess χ0χ0 → γ + X, wobei χ0 ein dunkle Materie-Teilchen darstellt welches nicht-
relativistisch ist und eine Masse im TeV-Bereich hat. Wir konzentrieren uns auf wino
und Higgsino dunkle Materie Modelle. Der Wirkungsquerschnitt für die Annihilation von
schweren, nicht-relativistischen Teilchen und die darauffolgende Produktion von leichten,
hochenergetischen Teilchen wird beeinträchtigt von grossen Quantuenkorrekturen die mit
dem Sommerfeld Effekt und elektroschwachen Sudakov-Logarithmen zusammenhängen.
Der Sommerfeld Effekt ist ein wohlverstandener Prozess und ist hier zu führender Ordnung
berücksichtigt. Der Fokus dieser Arbeit liegt auf der Resummierung der elektroschwachen
Sudakov-Logarithmen, zu NLL’-Genauigkeit. Diese Ergebnisse sind die derzeit genauesten
Vorhersagen für die Produktion von hochenergetischen Photonen, von dunkle Materie
Stossprozessen für die wino und Higgsino Modelle.

Die Berechnungen wurden gemacht unter der Annahme von schmaler Eγres ∼ m2
W /mχ

und intermediärer Eγres ∼ mW Energieauflösung und sind daher relevant für Imaging
Air Cherenkov Teleskope der gegenwärtigen und der nächsten Generation. Für beide
dunkle Materie Modelle können wir zeigen, dass die Ergebnisse der schmalen und in-
termediären Energieauflösungen gut übereinstimmen für eine grossen Eγres-Bereich. Das
bedeutet, dass die Resultate dieser Arbeit akkurate Vorhersagen für Energieauflösungen
von bis zu 300 GeV ermöglichen. Das genaue Übereinstimmen der Wirkungsquerschnitte
für verschiedene Auflösungen wird für das wino Modell analytisch untersucht. Ausser-
dem prüfen wir die Relevanz von mW /mχ-Korrekturen höherer Ordnung für beide dunkle
Materie Modelle und können zeigen, dass diese problemlos vernachlässigt werden können.
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1 Introduction

1.1 Evidence for dark matter

Figure 1.1: Rotation curve of the NGC 3198 galaxy demonstrating that observations cannot be
explained by luminous matter (disk) alone, but are well reproduced when taking into
account dark matter (halo). Plot was extracted from [1].

One of the biggest mysteries in modern particle physics is the nature of dark matter (DM)
in the Universe. Over the past century, an overwhelming amount of evidence has been
collected hinting at the existence of a non-luminous matter component in our Universe
and today, the existence of DM is generally accepted. In 1933, Fritz Zwicky found that the
dispersion velocity of galaxies in the Coma cluster was far too large to be supported by
luminous matter [10]. Zwicky referred to the hypothesized non-luminous matter compo-
nent as dunkle Materie (dark matter). In the following decades, more and more evidence
was collected hinting towards the existence of DM.

One of the most widely recognized arguments for the existence of DM is based on galaxy
rotation curves, i.e. the relation between orbital and radial velocity of visible stars or gas
from the center of a galaxy. In the 1970s, Vera Rubin and collaborators [11,12] measured
the rotation curves of individual galaxies and what they found could not be explained by
visible matter alone. Figure 1.1 shows the rotation curve of the NGC 3198 galaxy, which
demonstrates that the data is not explained by visible matter but is well reproduced by
the DM hypothesis [1].

Perhaps the most striking case for the existence of DM in galaxy clusters can be found
in the Bullet Cluster. It consists of two clusters of galaxies which have undergone a head-
on collision [2]. The hot-gas clouds (observed through X-ray detection) that contain the
majority of the baryonic matter in both clusters have been decelerated in the collision,
while the movement of the galaxies and the DM halos in the clusters remained almost
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1 Introduction

Figure 1.2: Bullet Cluster mass density contours (green) and the distribution of baryonic matter.
Plot was taken from [2].

intact. The analysis of the gravitational lensing effects shows that the center of mass for
both clusters is clearly separated from the hot-gas clouds, see Figure 1.2. One can thus
infer the presence of a large amount of additional mass in both clusters.

Additional data supporting the existence of DM comes from weak [13] and strong [14]
gravitational lensing, hot gas clusters [15], further constraints from large scale structures
[16], distant supernovae [17,18] and the cosmic microwave background (CMB) [19].

In total, all this data shows that most of the matter in our Universe is in fact non-
luminous and cannot be accounted for by known particles. Current data suggests that
DM is approximately five times as frequent as luminous matter, the latter being well
explained by the Standard Model (SM) of particle physics. Experimental results can be
used to split the energy densities present in our Universe into a luminous baryonic matter
component (ΩB), a non-baryonic DM component (ΩDM) and a dark energy component
(ΩΛ). These components scale as [19]

ΩB ' 0.0456± 0.0016 ,

ΩDM ' 0.227± 0.014 , (1.1)

ΩΛ ' 0.728± 0.015 .

Dark energy is an unknown form of energy which permeates all of space and is hypothesized
to accelerate the expansion of the universe, which is indicated by observations since the
1990s. Baryonic matter is well explained by the SM, which has been tested to incredibly
high precision by experiments. The nature of DM is completely unexplained but since
it might simply be comprised of unknown particles, turning to DM is well motivated
when searching for physics beyond the SM. This thesis thus focuses on the computation
of DM annihilation cross sections, which will be testable by next-generation telescope
experiments.

1.2 Weakly interacting massive particles

Over the years, many DM candidates have been proposed. For an extensive review of
DM candidates, we refer to [3]. For this work we are going to focus on so-called weakly

2



1.2 Weakly interacting massive particles

interacting massive particles (WIMPs), which provide a DM candidate that is also strongly
motivated by particle physics. In this Section we are going to give a short introduction
into the general properties and motivation of WIMPs (see [5] for review of WIMPs). Non-
WIMP DM candidates have also been explored extensively in the literature. Nevertheless,
we focus on WIMP DM since it provides a well motivated DM candidate that naturally
arises in many particle physics theories.

1.2.1 Motivation and general properties

One lesson learned from observational evidence is that DM is made up of electrically
neutral particles1 and that it should interact only weakly with ordinary matter. In order
to be compatible with constraints from structure formation and observations of galaxy
cluster systems, DM self-interactions should not be too strong either. Current limits are
of the order of σ/m < 0.7 cm2/g [24]. Moreover, to be in agreement with CMB data, most
of the DM should be non-baryonic in nature.

A simple possibility for classifying DM particles is based on how relativistic they were
at the time of decoupling from the thermal plasma. Hot DM (HDM) with masses ranging
up to a few tens of eV was still relativistic at the time of decoupling. Due to a large mean
free path it does not form clumps on the scale of galaxies and numerical simulations of
large scale structures (LSS), see for example [25], show that HDM does not reproduce
the observed Universe. It is also inconsistent with data from LSS [26–28] and deep-field
observations [29, 30], which give an upper limit for the allowed average velocity of DM
particles. In conclusion, HDM can at most contribute a small fraction to the total DM
density.

In contrast, there might also be cold DM (CDM). Non-baryonic CDM decoupled from
the thermal plasma at freeze-out and, starting with the era of matter dominance, its
density perturbations started growing linearly. This provided an effective catalyst for
density perturbations of baryonic matter, after it decoupled from radiation some time
later. This is the main reason why CDM is successful in reproducing observations in
numerical simulations of LSS. It should be noted however, that also CDM exhibits some
known problems, such as for example predicting too few substructures (missing satellites
problem) [31, 32]. CDM as opposed to HDM is also preferred by the properties of the
CMB.

The points stated above as well as related arguments have resulted in the establishment
of the paradigm that the dominant fraction of DM is probably cold and that it should be
both weakly interacting as well as non-relativistic and massive. Since WIMPs have a mass
in the mWIMP ∼ 10 GeV− TeV range, they provide an excellent DM candidate compatible
with the CDM paradigm. Lastly, DM particles should either be stable or extremely long
lived.

Apart from being well motivated by astrophysical obeservations, WIMPs also naturally
arise from proposed solutions to particle physics problems. Despite the SM being a very
successful theory, it exhibits a number of shortcomings one of which being the gauge
hierarchy problem (GHP). The GHP is the question of why the physical Higgs boson mass
mh is so small. Since it is not protected by any symmetry, the natural value of mh is
expected to be of the order of the Planck scale MPl ∼ 1019 GeV. In other words, the GHP
is the question of why mh = 125.09 GeV � MPl. The physical mass of the SM Higgs

1In principle, the solution to the DM problem could be provided by something else apart from particles,
but such approaches suffer from complications. Other options include modifying gravity (MOND) [20]
which however still needs to invoke DM to explain all data [21], or cosmic fluids [22] which are also
increasingly challenged by observations, see for example [23].
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1 Introduction

Figure 1.3: The comoving number density Y (left) and the thermal relic density (right) of a
100 GeV, P -wave annihilating DM particle as a function of the time t (top) and the
temperature T (bottom). The solid line is for cross section that yields the correct
relic density. The shaded regions are for cross sections that by 10, 102 and 103 from
the central value. The dashed line represents the number density for a particle that
would remain in thermal equilibrium. The Plot was extracted from [3].

boson is given by m2
h = m2

h,0 + ∆m2
h where mh,0 is the tree-level mass and

∆m2
h ∼

λ2

16π2

∫ Λ d4p

p2
∼ λ2

16π2
Λ2 (1.2)

is the quantum correction resulting from loop-level contributions. The dimensionless pa-
rameter λ is an O(1) coupling and Λ is the scale at which new physics appears and the SM
is no longer a valid description of nature. Since ∆mh is proportional to Λ, the physical
Higgs mass is expected to be of the same order of magnitude as the scale at which new
physics appears. In the SM it is assumed that Λ ∼ MPl, which implies a cancellation
of 1 part in 1036 between mh,0 and ∆m2

h to yield the correct physical Higgs mass. This
appears to be rather arbitrary. The GHP may be eliminated if Λ . 1 TeV, implying new
physics at the weak scale mweak ∼ 10 GeV − TeV. The small mass of the Higgs boson is
the leading particle physics motivation for WIMPs as DM candidates.

1.2.2 Production mechanism

If the WIMP paradigm is correct, meaning that WIMPs exist and are stable, they are
naturally produced with a relic density consistent with the DM abundance found in our
Universe. The fact that WIMPs automatically have the correct relic density is referred to
as the WIMP miracle and it implies that particles that are motivated by solutions to the
GHP, a purely particle physics problem, serve as excellent DM candidates.

The Big Bang may generate DM as a thermal relic in a simple and predictive manner
[33–35]. The evolution of the thermal relic’s number density, Y, is shown in Figure 1.3
for a 100 GeV, P -wave annihilating DM particle as a function of temperature T (bottom)
and time t (top). Note that the behaviour of the number density is similar for S-wave
annihilation and larger DM masses. Shortly after the Big Bang all particles are in thermal
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1.2 Weakly interacting massive particles

equilibrium and the early Universe is in a dense and hot state. As time goes on, the
Universe cools to temperatures T below the DM particle’s mass mχ and the number of
DM particles becomes Boltzmann suppressed, dropping exponentially as e−mχ/T . What
prevents the number of DM particles from dropping to zero is the fact that the Universe
is not only cooling down, but also expanding. At some point, the Universe’s expansion
has caused the gas of DM particles to become so dilute that DM particle annihilation
stops. DM particles are said to freeze-out and their number asymptotically approaches
a constant - their thermal relic density Ωχ (depicted as the right y-axis in Figure 1.3).
The WIMP miracle implies that many models of particle physics easily provide viable
DM candidates and it is at present the strongest reason to expect that central problems
in particle physics and astrophysics may in fact be related. Independently of the GHP
discussed in the previous Section, the WIMP miracle provides a strong motivation for new
particles with masses in the weak scale region.

Although the freeze-out mechanism always contributes to the WIMP DM abundance,
the DM annihilation cross section is confined to a fairly specific range at freeze-out, if it
is to be the dominant process. However, even if the cross section does not lie within the
range prescribed by freeze-out, there exist other WIMP production mechanism that still
yield the correct relic density. An analysis of those is however beyond the scope of this
thesis and we refer to Section IV and V of [36] for a general and exhaustive discussion.

1.2.3 The neutralino WIMP as DM

As mentioned earlier, a plethora of possible DM particle candidates has been proposed in
the past. Even within the class of WIMPs one can distinguish various DM candidates.
In this thesis, we focus on DM candidates originating from the idea of supersymmetry
(SUSY). In supersymmetric extensions of the SM, every particle has a new, so far undis-
covered partner particle which has the same quantum numbers and gauge interactions,
but has a spin that differs from the one of its SM partner by 1/2. Introducing super-
symmetric partner particles leads to new quantum corrections to the Higgs boson mass.
In fact, these corrections contribute with the opposite sign with respect to the quantum
corrections originating from SM particles and (1.2) changes as follows

∆m2
h ∼

λ2

16π2

∫ Λ(d4p

p2

∣∣∣∣
SM

− d4p

p2

∣∣∣∣
SUSY

)
∼ λ2

16π2

(
m2

SUSY −m2
SM

)
ln

Λ

mSUSY
, (1.3)

where mSM and mSUSY are the masses of the SM particles and their superpartners, respec-
tively. If SM particles and their superpartners have masses of comparable size, it would
mean that ∆mh is an O(1) correction even if Λ ∼MPl and there is no longer the problem
of fine tuning the cancellation between mh,0 and ∆mh.

Apart from solving the GHP, SUSY provides a framework that naturally accommodates
at the same time several theoretical expectations and a number of experimental data. Most
importantly for this thesis, some superpartners are weakly interacting and, if stable (or at
least long lived), provide a natural candidate for a WIMP and thus DM. Among them the
most popular one is the lightest neutralino. For technical reasons, supersymmetric models
require two Higgs bosons and we thus have the following superpartners of the B, W and
Higgs bosons which mix to form four mass eigenstates, the neutralinos

Spin 1/2 fermions: B̃, W̃ , H̃u, H̃d → Neutralinos: χ1, χ2, χ3, χ4 . (1.4)

The lightest of the neutralinos, χ ≡ χ1, is a WIMP DM candidate. The purpose of the
discussion in this Section so far was to motivate why the lightest neutralino is a good DM
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candidate, that is worth exploring in more detail. In this thesis we are going to focus on
two specific limits of the neutralino, where the mixing of the gauge eigenstates to form the
mass eigenstates χi is neglected and it is assumed that the mass eigenstates are in one to
one correspondence with one of the gauge eigenstates.

Pure wino dark matter The first limit is the so-called pure wino limit, where the neu-
tralinos are solely derived from the gauge eigenstates of the wino W̃ . More precisely this
means that the SM particle content is extended by a fermionic SU(2) triplet with zero
hypercharge, of which the electrically neutral member is the DM particle. In this case, the
fermions of the additional multiplet can be of Dirac or Majorana type. The Lagrangian
of this model looks as follows

L = LSM + χ̄
(
i /D −mχ

)
χ , (1.5)

if χ is a Dirac fermion. For the Majorana case, χ is self-conjugate and its Lagrangian is
multiplied by 1/2. In this thesis, we focus on the case where wino DM consists of Majorana
fermions. The SU(2) covariant derivative is Dµ = ∂µ − ig2W

C
µ T

C where TC , C = 1, 2, 3,

are the SU(2) generators and WC
µ are the electroweak (EW) gauge bosons. In this model

the DM particle contains the correct relic density from thermal freeze-out for mχ in the
2− 3 TeV range [37]. The components of the fermionic SU(2) multiplet before and after
EW symmetry breaking (EWSB) are related by the following rotation matrix



χ1

χ2

χ3


 =




1√
2

1√
2

0
i√
2
− i√

2
0

0 0 1






χ+

χ−

χ0


 , (1.6)

where χ0 represents the neutral DM candidate.

Pure Higgsino dark matter The second limit we consider is the pure Higgsino limit,
where the neutralinos are solely derived from the Higgsino and do not receive contributions
from either the wino or the bino. Specifically, the SM is extended by a single fermionic
SU(2)⊗U(1)Y Dirac doublet with hypercharge Y = 1/2. The Lagrangian of the model is
given by

L = LSM + χ̄
(
i /D −mχ

)
χ+ Ldim−5. (1.7)

The SU(2)⊗U(1)Y covariant derivative is defined as Dµ = ∂µ−ig2W
C
µ T

C+ig1Y Bµ, where
g1 is the U(1)Y gauge coupling. With the conventions in this thesis, the choice of EW
charges is such that the lower component of the multiplet is neutral χ =

(
χ+, χ0

D

)
, where

the superscript denotes the electric charge. The mass eigenstates after EW symmetry
breaking (EWSB) are two self-conjugate (Majorana) particles (χ0

1 and χ0
2) defined in such

a way that χ0
D =

(
χ0

1 + iχ0
2

)
/
√

2 and an electromagnetically charged Dirac (chargino)
particle χ+. In the pure Higgsino DM model, χ0

D represents the DM candidate.
Due to the non-vanishing hypercharge, the naive version of the Higgsino is already

ruled out by experiment, since Z-boson mediated tree-level couplings of the Higgsinos to
the light quarks would induce a large nucleon-DM cross section. This can be avoided
by introducing a higher-dimension effective operator, as shown in (1.7). For example
Ldim−5 = 1

Λ(χ̄Φ)iγ5(Φ†χ) where Φ is the standard Higgs doublet, would provide the χ0
2

particle with a slightly (≥ O(100) keV) larger mass than the χ0
1 particle. The precise

value chosen for the mass difference between the neutral components χ0
1 and χ0

2, denoted
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SM

SM χ

χ

Collider experiments

Indirect detection

Direct detection

Figure 1.4: DM detection methods, where χ represents a DM particle.

by δmN , is discussed below in Section 7. Furthermore, the mass splitting between the
charged and neutral component of the Higgsino doublet, δm = mχ− − mχ0

1
, is induced

by radiative corrections after EWSB. At the one-loop order [38], this radiative correction
takes the numerical value δm = αem(mZ/2 +O(m2

Z/mχ)) ∼ 355 MeV.

Please note that many of the arguments presented throughout this thesis are equivalent
for both models. If conceptual or computational differences appear, they will be pointed
out explicitly. Otherwise it can be assumed that the arguments hold for both wino and
Higgsino DM. Also, in order to make discussions more streamlined, we introduce χ0 to
represent the DM particle for both wino and Higgsino DM. Again, if an argument only
applies to one of the two models, it will be stated explicitly.

1.3 Dark matter detection methods

Experiments searching for WIMPs can be classified into three categories: collider experi-
ments, direct detection and indirect detection experiments. The relevant process for each
type of detection is visualised in Figure 1.4. In collider experiments, two SM particles
collide to potentially produce DM particles, in direct detection experiments, a SM parti-
cle collides with a DM particle and in indirect detection experiments, two DM particles
annihilate to generate SM particles.

1.3.1 Collider experiments

Particle accelerators have been extremely useful for discovering many types of particles,
as well as for establishing and testing the SM. The biggest and most energetic particle
accelerator ever built is the currently running Large Hadron Collider (LHC) at the Euro-
pean Organization for Nuclear Research (CERN). At the LHC, high energy proton-proton
collisions, with a center-of-mass energy of

√
s = 14 TeV, are used to search for new physics.

In these proton-proton collisions, many different kinds of particles are produced whose
characteristics are subsequently measured in a detector. These measurements can then
be compared with predictions stemming from theoretical models of new physics. In the
specific case of DM, since WIMPs are required to have such a small DM-nucleon scattering
cross section, they would simply evade detection. Their non-detection would then show
up as missing energy in the experiments, from which conclusions about the nature of the
WIMPs can be made. So far, no sign of DM was found using collider experiments, which
has in turn led to more stringent bounds for DM-nucleon cross sections.
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Figure 1.5: Upper limits for spin-independent (SI) DM-nucleon cross section as a function of the
DM mass for a number of direct detection experiments. Plot extracted from [4].

1.3.2 Direct detection experiments

In direct detection experiments, DM elastically scatters off an atomic nucleus [39] (for
reviews see [40,41]). If the WIMP-baryon interactions are efficient enough, this might lead
to an easily identifiable signal in low-background underground experiments. Scatterings
of DM particles off nuclei can be detected in three different ways:

1. Scintillating light is produced through excitation and later de-excitation of nuclei.
Photons from DM-nucleus scattering can then for example be measured by using
scintillating crystals. Experiments measuring scintillating light include DAMA/LI-
BRA [42], XENON1T [43] and PandaX-II [44].

2. DM-nucleus scattering can lead to an ionization of atoms in the target material.
Such a charge (ionization) signal can be efficiently measured for example by low-
temperature ultra-low background germanium detectors [45]. Experiments making
use of ionized target material include CoGeNT [46], CDEX [47] and MALBEK [48].

3. DM-nucleus scattering can produce heat. Such phonon signals in crystal detec-
tors can provide another important experimental signature in DM direct detection
searches. This technique is particularly useful when looking for low mass DM due to
a very good energy threshold. Experiments using crystal detectors include CDMS-
II [49] and SuperCDMS [50].

Constraints on the DM-nucleon scattering cross section from various direct detection
experiments are collected in Figure 1.5. One can see that direct detection experiments
have severely constrained the GeV mass regime.

1.3.3 Indirect detection experiments

Indirect detection experiments look for SM particles that are produced in the DM anni-
hilation process χχ → SM SM. For more detailed reviews than the brief overview given
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1.4 Process of interest

here on DM indirect detection, we refer to [51–53]. WIMPs are expected to annihilate at
present leading to detectable annihilation products. A particularly appealing prospect is
the measurement of a spectrum of gamma-rays. Since gamma-rays are not deflected on
their journey from the emission point to detection on Earth, the direction of the source
can be determined, allowing target regions of DM annihilation to be identified.

The spectrum of gamma-rays expected from DM annihilation depends on the particles
produced in the final state. Typically one assumes that DM annihilates to SM particles,
which must account for at least some fraction of the annihilations for a WIMP produced
through thermal freeze-out. Gamma-ray emissions from DM annihilations can be of two
types: a continuous spectrum generated by the decay, hadronization and final state radi-
ation of the SM particles produced, and spectral features in the form a gamma-ray lines
and internal bremsstrahlung. Of these possibilities it is especially interesting to investigate
gamma-ray lines, which appear from the processes χχ → γγ and χχ → γZ. Since DM
has to be electrically neutral, these processes can only arise at the loop level but they
are nearly impossible to mimic by astrophysical background [54], which would result in a
very clean signal. We will also see later, that in the particular case we are considering one
has to take into account certain effects that can alter the DM annihilation cross section
by several orders of magnitude thus compensating for the loop level suppression. Lastly,
another appealing feature from considering gamma-ray lines is that the measured photons
would have an energy approximately equal to the DM particle’s mass, Eγ = mχ, thus
potentially providing very important information.

In order to detect gamma-rays from DM annihilation, there are two possibilities. Either
one seeks to measure the photons directly, which is only possible via space telescopes, or
one uses ground based telescopes to observe gamma-rays indirectly via the Cherenkov light
produced by the showers of charged particles which are in turn created by the gamma-ray
as it hits the atmosphere. Direct observations from space telescopes have been performed
by EGRET [55] and by Fermi-LAT [56]. The most promising ground based telescopes are
the Imaging Air Cherenkov Telescopes (IACTs). IACT experiments include MAGIC [57],
VERITAS [58] and H.E.S.S. [59], while the next-generation telescope is going to be the
currently planned CTA [60]. Figure 1.6 shows limits on the DM annihilation cross section
from various indirect detection experiments including the projected constraints from the
next-generation CTA.

Collider, direct detection and indirect detection searches so far have significantly con-
strained the WIMP cross section in the mass range up to the EW scale and negative results
in this mass region motivate an exploration of the WIMP with multi-TeV masses. Indi-
rect detection experiments are especially well suited for searching for multi-TeV WIMP
DM and in particular the next-generation CTA experiment is expected to improve limits
in this regime by one order of magnitude (see Figure 1.6). It is thus very important to
investigate multi-TeV WIMP DM annihilation into photons and this thesis hence focuses
on the computation of the cross section of heavy WIMPs which annihilate into an ener-
getic photon (amongst other particles), that can then in turn be detected by earth based
gamma-ray telescopes. A specific focus will lie on the next-generation CTA experiment.

1.4 Process of interest

As explained in Section 1.3, in this work we investigate photons which are produced
through heavy WIMP annihilation. Naively this means the computation of the process
χ0χ0 → γγ (or γZ). However, since the annihilation takes place far from earth, gamma-ray
telescopes do not measure the two photons (or photon and Z boson) in coincidence. The
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Figure 1.6: Limits on the annihilation cross section for the DM particles annihilating into a bb̄
pair, from various indirect detection experiments. Plot extracted from [5].

correct observable is therefore the semi-inclusive single-photon energy spectrum γ + X,
where X denotes the unidentified other final state particles.

The computation of the process χ0χ0 → γ+X, for multi-TeV DM, is complicated by two
effects, which, if done naively, would lead to a break down of the perturbative expansion
in terms of the electroweak (EW) coupling. Firstly, one has to take into account the
Sommerfeld effect, which is generated by the EW Yukawa force acting on the DM particles
prior to their annihilation [61–64]. Secondly, for heavy DM annihilation into energetic
particles, electroweak Sudakov (double) logarithms O((α2 ln2(mχ/mW ))n) are large and
need to be resummed to all order in the coupling constant [7–9, 65–69]. The treatment
of the Sommerfeld effect is well known and in this work we hence mainly focus on the
resummation of the large logarithmic corrections. Section 2 will give a more in-depth
introduction to these effects and to the effective field theories that will be used for their
treatment.

The resummation of the semi-inclusive spectrum is performed for the primary photon
energy spectrum d(σvrel)/dEγ of the DM pair annihilation cross section multiplied by the
relative velocity of the annihilating particles. While in forecasts for the rate observed
by a specific telescope, the spectrum will have to be smeared with an instrument-specific
resolution function of some width Eγres in energy, the expected impact and accuracy of
the theoretical predictions can be equally discussed for the spectrum integrated over the
energy interval Eγres from its kinematic endpoint:

〈σv〉(Eγres) =

∫ mχ

mχ−Eγres
dEγ

d(σv)

dEγ
. (1.8)

The endpoint-integrated spectrum depends on the three scale mχ, mW (representative
for EW scale masses), and Eγres. We consider TeV-scale DM and hence the hierarchy
mW � mχ is always assumed. The details of the resummation of EW Sudakov logarithms
near the endpoint, Eγres � mχ, differ according to the scaling of Eγres and mW with respect
to each other. We distinguish the following three regimes:

narrow: Eγres ∼m2
W /mχ ,
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Figure 1.7: Energy resolution of the CTA experiment (solid black line from [6]), and the power-
law fit Eγres = 0.0915(Eγ/TeV)0.653 (dash-dotted) with Eγ = mχ. The dark-grey
(red) and light-grey (blue) bands show where the intermediate and narrow resolu-
tion resummation applies, respectively. The boundaries are define by mW [1/4, 4]
(intermediate resolution) and m2

W /mχ[1/4, 4] (narrow resolution). This Figure was
extracted from [7].

intermediate: Eγres ∼mW , (1.9)

wide: Eγres �mW .

In Section 1.2, we established that the focus of this thesis lies on the two models of wino
and Higgsino DM. In order for wino DM to have the correct relic abundance it is required
to have a mass of around mχ ∼ 2− 3 TeV. Higgsino DM on the other hand has to have a
mass of around mχ ∼ 1 TeV, to give the correct relic density. Figure 1.7 shows the energy
resolution of the CTA experiment as a function of the DM mass. One can clearly see that
for the next-generation experiment, it will be most appropriate to consider the narrow and
intermediate resolution regimes given the relevant masses for the wino and Higgsino DM
models. This thesis thus focuses on the computation of the DM annihilation cross section
for wino and Higgsino DM, assuming narrow and intermediate energy resolutions.

The outline of this thesis is as follows: in Section 2 we provide an introduction into
the theoretical background and effective field theories required for the computation of the
process of interest and give the relevant annihilation operators. In Section 3 we derive the
factorization theorems for both DM models for both the narrow and intermediate energy
resolution. In Section 4 we explain the concept resummation and in Section 5 we discuss
the potential relevance of next-to-leading-power mass corrections. In Section 6, we give
the results for most of the computations that were done to calculate the cross sections,
in Section 7 we show the numerical results and plots of the photon energy spectra, while
we conclude in Section 8. In a series of Appendices, we collect more technical details
that are necessary for the computation of the cross sections, including the calculation
of challenging integrals and explicit expressions of lengthy results. In Appendix A, we
analytically expand the resummed wino DM results up to the two-loop order in order to
gain a better understanding of the numerical results. This thesis is based on the publi-
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cations [7–9], which were done in collaboration with Martin Beneke, Alessandro Broggio,
Martin Vollmann and Kai Urban.
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2 Effective field theories and annihilation
operators

The coherent computation of the annihilation process χ0χ0 → γ +X, requires the combi-
nation of several different effective field theories, which will be introduced in this Section.
A diagrammatic representation of the annihilation process is shown in Figure 2.2. Prior to
their annihilation, the non-relativistic DM particles can exchange EW bosons giving rise
to the Sommerfeld effect. In Figure 2.2 this is represented by the dashed-line ladder rungs
connecting the incoming WIMPs. The heavy WIMPs then annihilate into an energetic
photon and an unobserved state of potentially multiple particles X. The Sommerfeld effect
is described by a non-relativistic effective field theory which is introduced in Section 2.3.1,
while the rest of the annihilation process is described by soft collinear effective theory
(SCET) which is introduced in Section 2.3.2. Before going into the different effective field
theories however, we use Section 2.1 to motivate important concepts using a computa-
tional example that will also be useful to introduce notation and subtleties that appear
when using SCET.

2.1 Strategy of regions

Before going into the details of the effective field theories which are needed to compute
the semi-inclusive annihilation process χ0χ0 → γ + X, it is instructive to consider as an
example a specific loop integral using the so-called strategy of regions [70]. This example
will help to demonstrate the necessity of introducing different effective field theories and
is going to unveil some technical difficulties which we will face during the computation of
the annihilation cross section.

The strategy (or method) of regions is a technique which allows one to carry out asymp-
totic expansions of loop integrals in dimensional regularization around various limits. The
expansion is obtained by splitting the integration into different momentum regions and
appropriately expanding the integrand in each case. The general strategy to obtain the
expansion of a given Feynman integral in a given kinematic limit is the following [71]:

1. Identify all momentum regions of the integrand which lead to singularities in the
limit under consideration

2. Expand the integrand in each region and integrate each expansion over the full phase
space

3. Add the result of the integrations over the different regions to obtain the expansion
of the original full integral

To illustrate the strategy of regions, we are going to calculate the diagram depicted in
Figure 2.1, in dimensional regularization. Incoming DM states have masses mχ, outgoing
gauge bosons are massless and gauge bosons in the loop have a mass of mW . We thus
have (p1 + p2)2 = (p3 + p4)2 = 4m2

χ. For simplicity, we will neglect the Dirac structure
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p3

p4

k

k − p3

k + p4

p1

p2

Figure 2.1: One-loop vertex correction. Incoming DM states have masses mχ, outgoing gauge
bosons are massless and gauge bosons in the loop have a mass of mW .

and focus on the scalar integral, since this does not change the analysis. The full integral
in d = 4− 2ε space-time dimensions is given by

If =

∫
[dk]

1

(k2 −m2
W + i0)((k − p3)2 −m2

W + i0)((k + p4)2 −m2
W + i0)

=
i

16π2

1

8m2
χ

ln2



m2
W − 2m2

χ + 2mχ

√
m2
χ −m2

W

m2
W


 , (2.1)

where

[dk] = µ̃2ε d
dk

(2π)d
=

(
µ2eγE

4π

)ε
ddk

(2π)d
. (2.2)

Before getting into the details of the method of regions analysis, we need to introduce
some notation which will also be needed when discussing the effective field theories later on.
We choose a reference frame in which the outgoing gauge bosons are moving back-to-back
along the z-axis, for which we define two light-like reference vectors

nµ+ = (1, 0, 0,−1) , nµ− = (1, 0, 0, 1) , (2.3)

which means that

pµ3 = mχn
µ
− , pµ4 = mχn

µ
+ . (2.4)

The light-like reference vectors obey n2
+ = n2

− = 0 and n+ · n− = 2. We refer to the
direction n− as “collinear” and to the direction n+ as “anti-collinear”. Any Lorentz
vector can now be decomposed into components proportional to n+, n− and a remainder
perpendicular to both

pµ = (n− · p)
nµ+
2

+ (n+ · p)
nµ−
2

+ pµ⊥ ≡ p
µ
+ + pµ− + pµ⊥ . (2.5)

The expansion of vectors into their light-cone components will prove useful since, in gen-
eral, different components will scale differently. The precise meaning of this is explained
below. Using the properties of the reference vectors n+ and n−, it is easy to see that the
square of the vector p is given by

p2 = (n+ · p)(n− · p) + p2
⊥ , (2.6)

while the scalar product of two Lorentz vectors p and q is

p · q = p+ · q− + p− · q+ + p⊥ · q⊥ . (2.7)
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For discussing the scaling of the different components of a vector, it will be useful to write
it as

pµ = (p+, p−, p⊥) . (2.8)

Equipped with the notation we just introduced, we can now separate the diagram in
Figure 2.1 into different momentum regions. For this we first introduce the small expansion
parameter λ = mW /mχ � 1. The scaling of the different components of a vector will be
written as pµ ∼ mχ(λa, λb, λc). The components of p3 and p4 for example scale as

pµ3 ∼ mχ(1, λ2, λ) , and pµ4 ∼ mχ(λ2, 1, λ) . (2.9)

To expand If in λ, we need to introduce momentum regions for the loop momentum kµ

with the following scalings

hard (h): kµ ∼mχ(1, 1, 1) ,

collinear (c): kµ ∼mχ(1, λ2, λ) ,

anti-collinear (c̄): kµ ∼mχ(λ2, 1, λ) ,

soft (s): kµ ∼mχ(λ, λ, λ) . (2.10)

All other possible scalings of the integration momentum kµ ∼ mχ(λa, λb, λc), with a, b, c
not matching one of the regions listed above, give rise to scaleless integrals after the
expansion in λ and therefore vanish in dimensional regularization. To expand the full
integral (2.1) to leading order in λ in each of the regions given in (2.10), we analyse the
scaling of each term in each operator and only keep the leading ones.

Before moving on to the computation of the integral in the different momentum regions,
we need to comment on a complication which arises when the different momentum regions
are not well defined unless one introduces additional regulators on top of dimensional
regularization. This problem is referred to as Collinear Anomaly in [72] and appears for
example in processes with high momentum transfers and small but non negligible masses,
such as in the resummation of electroweak Sudakov logarithms [73, 74]. The additional
regulator we chose to use is the rapidity regulator introduced in [75, 76]. More details on
this regulator are given in Appendix F.

Hard In the hard momentum region, the loop momentum scales as kµ ∼ mχ(1, 1, 1) and
the expansion of the propagators in If is given by

k2
︸︷︷︸
O(1)

− m2
W︸︷︷︸

O(λ2)

=k2 +O(λ2)

(k − p3)2 −m2
W = k2

︸︷︷︸
O(1)

−2(k+ · p3,−︸ ︷︷ ︸
O(λ2)

+ k− · p3,+︸ ︷︷ ︸
O(1)

+ k⊥ · p3,⊥︸ ︷︷ ︸
O(λ)

)− m2
W︸︷︷︸

O(λ2)

=k2 − 2k− · p3,+ +O(λ)

(k + p4)2 −m2
W = k2

︸︷︷︸
O(1)

+2(k+ · p4,−︸ ︷︷ ︸
O(1)

+ k− · p4,+︸ ︷︷ ︸
O(λ2)

+ k⊥ · p4,⊥︸ ︷︷ ︸
O(λ)

)− m2
W︸︷︷︸

O(λ2)

=k2 + 2k+ · p4,− +O(λ) . (2.11)

The hard region integral at leading power in λ is thus given by

Ih =

∫
[dk]

1

(k2 + i0)(k2 − 2k− · p3,+ + i0)(k2 + 2k+ · p4,− + i0)
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=
i

16π2

1

8m2
χ

[
2

ε2
+

1

ε

(
2iπ + 4 ln

µ

2mχ

)
− 7π2

6
+ 4iπ ln

µ

2mχ
+ 4 ln2 µ

2mχ

]
(2.12)

As one can see, there was no need to introduce an additional regulator for the computation
of the hard region integral. Since p2

3 = p2
4 = 0, one can trivially complete the squares in

the propagators appearing in (2.12) which turns Ih into a standard Feynman integral.

Collinear The collinear loop momentum scales as kµ ∼ mχ(1, λ2, λ). Performing a similar
scale analysis as in (2.11), but now with the collinear scaling for the loop momentum, gives
the following collinear region integral

Ic =

∫
[dk]

νη

(k2 −m2
W + i0)(−2k− · p3,+ + i0)((k + p4)2 −m2

W + i0)|n+k|η

=
i

16π2

1

8m2
χ

[
− 2

εη
− 2

ε
ln

ν

2mχ
+

4

η
ln
mW

µ
+ 4 ln

mW

µ
ln

ν

2mχ

]
. (2.13)

The term νη/|n+k|η in the first line of (2.13) is introduced by the additional regulator.
Specifically, η is the rapidity regulator and ν is the scale associated to the regulator (similar
to the scale µ for dimensional regularization). As can be seen from (2.13), Ic has poles
from both regulators.

Anti-collinear The anti-collinear loop momentum scales as kµ ∼ mχ(λ2, 1, λ). It can
easily be checked, that the collinear and anti-collinear momentum region give the same
contribution, such that

Ic̄ =

∫
[dk]

νη

(k2 −m2
W + i0)((k − p3)2 −m2

W + i0)(2k+ · p3,− + i0)|n−k|η

=
i

16π2

1

8m2
χ

[
− 2

εη
− 2

ε
ln

ν

2mχ
+

4

η
ln
mW

µ
+ 4 ln

mW

µ
ln

ν

2mχ

]
. (2.14)

Again, the term νη/|n−k|η in the first line of (2.14) is associated with the rapidity regu-
lator.

Soft The loop momentum scales as kµ ∼ mχ(λ, λ, λ). The soft momentum region integral
is given by

Is =

∫
[dk]

νη

(k2 −m2
W + i0)(−2k− · p3,+ + i0)((k + p4)2 −m2

W + i0)|2k3|η

=
i

16π2

1

8m2
χ

[
− 2

ε2
+

4

εη
+

1

ε

(
−2iπ + 4 ln

mW

µ
− 4 + 4 ln

mW

ν

)

− 8

η
ln
mW

µ
+
π2

6
+ 4iπ ln

mW

µ
+ 8 ln

mW

µ
ln
mW

ν
− 4 ln2 mW

µ

]
. (2.15)

Like Ic and Ic̄, also the soft integral Is requires the rapidity regulator for its computation,
which introduces νη/|2k3|η in the first line of (2.15). By comparing the rapidity regulator
terms in (2.13), (2.14) and (2.15) one can see that the specific form depends on the scaling
of the loop momentum. We refer to Appendix F for a more detailed explanation.

Now that we have computed the full integral expanded in the hard, the (anti-) collinear
and the soft region, we can to sum over the results from the different momentum regions
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to find

Ih + Ic + Ic̄ + Is =
i

16π2

1

8m2
χ

[
4 ln2 mW

2mχ
+ 4iπ ln

mW

2mχ
− π2

]
. (2.16)

It is straightforward to check that this is indeed equivalent to the original integral If , when
expanding the second line in (2.1) to leading power in λ. The computation of If using
the method of regions served the purpose to introduce relevant notation and to exemplify
how a computation can be separated according to the momentum scales involved. Looking
at (2.16), one notices the appearance of the aforementioned Sudakov (double) logarithms
α2 ln2(mW /2mχ). Since we are considering multi-TeV DM, mW � mχ and Sudakov
logarithms are O(1) corrections and a naive computation leads to the breakdown of the
perturbative expansion in the coupling constant. While the method of regions allows for
an expansion at the integrand level, we can use SCET, see Section 2.3.2, to achieve the
same separation of momentum modes at the Lagrangian level. This will ultimately result
in the resummation of the large Sudakov double logarithms to all orders and will enable us
to calculate reliable results. Lastly, we also introduced the concept of rapidity divergences,
which will continue to appear throughout this thesis.

2.2 Relevant momentum modes

We are now going to discuss which momentum modes are needed to describe the process
χ0χ0 → γ+X. This is similar to (2.10) from the previous Section, only now the modes will
be used to factorize the problem at the Lagrangian level. The operators which describe the
annihilation process of interest need to have the following properties: the operator contains
two incoming DM particles that annihilate at a single point and two outgoing gauge boson
fields, which generate final state particles at said annihilation point. The gauge boson fields
lie along opposite light-like directions, for which we will use the reference vectors defined
in (2.3). This means that one outgoing gauge boson will travel along the collinear direction
nµ− and which will generate the unobserved jet X, while the other one travels along the
anti-collinear direction nµ+ and will be identified with the observed photon. The observed
photon has a momentum of pµγ = Eγn+ and the unobserved state X has a small invariant
mass of mX =

√
4mχE

γ
res.

In the previous Section we have seen at the integrand level how a process can be split
up according to different momentum modes. To do this at the Lagrangian level, we need
to identify all relevant momentum modes that contribute to χ0χ0 → γ + X for both the
narrow and intermediate energy resolution regimes. Note that the modes depend on Eγres,
but are insensitive to the type of particle. Assuming an intermediate energy resolution
Eγres ∼ mW and using the same power counting parameter as in the previous Section
λ = mW /mχ we find the following momentum modes to be relevant

hard (h) : kµ ∼mχ(1, 1, 1)

hard-collinear (hc) : kµ ∼mχ(1, λ,
√
λ)

collinear (c) : kµ ∼mχ(1, λ2, λ)

anti-collinear (c̄) : kµ ∼mχ(λ2, 1, λ)

soft (s) : kµ ∼mχ(λ, λ, λ)

potential (p) : k0 ∼m2
W /mχ, k ∼ mW

ultrasoft (us) : kµ ∼mχ(λ2, λ2, λ2) (2.17)
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χ0

χ0 γ

X

Figure 2.2: Diagrammatic representation of annihilation process of interest.

The hard mode describes the hard annihilation process of the DM particles, the (hard-)
collinear modes describe the unobserved final state X, the anti-collinear mode describes
the observed photon, the soft mode describes soft radiation coming from initial/final state
external particles and the potential and ultrasoft modes describe the exchange of EW
bosons between the WIMPs prior to annihilation. The hard modes will be integrated
out into matching coefficients (see Section 6.1 for a detailed discussion of the matching
procedure). Hard-collinear, (anti-) collinear and soft modes are still dynamical and are
described by SCET and potential and ultrasoft modes are described by a non-relativistic
effective theory.

In the narrow resolution case, we assume the Eγres ∼ m2
W /mχ, which implies mX ∼ mW

and the scale hierarchy Eγres � mW ,mX � mχ. In the narrow resolution case, there
is thus no hard-collinear momentum mode. Also, the narrow energy resolution does not
allow for soft EW gauge boson radiation into the final state, which has implications for
the structure of the soft function that describes the soft momentum modes. This will
be explained in more detail in Section 3. On the other hand, the effective theory for
the wide resolution case [69, 77] requires a yet more numerous set of modes to account
for the independent scales Eγres and mW . This set collapses to (2.17) when Eγres is set
parametrically to mW .

At leading power in the power counting parameter λ, the DM particles annihilate into
two energetic final-state particles since any additional (anti-) collinear field included in
the operator would mean a suppression by at least one power in λ. This is caused by
the scaling of the gauge fields in the effective Lagrangian (see Section 2.3.2). The aim
of this thesis is to sum logarithms of mW /mχ to leading order in λ. As was done in all
previous works about the resummation of EW Sudakov logarithms in DM annihilation,
power-suppressed effects in λ are systematically neglected. In Section 5, we are going to
present a quantitative analysis as to why a leading order treatment is justified for both
wino and Higgsino DM.

2.3 Effective field theories

We are now in a position to introduce the EFTs that are required for the computation of
the annihilation process χ0χ0 → γ +X. If an observable describes a process in a certain
energy region, in general one can then integrate out degrees of freedom associated with
other energy regions. The result is in an EFT containing only the degrees of freedom
relevant for the computation of the observable of interest. This is the basic idea behind
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EFTs. An observable can be computed using either the full theory or the EFT, both
ways give the same physical results as far as that particular observable or energy region
is concerned, but calculations are much simpler with the EFT. This is why we introduce
different EFTs for different parts of the annihilation process.

2.3.1 Non-relativistic effective theory

In the present day Universe multi-TeV WIMPs move with non-relativistic velocities v ∼
10−3. Prior to their annihilation, they may exchange electroweak bosons depicted di-
agrammatically by the dashed lines between the incoming DM particles in Figure 2.2.
Each exchanged gauge boson contributes a factor of g2mχ/mW , which means that addi-
tional exchanges are not suppressed by the EW coupling if mχ � mW , which is the case
here. This means that we need to resum the ladder rungs to all orders in g2 to calculate
the cross section. These radiative corrections give rise to the Sommerfeld effect, which
arises when an attractive interaction between the non-relativistic DM particles signifi-
cantly distorts their wave function, such that they have a larger probability to undergo
annihilation. We will see that the Sommerfeld effect gives rise to corrections that may
exceed the lowest-order cross section by orders of magnitude. It is thus vital to correctly
account for this effect. Since the Sommerfeld effect is not the main focus of this work how-
ever, the introduction into the theoretical background is kept somewhat brief and focuses
on points relevant for the remainder of this thesis. For a more in depth introduction into
this topic and especially into the technical details, we refer to [78].

The appropriate EFT for describing the Sommerfeld effect and separating it from the
remainder of the annihilation process is a non-relativistic DM (NRDM) EFT [78, 79].
Similar to the approach of NRQCD to the annihilation of quarkonium [80], the NRDM
EFT is designed to describe the dynamics of two heavy DM particles at energy scales (in
the center-of-mass frame) much smaller than their masses. At these energies, further pairs
of DM particles cannot be created so it is sufficient to use two-component Pauli spinors for
the initial state DM particles. The NRDM EFT is obtained by integrating out the hard
modes that scale as mχ. The leading-order Lagrangian that describes DM interactions at
energies below mχ but above mW is given by

LNRDM = χ†v(x)

(
iD0 +

D2

2mχ

)
χv(x) , (2.18)

where Dµ = ∂µ−ig2A
C
µ T

C+ig1Y Bµ is the SU(2)⊗U(1)Y covariant derivative. Remember
that Y = 0 and Y = 1/2 in the cases of wino and Higgsino DM, respectively. In prin-
ciple, (2.18) can be extended to include power corrections but since we content ourselves
with a leading-order treatment of the Sommerfeld effect, this is not necessary. See [81] for
the NLO computation of the Sommerfeld effect for wino DM.

After integrating out the hard modes, the remaining dynamical degrees of freedom in
the NRDM EFT are soft, potential and ultrasoft. Remember that we only want to keep
the degrees of freedom in our EFT which are relevant for the observable we calculate. This
means that the soft modes can also be integrated out. Together with the potential modes of
the light particles, they generate instantaneous but spatially non-local interactions between
the DM fields, i.e. DM potentials. Finally, we are left with a theory that describes the
potential modes of the DM fields and the ultrasoft modes of the light fields, which is called
potential NRDM (pNRDM) EFT and the corresponding Lagrangian at leading-power is
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given by [79]

LpNRDM =
∑

i

χ†vi(x)

(
iD0(t,0)− δmi +

∂2

2mχ

)
χvi(x) (2.19)

−
∑

{i,j},{k,l}

∫
d3rV{ij}{kl}(r)χ

†
vk(t,x)χ†vl(t,x + r)χvi(t,x)χvj(t,x + r) .

The last term in LpNRDM summarizes the instantaneous but spatially non-local interactions
between the non-relativistic two-particle states that arise through the exchange of SM
gauge and Higgs bosons. In order to highlight this non-locality of the potential interaction,
we included the space-time arguments in (2.19). Note also that the ultrasoft gauge field
in the covariant derivative is multipole-expanded around x = 0. The ultrasoft light fields,
which have momentum k ∼ mχλ

2 ∼ m2
W /mχ, can only exist for fields with masses much

smaller than mW , the covariant derivative appearing in (2.19) is understood to be the one
with respect to the unbroken electromagnetic symmetry. After integrating out soft modes,
the EW gauge bosons no longer appear as dynamical fields in pNRDM EFT.

The potential V{ij}{kl} in (2.19) is the matching coefficient when integrating out soft
modes and moving from NRDM to pNRDM EFT. During the matching procedure, the
masses of the EW gauge bosons, of the top quark and of the Higgs boson cannot be
neglected, since the soft modes of the light particles have a virtuality of order m2

W . As
a result, V{ij}{kl} will depend on these masses and will feature potentials of the following
types: the Yukawa potential from EW gauge bosons and the Higgs boson and the Coulomb
potential from photons. After EWSB, the components of the isospin-j DM multiplet
acquire slightly different masses. In general, the charged components will be somewhat
heavier than the neutral (DM) particle, due to radiative corrections. This can be seen
in (2.19) by the term δmi = mi −mχ0 ≥ 0, which gives the mass difference between the
lightest neutral particle of the multiplet and the remaining heavier components. Here, mi

is the mass of the eigenstate labeled by i. The heavy fields of the additional multiplet
in (2.19) are expressed in terms of mass eigenstate fields χvi and not in terms of the gauge
eigenstate fields χva, since computations using LpNRDM are carried out in EW broken
theory. Since the wino and Higgsino DM models have different particle contents, the
notation in (2.19) was chosen to allow for a more concise documentation. The explicit
form of the terms in (2.19) is generated by replacing the generic fields χvi with the field
symbols ξ, η, ζ which represent the particle species χ0, χ+, χ−, respectively, for wino DM
and with the field symbols η0, ζ0, η, ζ which represent the particle species χ0

1, χ0
2, χ+, χ−,

respectively, for Higgsino DM.

In Figure 2.3 a representative diagram responsible for the Sommerfeld effect is shown.
Additionally, three soft gauge boson emissions are included: one subgraph where the soft
momentum does not run through the annihilation vertex (shown in blue), one subgraph
with a real soft gauge boson emission (shown in green) and one subgraph where the soft
momentum does run through the annihilation vertex (shown in red). The blue emission
would constitute a correction to the leading order potential. These types of emissions will
thus not be considered here. The wino potential was computed at NLO in [81]. If one
of the DM particles would emit a soft gauge boson into the final state (green) it would
throw the DM particle off-shell. This would remove the enhancement coming from the
ladder rungs after the real soft emission and such emissions can thus only happen between
the last gaube boson exchange and the annihilation vertex. If the soft momentum does
run through the annihilation vertex however (red line), the propagator of the heavy field
between the soft emission and the annihilation vertex is of the eikonal type and comes
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χ0

χ0

Figure 2.3: Example diagram contributing to the Sommerfeld effect. The blue and the red wavy
lines represent soft gauge boson emissions.

from a Wilson line. The heavy field propagators to the left of the (red) soft emission are
non-relativistic. In order to remove these soft interactions, we define the field redefinition

χva(x) = Yv,ab(x0)χ
(0)
vb (x) , (2.20)

where the soft Wilson line Yv(x) is defined as the path-ordered exponential

Yv(x) = P exp

[
ig2

∫ 0

−∞
dt v ·ACs (x+ vt)TC − ig1Y

∫ 0

−∞
dt v ·Bs(x+ vt)

]
, (2.21)

with TC the SU(2) generators in the spin-j representation and vµ = (n+ +n−)/2 = (1,0).
In the case of wino DM, the hypercharge is set to zero Y = 0. The Wilson lines Yv(x)
fully capture the coupling of soft EW gauge bosons to the DM field, which means that
the soft gauge bosons are decoupled from LPNRDM in (2.19).

After having decoupled soft interaction using (2.20), we can now use pNRDM EFT to
compute the Sommerfeld effect. To do so, it is convenient to introduce some notation and
exchange the indices ij and kl in (2.19), which denote the individual heavy field states, for
two-particle state indices I = {ij} and J = {kl}. The heavy field indices take the values
0, +, − for wino DM and 01, 02, +, − for Higgsino DM. The two-particle indices I and
J take on all possible combinations of two heavy field indices. The two-particle states are
related to the product of two single heavy fields by

χc†vaχvb = Kab,I [χ
c†
v χv]I . (2.22)

Since we are only interested in neutral two-particle states, the relevant matrix elements
are limited. Specifically, for wino DM, the relevant K-matrix elements are

Kwino
33,(00) = 1 ,Kwino

11,(+−) =
1

2
,Kwino

12,(+−) = − i
2
,Kwino

21,(+−) =
i

2
,Kwino

22,(+−) =
1

2
(2.23)

while for Higgsino DM, we need

KHiggs.
11,(11) = KHiggs.

11,(22) =
1

2
, and KHiggs.

22,(+−) = 1 , (2.24)

It suffices to focus here on the charge-0 sector of the two-particle states for the calculation
of the Sommerfeld factor. The full expressions for the K-matrices for both wino and
Higgsino DM have been collected in Appendix C.
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In the following, we are going to outline how the Sommerfeld factor is extracted from the
squared T-matrix element that appears in the definition of the cross section (see Section 3).
The non-relativistic part of the annihilation process is encoded in the expression

χ†ve4Γχcve3 χ
c†
ve2Γχve1 . (2.25)

The specific shape of the spin matrix Γ, which acts on the spinor indices of χv, will be
derived in Section 2.4. Since the potential V{ij}{kl}(r) does not change the total spin of
the incoming two-particle state before annihilation, the two Γ-matrices in (2.25) can be
assumed to be of the same type. In [78], a detailed derivation of an NRDM EFT matrix
element for arbitrary operators is provided. In our case, assuming an incoming DM state
χiχj with relative velocity vrel between χi and χj , orbital quantum number L = 0 (S-wave)
and total spin S, the matrix element can be written as

〈χiχj |χ†ve4Γχcve3 χ
c†
ve2Γχve1 |χiχj〉 = 〈χiχj |χ†ve4Γχcve3 |0〉 〈0|χc†ve2Γχve1 |χiχj〉

=
[
〈ξc†j Γξi〉

(
ψ

(0,S)
e4e3, ij

+ (−1)Sψ
(0,S)
e3e4, ij

)]∗
〈ξc†j Γξi〉

(
ψ

(0,S)
e1e2, ij

+ (−1)Sψ
(0,S)
e2e1, ij

)
,(2.26)

where ψ
(L,S)
e1e2, ij

is the χe1χe2-component of the scattering wave function for the incoming
χiχj state, evaluated for zero relative distance and normalized to the free scattering solu-

tion, that is ψ
(L,S)
eaeb, ij

→ δeai δebj in the absence of interactions. The symbol 〈...〉 denotes the
spin sum and ξi, ξj represent the Pauli spinors of the incoming particles χi, χj . The multi-

component wave function ψ
(L,S)
e2e1,ij

accounts for the potential interactions of the incoming
χiχj-state with all possible intermediate two-body states e2e1. Since we only consider
leading-order potential interactions, the intermediate e2e1-states need to have the same
spin and orbital angular momentum as the ij-state, as well as the same charge. For a
given operator χc†e2χe1 with quantum numbers L and S, we need to take into account both
wave-function components e1e2 and e2e1, where the latter is accompanied by a relative

sign (−1)L+S . Above, we defined ψ
(L,S)
e1e2, ij

which we can relate to the coordinate-space
scattering wave-function [ψE(r)]I,ij at the origin as follows

ψ
(0,S)
e1e2, ij

= [ψE(0)]∗e1e2, ij . (2.27)

This is necessary, since the scattering wave-function in coordinate space can be directly
obtained from the Schrödinger equation

([
−∇

2

2µI
− E

]
δIK + VIK(r)

)
[ψE(r )]K,ij = 0 . (2.28)

The potential in (2.28) DM model specific and is sensitive to the mass splitting between
the neutral and charged particles of the DM multiplet. Specifically, it includes the mass
splitting between the mass MI of the two-particle state I and the mass of the χ0χ0 state
via VIK → VIK + δIK(MI − 2mχ). The parameter µI refers to the reduced mass of the
two-particle state I and since we are only interested in the Sommerfeld effect at leading
order, we can set µI = mχ/2. E denotes the energy and can be fixed using the relative
velocity of the initial state. Lastly, the indices ij serve as a reminder to solve (2.28)
under the assumption that ij the initial two-particle state. The derivation of the solution
to (2.28) is beyond the scope of this thesis and we refer to [78] for further details and the
specific methods that are used.

We can now use the coordinate-space scattering wave-functions to define the Sommerfeld
factor as follows

SIJ =
[
ψ

(0,S)
J, 00

]∗
ψ

(0,S)
I, 00 . (2.29)
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For both DM models, the initial state is assumed to be the one consisting of neutral
particles I = 00. Other two-particle states are only virtual and may appear after an
exchange of for example an EW gauge boson. We may focus on the charge-0 sector when
solving (2.28), since the potential is block-diagonal, which in turn is caused by electric
charge conservation. In the charge-0 sector, the two-particle indices can take the values
I, J = 00,+−,−+, which however leads to a certain redundancy in the description since
the fermion bilinear for the states +− and −+ is identical, up to a possible sign. When
the number of two-particle states is reduced to non-identical ones, in [78] this is referred
to as method-2 while the more redundant one, that includes all two-particle states, is
called method-1. Since it is more customary, we will use method-2 in this thesis. This
will introduce certain symmetry factors in the potentials (see Appendix B for the Higgsino
DM potential and [78] for the wino DM potential) and the cross section (see Section 3).

Up to now the ultrasoft modes, which are also defined in (2.17), have not been taken
into consideration. The ultrasoft function is defined in terms of Wilson lines of ultrasoft
photons and depends on the electric charges and directions of the particles in the initial
and final state. It can be made explicit, via the field redefinition of the DM fermion
bilinear

[χc†v χv]I → SviSvj [χ
c†
v χv]I , (2.30)

where Svi is an electromagnetic time-like Wilson line corresponding to the charge ofthe
field χvi in I = {ij}. After factoring the Sommerfeld effect, also the χ+χ− initial state
must be considered. But for S-wave annihilation only the total charge of the initial state is
relevant, which in our case vanishes. This implies that SviSvj = SviS

†
vi = 1, which means

that we can safely ignore ultrasoft momentum modes.

As a last comment, we note that the factorization of non-relativistic dynamics from the
soft and collinear dynamics of the final state (see next Section) is independent of Eγres (at
least up to leading order). This holds since soft and ultrasoft interactions can be decoupled
from the ladder diagrams that are responsible for the Sommerfeld enhancement. The
decoupling in turn can be done, because in the intermediate resolution soft gauge bosons
would throw potential DM propagators off-shell, while in the narrow resolution real soft
gauge boson radiation is forbidden altogether. Ultrasoft photon emission is potentially
allowed for both resolutions, but they do not interact with the electrically neutral charge-
0 sector.

This concludes the overview of the non-relativistic side of the problem, since the com-
putation of the Sommerfeld factor was not the main focus of this thesis. For a detailed
discussion of the Sommerfeld effect for an arbitrary set of heavy fermions nearly degener-
ate with the DM particle, which was developed for the general minimal supersymmetric
SM, we refer to [64,78,79,82].

2.3.2 Soft collinear effective theory

The method of regions introduced in Section 2.1 is a useful tool for calculating loop
integrals in a power expansion in a small expansion parameter λ. As we saw in (2.10),
different momentum regions scale differently with λ and in general the individual regions
can be computed with much less effort than the full integral. While the method of regions
can be applied to the computation of individual integrals, a similar expansion can already
be performed at the Lagrangian level by making use of a framework called soft collinear
effective theory (SCET), which was first developed for QCD [83–87]. The hard region will
be integrated out into the matching coefficients, while the Feynman rules derived in SCET
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2 Effective field theories and annihilation operators

replicate the full integral expanded the different momentum regions, which is what we saw
in Section 2.1. For a pedagogical introduction, we refer to [88].

It should be noted that SCET is not an effective theory in the classical sense. We
saw in the previous Section that an EFT is usually used for a simplified description of
the problem, in that irrelevant energy regions are integrated out which allows one to
focus on the relevant energy regime only. Neglecting irrelevant scales generally simplifies
computations tremendously. Processes computed with SCET on the other hand feature
several widely separated scales and only by using SCET one is able to obtain reliable
results, since potentially large logarithmic corrections can be resummed. While EFTs
in general allow one to compute processes happening at a specific scale in a simplified
manner, SCET is necessary to be able to correctly treat processes involving multiple
largely separated scales.

Before going into the details of SCET, it will be convenient to introduce some nota-
tion. While wino DM has vanishing hypercharge (1.5), Higgsino DM has non-vanishing
hypercharge and one thus has to include both SU(2) and U(1)Y gauge fields (1.7). For the
introduction into SCET and especially the derivation of the factorization theorem later on
in Section 3, we are going to collect SU(2) and U(1)Y gauge fields into a single multiplet.
This will allow us to present a factorization theorem valid for arbitrary hypercharges in
a concise form. For the specific case of wino DM one then simply has to set Y = 0, see
Section 3.2. Hence, we introduce the SU(2)⊗U(1)Y multiplet

~Gµ =
(
A1
µ, A

2
µ, A

3
µ, Bµ

)T
. (2.31)

Generally, the SU(2) fields AC and the U(1)Y field B are accompanied by group structures
and coupling constants. We thus define the following generalised group factor

~T =
(
g2T

1, g2T
2, g2T

3,−g1Y
)T

, (2.32)

which already includes the coupling constants. The full theory Higgsino DM covariant
derivative can then be written very concisely as

Dµ = ∂µ − iGCµ T C = ∂µ − iGµ , (2.33)

and for wino DM, we simply set Y = 0, as mentioned earlier. Equipped with the gen-
eralised SU(2)⊗U(1)Y multiplet (2.31) and the group factors (2.32) we are now ready to
dive into SCET.

Depending on which momentum modes appear, SCET may appear as two different
versions: SCETI and SCETII. In the intermediate resolution case the collinear final state
is inclusive and features hard-collinear momentum modes, while the anti-collinear direction
describes the exclusive photon. Inclusive processes are also called SCETI problems, while
exclusive processes are called SCETII problems. As we will see, exclusive SCETII problems
require an additional rapidity regulator. Notice that in the narrow resolution case, the
collinear final state also turns into an SCETII problem and consequently needs additional
regularization.

Although at higher orders, all SM fields are present in collinear and soft interactions,
we restrict ourselves to the gauge boson Lagrangian, since the gauge boson SCET fields
appear directly in the annihilation operators. This will also simplify the introduction of
the key concepts. In order to achieve a separation of the Lagrangian into the momentum
modes (2.17), one needs to split the fields into a sum of a collinear, an anti-collinear field
and a soft field

Gµ(x)→ Gµc (x) +Gµc̄ (x) +Gµs (x) , (2.34)
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2.3 Effective field theories

The field Gµc (x) accounts for collinear modes of both, the hard-collinear and collinear
type, Gµc̄ (x) accounts for anti-collinear modes and Gµs (x) accounts for soft modes. It is
not necessary to introduce a field for the hard momentum mode, since, as mentioned
before, the hard mode is integrated out into the matching coefficients (also called Wilson
coefficients), which act as the coupling constants of the effective theory. By writing down
the most general set of operators and by adjusting their Wilson coefficients, one is able to
reproduce the full theory.

In order to write down the Lagrangian for a specific order in λ, we need to determine
the power of λ with which the different field components of the SCET fields scale. This
information can be obtained by looking at the two-point correlators, which for the gauge
fields at hand is given by

〈0|T{Gµ(x)Gν(0)}|0〉 =

∫
d4p

(2π)4

i

p2 + i0
e−ip·x

[
−gµν + ξ

pµpν

p2

]
. (2.35)

Looking at the second term in the square bracket, we can see that the gauge fields scale
like their momentum, i.e. the scaling of the (anti-) collinear and soft fields in (2.34) can
be directly read off from (2.17). Having established the power counting, we can now move
on to write down the SCET Lagrangian for the gauge fields.

Similarly to splitting the fields according to the momentum modes (2.34), one can
split the Lagrangian into contributions with different scalings. In particular, the SCET
Lagrangian in our case is given by

LSCET−I = Lc + Lc̄ + Lsoft . (2.36)

Lsoft is similar to the SM Lagrangian except that all gauge fields are assumed to be soft

Lsoft = −1

2
tr (Fs,µνF

µν
s ) , (2.37)

with the field strength tensor defined as

Fs,µν = i[Ds,µ, Ds,ν ] , Ds,µ = ∂ − iGs,µ (2.38)

On the other hand the collinear Lagrangian Lc at leading power is

Lc = −1

2
tr (Fc,µνF

µν
c ) + (Dµϕc)

†Dµϕc , (2.39)

where ϕc is the collinear Higgs doublet and was included for later convenience. The
collinear covariant derivative is given by

Dµ = ∂µ − iGµc (x)− in−Gs(x− + x⊥)
nµ+
2
, (2.40)

where n− is the light-like reference vector defined in (2.3) and x−, x⊥ are the components
of the position argument as explained at the beginning of Section 2.1. At leading power,
we need to include the projected soft field n−Gs in the collinear covariant derivative (2.40)
since from (2.17) we can see that only the anti-collinear components of Gs are not power-
suppressed with respect to the corresponding components of Gc. Moreover, the n+k soft
momentum component can be neglected relative to the large hard-collinear and collinear
momentum components. As a consequence, the soft gauge field is evaluated at the po-
sition xµ− + xµ⊥, where xµ− = (n+ · x)nµ−/2. Since the covariant derivatives appearing in
the definition of the collinear field strength tensor Fµνc depend on the soft field Gs, one
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2 Effective field theories and annihilation operators

might wonder whether Fµνc give rise to additional kinetic terms for the soft gauge field
(additionally to the ones of Lsoft). This does not happen since the squared field strength
is gauge invariant and one can choose to work in a gauge where n−Gs vanishes. In such a
gauge, the squared collinear field strength tensor is clearly free from terms depending only
on the soft gauge boson field. The collinear Lagrangian Lc describes both hard-collinear
and collinear momentum modes. Since the hard-collinear modes have virtuality mχmW ,
Lc is written in the unbroken phase of SU(2)⊗U(1)Y gauge symmetry. The anti-collinear
Lagrangian Lc̄ is equivalent to its collinear counterpart up to the interchange of n+ ↔ n−.

In general, we obtain the matching of a process onto the effective theory by writing
down all possible operators with the correct quantum numbers, each with its own Wilson
coefficient, that can contribute to said process. This means that in SCET even at leading
power in λ, we have to include an infinite number of operators including arbitrarily high
derivatives in the direction of the large momentum components. The derivatives

n+∂Gc(x) ∼ λ0Gc(x) and n−∂Gc̄(x) ∼ λ0Gc̄(x) , (2.41)

are not power suppressed, because the (anti-) collinear fields carry large energies in these
directions and hence need to be accounted for even at leading order. The expansion of the
(anti-) collinear field along the direction associated with the large momentum component
can be written in terms of an infinite sum over the non-power suppressed derivatives

Gc(x+ sn+) =
∞∑

i=0

si

i!
(n+∂)iGc(x) , Gc̄(x+ tn−) =

∞∑

i=0

ti

i!
(n−∂)iGc̄(x) . (2.42)

Therefore, to include terms with arbitrarily high derivatives is equivalent to allowing non-
locality of the (anti-) collinear fields along the (anti-) collinear directions.

In a gauge theory, a product of fields at different space-time points is only gauge invariant
if the fields are connected by Wilson lines, which in our case are defined as

Wc(x) =P exp

[
i

∫ 0

−∞
ds n+ ·GCc (x+ sn+)T C

]

Wc̄(x) =P exp

[
i

∫ 0

−∞
dt n− ·GCc̄ (x+ tn−)T C

]
, (2.43)

for collinear and anti-collinear fields, respectively. Instead of working with the standard
fields, it turns out to be convenient to use the Wilson lines (2.43) for constructing gauge
invariant building blocks Gµ as follows

Gµc (x) =W †c [iDµWc](x) =

∫ 0

−∞
ds n+ν [W †c F

νµ
c Wc](x+ sn+) ,

Gµc̄ (x) =W †c̄ [iDµWc̄](x) =

∫ 0

−∞
dt n−ν [W †c̄ F

νµ
c̄ Wc̄](x+ tn−) . (2.44)

The building blocks Gµc (x) and Gµc̄ (x) are invariant under collinear and anti-collinear gauge
transformations, respectively. This can be shown by using the behaviour of the fields Gc
and Gc̄, of the Wilson lines (2.43) and of the covariant derivatives under collinear and
anti-collinear gauge transformations.

To rewrite the Lc in terms of the gauge invariant building blocks (2.44), we define the
covariant derivative and the field strength tensor as follows

iDµ ≡W †c iDµWc = i∂µ + Gµc , FBc,µνT B = i [Dµ,Dν ] (2.45)
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and write for the collinear Lagrangian

Lc = −1

2
tr (Fµνc Fc,µν) + (DµΦc)

†DµΦc , (2.46)

where Φc = W †c (x)ϕc(x). Using (2.44) we can show that n+Gc = 0. Furthermore, the gauge
field equation of motion can be used to get rid of n−Gc (see [89] for operators equation
in QCD). This means that the collinear gauge field degrees of freedom are represented by
the transverse fields. The same argument holds for the anti-collinear gauge fields. This
is why only the transverse components appear in the annihilation operators that will be
derived in Section 2.4.

We can see from the SCET Lagrangian (2.36) that at µ� mχ there are no interactions
between collinear fields of different directions. Also, interactions between collinear and
non-relativistic modes would result in hard modes. Remember though that those have
already been integrated out into the matching coefficients. Assessing the covariant deriva-
tive (2.40) however, it is clear that interactions via soft gauge fields are still possible. As
was done for the heavy non-relativistic fields (2.20), we can decouple soft gauge fields from
hard-(anti-) collinear fields via the field redefinition

GBc (x) = Y BC
+ (x−)GC(0)

c (x) GBc̄ (x) = Y BC
− (x+)GC(0)

c̄ (x) , (2.47)

with the soft Wilson lines [86]

Y±(x) = P exp

[
−i
∫ ∞

0
ds n∓ ·GDs (x+ sn∓) T D

]
. (2.48)

It can be checked that after the decoupling transformation, the squared field strength
tensor does no longer depend on the soft modes. Using the decoupling transformations
defined in (2.20) and (2.47) will allow us to factorize the cross section into contributions
from different momentum modes. This will be demonstrated below in Section 3.

We will see later on, that the unobserved jet function in the intermediate resolution
case can be computed in the massless limit. On the other hand the narrow resolution
unobserved final state, as well as the anti-collinear photon final state for both resolution
cases have a virtuality of m2

W which means that they have to be computed with massive
SM particles. For their computation we thus have to use the SCET Lagrangian for the
(anti-) collinear modes of the massive EW gauge bosons and the photon, after EWSB. We
can use the Higgs covariant kinetic term in (2.46) to extract the gauge boson mass terms

(DµΦc)
†DµΦc = (n+∂Φc)

†n−DΦc + (n−DΦc)
†n+∂Φc + (Dµ⊥Φc)

†D⊥,µΦc

Φc=(0,v/
√

2)−→ g2
2v

2

8

(
A1,µ
⊥cA1

⊥c,µ +A2,µ
⊥cA2

⊥c,µ
)

+
v2

8

(
g2A3,µ

⊥c + g1B⊥c,µ
)2

, (2.49)

from which we can see that the mass term only arises for transverse fields. We can then
write the collinear gauge field Lagrangian for virtualities of order m2

W (without the Higgs
field) as follows

Lc = −1

4
FB,µνc Fc,Bµν +

m2
W

2
W+,µ
⊥c W−⊥c,µ +

m2
Z

2
Z⊥c,µ , (2.50)

where the gauge eigenstates are now written in terms of mass eigenstates. While the
collinear fields can no longer interact soft fields at leading power, interactions with ultrasoft
fields are still possible. Ultrasoft fields can only have masses much smaller than mW . At
leading-power, collinear-ultrasoft interactions are included via covariant derivatives acting
on electrically charged EW gauge fields. The covariant derivatives given in (2.40) except
that the soft field now refers to an ultrasoft photon.
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2 Effective field theories and annihilation operators

2.4 Annihilation operator basis

After having introduced the theoretical framework in the previous Section, it is now time to
discuss the annihilation operator basis. The fact that we are neglecting power-corrections
in λ and that we require a photon in the anti-collinear direction has consequences for
the type of operators that may appear. First of all, (anti-) collinear fields must preserve
their identity while emitting soft radiation. This means that the final state photon in the
anti-collinear direction must come from a single SU(2) or U(1)Y field, because it cannot be
generated from an energetic fermion or Higgs boson. Because the initial state consists of
an electrically neutral DM two-particle state, this requires the collinear field in the leading-
power operator to also be of SU(2) or U(1)Y type, since the anti-collinear SU(2) or U(1)Y
field cannot combine with any other SM field to form the same quantum numbers as the
incoming DM particles. The annihilation process is reproduced by the effective Lagrangian

Lann =
1

2mχ

∑

i

∫
dsdt Ĉi(s, t, µ)Oi , (2.51)

where Oi are the annihilation operators and Ĉi(s, t, µ) are the matching coefficients con-
taining the integrated-out hard interactions. Fields without position arguments are eval-
uated at x = 0. As discussed previously, the operators are non-local since (anti-) collinear
field operators are integrated along the light-cone of the respective direction with the
coefficient function Ĉi.

In this thesis, we restrict our attention to WIMP DM, given by an SU(2)⊗U(1)Y multi-
plet of multiplicity (2j+1). We assume the wino DM particles to be of Majorana-type, for
which j takes on integer values, while Higgsino DM consists of Dirac fermions with half-
integer values for j. For definiteness, j = 1 for wino DM and j = 1/2 for Higgsino DM,
although many of the results presented here are valid for general multiplicities. The only
computation for which a specific j-value has to be assumed, is that of the soft function
(see Section 6.4). The operator basis is written in the EW symmetric limit with non-
relativistic DM particles. This is done because the Sommerfeld effect is computed using a
non-relativistic EFT, while the unbroken notation is used since the Wilson coefficients are
calculated in the EW symmetric limit. In order to allow for a concise notation, we denote
the DM fields generically by χav, where a is the group index of the heavy DM field that is
neglected in (2.53). For wino DM, the χav, a = 1, 2, 3, represent non-relativistic Majorana
fields. For Higgsino DM on the other hand, the fields χav represent the non-relativistic
Dirac fields ηav (Y = −1/2) and ζav (Y = +1/2), a = 1, 2. Specifically, they are defined as
follows

η1
v =χ+

v , ζ1
v = χ−v ,

η2
v =

1√
2

(
χ0
v,1 + iχ0

v,2

)
, ζ2

v =
1√
2

(
χ0
v,1 − iχ0

v,2

)
. (2.52)

For Higgsino DM we adopt the nomenclature of [79] where the ηv fields represent particles
and ζv the corresponding anti-particles. The complete basis of operators is given by

O1 = χc†v ΓµνχvAB⊥c,µ(sn+)AB⊥c̄,ν(tn−) ,

O2 =
1

2
χc†v Γµν{TB, TC}χvAB⊥c,µ(sn+)AC⊥c̄,ν(tn−) ,

O3 = χc†v σ
α(n−α − n+α)TAχv ε

ABCAµB⊥c (sn+)AC⊥c̄,µ(tn−) ,

O4 = χc†v ΓµνTCχv
[
AC⊥c,µ(sn+)B⊥c̄,ν(tn−) +AC⊥c̄,µ(sn+)B⊥c,ν(tn−)

]
,
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O5 = χc†v σ
α(n−α − n+α)TCχv

[
AµC⊥c (sn+)B⊥c̄,µ(tn−)−AC⊥c̄,µ(sn+)B⊥c,ν(tn−)

]
,

O6 = χc†v Γµνχv B⊥c,µ(sn+)B⊥c̄,ν(tn−) . (2.53)

Note that for Higgsino DM, one should symmetrize the fermionic part of the operators as
follows

χc†v ΓµνTBCi χv → ζc†v ΓµνTBCi ηv + ηc†v ΓµνTBCi ζv . (2.54)

This is relevant for the computation of the soft function (that describes soft momentum
modes - see Section 6.4), which depends on the two-particle indices I, J . By using a
symmetrized operator basis, we ensure that the soft function gives the same result for both
index values I = (+−) and I = (−+). The spin matrix Γµν in d space-time dimensions is
given by

Γµν =
i

4
[σµ, σν ]σα(n−α − n+α) =

1

2i
[σm, σn]σ · n d=4 only

=
1

2
εµναβn+αn−β ≡ εµν⊥ , (2.55)

with the following conventions vµ = (1, 0, 0, 0), nµ± = (1, 0, 0,∓1), n = (0, 0, 1), m, n =
1, 2, 3 and ε0123 = −1.

Since wino DM has vanishing hypercharge only operators O1−3 are relevant for this
model at tree level. This arises as a combination of the vanishing hypercharge and the
fact that the collinear and anti-collinear field must each consist of a single SU(2) or U(1)Y
gauge field. Operators O4−6 start to become relevant for wino DM from the two-loop order
onwards through closed loops of particles that carry SU(2) and hypercharge, e.g. Higgs
boson and SM fermions. Because two-loop functions are beyond the accuracy discussed
here, operators O4−6 are not relevant for wino DM. For Higgsino DM on the other hand,
all six operators O1−6 need to be taken into account.

The derivation of the operator bases starts from the general expression

Oi = χc†v ΓµνTBCi χv GB⊥c,µ(sn+)GC⊥c̄,ν(tn−) , (2.56)

where the indices of the group structure are restricted to the values B,C = 1, 2, 3 for the
operators O1−3. For the wino model, the two DM fields must couple to an operator with
SU(2) isospin 0, 1 or 2 which means that the group index matrix may take on one of the
following structures

Wino: TBC1 = δBC , TBC2 =
1

2
{TB, TC} , TBC3 = εBCDTD , (2.57)

where TB are the SU(2) generators in the isospin-j representation. For Higgsino DM,
which has isospin j = 1/2, operators O1 and O2 are not linearly independent. Specifically,
they satisfy the relation

OHiggsino
2 =

1

4
OHiggsino

1 . (2.58)

Note that (2.58) does not hold for j > 1/2 SU(2) multiplets, for which operators O1 and
O2 are linearly independent. For Higgsino DM, the DM fields must couple to an operator
with isospin 0 or 1 and the group structures in (2.56) may thus be of the following type

Higgsino: TBC1,2 = δBC , TBC3 = εBCDTD , TBC4 = δB4TC + δC4TB

TBC5 = δB4TC − δC4TB , TBC6 = δB4δC4 . (2.59)
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2 Effective field theories and annihilation operators

Moving on to spinor and Lorentz indices (note that spinor indices have been left implicit
in (2.56)). For both wino and Higgsino DM, the two spin-1/2 DM fields can either couple
to spin-0 or spin-1. If the DM fields couple to spin-0, the spinor indices of the spin matrix
Γµν must be of the form δαβ. Since the Lorentz indices µ and ν are of the transverse type,
we obtain two possibilities for the spin matrix in the spin-0 case

gµν⊥ = gµν − nµ+n
ν
− + nµ−n

ν
+

2
or εµν⊥ . (2.60)

If on the other hand the DM fields couple to spin-1, the structure of the spinor indices is
the vector of Pauli matrices (0, σ) or [σρ − (v · σ)vρ]αβ. In this case, Γµν can take one of
the following three independent forms

(n−ρ − n+ρ)g
µν
⊥ , (n−ρ − n+ρ)ε

µν
⊥ , gρλvκε

λκµν . (2.61)

Here the equality vρ(σ
ρ−(v ·σ)vρ) = 0 was used to reduce a number of further structures to

the ones given. Combining the spin structures (2.60) and (2.61) with the group structures
from (2.57) and (2.59) results in 6 spin-0 and 9 spin-1 structures for wino DM, as well as
10 spin-0 and 15 spin-1 structures for Higgsino DM. We will see next how they can be
reduced to the operator basis given in (2.53).

As the DM particles annihilate into two gauge bosons, the final state must respect
Bose symmetry which constrains the operators to be symmetric under the simultaneous
exchange of all labels c ↔ c̄, n+ ↔ n−, B ↔ C and µ ↔ ν. For wino DM, the SU(2)
structures TBC1 and TBC2 are symmetric, while TBC3 is anti-symmetric and for Higgsino
DM, TBC1,2 , TBC4 and TBC6 are symmetric, while TBC3 and TBC5 are anti-symmetric. All
spin-0 structures from (2.60) are symmetric, while the spin-1 structures from (2.61) are
anti-symmetric. Combining (anti-) symmetric group and spinor structures thus results in
four spin-0 and three spin-1 operators for wino DM, as well as in six spin-0 and six spin-1
operators for Higgsino DM. Lastly, the DM gauge interaction conserves CP symmetry,
which excludes gµν⊥ from (2.60) and all but the first structure from (2.61). In the case of
wino DM, we are thus left with the two spin-0 operators O1,2 and the one spin-1 operator
O3. For Higgsino DM on the other hand, there remain three spin-0 operators O1,4,6 (not
distinguishing operators one and two due two the linear dependence (2.58)) and two spin-1
operators O3,5.

Before moving on, it is important to note that not all operators in (2.53) are relevant
for the χ0χ0 → γ+X annihilation process. In particular, it turns out that the spin-triplet
operators O3 and O5 are unable to contribute to the annihilation process and can thus be
neglected in the computation of the cross section. This is because there is no spin-triplet
initial state for both wino and Higgsino DM and the Sommerfeld-enhanced scattering prior
to annihilation does not change the spin. The remaining operators O1,2,4,6 are spin-singlet,
so the dominant short-distance annihilation process occurs in the 1S0 configuration.

When matching computations are performed using dimensional regularization, one has
to take into account the appearance of evanescent operators. Evanescent operators are
operators that appear for space-time dimensions d 6= 4, which vanish however if d = 4. An
arbitrary full theory diagram in the calculation of the hard matching coefficients contains
a single string of Dirac matrices of the form

v̄(mχv)γµ1γµ2 · · · γµNu(mχv) . (2.62)

The indices µi are contracted with each other, n± from the spin matrix Γµν or the po-
larization vectors, εc⊥, εc̄⊥, of the outgoing gauge bosons. One can then make use of the
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2.4 Annihilation operator basis

on-shell condition v/u(p) = 0 and the relations n− = 2v − n+ and n+ · εc⊥ = n+ · εc̄⊥ = 0,
which imply {n/+, ε/c⊥} = {n/+, ε/c̄⊥} = 0. Combining these equalities with the fact that
the number of Dirac matrices in (2.62), N , has to be odd to obtain an S-wave annihilation
operator in the non-relativistic EFT, we are able to reduce the Dirac string (2.62) to

εc⊥ · εc̄⊥v̄(mχv)n/+u(p) , v̄(mχv) [ε/c⊥, ε/c̄⊥]n/+u(p) . (2.63)

Rewriting the spinors v̄ and u in terms of non-relativistic two-component objects ζv and
ηv, the first structure corresponds to the spin matrix of O3,5 and the second one to Γµν .
We thus confirm that there are indeed no evanescent operators and that (2.53) provides a
complete operator basis in d dimensions.
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3 Factorization of the energy spectrum

After having introduced the relevant theoretical framework as well as the annihilation
operator basis in the previous Section, we can now move on to derive the factorization
theorem for the annihilation cross section. This means that we use the SCET-methods
from Section 2.3.2 to split the cross section into contributions describing the different
momentum modes. We will see that in the end each momentum mode is described by a
dedicated function, which can be computed separately from the rest.

Since the cross section for the intermediate resolution case can be understood as a
generalisation of the narrow resolution case, we will present a more detailed discussion
for the former case and discuss modifications for the narrow resolution when appropriate.
In the following derivation, we will be as general as possible and keep quantum numbers
such as hypercharge or isospin multiplicity arbitrary. To allow for the notation to be as
clean as possible, we will again use the conventions introduced in (2.31) and (2.32). Only
at the end in Section 3.2 are we going to be more explicit and provide the cross sections
that are specific to wino and Higgsino DM in the two resolution cases. The logic of the
following derivation follows Section 2.2 of [7]. Furthermore, many equations presented
here have also either been extracted from Section 2.2 of [7], or represent generalisations of
the versions presented there.

To derive the factorization theorem for the intermediate resolution cross section, we
start from the general expression

d(σvrel)

dEγ
=

1

4

1

4m2
χ

∫

X

∑∫
d3pγ

(2π)32p0
γ

(2π)4

× δ(4)(pχχ̄ − pγ − pX)δ(Eγ − |pγ |)
∣∣Tχ0χ0→γX

∣∣2. (3.1)

where it is implied that we sum over all spin configurations. The explicit factor 1/4
accounts for the initial-state spin average. The sum-integral implies a sum over all kine-
matically allowed final states X with total momentum pX and the phase-space integral
over the final-state momenta. The momentum of the two fermion initial-state in the
center-of-mass frame is pχχ̄ = (2mχ +Eχχ̄)v, where Eχχ̄ is the small kinetic energy of the
two-particle DM state. The T-matrix element Tχ0χ0→γX which provides the probability
of a neutral two-particle DM state transitioning into a γ and an unobserved final state is
non-zero only if it is built with one of the operators established in the previous Section.
It is therefore given by

Tχ0χ0→γX =
1

2mχ

∑

i=

∫
dsdt Ĉi(s, t, µ) 2mχ 〈γ(pγ)XcXs|Oi| [χχ]00〉 , (3.2)

where the sum goes over i = 1, 2 or i = 1, 4, 6 for wino or Higgsino DM, respectively (where
for Higgsino DM we made use of the linear dependence (2.58) of operators O1,2). Since
we want to factorize the cross section into components corresponding to the momentum
modes (2.17), we have split the sum over the unobserved final state X into a (hard-)
collinear Xc and soft part Xs. We will see below how this matrix element separates into a
part containing the DM particles, which will be described by a NRDM EFT as introduced
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3 Factorization of the energy spectrum

in Section 2.3.1, and a part containing the gauge bosons, which will be described using
SCET as introduced in Section 2.3.2. The factor 2mχ comes from the non-relativistic
normalization of the external DM states.

We now make use of the decoupling transformations (2.20) and (2.47), which are field
redefinitions using Wilson lines, that decouple soft gauge bosons from the (hard-) collinear,
(hard-) anti-collinear and non-relativistic fields. The operators Oi then take the form

Oi = χc†v Γµνi [Y †v T
AB
i Yv]χv YAV+ YBW− GV⊥c,µ(sn+)GW⊥c̄,ν(tn−) . (3.3)

We make use of the symbol Y± to denote Wilson lines in the adjoint representation. Having
decoupled fields with different momentum modes means that those fields no longer interact
and that we can hence factorize the matrix element as follows

〈γ(pγ)XcXs| Oi |[χχ]00〉 = 〈γ(pγ)| GW⊥c̄,ν(tn−) |0〉〈Xc| GV⊥c,µ(sn+) |0〉
× 〈Xs| [Y †v TABi Yv]ab YAV+ YBW− |0〉Kab,I 〈0| [χc†v Γµνi χv]I |[χχ]00〉 . (3.4)

From (3.4) one can already guess which terms will give rise to which (anti-) collinear or soft
function. In order to evaluate the s and t integration in (3.2), we make use of translation
invariance

〈γ(pγ)| GW⊥c̄,ν(tn−) |0〉 = eitn−·pγ 〈γ(pγ)| GW⊥c̄,ν(0) |0〉 ,
〈Xc| GV⊥c,µ(sn+) |0〉 = eisn+·pXc 〈Xc| GV⊥c,µ(0) |0〉 , (3.5)

where pXc is the total four-momentum of the collinear final state. Using (3.5), we perform
the integration

Ci(n+pX , n−pγ , µ) =

∫
dsdt eisn+·pXc+itn−·pγ Ĉi(s, t, µ) . (3.6)

Making use of the kinematics of the process of interest and of the fact that we are only
considering leading order in λ, provides us with the relations n−pγ = 2Eγ ≈ 2mχ and
n+ · pX ≈ 2mχ which allow us to define

Ci(µ) = Ci(2mχ, 2mχ, µ) . (3.7)

These are the Wilson coefficients which contain the hard momentum modes and serve as
the coupling constants of the EFT. Analytic expressions for the Wilson coefficients of all
operators O1−6 are provided below in Section 6.1.

Having factorized the matrix element, we plug (3.4) and (3.7) into (3.2). After then
squaring the T-matrix element as well as writing the four-momentum conservation delta-
function in (3.1) as the space-time integral of the exponential, we arrive at the following
expression for the cross section

d(σvrel)

dEγ
=

∑

i.j=1,2

Ci(µ)C∗j (µ)
∑

I,J

1

4

1

4m2
χ

∫
d3pγ

(2π)32p0
γ

δ(Eγ − |pγ |)

×
∫
d4x ei(pχχ−pγ)·x 〈[χχ]00(pχχ)| [χc†v Γµ

′ν′

j χv]
†
J |0〉 〈0| [χc†v Γµνi χv]I |[χχ]00(pχχ)〉

× 〈0| GY⊥c̄,ν′ |γ(pγ)〉〈γ(pγ)| GW⊥c̄,ν |0〉
∫

Xc

∑
e−ipXc ·x 〈0| GX⊥c,µ′ |Xc〉〈Xc| GV⊥c,µ |0〉

×
∫

Xs

∑
e−ipXs ·xKab,IK

†
a′b′,J 〈0| Y

†A′X
+ Y†B′Y− [Y †v T

A′B′
j Yv]

†
a′b′ |Xs〉
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3.1 Function definitions

× 〈Xs| [Y †v TABi Yv]ab YAV+ YBW− |0〉 . (3.8)

Now we are almost in a position to read off the individual contributions of the momentum
modes to the cross section. The Sommerfeld factor can be extracted from the second line
of (3.8) by using (2.26) and (2.29), which results in

〈[χχ]00(pχχ)| [χc†v Γµ
′ν′

j χv]
†
J |0〉 〈0| [χc†v Γµνi χv]I |[χχ]00(pχχ)〉

= 4 〈ξc†0 Γµ
′ν′

j ξ0〉∗ 〈ξc†0 Γµνi ξ0〉SIJ , (3.9)

where ξ0 is the spinor of an external χ0 field (with the two spin orientations ↑, ↓). The
Sommerfeld factor depends on the small kinetic energy Eχχ̄, which in the present day
Universe is much smaller than the electroweak scale and thus smaller than any other scale
appearing in the process of interest. After having decoupled the non-relativistic matrix
element, the kinetic energy Eχχ̄ can be neglected in the other terms due to its smallness.
For the computation of the (hard-) collinear, anti-collinear and soft functions we can thus
set pχχ̄ = 2mχ.

Next, we again use translation invariance to absorb the exponentials e−ipXc ·x and
e−ipXs ·x, which enables us to perform the sums over the complete sets of collinear and
soft intermediate states. For the collinear function this means

∫

Xc

∑
e−ipXc ·x 〈0| GX⊥c,µ′ |Xc〉〈Xc| GV⊥c,µ |0〉 =

∫

Xc

∑
〈0| GX⊥c,µ′(x) |Xc〉〈Xc| GV⊥c,µ |0〉

=〈0| GX⊥c,µ′(x)GV⊥c,µ |0〉 . (3.10)

It will also prove to be convenient to introduce the soft operators

SiI,V W (x) = Kab,I [Y †v T
AB
i Yv]ab(x)YAV+ (x)YBW− (x) , (3.11)

which allow for a more concise notation. The soft momentum modes are then described
by

∫

Xs

∑
e−ipXs ·x 〈0|

[
S†
]j
J,XY

|Xs〉〈Xs| SiI,V W |0〉

=

∫

Xs

∑
〈0|
[
S†
]j
J,XY

(x) |Xs〉〈Xs| SiI,V W (0) |0〉

= 〈0| T̄
[ [
S†
]j
J,XY

(x)
]
T
[
SiI,V W (0)

]
|0〉 . (3.12)

Before arriving at the final formula for the factorized cross section, we are going to provide
the proper definitions of the individual functions appearing therein in the next Section.

3.1 Function definitions

3.1.1 Photon collinear function

The final state photon in the anti-collinear direction is described by the photon jet function,
which is defined as the following squared matrix element

− g⊥νν′ ZYWγ =
∑

λ

〈0|GY⊥c̄,ν′(0)|γ(pγ , λ)〉〈γ(pγ , λ)|GW⊥c̄ν(0)|0〉 . (3.13)
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3 Factorization of the energy spectrum

The sum over λ describes the sum over the different polarizations of the photon. The
possible values of the gauge boson indices in (3.13) are limited to Y,W = {3, 4}, where the
value is 3 or 4 if the photon originates from an SU(2) or a U(1)Y gauge boson, respectively.
This means that in the case of wino DM where only operators O1,2 contribute, the only
allowed index combination is Z33

γ . For Higgsino DM on the other hand, we have to take
into account the index combinations Z33

γ (from O1,2), Z34
γ and Z43

γ (from O4), and Z44
γ

(from O6). We will see in Section 6.2 however, that the different index combinations are
related in a rather straightforward manner. This means that one only has to compute
ZYWγ for one specific choice of Y and W , from which the other combinations can then be
derived.

From 2.17 we can see that the anti-collinear photon jet function has a virtuality of
m2
W , which means that it has to be computed using massive EW gauge bosons. It hence

depends on the SM particle masses mW , mZ , mH and mt. Furthermore, ZYWγ exhibits
the same virtuality as the soft function and the narrow resolution unobserved jet function,
but has parametrically different (anti-) collinear momentum components. In these cases,
as was already touched upon in Sections 2.1 and 2.3.2, a single regulator does not suffice
for the computation. Thus, the photon jet function depends on both the dimensional
regularization scale µ and the rapidity scale ν.

3.1.2 Unobserved-jet collinear function

The unobserved final state X is given by the collinear jet function that is defined as

− g⊥µµ′ JXV (p2,mW ) =
1

π
Im
[
− g⊥µµ′ iJXV (p2,mW )

]

≡ 1

π
Im
[
i

∫
d4x eip·x〈0|T

{
GX⊥c,µ′(x)GV⊥c,µ(0)

}
|0〉
]

=
1

2π

∫
d4x eip·x 〈0| GX⊥c,µ′(x)GV⊥c,µ(0) |0〉 . (3.14)

The computation of the unobserved jet function changes depending on whether we con-
sider the narrow or intermediate resolution regime. Hence, we will discuss the two cases
separately and to avoid confusion, we will write the unobserved jet function in the narrow
and intermediate resolution regimes as JXVnrw and JXVint , respectively.

JXV
nrw in the narrow resolution regime

The narrow resolution regime implies the following scaling for the invariant mass squared
p2 of the final state X: p2 ∼ m2

W . Hence the narrow resolution unobserved jet function has
the same virtuality as the photon jet function and the soft function. For its computation,
which is discussed in detail in Section 6.3.1, we thus also rely on the rapidity regulator
and it depends on the regulator scales µ and ν, as well as the EW scale masses mW , mZ ,
mH and mt. Similar to the photon jet function the gauge boson indices can take the
values X,V = {3, 4}, where for wino DM we only need J33

nrw while for Higgsino DM we
need the combinations J33

nrw, J34
nrw, J43

nrw and J44
nrw. Similar to the photon jet function, all

index combinations are related and once one combination is computed, the others can be
derived from it in a rather straightforward manner.

JXV
int in the intermediate resolution regime

The intermediate resolution case unobserved jet function is defined in terms of hard-
collinear fields and the invariant mass squared of the final state X scales as p2 ∼ mWmχ.
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3.1 Function definitions

This implies that JXVint is defined in SCETI (while JXVnrw is defined in SCETII). J
XV
int not

only depends on the hard-collinear scale through p2, but also on the EW scale mW which
arises from particles inside the jet. Using the naive definition (3.14), the unobserved jet
function is still a two-scale object and in order to obtain a factorization theorem that
depends on single-scale objects only, JXVint has to be re-factorized into a hard-collinear and
a collinear part [69]. Furthermore, the presence of both SU(2) and U(1)Y gauge bosons
means that it is convenient to further split JXVint into an SU(2) and a U(1)Y part

JXVint (p2,mW ) = J
SU(2)
int (p2)JXVm,SU(2)(mW ) + J

U(1)
int (p2)JXVm,U(1)(mW ) +O

(
m2
W

p2

)
. (3.15)

The hard-collinear parts J
SU(2)
int , J

U(1)
int can be seen as a matching coefficients for the

collinear mass-jet functions JXVm,SU(2) and JXVm,U(1). The coefficients J
SU(2)
int and J

U(1)
int depend

on p2 and the virtuality scale µ and are computed in the EW symmetric, i.e. massless,
limit. Since it does not feature the same virtuality as the photon jet function or the soft
function, we do not require an additional regulator for its calculation.

The mass-dependent collinear functions JXVm,SU(2) and JXVm,U(1) do not depend on p2 and
require a rapidity regulator. In Appendix E we show that if we assume massive gauge
boson propagators during the computation, we indeed obtain a result sensitive to mW .
However, as we explain there, this mass dependence should actually be attributed to the
soft region and must thus be discarded to avoid double counting, as it is already taken
into account by the soft function. We hence find the mass-dependent collinear function to
be trivial up to the one-loop order, which allows us to write (3.15) as

JXVint =
(
δXV − δX4δV 4

)
J

SU(2)
int + δX4δV 4J

U(1)
int . (3.16)

While for wino DM we only require J
SU(2)
int , for Higgsino DM we need to compute both

J
SU(2)
int and J

U(1)
int . The computation of the intermediate resolution unobserved jet function

is discussed below in Section 6.3.2.

3.1.3 Soft function - intermediate resolution

The definition for the soft function can be obtained from (3.8) and (3.11). First, we
use (3.11) to rewrite the last two lines in (3.8) as follows

∫

Xs

∑
e−ipXs ·xKab,IK

†
a′b′,J 〈0| Y

†A′X
+ Y†B′Y− [Y †v T

A′B′
j Yv]

†
a′b′ |Xs〉 〈Xs| [Y †v TABi Yv]ab YAV+ YBW− |0〉

=

∫

Xs

∑
e−ipXs ·x 〈0|

[
S†
]j
J,XY

(x) |Xs〉〈Xs| SiI,V W (0) |0〉 . (3.17)

The sum over Xs in (3.17) is the unit operator, which we can use to define the soft function
in momentum space

〈0| T̄[[S†]jJ,XY (x)] T[SiI,V W (0)] |0〉 ≡
∫

d4k

(2π)4
e−ik·xW ij

IJ,V WXY (k) . (3.18)

We also define the integrated soft function

W ij
IJ,V WXY (ω) =

1

2

∫
d(n+k)d2k⊥

(2π)4
W ij

IJ,V WXY (k)

=
1

4π

∫
d(n+y) eiωn+·y/2 〈0| T̄[[S†]jJ,XY (y−)] T[SiI,V W (0)] |0〉 , (3.19)

where ω = n− · k.
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3 Factorization of the energy spectrum

Wino DM For wino DM, we can somewhat simplify the general soft function defini-
tion (3.19). The gauge boson indices W , Y are contracted with the photon jet function.
In the case of wino DM, this means that we can fix W = Y = 3 since wino DM has
vanishing hypercharge. Furthermore, the soft function indices V , X are contracted with
the unobserved jet function (3.16). Since we only need the soft function contraction with

J
SU(2)
int for wino DM, in this case we may define

W
SU(2), ij
IJ,33 (ω) =

(
δXV − δX4δV 4

)
W ij
IJ,V 3X3(ω) . (3.20)

Higgsino DM For Higgsino DM, the indices W and Y can take the values 3 and 4, which
means that a notable simplification is not possible here. We can however use (3.16) to
define SU(2) and U(1)Y projected soft functions as follows

W
SU(2), ij
IJ,WY (ω) = (δXV − δX4δV 4)W ij

IJ,V WXY (ω) ,

W
U(1), ij
IJ,WY (ω) = δX4δV 4W ij

IJ,V WXY (ω) . (3.21)

While (3.21) does not aid in writing the cross section more compactly, it will make the
origin of the various terms more transparent and it is thus worthwhile to split the soft
function accordingly.

For both wino and Higgsino DM, the soft functions must be calculated in the EW
broken theory and consequently depend on the EW masses of the SM particles. Also, they
depend on the renormalization scale µ and the rapidity regularization scale ν. Details of
the computation are given in Section 6.4.

3.1.4 Soft function - narrow resolution

In the intermediate resolution case, the energy resolution is large enough to allow for soft
radiation into the final state. As a consequence, the intermediate resolution soft function
is defined at the squared amplitude level, as can be seen from (3.19). In the narrow
resolution case we have the scaling Eγres ∼ m2

W /mχ, which forbids real soft radiation. This
can be used to define the narrow resolution soft function at the amplitude level. The sum
over Xs in (3.17) is now empty, which allows us to write

∫

Xs

∑
〈0| [S†]jJ,XY (x) |Xs〉 〈Xs| SiI,V W (0) |0〉

→ 〈0| [S†]jJ,XY (x) |0〉 〈0| SiI,V W (0) |0〉 ≡ Di
I,V W Dj ∗

J,XY (3.22)

where Di
I,V W is defined as the vacuum matrix element of the soft operator (3.11).

Wino DM We discussed earlier in Sections 3.1.1 and 3.1.2 which index values are relevant
for wino DM in the narrow resolution case. The indices W , Y are contracted with the
photon jet function, which fixes them to W = Y = 3 and the indices V , X are contracted
with the unobserved jet function, which means they are also fixed to V = X = 3. In
summary, for wino DM, only the single SU(2) component Di

I,33 of the soft amplitude is
needed.

Higgsino DM The presence of a non-vanishing hypercharge makes things a bit more
intricate for Higgsino DM. Taking into account the discussion in Sections 3.1.1 and 3.1.2,
we can see that the relevant soft function amplitudes which need to be computed are the
following Di

I,33, Di
I,34, Di

I,43 and Di
I,44.
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3.2 Derivation of the final formula

3.2 Derivation of the final formula

Using the definitions of the individual functions provided in the previous Section, we can
now write down the factorization theorem in its final form. In Sections 3.2.1 and 3.2.2 we
are first going to give the factorization theorems for the intermediate and narrow resolution
cases, respectively, in their most general forms. Then, in the same Sections, we will also
provide the factorization theorems specifically for wino and Higgsino DM.

Before arriving at the final factorization theorems however, we need to comment on
ultrasoft modes which we have completely ignored so far. Even though soft modes have
been decoupled from (anti-) collinear and non-relativistic fields, they can all still interact
with ultrasoft modes. An ultrasoft Wilson line field redefinition on the other hand, takes
care of decoupling ultrasoft interactions from (anti-) collinear modes at leading power.
Implicitly, this has been used to write the different sectors in a factorized form. This
decoupling lead to several convolutions of the ultrasoft function with the different sectors.
The reason we did not include the ultrasoft function above is as follows: both the initial
state as well as the anti-collinear photon final state are electrically neutral, which prohibits
ultrasoft interactions. For the narrow resolution case, this is also true for the collinear
and soft final states. However the intermediate resolution hard-collinear and soft final
states, need not be electrically neutral. Now, one needs to remember, that all momentum
components of ultrasoft modes are small compared to the corresponding hard-collinear
and soft momentum modes, as can be seen from (2.17). Hence, at leading power, ultrasoft
interactions can be neglected, which allows us to ignore the ultrasoft mode.

3.2.1 Intermediate resolution

Using the definitions of the unobserved collinear jet function (3.14) and of the soft func-
tion (3.19), allows us to rewrite the corresponding terms in (3.8) as follows

∫
d4x ei(pχχ−pγ)·x 〈0| GX⊥c,µ′(x)GV⊥c,µ |0〉 ×

∫

Xs

∑
〈0| [S†]jJ,XY (x) |Xs〉 〈Xs| SiI,V W (0) |0〉

= −2π g⊥µµ′
∫
d4x

∫
d4p

(2π)4

∫
d4k

(2π)4
ei(pχχ−pγ−p−k)·x JXV (p2,mW )W ij

IJ,V WXY (k)

= −2π g⊥µµ′
∫

d4k

(2π)4
JXV (4mχ(mχ − Eγ − n−k/2),mW )W ij

IJ,V WXY (k)

= −2π g⊥µµ′
∫
dωJXV (4mχ(mχ − Eγ − ω/2),mW )W ij

IJ,V WXY (ω) , (3.23)

where in passing from the second to the third line we used p2 → (pχχ − pγ − k)2 ≈
4mχ(mχ − Eγ − n−k/2). The convolution between the intermediate resolution collinear
jet function and the soft function accounts for radiation of soft EW gauge bosons and
other soft particles into the final state, and virtual corrections. Next, we note that all
relevant operators for wino and Higgsino DM involve the same spin matrix (2.55), i.e.
Γµνi = εµν⊥ , i = {1, 2, 4, 6}. Consequently, we can simplify

〈ξc†0 Γµνj ξ0〉∗ 〈ξc†0 Γi,µνξ0〉 = εµν⊥ ε⊥,µν〈ξ
c†
0 ξ0〉∗ 〈ξc†0 ξ0〉 = 4 . (3.24)

Lastly, we can use the fact that no function in (3.8) depends on the direction of the photon
momentum pγ , which allows us to execute the photon phase-space integral as follows

∫
d3pγ

(2π)32p0
γ

δ(Eγ − |pγ |) =
Eγ
4π2

. (3.25)
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3 Factorization of the energy spectrum

Collecting all the results from the above discussion, we are able to write down the gen-
eral formula for the intermediate resolution factorization theorem, assuming an arbitrary
SU(2)⊗U(1)Y DM multiplet

d(σvrel)

dEγ
= 2

∑

I,J

SIJ ΓIJ(Eγ) , (3.26)

where SIJ and ΓIJ represent the Sommerfeld factor and the Sudakov annihilation rate,
respectively. The focus of this thesis lies on the calculation of the latter to NLL’ accuracy,
for the wino and Higgsino DM models. It is explicitly given by

ΓIJ(Eγ , µ) =
1

(
√

2)nid

1

4

2

πmχ

∑

i,j

Ci(µ)C∗j (µ)ZYWγ (µ, ν)

×
∫
dωJXVint (4mχ(mχ − Eγ − ω/2), µ)W ij

IJ,V WXY (ω) . (3.27)

In writing down (3.26) and (3.27) we switched from method-1 to method-2 (see Sec-
tion 2.3.1) and sum over distinguishable two-particle states I, J only. This implies certain
replacement rules for the potential used in the computation of the Sommerfeld effect
and for the annihilation matrix ΓIJ [78]. For example it introduces the factor 1/(

√
2)nid

in (3.27). The value of nid depends on how often identical DM particles appear in the
index pair I, J . Likewise, the overall factor of 2 in (3.26) is also a remnant of changing to
method-2.

Wino DM The general expression for the Sudakov annihilation rate (3.27) can be further
simplified if a specific DM model is assumed. For wino DM, only operators O1,2 contribute.
Furthermore, we can use (3.16) and (3.20) to simplify the unobserved jet function and
soft function, respectively. Lastly, remembering that the gauge indices of the photon jet
function are fixed to W = Y = 3, we define Zγ ≡ Z33

γ and write the soft function as

W
SU(2),ij
IJ,33 ≡W ij

IJ . The wino DM Sudakov annihilation rate is then given by

ΓIJ(Eγ , µ)|Wino =
1

(
√

2)nid

1

4

2

πmχ

∑

i,j=1,2

Ci(µ)C∗j (µ)Zγ(µ, ν)

×
∫
dωJ

SU(2)
int (4mχ(mχ − Eγ − ω/2), µ)W ij

IJ(ω) . (3.28)

For wino DM, the two-particle indices can take the values I, J = (00), (+−).

Higgsino DM In the case of Higgsino DM, the final form ΓIJ will be more involved.
First of all, we can use the linear dependence of operators O1,2 (2.58) to introduce new
Wilson coefficients

C̃1 =

(
C1 +

1

4
C2

) ∣∣∣∣
j=1/2

, C̃4 = C4|j=1/2 , C̃6 = C6|j=1/2 . (3.29)

Again, using the above discussion, we can write the Higgsino DM Sudakov annihilation
rate as follows

ΓIJ(Eγres)|Higgsino =
1

(
√

2)nid

1

4

2

πmχ

∑

i,j=1,4,6

C̃i(µ)C̃∗j (µ)ZWY
γ (µ, ν)
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3.2 Derivation of the final formula

×
∫
dω
(
J

SU(2)
int (2mχ(2Eγres − ω), µ)W

SU(2), ij
IJ,WY (ω, µ, ν)

+ J
U(1)
int (2mχ(2Eγres − ω), µ)W

U(1), ij
IJ,WY (ω, µ, ν)

)
. (3.30)

In the case of Higgsino DM, there are three non-relativistic two-particle indices relevant for
the annihilation process. Namely I, J = (11), (22), (+−), where the indices (11) and (22)
refer to the neutral two-particle states χ0

1χ
0
1 and χ0

2χ
0
2, respectively, while (+−) refers to

the two-particle state χ+χ− which is made up of charginos. The initial DM state is made
up of two χ0

1 particles, since χ0
1 constitutes the lighter neutral particle (see discussion

in Section 1.2.3). Note that the state χ0
1χ

0
2 is irrelevant, since the Sommerfeld effect

does not mix it either of the relevant states χ0
1χ

0
1, χ0

2χ
0
2 or χ+χ−. It is important to

remark that the Higgsino DM Sudakov annihilation rate does not depend on the mass
splittings δm and δmN at the NLL’ accuracy level. This implies the following relations
between certain index combinations of ΓIJ : Γ(11)(11) = Γ(11)(22) = Γ(22)(11) = Γ(22)(22) and
Γ(11)(+−) = Γ(22)(+−) = Γ∗(+−)(11) = Γ∗(+−)(22).

3.2.2 Narrow resolution

If we assume an energy resolution of Eγres ∼ m2
W /mχ, we learned earlier that some functions

in the factorization theorem need to be adjusted accordingly. For one, the gauge bosons in
the unobserved jet function (3.14) are assumed to have collinear scaling, which means that
JXVnrw has to be computed in the EW broken limit with massive SM particles. Furthermore,
the narrow energy resolution prohibits real soft radiation of EW gauge bosons into the
final state. Consequently, the narrow resolution soft function is defined at the amplitude
level (3.22). Note that the soft coefficients Di

I,V W are independent of ω, which means that
the convolution with the unobserved jet function disappears for the narrow resolution cross
section. The Sommerfeld factor SIJ does not depend on Eγres and thus remains the same
for both resolution cases.

Wino DM For wino DM the Sudakov-resummed annihilation rate for the narrow reso-
lution case is given by

Γnrw
IJ (Eγres)|Wino =

1

(
√

2)nid

1

4

2

πmχ

∑

i,j=1,2

Ci(µ)C∗j (µ)Z33
γ (µ, ν)

×DW,i
I,33(µ, ν)DW,j∗

J,33 (µ, ν)J33
nrw(4mχE

γ
res, µ, ν) . (3.31)

The two-particle indices I and J can take the values I, J = (00), (+−) and the superscript
W on the soft coefficients identifies them as the wino DM soft coefficients.

Higgsino DM For Higgsino DM the Sudakov-resummed annihilation rate for the narrow
resolution case is given by

Γnrw
IJ (Eγres)|Higgsino =

1

(
√

2)nid

1

4

2

πmχ

∑

i,j=1,4,6

C̃i(µ)C̃∗j (µ)ZWY
γ (µ, ν)

×DH,i
I,V W (µ, ν)DH,j∗

J,XY (µ, ν)JXVnrw (4mχE
γ
res, µ, ν) , (3.32)

where the SU(2)⊗U(1)Y indices are summed over V,W,X, Y = 3, 4. The two-particle
indices I and J can take the values I, J = (11), (22), (+−) and the superscript H on the
soft coefficients identifies them as the Higgsino DM soft coefficients.
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4 Resummation

The functions appearing in the annihilation rates derived in the previous Section all “live”
different natural scales. The factorization theorems that we derived allow us to compute
each function at its natural scale, which means that they will not exhibit any large Sudakov
logarithms. In order to arrive at a physical, scale-independent cross-section however, all
functions need to be evolved to one common reference scale. To achieve this, one has
to solve the renormalization group equations (RGEs), for the scales µ (virtuality) and
ν (rapidity), for each function appearing in the ΓIJ which results in evolution factors
for each function. Therefore, all functions can be calculated perturbatively at their own
characteristic scale and then be evolved to a common reference scale in µ and ν. Since
each function is evaluated at its own natural scale, no large logarithms are present in
the perturbative calculations. All of the large logarithms are resummed in the evolution
factors originating from the solution of the RGEs. How this works in practice will be
demonstrated explicitly for each function in Section 6.

The factorization theorems put constraints on the anomalous dimensions governing the
RG and RRG equations of the various functions in ΓIJ . The final result must be inde-
pendent of the virtuality and rapidity scale, which offers a strong check on the correctness
of the calculation. After having solved all RG and RRG equations, in Section 6.5 we
will confirm explicitly the RG and RRG invariance for both models and both resolutions.
Before moving on however, let us discuss which common reference scales were chosen in
the narrow and intermediate resolution cases.

Narrow resolution In the case of the narrow resolution, the unobserved jet function, the
photon jet function and the soft function all have the natural soft virtual scale µs ∼ mW .
In this case it is thus easiest to evolve the Wilson coefficients, which naturally reside at the
hard scale µh ∼ 2mχ, down to the soft scale. Furthermore, the collinear and anti-collinear
jet functions have as natural rapidity scale νh ∼ 2mχ, while the soft scale has as natural
rapidity scale νs ∼ mW . We choose to evolve the soft function from νs → νh.

Intermediate resolution When computing the intermediate resolution cross sections, one
has to choose a specific path to resum all functions to one common scale. Since there are
more scales involved, it is not as clear as in the narrow resolution case and two possibilities
for the resummation paths are displayed in Figure 4.1.

One possibility, shown in the left plot of Figure 4.1, is to evolve all functions in virtuality
µ and rapidity ν to the soft scales µs and νs. This means that the Wilson coefficients are
evolved in µ from the hard scale µh ∼ 2mχ down to the soft scale µs ∼ mW and the
unobserved jet functions are also evolved from the jet scale µj ∼

√
2mχmW to the soft

scale. The photon jet function does not need to be resummed in virtuality, but the rapidity
scale is evolved from νh ∼ 2mχ to νs ∼ mW . The natural virtuality and rapidity scales of
the soft functions are the soft scales µs and νs, so there is no need for resummation here.
This resummation scheme is more in line with the narrow resolution case, where there are
only two virtuality scales µh and µs and here it is most convenient to simply evolve the
Wilson coefficients to the soft scale.
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4 Resummation

Figure 4.1: Different possibilities for resumming the functions in the factorization theorem. Left:
common reference scale is µs. Right: common reference scale is µj . In both cases,
Zγ is evolved in ν from νh to νs. This Figure has been extracted from [7].

While the first resummation option allows one to treat the resummation of both reso-
lution cases on a similar footing, there is another option that is more conventional in the
presence of an intermediate hard-collinear scale. This resummation scheme is illustrated
in the right plot of Figure 4.1. Here, the common virtuality reference scale is chosen to
be the jet scale µj . As a consequence, the Wilson coefficients are evolved from µh to µj .
The photon jet function is first evolved in ν from νh to νs and then in µ from µs to µj .
The soft function is also evolved in µ from µs to µj and the unobserved jet function does
not require resummation since with the scale choice µ = µj all logarithms are small.

Both resummation schemes give the same results up to effects beyond the accuracy of
the truncation of the RG equations. This was checked explicitly for the wino DM model by
expanding the resummed cross section up to two-loops and the discussion for this analysis
is presented in Appendix A.
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5 Mass corrections

The factorization formulas derived in Section 3 only take into account leading order power
corrections. This means that terms proportional to v2, δm/mχ or λ ∼ mW /mχ and higher
powers are neglected. The DM velocity has a value of v2 ∼ 10−6 for DM annihilation in
Milky Way-sized galaxies and the mass splittings are of the order of δm/mχ ∼ 10−4 for
wino and Higgsino DM models. Corrections from v2 and δm/mχ can thus safely be dis-
carded since they are negligible compared to the percent level accuracy of NLL’ resummed
annihilation rates. Linear mass corrections on the other hand might give also give percent
level corrections since mW /mχ ∼ 0.1 × (1 TeV/mχ). This is especially interesting for
Higgsino DM, where the correct relic density is achieved for mχ ∼ 1 TeV. In this Section
we investigate whether such linear O(λ), next-to-leading-power mass corrections may be
important. The computations presented here have been done independently by CH, Kai
Urban and Martin Vollmann, in order to assure their correctness. The arguments given
here follow Section 3 of [8].

In order to assess the impact of power corrections on the cross section we compute the
amplitude for χ0χ0 → γγ to O(λ) in the full theory. For Higgsino DM, we find for the
amplitude at vanishing relative velocity v = 0, expanded in λ = mW /mχ up to O(λ) the
expression

iMχ0
1χ

0
1→γγ =

ie4

16π2s2
Wm

2
χ

1

2
ε∗µ(p3)ε∗ν(p4)v̄(p2) [γµ, γν ] p/3u(p1)

×
[
−2π

mχ

mW

(
1 +

1

24

m2
W

m2
χ

)
− 2 +

π2

4
+ (−1 + iπ) ln

4m2
χ

m2
W

+O
(
m2
W

m2
χ

)]
.(5.1)

The amplitude (5.1) was computed assuming Higgsino DM. We note however that this

result also holds for wino DM up to an overall constant. More specifically, iMχ0χ0→γγ
Wino =

4iMχ0
1χ

0
1→γγ

Higgsino , since the only different relevant couplings are 1
2 χ̄

0
1 /W

+
χ− for the Higgsino

and χ̄0 /W
+
χ− for the wino. In order to arrive at this result, we used FeynRules [90] for

the model implementation, FeynArts [91] for the Feynman rules and diagram generation,
FormCalc [92] for amplitude processing and PackageX [93] for the evaluation of the loop
integrals.

Having computed (5.1) to next-to-leading-power in the mass corrections, we now need
to identify the origin of each term. We will see below that the finite and logarithmic pieces
are all included in the Sudakov annihilation rate. In particular, by removing the mχ/mW

and mW /mχ terms and squaring the remaining amplitude, we reproduce the result we
obtained from performing an NNLO expansion of the Sudakov annihilation rate. The
relevant results from this expansion are collected in (A.33). What remains to be checked
is whether the terms mχ/mW and more interestingly mW /mχ are associated with the
Sommerfeld effect, or whether they also originate from the Sudakov factor.

To confirm this, we compute the diagram depicted in Figure 5.1 (and the one with the
photon lines crossed) in the potential region up to O(λ) using the strategy of regions.
The potential region of these diagrams is associated with the Sommerfeld effect and this
procedure hence allows us to check if the mχ/mW and mW /mχ terms in (5.1) should
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5 Mass corrections

χ0
1

χ0
1

γ

γ

Figure 5.1: Diagram computed in the potential region to subleading power to subtract the Som-
merfeld effect from the fixed order result. This Figure has been extracted from [8].

be associated with the Sommerfeld factor. We verify that the mass ratio terms in (5.1)
are indeed associated with the non-relativistic dynamics of the problem. In particular, in
the context of non-relativistic effective theory, the coefficient 1/24 originates partly from
subleading-power potentials (-1/8), which are O(v2) and thus not included in [81], and
partly from (at the squared amplitude level) the matrix element of the dimension-8 deriva-
tive S-wave operator P(1S0) introduced in [78,82] (+1/6). In the non-relativistic effective
theory, leading-power contributions are counted as O(λ−1) and linear power corrections
actually should be treated as quadratic corrections O(λ2) to the leading Sommerfeld en-
hancement, as depicted in (5.1). This means that the next-to-leading-power correction,
including the factor 1/24, will be responsible for a 3×10−4 correction to the cross section.
In conclusion, we confirm that for both wino and more importantly also for Higgsino DM
it is safe to neglect power corrections in mW /mχ, since these do not degrade the percent
level accuracy at NLL’ in the interesting mχ regime.
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6 NLL’ resummation

In this Section, we collect the one-loop results for the hard matching coefficients, the
(anti-) collinear and the soft functions which are the required ingredients to compute the
cross section at NLL’ accuracy. We furthermore solve the renormalization group equations
(RGEs) and rapidity renormalization group equations (RRGs) of these functions, which is
required for resummation. The results are presented in the most general possible way, i.e.
the matching coefficients are computed for general isospin j and hypercharge Y . Also, the
(anti-) collinear jet functions are universal. Only the soft functions are model specific and
had to be computed separately for wino DM with j = 1, Y = 0 and Higgsino DM with
j = 1/2, Y = 1/2. Lastly, we confirm the consistencies of the different renormalization
groups. This Section follows, collects and extends the results that have already been given
in Section 3 and Appendix B.2 of [7] and Appendix C of [8].

6.1 Hard function

This Section discusses the computation of the Wilson coefficients and their resummation.
For completeness, we compute all Wilson coefficients Ci, i = 1−6 with general isospin j and
hypercharge Y . Since resummation is model specific, we will discuss wino and Higgsino DM
separately in Section 6.1.4 and only for the relevant operators that contribute to χ0χ0 →
γ + X. As is common for complex calculations, they are usually done independently by
different people. In the case of the hard function the results which are specific to wino DM
have been computed by Alessandro Broggio and CH, while the results specific to Higgsino
DM have been computed by CH and Kai Urban.

6.1.1 Method of computation and bare amplitudes

The hard matching coefficients are computed by matching the full theory (SM plus an
isospin-j DM multiplet) onto the effective theory. This is done via a matching condition,
which requires on-shell amplitudes computed in the full and the effective theory for 2→ 2
annihilation of two DM fields into two gauge bosons of SU(2) and/or U(1)Y type to be
equal

MAB
full ({p, s}) =

1

2mχ

∑

i

Cbare
i ({p}) (2mχ)〈Obare

i 〉AB({p, s}) , (6.1)

where MAB
full ({p, s}) is the UV-renormalized amplitude in the full theory and the sym-

bol {p, s} represents the momenta and spin/polarization orientations of the four external
particles. For the computation, the momenta of the initial-state DM particles are set
to pµχ = mχ(1,0) and the momenta of the final-state gauge bosons are pµ3 = mχn

µ
− and

pµ4 = mχn
µ
−. This is possible since the operators Oi in (6.1) are of S-wave type as explained

in Section 2.4, which means that we can set the relative momenta of the annihilating
particles to zero when computing their coefficients. To extract the individual matching
coefficients, we define projectors which project out the specific group and spin structures
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6 NLL’ resummation

of the individual operators

∑

s

PABi ({p, s})MAB
full ({p, s}) =Mi, full(4m

2
χ) , (6.2)

where Mi, full are the full theory projected amplitudes, associated with the gauge and
spin structures of operators Oi. Since mχ � mW , the hard matching coefficients are
computed in the EW symmetric limit and all SM particles are assumed to be massless. This
means that all loop diagrams on the effective theory side of the matching computation are
scaleless and vanish in dimensional regularization, since the heavy WIMPs are integrated
out. Hence the expressions in (6.2) directly correspond to the bare matching coefficients.
The specific form of the projectors is as follows

PAB1 ({p, s}) =
1

(3− 4c2(j))(2j + 1)

(
1− 2c2(j)

2
TAB1 + TAB2

)

×
ū(pχ, s1)(/n+ − /n−)[γσ, γρ]v(pχ, s2)ερ(p3, s3)εσ(p4, s4)

32mχ (1− 3ε+ 2ε2)
,

PAB2 ({p, s}) =
1

(3− 4c2(j))(2j + 1)

(
TAB1 +

−3

c2(j)
TAB2

)

×
ū(pχ, s1)(/n+ − /n−)[γσ, γρ]v(pχ, s2)ερ(p3, s3)εσ(p4, s4)

32mχ (1− 3ε+ 2ε2)
,

PAB3 ({p, s}) =
iεCABTC

2c2(j)(2j + 1)

ū(pχ, s1)(/n+ − /n−)gσρ⊥ v(pχ, s2)ερ(p3, s3)εσ(p4, s4)

32mχ (1− ε) ,

PAB4 ({p, s}) =
TAδB4

c2(j)(2j + 1)

ū(pχ, s1)(/n+ − /n−)[γσ, γρ]v(pχ, s2)ερ(p3, s3)εσ(p4, s4)

32mχ (1− 3ε+ 2ε2)
,

PAB5 ({p, s}) =
TAδB4

c2(j)(2j + 1)

ū(pχ, s1)(/n+ − /n−)gσρ⊥ v(pχ, s2)ερ(p3, s3)εσ(p4, s4)

32mχ (1− ε) ,

PAB6 ({p, s}) =
2δA4δB4

(2j + 1)

ū(pχ, s1)(/n+ − /n−)[γσ, γρ]v(pχ, s2)ερ(p3, s3)εσ(p4, s4)

32mχ (1− 3ε+ 2ε2)
, (6.3)

where ε = (4 − d)/2, d is the space-time dimension and c2(j) = j(j + 1) for an isospin-
j representation. The projectors P1,2,4,6 and P3,5 respectively have the same Dirac and
Lorentz index structure between them, while group index structures are different. This
reflects the Dirac, Lorentz and group structures of the operator basis (2.53). Both the
operators and amplitudes can be considered as operators in spin space.

For NLL’ accuracy, we need to compute the matching coefficients at one-loop order.
In Figure 6.1, we show a representative sample of diagrams that appear in the matching
calculation. The matching procedure was automatized using a number of software tools.
In particular, as for the computation of the fixed order process χ0χ0 → γγ in Section 5,
we used FeynRules [90], FeynArts [91] and FormCalc [92] for model implementation and
amplitude generation. Afterwards, a private code written in FORM [94] was used to simplify
Dirac structures and SU(2) group structures. This works as follows: FormCalc is able to
output the set of amplitudes describing the annihilation process in a FORM-compatible style.
These amplitudes are then loaded into the FORM-code for further processing. There, after
having implemented the projectors (6.3), one multiplies the FormCalc-amplitudes with
Pi. The next step is to simplify the group structures as much as possible, for which the
necessary relations are given in [95]. Then, one can take the trace of the Dirac structure
and use the kinematics of the annihilation process to simplify scalar products. Lastly, any
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6.1 Hard function

χ

χ A

A, B

χ

χ

A, B

A, B

χ

χ

A

A

χ

χ

A

A, B

Figure 6.1: Representative sample of one-loop diagrams contributing to the computation of the
Wilson coefficients. External A and B represent SU(2) and U(1)Y gauge bosons,
respectively. This Figure has been extracted [7].

scalar products in the numerator involving the loop momentum are removed using the
structures of the denominators of the amplitude’s propagators. An example for this is

k · pχ
(k2 −m2

χ)(k − pχ)2
=
−1

2

[
(k − pχ)2 − p2

χ

]

(k2 −m2
χ)(k − pχ)2

=− 1

2

1

(k2 −m2
χ)

+
p2
χ

2

1

(k2 −m2
χ)(k − pχ)2

, (6.4)

where k is the loop momentum. Removing all loop momenta from the numerators like
this leaves us with scalar integrals only. Finally, Reduze [96] was used to reduce the scalar
loop integrals to a set of seven master integrals via integration by parts. These master
integrals were then computed by hand and the results are given by

∫
ddk

(2π)d
1

((k + pχ)2 −m2
χ)((k + pχ − p4)2 −m2

χ)((k − pχ)2 −m2
χ)

=

i(4m2
χ)−ε(e−γE4π)ε

(
− π2

8m2
χ

)

∫
ddk

(2π)d
1

k2((k + pχ)2 −m2
χ)((k − pχ)2 −m2

χ)
= i(4m2

χ)−ε(e−γE4π)ε
(
− π2

8m2
χ

)

∫
ddk

(2π)d
1

k2((k − pχ)2 −m2
χ)

= i(4m2
χ)−ε(e−γE4π)ε

(
1

ε
+ 2

)

∫
ddk

(2π)d
1

((k + pχ)2 −m2
χ)

= i(4m2
χ)−ε(e−γE4π)εm2

χ

(
1

ε
+ 1 + 2 ln 2

)

∫
ddk

(2π)d
1

(k2 −m2
χ)((k − p3)2 −m2

χ)(k + pχ − p3)2(k − pχ)2
=

i(4m2
χ)−ε(e−γE4π)ε

m4
χ

(
1

4ε2
− 7

48
π2

)

∫
ddk

(2π)d
1

(k2 −m2
χ)(k + pχ)2(k + pχ − p4)2(k − pχ)2

=

i(4m2
χ)−ε(e−γE4π)ε

m4
χ

(
− 1

4ε2
− iπ

8ε
+
π2

12

)

∫
ddk

(2π)d
1

(k + pχ)2(k + pχ − p4)2
= i(4m2

χ)−ε(e−γE4π)ε
(

1

ε
+ 2

)
, (6.5)
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6 NLL’ resummation

The results of this matching procedure are the following bare projected full theory ampli-
tudes

Mbare
1 full(4m

2
χ) =

g4
2 bare

16π2
(4m2

χ)−ε(e−γE4π)ε
[

1

ε
c2(j) (2− 2iπ)− c2(j)

(
4− π2

2

)]

Mbare
2 full(4m

2
χ) = g2

2 bare +
g2

2 bare g
2
1bareY

2

16π2

(
π2

2
− 10

)
+
g4

2 bare

16π2
(4m2

χ)−ε(e−γE4π)ε

×
[
− 4

ε2
+

1

ε
(−6 + 2iπ) + 16− π2

6
− c2(j)

(
10− π2

2

)]

Mbare
3 full(4m

2
χ) =

g2
2 bare g

2
1bareY

2

16π2
(4m2

χ)−ε(e−γE4π)ε
(
−6

ε
− 12 + 2π2 − 28 log 2

)

+
g4

2 bare

16π2
(4m2

χ)−ε(e−γE4π)ε
[
−6c2(j)

ε
+

20

3
− 2π2 + 8 log 2

+c2(j)

(
−12 + 2π2 − 28 log 2 + (1 + 2j)

(
26

9
− π2

3
+

2

9
nG

))]
,

Mbare
4 full(4m

2
χ) = g2 bare g1bareY +

g2 bare g
3
1bareY

3

16π2

(
π2

2
− 10

)
+
g3

2 bare g1bareY

16π2

× (4m2
χ)−ε(e−γE4π)ε

[
− 2

ε2
− 2

ε
+
π2

6
+ 6 + c2(j)

(
π2

2
− 10

)]
,

Mbare
5 full(4m

2
χ) = 0 ,

Mbare
6 full(4m

2
χ) = g2

1bareY
2 +

g2
2bareg

2
1bareY

2

16π2
c2(j)

(
π2

2
− 10

)
+
g4

1bareY
4

16π2

(
π2

2
− 10

)
,

(6.6)

where

g2bare = Zg2 µ̃
εĝ2(µ) , g1bare = Zg1 µ̃

εĝ1(µ) , µ̃2 =
µ2eγE

4π
. (6.7)

For reasons of brevity, we suppress the µ-dependence of the renormalized SU(2) and U(1)Y
coupling constants in intermediate results. Having computed the bare amplitudes, we
now need to remove the UV divergences, which is done by coupling, field and DM mass
renormalization. The coupling constants are renormalized in the MS scheme while the
mass and field renormalization is done in the on-shell scheme so that no further residue
factor is required to obtain the on-shell amplitude. The SU(2) and U(1)Y coupling, DM
mass and field renormalization, and the SU(2) and U(1)Y gauge boson field renormalization
constants are respectively given by

Zg2 = 1 +
ĝ2

2

16π2

1

ε

[2

3
c(j)r − 43

12
+

2

3
nG

]
, (6.8)

Zg1 = 1 +
ĝ2

1Y
2

16π2

1

ε

[2

3
r +

1

12
+

10

9
nG

]
, (6.9)

Zmχ = 1−
(
ĝ2

2c2(j) + ĝ2
1Y

2
)

16π2
eγEεΓ(1 + ε)

( µ2

m2
χ

)ε 3− 2ε

ε(1− 2ε)
, (6.10)

Zχ = 1−
(
ĝ2

2c2(j) + ĝ2
1Y

2
)

16π2
eγEεΓ(1 + ε)

( µ2

m2
χ

)ε 3− 2ε

ε(1− 2ε)
, (6.11)

ZA = 1 +
ĝ2

2

16π2

( µ2

m2
χ

)ε[
− 4

3ε
c(j)r +O(ε)

]
, (6.12)
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6.1 Hard function

ZB = 1 +
ĝ2

1Y
2

16π2

( µ2

m2
χ

)ε[
− 4

3ε
r +O(ε)

]
, (6.13)

where c(j) = c2(j)(2j + 1)/3 and nG = 3 is the number of fermion generations. It is
interesting to identify the origin of the terms in the renormalization constants of the
coupling constants given in (6.8) and (6.9). The terms 2c(j)r/3 and 2r/3 correspond
to the heavy DM fermion contributions, −43/12 and 1/12 are gauge boson and Higgs
contributions, while 2nG/3 and 10nG/9 arise from the SM fermion loops. The parameter
r takes the values r = 1 for Dirac DM and r = 1/2 for Majorana DM.

As explained in Section 2, the heavy WIMPs are integrated out from the effective theory
which means that they do not contribute to the running of the gauge couplings anymore.
This is similar to the case of QCD, when switching between schemes with different massless
quark flavors. To decouple the DM contribution from the running of the couplings ĝ1 and
ĝ2, we perform the replacements

ĝ2
1 −→ ĝ2

1 +
ĝ4

1

16π2

[
4

3
r ln

µ2

m2
χ

]
,

ĝ2
1 −→ ĝ2

2 +
ĝ4

2

16π2

[
4

3
c(j)r ln

µ2

m2
χ

]
, (6.14)

After decoupling the DM contribution from the running of the gauge couplings and ap-
plying the renormalization constants (6.8)− (6.13) to the bare projected full theory am-
plitudes, we arrive at the UV-renormalized projected full theory amplitudes, which equal
the bare Wilson coefficients
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1 =

ĝ4
2
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[
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ε
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2
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+

ĝ4
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,
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2
1Y

2

16π2
c2(j)

(
π2

2
− 10

)
+
ĝ4
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. (6.15)

Before moving on to discussing the cancellation of the remaining IR divergences, we should
comment on some subtleties concerning the calculation of Cbare

3 and Cbare
5 . We will also

highlight some differences between the two DM models and mention alternative methods
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of computations. Since Cbare
3 has no tree level contribution one would naively suspect

that it should be finite at one loop. However, as can be seen from (6.6) this is not the
case. To understand this, we note that the vanishing tree level comes from a cancellation
between the s-channel diagram and the t/u-channel diagrams. This is similar to what
has been observed for the corresponding quarkonium calculation in QCD [97]. On the
other hand, DM mass counterterm insertions exist only for t- and u-channel diagrams but
not for the s-channel diagram. This means that the mass renormalization contribution
survives, resulting in a finite Cbare

3 Wilson coefficient (6.15).

How can the same result be recuperated in bare perturbation theory, since there is
apparently no bare mass to substitute the renormalized one as there is no tree-level? When
performing on-shell matching, the masses of the external particles take the renormalized
on-shell values at the corresponding loop order. At tree level, this means that we have bare
masses from the explicit mass terms in the propagators and renormalized masses when
applying on-shell kinematics to the momenta of the external particles. The cancellation
between the s-channel and t/u-channel diagrams then has a one-loop difference remaining
between the bare and the renormalized mass in the t- and u-channel diagrams. In this
way, we also arrive at the finite result (6.15) using bare perturbation theory.

Operator O5 only appears in the Higgsino DM model, but even there it is irrelevant
for the process of interest as already explained in Section 2.4. We also find that the
corresponding Wilson coefficient vanishes at the one-loop order, which is a consequence
on the Landau-Yang theorem. The theorem does not apply to non-abelian gauge theories
[97,98], since the final state bosons carry an internal quantum number and structures can
be form involving the group structure constant. While it is possible that these structures
form for the matching coefficient of O5, this is not possible at the one-loop level since one
of the final state gauge bosons is abelian.

To obtain the bare Wilson coefficients specific to wino and Higgsino DM from the
generic expressions in (6.15), one has to set j = 1 and Y = 0 for wino DM and j = 1/2
and Y = 1/2 for Higgsino DM. It is interesting to note that for the matching procedure for
Higgsino DM, one has to take into account more diagrams. This is on the one hand due to
the larger operator basis which now also contains the U(1)Y gauge boson and on the other
hand due to the fact that Higgsino DM consists of Dirac fermions, which means that one
has to take into account multiple charge flows for closed DM particle loops. Despite the
differences in diagrams, it turns out that the relevant Wilson coefficients are equivalent
for both Dirac and Majorana DM particles. The reason for this is explained below (6.27).

The Wilson coefficients here are computed by applying the projectors (6.3) to the full
theory amplitude according to (6.2). The advantage of this method is that it allows us to
use the trace properties of the γ-matrices, which greatly simplify expressions. This can
be done particularly efficiently in FORM. Also, since the are no open Lorentz indices, one
only has to deal with scalar integrals which can be reduced to a set of master integrals
more easily. While this method allows for an arguably easier computation, a possible
disadvantage is that one might miss evanescent operators, although these do not appear
in our case as explained at the end of Section 2.4. Alternatively, one can obtain the Wilson
coefficients by removing spinors and polarization vectors from the amplitudes and then use
commutation relations for γ-matrices and group generators to simplify their structures as
much as possible. The integrals are written in terms of Passarino-Veltman inegrals, which
can be reduced and solved using for example PackageX. In the end, the group and Dirac
structures should resemble those from the operator basis and the Wilson coefficients can
be readily read off. Using this alternative method, one does not miss evanescent operators,
but the calculation might be more cumbersome (although given the advent of more and
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6.1 Hard function

Figure 6.2: One-loop diagrams contributing to the effective theory matrix elements. Double lines
represent the heavy fermions, curly lines represent soft gauge bosons while curly lines
with a solid line inside represent collinear and anti-collinear gauge fields.

more reliable software for manipulating analytic expressions of Feynman diagrams, this
point is not quite true anymore).

6.1.2 Operator renormalization in the effective theory

To cancel the remaining IR divergences in the bare Wilson coefficients (6.15), we need
to compute the annihilation process in the effective theory. Making use of the matching
condition (6.1) will then allow us to remove the IR divergences from the Cbare

i . However,
effective theory diagrams are scaleless and therefore vanish in dimensional regularization.
To regulate the IR divergences, we put the momenta for the incoming heavy DM particles
and outgoing gauge bosons slightly off-shell. The relevant effective theory diagrams are
depicted in Figure 6.2 and for their calculation we make use of the Feynman rules which
are provided in Appendix D, as well as of the integrals

∫
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=
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+
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, (6.16)
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where the integration measure [dk] is defined in (2.2). For computing these integrals, it is
useful to remember the definitions pµχ = mχv

µ. pµ3 = mχn
µ
− and pµ4 = mχn

µ
+. This allows

us to obtain the following UV poles in the MS scheme
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ĝ2
2

16π2

[
2

ε2
+

1

ε

(
4− 2c2(j) + 2 ln

µ2

4m2
χ

)]}
,

〈Obare
5 〉 = 〈O5〉tree

{
1 +

ĝ2
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where 〈Oi〉 corresponds to the tree-level matrix element of operator Oi. It is important
to notice that these expressions do not depend on the infrared regulator and that they
only depend on the hard scale 2mχ. We still need to add to the expressions in (6.17) the
effective theory wavefunction renormalization factors, which read as follows
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By combining everything we arrive at
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ĝ1
2Y

2

16π2

1

ε

[
− 1

6
− 20

9
nG

]}
. (6.19)

The MS operator renormalization constants Zij are a matrix in operator space such that
Ôbare
i = ZijÔren

j (µ), i, j = 1, 2, 3, 4. The explicit expressions for the Zij are given by
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By applying the operator renormalization constants to the UV renormalized Wilson coef-
ficients Cbare

i as follows

Ci(µ) = ZjiC
bare
j , (6.21)

we find that all 1/ε poles cancel and we obtain the explicit results for the hard matching
coefficients Ci(µ), which are given below in Section 6.1.4.

6.1.3 Operator Z-factors from the anomalous dimension

Above we computed the operator renormalization factors by using the effective theory
amplitudes. Another possibility to obtain Zij is by adapting the anomalous dimension
knows for QCD processes [99, 100] to the SU(2) and U(1)Y gauge groups. We switch to
the operator basis where the DM bilinear is in a definite isospin representation

O′ = V̂ TO , V̂ =




1 − c2(j)
3 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



. (6.22)
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The advantage of this representation is that the anomalous dimension at threshold is
diagonal. For the case of Higgsino DM, the anomalous dimension has to account for
the appearance of SU(2) and U(1)Y gauge bosons, in different operators. Hence, the
anomalous dimension given in (A.21) of [7] has to be augmented by terms associated to
the U(1)Y gauge boson. Then, to write the anomalous dimensions in a compact form and
to make obvious which parts contribute to which operator, it is convenient to split the
anomalous dimension into an SU(2) and a U(1)Y part

Γ
(J)
SU(2),i =

1

2
γcusp

[
c2(ad)ni,SU(2)

(
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]
+ γad ni,SU(2) + γJH,s ,

ΓU(1),i = γU(1) ni,U(1) , (6.23)

where ni,SU(2) and ni,U(1) give the number of SU(2) and U(1)Y gauge fields in operator
Oi, J is the representation of the DM fermion pair, c2(ad) is the Casimir value of the
SU(2) gauge boson in the adjoint representation and c2(J) the one for the DM fermion
pair. The quantities γad and γU(1) are the SU(2) and U(1) gauge boson anomalous dimen-

sions, respectively, and γJH,s is the anomalous dimension of the heavy fermion pair. The
anomalous dimensions have perturbative expansions in terms of α̂1 and α̂2

γcusp(α̂2) =γ(0)
cusp

α̂2

4π
+ γ(1)

cusp

(
α̂2

4π

)2

+O
(
α̂3

2

)
,

γ(0)
cusp =4 , γ(1)

cusp =

(
268

9
− 4π2

3

)
c2(ad)− 80

9
nG −

16

9
,

γad(α̂2) =γ
(0)
ad

α̂2

4π
+O

(
α̂2

2

)
,

γ
(0)
ad =− β0,SU(2) = −

(
43

6
− 4

3
nG

)
,

γU(1)(α̂2) =γ
(0)
U(1)

α̂1

4π
+O

(
α̂2

1

)
,

γ
(0)
U(1) =− β0,U(1) = −

(
−1

6
− 20

9
nG

)
,

γJH,s =γ
(0)
H,sc2(J)

α̂2

4π
+O

(
α̂2

2

)
,

γ
(0)
H,s =− 2 . (6.24)

The operator Z-factor in the MS scheme can be obtained from the anomalous dimension
and up to order ĝ2

1, ĝ2
2 it reads
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In the diagonal basis defined in (6.22) we find
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ĝ2

2

16π2

[
4

ε2
+

1

ε

(
79

6
− 4

3
nG + 4 ln

µ2

4m2
χ

− 2iπ

)]
,

Z33 =1 +
ĝ2
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Transforming back to the non-diagonal basis, we find agreement with (6.20).

6.1.4 Wilson coefficients and resummation

Using the the operator renormalization factors Zij that were derive in the previous two
Sections, we can now remove the remaining IR poles of the bare Wilson coefficients (6.15)
via the relation (6.21). This results in the following expressions for the Wilson coefficients
for general j and Y
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We find that operators O1,2 have the same Wilson coefficients at one-loop order for both
Dirac and Majorana DM. This is no surprise since a possible difference could only arise
from s-channel diagrams with a fermion-fermion-gauge boson vertex. At threshold these
diagrams do not contribute to the amplitude. The Wilson coefficient C3(µ) on the other
hand does depend on which type of fermion the DM is made up of. In (6.27) it is assumed
that the DM consists of Dirac particles. If on the other hand we consider Majorana DM,
we find

C3(µ)|Majorana =
ĝ4

2

16π2

[
20

3
− 2π2 + 8 log 2

+ c2(j)

(
−4 + 2π2 − 16 log 2 + (1 + 2j)

(
4

3
− π2

6
+

2

9
nG

))]
. (6.28)

The Wilson coefficients C1−3 were computed before in [68] for j = 1 and Y = 0, i.e. the
pure wino DM case, in the context of resumming the annihilation rate to the exclusive
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Figure 6.3: Evolution of the real part of the wino DM matching coefficients in various approx-
imations for mχ = 5 TeV, µh = 2mχ. This Figure has been extracted from [9].

γγ, γZ final state. The results given there for C3 differ from ours. We attribute this
difference to an opposite sign in one of the diagrams in [68], namely T5b, and missing mass
renormalization (counterterm) diagrams. The subtlety related to the mass renormalization
of C3 was discussed above, in the paragraph below (6.15). On the other hand, we note
again that O3 is not relevant for χ0χ0 → γ +X and this discrepancy will thus not affect
the numerical values of the annihilation rate.

If we assume that the scale µ in (6.27) is of the order of the hard scale µ ∼ µh ∼ 2mχ,
it is apparent that no large logarithms appear in the Wilson coefficients. As discussed in
Section 4, all functions in the factorization theorem must be evolved to the same reference
scale, which is achieved by solving the corresponding RGEs. By doing so one resums any
potential large Sudakov logarithms and ends up with a reliable result. Since it is more
convenient and will help to avoid confusion, we will discuss the resummation procedure
separately for wino and Higgsino DM. Also, because operators O3 and O5 are irrelevant,
we will disregard C3 and C5 from now on.

Resummation wino DM To solve the RGE, it is convenient to first rotate to a basis O′1,2
of definite isospin J = 0 and J = 2, where the DM bilinear transforms in an irreducible
SU(2) representation given by

O′wino = V̂ T
winoOwino, V̂wino =

(
1 − c2(j)

3
0 1

)
, (6.29)

such that

C(µ) = V̂

(
U

(0)
1 (µh, µ) 0

0 U
(2)
2 (µh, µ)

)
V̂ −1C(µh) , (6.30)

where C(µ) = (C1(µ), C2(µ))T . The RG equation of the evolution factor in the irreducible
isospin-J representation is given by

d

d lnµ
U

(J)
i (µh, µ) = Γ

(J)
SU(2),i U

(J)
i (µh, µ) , (6.31)

where Γ
(J)
SU(2),i is defined in (6.23). Eq. (6.31) has to be computed numerically, since at

NLL’ accuracy we need to include the cusp anomalous dimension at two-loop accuracy and
beyond one-loop, other SM couplings appear in the β-function. This is also true for the
virtuality evolution factors of the other functions in the factorization theorems for both
wino and Higgsino DM. The evolution of the Wilson coefficients C1,2 as functions of mχ
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6.1 Hard function

is shown in Figure 6.3. We refer to Section 7 for a discussion of the numerical parameter
values that were used for generating Figure 6.3.

Below in Section 6.5 we will demonstrate the scale invariance of the annihilation rate,
for which it will be convenient to define the hard function vector

~Hwino =
(
C∗1C1, C

∗
2C1, C

∗
1C2, C

∗
2C2

)T
. (6.32)

The RGE for ~Hwino reads

d

d lnµ
~Hwino(µ) = Γwino,T

H (µ) ~Hwino(µ) , (6.33)

with

Γwino
H =




2 Re Γ11 0 0 0
Γ∗21 Γ11 + Γ∗22 0 0
Γ21 0 Γ∗11 + Γ22 0
0 Γ21 Γ∗21 2 Re Γ22


 , (6.34)

where the individual terms Γij in (6.34) are given by

Γ11 =
α̂2

4π

(
8 ln

4m2
χ

µ2
− 8iπ − 43

3
+

8

3
nG

)
,

Γ21 =
α̂2

4π
(4− 4iπ)c2(j) ,

Γ22 =
α̂2

4π

(
8 ln

4m2
χ

µ2
+ 4iπ − 79

3
+

8

3
nG

)
, (6.35)

which can in turn be derived from the RGE

d

d lnµ
Ci(µ) = (ΓT )ij(µ)Cj(µ) . (6.36)

Resummation Higgsino DM For the resummation of the Wilson coefficients in the Hig-
gsino DM case, it is important to remember the dependence between O1 and O2 for
j = 1/2. Using the notation C̃i, defined in (3.29), we write the evolution of the vector
C̃ = (C̃1, C̃4, C̃6)T as follows

C̃(µ) =



Ũ

(0)
1 (µh, µ) 0 0

0 Ũ
(1)
4 (µh, µ) 0

0 0 Ũ
(0)
6 (µh, µ)


 C̃(µh) . (6.37)

The evolution factors satisfy the RG equation

d

d lnµ
Ũ

(J)
i (µh, µ) =

(
Γ

(J)
SU(2),i + ΓU(1),i

)
Ũ

(J)
i (µh, µ) , (6.38)

where ΓU(1),i is defined in (6.23). Like in the wino DM case, the Higgsino DM RG equa-
tion (6.38) is solve numerically due to the appearance of the cusp anomalous dimension at
two-loops. In Figure 6.4, we plot the evolution of the Wilson coefficients C̃i as a function
of mχ.

To demonstrate the scale invariance of the Higgsino DM annihilation rate, we again
introduce hard function vectors. Now however, it proves to be convenient to introduce
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Figure 6.4: Evolution of the real part of the Higgsino DM matching coefficients in various ap-
proximations for mχ = 5 TeV, µh = 2mχ.

two vectors, where one associated with the SU(2) part of the unobserved jet and soft
functions and one is associated with the U(1)Y part of these functions. This makes sense,
since the SU(2) and U(1)Y parts originate from different operators. We define the Higgsino
DM hard function vectors as

~HSU(2) =
(
C̃∗1 C̃1, C̃

∗
4 C̃1, C̃

∗
1 C̃4, C̃

∗
4 C̃4

)T
,

~HU(1) =
(
C̃∗4 C̃4, C̃

∗
6 C̃4, C̃

∗
4 C̃6, C̃

∗
6 C̃6

)T
. (6.39)

The RGE takes a similar form as the one in (6.33) and the anomalous dimensions are now
diagonal

Γ
SU(2)
H = diag

[
2 Re Γ̃11, Γ̃11 + Γ̃∗44, Γ̃

∗
11 + Γ̃44, 2 Re Γ̃44

]
, (6.40)

Γ
U(1)
H = diag

[
2 Re Γ̃44, Γ̃44 + Γ̃∗66, Γ̃

∗
44 + Γ̃66, 2 Re Γ̃66

]
. (6.41)

The individual elements of (6.40) and (6.41) are given by

Γ̃11 =
α̂2

4π

(
8 ln

4m2
χ

µ2
− 8iπ − 43

3
+

8

3
nG

)
,

Γ̃44 =
α̂1

4π

(
1

6
+

20

9
nG

)
+
α̂2

4π

(
4 ln

4m2
χ

µ2
− 67

6
+

4

3
nG

)
,

Γ̃66 =
α̂1

4π

(
1

3
+

40

9
nG

)
. (6.42)

They can be determined from (6.36) by exchanging the Wilson coefficients Ci with the
Higgsino DM specific Wilson coefficients C̃i.
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Figure 6.5: Diagrams contributing to the photon jet function.

6.2 Photon jet function

The anti-collinear photon jet function describes the gamma-ray emitted from the DM an-
nihilation which can potentially be detected by a telescope. Figure 6.5 depicts all diagrams
relevant for its computation. Diagrams (a) and (b) give identical contributions and origi-
nate from Wilson lines, while the self-energy diagram (c) includes the contributions from
all SM particles in the loop. Since the photon jet function and the soft function (as well as
the unobserved jet function in the narrow resolution case) have the same invariant mass
squared of order m2

W , they are defined in SCETII and require an additional rapidity regu-
lator. This is the same problem that we encountered in the strategy of regions example in
Section 2.1. The regulator that we chose is the rapidity regulator that was first introduced
in [75, 76]. The use of a rapidity regulator introduces another scale, the rapidity scale ν.
Like the virtuality scale µ associated to dimensional regularization, the rapidity scale will
also need to be evolved using the rapidity renormalization group (RRG).

The definition of the photon jet function ZYWγ (µ, ν) was given in Section 3.1.1. For the
case of wino DM, we only need to consider the index combination Z33

γ (µ, ν), since wino
DM has vanishing hypercharge. For Higgsino DM on the other hand, one also requires
the index combinations Z34

γ (µ, ν), Z43
γ (µ, ν) and Z44

γ (µ), where the index value 4 indicates
that the photon originates from the U(1)Y gauge boson. Once Z33

γ (µ, ν) is computed, the
derivation of the other functions is fairly straightforward and can be achieved by adapting
Z33
γ (µ, ν) accordingly. To do so, it is helpful to remark that only diagrams (a + c) ((b + c))

contribute to Z34
γ (µ, ν) (Z43

γ (µ, ν)), while Z44
γ (µ, ν) is solely determined by diagram (c).

Hence, the Wilson line parts of Z34
γ (µ, ν) and Z43

γ (µ, ν) are multiplied with a factor of 1/2
with respect to the one of Z33

γ (µ, ν) (because diagrams (a) and (b) give the same result)
and Z44

γ (µ, ν) does not receive a Wilson line contribution at all. To make the adaption
more transparent, it is convenient to write down the rotation from the weak basis to the
mass basis of the gauge fields




W 1

W 2

W 3

B


 =




1√
2

1√
2

0 0
i√
2

−i√
2

0 0

0 0 ŝW (µ) ĉW (µ)
0 0 −ĉW (µ) ŝW (µ)







W+

W−

γ
Z


 . (6.43)

One can then use (6.43) to compute the index combinations Z34
γ (µ, ν), Z43

γ (µ, ν) and
Z44
γ (µ) by carefully analyzing the position of the cut in diagrams (a), (b) and (c) and by

keeping track of whether the γ or the Z boson originated from a W 3 or a B boson in the
unbroken theory. The results given here have been computed by Alessandro Broggio, CH
and Martin Vollmann for Y = W = 3 and by CH and Martin Vollmann for the remaining
index combinations.
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6 NLL’ resummation

6.2.1 Z33
γ (µ, ν)

The explicit result for Z33
γ (µ, ν) is given by

Zγ(µ, ν) = ŝ2
W (µ)

{
1− α̂2(µ)

4π

[
− 16 ln

mW

µ
ln

2mχ

ν
+ 8 ln

mW

µ

− ŝ2
W (µ)

80

9

(
ln
m2
Z

µ2
− 5

3

)
− ŝ2

W (µ)
16

9
ln
m2
t

µ2

+ ŝ2
W (µ)

(
3 ln

m2
W

µ2
− 2

3

)
− 4

m2
W

m2
Z

ln
m2
W

µ2

]
−∆α

}
, (6.44)

where ∆α is the difference between the fine structure constant α = 1/137.036 and αOS =
α/(1−∆α). As mentioned earlier, ν is the scale associated to the rapidity regulator and
ŝW is the sine of the weak mixing angle in the MS scheme.

We will first discuss the resummation of the virtuality scale µ, before moving on to the
resummation of the rapidity scale ν. The RG equation is

d

d lnµ
Z33
γ (µ, ν) = γµ

Z33
γ
Z33
γ (µ, ν) , (6.45)

with anomalous dimension

γµ
Z33
γ

= 4γcusp ln
ν

2mχ
+ 2γ

SU(2)
Zγ

. (6.46)

Generally, from the two-loop order onwards, there may appear terms with multiple SM
couplings in the anomalous dimensions. In our case however, the only anomalous dimen-
sion which is needed at two-loops for NNL’ accuracy is γcusp, which does not exhibit this
feature of multiple different coupling constants. The cusp anomalous dimension up to two

loops has been given in (6.24). The one-loop coefficient γ
SU(2),(0)
Zγ

can be obtained from its

definition (6.45). Calculating the derivative in µ of (6.44), we find that

γ
SU(2),(0)
Zγ

= β0,SU(2) =

(
43

6
− 4

3
nG

)
. (6.47)

A comment that will also be relevant for the computation of the anomalous dimensions of
the remaining functions in the factorization theorem: when determining (6.46), we made
use of the fact that the cusp anomalous dimension appears in the same way to all orders
in perturbation theory [101]. This means that only a one-loop calculation is necessary to
compute the prefactor of γcusp. Solving the RG equation (6.45) is trivial and we find the
following expression for the virtuality resummed photon jet function

Z33
γ (µf , ν) = U(µi, µf , ν)Z33

γ (µi, ν)

= exp

[∫ lnµf

lnµi

d lnµ

(
4γcusp ln

ν

2mχ
+ 2 γ

SU(2)
Zγ

)]
Z33
γ (µi, ν) , (6.48)

where µi and µf denote the initial and final virtuality scales before and after evolution,
respectively. We remark that (6.48) is a general solution to the RG equation (6.45) and
thus valid to all orders.

The resummation of the rapidity scale is more subtle and greater care needs to be taken
when resumming in ν. The rapidity renormalization group (RRG) equation is

d

d ln ν
Zγ(µ, ν) = γνZ33

γ
Zγ(µ, ν) , (6.49)

62



6.2 Photon jet function

where the fixed-order one-loop anomalous dimension is given by

γνZ33
γ

=
α̂2

4π
4γ(0)

cusp ln
µ

mW
. (6.50)

We now need to discuss a subtlety concerning the order of virtuality and rapidity resum-
mation. In principle, (6.50) can be used to solve the RRG (6.49). Doing so requires one
to first resum in ν and then in µ. This is because higher orders in γνZ33

γ
contain logarithms

of the form αn2 lnm(µ/mW ) with m ≤ n. Resummation in virtuality first implies that
µ � mW and thus these logarithms become large and require resummation themselves.
This issue can be avoided by making the following observation: any physical observable is
independent of the scales µ and ν, which implies the condition

[
d

d lnµ
,

d

d ln ν

]
= 0 . (6.51)

Now, we can use the RG equation (6.45), the RRG equation (6.49) and the commutation
relation (6.51) to derive the constraint

d

d lnµ
γνZ33

γ
=

d

d ln ν
γµ
Z33
γ

= 4γcusp . (6.52)

By solving (6.52), we find the integral version of the rapidity anomalous dimension

γνZ33
γ

(µ) =

∫ lnµ

d lnµ′
d

d ln ν
γµ
Z33
γ

(µ′) + const. . (6.53)

The constant in (6.53) is needed to reproduce the fixed-order non-cusp piece of the rapidity
anomalous dimension. Comparing with (6.50), we see that we can set the constant term
to zero. The advantage of (6.53) is that this version of the rapidity anomalous dimension
resums the logarithms ln(µ/mW ) to all orders in perturbation theory. Using (6.53), we
solve the RRG (6.49) and obtain the resummed rapidity evolution factor

Z33
γ (µ, νf ) = V (µ, νi, νf )Z33

γ (µ, νi) = exp

[
γνZ33

γ
(µ) ln

νf
νi

]
Z33
γ (µ, νi) , (6.54)

where νi and νf denote the initial and final scales of the rapidity evolution, respectively.
It is easy to confirm that by expanding the exponent in V (µ, νi, νf ) up to order O(α̂2),
one recovers the rapidity evolution factor that can be computed by using the fixed-order
one-loop anomalous dimension (6.50). More details on the rapidity evolution factors can
be found in [76].

We now have computed the virtuality and rapidity evolution factors. Due to the loga-
rithms appearing in the exponentials in (6.48) and (6.54), the cusp anomalous dimension
is required at different orders in each exponential, depending on the order of resummation.
If we first evolve in rapidity, the logarithm ln(µ/mW ) in (6.54) is never large and γcusp in
V (µ, νi, νf ) only has to be included up to one-loop. The logarithm ln(ν/2mχ) in (6.48)
however will be large and γcusp in U(µi, µf , ν) has to be included up to the two-loop order
to achieve NLL’ resumation. If on the other hand we first resum in virtuality, the order is
reversed. The cusp anomalous dimension has to be included at two-loops in V (µ, νi, νf )
and only at one-loop in U(µi, µf , ν).

Taking all of this into consideration, i.e. using the resummed expression for the rapidity
evolution factor (6.54) and including the cusp anomalous dimension at the appropriate
order, ensures resummation path independence

V (µf , νi, νf )U(µi, µf , νi) = U(µi, µf , νf )V (µi, νi, νf ) . (6.55)
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6 NLL’ resummation

To resum the photon jet function we decided to first resum in rapidity and then in virtual-
ity. As was just discussed, this requires us to only include γcusp at one-loop in V (µ, νi, νf ),
which allows us to write (6.54) in its LL approximation

Zγ(µ, νf ) = exp

[
γ

(0)
cusp

β0,SU(2)
ln

(
α̂2(µ)

α̂2(mW )

)
ln
ν2
f

ν2
i

]
Zγ(µ, νi) . (6.56)

The virtuality evolution factor U(µi, µf , ν), on the other hand, is computed numerically
using the two-loop expression for γcusp and the one-loop expression for the non-cusp anoma-

lous dimensions γ
SU(2)
Zγ

. The final expression for the resummed photon jet function Z33
γ is

then given by

Z33
γ (µf , νf ) = U(µi, µf , νf )V (µi, νi, νf )Z33

γ (µi, νi) . (6.57)

From the arguments of U(µi, µf , νf ) in (6.57), it should be clear that the rapidity scale
appearing in ln(ν/2mχ) in the virtuality evolution factor is to be evaluated at its final
value, i.e. the value to which V (µi, νi, νf ) evolved the scale.

6.2.2 Z34
γ (µ, ν), Z43

γ (µ, ν) and Z44
γ (µ, ν)

We now discuss the remaining index combinations of the photon jet function Z34
γ (µ, ν),

Z43
γ (µ, ν) and Z44

γ (µ). To compute them, we need to remember which diagrams contribute
to which index combination and how to change ŝW - and ĉW -terms according to our con-
ventions (6.43). The fact that contributions from diagrams (a) and (b) in Figure 6.5 are
identical implies the equality Z34

γ (µ, ν) = Z43
γ (µ, ν). We will thus only discuss the results

and the resummation for Z34
γ (µ, ν) and Z44

γ (µ, ν). We find the following expressions for
the jet functions

Z34
γ (µ, ν) = −ŝW (µ)ĉW (µ)

[
1− ĝ2

2(µ)

(4π)2

{
− 8 ln

mW

µ
ln

2mχ

ν
+ 4 ln

mW

µ

}

+
1

2

(
ĝ2

1(µ)ĉ2
W (µ)

(4π)2
+
ĝ2

2(µ)ŝ2
W (µ)

(4π)2

)

×
{

80

9

(
2 ln

mZ

µ
− 5

3

)
+

32

9
ln
mt

µ
+

2

3
− 6 ln

mW

µ

}

−
(
ĝ2

2(µ)

(4π)2
− ĝ2

1(µ)

(4π)2

)
m2
W

m2
Z

(
− 4 ln

mW

µ

)
−∆α

]
, (6.58)

Z44
γ (µ) = ĉ2

W (µ)

[
1 +

ĝ2
1(µ)ĉ2

W (µ)

(4π)2

{
80

9

(
2 ln

mZ

µ
− 5

3

)
+

32

9
ln
mt

µ

+
2

3
− 6 ln

mW

µ

}
− ĝ2

1(µ)

(4π)2
8
m2
W

m2
Z

ln
mW

µ
−∆α

]
. (6.59)

The discussion presented in Section 6.2.1 on the order of the resummation applies indepen-
dently of the values of the gauge indices and will thus not be repeated. The RG equations
are

d

d lnµ
Z34
γ (µ, ν) = γµ

Z34
γ
Z34
γ (µ, ν) ,

d

d lnµ
Z44
γ (µ) = γZ44

γ
Z44
γ (µ) , (6.60)
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with the anomalous dimensions

γµ
Z34
γ

= 2γcusp ln
ν

2mχ
+ γ

SU(2)
Zγ

+ γ
U(1)
Zγ

,

γZ44
γ

= 2γ
U(1)
Zγ

. (6.61)

The anomalous dimension γ
SU(2)
Zγ

was already given in (6.47) and γ
U(1)
Zγ

is given by

γ
U(1)
Zγ

= β0,U(1)
α̂1(µ)

4π
+ . . . . (6.62)

As can be seen from (6.59), the photon jet function Z44
γ (µ) is independent of the rapidity

scale ν, since it does not receive contributions from Wilson line diagrams (a) and (b) in
Figure 6.5. The RRG of Z34

γ (µ, ν) is given by

d

d ln ν
Z34
γ (µ, ν) = γνZ34

γ
Z34
γ (µ, ν) , (6.63)

where the rapidity anomalous dimension γνZ34
γ

has the value

γνZ34
γ

=
1

2
γνZ33

γ
=
α̂2(µ)

4π
2γ(0)

cusp ln
µ

mW
. (6.64)

Solving the RGEs (6.60) and the RRG (6.63), we arrive at the expressions for the resummed
photon jet functions Z34

γ (µ, ν) and Z44
γ (µ, ν)

Z34
γ (µf , νf ) = exp

[ ∫ lnµf

lnµi

d lnµ

(
2γcusp ln

νf
2mχ

+ γ
SU(2)
Zγ

+ γ
U(1)
Zγ

)]

× exp

[
γ

(0)
cusp

2β0,SU(2)
ln

α̂2(µi)

α̂2(mW )
ln
ν2
f

ν2
i

]
Z34
γ (µi, νi) ,

Z44
γ (µf ) = exp

[ ∫ lnµf

lnµi

d lnµγZ44
γ

]
Z44
γ (µi) . (6.65)

The resummed expression for Z43
γ (µf , νf ) is identical to the expression of Z34

γ (µf , νf )
in (6.65).

6.3 Unobserved jet function

While the hard matching coefficients and the photon jet function in anti-collinear direction,
discussed in Sections 6.1 and 6.2, respectively, take the same form for both narrow and
intermediate energy resolution, the unobserved jet function in collinear direction needs to
be adjusted depending on which value of Eγres is assumed. If Eγres ∼ m2

W /mχ, the invariant
mass squared of the unobserved final state is p2 ∼ m2

W and the external momentum has a
collinear scaling p ∼ mχ(λ2, 1, λ). This implies that EW scale masses cannot be neglected
and the unobserved jet function in the narrow resolution case has to be computed with
massive SM particles. If on the other hand Eγres ∼ mW , the invariant mass squared is
p2 ∼ mWmχ and the external momentum has hard-collinear scaling p ∼ mχ(λ, 1,

√
λ). In

this case, SM particle masses can be neglected and the intermediate resolution jet functions
are computed in the EW symmetric limit.
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W+

W−

γ/Z

W+

W−

γ/Z

W+

W−

γ/Z γ/Z

Figure 6.6: Wilson line and self-energy type Feynman diagrams contributing to the narrow res-
olution jet function. This Figure has been extracted from [9].

6.3.1 Unobserved jet function - narrow resolution case

Assuming Eγres ∼ m2
W /mχ means that JXVnrw (p2) has to be computed using SCETII. Since it

exhibits the same virtuality as the photon jet function and the soft function, we again need
to deal with rapidity divergences. In this Section, we provide explicit expressions for J33

nrw,
J34

nrw, J43
nrw and J44

nrw, which are complicated functions of the masses of the SM particles,
the invariant mass of the jet, the virtuality scale µ and the rapidity scale ν. While here
we content ourselves with providing explicit results, we refer the reader to Appendix F for
details on the computation of the relevant integrals and explicit expressions concerning the
massive SM self-energy functions. Diagrams contributing to the unobserved jet function
are depicted in Figure 6.6. The calculations for the narrow resolution unobserved jet
function have been done by Alessandro Broggio, CH and Martin Vollmann for X = V and
by CH and Martin Vollmann for the remaining index combinations.

Unobserved jet function J33
nrw As for the photon jet function, let us start with the gauge

index combination X = V = 3. The computation is done in Feynman gauge to one-loop
order, for which we split the unobserved jet function into two contributions

J33
nrw(p2, µ, ν) =ŝ2

W (µ)δ(p2) + ĉ2
W (µ)δ(p2 −m2

Z)

+ J33
nrw, Wilson(p2, µ, ν) + J33

nrw, se(p
2, µ) , (6.66)

a Wilson line type J33
nrw, Wilson and a self-energy type J33

nrw, se. Diagrammatically, the Wil-
son line and self-energy contributions arise from the first line and second line of Figure 6.6,
respectively. Different from the computation of the photon jet function where the condi-
tion of a final state photon puts constraints on the possible positions of the cut, for the
unobserved jet function the cut can be placed anywhere. Taking into account all possible
cuts can be achieved by computing the total discontinuity, which is obtained when taking
the imaginary part of the gauge boson two-point function (3.14). Furthermore, the fact
that we have a neutral two-particle initial state and a photon emitted in the anti-collinear
direction imposes the constraint that the unobserved final state also has to be neutral.
This implies that we only need to consider the gauge boson index combinations XV = 33,
XV = 34, XV = 43 and XV = 44.

The result for the virtual diagrams in the first row of Figure 6.6 is given by

J 33
nrw, Wilson(p2, µ, ν) = iθ(p2 − 4m2

W )

[
ŝ2
W

p2 + iε
+

ĉ2
W

p2 −m2
Z + iε

]

×
{

1− ĝ2
2

16π2

[
− 16 ln

(
mW

µ

)
ln

(
2mχ

ν

)
+ 8 ln

(
mW

µ

)
− 8 + 4π2
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− 4 ln(x)β − 4 ln2(x)−
[
4iβπ + 8iπ ln(x)

]]}

+ iθ(4m2
W − p2)

[
ŝ2
W

p2 + iε
+

ĉ2
W

p2 −m2
Z + iε

]

×
{

1− ĝ2
2

16π2

[
− 16 ln

(
mW

µ

)
ln

(
2mχ

ν

)
+ 8 ln

(
mW

µ

)
− 8 + 4π2

+ 4β̄π − 16 arctan(β̄)π − 8 arctan(β̄)β̄ + 16 arctan2(β̄)

]}
, (6.67)

where

x ≡ 1− β
1 + β

, β =

√
1− 4m2

W

p2
, β̄ =

√
4m2

W

p2
− 1 . (6.68)

From the defintion (3.14) we can see that we still need to extract the imaginary part from
the propagators, for which we use the relation

1

a+ iε
=

[
1

a

]

∗
− iπδ(a) , (6.69)

where the subscript ∗ denotes the Cauchy principle value. In practice, we don’t need a
particular prescription for the principal value in this case, since it will be multiplied by
a theta function and thus cannot be divergent. After extracting the imaginary part we
obtain the following result for the Wilson line contribution to the J33

nrw(p2, µ, ν) jet function

J33
nrw, Wilson(p2, µ, ν) = − ŝ

2
W (µ)ĝ2

2(µ)

16π2

{
δ(p2)

[
− 16 ln

mW

µ
ln

2mχ

ν
+ 8 ln

mW

µ

]

+
1

p2
θ(p2 − 4m2

W )

[
4β + 8 ln

1− β
1 + β

]}

− ĉ2
W (µ)ĝ2

2(µ)

16π2

{
δ(p2 −m2

Z)

[
− 16 ln

mW

µ
ln

2mχ

ν
+ 8 ln

mW

µ
− 8 + 4π2

+ 4πβ̄Z − (16π + 8β̄Z) arctan(β̄Z) + 16 arctan2(β̄Z)

]

+
1

p2 −m2
Z

θ(p2 − 4m2
W )

[
4β + 8 ln

1− β
1 + β

]}
, (6.70)

where

β̄Z =

√
4m2

W

m2
Z

− 1 . (6.71)

The self-energy part of the unobserved jet function, J33
nrw, se(p

2, µ), does not suffer from
rapidity divergences but needs to include all possible SM particles and originates from
the second row of Figure 6.6. The expressions for the self-energies are known and can
be extracted for example in Feynman gauge from [102]. In general the structure in the
’t Hooft-Feynman gauge is given by

−i
(
gµν −

pµpν
p2

)
Σab
T (p2)− ipµpν

p2
Σab
L (p2) , (6.72)
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where the indexes a, b = γ, Z. This structure has then to be inserted between gauge
collinear building blocks, which will project onto the transverse part of the self energies.
The virtual contribution from the self-energies has the following structure

J 33
nrw, se(p

2) = ŝ2
W

−i
p2 + iε

(
iΣγγ

T (p2)
) −i
p2 + iε

+ ŝW ĉW
−i

p2 + iε

(
iΣγZ

T (p2)
) −i
p2 −m2

Z + iε

+ŝW ĉW
−i

p2 −m2
Z + iε

(
iΣγZ

T (p2)
) −i
p2 + iε

+ ĉ2
W

−i
p2 −m2

Z + iε

(
iΣZZ

T (p2)
) −i
p2 −m2

Z + iε
,

(6.73)

where we assume that all of the fermions are massless except the top quark

mb = mc = mτ = ms = md = mu = mµ = me = 0 GeV . (6.74)

We need a prescription to separate the real and the imaginary parts of the double prop-
agators, i.e. we need to derive the equivalent of (6.69) for the cases appearing in (6.73).
Starting with the mixed contribution, which is easier, one can see that a simple partial
fractioning is sufficient

1

p2 + iε

1

p2 −m2
Z + iε

= − 1

m2
Z

1

p2 + iε
+

1

m2
Z

1

p2 −m2
Z + iε

= − 1

m2
Z

[
1

p2

][µ2]

∗
+

1

m2
Z

[
1

p2 −m2
Z

][µ2]

∗
+ iπ

δ(p2)

m2
Z

− iπ δ(p
2 −m2

Z)

m2
Z

.

(6.75)

The star distributions are defined as

∫ p2max

0
dp2


 lnn p2

µ2

p2




[µ2]

∗

f(p2) =

∫ p2max

0
dp2 f(p2)− f(0)

p2
lnn

p2

µ2
+

f(0)

n+ 1
lnn+1 p

2
max

µ2
, (6.76)

∫ p2max

0
dp2

[
1

p2 −m2
Z

]

∗
f(p2) =

∫ p2max

0
dp2 f(p2)− f(m2

Z)

p2 −m2
Z

+ f(m2
Z) ln

(
p2

max −m2
Z

m2
Z

)
, (6.77)

where f(p)2 is a test function and p2
max > m2

Z in the last equation. For p2
max < m2

Z the
introduction of star distributions for the Z-boson propagators would not be necessary.

The case where a squared propagator appears is more involved and it needs more care.
We analyze the following type of integral

∫ d

c
da

f(a)

(a+ iε)2
, (6.78)

where c < 0 < d. It can be shown by shifting the integration contour by an infinitesimal
amount and by making a variable transformation that our initial integral is equivalent to

∫ d

c
da

f(a)

(a+ iε)2
→
∫

C
da

f(a)

a2
, (6.79)
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6.3 Unobserved jet function

where the contour C starts in c and ends in d along the real axis and performs a semicircular
path (we call it γC) around the origin with an infinitesimal radius ε. It is important for
the small radius γC-path to avoid the singularity that is present in the upper half-plane as
prescribed by +iε. This is relevant to obtain the correct imaginary part. We then perform
the a-integration in the complex plane along the C path. From this we obtain

[ ∫ −ε

c
da
f(a)

a2
+

∫ d

ε
da
f(a)

a2

]
+

∫

γC

da
f(a)

a2
(6.80)

where the limit ε→ 0 is understood. Notice that, contrary to the case where there is only
one power of a at the denominator, the expression in between squared brackets is divergent
in the limit ε → 0. The divergent part, which amounts to 2f(0)/ε can be extracted by
integrating by parts. The semicircular path γC can be parametrized in the following way

a = εeiθ, da = iεeiθdθ, with θ ∈ [π, 0] . (6.81)

We then express the rightmost integral of (6.80) as

∫

γC

da
f(a)

a2
=

∫ 0

π
dθ
iεeiθf(εeiθ)

ε2e2iθ
=

∫ 0

π
dθ
iεeiθ

[
f(0) + εeiθf ′(0) + . . .

]

ε2e2iθ
,

= −2f(0)

ε
− iπf ′(0) + . . . , (6.82)

where in the second equality we Taylor expand the function f around the origin. In total
the integral (6.78) is finite and the two divergent parts cancel each other in the limit ε→ 0.
One can generalize the concept of the Cauchy principal value in the following way (and in
principle extend this procedure to arbitrary powers of the denominator)

∫ d

c
da

[
1

a2

]

∗∗
f(a) ≡

[∫ −ε

c
da
f(a)

a2
+

∫ d

ε
da
f(a)

a2

]
− 2f(0)

ε
, (6.83)

where the ∗∗ symbol generalizes the Cauchy principal value. In conclusion we can use the
following equality in a distributional sense

1

(a+ iε)2
=

[
1

a

]

∗∗
+ iπδ′(a) , (6.84)

where the symbol δ′ refers to the derivative of the Dirac δ distribution. In our particular
case it happens that a θ function will force our integral to be in an integration region where
it is not divergent, but it is still interesting to derive such an equation in a mathematical
sense. From this derivation, it follows that

1

p2 + iε

1

p2 + iε
=

[
1

(p2)2

]

∗∗
+ iπδ′(p2) , (6.85)

1

p2 −m2
Z + iε

1

p2 −m2
Z + iε

=

[
1

(p2 −m2
Z)2

]

∗∗
+ iπδ′(p2 −m2

Z) . (6.86)

Notice that the second terms in (6.85) and (6.86) will effectively generate the wave function
renormalization factors δZγγ and δZZ that are needed for the correct UV renormalization
of the virtual part of the computation. Everything is now in place to compute the self-
energy part of the unobserved jet function J33

nrw(p2, µ, ν), by taking the imaginary part
of (6.73).
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6 NLL’ resummation

Since the natural scale of the unobserved jet function lies around the EW scale, it is
reasonable to neglect the masses of the light fermions (6.74). We thus assume all fermions
except for the top quark to be massless, which allows us to further split the self-energy
part into a massive and a massless contribution

J33
nrw, se(p

2, µ) = J33
nrw, se, f 6=t only(p2, µ) + J33

nrw, se, f 6=t excluded(p2, µ) , (6.87)

where the second term includes the W+W−, ZH and tt̄ loops. For the massless fermion
contribution we obtain

J33
nrw, se, f 6=t only(p2, µ) =

ŝ2
W (µ)ĝ2

2(µ)

16π2

{
ŝ2
W (µ)

80

9

[
− δ(p2)

5

3
+

[
1

p2

][µ2]

∗

]

+ 2

(
10

3
− 80

9
ŝ2
W (µ)

)
×
[[

1

p2 −m2
Z

]

∗
− δ(p2 −m2

Z)

(
5

3
− ln

m2
Z

µ2

)]

+

(
− 20

3
+

7

2

1

ŝ2
W (µ)

+
80

9
ŝ2
W (µ)

)

×
[[

1

(p2 −m2
Z)2

]

∗∗
p2 −

(
2

3
− ln

m2
Z

µ2

)
δ(p2 −m2

Z)

]}
. (6.88)

The massive self-energy contribution reads

J33
nrw, se, f 6=t excluded(p2, µ) =

2ŝW (µ)ĉW (µ)

[Re
[
ΣγZ
T (0)

]
t,W

m2
Z

δ(p2)−
Re
[
ΣγZ
T (m2

Z)
]
t,W

m2
Z

δ(p2 −m2
Z)

]

−ŝ2
W (µ)Re

∂Σγγ
T (p2)t,W
∂p2

∣∣∣∣
p2=0

δ(p2)− ĉ2
W (µ)Re

∂ΣZZ
T (p2)t,W,Z,H

∂p2

∣∣∣∣
p2=m2

Z

δ(p2 −m2
Z)

+2ŝW (µ)ĉW (µ)

[
− 1

m2
Z

1

p2

Im
[
ΣγZ
T (p2)

]
t,W

π
+

1

m2
Z

1

p2 −m2
Z

Im
[
ΣγZ
T (p2)

]
t,W

π

]

+ ŝ2
W (µ)

1
(
p2
)2

Im
[
Σγγ
T (p2)

]
t,W

π
+ ĉ2

W (µ)
1

(
p2 −m2

Z

)2
Im
[
ΣZZ
T (p2)

]
t,W,Z,H

π
. (6.89)

Note that for the massive self-energy contribution (6.89) there is no need to introduce star
distributions. This is because below the massive thresholds indicated by the subscripts
the imaginary parts vanish. Hence, there are no singularities at 0 and m2

Z .

Plugging (6.70), (6.88) and (6.89) into (6.66) gives us the result for the unobserved jet
function J33

nrw(p2, µ, ν). The derivation of the remaining index combinations J34
nrw, J43

nrw and
J44

nrw is similar to the case of the photon jet function and can be achieved by using (6.43).

Unobserved jet functions J34, J43 and J44 The lengthy derivation of the result for
J33

nrw, including the introduction of the star distributions applies independently of the
index values of the unobserved jet function. This paragraph will thus be kept rather brief
and we focus on the presentation of the results. Also, since J34

nrw = J43
nrw we will content

ourselves with presenting the results for J34
nrw and J44

nrw only. They read

J34(p2, µ, ν) =− ŝW (µ)ĉW (µ)δ(p2) + ŝW (µ)ĉW (µ)δ(p2 −m2
Z)

+ J34
Wilson(p2, µ, ν) + J34

se, f 6=t only(p2, µ) + J34
se, f 6=t excluded(p2, µ) . (6.90)
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J34
Wilson(p2, µ, ν) =

ŝW (µ)ĉW (µ)ĝ2
2(µ)

16π2

{
δ(p2)

[
− 8 ln

mW

µ
ln

2mχ

ν
+ 4 ln

mW

µ

]

+
1

p2
θ(p2 − 4m2

W )

[
2β + 4 ln

1− β
1 + β

]}

− ŝW (µ)ĉW (µ)ĝ2
2(µ)

16π2

{
δ(p2 −m2

Z)

[
− 8 ln

mW

µ
ln

2mχ

ν
+ 4 ln

mW

µ
− 4 + 2π2

+ 2πβ̄Z − (8π + 4β̄Z) arctan(β̄Z) + 8 arctan2(β̄Z)

]

+
1

p2 −m2
Z

θ(p2 − 4m2
W )

[
2β + 4 ln

1− β
1 + β

]}
, (6.91)

J34
se, f 6=t only(p2, µ) =

ŝ2
W (µ)ĝ2

2(µ)

16π2

{
− ŝW (µ)ĉW (µ)

80
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5

3
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1
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1
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(
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1

ĉ2
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+
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1

ŝ2
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W (µ)
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80
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ĉ2
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)

×
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1
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Z)2

]

∗∗
p2 − δ(p2 −m2

Z)

(
2

3
− ln
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Z
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. (6.92)

J34
se, f 6=t excluded(p2, µ) =

(
ŝ2
W (µ)− ĉ2

W (µ)
) [Re

[
ΣγZ
T (0)

]
t,W

m2
Z

δ(p2)−
Re
[
ΣγZ
T (m2

Z)
]
t,W

m2
Z
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]

+ ŝW (µ)ĉW (µ) Re
∂Σγγ
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∂ΣZZ
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+
(
ŝ2
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) [
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+
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Im
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Σγγ
T (p2)

]
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+ ŝW (µ)ĉW (µ)

1
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Z
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t,W,Z,H

π
(6.93)

for J34(p2) and

J44 = ĉ2
W δ(p

2) + ŝ2
W δ(p

2 −m2
Z) + J44

se, f 6=t only(p2, µ) + J44
se, f 6=t excluded(p2, µ) , (6.94)

J44
se, f 6=t only(p2, µ) =

ĉ2
W (µ)ĝ2

1(µ)

16π2

{
ĉ2
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+
ŝ2
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. (6.95)

J44
se, f 6=t excluded(p2, µ) =
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(6.96)

for J44(p2).

Note that since in the narrow resolution case, the (anti-) collinear jet and soft functions
all have the same virtuality, it is more convenient in this case to only resum the Wilson
coefficient down to the soft scale. Hence, we are not going to discuss the resummation for
the narrow resolution unobserved jet function.

6.3.2 Unobserved jet function - intermediate resolution case

The intermediate resolution jet function describes the unobserved hard-collinear final state.
As mentioned before, the invariant mass squared is p2 ∼ mWmχ � m2

W , which means that
in the intermediate resolution case the unobserved jet function is computed using SCETI

and does not suffer from rapidity divergences. The intermediate resolution unobserved
jet function is calculated in the massless EW symmetric limit, which will result in much
simpler expressions compared to the narrow resolution case. The results shown in the
following have been computed by CH, Kai Urban and Martin Vollmann. Different from the
narrow resolution, the intermediate resolution unobserved jet function is diagonal which
means that the gauge indices of JXVint can only take the values XV = 33 or XV = 44.

In (3.16) we introduced the following notation J33
int = J

SU(2)
int and J44

int = J
U(1)
int , making

obvious which gauge boson is associated with which jet function. To make the origin of
the different terms even more transparent, we again split the jet function into a Wilson
line and a self-energy contribution

iJ SU(2)
int (p2, µ) =iJ SU(2)

int, Wilson(p2, µ) + iJ SU(2)
int, se (p2, µ) ,

iJ U(1)
int (p2, µ) =iJ U(1)

int, se(p
2, µ) . (6.97)

The results for the SU(2) part of the jet function are as follows

iJXVWilson(p2, µ) =
δXV

−p2 − iε

{
1 +

(
µ2

−p2 − iε

)ε
ĝ2

2(µ)

16π2
c2(ad)

(
4

ε2
+

2

ε
+ 4− π2

3

)}
,(6.98)

iJXVse (p2, µ) =
δXV

−p2 − iε

(
µ2

−p2 − iε

)ε
ĝ2

2(µ)

16π2
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×
{

1

ε

(
5

3
c2(ad)− 8

3
TFnG −

1

3
Tsns

)
+

31

9
c2(ad)− 40

9
TFnG −

8

9
Tsns

}
, (6.99)

where TF = Ts = 1/2 and ns = 1. For the U(1)Y part, the result reads

iJ U(1)(p2) =
1

−p2 − iε

(
µ2

−p2 − iε

)ε
ĝ2

1Y
2

16π2

[
1

ε

(
−1

6
− 20

9
nG

)
− 104

9

]
. (6.100)

In order to derive the final form of the jet functions we need to take the imaginary part
and expand the result in terms of star distributions as follows [103]

1

π
Im
[
(−p2 − iε)c

]
=− θ(p2)

sin(πc)

π
(p2)c ,

1

p2

(
p2

µ2

)−ε
=− 1

ε
δ(p2) +

∞∑

n=0

(−ε)n
n!




lnn
(
p2

µ2

)

p2




[µ2]

∗

. (6.101)

Using (6.101) we obtain for the SU(2) and U(1)Y unobserved jet functions in the interme-
diate resolution case

J
SU(2)
int (p2, µ) = δ(p2) +

α̂2(µ)

4π

{
δ(p2)

(
70

9
− 2π2

)
− 19

6

[
1

p2

][µ2]

∗
+ 8


 ln p2

µ2

p2




[µ2]

∗

}
,

J
U(1)
int (p2, µ) = δ(p2) +

ĝ2
1(µ)

16π2

{
δ(p2)

(
−104

9

)
+

41

6

[
1

p2

][µ2]

∗

}
. (6.102)

The procedure to solve the RG equations for (6.102) is analogous to the treatment of

the QCD gluon jet function [103]. The appearance of star distributions in J
SU(2)
int and J

U(1)
int

complicates the resummation and it will be convenient to solve the RGE in Laplace space.
In general, the Laplace transform is defined as

jG
int

(
ln
τ2

µ2
, µ

)
=

∫ ∞

0
dp2e−lp

2
JG

int(p
2, µ), (6.103)

where the superscript G is a placeholder for either SU(2) or U(1) and l = 1/(eγEτ2). The
explicit results after renormalization read

j
SU(2)
int

(
ln
τ2

µ2
, µ

)
=1 +

α̂2(µ)

4π

(
4 ln2 τ

2

µ2
− 19

6
ln
τ2

µ2
+

70

9
− 4π2

3

)
,

j
U(1)
int

(
ln
τ2

µ2
, µ

)
=1 +

α̂1(µ)

4π

[
41

6
ln
τ2

µ2
− 104

9

]
. (6.104)

In Laplace space, the RG equations are now the ordinary differential equations

d

d lnµ
j

SU(2)
int

(
ln
τ2

µ2
, µ

)
=γµ

JSU(2) j
SU(2)
int

(
ln
τ2

µ2
, µ

)
,

d

d lnµ
j

U(1)
int

(
ln
τ2

µ2
, µ

)
=γµ

JU(1) j
U(1)
int

(
ln
τ2

µ2
, µ

)
, (6.105)

with the Laplace space anomalous dimensions

γµ
JSU(2) =− 4γcusp ln

τ2

µ2
− 2γJSU(2) ,
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γµ
JU(1) =− 2γJU(1) . (6.106)

The non-cusp anomalous dimensions γJSU(2) and γJU(1) are both needed at the one-loop
order for NLL’ resummation

γ
(0)

JSU(2) = −β0,SU(2)
α̂2(µ)

4π
+ · · · , γ

(0)

JU(1) = −β0,U(1)
α̂1(µ)

4π
+ · · · . (6.107)

The RG equations (6.105) are solved by

j
SU(2)
int

(
ln
τ2

µ2
, µ

)
= exp

[
4S(µj , µ) + 2Aγ

JSU(2)
(µj , µ)

]
j

SU(2)
int (∂η, µj)

(
τ2

µ2
j

)η
, (6.108)

j
U(1)
int

(
ln
τ2

µ2
, µ

)
= exp

[
2Aγ

JU(1)
(µj , µ)

]
j

U(1)
int

(
ln
τ2

µ2
, µj

)
, (6.109)

where µj ∼
√

2mχmW is the natural scale of the hard-collinear jet function and the
integrals S(µj , ν) and Aγ

JG
(µj , µ) are defined as

S(µj , µ) =−
∫ lnµ

lnµj

d lnµ′ γcusp(µ′) ln
µ2
j

µ′ 2
, (6.110)

Aγ
JG

(µj , µ) =−
∫ lnµ

lnµj

d lnµ′ γJG(µ′) . (6.111)

Furthermore, the variable η in (6.108) is defined as

η = 4Aγcusp(µj , µ) . (6.112)

As before, the integrals S(µj , ν) and Aγ
JG

(µj , µ) in the exponents of (6.108) and (6.109)
are solved numerically. Note that in (6.108) the logarithm in the argument of the Laplace-
transformed SU(2) jet function has been traded for a derivative with respect to η, which

means that the entire τ -dependence of j
SU(2)
int is contained in the ratio

(
τ2/µ2

j

)η
and the

inverse Laplace transform becomes simple. Introducing the partial derivatives with respect

to η for the U(1)Y jet function was not necessary, since the anomalous dimension of j
U(1)
int

does not have a cusp term and thus there is no τ -dependence in the exponent of the
evolution factor in (6.109). Lastly, we need to return to momentum space. For the U(1)Y
jet function, this is done via the standard inverse Laplace transform (remembering that
τ2 = 1/(eγR l)), while for the SU(2) jet function we make use of the relation

∫ ∞

0
dp2e−p

2/(τ2eγE )
(
p2
)η−1

= Γ(η)eγEη
(
τ2
)η
. (6.113)

We then arrive at the expressions for the resummed jet functions of the unobserved final
state in momentum space

J
SU(2)
int (p2, µ) = exp

[
4S(µj , µ) + 2A

γ
SU(2)
J

(µj , µ)
]
j

SU(2)
int (∂η, µj)

e−γEη

Γ(η)

1

p2

(
p2

µ2
j

)η
,

J
U(1)
int (p2, µ) = exp

[
2A

γ
U(1)
J

(µj , µ)
]
J

U(1)
int (p2, µj) , (6.114)

where J
U(1)
int (p2, µj) in the second line of (6.114) is given by the fixed order expression in

the second line of (6.102).
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6.4 Soft function

The soft functions have a virtuality of µs ∼ mW , where µs is the soft scale. This means
that the soft function needs to be computed in the EW broken theory, which implies that
we need to specify which DM multiplet we are considering. For wino DM the multiplet
is an SU(2) triplet with isospin j = 1 and hypercharge Y = 0, while for Higgsino DM
the multiplet is an SU(2)⊗U(1)Y doublet with isospin j = 1/2 and hypercharge Y = 1/2.
Although the discussion of the soft function resummation follows the same arguments
for both models, the anomalous dimensions and evolution factors are different. We thus
discuss the soft functions separately for each model.

In general, the soft functions are given by products of soft Wilson lines, which arise
from the decoupling transformation that decouples soft SU(2) and U(1)Y gauge bosons
from initial and final states in the 2 → 2 scattering amplitude. Technical details about
the computation of the necessary integrals and the complete soft function expressions,
which are quite lengthy, are moved to the Appendix G. To guide the discussion of the soft
function resummation in the intermediate resolution cases, in this Section we provide the
results for the index combination for which the soft function is most general and exhibits
the most complicated structure. The soft function computations were done by Alessandro
Broggio and CH for the wino DM narrow resolution case, by Alessandro Broggio, CH and
Kai Urban for the wino DM intermediate resolution case and by CH and Martin Vollmann
for both Higgsino DM resolution cases.

6.4.1 Intermediate resolution soft function - Wino DM

In the case of wino DM, we focus on the index combination i = j = 2 and I = J = (+−),
for which the soft function takes the form

W 22
(+−)(+−)(ω, µ, ν) = δ(ω) +

α̂2(µ)

4π

[
δ(ω)

(
−8 ln

mW

µ
− 16 ln

mW

µ
ln
mW

ν

)

[
1

ω

][mW ]

∗

(
− 6 ln

(
m2
W + ω2

m2
W

)
− 2

ω2

m2
W + ω2

+ 8 ln
µ2

m2
W

)]
. (6.115)

All intermediate resolution wino DM soft function expressions for all operator and two-
particle-state index combinations are collected in Appendix G.4.1. As in the case of
the unobserved jet function discussed in Section 6.3.2, it is convenient to perform the
resummation in Laplace space. The necessary forward and inverse Laplace transforms are
respectively defined as

w(s) = L{W (ω)} =

∫ ∞

0
dω e−ωsW (ω) , (6.116)

W (ω) = L−1 {w(s)} =
1

2πi

∫ c+i∞

c−i∞
ds esω w(s) , (6.117)

where s = 1/(eγEκ). Inspecting W 22
(+−)(+−) in (6.115), which exhibits all ω-structures

that we will encounter, we find that the following explicit forward Laplace transforms are
relevant

L{δ(ω)} = 1 ,

L
{[

1

ω

][mW ]

∗

}
= ln

κ

mW
,
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L
{

1

ω
ln

(
m2
W + ω2

m2
W

)}
= si2 (mW s) + ci2 (mW s) ≡ G̃(s) ,

L
{

ω

m2
W + ω2

}
= cos(mW s) ci(mW s)− sin(mW s) si(mW s) ≡ Q̃(s) , (6.118)

where the functions ci and si are defined as

si(x) ≡ −
∫ ∞

x
dt

sin(t)

t
, and ci(x) ≡ −

∫ ∞

x
dt

cos(t)

t
. (6.119)

For reasons of brevity, it is most convenient to introduce the following vector notation for
the Laplace transformed soft functions

~wIJ =
(
w11
IJ , w

12
IJ , w

21
IJ , w

22
IJ

)T
. (6.120)

Since the soft function has the same virtuality as the photon jet function, it is clear that
it needs to be computed in SCETII and thus suffers from rapidity divergences, which
potentially need to be resummed. Let us thus first discuss rapidity resummation. The
corresponding RRG equations take the form

d

d ln ν
~wIJ(s, µ, ν) = ΓνW ~wIJ(s, µ, ν) , (6.121)

where the fixed-order one-loop rapidity anomalous dimension is given by

ΓνW =
α̂2

4π
4γ(0)

cusp ln
mW

µ
14 . (6.122)

We can see from (6.122) that ΓνW has a vanishing non-cusp anomalous dimension at one-
loop order. It is important to make sure that the correct path of resummation is taken in
the µ− ν plane and that the anomalous dimensions are included at the right loop order.
This was already extensively discussed for the photon jet function in Section 6.2. We thus
use(6.52), (6.53) and (6.121) to compute the wino DM rapidity-resummed soft function
and find

~wIJ(s, µ, ν) = exp

[
ΓνW (µ) ln

ν

νs

]
~wIJ(s, µ, νs) , (6.123)

where ΓνW (µ) is now the integrated rapidity anomalous dimension. Note that (6.123) is
diagonal in both the two-particle state indices I, J and the operator indices, which are
made explicit by the vector notation (6.120). In the intermediate energy resolution case,
only the photon jet functions and the soft functions depend on the rapidity scale. For the
computation of the cross section, we choose to resum the photon jet function in ν from
the hard rapidity scale νh ∼ 2mχ to the soft rapidity scale νs ∼ mW . As a consequence
we can set ν = νs for the soft function, after which the rapidity evolution factor (6.123)
becomes unity.

In the case of wino DM, the virtuality RG equation is more complicated. This is
because while being diagonal in the two-particle indices I and J , the virtuality anomalous
dimension of the Laplace transformed wino soft function has a non-diagonal contribution
in the operator space. Specifically, the RGE is given by

d

d lnµ
~wIJ(s, µ, ν) = ΓµW ~wIJ(s, µ, ν) , (6.124)
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where ΓµW is given by

ΓµW = 4 γcusp ln
κ

ν
14 +




0 0 0 0
−2γW 3γW 0 0
−2γ∗W 0 3γ∗W 0

0 −2γ∗W −2γW 3γW + 3γ∗W


 . (6.125)

Similar to the case of the photon jet functions, the soft function anomalous dimen-
sions (6.122) and (6.125) may be computed from (6.121) and (6.124), respectively. For
NLL’ resummation, we need the one-loop contribution for the non-cusp anomalous dimen-
sion γW , which we find to be

γ
(0)
W = (2 + 2πi)c2(j) . (6.126)

Using (6.125) and (6.126) we can solve the RGE (6.124) to obtain

~wIJ(s, µ, ν) = R−1UW (µ, µs)R ~wIJ(s, µs, ∂η)
(κ
ν

)η
, (6.127)

with the following diagonal evolution matrix UW

UW =




1 0 0 0
0 exp [3AγW ] 0 0

0 0 exp
[
3Aγ∗W

]
0

0 0 0 exp
[
3(AγW +Aγ∗W )

]



, (6.128)

and the diagonalization matrix R and its inverse R−1 are given by

R =




2
3 0 0 0
−2

3 1 0 0
−2

3 0 1 0
2
3 −1 −1 3

2


 , R−1 =




3
2 0 0 0
1 1 0 0
1 0 1 0
2
3

2
3

2
3

2
3


 . (6.129)

The intregals AγW in the exponents in (6.128) and the variable η in (6.127) where de-
fined in (6.111) and (6.112), respectively. Having computed the resummed soft func-
tion in Laplace space (6.127), it remains to return to momentum space via the inverse
Laplace transform. The entire dependence on the transform parameter κ is contained in

~wIJ(s, µs, ∂η)
(
κ
ν

)η
and we define ~̂WIJ(ω, µs, ν) to be the inverse Laplace transform

~̂WIJ(ω, µs, ν) = L−1
[
~wIJ(s, µs, ∂η)

(κ
ν

)η ]
. (6.130)

The relevant inverse Laplace transforms that need to be computed are the following

L−1
[(κ
ν

)η]
=
e−γEη

Γ(η)

(ω
ν

)η 1

ω
, (6.131)

F (ω) ≡ L−1
[(κ
ν

)η
G̃
(
e−γE/κ

)]

=

(
e−γE

ν

)η
ω1+η

Γ(2 + η)m2
W

4F3

(
1, 1, 1,

3

2
; 1 +

η

2
,
3

2
+
η

2
, 2;− ω2

m2
W

)
,

P (ω) ≡ L−1
[(κ
ν

)η
Q̃
(
e−γE/κ

)]

=

(
e−γE

ν

)η
ω1+η

m2
WΓ(2 + η)

3F2

(
1, 1,

3

2
; 1 +

η

2
,
3

2
+
η

2
;− ω2

m2
W

)
. (6.132)
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As before, we use the index combination i = j = 2 and I = J = (+−) to provide an
example, for which we find

Ŵ 22
(+−)(+−)(ω, µs, ν) =

[
1 +

α̂2

4π

((
−16 ln

mW

µs
∂η

)
− 8 ln

mW

µs

)]
e−γEη

Γ(η)

1

ω

(ω
ν

)η

+
α̂2

4π
[−6F (ω)− 2P (ω)] . (6.133)

The results for all resummed wino DM momentum space soft functions Ŵ ij
IJ for all index

combinations are provided in Appendix G.5.1. Combining the results from (6.127), (6.130)
and (6.132) we arrive at the final expression for the virtuality resummed wino DM soft
function in momentum space

~W ij
IJ(ω, µ, ν) = R−1UW (µ, µs)R ~̂W ij

IJ(ω, µs, ν) . (6.134)

We point out again that for the computation of the final cross section, we chose to run
the photon jet function Z33

γ in the rapidity scale from νh → νs, which renders the soft
function rapidity evolution factor (6.121) unity and it hence does not show up explicitly
in (6.134).

6.4.2 Narrow resolution soft function - Wino DM

As explained before, the narrow resolution soft function differs from its intermediate res-
olution counterpart due to the fact that the former does not feature real radiation. This
is because in the narrow case, the higher resolution Eγres ∼ m2

W /mχ implies that real soft
radiation of gauge bosons with masses around the electroweak scale can be resolved, while
this is not possible in the intermediate case which has Eγres ∼ mW . The soft coefficients
for the wino DM model are given by

DW,1
(00), 33(µ, ν) =1 +

ĝ2
2(µ)

16π2

(
8 ln2 mW

µ
− 8iπ ln

mW

µ
− π2

3
− 16 ln

mW

µ
ln
mW

ν

)
,

DW,2
(00), 33(µ, ν) =

ĝ2
2(µ)

16π2
(8− 8iπ) ln

mW

µ
,

DW,1
(+−), 33(µ, ν) =DW,1

(00), 33(µ, ν) ,

DW,2
(+−), 33(µ, ν) =DW,1

(00), 33(µ, ν)− 1

2
DW,2

(00), 33(µ, ν) . (6.135)

6.4.3 Intermediate resolution soft function - Higgsino DM

For resumming the intermedaite resolution Higgsino DM soft function, we proceed in a
similar manner as for its wino DM counterpart. Naively, one might expect the Higgsino
DM soft function to be more complicated since we need to deal with both SU(2) and U(1)Y
soft gauge bosons. We will see however, that it turns out to be easier than in the wino
DM case. All Higgsino DM soft function expressions in momentum space are collected in
Appendix G.4.2. Using the forward Laplace transforms (6.118), we compute the Laplace
transformed soft functions for which we again introduce the vector notation

~w
SU(2)
IJ (s, µ, ν) =

(
w

SU(2),11
IJ,33 , w

SU(2),14
IJ,34 , w

SU(2),41
IJ,43 , w

SU(2),44
IJ,44

)T
,

~w
U(1)
IJ (s, µ, ν) =

(
w

U(1),44
IJ,33 , w

U(1),46
IJ,34 , w

U(1),64
IJ,43 , w

U(1),66
IJ,44

)T
, (6.136)
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where the superscripts SU(2) and U(1) expresses which soft gauge boson is radiated. As
before we start by solving the RRG equations

d

d ln ν
~w

SU(2)
IJ (s, µ, ν) = Γ

SU(2),ν
W ~w

SU(2)
IJ (s, µ, ν) ,

d

d ln ν
~w

U(1)
IJ (s, µ, ν) = Γ

U(1),ν
W ~w

U(1)
IJ (s, µ, ν) . (6.137)

We find that both the SU(2) and U(1)Y one-loop rapidity anomalous dimensions are
diagonal in both the operator indices i, j and the two-particle-state indices I, J . They
take the form

Γ
SU(2),ν
W = Γ

U(1),ν
W =

α̂2(µ)

4π
2γ(0)

cusp ln
mW

µ
diag [2, 1, 1, 0] . (6.138)

Since the rapidity anomalous dimensions (6.138) are diagonal, solving the RRG equa-

tions (6.137) is straightforward. Neither Γ
SU(2),ν
W nor Γ

U(1),ν
W depends on the rapidity scale

ν, which allows us to find the analytic solutions

~w
SU(2)
IJ (s, µ, ν) = exp

[
Γ

SU(2),ν
W ln

ν

νs

]
~w

SU(2)
IJ (s, µ, ν) ,

~w
U(1)
IJ (s, µ, ν) = exp

[
Γ

U(1),ν
W ln

ν

νs

]
~w

U(1)
IJ (s, µ, ν) . (6.139)

Like in the wino DM model, also for Higgsino DM we have to choose whether we resum the
rapidity logarithms of the photon jet function or those of the soft function. As before, we
resum the photon jet function and evolve the rapidity scale from νh ∼ 2mχ to νs ∼ mW .
This means that we can set ν = νs in (6.139), which renders the Higgsino DM rapidity
evolution factors unity.

The RG equations for the Higgsino DM soft functions are given by

d

d lnµ
~w

SU(2)
IJ (s, µ, ν) = Γ

SU(2),µ
W ~w

SU(2)
IJ (s, µ, ν) ,

d

d lnµ
~w

U(1)
IJ (s, µ, ν) = Γ

U(1),µ
W ~w

U(1)
IJ (s, µ, ν) , (6.140)

with the anomalous dimensions

Γ
SU(2),µ
W =4γcusp ln

κ

ν
14 + 2γcusp

(
ln
mW

µ
− ln

mW

ν

)
diag [0, 1, 1, 2]

+ diag [0, γH , γ
∗
H , 2Re γH ] ,

Γ
U(1),µ
W =2γcusp

(
ln
mW

ν
− ln

mW

µ

)
diag [2, 1, 1, 0]

+ diag [2Re γH ,Re γH ,Re γ∗H , 0] . (6.141)

For NLL’ accuracy we need the one-loop expression for the non-cusp anomalous dimension
γH , which we can compute from the RG equations (6.140) and find it to be

γ
(0)
H = 4 + 8iπ . (6.142)

Making use of the relations (6.141) and (6.142) we can solve the RG equations (6.140) and
find to following expressions for the Laplace space resummed Higgsino DM soft functions

~w
SU(2)
IJ (s, µ, ν) =U

SU(2),µ
W (µ, µs, ν) ~w

SU(2)
IJ (s, µs, ∂η)

(κ
ν

)η
,
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~w
U(1)
IJ (s, µ, ν) =U

U(1),µ
W (µ, µs, ν) ~w

U(1)
IJ (s, µs, ν) , (6.143)

where the evolution matrices U
SU(2),µ
W and U

U(1),µ
W are given by

U
SU(2),µ
W (µ, µs, ν) = exp

[∫ lnµ

lnµs

d lnµ′ ΓSU(2),µ
W,γW

]
,

U
U(1),µ
W (µ, µs, ν) = exp

[∫ lnµ

lnµs

d lnµ′ ΓU(1),µ
W

]
. (6.144)

Again, the parameter η in (6.127) was defined in (6.112). After having computed the
virtuality evolution factors, it is time to perform the inverse Laplace transforms to obtain
the resummed soft functions in momentum space. For this, we make use of the rela-
tions (6.132) to find the final form of the virtuality-resummed Higgsino DM soft functions
in momentum space

~W
SU(2)
IJ (ω, µ, ν) = U

SU(2),µ
W (µ, µs, ν) ~̂W

SU(2)
IJ (ω, µs, ν) ,

~W
U(1)
IJ (ω, µ, ν) = U

U(1),µ
W (µ, µs, ν) ~W

U(1)
IJ (ω, µs, ν) . (6.145)

The functions ~̂W
SU(2)
IJ for all index combinations I, J are collected in Appendix G.5.2 and

the functions ~W
U(1)
IJ are given in Appendix G.4.2. As in the corresponding expression for

the wino DM soft function (6.134), the apparent lack of the rapidity evolution factor is
caused by the resummation path we chose.

6.4.4 Narrow resolution soft function - Higgsino DM

The narrow resolution soft function coefficients for the Higgsino DM model are given by

DH,1
(00),33 =1 +

ĝ2
2(µ)

16π2

[
−π

2

3
+ 8iπ ln

mW

µ
− 16 ln

mW

µ
ln
mW

ν
+ 8 ln2 mW

µ

]
,

DH,1
(+−),33 =DH,1

(00),33 ,

DH,4
(00),34 =− 1

2
− 1

2

ĝ2
2(µ)

16π2

[
−π

2

6
− 4 ln

mW

µ
− 8 ln

mW

µ
ln
mW

ν
+ 4 ln2 mW

µ

]
,

DH,4
(+−),34 =−DH,4

(00),34 , DH,4
(00),43 = DH,4

(00),34 , DH,4
(+−),43 = DH,4

(+−),34 ,

DH,6
(00),44 =1 , DH,6

(+−),44 = 1 . (6.146)

6.5 RG and RRG invariance

After having computed all the necessary functions to evaluate the wino and Higgsino
DM cross sections, we now check whether the the results presented so far are consistent.
At NLL’ accuracy, the physical photon energy spectrum has to be independent of the
virtuality, µ, and rapidity, ν, scales, at one-loop order. This scale independence manifests
itself via the two consistency equations

d

d lnµ

d(σvrel)

dEγ
= 0 , (6.147)

d

d ln ν

d(σvrel)

dEγ
= 0 . (6.148)
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6.5 RG and RRG invariance

The cross sections in (6.147) and (6.148) are representative for both the wino and Hig-
gsino DM cross sections. Note that in the analysis presented here we can disregard the
Sommerfeld effect, because here it is taken at leading order and is thus scale independent.
Consequently the factor SIJ can be divided out when evaluating (6.147) and (6.148). We
will confirm the scale independence for wino and Higgsino DM, for both the intermediate
and narrow resolution cases.

6.5.1 Intermediate resolution RG and RRG invariance - Wino DM

We saw that for the unobserved jet and the soft functions it was convenient to com-
pute their resummation using a Laplace transformation, which turns convolution into
multiplication. Checking the scale independence will hence also be easiest if it is done in
Laplace space, for which we have to take the Laplace transforms of the factorized cross sec-
tion (3.28). We take the Laplace transform with respect to the variable eγ ≡ 2 (mχ − Eγ).
The Laplace variable will be called t. The convolution of the unobserved jet function and
the soft function then turns into a simple multiplication as follows

L
[∫ ∞

0
dω Jint(2mχ(eγ − ω))W (ω)

]
=

∫ ∞

0
deγ e

−teγ
∫ ∞

0
dω Jint(2mχ(eγ − ω))W (ω)

=

∫ ∞

0

dp2

2mχ
e−tp

2/2mχJint(p
2)

∫ ∞

0
dω e−tωW (ω)

=
1

2mχ
jint

(
ln

2mχ

teγEµ2

)
w(t) , (6.149)

where we omitted indices and scales in the function arguments for reasons of brevity.
Introducing the substitution p2 = 2mχ (eγ − ω) allows us to move from the first to the
second line. This substitution would in principle introduce a negative lower bound for the
p2-integration, but the fact that p2 is strictly positive allows us to set the lower bound to
zero. Comparing the second line in (6.149) with the definitions of the Laplace transforms
in (6.103) and (6.116) we immediately arrive at the last line in (6.149). Because the Wilson
coefficients and the photon jet function do not depend on eγ or ω, they are not affected by
the Laplace transform and we can rewrite (6.147) for the wino DM intermediate resolution
cross section, which results in

d

d lnµ

[
~H(µ) · ~w(t, µ, ν)Zγ(µ, ν)jint

(
ln

2mχ

teγEµ2
, µ

)]
= 0 . (6.150)

After performing the differentiation and remembering the definitions (6.33), (6.45), (6.105)
and (6.124) of the anomalous dimensions, we find

Γwino
H + ΓµW + γµ

Z33
γ

14 + γµ
JSU(2)14 = 0 . (6.151)

The anomalous dimensions in (6.151) are given in matrix form, where the matrix entries
are determined by values of the operator indices i and j. The hard function and both
jet functions are independent of the two-particle state indices I, J and in Section 6.4.1 we
saw that the virtuality RG equation for the Laplace-transformed wino DM soft function is
diagonal in I, J . Equation (6.151) thus holds for all combinations of I and J . In order to
verify (6.151), we simply use the explicit expressions for the anomalous dimensions given
in (6.34), (6.46), (6.106) and (6.125). Since the cusp anomalous dimensions are diagonal in
both the operator and the two-particle state indices, it is easiest to confirm the consistency
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equation for this case, which reads

(
4γcusp ln

4m2
χ

µ2
+ 4γcusp ln

1

teγEν
+ 4γcusp ln

ν

2mχ
− 4γcusp ln

2mχ

teγEµ2

)
14 = 0 . (6.152)

It can be checked that the consistency equation is also fulfilled for the non-cusp parts of
the anomalous dimensions, although it should be noted that the cancellation is non-trivial
due to non-vanishing off-diagonal non-cusp terms appearing in Γwino

H and ΓµW .
After having confirmed the virtuality scale independence of the intermediate resolu-

tion wino DM cross section, we now move on to also check for rapidity scale indepen-
dence (6.148). The steps taken are exactly the same as in the virtuality case, but instead
of differentiating with respect to µ, as we did in (6.150), we now differentiate with respect
to ν. Note also, that only the photon jet and the soft functions depend on the rapidity
scale, which simplifies the analysis. Making use of the RRG equations (6.49) and (6.121)
we arrive at the intermediate resolution wino DM rapidity consistency equation

γνZ33
γ

14 + ΓνW = 0 , (6.153)

which is easy to confirm by plugging in the explicit expressions for γνZγ and ΓνW from (6.50)

and (6.122), respectively.
We have now shown that the virtuality (6.151) and rapidity (6.153) consistency equa-

tions are fulfilled, proving the complete one-loop scale independence of the intermediate
resolution wino DM cross section. This serves as a strong cross check of the correctness
of our results.

6.5.2 Narrow resolution RG and RRG invariance - Wino DM

In order to prove the scale independence in the narrow resolution case, we first have to
compute the RRG and RG equations for the wino DM soft coefficients DW,i

I,33 (i = 1, 2) and

for the narrow resolution unobserved jet function J33
nrw. These results were not calculated

previously since these functions do not need to be resummed for the evaluation of the
cross section. The RG and RRG equations for the soft coefficients are given by

d

d lnµ
DW,i
I,33 (µ, ν) = γµ

DW,ij
DW,j
I,33 (µ, ν) , (6.154)

d

d ln ν
DW,i
I,33 (µ, ν) = γνDWD

W,i
I,33 (µ, ν) . (6.155)

The one-loop anomalous dimensions can be directly computed from (6.154) and (6.155),
by making use of the soft coefficient expressions provided in (6.135). We find γµ

DW,ij
and

γν
DW to take the form

γ
µ (0)

DW =




16 ln
µ

ν
+ 8πi 0

c2(j)(−4 + 4πi) 16 ln
µ

ν
+ (12− 4πi)


 , (6.156)

γ
ν (0)

DW = 16 ln
mW

µ
12 . (6.157)

Similarly, the RG and RRG equations for the unobserved jet function J33
nrw are

d

d lnµ
J33

nrw

(
p2, µ, ν

)
= γµ

J33
nrw
J33

nrw

(
p2, µ, ν

)
, (6.158)
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d

d ln ν
J33

nrw

(
p2, µ, ν

)
= γνJ33

nrw
J33

nrw

(
p2, µ, ν

)
. (6.159)

The anomalous dimensions appearing in (6.158) and (6.159) are determined by differen-
tiating (6.66) with respect to µ and ν, respectively. At one-loop, they take the following
form

γ
µ (0)
J33
nrw

= 16 ln
ν

2mχ
+

19

3
(6.160)

γ
ν (0)
J33
nrw

= 16 ln
µ

mW
, . (6.161)

In order to confirm the scale independence of the narrow resolution wino DM cross
section, we plug (3.31) into (6.147) and (6.148). Following the discussion that was outlined
in the previous Section, we arrive at the following consistency equations

γνZ33
γ

12 + γνJ33
nrw

12 + γνDW + γν∗DW = 0 , (6.162)

Γwino
C + Γwino ∗

C + γµ
DW + γµ∗

DW + γµ
Z33
γ

12 + γµ
J33
nrw

12 = 0 , (6.163)

where the matrix Γwino
C is given by

Γwino
C =

(
Γ11 0
Γ21 Γ22

)
, (6.164)

and the entries are provided in (6.35). Eq. (6.163) can be confirmed to be correct by using
the anomalous dimensions for the Wilson coefficients (6.164), the photon jet function (6.46)
and (6.50), the unobserved jet function (6.160) and (6.161) and the soft coefficients (6.156)
and (6.157).

6.5.3 Intermediate resolution RG and RRG invariance - Higgsino DM

The derivation of the consistency equation for the intermediate resolution Higgsino DM
cross section is completely analogous to the analysis presented for the intermediate resolu-
tion wino DM cross section in Section 6.5.1. However, the Higgsino cross section (3.30) is
more involved than its wino counterpart since one has to take into account more functions
and index combinations, which leads to more complicated consistency equations. In order
to be able to write down the Higgsino DM consistency equations in a similarly compact
form as was done for wino DM, we first need to introduce the vector of photon jet functions

~Zγ =
(
Z33
γ , Z

34
γ , Z

43
γ , Z

44
γ

)T
. (6.165)

Then, we split the analogue of (6.150) for Higgsino DM into an SU(2) and a U(1)Y part
as follows

d

d lnµ

[∑

i

HSU(2), i(µ)w
SU(2)
i (t, µ, ν)Zγ, i(µ, ν)j

SU(2)
int

(
ln

2mχ

teγEµ2
, µ

)]
= 0 , (6.166)

d

d lnµ

[∑

i

HU(1), i(µ)w
U(1)
i (t, µ, ν)Zγ, i(µ, ν)j

U(1)
int

(
ln

2mχ

teγEµ2
, µ

)]
= 0 . (6.167)

The derivatives in (6.166) and (6.167) can readily be evaluated by remembering the def-
initions of the RG equations, we leads to the following conditions for the anomalous
dimensions

Γ
SU(2)
H + Γ

SU(2),µ
W + diag

[
γµ
Z33
γ
, γµ
Z34
γ
, γµ
Z43
γ
, γZ44

γ

]
+ γµ

JSU(2)14 = 0 , (6.168)
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Γ
U(1)
H + Γ

U(1),µ
W + diag

[
γµ
Z33
γ
, γµ
Z34
γ
, γµ
Z43
γ
, γZ44

γ

]
+ γµ

JU(1)14 = 0 . (6.169)

The correctness of the virtuality consistency equations (6.168) and (6.169) can straight-
forwardly be confirmed by using the values of the anomalous dimensions given in (6.39)

for Γ
SU(2)
H and Γ

U(1)
H , in (6.106) for γµ

JSU(2) and γµ
JU(1) , in (6.46) and (6.61) for the photon

jet function anomalous dimensions and in (6.141) for Γ
SU(2),µ
W and Γ

U(1),µ
W . The equa-

tions (6.168) and (6.169) are given in operator space matrix notation. Since we previously
found that all anomalous dimensions are also diagonal in the space of two-particle states,
it is clear that the conditions (6.168) and (6.169) hold for all values of I and J .

We now move on to confirming the rapidity scale independence of the intermediate res-
olution Higgsino DM cross section, i.e. we confirm (6.148) for Higgsino DM. As mentioned
before, the procedure is the same as for checking the virtuality scale independence. Mak-
ing use of the RRG equations (6.49), (6.63) and (6.137) we find the intermediate resolution
Higgsino DM rapidity consistency equations

diag
[
γνZ33

γ
, γνZ34

γ
, γνZ43

γ
, 0
]

+ ΓG,ν
W = 0 , (6.170)

where the superscript G on ΓG,ν
W stands for either SU(2) or U(1). Eq. (6.170) can easily

be confirmed by using the anomalous dimensions given in (6.50), (6.64) and (6.138).

6.5.4 Narrow resolution RG and RRG invariance - Higgsino DM

If we want to confirm the scale independence of the narrow resolution Higgsino DM cross
section, we first have to solve the RG and RRG equations for the soft coefficients DH,i

I,V W ,

i = 1, 4, 6 and the narrow resolution jet functions JXVnrw . Let us start with the soft coeffi-
cients, for which the RG and RRG equations are given by

d

d lnµ
DH,i
I,V W (µ, ν) = γµ

DH,ij
DH,j
I,V W (µ, ν) , (6.171)

d

d ln ν
DH,i
I,V W (µ, ν) = γνDHD

H,i
I,V W (µ, ν) . (6.172)

Using the soft coefficients from (6.146), we find the anomalous dimensions to be

γ
µ (0)

DH = diag
[
16 ln

µ

ν
− 8iπ, 8 ln

µ

ν
+ 4, 8 ln

µ

ν
+ 4, 0

]
, (6.173)

γ
ν (0)

DH = diag

[
16 ln

mW

µ
, 8 ln

mW

µ
, 8 ln

mW

µ
, 0

]
. (6.174)

The RG and RRG equations for the narrow resolution unobserved jet function index
combination X = V = 3 have already been solve in (6.158) and (6.159), respectively. The
corresponding equations for the index combination X = 3, V = 4 read

d

d lnµ
J34

nrw

(
p2, µ, ν

)
= γµ

J34
nrw
J34

nrw

(
p2, µ, ν

)
, (6.175)

d

d ln ν
J33

nrw

(
p2, µ, ν

)
= γνJ34

nrw
J34

nrw

(
p2, µ, ν

)
, (6.176)

where the anomalous dimensions are given by

γµ
J34
nrw

=
α̂2

4π

(
8 ln

ν

2mχ
+

19

6

)
+
α̂1

4π

(
−41

6

)
+O(α̂2

1,2) (6.177)
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γνJ34
nrw

=
α̂2

4π

(
−8 ln

µ

mW

)
+O(α̂2

2) . (6.178)

Note that since J34
nrw = J43

nrw, we don’t need to compute the index combination X = 4, V =
3 separately. Lastly, the index combination X = V = 4 does not depend on the rapidity
scale, which means that we only need to solve the RGE

d

d lnµ
J44

nrw

(
p2, µ

)
= γJ44

nrw
J44

nrw

(
p2, µ

)
, (6.179)

where the anomalous dimension is given by

γJ44
nrw

=
α̂1

4π

(
−41

3

)
+O(α̂2

1) . (6.180)

In order to prove the scale independence of the Higgsino DM narrow resolution cross
section, we differentiate (3.32) with respect to µ and ν. Following the discussion that has
been outlined above, we first analyse the virtuality consistency equation for which we find

ΓHiggs.
C +ΓHiggs. ∗

C + γµ
DH + γµ∗

DH + diag
[
γµ
Z33
γ
, γµ
Z34
γ
, γµ
Z43
γ
, γZ44

γ

]

+diag
[
γµ
J33
nrw
, γµ
J34
nrw
, γµ
J43
nrw
, γJ44

nrw

]
= 0 , (6.181)

where

ΓHiggs.
C = diag

[
Γ̃11, Γ̃44, Γ̃44, Γ̃66

]
. (6.182)

Using the explicit expressions for the anomalous dimensions provided in (6.42), (6.46),
(6.61), (6.160), (6.177), (6.180) and (6.173), it is easy to confirm that (6.181) is satisfied.

For the narrow resolution Higgsino DM rapidity consistency equation, we find

γνDH + γν∗DH + diag
[
γνZ33

γ
, γνZ34

γ
, γνZ43

γ
, 0
]

+ diag
[
γνJ33

nrw
, γνJ34

nrw
, γνJ43

nrw
, 0
]

= 0 , (6.183)

which can also be confirmed straightforwardly by using the rapidity anomalous dimensions
in (6.50), (6.64), (6.161), (6.178) and (6.174). Note that the consistency equations (6.181)
and (6.183) hold for all index values of I and J . We can hence conclude that also the
narrow resolution Higgsino DM cross section is scale independent, as expected.

85





7 Results

It is now time to present the results for the DM annihilation into the semi-inclusive final
state γ + X, for wino and Higgsino DM, which is given by (1.8). For the numerical
results given in this section we use the couplings at the scale mZ = 91.1876 GeV in
the MS scheme as input: α̂2(mZ) = 0.0350009, α̂3(mZ) = 0.1181, ŝ2

W (mZ) = ĝ2
1/(ĝ

2
1 +

ĝ2
2)(mZ) = 0.232497,1 λ̂t(mZ) = 0.952957, λ(mZ) = 0.132944. The MS gauge couplings

are in turn computed via one-loop relations from mZ ,mW = 80.385 GeV, αOS(mZ) =
1/128.943. Further, we compute the top Yukawa and Higgs self-coupling, which enter
our calculation only implicitly through the two-loop evolution of the gauge couplings, via
tree-level relations from mt = 163.35 GeV (corresponding to the top pole mass 173.2 GeV
at four loops) and mH = 125.0 GeV. For Higgsino DM, the mass splittings are fixed to
δm = 355 MeV and δmN = 20 MeV and for wino DM, the mass splitting is fixed to
δm = 164.1 MeV [104].

The numerical results in this Section were generated from private codes that were im-
plemented in Mathematica. To ensure correctness, two versions of each code were imple-
mented independently and subsequently compared via blind cross-checks. The codes for
the Sommerfeld factors SIJ were implemented independently and cross-checked by Martin
Vollmann and Kai Urban. Since SIJ is independent of Eγres, the same implementation
was used for both resolution cases. The narrow resolution Sudakov annihilation rates ΓIJ
for both wino and Higgsino DM were implemented independently and cross checked by
CH and Martin Vollmann. The same was done for the intermediate resolution Sudakov
annihilation rates by CH and Kai Urban. The information given here was already pre-
sented in Sections 4 of [7,8]. The results for the intermediate resolution cross sections, for
both wino and Higgsino DM, were computed using the more conventional second of the
two resummation schemes discussed in Section 4. However, we implemented both schemes
and found full numerical agreement at NNL’ at the 0.1% level. For wino DM, this was
investigated analytically and is discussed in Appendix A.

7.1 Energy spectrum - wino DM

The results for the intermediate resolution cross section 〈σv〉(Eγres) for wino DM, plotted
as a function of the DM mass, are shown in Figure 7.1. The upper panel shows the cross
sections for different levels of accuracy. The (black) dotted line is the “tree” approximation,
where we include the Sommerfeld factor SIJ and use only tree-level results for the Sudakov
annihilation rate ΓIJ without any resummation. The (magenta) dot-dashed line gives the
LL approximation, the (blue) dashed line gives the NLL approximation and the (red)
solid line gives the NLL’ approximation, which provides the highest accuracy. The plot
includes the first two Sommerfeld resonances and the energy resolution was integrated up
to Eγres = mW for this Figure.

1Note that the value for ŝ2W (mZ) in this thesis has been updated compared to the value given in [7–9].
We remark that all plots and numerical results presented in this thesis were computed with the updated
value.
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Figure 7.1: Integrated photon energy spectrum within Eγres from the endpoint mχ in the tree
(Sommerfeld only) and LL, NLL, NLL’ resummed approximation. The energy res-
olution is set to Eγres = mW . The shaded/hatched bands show the scale variation
of the respective approximation as described in the text. For the NLL’ result the
theoretical uncertainty is given by the thickness of the red line. This Figure was
extracted from [7].

The lower panel shows the ratios of the LL, NLL and NLL’ intermediate resolution wino
DM cross sections normalized to the tree-level approximation. The purpose of this plot
is to make more transparent the effect of resummation. We observe that resummation
leads to a substantial reduction of the cross section, which is a general feature of Sudakov
resummation. Particularly interesting is the mχ ∼ 3 TeV mass range, where, as discussed
in the introduction, wino DM is consistent with the observed relic density. Here, the
annihilation rate is suppressed by 30 − 40%. These findings are consistent with previous
computations of similar observables [66–68].

The shaded/hatched regions around the central lines in Figure 7.1 give an estimate of
the theoretical uncertainty of the computations at the different levels of accuracy. The
uncertainty bands are obtained from a parameter scan which is computed through a simul-
taneous variation of all scales. Specifically, the high virtuality and rapidity scales µh, νh are
varied in the interval 2mχ[1/2, 2], the jet scale µj is varied in the interval

√
2mχmW [1/2, 2]

and the soft virtuality and rapidity scales µs, νs are varied in the interval mW [1/2, 2]. For
each mass value in Figure 7.1, the five scales are varied in their corresponding intervals
over 21 logarithmically distributed values, with ten values lying above and ten values lying
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below the central value. Then, for each mass point, the maximum and minimum values of
the cross section in this five-dimensional parameter space are chosen to give an estimate
of the scale uncertainty.

Using this very conservative approach for estimating the errors, we find that the scale
uncertainty at NLL’ accuracy is in fact negligible and is given by the width of the red solid
line in Figure 7.1. Furthermore we observe, as expected, a negative correlation between
the accuracy of the computation and the scale uncertainty. Specifically, the theoretical
uncertainty reduces from 17% at LL, to 8% at NLL and to 1% at NLL’ assuming mχ =
2 TeV. The numerical benchmark values for the ratio of the cross sections with respect
to the Sommerfeld-only result, for the mass values mχ = 2 TeV (10 TeV), are 0.641+0.115

−0.097

(0.402+0.096
−0.077) at LL, 0.707+0.054

−0.054 (0.463+0.032
−0.033) at NLL and 0.667+0.007

−0.006 (0.435+0.005
−0.004) at NLL’

accuracy, where the central values are computed using the central scales of the above
intervals.

It is interesting to investigate the contributions of each two-particle channel combi-
nation IJ = {(00)(00), (00)(+−), (+−)(00), (+−)(+−)} to the integrated photon energy
spectrum 〈σv〉(Eγres). This will allows us to see how the different terms from SIJ and ΓIJ
contribute to the final result. Hence, we separate the cross section as follows

〈σv〉 = 2×
{
S(00)(00)[σv](00)(00) + 2Re[S(00)(+−)[σv](00)(+−)]

+ S(+−)(+−)[σv](+−)(+−)

}
, (7.1)

where

[σv]IJ(Eγres) =

∫ mχ

mχ−Eγres
dEγ ΓIJ(Eγ) . (7.2)

We find (Sommerfeld factors in bold and adopting Eγres = mW )

〈σv〉 = 2×
[

34.246× (1.1552)︸ ︷︷ ︸
∼3%

+ 2Re [42.100× (−0.8718 + 5.4288i)]︸ ︷︷ ︸
∼−5%

+ 51.755× (29.242)︸ ︷︷ ︸
∼102%

]
× 10−28 cm3/s = 2.9592× 10−25 cm3/s , (7.3)

for mχ = 2 TeV and

〈σv〉 = 2×
[

1.1345× (1.1159)︸ ︷︷ ︸
∼18%

+ 2Re [0.35103× (−0.8969 + 7.2167i)]︸ ︷︷ ︸
∼−9%

+ 0.10861× (60.676)︸ ︷︷ ︸
∼91%

]
× 10−27 cm3/s = 1.4453× 10−26 cm3/s . (7.4)

for the smaller DM mass value mχ = 500 GeV. By looking at the mχ = 2 TeV result (7.3)
(the structure does not change for larger masses), we find the Sommerfeld factors to be
large and to be roughly of the same order. At the same time Γ(+−)(+−) is larger than
the contributions from the other channels by an order of magnitude, which means that
the cross section is dominated by the IJ = (+−)(+−) annihilation channel contribution,
which starts at tree-level in the fixed-order approximation. For mχ = 500 TeV (7.4),
the Sommerfeld factors are ≤ O(1), with S(00)(00) giving the largest contribution. This
means that for small DM masses, the Sommerfeld enhancement does somewhat compen-
sate the loop suppression and the contributions from the different channels distributed
more democratically.
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Figure 7.2: Annihilation cross sections plotted as function of Eγres. The blue-dotted line shows
the cross section for the narrow resolution computed in [9]. The red-dashed line
shows the intermediate resolution cross section. The light-grey (blue) area represents
the region of validity for the narrow resolution case and the dark-grey (red) area
represents the region of validity for the intermediate resolution case. The ratio of the
intermediate to narrow resolution annihilation cross section 〈σv〉int/〈σv〉nrw is added
below each plot. The results are shown for DM masses of mχ = 2 TeV (upper plot)
and mχ = 10 TeV (lower plot). This Figure was extracted from [7].

7.2 Matching energy resolutions - wino DM

In the previous Subsection, we presented the results for the wino DM cross section in
the intermediate resolution regime, where the experimental energy resolution scales as
Eγres ∼ mW . In Section 1.4 we showed that the intermediate resolution regime would be
most relevant for current and future indirect DM searches, for masses in the TeV range.
Throughout this thesis however, we also provided results for the narrow energy resolution
case Eγres ∼ m2

W /mχ. This is closer to the line signal, where the DM particles annihilate
into two photons or a photon and a Z boson. We now want to investigate whether we can
combine the results for the narrow and intermediate energy resolutions in order to provide
predictions for the range from Eγres ∼ 0 to Eγres ≈ 4mW , with NLL’ accuracy.

In Figure 7.2 we plot the narrow resolution (blue dotted line) and the intermediate
resolution (red dashed line) cross sections, as functions of the energy resolution. For
the upper panel, the DM mass was set to mχ = 2 TeV which is where wino DM is
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7.3 Energy spectrum - Higgsino DM

consistent with the observed relic density, while the lower panel is used to investigate the
matching for higher DM masses, in this case mχ = 10 TeV. The shaded vertical bands
show the regions of validity for the two energy resolutions. The boundaries of the narrow
resolution (blue/light-grey) region are defined by m2

W /mχ [1/4, 4] and the boundaries for
the intermediate resolution (red/dark-grey) region are defined by mW [1/4, 4].

From Figure 7.2 we can see that the two calculations agree with high precision over a
wide range of Eγres, independently of the DM mass. The range of agreement not only covers
the region between the two validity bands, but extends well into them for both resolutions.
The narrow resolution cross section exhibits a steep increase at Eγres ' 4m2

Z/mχ, which
is the resolution value above which the γZ contribution is included and can no longer be
separated. This feature is absent for the intermediate resolution cross section, since the
unobserved jet function in this case J33

int is computed in the massless limit and is thus
clearly insensitive to this effect. This shows that the intermediate resolution cross section
is not valid for the lower values of Eγres. The invariant mass p2 of the narrow resolution
unobserved jet function J33

nrw also passes through the W+W−, ZH and tt̄ thresholds, which
however cannot be resolved with the choice of scale in Figure 7.2.

For both mass examples, the narrow resolution cross section provides an accurate result
well into region of validity of the intermediate resolution cross section. Only when going to
even higher values of Eγres, we see that the two calculations start to show some discrepancy.
This is sensible, since the narrow resolution case fails to capture the effect of real radiation
of soft EW gauge bosons, which are explicitly not included in this case. The bottom parts
of the two panels show the ratios 〈σv〉int/〈σv〉nrw as functions of Eγres. From these we see
that even at the highest resolution value Eγres = 1 TeV the discrepancy is at most 20%.
And although the distance between the regions of validity increases with increasing DM
mass mχ, the precision of the matching between the two calculations is not affected.

Note that so far, we did not explicitly discuss the results for 〈σv〉nrw as a function of
the mass. Given the high degree with which the two computations match, we conclude
that in Figure 7.1 〈σv〉nrw would look indistinguishable from 〈σv〉int, provided that Eγres

is integrated to a value that lies somewhat above m2
Z/(4mχ) and below 4m2

W /mχ. An
analogous parameter scan as the one that was described in the previous Section was also
performed for 〈σv〉nrw and we find a similar behaviour of the scale uncertainties for the
different levels of accuracy. (For explicit results, we refer to [9].)

Summarizing the above discussion, we find that our computations for the wino DM
narrow and intermediate energy resolution regimes, as defined in (1.9), provide theoretical
predictions with NLL’ accuracy for the photon energy spectrum in DM annihilation in
the entire energy resolution range from Eγres ∼ 0 to Eγres ≈ 4mW . It would be interesting
to try to match our results with the corresponding ones for the wide energy resolution
Eγres � mW , which were computed in [69]. While this would allow one to cover the entire
range of Eγres, we expect that the results of [69] are relevant only for DM masses in the
range mχ ≥ 10 TeV, assuming the anticipated energy resolution of the CTA experiment
(see Figure 1.7).

7.3 Energy spectrum - Higgsino DM

In Figure 7.3, we present the results for the intermediate resolution cross section for Hig-
gsino DM, plotted as a function of mχ. The colour coding and the styles of the curves
remain the same as for wino DM, i.e. the black/dotted line is the cross section using
the Sommerfeld-only approximation, while the magenta/dot-dashed, the blue/dashed and
the red/solid lines respectively give the results for the LL, NLL and NLL’ cross sections.
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Figure 7.3: Integrated photon energy spectrum within Eγres from the endpoint mχ in the tree
(Sommerfeld only) and LL, NLL, NLL’ resummed approximations. The energy
resolution is set to Eγres = mW and the mass splittings are δm = 355 MeV and
δmN = 20 MeV. The shaded/hatched bands show the scale variation of the respec-
tive approximation. For the NLL’ result the theoretical uncertainty is given by the
thickness of the red line. This Figure was extracted from [8].

While the upper panel simply shows the cross section at various accuracies and includes
the first Sommerfeld resonance, the lower panel shows the LL, NLL and NLL’ cross sec-
tions normalized by the tree-level result. Again, this is to make transparent the effect
of resummation. While for masses larger than mχ > 1 TeV resummation of Sudakov
logarithms leads to the expected reduction of the cross section, we see that for masses
of mχ = 1 TeV and below, resummation actually enhances the annihilation rate. The
reasons for this behaviour are twofold:

1. First, we check how much the different annihilation channels contribute to the final
result at different DM masses. At large masses, the entries of the Sommerfeld matrix
SIJ have similar magnitude and the sum over I and J is dominated by the IJ =
(+−)(+−) channel. This is because only the Sudakov annihilation rate Γ(+−)(+−),
which describes the annihilation χ+χ− → γ+X, has a non-vanishing tree-level term
making it dominant over the other channels. Furthermore, Γ(+−)(+−) also features
a standard series of exponentiated negative double-logarithmic corrections, which
causes the Sudakov suppression for mχ & 1 TeV. If, on the other hand, mχ . 1 TeV,
we find that the entries of the Sommerfeld matrix are such that S(11)(11) ≈ 1, while
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7.3 Energy spectrum - Higgsino DM

the other entries are much smaller than one. This means that the various channels
are not being mixed like for larger DM masses. The fact that Γ(11)(11) only starts at
O(α3

1,2), means that all channels now contribute roughly equally to the final result.
We find that since different index combinations of the soft function and photon jet
function contribute with different signs, a partial cancellation occurs which results
in an enhancement rather than a suppression.

2. Second, generally, depending on the numerical coefficients, it may happen that for
small masses the leading logarithms are actually sub-dominant. We also find that
for the neutral annihilation channels, the leading logarithms appear with a positive
sign. This will be shown explicitly later in this Section in (7.5), where we discuss
the behaviour of the uncertainty bands in Figure 7.3. Combining the sub-dominant
behaviour of the leading logarithms for small DM masses with their positive sign in
the neutral channels, means that this enhancement dominates over the negative in-
terference terms from Γ(11)(+−), Γ(22)(+−) and the Sudakov suppression of Γ(+−)(+−).

We show the Higgsino DM annihilation cross section in Figure 7.3 with theoretical
uncertainties. These are computed as for wino DM, i.e. the scales are simultaneously varied
by a factor of two around their central values. Performing a parameter scan for each mχ-
value over the five-dimensional parameter space and taking the maximum and minimum
values gives the error bands. Assuming a DM mass of mχ = 1 TeV, the theoretical
uncertainties amount to ±9% at LL, ±27% at NLL, and only ±2% at NLL’. While for
large DM masses the behaviour of the scale uncertainty is similar to the case of wino
DM, in that going to higher accuracy results in a smaller scale dependence, we see that
in the low-mass region the NLL-uncertainty exceeds the LL-uncertainty and is also large
in absolute terms. For Higgsino DM, we thus find that only the inclusion of the one-loop
corrections to the hard, jet and soft functions allows us to control the scale uncertainty
and to make accurate predictions. The uncertainty of the NLL’ result in Figure 7.3 is
given by the width of the red solid line, which we find to be comparable to the case of
wino DM. Normalizing by the tree-level results, we find the following numerical benchmark
values for DM masses of mχ = 1 TeV (10 TeV): 0.730+0.102

−0.033 (0.571+0.063
−0.053) at LL, 0.922+0.323

−0.178

(0.590+0.022
−0.024) at NLL and 0.976+0.011

−0.034 (0.555+0.004
−0.003) at NLL’.

In order to understand the surprising scale dependence in the low-mass region in the
case of Higgsino DM that is displayed in Figure 7.3, we need to analytically investigate
the logarithmic structure of the resummed Higgsino DM annihilation matrix. The neutral
particles χ0

1, χ0
2 cannot undergo pair annihilation into γγ and γZ at tree-level. This

implies, that the annihilation rates Γ(00)(00), Γ(00)(+−) and Γ(+−)(00) also vanish at tree-
level.2 While for wino DM these entries of the annihilation rate simply do not have a
tree-level contribution, for Higgsino DM this is caused by a cancellation between the short-
distance coefficients of the three operators O1,4,6. These operators are linearly independent
and do not mix during resummation. This means that they have different anomalous
dimensions and as a consequence, the cancellation between O1,4,6 does not happen for
their evolution factors, i.e. there is no cancellation between the leading logarithms and
despite the absence of a tree-level amplitude, there is a double logarithmic enhancement
proportional to L2 = ln2(4m2

χ/m
2
W ) in the one-loop amplitudes. Since the annihilation rate

ΓNLL
(00)(00) is given at the squared amplitude level, it already features a leading logarithmic

term proportional to L4. In Appendix A, we will see that this is indeed not the case for
wino DM, where the corresponding annihilation rate only contains an L2 term.

2In the following discussion, (00) always refers to the combined neutral states (11) and (22).
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7 Results

When discussing the effect of resummation earlier in this Section, we noted that in the
low-mass region all annihilation channels contribute roughly equally to the full cross sec-
tion. This means that if the scale variations are large within one of these channels, this
will affect the scale uncertainty of the final result, unless there are some accidental cancel-
lations. Analytically expanding the neutral channel NLL resummed Sudakov annihilation
rate, we find for the first non-vanishing contribution

ΓNLL
(00),(00) =

α̂4
2ŝ

2
W

64πm2
χ

[
L4

4
+ L3 + #L2 + L

(
8π2 lµh − 8π2 lµs + . . .

)]
+ . . . , (7.5)

where lµs ≡ ln(µ2
s/m

2
W ) and lµh ≡ ln(µ2

h/4m
2
χ) are scale dependent logarithms. In (7.5)

we only show the terms that are relevant for the current discussion. At NLL accuracy, the
presence of the L4 term means that coefficients of Ln, 0 ≤ n ≤ 2, are not yet resummed
and exhibit a scale dependence, which is what we see from (7.5). The terms responsible
for the large scale variations at NLL are the ones proportional to π2L in (7.5). These orig-
inate from the imaginary parts of the one-loop anomalous dimensions. At small masses,
0.5 TeV . mχ . 1 TeV the scale variations from these terms dominate over the contri-
butions from the leading logarithmic terms and cause the O(1) scale dependence seen in
Figure 7.3. Including the one-loop corrections to the hard and soft functions into (7.5)
will cancel the lµh and lµs terms, which finally puts us in control of the final result.

Note that the π2L terms in (7.5) are already present at LL. Here however, we find that
in the sum of the IJ = (00), (00), IJ = (00), (+−) and IJ = (+−), (00) annihilation
channels there is an accidental cancellation of large scale-dependent terms. In the end,
this cancellation is responsible for the smallness of the LL error band compared with
the NLL error band and its asymmetry, in the low-mass region. For large DM masses,
the leading logarithmic terms in (7.5) will start to dominate, rendering the effect of the
scale variations sub-dominant. Also, for mχ

>∼1 TeV, the cross section is dominated by
contributions from Γ(+−)(+−), which already has a small scale dependence at NLL.

7.4 Matching energy resolutions - Higgsino DM

In the previous Section, we discussed the results and characteristics of the intermediate
resolution Higgsino DM cross section. As was done for wino DM in Section 7.2, we now
want to investigate whether we can match our results from the narrow and intermediate
energy resolutions. To do so, in Figure 7.4 we plot the Higgsino DM cross sections for the
narrow (blue/dotted) and intermediate (red/dashed) resolution cases as a function of the
energy resolution. We assume a DM mass of mχ = 1 TeV. As for the wino case, we indicate
the regions of validity for the two resolution regimes, which are defined by m2

W /mχ[1/4, 4]
for the narrow resolution and by mW [1/4, 4] for the intermediate resolution.

The general behaviour of the curves as well as the matching is comparable to the wino
DM case. The sharp increase of the narrow resolution cross section at Eγres ' m2

Z/(4mχ)
is caused by the fact that the contribution from γZ can no longer be resolved. Again, in
principle also the thresholds for W+W−, ZH and tt̄ are shown, which are however invisible
at the scale of Figure 7.4. Since the intermediate resolution unobserved jet functions were
computed in the massless limit, these features are absent in the intermediate resolution
cross section, which only becomes an accurate description for Eγres & m2

Z/(4mχ). Different
from the wino DM case, the Higgsino DM intermediate resolution cross section starts to
diverge quite severely from the intermediate resolution result for larger values of Eγres.
Nevertheless, from the bottom part of Figure 7.4, which shows the ratio 〈σv〉int/〈σv〉nrw,
we see that there is still a wide Eγres-range where the results for the two regimes match
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Figure 7.4: Annihilation cross sections plotted as function of Eγres. The blue-dotted line refers to
the narrow resolution. The red-dashed line shows the intermediate resolution cross
section. The light-grey (blue) area represents the region of validity of the narrow
resolution case and the dark-grey (red) area represents the region of validity of the
intermediate resolution case. The ratio of the intermediate to narrow resolution
annihilation cross section 〈σv〉int/〈σv〉nrw is added below. The results are shown for
a DM mass of mχ = 1 TeV. This Figure was extracted from [8].

very closely. In Appendix A an in depth investigation into the matching is performed for
wino DM. A similar analysis can be done for Higgsino DM and we assume the results
found in Appendix A are transferable.

Remember that the correct relic densities for wino and Higgsino DM are achieved for
mass values of mχ ∼ 2 TeV and mχ ∼ 1 TeV, respectively. As already discussed at the end
of Section 7.2, this means that for future experiments the intermediate resolution results
will be most appropriate for wino DM. However, as can be seen from Figure 1.7, the narrow
resolution regime becomes more relevant in the case of Higgsino DM. Independently of
the resolution however, we emphasize that for Higgsino DM it is necessary to go to NLL’
accuracy in order to have full control over the final result’s uncertainty.

We are not going to discuss in depth the narrow resolution results. From Figure 7.4, we
see that this is justified since the high degree of matching allows us to conclude that the
results for 〈σv〉nrw as a function of mχ would look indistinguishable from the intermediate
resolution integrated photon energy spectrum (provided that the value of Eγres lies some-
what above m2

Z/(4mχ) and below 4m2
W /mχ). Having performed a parameter scan for the

narrow resolution case, we find a similar behaviour as the one seen in Figure 7.3.
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8 Conclusion

To date, the nature of DM remains one of the biggest mysteries in particle physics. Given
the findings thus far, indirect detection experiments looking for multi-TeV DM in the
center of the Milky Way are most promising for uncovering the nature of DM. These
experiments which are already running or are currently being planned/built, will either
allow one to constrain the parameter space of viable DM models or rule them out com-
pletely. To do so however, accurate predictions for these models need to be provided from
the theoretical physics side. In this thesis, we investigated the semi-inclusive annihilation
process χχ→ γ +X for wino and Higgsino DM. These two models extend the SM by an
SU(2) (wino) multiplet and an SU(2)⊗U(1)Y (Higgsino) multiplet and both models are
well motivated due to their simplicity and their origin in SUSY. The computations were
carried out up to NLL’ accuracy, which gives the highest precision for these models to
date.

The scaling of the energy resolution of the experiments has implications for what kind of
radiation needs to be included in the computations. We find that the intermediate resolu-
tion regime, as defined in (1.9), is most appropriate for the next generation of experiments.
This thesis provides the results for both narrow and intermediate energy resolutions and
as can be seen from Figures 7.2 and 7.4, this allows us to accurately make predictions for
the entire resolution range from Eγres ∼ 0 to Eγres ∼ 4mW . The formalism presented here
is kept as general as possible. In particular, the derivation of the factorization theorem
in Section 3, holds for SU(2)⊗U(1)Y multiplets with arbitrary multiplicity and hyper-
charge. Furthermore, the hard matching coefficients, the photon jet functions and the
unobserved jet functions are universal and independent of the nature of the DM particles.
Only for the computation of the soft functions, we assumed an SU(2) triplet (wino) and
an SU(2)⊗U(1)Y doublet with hypercharge Y = 1/2 (Higgsino).

The nature of the annihilation process, heavy non-relativistic particles annihilating to
light energetic ones, implies several complications. Consequently multiple EFTs, non-
relativistic and soft-collinear, need to be employed in order to be able to calculate reliable
predictions. This thesis focused on the use of SCET for the resummation of large Sudakov
logarithms that lead to a breakdown of the naive perturbative expansion in the coupling
constants. We resummed large logarithms up to NLL’, which resulted in predictions
with theoretical uncertainties of 1% (wino) and 2% (Higgsino) in the interesting mass
regions. These uncertainties were computed from a variation of the scales present in the
computations. In particular, we found that for Higgsino DM it is vital to include the one-
loop corrections to gain control over the uncertainties, because the NLL results showed
unexpectedly large error bands in the interesting mass region.

Given the small uncertainties, it is expected that the largest theoretical uncertainty now
arises from modifications of the Sommerfeld effect due to sub-leading effects in the non-
relativistic theory, and, for smaller mχ, from power-suppressed effects of order mW /mχ,
which have been systematically neglected during this thesis. An investigation of the Som-
merfeld effect at NLO for wino DM has been performed in [81], but has yet to be done
for Higgsino DM. It would be interesting to include these effects into the work presented
here.
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A Fixed-order expansions - Wino DM

In Figures 7.2 and 7.4 we showed that for both wino and Higgsino DM, there is a wide
range of Eγres where the narrow and intermediate energy resolution cross sections match
to a high degree of accuracy. In this Appendix, we are going to perform an in depth
investigation of this matching and ultimately will be able to show why it happens using
analytic expressions. The analysis done here is specific to wino DM, but can be expected to
also hold for Higgsino DM. Specifically, we are going to expand the Sudakov annihilation
rate matrix ΓIJ up to two-loop order, which will allow us to investigate the structure of
large logarithms in both resolution cases. Comparing large logarithmic contributions from
both resolution regimes, we will then be able to show why the photon energy spectra at
large photon momentum agree remarkably well over a large Eγres-interval. The arguments
presented below follow Section 5 and Appendix E of [7] and the analytic expansions were
done independently and cross checked by CH and Martin Vollmann.

Throughout this Appendix, we will focus on the first intermediate resolution resumma-
tion scheme of Section 4, where all scales are evolved to the soft scale. In this way, the
evolution of the functions for both resolutions is treated on a more similar footing. Below,
in Appendix A.3, we will show however that the findings hold independently of which
resummation scheme is chosen.

A.1 Double-logarithmic approximation

Before considering the full expansion of the NLL’ resummed cross sections, it will be
instructive to consider the double-logarithmic approximation. This can be obtained by
only keeping the tree-level term from each function, as well as the α̂2 × ln2 terms in the
exponentials from the RG evolution factors. This example allows us to nicely demonstrate
why it is necessary to perform a full NLL’ calculation, if one wants to obtain accurate
results. It also shows why it is necessary to analyse the full NLL’ expression, when trying
to explain the matching. The double-logarithmic approximations for the narrow and
intermediate wino DM cross sections are given by

〈σv〉nrw(Eγres) =
2πα̂2

2ŝ
2
W

m2
χ

[
ŝ2
W + ĉ2

WΘ

(
Eγres −

m2
Z

4mχ

)]
e
− α̂2

π
ln2 4m2

χ

m2
W S(+−)(+−) , (A.1)

〈σv〉int(E
γ
res) =

2πα̂2
2ŝ

2
W

m2
χ

e
− 3α̂2

4π
ln2 4m2

χ

m2
W S(+−)(+−) . (A.2)

We can see that in the ‘nrw’-case, the coefficient of the double logarithm is larger than
in the ‘int’-case. This is a general feature for more exclusive observables. The α̂2 × ln2

terms in (A.1) and (A.2) are easily traceable. For both resolutions, the hard function

resummation contributes a factor of − α̂2
4π × 4 ln2 4m2

χ

m2
W

and while the ‘nrw’-case does not

contain other double-logarithmic contributions, in the ‘int’-case the hard-collinear SU(2)
unobserved jet function, which is evolved from the jet to the soft scale µj → µs, adds

a positive factor + α̂2
4π × ln2 4m2

χ

m2
W

. Hence, in the ‘int’-case the suppression from the hard
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Figure A.1: Same as Figure 7.2 but in the double-logarithmic (“simplified”) approximation.
For comparison the complete (“full”) NLL’ results of Figure 7.2 are also included
(dimmer dashed and dotted lines). Top: mχ = 2 TeV. Bottom: mχ = 10 TeV. This
Figure was extracted from [7].

function resummation is partially canceled from the resummation of the unobserved jet
function.

Figure A.1 shows the same matching that was already presented in Figure 7.2, but now
includes the curves from the double-logarithmic approximations (A.1) and (A.2). The
full results are shown with a dimmer shading. The blue/dotted and red/dashed curves
are the full results for the narrow and intermediate cross sections, respectively, and the
blue/dot-dashed and red/solid curves are the double-logarithmic approximations for the
‘nrw’- and ‘int’-cases, respectively. For the upper panel, a DM mass of mχ = 2 TeV is
assumed, while for the lower panel mχ = 10 TeV. We again also include the regions of
validity for both resolution regimes.

From Figure A.1 we can see that the double-logarithmic approximation for the ‘nrw’-
case correctly captures the opening of the γZ channel. Also, in their respective regions
of validity (A.1) and (A.2) are close to the full NLL’ resummed results. However, it is
also clearly shown that the approximations fail to reproduce the precise shapes of the
full results and, most importantly, they fail when it comes to matching the two resolution
regimes. We thus turn to the full NLL’ resummed results, in order to explain the matching
of the narrow and intermediate resolution cross sections.
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A.2 Expansion of the resummed annihilation rate

Since the Sommerfeld effect is the same in both resolution cases, we focus on the expansion
of the resummed annihilation rate. The starting point of our analysis will be [σv]IJ , which
was defined in (7.2), and can be written in the form

[σv]IJ(Eres
γ ) =

2πα̂2
2(µ)ŝ2

W (µ)√
2
nidm2

χ

∞∑

n=0

2n∑

m=0

c
(n,m)
IJ (Eγres, µ)

(
α̂2(µ)

π

)n
lnm

4m2
χ

m2
W

(A.3)

where, by construction, the coefficients c
(n,m)
IJ (Eγres, µ) are O(1) numbers, and the large log-

arithms ln(4m2
χ/m

2
W ) are made explicit. The coefficients of the large logarithms c

(n,m)
IJ (Eγres, µ)

will take a different form depending on the resolution regime and the indices n and m de-
note the powers of the coupling constant and the large logarithms, respectively. Further-
more, the coefficients can depend on many different scales: µ from the renormalization
of the coupling and the natural scales of the Wilson coefficients µh, the hard-collinear
unobserved jet function µj , the (anti-) collinear jet functions µs, νh and the soft function
µs, νs. These enter via the RG and RRG evolution factors, that have been derived in
Section 6. In order to make sure that large logarithms and O(1) terms are well separated,
we normalize scales by their natural values. This means that we will rewrite logarithms
like ln(µ2

j/m
2
W ) as ln(µ2

j/m
2
W ) = ln(µ2

j/(2mχmW )) + 1
2 ln(4m2

χ/m
2
W ), where the first term

is now O(1) and contained in one of the c
(n,m)
IJ , while the second term is a large logarithm

that is made explicit in (A.3). The complete list of coefficients is collected below in Appen-
dices A.4.1 (narrow resolution) and A.4.2 (intermediate resolution). In Appendix A.4.3,

we also provide more details about computation of the c
(n,m)
IJ . We expand [σv]IJ up to

the two-loop order, i.e. n ≤ 2.

Before discussing the characteristics of the coefficients, let us take a moment and clarify
some notation. This will also explain what exactly is actually meant when saying a
computation is done up to LL, NLL or NLL’ accuracy and will allow us to demonstrate
which terms a computation to a certain order correctly reproduces. Schematically, a
resummed annihilation cross section takes the form

σv ∝ (1 + C1α̂2 + . . .) exp [Lf0(α̂2L) + f1(α̂2L) + . . .] , (A.4)

where the exponent contains the RG and RRG evolution factors and the prefactor origi-
nates from the fixed-order computation. The fi(α̂2L) are functions of the O(1) quantity
α̂2L ≡ α̂2 ln(4m2

χ/m
2
W ). An LL-computation will contain f0, NLL will also include f1

and NLL’ will add the one-loop corrections C1. Expanding (A.4) in α̂2, we can see which
large logarithms are correctly predicted by a certain calculation. LL will only provide

the coefficient c
(n,2n)
IJ , NLL provides the coefficients c

(n,2n)
IJ and c

(n,2n−1)
IJ , while NLL’ will

correctly provide the three coefficients c
(n,2n)
IJ , c

(n,2n−1)
IJ and c

(n,2n−2)
IJ , for all n. Not that if

a certain coefficient is fully reproduced by a computation, this coefficient must also be free
of any of the scales present in the problem, since the dependence on the matching scales
(e.g. µj) must cancel at every fixed order. This will provide us with another cross-check of
our computation, as any physical observable must be scale independent (up to the order
of the computation).

In Figure A.2 we show the full NLL’ cross sections normalized by the Sommerfeld-only
terms (same as Figure 7.1 but for narrow and intermediate resolution) and compare them
to the fixed-order expansions up to one-loop (NLO) and two-loops (NNLO). From the
NLO curves in Figure A.2, we can see the breakdown of EW perturbation theory which
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Figure A.2: Left: Ratios to the tree-level cross section of the various fixed-order cross sections
at NLO (dotted) and NNLO (dashed) and of the fully resummed NLL’ cross section
(solid) for the narrow resolution Eγres = (150 GeV)2/mχ. Right: The same ratios
as in the left panel, but in the intermediate resolution regime Eγres = mW . As in
Figure 7.1, in both cases the Sommerfeld factor SIJ is included and the formulas are
evaluated at the central scales. This Figure was extracted from [7].

nicely shows the need for resummation. And while the NNLO curve improves the accuracy
of the computation, it still diverges significantly from the all-orders resummed result in
the large-mass region.

In the following, we discuss the coefficients at tree-level n = 0, at one-loop n = 1 and
at two-loops n = 2. The main focus will lie on the channel IJ = (+−)(+−), since this
is the only one that starts at tree-level and will thus have the most non-zero coefficients.
However, in Appendices A.4.1 and A.4.2 the coefficients for all channels are listed. After
presenting the coefficients, which are resolution specific, we will extrapolate them out of
their region of validity. This means that for example a Eγres-dependent narrow resolu-
tion coefficient is extrapolated to the intermediate resolution region Eγres ∼ mW or the
transitional resolution region Eγres ∼ (mW /mχ)1/2mW , which lies between the narrow and
intermediate resolutions. Since this extrapolation will affect the structure of the large
logarithms, i.e. formerly O(1) expressions might become large or vice versa, it will allow
us to pin down the origin of the matching as a function of Eγres.

A.2.1 Tree level

Since the channels IJ = (00)(00) and IJ = (00)(+−) do not have a tree-level contri-

butions, their corresponding n = 0 coefficients vanish for both resolutions c
(0,0)
(00)(00) =

c
(0,0)
(00)(+−) = 0. The tree-level coefficients c

(0,0)
(+−)(+−) however are non-zero and can in fact

be read off from the double-logarithmic approximations (A.1) and (A.2)

c
nrw(0,0)
(+−)(+−) = ŝ2

W + ĉ2
WΘ

(
Eγres −

m2
Z

4mχ

)
, (A.5)

c
int(0,0)
(+−)(+−) = 1 . (A.6)

Eq. (A.5) nicely shows the sensitivity of the ‘nrw’-case to the opening of the γZ channel.
The ‘int’-case (A.6) on the other hand is ignorant to this feature, which is exactly what
we observed from the matching plot in Figure 7.2. If Eγres > m2

Z/(4mχ), it is easy to see

that c
nrw(0,0)
(+−)(+−) = c

int(0,0)
(+−)(+−).
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A.2.2 One loop

Expanding the channel IJ = (+−)(+−) of the annihilation rate (A.3) up to n = 1
explicitly gives

[σv]1−loop
(+−)(+−) =

2πα̂2
2ŝ

2
W

m2
χ

α̂2

π

[
c

(1,2)
(+−)(+−)L

2 + c
(1,1)
(+−)(+−)L+ c

(1,0)
(+−)(+−)

]
. (A.7)

In order to make the following discussion more transparent, it will prove helpful to intro-
duce some abbreviations

L ≡ ln
4m2

χ

m2
W

, xγ ≡
2Eγres

mW

lR ≡ ln(xγ) , κR = κR(xγ) =
1

2
ln
(
1 + x2

γ

)
, λR = λR(xγ) = −1

2
Li2(−x2

γ) .

The variable L represents the large logarithms and the Eγres-dependent lR is of O(1) in the
intermediate resolution but turns into a large logarithms if Eγres ∼ m2

W /mχ. In order to
cancel the implicit scale dependence of the running couplings α̂2(µ), ŝW (µ) we introduce
the explicit factor lµ ≡ ln(µ2/m2

W ) to cancel the scale dependence from the couplings.
Since all functions are evolved to the soft scale, µ is parametrically of order mW which
makes lµ an O(1) quantity. Additionally, we introduce

zγ ≡
4π

ŝ2
W (µ)α̂2(µ)

Z33
γ, 1-loop(µ, ν)

∣∣∣∣
µ=mW

=

(
−400

27
+

2

3
+

16

9
ln

m2
t

m2
W

)
ŝ2
W +

(
80

9
ŝ2
W ln

m2
Z

m2
W

− 4π∆α

α̂2

)
, (A.8)

as well as the resolution-dependent function

j(Eres
γ ) ≡ 4π

α̂2(µ)

∫ 4mχEres
γ

0
dp2J33, 1−loop

nrw (p2, µ, ν)

∣∣∣∣
µ=mW

. (A.9)

The one-loop expressions for the photon jet function Z33
γ, 1-loop and the unobserved collinear

jet function J33, 1−loop
nrw can be extracted from (6.44) and (6.66), respectively. Since the nar-

row resolution unobserved collinear jet function is a very complicated expression involving
massive SM particles, we constructed j(Eres

γ ) in such a way that it is µ- and ν-independent
while including the dependence on the masses of the SM particles.

With the notation we have just introduced, we can write (A.7) for the narrow and
intermediate resolution cases as follows

[σv]nrw 1−loop
(+−)(+−) =

2πα̂2
2ŝ

2
W

m2
χ

α̂2

π

[
−L2 + L+ c

nrw(1,0)
(+−)(+−)

]
, (A.10)

[σv]int 1−loop
(+−)(+−) =

2πα̂2
2ŝ

2
W

m2
χ

α̂2

π

[
−3

4
L2 +

(
lR +

29

48

)
L+ c

int(1,0)
(+−)(+−)

]
, (A.11)

where

c
nrw(1,0)
(+−)(+−) =

1

4

(
19

6
− 11

3
ŝ2
W

)
lµ − 6 +

3π2

4
+

1

4

[
j(Eres

γ ) + zγ
]
, (A.12)

c
int(1,0)
(+−)(+−) =

1

4

(
19

6
− 11

3
ŝ2
W

)
lµ −

73

18
+

5π2

12
+

1

4
zγ
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Figure A.3: One-loop coefficient of the series (A.3) (including all logarithms) for the ‘nrw’ (solid)
and ‘int’ (dashed) factorization formulas. Left: mχ =2 TeV. Right: mχ =10 TeV.
This Figure was extracted from [7].

+l2R −
19

24
lR −

3

2
λR −

1

2
κR . (A.13)

Our NLL’ calculation should correctly predict all terms at one-loop, which means that
all coefficients should be scale-independent. The apparent scale dependence from lµ in

the c
(1,0)
(+−)(+−) coefficients above, will be compensated by the running couplings α̂2(µ) and

ŝ2
W (µ) in the corresponding LO terms. As expected, we thus find all coefficients to be

scale independent at one-loop.
In order to better understand the matching between (A.10) and (A.11), we will extrap-

olate the ‘nrw’-case coefficients to Eγres ∼ mW . It is easy to see that the only dependence
on Eγres for [σv]nrw 1−loop

(+−)(+−) comes from j(Eres
γ ). By expanding the explicit expressions for

the one-loop Wilson line and self-energy contributions given in Section 6.3.1, we find

j(Eγres)→ 4 ln2 4mχE
γ
res

m2
W

− 19

6
ln

4mχE
γ
res

m2
W

+
70

9
− 4π2

3
for 4mχE

γ
res � m2

W . (A.14)

In the intermediate resolution regime, j(Eγres) is then given by

1

4
j(Eγres)→ +

1

4
L2 +

(
lR −

19

48

)
L+ l2R −

19

24
lR +

35

18
− π2

3
, (A.15)

where we used ln(4mχE
γ
res/m2

W ) = 1
2L + lR. Plugging (A.15) into (A.12), it is easy to

check that

[σv]nrw 1−loop
(+−)(+−) = [σv]int 1−loop

(+−)(+−) +[σv]tree
(+−)(+−)

α̂2

π

[
3

2
λR

(
2Eγres

mW

)
+

1

2
κR

(
2Eγres

mW

)]
. (A.16)

From (A.16) we can see that using the asymptotic behaviour of j(Eγres) shown in (A.15),

allows us to show that the large logarithms contained [σv]nrw 1−loop
(+−)(+−) and [σv]int 1−loop

(+−)(+−)
match exactly and the difference is only a non-logarithmic term which is numerically
small. It amounts to O(1%) of the tree-level cross sections and is independent of mχ. We
mentioned earlier that an NLL’ computation should fully reproduce the one-loop result
and one might thus wonder why (A.16) does not show exact agreement between the two
resolutions. The terms λR and κR in the intermediate resolution coefficient (A.11) are
power-suppressed effects of order mW /mχ for the narrow resolution. Since we consistently
neglect these type of power corrections, they do not show up in (A.10).

Figure A.3 shows the dimensionless quantities
∑2

m=0 c
(1,m)
(+−)(+−)L

m for both resolutions as

functions of Eγres. In this matching plot we visualize how well the 1-loop coefficients match.
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A.2 Expansion of the resummed annihilation rate

The color coding is the same as in the previous matching plots (Figures 7.2 and A.1), but
now we include a hatched region which shows the transition region between the narrow
and intermediate regions of validity. While the absolute values of the coefficients is large,
they differ by no more than 3% in the hatched transition region. Given the analysis above,
it is straightforward to confirm that a similar degree of matching is found if I or J = (00).

A.2.3 Two loop

Having assessed the matching of the resolutions at one-loop, we now move on to two-loops.
For n = 2, (A.3) is given by

[σv]2−loop
(+−)(+−) =

2πα̂2
2ŝ

2
W

m2
χ

α̂2
2

π2

[
c

(2,4)
(+−)(+−)L

4 + c
(2,3)
(+−)(+−)L

3 + c
(2,2)
(+−)(+−)L

2

+ c
(2,1)
(+−)(+−)L+ c

(2,0)
(+−)(+−)

]
. (A.17)

As explained earlier, with our NLL’ computation we are able to determine the coefficients

c
(2,4)
(+−)(+−), c

(2,3)
(+−)(+−) and c

(2,2)
(+−)(+−), while the expressions given below for the coefficients

c
(2,1)
(+−)(+−) and c

(2,0)
(+−)(+−) remain incomplete. The coefficients in (A.17) for the narrow

resolution are given by

c
nrw(2,4)
(+−)(+−) =

1

2!
(−1)2 , (A.18)

c
nrw(2,3)
(+−)(+−) = −53

72
, (A.19)

c
nrw(2,2)
(+−)(+−) =

1

4
(−1)

[
19

3
− 11

3
ŝ2
W

]
lµ +

671

144
− 13π2

12
− zγ + j(Eγres)

4
, (A.20)

while for the intermediate resolution they read

c
int(2,4)
(+−)(+−) =

1

2!

(
−3

4

)2

=
9

32
, (A.21)

c
int(2,3)
(+−)(+−) = −2

9
− 3

4
lR , (A.22)

c
int(2,2)
(+−)(+−) =

1

4

(
−3

4

)[
19

3
− 11

3
ŝ2
W

]
lµ +

+
4489

2304
− 37π2

48
− 3

16
zγ +

9

8
λR +

3

8
κR + lR −

1

4
l2R . (A.23)

The incomplete coefficients c
(2,1)
(+−)(+−) and c

(2,0)
(+−)(+−) are rather lengthy and are given in

Appendix A.4. The dependence on the energy resolution is captured by the variables
j(Eγres), λR, κR and lR and we can see that, as expected, the two-loop coefficients presented
above are independent of the matching scales. Again, the logarithm lµ is necessary to
cancel the scale dependence of the running couplings and should not be confused with a
left over scale-dependence.

Before visually assessing the matching of the two-loop coefficients, we are going to
investigate the structure of the large logarithms which allows us to estimate what to expect.
In order to do so, we collect in Table A.1 the asymptotic behaviour of the resolution-
dependent variables, as a function of Eγres. As in the previous Section, we assume three
different scalings for Eγres: the narrow regime Eγres ∼ m2

W /mχ, the transition regime Eγres ∼
mW

√
mW /mχ and the intermediate regime Eγres ∼ mW . Depending on the scaling of the
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Eγres ∼ m2
W /mχ Eγres ∼ mW

√
mW /mχ Eγres ∼ mW

j(Eγres) j = O(1) 1
4L

2 +O(L) L2 +O(L)

lR(Eγres) −1
2L+O(1) −1

4L+O(1) lR = O(1)

λR(Eγres), κR(Eγres) 0 0 λR, κR = O(1)

Table A.1: Leading-logarithmic dependence of the Eγres-dependent functions appearing in the
fixed-order expansions when evaluated at the three Eγres-scales relevant to Figure A.4.
Vanishing entries are to be understood as power-suppressed.

∑
c

(2,m)
(+−)(+−)L

m Eγres ∼ m2
W /mχ Eγres ∼ mW

√
mW /mχ Eγres ∼ mW

‘nrw’ 16
32L

4 +O(L3) 7
16L

4 +O(L3) 8
32L

4 +O(L3)

‘int’ 15
32L

4 +O(L3) 7
16L

4 +O(L3) 9
32L

4 +O(L3)

‘nrw’-‘int’ 1
32L

4 +O(L3) O(L3) − 1
32L

4 +O(L3)

Table A.2: Leading-logarithmic terms of the two-loop coefficients in (A.3) for the ’nrw’ and
‘int’ factorization formulas, and the difference of the two, at the scales relevant to
Figure A.4.

resolution, the Eγres-dependent variables might contribute large logarithms, be of O(1) or
vanish altogether.

Using the insights from Table A.1, we can assess the leading logarithmic structure of
[σv]2−loop

(+−)(+−). The results for this are provided in Table A.2. The last row of Table A.2
is particularly interesting, which shows how the leading logarithms for both resolutions
differ depending on the scaling of Eγres. We can see that in the transition region, Eγres ∼
mW

√
mW /mχ, the leading logarithms agree exactly and even in the ‘nrw’- or ‘int’-regions,

the difference is small (as seen from the numerically small prefactor). We should thus
expect a high degree of matching between the two-loop coefficients, which is confirmed

by Figure A.4, where we plot the dimensionless quantities
∑4

m=0 c
(2,m)
(+−)(+−)L

m for both

resolutions as functions of Eγres. To plot Figure A.4, the coefficients c
(2,m)
(+−)(+−), for all m,

were included and the matching scales were set to their natural values which means that
scale dependent logarithms are set to zero. We can see that the behaviour predicted from
the large logarithms in Table A.2 is correctly reproduced in the plot. In the transition
region, the curves match very closely which is expected since they share the same leading
logarithmic structure. In the ‘nrw’-resolution regime, the narrow resolution curve is larger
which confirms the + 1

32L
4 entry of the Table (last row, second column of Table A.2) and

in the ‘int’-regime, the intermediate resolution curve is larger which confirms the − 1
32L

4

entry of the Table (last row, last column of Table A.2).
Summarizing the above discussion, we can conclude that the cross sections for the

two resolutions match so well over a wide range of Eγres, because of the smallness of the
difference in the leading logarithms. At NNLO for example, we can extrapolate the narrow
resolution two-loop coefficient to Eγres ∼ mW using Tables A.1 and A.2. The difference of
the coefficients up to NNLO for the two resolutions is then given by

[σv]nrw
(+−)(+−) − [σv]int

(+−)(+−)

[σv]tree
(+−)(+−)

=
α̂2

π

[
3

2
λR +

1

2
κR

]

+
α̂2

2

π2

[
−L

4

32
+

(
19

144
− lR

)
L3 +O(L2)

]
. (A.24)
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Figure A.4: Two-loop coefficient of the series (A.3) (including all logarithms and evaluated on
the central scales) for the ‘nrw’ (solid) and ‘int’ (dashed) factorization formulas. Left:
mχ =2 TeV. Right: mχ =10 TeV. This Figure was extracted from [7].

At the end of the previous Section, we discussed why the one-loop remainder [3
2λR + 1

2κR]
in (A.24) is not problematic. Also, for Eγres ∼ mW the variables λR, κR are both O(1)
and so the one-loop difference between the resolutions is small. At two-loops, the partial
cancellation between the leading logarithms leads to the small coefficient 1/32� 1 of the
leading logarithm of the difference between the two resolutions. The largest contribution
to the difference between the resolutions, unless L is extremely large (which happens
for large values of mχ), then originates from the sub-leading logarithm L3 which is also
included in (A.24).

A.3 Intermediate resolution resummation schemes compared

We mentioned in the introduction to this Section that we chose to use the first resum-
mation scheme for the intermediate resolution cross section (see Section 4 for definition),
since it is more comparable to the resummation in the narrow resolution case. It would
be interesting to see how the analysis presented above changes when using the second
resummation scheme. To do so, we compared the intermediate resolution coefficients from
both resummation schemes and found the following differences in the different channels

[σv]Res.Sc.I
(00)(00) − [σv]Res.Sc.II

(00)(00)

[σv]tree
(00)(00)

=
α̂2

2

π2
4lR (ϕλR − ϕκR) ,

[σv]Res.Sc.I
(00)(+−) − [σv]Res.Sc.II

(00)(+−)

[σv]tree
(00)(+−)

=
α̂2

2

π2
2lR (ϕλR + ϕκR) ,

[σv]Res.Sc.I
(+−)(+−) − [σv]Res.Sc.II

(+−)(+−)

[σv]tree
(+−)(+−)

=− α̂2
2

π2
lR (3ϕλR + ϕκR) , (A.25)

where ϕfR is defined in (A.30). We find that numerically these differences cannot be
larger than O(0.1%) of the tree-level cross section. Hence, if we had used the second
resummation scheme throughout this Appendix, we would have reached the same conclu-
sion. Interestingly, since NLL’only determines the coefficients up to cn,2n−2

IJ , it would have

been possible to also find a discrepancy in c
(2,1)
IJ , which however does not seem to be the

case.
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A.4 Complete NNLO expansions

In this Appendix, we list all coefficients relevant to the understanding of the logarithmic

structure of the wino DM NLL’ resummation up to NNLO, i.e. we provide the c
(n,m)
IJ with

0 ≤ n ≤ 2 and 0 ≤ m ≤ 2n for all I, J ∈ {(00), (+−)}. Additionally, this Appendix
provides more details on the computation of the resummed cross section, as well as the
fixed-order expansions. We introduce the following abbreviations (partially already given
earlier in this Appendix but repeated here for completeness):

L ≡ ln
4m2

χ

m2
W

, lµh ≡ ln
µ2
h

4m2
χ

, lµj ≡ ln
µ2
j

2mχmW
, lµs ≡ ln

µ2
s

m2
W

, (A.26)

lµ ≡ ln
µ2

m2
W

, lνh ≡ ln
ν2
h

4m2
χ

, lνs ≡ ln
ν2
s

m2
W

, lR ≡ lnxγ , (A.27)

κR = κR(xγ) ≡ 1

2
ln(1 + x2

γ) , (A.28)

λR = λR(xγ) ≡ −1

2
Li2(−x2

γ) , (A.29)

ϕfR = ϕfR(xγ) ≡
∫ xγ

0

dy

y
[fR(xγ − y)− fR(xγ)] , (A.30)

ϑfR = ϑfR(xγ) ≡
∫ xγ

0
dy

ln(y)

y
[fR(xγ − y)− fR(xγ)] , (A.31)

where

xγ ≡
2Eγres

mW
. (A.32)

A.4.1 Narrow resolution coefficients

I, J = (00), (00) The fixed-order annihilation cross section starts at the two-loop order,

and the two-loop coefficient exhibits at most two logarithms. Hence c
nrw(n,m)
(00)(00) = 0 for n ≤ 2,

except for

c
nrw(2,2)
(00)(00) = 1 + π2

c
nrw(2,1)
(00)(00) = 4− π2

2

c
nrw(2,0)
(00)(00) = 4− π2 +

π4

16
(A.33)

I, J = (+−), (00) The fixed-order annihilation cross section starts at the one-loop

order. Hence c
nrw(0,0)
(+−)(00) = 0, and

c
nrw(1,2)
(+−)(00) = 0

c
nrw(1,1)
(+−)(00) = −1− iπ

c
nrw(1,0)
(+−)(00) = −2 +

π2

4

c
nrw(2,4)
(+−)(00) = 0

c
nrw(2,3)
(+−)(00) = 1 + iπ
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c
nrw(2,2)
(+−)(00) =

55

48
− 53iπ

48

c
nrw(2,1)
(+−)(00) =

[(
11

12
+

11iπ

12

)
ŝ2
W −

19

12
− 19iπ

12

]
lµ +

55

12
+

55iπ

18
− 55π2

96
− 11iπ3

24

−
(

1

4
+
iπ

4

)
(zγ + j(Eγres))

c
nrw(2,0)
(+−)(00) =

(
1

2
+
iπ

2

)
l3µh +

(
−31

48
+

5iπ

48
+

3π2

8

)
l2µh +

(
31

12
+

19iπ

18
− 13π2

32
− 7iπ3

24

)
lµh

+

(
1

2
+
iπ

2

)
l3µs +

[
(−1− iπ)lνs +

π2

4
+

43iπ

48
+

55

48

]
l2µs

+

(
35iπ

18
− π2

12
− iπ3

4

)
lµs +

[(
11

6
− 11π2

48

)
ŝ2
W +

19π2

48
− 19

6

]
lµ

+
7π4

96
− 4π2

3
+ 6 +

(
π2

16
− 1

2

)
(zγ + j(Eγres)) (A.34)

The coefficients for the index combination I, J = (00), (+−) are obtained by taking the

complex conjugate of the coefficients given in this section, i.e. c
(n,m)
(00)(+−) = (c

(n,m)
(+−)(00))

∗.

I, J = (+−), (+−)

c
nrw(0,0)
(+−)(+−) = ŝ2

W + ĉ2
WΘ

(
Eγres −

m2
Z

4mχ

)

c
nrw(1,2)
(+−)(+−) = −1

c
nrw(1,1)
(+−)(+−) = 1

c
nrw(1,0)
(+−)(+−) =

(
19

24
− 11

12
ŝ2
W

)
lµ − 6 +

3π2

4
+

1

4
(zγ + j(Eγres))

c
nrw(2,4)
(+−)(+−) =

1

2

c
nrw(2,3)
(+−)(+−) = −53

72

c
nrw(2,2)
(+−)(+−) =

(
−19

12
+

11ŝ2
W

12

)
lµ −

13π2

12
+

671

144
− 1

4
(zγ + j(Eγres))

c
nrw(2,1)
(+−)(+−) =

19

24
l2µs +

(
35

9
− π2

3

)
lµs +

(
19

12
− 11

12
ŝ2
W

)
lµ

+
3

4
− 65π2

288
−
β1,SU(2)

8
+

1

4
(zγ + j(Eγres))

c
nrw(2,0)
(+−)(+−) = −1

4
l4µh −

17

72
l3µh +

(
25π2

24
− 203

144

)
l2µh +

(
−
β1,SU(2)

8
− 149π2

288
+

15

4

)
lµh

− 1

4
l4µs +

(
lνs −

55

72

)
l3µs + l2µs

[
− l2νh +

(
11ŝ2

W

12
− 19

24

)
lνh − l2νs + lνs

− 121ŝ4
W

144
+ π2 − 2141

576

]
+ lµs

[(
−j(E

γ
res)

4
− zγ

4

)
lνh −

π2

6
lνs

+
31π2

144
+

(
1

16
− ŝ2

W

16

)
β1,SU(2) −

ŝ4
W

16ĉ2
W

β1,Y

+

(
11ŝ2

W

48
− 19

96

)
zγ −

19j(Eγres)

48

]
+ l2µ

(
121ŝ4

W

144
− 209ŝ2

W

288
+

361

576

)
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+ lµ

[(
11

2
− 11π2

16

)
ŝ2
W +

19π2

16
− 19

2
+

(
ŝ2
W

16
+

1

16

)
β1,SU(2) +

ŝ4
W

16ĉ2
W

β1,Y

+

(
19

48
− 11ŝ2

W

48

)
(zγ + j(Eγres))

]
+

(
−3

2
+

3π2

16
+
zγ
16

)
j(Eγres)

+ 9− 7π2

4
+

37π4

576
+

(
−3

2
+

3π2

16

)
zγ (A.35)

A.4.2 Intermediate resolution coefficients

I, J = (00), (00)

c
int(0,0)
(00)(00) = 0

c
int(1,2)
(00)(00) = c

int(1,1)
(00)(00) = 0

c
int(1,0)
(00)(00) = 2λR − 2κR

c
int(2,4)
(00)(00) = c

int(2,3)
(00)(00) = 0

c
int(2,2)
(00)(00) = 1 + π2 − 3λR

2
+

3κR
2

c
int(2,1)
(00)(00) = 2lR (λR − κR) + 4− π2

2
+

29

24
λR −

125

24
κR + 2 (ϕλR − ϕκR)

c
int(2,0)
(00)(00) =

(
−1− π2

)
l2µs + lµs

(
2lνs(λR − κR)− 4lR(λR − κR)− 43λR

12
+

91κR
12

− 4(ϕλR − ϕκR)

)
+ lµ(λR − κR)

(
19

6
− 11

6
ŝ2
W

)
+ 2l2R(λR − κR)

+ lR

(
−19

12
(λR − κR) + 4(ϕλR − ϕκR)

)
+ 4− π2 +

π4

16
+
zγ
2

(λR − κR)

+

(
−73

9
+

5π2

6

)
λR +

(
1

9
+
π2

6

)
κR −

19

12
(ϕλR − ϕκR) + 4(ϑλR − ϑκR)

(A.36)

I, J = (+−), (00)

c
int(0,0)
(+−)(00) = 0

c
int(1,2)
(+−)(00) = 0

c
int(1,1)
(+−)(00) = −1− iπ

c
int(1,0)
(+−)(00) = −2 +

π2

4
+ λR + κR

c
int(2,4)
(+−)(00) = 0

c
int(2,3)
(+−)(00) =

3

4
+

3iπ

4

c
int(2,2)
(+−)(00) = (−1− iπ) lR +

25

24
− 17iπ

24
+
π2

16
− 3

4
(λR + κR)

c
int(2,1)
(+−)(00) = lµ

[
−19

12
− 19iπ

12
+

(
11

12
+

11iπ

12

)
ŝ2
W

]
− (1 + iπ) l2R

+

(
−29

24
+

19iπ

24
+
π2

4
+ λR + κR

)
lR +

247

72
+

10iπ

9
− 65π2

192
− iπ3

8
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−
(

1

4
+
iπ

4

)
zγ +

(
77

48
+ 3iπ

)
λR +

125

48
κR + ϕλR + ϕκR

c
int(2,0)
(+−)(00) =

(
1

2
+
iπ

2

)
l3µh +

(
−31

48
+

5iπ

48
+

3π2

8

)
l2µh +

(
31

12
+

19iπ

18
− 13π2

32
− 7iπ3

24

)
lµh

+

[
− (1 + iπ) lνs + (2 + 2iπ) lR +

79

48
+

91iπ

48
− π2

4

]
l2µs

+

[
lνs (λR + κR)− 2lR (λR + κR) +

35iπ

18
− iπ3

6
+

(
−67

24
− 3iπ

)
λR

− 91

24
κR − 2 (ϕλR + ϕκR)

]
lµs +

[
− 19

6
+

19π2

48
+

(
11

6
− 11π2

48

)
ŝ2
W

+

(
19

12
− 11

12
ŝ2
W

)
(λR + κR)

]
lµ +

(
−2 +

π2

4
+ λR + κR

)
l2R

+

(
19

12
− 19π2

96
− 19

24
(λR + κR) + 2 (ϕλR + ϕκR)

)
lR +

19

9
− 13π2

72
− π4

96

+

(
−1

2
+
π2

16

)
zγ +

zγ
4

(λR + κR) +

(
−37

18
+
π2

6

)
λR +

(
− 1

18
− π2

12

)
κR

− 19

24
(ϕλR + ϕκR) + 2(ϑλR + ϑκR) (A.37)

The coefficients for the index combination I, J = (00), (+−) are obtained by taking the

complex conjugate of the coefficients given in this section, i.e. c
(n,m)
(00)(+−) = (c

(n,m)
(+−)(00))

∗.

I, J = (+−), (+−)

c
int(0,0)
(+−)(+−) = 1

c
int(1,2)
(+−)(+−) = −3

4

c
int(1,1)
(+−)(+−) = lR +

29

48

c
int(1,0)
(+−)(+−) =

(
19

24
− 11

12
ŝ2
W

)
lµ + l2R −

19

24
lR −

73

18
+

5π2

12
+
zγ
4
− 3

2
λR −

1

2
κR

c
int(2,4)
(+−)(+−) =

9

32

c
int(2,3)
(+−)(+−) = −3

4
lR −

2

9

c
int(2,2)
(+−)(+−) =

(
−19

16
+

11

16
ŝ2
W

)
lµ −

1

4
l2R + lR +

4489

2304
− 37π2

48
− 3

16
zγ +

9

8
λR +

3

8
κR

c
int(2,1)
(+−)(+−) =

19

48
l2µs +

[(
19

12
− 11

12
ŝ2
W

)
lR +

551

576
− 319

576
ŝ2
W

]
lµ + l3R −

7

12
l2R

+

(
−437

192
− π2

12
+

1

4
zγ −

3

2
λR −

1

2
κR

)
lR +

1525

432
−
β1,SU(2)

8
− 227π2

576

+ 2ζ(3) +
29

192
zγ −

29

32
λR −

125

96
κR −

3

2
ϕλR −

1

2
ϕκR

c
int(2,0)
(+−)(+−) = −1

4
l4µh −

17

72
l3µh +

(
−203

144
+

25π2

24

)
l2µh +

(
15

4
− 149π2

288
−
β1,SU(2)

8

)
lµh

− 1

2
l4µj +

(
2lR −

19

18

)
l3µj +

(
−3l2R +

19

6
lR −

289

64
+ π2

)
l2µj
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+ lµj

[
2l3R −

19

6
l2R +

(
289

32
− 2π2

)
lR −

665

216
+

19π2

18
+ 4ζ(3)

]

+ l2µs

[
− 1

2
l2νh +

11

12
ŝ2
W lνh −

1

2
l2νs + (2lR + 1) lνs − 2l2R −

67

24
lR −

67

48

+
5π2

6
− 121

144
ŝ4
W

]
+ lµs

[(
−35

18
+
π2

6
− 1

4
zγ

)
lνh +

(
35

18
− π2

6
− 3

2
λR −

1

2
ϕκR

)
lνs

+

(
−35

9
+
π2

3
+ 3λR + ϕκR

)
lR −

1

16

ŝ4
W

ĉ2
W

β1,Y +
1

16
(1− ŝ2

W )β1,SU(2)

+

(
−19

96
+

11

48
ŝ2
W

)
zγ +

43

16
λR +

91

48
κR + 3ϕλR + ϕκR

]

+ l2µ

(
361

576
− 209

288
ŝ2
W +

121

144
ŝ4
W

)
+ lµ

[(
19

12
− 11

12
ŝ2
W

)
l2R

+

(
−361

288
+

209

288
ŝ2
W

)
lR −

1387

216
+

1

16
β1,SU(2) +

95π2

144

+

(
803

216
+

1

16
β1,SU(2) −

55π2

144

)
ŝ2
W +

1

16

ŝ4
W

ĉ2
W

β1,Y +

(
19

48
− 11

48
ŝ2
W

)
zγ

+

(
−19

8
+

11

8
ŝ2
W

)(
λR +

1

3
κR

)]
+ l2R

(
−6 +

11π2

12
+

1

4
zγ −

3

2
λR −

1

2
κR

)

+ lR

(
+

19

4
− 209π2

288
− 19

96
zγ +

19

16

(
λR +

1

3
κR

)
− 3ϕλR − ϕκR

)
− 8

3
+

439π2

216

− 143π4

576
+

(
−73

72
+

5π2

48

)
zγ −

3

8
zγ

(
λR +

1

3
κR

)
+

(
73

12
− 5π2

8

)
λR

+

(
1

36
+
π2

24

)
κR +

19

16

(
ϕλR +

1

3
ϕκR

)
− 3

(
ϑλR +

1

3
ϑκR

)
(A.38)

A.4.3 Further input

In this part of the Appendix we collect useful expressions and relations that were used to
obtain the coefficients listed above.

Running couplings at two loops The running of the SU(2) gauge coupling α̂2 at the

one-loop level is determined from the beta function β1−loop
SU(2) (α̂2) = −β0,SU(2)

α̂2
2

2π and the

running of the weak mixing angle sin2 θW (µ) ≡ ŝ2
W (µ) can be extracted from the running

of the SU(2) and U(1)Y gauge couplings via the definition

ŝ2
W (µ) =

α̂1(µ)

α̂1(µ) + α̂2(µ)
. (A.39)

Note that in principle, at the two-loop order, other SM couplings appear in the beta
function which will then affect the running of the EW gauge couplings. This is irrelevant
in our case however, since a term like α̂2(µ)α̂3(µ) for example would only start to be
important from NNNLO onwards. This means that at NNLO, which is the highest order
we are considering, the running of the couplings is determined by

α̂2(µ) = α̂2(µ0) +
α̂2

2(µ0)

4π
β0,SU(2) ln

µ2
0

µ2
+
α̂3

2(µ0)

16π2

(
β1,SU(2) ln

µ2
0

µ2
+ β2

0,SU(2) ln2 µ
2
0

µ2

)
+ . . . ,

(A.40)
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where, in the SM,

β0,SU(2) =
19

6
, β1,SU(2) = −35

6
− 3

2

ŝ2
W

ĉ2
W

− 12
α̂3

α̂2
+

3

2

y2
t

4πα̂2
, (A.41)

β0,Y = −41

6
, β1,Y = −199

18
− 9

2

ĉ2
W

ŝ2
W

− 44

3

α̂3

α̂1
+

17

6

y2
t

4πα̂1
. (A.42)

For the expansion up to two-loops, the ratios of coupling constants in β1,SU(2) and β1,Y

are treated as constants. The two-loop running of weak mixing angle is determined by

ŝ2
W (µ) = ŝ2

W (µ0) +
α̂2(µ0)ŝ2

W (µ0)

4π

[
− β0,SU(2) + (β0,SU(2) + β0,Y )ŝ2

W (µ0)
]

ln
µ2

0

µ2

+
α̂2

2(µ0)ŝ2
W (µ0)

16π2

[
1

ĉ2
W (µ0)

(
ŝ4
W (µ0)β1,Y − ĉ4

W (µ0)β1,SU(2)

)
ln
µ2

0

µ2
+

+ (β0,SU(2) + β0,Y )ŝ2
W

(
ŝ2
W (µ0)β0,Y − ĉ2

W (µ0)β0,SU(2)

)
ln2 µ

2
0

µ2

]
+ . . .(A.43)

Identities for the star distributions To obtain the fixed-order expansions of the re-
summed cross section, it is helpful to use the following relations. We also made use
of them when checking the pole and scale cancellations of the individual cross sections:

[
1

x

][a]

∗
=

[
1

x

][b]

∗
− log

a

b
δ(x) , (A.44)

[
ln x

a

x

][a]

∗
=

[
ln x

b

x

][b]

∗
+ ln

b

a

[
1

x

][
√
bc]

∗
+

1

2
ln
b

a
ln
c

a
δ(x) . (A.45)

Convolutions One of the more challenging parts of expanding the intermediate resolution
resummed cross sections is the treatment of the convolution of the unobserved jet and soft
function. The equation provided here were not only helpful for finding the coefficients

c
(n,m)
IJ , but also for implementing the codes to generate the results shown in Section 7.

Defining

f(ω)⊗ g(p2) ≡
∫ p2

2mχ

0
dω f(ω) g(p2 − 2mχω)

∣∣
p2=4mχE

γ
res
, (A.46)

we have

∫ Eγres

0
dEγ δ(ω)⊗ δ(p2) =

1

4mχ
, (A.47)

∫ Eγres

0
dEγ

[
1

ω
ln

(
1 +

ω2

m2
W

)
⊗ δ(p2)

]
=

1

4mχ
λR(xγ) , (A.48)

∫ Eγres

0
dEγ

[
1

ω

][νs]

∗
⊗ δ(p2) =

1

4mχ
ln

(
mW

νs
xγ

)
, (A.49)

∫ Eγres

0
dEγ

[
ln ω

νs

ω

][νs]

∗
⊗ δ(p2) =

1

8mχ
ln2

(
mW

νs
xγ

)
, (A.50)

∫ Eγres

0
dEγ δ(ω)⊗

[
1

p2

][µ2j ]

∗
=

1

4mχ
ln

(
2mχmW

µ2
j

xγ

)
, (A.51)
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∫ Eγres

0
dEγ

{
1

ω
ln

(
1 +

ω2

m2
W

)
⊗
[

1

p2

][µ2j ]

∗

}
=

1

4mχ

[
λR(xγ) ln

(
2mχmW

µ2
j

xγ

)
+

+ ϕR(xγ)

]
, (A.52)

∫ Eγres

0
dEγ

[
1

ω

][νs]

∗
⊗
[

1

p2

][µ2j ]

∗
=

1

4mχ

[
ln

(
mW

νs
xγ

)
ln

(
2mχmW

µ2
j

xγ

)
− π2

6

]
, (A.53)

∫ Eγres

0
dEγ δ(ω)⊗




ln p2

µ2j

p2




[µ2j ]

∗

=
1

8mχ
ln2

(
2mχmW

µ2
j

xγ

)
, (A.54)

∫ Eγres

0
dEγ





1

ω
ln

(
1 +

ω2

m2
W

)
⊗




ln p2

µ2j

p2




[µ2j ]

∗





=
1

4mχ

[
1

2
λR(xγ) ln2

(
2mχmW

µ2
j

xγ

)
+

+ ϕR(xγ) ln
2mχmW

µ2
j

+ ϑR(xγ)

]
, (A.55)

∫ Eγres

0
dEγ

[
1

ω

][νs]

∗
⊗




ln p2

µ2j

p2




[µ2j ]

∗

=
1

4mχ

[
1

2
ln

(
mW

νs
xγ

)
ln2

(
2mχmW

µ2
j

xγ

)

−π
2

6
ln

(
2mχmW

µ2
j

xγ

)
+ ζ(3)

]
, (A.56)

∫ Eγres

0
dEγ δ(ω)⊗




ln2 p2

µ2j

p2




[µ2j ]

∗

=
1

12mχ
ln3

(
2mχmW

µ2
j

xγ

)
. (A.57)
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B Sommerfeld potential - Higgsino DM

In our numerical evaluations, the method-2 Sommerfeld matrix SIJ (see [78]) is obtained
by solving the Schrödinger equation with the spin-singlet potential

2δmIJ + V S=0
IJ (r) =




0 − α
4ŝ2W ĉ2W

e−mZr

r − α2

2
√

2
e−mWr

r

− α
4ŝ2W ĉ2W

e−mZr

r 2δmN − α2

2
√

2
e−mWr

r

− α2

2
√

2
e−mWr

r − α2

2
√

2
e−mWr

r 2δm− α
r −

(1−2ĉ2W )2α

4ŝ2W ĉ2W

e−mZr

r


 .

(B.1)
The indices are ordered in the following way: (11), (22) and (+−). We added the con-
tribution of the mass-splitting matrix δmIJ . As mentioned in the main text, there is no
interaction between the above three two-particle states and the mixed (12) state.
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C K matrices

For wino DM, the matrix Kwino
ab,I can be read off from




χT1 εχ1

χT1 εχ2

χT1 εχ3

χT2 εχ1

χT2 εχ2

χT2 εχ3

χT3 εχ1

χT3 εχ2

χT3 εχ3




ab

=




0 1
2

1
2 0 0 0 0 1

2
1
2

0 − i
2

i
2 0 0 0 0 i

2 − i
2

0 0 0 0 1√
2

0 1√
2

0 0

0 i
2 − i

2 0 0 0 0 i
2 − i

2
0 1

2
1
2 0 0 0 0 −1

2 −1
2

0 0 0 0 i√
2

0 − i√
2

0 0

0 0 0 1√
2

0 1√
2

0 0 0

0 0 0 i√
2

0 − i√
2

0 0 0

1 0 0 0 0 0 0 0 0







χ0T εχ0

χ+T εχ−

χ−T εχ+

χ0T εχ+

χ+T εχ0

χ0T εχ−

χ−T εχ0

χ+T εχ+

χ−T εχ−




I

. (C.1)

For Higgsino DM on the other hand, the matrix KHiggs.
ab,I can be determined from




ηT1 εη1

ηT1 εη2

ηT2 εη1

ηT2 εη2

ηT1 εζ1

ζT1 εη1

ηT1 εζ2

ζT2 εη1

ηT2 εζ1

ζT1 εη2

ηT2 εζ2

ζT2 εη2

ζT1 εζ1

ζT1 εζ2

ζT2 εζ1

ζT2 εζ2




= KHiggs.
ab,I




χ0T
1 εχ0

1

χ0T
1 εχ0

2

χ0T
2 εχ0

1

χ0T
2 εχ0

2

χ+T εχ−

χ−T εχ+

χ0
1εχ

+T

χ+T εχ0
1

χ0
2εχ

+T

χ+T εχ0
2

χ0
1εχ
−T

χ−T εχ0
1

χ0
2εχ
−T

χ−T εχ0
2

χ+T εχ+

χ−T εχ−




, (C.2)

in which case it is explicitly given by

KHiggs.
ab,I =
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C K matrices




0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1√

2
0 i√

2
0 0 0 0 0 0

0 0 0 0 0 0 1√
2

0 i√
2

0 0 0 0 0 0 0
1
2

i
2

i
2 −1

2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1√

2
0 − i√

2
0 0 0 0 0 0

0 0 0 0 0 0 1√
2

0 − i√
2

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1√
2

0 i√
2

0 0 0

0 0 0 0 0 0 0 0 0 0 0 1√
2

0 i√
2

0 0
1
2 − i

2
i
2

1
2 0 0 0 0 0 0 0 0 0 0 0 0

1
2

i
2 − i

2
1
2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1√

2
0 − i√

2
0 0

0 0 0 0 0 0 0 0 0 0 1√
2

0 − i√
2

0 0 0
1
2 − i

2 − i
2 −1

2 0 0 0 0 0 0 0 0 0 0 0 0




.

(C.3)

It should be noted however that the bilinear terms of the form ζaεζa and ηaεηa can be
ignored, since they are not relevant for the annihilation operators. Doing so would greater
simplify the K-matrix for Higgsino DM.
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D Effective theory Feynman rules -
unbroken EW limit

In this Appendix we collect the Feynman rules that are needed to compute the effective
theory diagrams in Figure 6.2. We give the SCET Feynman rules in the EW symmetric
limit. They can be derived from the operator basis (2.53). In the process of computing the
Feynman rules, one has to expand the gauge covariant building blocks that were defined
in (2.44). When considering the 4-point and 5-point vertex rules given in Figure D.1,
one notices terms proportional to n− (n+) and n−n− (n+n+), respectively. These terms
originate from the partial derivative acting on the (anti-) collinear gauge fields and it is
interesting to note that these terms vanish at the order at which we are considering the
scattering process. This is because n− (n+) points along the longitudinal direction and
when contracted with polarization vectors, which only have transverse components, these
terms vanish. This is true when dealing with (almost) on-shell fields.

Using this argument, one might naively expect the 5-point vertex to vanish altogether.
This is not the case however in the scattering process at hand. Here, the 5-point vertex
is always accompanied by a 3-(anti-)collinear gauge boson vertex, see Figure 6.2. When
analyzing how the various terms combine, one will see that the terms proportional to
n−n− (n+n+) vanish, since one of the n− (n+) is always contracted with a polarization
vector. For the terms proportional to gασ⊥ nµ+,− this is not true, since, when multiplied
with the 3-gauge boson vertex, the n− (n+) will in some cases be contracted with the
momenta appearing in the 3-point vertex and not with a polarization vector, leading to
the survival of these terms. Hence, only terms proportional to gασ⊥ (for the 4-point vertex)
and gασ⊥ nµ+,− (for the 5-point vertex), are relevant for the case we are interested in.

Note that although the argument employing the polarization vectors cannot be made
for the case of the jet function computation (since there are no polarization vectors), the
terms originating from the partial derivative acting on (anti-) collinear gauge fields still
vanish. When evaluating the jet function, one notices that these terms contract in such a
way that they are either proportional to n+,− · n+,−, or proportional to p · p. The former
vanish because of how n+,− is defined and the latter are neglected since p2 ∼ M2

χλ
2 is

subleading. Hence, also for the jet function computation, the terms proportional to n+,−
(one-emission) and n+,−n+,− (two-emission) vanish.

The Feynman rule for the 5-point vertex is specific to two collinear and one anti-collinear
emission. To obtain the Feynman rule for one collinear and two anti-collinear emissions,
one has to exchange n+ ↔ n−, p3 ↔ p5, α ↔ β, µ ↔ ν and B ↔ D, and remember that
p4 is now anti-collinear instead of collinear. Due to the abelian nature of the U(1)Y gauge
boson, the double emission in the (anti-) collinear direction can only happen for an SU(2)
field. This constrains which operators are relevant for this type of diagram.
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D Effective theory Feynman rules - unbroken EW limit

pχ, k

pχ, l

pµ3 , B

pν4, C

Om

= i [σσ, σρ] (n− − n+) · σ
(
gσµ⊥ − pσ3n

µ
+

n+·p3

) (
gρν⊥ − pρ4n

ν
−

n−·p4

) (
TBC
m

)
kl

pχ, k

pχ, l

pµ3 , B

pν5, D

Om

pσ4 , C

= −2ĝ2
[
σα, σβ

]
(n− − n+) · σεABC(TAD

m )kl

×
[ (

gασ⊥
nµ
+

n+·p3 − gαµ
nσ
+

n+·p4

)
+

(p3+p4)
αnµ

+n
σ
+

2n+·(p3+p4)

(
1

n+·p4 − 1
n+·p3

)

+
nµ
+n

σ
+

2n+·p3n+·p4 (p3 − p4)
α

][
gβν⊥ − pν5n

ν
−

n−·p5

]

k l

µ, B

= iĝ2
(
TB

)
lk

vµ or iĝ1Y vµ

p, ν, A k, ρ, B

q, µ, C

= ĝ2 εABCn+ · p nµ
− gνρ⊥

Figure D.1: Effective field theory Feynman rules.
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E Collinear integrals and rapidity
regularization

In this Appendix we will provide details on the computation of the integrals that were
encountered when calculating the narrow resolution unobserved jet function and photon
jet functions. While doing so, we will also give more explanations about the rapidity
regulator that needed to be employed while computing said integrals. We use the rapidity
regulator introduced in [76], which is implemented via the following replacements in the
eikonal Feynman rules originating from soft and (anti-) collinear Wilson lines

collinear emission :
nµ+
n+k

→ nµ+
n+k

νη

|n+k|η
,

anti-collinear emission :
nµ−
n−k

→ nµ−
n−k

νη

|n−k|η
,

soft emission from (anti-) collinear direction :
nµ±
n±k

→ nµ±
n±k

νη/2

|2k3|η/2 ,

soft emission from the heavy line :
vµ

v · k →
vµ

v · k
νη/2

|2k3|η/2 . (E.1)

Similarly to dimensional regularization, η is the rapidity regulator and ν is the rapidity
scale that accompanies the regulator. In the (anti-) collinear limit, we find that the loop
momentum behaves as follows 2k3 → n+k (2k3 → n−k), which shows that the η-regulators
in (E.1) is consistent between soft and collinear integrals. In Section 6 we have seen that
both the soft and the photon jet functions require rapidity regularization independently of
the detector resolution, while the unobserved collinear jet function only needs an additional
regulator in the narrow resolution case. We will now discuss integrals relevant for the jet
functions and postpone computational details concerning the soft functions to Appendix G.
This Appendix follows Appendix B.1 of [7] and the integrals that are shown were computed
independently by Alessandro Broggio, CH, Kai Urban and Martin Vollmann.

The first integral we discuss is the collinear integral relevant for the computation of the
first two diagrams in the upper row of Figure 6.6, which give the Wilson line contribution
to the collinear jet function. For this, the off-shell scalar integral (p2 6= 0) is given by

Ic(p
2) =

∫
[dk]

νη

[k2 −m2
W + i0][(p+ k)2 −m2

W + i0][n+k + i0]|n+k|η
, (E.2)

where the integration measure is defined as

[dk] = µ̃2ε d
dk

(2π)d
=

(
µ2eγE

4π

)ε ddk
(2π)d

, (E.3)

with d = 4−2ε and γE the Euler-Mascheroni constant. Using contour integration one finds
that n+k < 0, which means that we can get rid of the absolute value in the denominator
of (E.2) as follows |n+k| → −n+k. Because Ic includes a linear propagator, it proves
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E Collinear integrals and rapidity regularization

convenient to introduce the Feynman parametrization

1

abc1+η
=

∫ ∞

0
dx1

∫ ∞

0
dx2

(2 + η)(1 + η)

(c+ ax1 + bx2)3+η
. (E.4)

The integration over the loop momentum can now be executed in the standard way, which
results in

Ic(p
2) =

(
µ2eγE

)ε (−i)
16π2

Γ(1 + η + ε)

Γ(1 + η)

×
∫ ∞

0
dx1

∫ ∞

0
dx2

νη

(x1 + x2)1−η−2ε [(x1 + x2)2m2
W − x2x1p2 + n+px2]1+ε+η

. (E.5)

Solving the Feynman parameter integrals proves somewhat more complicated. Subsituting
x1 → x′1x2 allows us to integrate over x2, remembering to include a factor x2 from the
Jacobian. We also assume to work in the region where p2 < 0 such that for the moment
we don’t develop any imaginary parts in intermediate steps. The correct imaginary part
will later be recovered by means of analytic continuation p2 → p2 + i0. After the x2

integration, the collinear integral takes the form

Ic(p
2) =

(
µ2eγE

)ε (−i)
16π2

(
ν

n+p

)η Γ(ε)

n+p

∫ ∞

0
dx′1 (1 + x′1)−1+2ε+η

[
m2
W (1 + x′1)2 − p2x′1

]−ε
.

(E.6)

We now introduce r ≡ m2
W /(−p2) and rewrite part of the integrand as follows

[
m2
W (1 + x′1)2 − p2x′1

]−ε
= (−p2)−ε

[
r (1 + x′1)2 + x′1

]−ε
. (E.7)

After subsequently performing the variable change x′1 = (1 − y)/y, where the Jacobian
for this transformation is y−2, we can execute the last Feynman parameter integral over
y which results in

∫ 1

0
dy y−1−η(r + y − y2)−ε = −r

−ε

η
F1

(
− η, ε, ε, 1− η;

2

1 +
√

1 + 4r
,

2

1−
√

1 + 4r

)
,

(E.8)

where F1 is the Appell-F1 hypergeometric function. This is the result for Ic(p
2) to all

orders in η and ε and the consistency of (E.5) and (E.8) was cross-checked by performing
multiple numerical checks. The all-orders result (E.8) now needs to be expanded first in
η and then in ε. The expansion in terms of the rapidity regulator for η → 0 is done using
the relation [105]

y−1−η = −δ(y)

η
+
∞∑

m=0

(−η)m

m!

[
lnm(y)

y

]

+

= −δ(y)

η
+

[
1

y

]

+

+ . . . . (E.9)

The +-distribution in (E.9) is related to the star-distribution defined in (6.76), in that the
star-distribution is like the +-distribution for a dimensionful variable [106]. It is defined
as

∫ 1

0
dx

[
lnn(x)

x

]

+

f(x) =

∫ 1

0
dx

lnn(x)

x
(f(x)− f(0)) . (E.10)
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After taking in successive order the limits η → 0 and ε → 0, we can perform the y
integral (E.8) to arrive at

∫ 1

0
dy y−1−η(r + y − y2)−ε = −r

−ε

η
+ ε

[
− ln2(−x)

2

]
+O(η, ε2) , (E.11)

where we find this compact result after introducing the Landau variable

x ≡ 1− β
1 + β

, β =

√
1− 4m2

W

p2
, (E.12)

and by employing relations between polylogarithms with different arguments at interme-
diate steps for simplification. The correctness of the expansions in η → 0 and in ε → 0
used in the evaluation of (E.11) was checked numerically. The package NumExp [107] was
used for the numerical expansion of the Appell-F1 function, after which (E.8) could be
used to cross-checked (E.11). Using (E.11) we can write the final result for the collinear
integral (E.2) as follows

Ic(p
2) =

i (n+p)
−1

16π2

[
1

εη
− 1

η
ln
m2
W

µ2
− 1

ε
ln
n+p

ν
+ ln

m2
W

µ2
ln
n+p

ν
+

ln2(−x)

2

]
+O(η, ε) .

(E.13)

This result was derived in the non-physical region p2 < 0 and we now have to perform the
analytic continuation to the physical regions p2 > 4m2

W and 0 < p2 < 4m2
W . To obtain

the result in the region p2 > 4m2
W from (E.13), the following substitution is required

ln(−x)→ ln(x) + iπ , (E.14)

while in the region 0 < p2 < 4m2
W the result does not develop an imaginary part. It can

be extracted from (E.13) via the substitution

ln(−x)→ i
(
− 2 arctan(β̄) + π

)
, (E.15)

where we define

β̄ =

√
4m2

W

p2
− 1 . (E.16)

The result for the collinear integral with general p2 in (E.13) is useful for several reasons.
First of all, it is needed for the computation of the unobserved jet function in the narrow
resolution case. Furthermore, it can be used to cross-check the result for the corresponding
integral relevant for the intermediate resolution unobserved jet function and to confirm
that the collinear function is not mass-dependent at the one-loop order. To see this, we
remind ourselves that the external momentum p in the intermediate resolution case has
hard-collinear scaling pµ ∼ mχ(λ, 1,

√
λ). Consequently, we have the scaling p2 ∼ λm2

χ

which is much bigger than m2
W ∼ λ2m2

χ. This means that we have the scale hierarchy
p2 � m2

W and we can try to expand (E.13) in a straightforward manner to obtain

Ic(p
2) =

i (n+p)
−1

16π2

[
1

εη
− 1

η
ln
m2
W

µ2
− 1

ε
ln
n+p

ν
+ ln

m2
W

µ2
ln
n+p

ν

+
1

2
ln2

(
− m2

W

p2

)]
+O(η, ε) +O

(
m2
W

p2

)
. (E.17)
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E Collinear integrals and rapidity regularization

Naively one might expect the collinear integral to be independent of the gauge boson mass
after the expansion, such that it can be used for the intermediate resolution jet function
that was given in Section 6.3.2. However, this is clearly not the case. To understand this
we note that by assuming a hard-collinear scaling for p, the original collinear integral (E.2)
is now a two-scale object. The two scales are determined by p (hard-collinear) and mW

(soft) and we can use the strategy of regions approach to evaluate (E.2) in the soft and
hard-collinear limits. The soft contribution is determined by expanding the propagator

[
(p+ k)2 −m2

W

]
= p2 + n+p n−k +O(λ2) . (E.18)

The collinear integral after the soft-region expansion is then given by

Ic-s(p
2) =

∫
[dk]

νη

[k2 −m2
W + iε][p2 + n+p n−k + iε][n+k + iε]|n+k|η

. (E.19)

Following the same reasoning that was used for the calculation of Ic, we can evaluate Ic-s
and find

Ic-s(p
2) =

i (n+p)
−1

16π2

[
− 1

ε2
+

1

εη
+
π2

12
+

1

ε
ln
m2
W

µ2
+

1

ε
ln

( −p2ν

m2
Wn+p

)
− 1

η
ln
m2
W

µ2

− 1

2
ln2 m

2
W

µ2
− ln

m2
W

µ2
ln

( −p2ν

m2
Wn+p

)]
+O(η, ε) . (E.20)

The collinear integral expanded in the hard-collinear region on the other hand can be
obtained by simply dropping the gauge boson masses at leading power. The result of the
hard-collinear expanded collinear integral is given by

Ic-hc(p
2) =

i (n+p)
−1

16π2

[
1

ε2
+

1

ε
ln

(
− µ2

p2

)
+

1

2
ln2

(
− µ2

p2

)
− π2

12

]
+O(ε) . (E.21)

As expected, we see that only the soft contribution Ic-s requires an additional regulator.
Adding the results for Ic-s (E.20) and Ic-hc (E.21), we are able to recuperate the expanded
collinear integral (E.17), which serves as a cross-check that the method of regions expansion
was done correctly.

The result for Ic-s in (E.20) allows us to confirm that there are no mass-dependent
contributions to the collinear function in the intermediate resolution case. The soft con-
tribution to the jet function Wilson line diagram is obtained by multiplying (E.19) with
the appropriate tree level factors. After taking the imaginary part, we find that the vir-
tual part (with only a single particle cut) vanishes since it is given by a scale-less integral.
The real contribution (where the cut goes through two particles) on the other hand is
non-vanishing. This real contribution can be checked to be equal to the appropriate soft
function integral (G.16) after convoluting it with the tree-level jet function. This means
that the real emissions of the intermediate resolution soft functions correctly reproduce the
soft region of the jet function integral in the small mass limit p2 � m2

W . As a result, we see
that there are no mass-dependent contributions to the intermediate resolution unobserved
jet function, which only receives mass-independent contributions from the hard-collinear
region.

Lastly we discuss the anti-collinear integral relevant for the Wilson line diagram contri-
bution to the photon jet functions. As we saw in Section 6.2, the photon jet functions Z33

γ ,
Z34
γ and Z43

γ are computed with the rapidity regulator and for all photon jet functions,
only virtual diagrams contribute. The integral needed to evaluate diagrams (a) and (b) of
Figure 6.5 is the rapidity and dimensionally regulated on-shell anti-collinear scalar integral

Ic̄(0) =

∫
[dk]

νη

[k2 −m2
W + i0][k2 + 2p · k −m2

W + i0][n−k + i0]|n−k|η
. (E.22)
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Ic̄(0) can be derive from the collinear integral Ic̄(0) in (E.2) by setting p2 → 0 and by
substituting n+k → n−k. To simplify the integration it will turn out to be convenient to
parametrize the integration measure as follows

ddk =
1

2
dn−k dn+k d

d−2k⊥ , (E.23)

and rewrite the integrand as

νη

n−k[n+k − k2T+m2
W−i0

n−k
](n−k + 2mχ)[n+k − k2T+m2

W−i0
n−k+2mχ

][n−k + i0]|n−k|η
. (E.24)

From this expression it is possible to see that there is only one configuration in which
the n+k integral is non-vanishing and this corresponds to the case in which we close the
integration contour in the upper half plane and pick up the pole (k2

T +m2
W − i0)/n−k for

−2mχ < n−k < 0. It was checked that this is the only relevant range for n−k since the
integral vanishes for n−k < −2mχ or n−k > 0. The n−k and k⊥ integrations can then be
straightforwardly evaluated to give the final result of the anti-collinear integral

Ic̄(0) =
i

32π2mχ

(
µ

mW

)2ε( ν

2mχ

)η eγEε Γ(ε)

η
. (E.25)
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F Details unobserved jet function - narrow
resolution

In this Appendix we provide the SM gauge boson self-energies and their derivatives. These
are used for the massive self-energy contributions to the narrow resolution unobserved jet
functions that were discussed in Section 6.3.1. In particular, these expressions are needed
to implement the codes that generate the numerical results provided in Section 7. The
required self-energies are given in Feynman gauge and have been extracted from [102].
They are repeated here for convenience and read

Σγγ
T (p2) = − ĝ

2
2 ŝ

2
W

16π2

{
2

3

∑

f,i

Nf
C2Q2

f

[
− (p2 + 2m2

f,i)B0(p2,mf,i,mf,i)

+ 2m2
f,iB0(0,mf,i,mf,i) +

1

3
p2
]

+

{[
3p2 + 4m2

W

]
B0(p2,mW ,mW )− 4m2

WB0(0,mW ,mW )

}}
, (F.1)

∂ Σγγ
T (p2)

∂p2

∣∣∣∣
p2→0

= − ĝ
2
2 ŝ

2
W

16π2

{
2

3

∑

f,i

Nf
C2Q2

f

[
−B0(p2,mf,i,mf,i)

− (p2 + 2m2
f,i)

∂ B0(p2,mf,i,mf,i)

∂p2
+

1

3

]

+

{
3B0(p2,mW ,mW ) + (3p2 + 4m2

W )
∂ B0(p2,mW ,mW )

∂p2

}}∣∣∣∣∣
p2→0

,

(F.2)

ΣγZ
T (p2) = − ĝ

2
2 ŝ

2
W

16π2

{
2

3

∑

f,i

Nf
C(−Qf )

(
ĝ+
f + ĝ−f

)[
− (p2 + 2m2

f,i)B0(p2,mf,i,mf,i)

+ 2m2
f,iB0(0,mf,i,mf,i) +

1

3
p2
]

+
1

3ŝW ĉW

{[(
9ĉ2
W +

1

2

)
p2 + (12ĉ2

W + 4)m2
W

]
B0(p2,mW ,mW )

− (12ĉ2
W − 2)m2

WB0(0,mW ,mW ) +
1

3
p2

}}
, (F.3)

ΣZZ
T (p2) = − ĝ

2
2 ŝ

2
W

16π2

{
2

3

∑

f,i

Nf
C

{(
(ĝ+
f )2 + (ĝ−f )2

)[
− (p2 + 2m2

f,i)B0(p2,mf,i,mf,i)

+ 2m2
f,iB0(0,mf,i,mf,i) +

1

3
p2
]

+
3

4ŝ2
W ĉ

2
W

m2
f,iB0(p2,mf,i,mf,i)

}
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+
1

6ŝ2
W ĉ

2
W

{[(
18ĉ4

W + 2ĉ2
W −

1

2

)
p2 + (24ĉ4

W + 16ĉ2
W − 10)m2

W

]
B0(p2,mW ,mW )

− (24ĉ4
W − 8ĉ2

W + 2)m2
WB0(0,mW ,mW ) + (4ĉ2

W − 1)
1

3
p2

}

+
1

12ŝ2
W ĉ

2
W

{(
2m2

H − 10m2
Z − p2

)
B0(p2,mZ ,mH)

− 2m2
ZB0(0,mZ ,mZ)− 2m2
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− (m2
Z −m2

H)2

p2

(
B0(p2,mZ ,mH)−B0(0,mZ ,mH)

)
− 2

3
p2

}}
, (F.4)

∂ ΣZZ
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∂p2
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W

16π2

{
2

3

∑

f,i

Nf
C

{(
(ĝ+
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Z + 2m2

f,i)
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1
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+

3

4ŝ2
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W
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∂B0(p2,mf,i,mf,i)

∂p2

}

+
1
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W ĉ

2
W

{(
18ĉ4

W + 2ĉ2
W −

1
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)
B0(p2,mW ,mW )

+
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18ĉ4
W + 2ĉ2

W −
1

2

)
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Z + (24ĉ4

W + 16ĉ2
W − 10)m2

W

]∂B0(p2,mW ,mW )

∂p2

+ (4ĉ2
W − 1)

1

3

}

+
1

12ŝ2
W ĉ

2
W

{
−B0(p2,mZ ,mH) +

(
2m2

H − 11m2
Z

)∂B0(p2,mZ ,mH)

∂p2

+
(p2 −m2

H)2

m4
Z

(
B0(p2,mZ ,mH)−B0(0,mZ ,mH)

)

− (m2
Z −m2

H)2
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Z

(∂B0(p2,mZ ,mH)

∂p2

)
− 2

3

}}∣∣∣∣∣
p2=m2

Z

. (F.5)

The parameter mf,i denotes the masses of fermions, where i specifies the generation and

f specifies the fermion within a generation. Furthermore, Nf
C indicates the number of

fermion colors, which means that Nf
C = 1 in the case of leptons and Nf

C = 3 in the case
of quarks. The EW couplings are written in terms of the charge Qf and the third SU(2)
generator I3

W,f , as follows

ĝ+
f =

ŝW
ĉW

Qf , ĝ−f =
ŝ2
WQf − I3

W,f

ŝW ĉW
. (F.6)

The functions B0 in (F.1) to (F.5) above are scalar integrals given in Passarino-Veltman
notation. To evaluate the self-energies, one needs the explicit expressions for these integrals
and their derivatives, ∂B0/∂p

2, which we provide in the following. While the integrals (and
their derivatives) given below still contain poles, these have been subtracted in the self-
energies. Lastly, we also assume p2 > 0, since the imaginary parts are made explicit. The
B0 and ∂B0/∂p

2 functions are given by

B0(0,m,m) =
1

ε
− 2 ln

m

µ
, (F.7)
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B0(0, 0,m) =
1

ε
+ 1− 2 ln

m

µ
, (F.8)

B0(0,m1,m2) =
1

ε
+ 1 +

m2
1 +m2

2

m2
1 −m2

2

ln
m2

m1
+ ln

µ2

m1m2
, (F.9)

B0(p2, 0, 0) =
1

ε
+ 2 + ln

µ2

p2
+ iπ , (F.10)

∂B0(p2, 0, 0)

∂p2
= − 1

p2
, (F.11)

B0(p2,m,m) =

{
θ(4m2 − p2)

[
1

ε
+ 2− 2 ln

m

µ
− 2β̄ arctan

1

β̄

]

+ θ(p2 − 4m2)

[
1

ε
+ 2− 2 ln

m

µ
+ β ln(x) + iβπ

]}
, (F.12)

∂B0(p2,m,m)

∂p2
=

{
θ(4m2 − p2)

1

p2

[
1 + β̄2

β̄
arctan

1

β̄
− 1

]

+ θ(p2 − 4m2)

[
− 1

p2
+

2m2
W

p4β
(ln(x) + iπ)

]}
, (F.13)

∂B0(p2,m,m)

∂p2

∣∣∣∣
p2=0

=
1

6m2
, (F.14)

B0(p2, 0,m) =

[
1

ε
+ 2− 2 ln

m

µ
−
(

1− m2

p2

)[
θ(m2 − p2) ln

(
1− p2

m2

)

+ θ(m2 − p2)

(
ln

(
p2

m2
− 1

)
− iπ

)]]
, (F.15)

B0(p2,M,m) =

[
1

ε
+ 2− M2 −m2

p2
ln
M

m
+ ln

µ2

mM

+

√
|κ(p2,m2,M2)|

p2
F (p2,M,m)

]
, (F.16)

∂B0(p2,mH ,mZ)

∂p2

∣∣∣∣
p2=m2

Z

=

[
− 1

m2
Z

− m2
H −m2

Z

m4
Z

ln

(
mZ

mH

)

−
(m2

H − 3m2
Z) arctan

[√
4m2

Z

m2
H
− 1

]

m4
Z

√
4m2

Z

m2
H
− 1

]
, (F.17)

where for M > m

F (p2,M,m) =





ln

√
(M+m)2−p2+

√
(M−m)2−p2√

(M+m)2−p2−
√

(M−m)2−p2
p2 < (m−M)2

−2 arctan
√

p2−(M−m)2

(M+m)2−p2 (M −m)2 < p2 < (m+M)2

ln

√
p2−(M−m)2−

√
p2−(M+m)2√

p2−(M−m)2+
√
p2−(M+m)2

+ iπ p2 > (m+M)2

and

κ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz (F.18)

is the Kállen function. The parameters β and x were defined in (E.12) and β̄ in (E.16).
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G Details intermediate resolution soft
functions

In this Appendix we present details for the calculation of the intermediate resolution soft
functions at one-loop, for both wino and Higgsino DM. The structure follows Appendix C
of [7] and the results were independently calculated by Alessandro Broggio, CH and Kai
Urban. First, we give the relevant virtual and real scalar integrals that arise during the
computation of the soft functions. Then, we illustrate how the structure of the rapidity
divergences changes when going from the intermediate to the narrow resolution regime.
Lastly, we collect the explicit expressions for the soft functions for all relevant index
combinations which were omitted in the main text.

The general definition for integrated the intermediate resolution soft function was given
in (3.19). It turns out to be helpful to shift the position of the Wilson line to 0 and to
execute the n+y-integration when calculating the integrals and the soft coefficients. This
results in

W ij
IJ,V WXY (ω) =

∫

Xs

∑
δ (ω − n−pXs) 〈0| T̄[[S†]jJ,XY (y−)] T[SiI,V W (0)] |0〉 . (G.1)

A diagrammatic representation of the one-loop soft function is depicted in Figure G.1. The
contributing diagrams are found by connecting two distinct (red) dots on the external legs
with a single soft gauge boson. Due to the abelian nature of the U(1)Y gauge boson, it
cannot connect to the np or n− external legs. This constrains the type of diagrams that are
relevant for the different Higgsino DM operators. The integrals we discuss now are named
according to which external legs the emitted soft gauge boson attaches to. For example,
if the soft gauge boson connects a heavy DM (v) and an anti-collinear (n+) external leg,
we name it the vn+ virtual (Ivirt.

vn+
) or real (Ireal

vn+
) integral, depending on whether the soft

gauge boson passes through the cut or not.

G.1 Virtual soft integrals

Virtual integrals arise from diagrams, where a soft gauge boson connects any two distinct
red dots in Figure G.1, but does not traverse the cut. The integration measure is the same
as for the collinear integrals in Appendix E and is given by

[dk] = µ̃2ε d
dk

(2π)d
=

(
µ2eγE

4π

)ε ddk
(2π)d

. (G.2)

Remember that d = 4 − 2ε and γE is the Euler-Mascheroni constant. For some integrals
it will turn out to be useful to split the integration into the components k0, k3 and k⊥ as
follows

ddk =
1

2
dk0dk3dd−2k⊥ . (G.3)
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v v

vv

n−

n+ n+

n−

Figure G.1: Diagrammatic representation of the one-loop soft function. This Figure was ex-
tracted from [7].

The n+n− virtual integral
We define the virtual integral where the soft gauge boson connects the collinear and anti-
collinear external lines on the same side of the cut as

Ivirt.
n+n− = −iĝ2

2δ(ω)(n+ · n−)

∫
[dk]

νη

[k2 −m2
W + i0][n−k + i0][n+k − i0]|2k3|η . (G.4)

The integral (G.4) is most easily solved by first using the method of contour integration
to perform the k0-integral, which means that we first rewrite Ivirt.

n+n− in terms of k0, k3 and
k⊥

Ivirt.
n+n− = −2iĝ2

2δ(ω)µ̃2ε

∫
dk0dk3dd−2k⊥

(2π)d
νη

|2k3|η

× 1

[(k0)2 − E2
k + i0][k0 − k3 + i0][k0 + k3 − i0]

, (G.5)

where E2
k = (k3)2 + k2

T +m2
W and k2

T = −k2
⊥ > 0. In order to perform the k0-integration,

we have to locate the poles in the propagators. These take different positions depending
on whether k3 is positive or negative. If k3 > 0, we find that there are four poles in the
k0 complex plane located at ±(Ek − i0), k3 − i0 and −k3 + i0. We choose to close the
integration contour in the lower half plane, with which we pick up a factor of −2πi along
with the residues associated to the poles −(Ek − i0) and −k2 + i0. If on the other hand
k3 is negative k3 < 0 there are again four poles, two on either side of the real k3-axis.
However the poles k3− i0 and −k3 + i0 moved from the positive to the negative k0 domain
and vice versa, respectively, compared with the case where k3 > 0. After closing the
contour and picking up the corresponding residues, we arrive at

Ivirt.
n+n− = 2iĝ2

2δ(ω)µ̃2ε

∫
dd−2k⊥
(2π)d

{∫ ∞

0
dk3 νη

(2k3)η
2πi

k2
T +m2

W

[
1

2Ek
− 1

2k3 − i0

]

+

∫ 0

−∞
dk3 νη

(−2k3)η
2πi

k2
T +m2

W

[
1

2Ek
− 1

2k3 − i0

]}
.

(G.6)

We can simplify (G.6) by noting that the two Ek-terms in the square brackets are in fact
the same. This can be shown straightforwardly by making the substitution k3 → −k3
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in the second line of (G.6). The k3 and k⊥ integrations for the Ek-terms can then be
executed using the standard procedure, which results in

− ĝ2
2

4π2
δ(ω)

(
µ

mW

)2ε

eγEε
(

ν

mW

)η Γ
(

1
2 −

η
2

)
Γ
(
ε+ η

2

)

2η π
1
2 η

. (G.7)

We are now left with the integration of the terms associated with 1/(2k3−i0). The integral
over k3 can be done as follows

∫
dk3 (−2πi)νη

[2k3 − i0]|2k3|η =

∫ ∞

0
dk3 (−2πi)νη

(2k3)η

[
1

2k3 − i0 +
1

−2k3 − i0

]

=(−iπ)νηπ csc(πη)
(
(−i0)−η − (i0)−η

)

=(2π2)νη csc(πη) 0−η sin(η π/2)

=π2 +O(η) . (G.8)

We note that at order O(η0), the result is independent of the small imaginary part i0.
Finally, after executing the k⊥ integration and summing over the two contributions (from
the upper and lower line of (G.6)) we arrive at the final result for Ivirt.

n+n−

Ivirt.
n+n− = − ĝ

2
2δ(ω)

4π2

(
µ

mW

)2ε( ν

mW

)η
eγEε

[
Γ
(

1
2 −

η
2

)
Γ
(
ε+ η

2

)

2η π
1
2 η

− Γ
(
ε+ η

2

)

Γ
(
1 + η

2

)
(
i π

2
+O(η)

)]

= − α̂2

2π
δ(ω)

[
− 1

ε2
+

2

εη
− iπ

ε
+

2

ε
ln
mW

µ
− 2

ε
ln
mW

ν
− 4

η
ln
mW

µ

+
π2

12
+ 2πi ln

mW

µ
− 2 ln2 mW

µ
+ 4 ln

mW

µ
ln
mW

ν

]
. (G.9)

The vn+ and vn− virtual integrals
Next, we compute the integral which arises from diagrams where either one of the external
lines of the DM particles in Figure G.1 is connected to a collinear or anti-collinear external
line via a soft gauge boson, which again does not traverse the cut. Since the virtual part of
the soft function is symmetric under the exchange n+ ↔ n−, the integrals for the Wilson
line combinations vn+ and vn− give the same result. Explicitly, the vn+-integral is given
by

Ivirt.
vn+

= −iĝ2
2δ(ω)(v · n+)

∫
[dk]

νη

[k2 −m2
W + i0][n+k − i0][v · k − i0]|2k3|η . (G.10)

We apply the same strategy that was used to compute Ivirt.
n+n− in the previous paragraph.

As before we can see that the integral has four poles in the k0 complex plane. However
Ivirt.
vn+

turns out to be simpler than Ivirt.
n+n− , since for Ivirt.

vn+
three of the poles are in the upper

half plane and only one, (Ek − i0), is in the lower half plane. This is true independently
of whether k3 > 0 or k3 < 0. Thus closing the integration contour in the lower half plane
we only pick up the residue from a single pole. After summing over contributions from
k3 > 0 and k3 < 0 and after integrating over k⊥, we obtain

Ivirt
vn+

= − ĝ2
2

8π2
δ(ω)

(
µ

mW

)2ε( ν

mW

)η
eγEε

Γ
(

1
2 −

η
2

)
Γ
(
ε+ η

2

)

2η π
1
2 η

= − α̂2

4π
δ(ω)

[
− 1

ε2
+

2

εη
+

2

ε
ln
mW

µ
− 2

ε
ln
mW

ν
− 4

η
ln
mW

µ
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+
π2

12
+ 4 ln

mW

µ
ln
mW

ν
− 2 ln2 mW

µ

]
. (G.11)

The integral Ivirt.
vn− can be obtained from Ivirt.

vn+
by making the substitution n+ → n−

in (G.10). We do not discuss Ivirt.
vn− explicitly since, as discussed at the beginning of the

paragraph, it can be checked that Ivirt.
vn− = Ivirt.

vn+
.

The vv virtual integral
The last virtual integral that needs to be evaluated comes from the diagram where two
heavy DM external lines on the same side of the cut are connected via a soft gauge boson
in Figure G.1. The starting expression is given by

Ivirt.
vv = −iĝ2

2δ(ω)(v · v)

∫
[dk]

1

[k2 −m2
W + i0][k0 + i0][k0 − i0]

. (G.12)

We again integrate first over k0. The poles are located at ±(Ek − i0) and ±i0. Naively,
one would also pick up the pinched poles at k0 = ±i0, which would be wrong however
since these correspond to the potential region and are consequently already included in
the one-loop contribution to the Sommerfeld factor. The remainder of the integral can be
done without effort and we find that the final result is independent of rapidity divergences

Ivirt.
vv = − α̂2

2π
δ(ω)

[
1

ε
+ ln

µ2

m2
W

]
. (G.13)

This concludes our discussion of the virtual soft function integrals. Please note that the
results for Ivirt.

vn+
, Ivirt.

vn− and Ivirt.
n+n− were already calculated in [69]. While we find agreement

for Ivirt.
vn+

and Ivirt.
vn− , the result for Ivirt.

n+n− in our case has an additional term associated with
the imaginary parts of (G.9).

G.2 Real soft integrals

The real soft integrals at one-loop arise from diagrams where the soft gauge boson, which
connects two distinct red dots in Figure G.1, crosses the cut exactly once. The real
integrals can be extracted from the virtual ones discussed in Appendix G.1, by applying
the Cutkosky cut rules to the propagators associated with the soft gauge boson

1

k2 −m2
W + iε

→ −2πi δ(k2 −m2
W ) θ(k0) . (G.14)

In order to evaluate the real emission integrals, it turns out to be convenient to express
the phase-space measure in terms of light-cone coordinates

∫
ddk θ(k0)δ(k2 −m2

W ) =
1

2

∫ ∞

0
dn+k

∫ ∞

0
dn−k

∫
dd−2k⊥δ(n+k n−k + k2

⊥ −m2
W )

=
Ωd−2

2

∫ ∞

0
dn+k

∫ ∞

0
dn−k

∫ ∞

0
dkT k

d−3
T δ(n+k n−k − k2

T −m2
W ) , (G.15)

where the delta- and theta-functions enforce n+k, n−k ≥ 0. Note that the limit ω → 0
is still regulated using the rapidity regulator, which for the real integrals introduces star-
distributions [106] that have been defined in (6.76).
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The n+n− real integral
The n+n− real emission contribution originates from diagrams where the soft gauge boson
connects a collinear and an anti-collinear external line and passes the cut. Applying the
rule (G.14) to (G.4), we find the expression for the real emission n+n− integral to be

Ireal
n+n− = (n+ · n−) ĝ2

2

∫
[dk]

(
−2πδ

(
k2 −m2

W

)
θ(k0)

)

(n+k)(n−k)
δ(ω − n−k)

νη

|2k3|η . (G.16)

Using the delta function δ(ω − n−k) we can easily integrate over n−k, which results in

Ireal
n+n− = − α̂2e

γEε

2π2−ε µ
2ενη

∫
dn+kd

d−2kT
δ(ωn+k − k2

T −m2
W )θ(ω + n+k)

ωn+k |n+k − ω|η
. (G.17)

Next, we integrate over n+k. The step function θ(ω + n+k) ensures that n+k > −ω, but
ω ≥ 0. Furthermore k2

T +m2
W > 0 such that the delta function is only relevant for positive

n+k. We conclude that the step function does not impose any more restrictions and can
thus be discarded. After the n+k integration, we obtain

Ireal
n+n− = − α̂2e

γEε

πΓ(1− ε) µ
2εωη−1νη

∫ ∞

0
dkT

k1−2ε
T

k2
T +m2

W

1∣∣k2
T +m2

W − ω2
∣∣η , (G.18)

where a factor of ωη was included into the absolute value, which can easily be done since
ω ≥ 0. To properly treat the absolute value, we have to consider distinct cases depending
on how ω scales with respect to mW and k. If ω < mW we can drop the absolute value
since kT ,mW > 0 and so k2

T +m2
W −ω2 > 0. However, if ω > mW , then we need to further

distinguish the cases where k2
T < mW −ω and k2

T > mW −ω. In the former case we trade

the absolute value for an overall factor of (−1)η and integrate kT from 0 to
√
ω2 −m2

W ,

in the latter case the absolute value can simply be dropped and the kT integration goes

from
√
ω2 −m2

W to ∞. Before evaluating the integral, we first simplify the expression by

introducing the substitution k′T = kT /mW and defining ω′ = ω/mW , which results in

Ireal
n+n− = − α̂2

π

(
µ2eγE

m2
W

)ε(
νω

m2
W

)η 1

ωΓ(1− ε)

∫ ∞

0
dk′T

k′1−2ε
T(

k′2T + 1
) ∣∣k′2T + 1− ω′2

∣∣η , (G.19)

where the integration is now over dimensionless quantities.

Starting with the case ω′ < 1, we find that (written in terms of dimensionless quantities
ω′ and k′T ) k′2T + 1 − ω′2 > 0 such that we can omit the absolute value without further
alterations. Performing the integration results in

Ireal
n+n− = − α̂2

2π

(
µ2eγE

m2
W

)ε(
νω

m2
W

)η 1

ωΓ(1− ε)

{(
ω′
)−2η

Γ(ε+ η)Γ(1− ε− η)

+
(
1− ω′2

)1−ε−η Γ(1− ε)Γ(ε+ η − 1)

Γ(η)
2F1

(
1, 1− ε, 2− ε− η, 1− ω′2

)}

(G.20)

with 2F1 being the hypergeometric function. The result for Ireal
n+n− as it is written in (G.20)

is valid to all orders in η and ε. We find that for the dimensionless terms inside the curly
brackets, we can safely take the limits ω, η → 0 which means that these terms do not give
rise to rapidity divergences and are not of distributional type. For the prefactor on the
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other hand, it is not safe to take this limit and we need to make use of the expansion that
was defined in (6.101)

1

ω

(
ω

mW

)η
=
δ(ω)

η
+

[
1

ω

][mW ]

∗
+O(η) . (G.21)

After expanding the prefactor in (G.20) according to (G.21), we expand the term in the
curly brackets. The 1/η-factor associated with the delta function in (G.21) forces us to
expand the expressions in the curly brackets up to η1 such that in the end we obtain a
η0-term. At the same time, the delta function allows us to set ω′ → 0 with which we can
simplify the hypergeometric 2F1 function. If the terms in the curly brackets are multiplied
with the star-distribution from (G.21) however, we only need to expand them up to η0.
We find that the η0-term from the curly brackets is ω-independent. Therefore, the integral
Ireal
n+n− up to order O(η, ε) is given by

Ireal
n+n− = − α̂2

2π

(
µ2eγE

m2
W

)ε(
ν ω

m2
W

)η Γ(ε+ η)

ωΓ(1 + η)
+O(η, ε)

= − α̂2

2π

[
δ(ω)

(
− 1

ε2
+

1

ε η
+

1

η
ln

µ2

m2
W

+
1

ε

(
− ln

µ2

m2
W

+ ln
ν

mW

)

+
π2

12
− 1

2
ln2 µ2

m2
W

+
1

2
ln

µ2

m2
W

ln
ν2

m2
W

)
−
[

1

ω

][mW ]

∗

(
1

ε
+ ln

µ2

m2
W

)]
. (G.22)

The result in (G.22) was computed assuming the scaling ω′ < 1. Next, we consider the
case where ω′ > 1. We find that (G.22) also holds for this second scaling. To see this, we
split the integration over k′T according to the argument presented prior to (G.19)

∫ ∞

0
dk′T

k′1−2ε
T(

k′2T + 1
) ∣∣k′2T + 1− ω′2

∣∣η =

∫ √ω′2−1

0
dk′T

k′1−2ε
T(

k′2T + 1
) (
k′2T + 1− ω′2

)η

+

∫ ∞
√
ω′2−1

dk′T
k′1−2ε
T(

k′2T + 1
) (
−k′2T − 1 + ω′2

)η . (G.23)

The individual terms yield

∫ √ω′2−1

0
dk′T

k′1−2ε
T(

k′2T + 1
) (
k′2T + 1− ω′2

)η

=

(
ω′2 − 1

)1−ε−η

2

Γ(1− ε)Γ(1− η)

Γ(2− ε− η)
2F1(1, 1− ε, 2− ε− η, 1− ω′ 2) ,

∫ ∞
√
ω′2−1

dk′T
k′1−2ε
T(

k′2T + 1
) (
−k′2T − 1 + ω′2

)η

=

(
ω′2 − 1

)−ε (
1− ω′2

)−η

2

Γ(1− η)Γ(ε+ η)

Γ(1 + ε)
2F1

(
1, ε+ η, 1 + ε,

1

1− ω′2
)
.(G.24)

The rest of the discussion is analogous to the case ω′ < 1 and to order O(η, ε) we find
the same result as in that case (G.22). This is an important finding since it considerably
simplifies the convolution of the soft function with the collinear unobserved jet function.

The vn+ real integral
This integral appears when computing diagrams where the soft gauge boson connects one
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heavy DM external line with an n+-external line and passes through the cut in Figure G.1.
It is given by

Ireal
vn+

= (v · n+)ĝ2
2

∫
[dk]

(
−2πδ(k2 −m2

W )θ(k0)
)

(v · k)(n+k)
δ(ω − n−k)

νη

|2k3|η . (G.25)

As was done in the previous paragraph for Ireal
n+n− , we can evaluate the integrals over n+k

and n−k by making use of the delta functions, which results in

Ireal
vn+

= − α̂2

π

µ2εeεγE

Γ(1− ε)ν
ηωη+1

∫ ∞

0
dkT

k1−2ε
T

k2
T +m2

W

1

ω2 + k2
T +m2

W

1∣∣ω2 − k2
T −m2

W

∣∣η .

(G.26)

We remark the fact that the prefactor in (G.26) is now given by ωη+1. This considerably
simplifies the computation of Ireal

vn+
compared with the computation of Ireal

n+n− . This is

because ωη+1 is finite in the limit η, ω → 0. Hence, we can set η → 0 now which
turns (G.26) into a standard integral that can be solved straightforwardly. In the end, we
find

Ireal
vn+

= − α̂2e
εγE

2πω
µ2εΓ(ε)

(
m−2ε
W − (m2

W + ω2)−ε
)

+O(η)

= − α̂2

2π

1

ω
ln

(
m2
W + ω2

m2
W

)
+O(η, ε) , (G.27)

which is free of both rapidity and virtuality divergences.

The vn− real integral
This integral appears when computing diagrams where the soft gauge boson connects one
heavy DM external line with an n−-external line and passes through the cut in Figure G.1.
It is given by

Ireal
vn− = (v · n−)ĝ2

2

∫
[dk]

(
−2πδ(k2 −m2

W )θ(k0)
)

(v · k)(n−k)
δ(ω − n−k)

νη

|2k3|η . (G.28)

The integral Ireal
vn− in (G.28) is most easily computed by making use of the results for Ireal

n+n−

and Ireal
vn+

in (G.22) and (G.27), respectively, as well as the relation

(n+ · n−)

(n+k)(n−k)
− (v · n+)

(v · k)(n+k)
=

(v · n−)

(n−k)(v · k)
, (G.29)

which allows us to establish the following connection between Ireal
n+n− , Ireal

vn+
and Ireal

vn−

Ireal
vn− = Ireal

n+n− − Ireal
vn+

. (G.30)

The vv real integral
The last real integral that is relevant for the computation of the intermediate resolution
soft functions comes from diagrams where two heavy DM external lines on different sides
of the cut are connected via a soft gauge boson in Figure G.1. We apply (G.14) to (G.12)
to find the starting expression

Ireal
vv = (v · v) ĝ2

2

∫
[dk]

1

(v · k)2
(−2πδ(k2 −m2

W )θ(k0))δ(ω − n−k)
νη

|2k3|η (G.31)
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To solve (G.31) we apply the same steps as for Ireal
vn+

and first solve the n+k and n−k
integrations with the help of the delta functions. We obtain

Ireal
vv = −2α̂2

π

µ2εeεγEνη

Γ(1− ε) ω
η+1

∫ ∞

0
dkT

k1−2ε
T(

ω2 + k2
T +m2

W

)2
1∣∣ω2 − k2
T −m2

W

∣∣η . (G.32)

Again, we can set η → 0 and find the following expression for the final results for Ireal
vv

Ireal
vv = −2α̂2

π

µ2εeεγE

Γ(1− ε) ω
∫ ∞

0
dkT

k1−2ε
T(

ω2 + k2
T +m2

W

)2 +O(η)

= − α̂2

π
εΓ(ε)µ2εeεγEω

(
1

m2
W + ω2

)1+ε

+O(η)

= − α̂2

π

ω

m2
W + ω2

+O(η, ε) . (G.33)

Please note that the real integrals Ireal
n+n− , Ireal

vn+
and Ireal

vn− were previously computed in [69]
and we find full agreement with the results presented there.

G.3 Cut two loop diagrams Wino DM

Having computed in Appendices G.1 and G.2 respectively the virtual and real integrals
relevant for the calculation of the soft functions, we can now use them to determine the
total discontinuity of a given two-loop diagram, after summing over all cuts. Together with
the discussion presented towards the end of Appendix E, about the rapidity divergences
in the soft expansion of the collinear integral Ic−s, this will allow us to demonstrate how
the structure of the rapidity divergences changes in the soft and unobserved jet functions,
when moving from the narrow to the intermediate resolution regime or vice versa. The
total discontinuity is given by

∑

cuts

= Disc(iM) = −2 ImM , (G.34)

where M is representative for one type of matrix element. An example for the sum of
all possible cuts for one type of diagram is given in Figure G.2, where we show the four
possible ways to cut the n+n−-diagram. Similar procedures are applied to the other
diagram types. Note that for this discussion, it suffices to consider the results for the
virtual and real integrals while neglecting the Dirac structures that usually accompany a
Feynman diagram. Not taking into account Dirac structures will not affect the structure
of the rapidity divergences.

The sum over all cuts for n+n−-diagrams is given by

Disc(iMn+n−) = 2 Re
(
Ireal
n+n− − Ivirt.

n+n−

)

=
α̂2

π

[
δ(ω)

(
1

εη
− 2

η
ln
mW

µ
− 1

ε
ln
mW

ν
+ 2 ln

mW

µ
ln
mW

ν

)

+

[
1

ω

][mW ]

∗

(
−1

ε
+ 2 ln

mW

µ

)]
, (G.35)

where the relative minus sign between Ireal
n+n− and Ivirt.

n+n− is owed to the way the scalar
integrals were defined in Appendices G.1 and G.2. For the same reason, a relative minus

138



G.3 Cut two loop diagrams Wino DM

Figure G.2: The four possible cuts through the n+n−-two-loop diagram. This Figure was ex-
tracted from [7].

sign appears for vn−-diagrams which are discussed below. By looking at the individual
expressions for Ireal

n+n− and Ivirt.
n+n− given in (G.22) and (G.9), respectively, we can see that

including real emissions into the soft function cancels half of the rapidity divergences of
the virtual contributions.

For vn−-diagrams we content ourselves with considering one specific example. For this
type of amplitude different diagrams differ by overall signs and/or prefactors, such that
considering one explicit implementation suffices to make a general statement about vn−-
diagrams

Disc(iMvn−) = Ivirt.
vn− − Ireal

vn−

=
α̂2

4π

[
δ(ω)

(
− 1

ε2
+

2

ε
ln
mW

µ
+
π2

12
− 2 ln2 mW

µ

)

+

[
1

ω

][mW ]

∗

(
2

ε
− 2 ln

(
m2
W + ω2

m2
W

)
− 2 ln

m2
W

µ2

)]
. (G.36)

While both real and virtual vn−-diagrams suffer from rapidity divergences, we can see
that the inclusion of real emissions cancels those. For vn+-diagrams, where we also only
consider one possible implementation, we find

Disc(iMvn+) = Ivirt.
vn+

+ Ireal
vn+

= − α̂2

4π

[
δ(ω)

(
− 1

ε2
+

2

εη
− 4

η
ln
mW

µ
+

2

ε
ln
mW

µ
− 2

ε
ln
mW

ν

+
π2

12
− 2 ln2 mW

µ
+ 4 ln

mW

µ
ln
mW

ν

)

+

[
1

ω

][mW ]

∗
2 ln

(
m2
W + ω2

m2
W

)]
. (G.37)

From (G.27) we can see that Ireal
vn+

is in fact finite which means that the divergent structure

of Ivirt.
vn+

does not change.

Summarizing the above analysis, we find that including real emissions into the soft
function when increasing the energy resolution leads to the following relation concerning
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the rapidity divergences

∑

virt.

|η−div. +
∑

real

|η−div. =
1

2

∑

virt.

|η−div. , (G.38)

which means that roughly speaking the intermediate resolution soft function only has half
of the η-divergences compared to the narrow resolution soft function. This was somewhat
to be expected. If Eγres ∼ m2

W /mχ, the rapidity divergences of the soft function needs
to cancel both the rapidity divergences of the photon jet function and of the unobserved
jet function. When increasing the resolution to Eγres ∼ mW however, we saw that the
now hard-collinear unobserved jet function is free of η-divergences, while the photon jet
function remains unchanged. This essentially means that in the intermediate resolution
case we only require half of the η-divergences in the soft function compared to the narrow
resolution case which, as we have seen, is exactly what happens when we include real
emissions. It is easy to confirm that the above discussion applies equally for wino and
Higgsino DM.

G.4 Soft functions in momentum space

In this Appendix we collect the expressions for the intermediate resolution soft functions
for both wino and Higgsino DM, which have been omitted in the main text for reasons of
brevity.

G.4.1 Wino DM

For the operator combination ij = 11 we find

W 11
(00)(00)(ω, µ, ν) = W 11

(00)(+−)(ω, µ, ν) = W 11
(+−)(00)(ω, µ, ν) = W 11

(+−)(+−)(ω, µ, ν)

= δ(ω) +
α̂2

4π

[
δ(ω)(−16) ln

mW

µ
ln
mW

ν
+

[
1

ω

][mW ]

∗
(−16) ln

mW

µ

]
. (G.39)

The operator combinations ij = {12, 21} are given by

W 12
(00)(00)(ω, µ, ν) = W 21∗

(00)(00)(ω, µ, ν)

=
α̂2

4π

[
δ(ω) (8 + 8πi) ln

mW

µ
+

[
1

ω

][mW ]

∗
8 ln

(
m2
W + ω2

m2
W

)]
,

W 12
(00)(+−)(ω, µ, ν) = W 21∗

(+−)(00)(ω, µ, ν)

= δ(ω) +
α̂2

4π

[
δ(ω)

(
(4 + 4πi) ln

µ

mW
− 16 ln

mW

µ
ln
mW

ν

)

+

[
1

ω

][mW ]

∗

(
−4 ln

(
m2
W + ω2

m2
W

)
+ 8 ln

µ2

m2
W

)]
,

W 12
(+−)(00)(ω, µ, ν) = W 21∗

(00)(+−)(ω, µ, ν) = W 12
(00)(00)(ω, µ, ν) ,

W 12
(+−)(+−)(ω, µ, ν) = W 21∗

(+−)(+−)(ω, µ, ν)

= W 12
(00)(+−)(ω, µ, ν) +

α̂2

4π

[
1

ω

][mW ]

∗
(−2) ln

(
m2
W + ω2

m2
W

)
. (G.40)
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Finally, the operator combination ij = 22 is

W 22
(00)(00)(ω, µ, ν) =

α̂2

4π

[
1

ω

][mW ]

∗

(
8 ln

(
m2
W + ω2

m2
W

)
− 8

ω2

m2
W + ω2

)
,

W 22
(00)(+−)(ω, µ, ν) = W 22∗

(+−),(00)(ω, µ, ν)

=
α̂2

4π

[
δ(ω) (8− 8πi) ln

mW

µ
+

[
1

ω

][mW ]

∗

(
4 ln

(
m2
W + ω2

m2
W

)
+ 4

ω2

m2
W + ω2
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W 22
(+−)(+−)(ω, µ, ν) = δ(ω) +

α̂2

4π

[
δ(ω)

(
−8 ln

mW

µ
− 16 ln

mW

µ
ln
mW

ν

)

+

[
1

ω

][mW ]

∗

(
−6 ln

(
m2
W + ω2

m2
W

)
− 2

ω2

m2
W + ω2

+ 8 ln
µ2

m2
W

)]
. (G.41)

G.4.2 Higgsino DM

W
SU(2), 11
IJ, 33 (ω, µ, ν) = δ(ω) +

ĝ2
2(µ)

16π2

×
{
δ(ω)

[
−16 ln

mW

µ
ln
mW

ν

]
+

[
1

ω

][mW ]

∗

[
−16 ln

mW

µ

]}
, (G.42)

W
SU(2), 14
IJ, 34 (ω, µ, ν) =

n14
IJ

2
δ(ω) +

n14
IJ

2

ĝ2
2(µ)

16π2

{
δ(ω)

[
π2

6
− (4 + 8iπ) ln

mW

µ

−8 ln
mW

µ
ln
mW

ν
− 4 ln2 mW

µ

]

− 8

[
1

ω

][mW ]

∗

[
ln

(
m2
W + ω2

m2
W

)
+ ln

m2
W

µ2

]}
, (G.43)

W
SU(2), 41
IJ, 43 (ω, µ, ν) = W

SU(2), 14 ∗
JI,34 (ω, µ, ν) , (G.44)

W
SU(2), 44
IJ, 44 (ω, µ) =

n44
IJ

4
δ(ω) +

n44
IJ

4

ĝ2
2(µ)

16π2

{
δ(ω)

[
π2

3
− 8 ln

mW
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− 8 ln2 mW

µ

]

+8

[
1

ω

][mW ]

∗

[
− ln

(
m2
W + ω2

m2
W

)
− ln

m2
W
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]
− 8

w

m2
W + w2

}
, (G.45)

W
U(1), 44
IJ, 33 (ω, µ, ν) =

n44
IJ

4
δ(ω) +

n44
IJ

4

ĝ2
2(µ)

16π2

×
{
δ(ω)

[
−π

2

3
− 8 ln

mW

µ
− 16 ln

mW

µ
ln
mW

ν
+ 8 ln2 mW

µ

]}
, (G.46)

W
U(1), 46
IJ, 34 (ω, µ, ν) =

n46
IJ

2
δ(ω) +

n46
IJ

2

ĝ2
2(µ)

16π2

×
{
δ(ω)

[
−π

2

6
− 4 ln

mW

µ
− 8 ln

mW

µ
ln
mW

ν
+ 4 ln2 mW

µ

]}
, (G.47)

W
U(1), 64
IJ, 43 (ω, µ, ν) = W

U(1), 46 ∗
JI, 34 (ω, µ, ν) (G.48)

W
U(1), 66
IJ, 44 (ω) = δ (ω) , (G.49)

where we introduced

nijIJ = (−1)δI(00)δi4(−1)δJ(00)δj4 with (00) = (11) or (22), (G.50)
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to allow for a more compact notation.

G.5 Expressions for the resummed soft coefficients

G.5.1 Wino DM

For the operator combination ij = 11, the Ŵ coefficients are given by

Ŵ 11
(00)(00)(ω, µs, ν) = Ŵ 11

(00)(+−)(ω, µs, ν) = Ŵ 11
(+−)(00)(ω, µs, ν) = Ŵ 11

(+−)(+−)(ω, µs, ν)

=

(
1 +

α̂2

4π
(−16) ln

mW

µs
∂η

)
e−γEη

Γ(η)

1

ω

(ω
ν

)η
. (G.51)

We note that here η is defined as in (6.112) and should not be confused with the rapidity
regulator. For the operator combination ij = 12, the results read

Ŵ 12
(00)(00)(ω, µs, ν) = Ŵ 12

(+−)(00)(ω, µs, ν)

=
α̂2

4π

[
(8 + 8πi) ln

mW
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]
e−γEη

Γ(η)

1

ω

(ω
ν

)η
+
α̂2

4π
[8F (ω)] ,

Ŵ 12
(00)(+−)(ω, µs, ν) =

[
1 +

α̂2

4π

((
−16 ln

mW
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∂η

)
− (4 + 4πi) ln

mW
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)]
e−γEη

Γ(η)

1

ω

(ω
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)η

+
α̂2

4π
[−4F (ω)] ,

Ŵ 12
(+−)(+−)(ω, µs, ν) = Ŵ 12

(00)(+−)(ω, µs, ν) +
α̂2

4π
[−2F (ω)] , (G.52)

and for ij = 21,

Ŵ 21
(00)(00)(ω, µs, ν) = Ŵ 12∗

(00)(00)(ω, µs, ν)

Ŵ 21
(00)(+−)(ω, µs, ν) = Ŵ 12∗

(+−)(00)(ω, µs, ν)

Ŵ 21
(+−)(00)(ω, µs, ν) = Ŵ 12∗

(00)(+−)(ω, µs, ν)

Ŵ 21
(+−)(+−)(ω, µs, ν) = Ŵ 12∗

(+−)(+−)(ω, µs, ν) (G.53)

Finally, for the operator combination ij = 22, we have the inverse Laplace-transformed
soft coefficients

Ŵ 22
(00)(00)(ω, µs, ν) =

α̂2

4π
[8F (ω)− 8P (ω)] ,

Ŵ 22
(00)(+−)(ω, µs, ν) = Ŵ 22∗
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+
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4π
[−6F (ω)− 2P (ω)] . (G.54)

G.5.2 Higgsino DM

Ŵ
SU(2), 11
IJ, 33 =n11

IJ

[
1 +

ĝ2
2

16π2

(
−16 ln
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µ
∂η
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, (G.55)
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Ŵ
SU(2), 14
IJ, 34 =
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IJ

2

[
1 +

ĝ2
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Ŵ
SU(2), 41
IJ, 43 = Ŵ

SU(2), 14 ∗
JI, 34 , (G.57)

Ŵ
SU(2), 44
IJ, 44 =

n44
IJ
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ĝ2
2

16π2

(
+
π2

3
− 8 ln

mW
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+ 16 ln
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+
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4

ĝ2
2

16π2
(−8F (ω)− 8P (ω)) , (G.58)

where nijIJ was defined in (G.50). Note that we did not include the resummed expressions

for Ŵ
U(1), ij
IJ,WY , since these are independent of the Laplace parameter and the inverse Laplace

transform simply leads to the originial expressions W
U(1), ij
IJ,WY . This fact was already used

in the derivation of the resummed Higgsino soft functions given in (6.145).
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[6] K. Bernlöhr et al. Monte Carlo design studies for the Cherenkov Telescope Ar-
ray. Astropart. Phys., 43:171–188, 2013. arXiv:1210.3503, doi:10.1016/j.

astropartphys.2012.10.002.

[7] M. Beneke, A. Broggio, C. Hasner, K. Urban, and M. Vollmann. Resummed photon
spectrum from dark matter annihilation for intermediate and narrow energy resolu-
tion. JHEP, 08:103, 2019. arXiv:1903.08702, doi:10.1007/JHEP08(2019)103.

[8] M. Beneke, C. Hasner, K. Urban, and M. Vollmann. Precise yield of high-energy
photons from Higgsino dark matter annihilation. JHEP, 03:030, 2020. arXiv:

1912.02034, doi:10.1007/JHEP03(2020)030.

[9] M. Beneke, A. Broggio, C. Hasner, and M. Vollmann. Energetic γ-rays from TeV
scale dark matter annihilation resummed. Phys. Lett., B786:347–354, 2018. arXiv:
1805.07367, doi:10.1016/j.physletb.2018.10.008.

[10] F. Zwicky. Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta,
6:110–127, 1933. [Gen. Rel. Grav.41,207(2009)]. doi:10.1007/s10714-008-0707-4.

[11] V. C. Rubin and W. K. Ford, Jr. Rotation of the Andromeda Nebula from
a Spectroscopic Survey of Emission Regions. Astrophys. J., 159:379–403, 1970.
doi:10.1086/150317.

[12] V. C. Rubin, N. Thonnard, and W. K. Ford, Jr. Rotational properties of 21 SC
galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/
to UGC 2885 /R = 122 kpc/. Astrophys. J., 238:471, 1980. doi:10.1086/158003.

145

http://dx.doi.org/10.1086/163375
http://arxiv.org/abs/astro-ph/0608407
http://dx.doi.org/10.1086/508162
http://arxiv.org/abs/1003.0904
http://dx.doi.org/10.1146/annurev-astro-082708-101659
http://dx.doi.org/10.1146/annurev-astro-082708-101659
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
http://dx.doi.org/10.1103/PhysRevD.98.030001
http://dx.doi.org/10.1103/PhysRevD.98.030001
http://arxiv.org/abs/1707.06277
http://dx.doi.org/10.1088/1361-6633/aab913
http://arxiv.org/abs/1210.3503
http://dx.doi.org/10.1016/j.astropartphys.2012.10.002
http://dx.doi.org/10.1016/j.astropartphys.2012.10.002
http://arxiv.org/abs/1903.08702
http://dx.doi.org/10.1007/JHEP08(2019)103
http://arxiv.org/abs/1912.02034
http://arxiv.org/abs/1912.02034
http://dx.doi.org/10.1007/JHEP03(2020)030
http://arxiv.org/abs/1805.07367
http://arxiv.org/abs/1805.07367
http://dx.doi.org/10.1016/j.physletb.2018.10.008
http://dx.doi.org/10.1007/s10714-008-0707-4
http://dx.doi.org/10.1086/150317
http://dx.doi.org/10.1086/158003


BIBLIOGRAPHY

[13] A. Refregier. Weak gravitational lensing by large scale structure. Ann. Rev. Astron.
Astrophys., 41:645–668, 2003. arXiv:astro-ph/0307212, doi:10.1146/annurev.
astro.41.111302.102207.

[14] J. A. Tyson, G. P. Kochanski, and I. P. Dell’Antonio. Detailed mass map of
CL0024+1654 from strong lensing. Astrophys. J., 498:L107, 1998. arXiv:astro-ph/
9801193, doi:10.1086/311314.

[15] A. D. Lewis, D. A. Buote, and J. T. Stocke. Chandra observations of Abell 2029:
The Dark matter profile at ¡ 0.01 R(VIR) in an unusually relaxed cluster. Astrophys.
J., 586:135–142, 2003. arXiv:astro-ph/0209205, doi:10.1086/367556.

[16] S. W. Allen, A. C. Fabian, R. W. Schmidt, and H. Ebeling. Cosmological constraints
from the local x-ray luminosity function of the most x-ray luminous galaxy clusters.
Mon. Not. Roy. Astron. Soc., 342:287, 2003. arXiv:astro-ph/0208394, doi:10.
1046/j.1365-8711.2003.06550.x.

[17] A. G. Riess et al. Observational evidence from supernovae for an accelerating
universe and a cosmological constant. Astron. J., 116:1009–1038, 1998. arXiv:

astro-ph/9805201, doi:10.1086/300499.

[18] S. Perlmutter et al. Measurements of Ω and Λ from 42 high redshift supernovae.
Astrophys. J., 517:565–586, 1999. arXiv:astro-ph/9812133, doi:10.1086/307221.

[19] E. Komatsu et al. Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP)
Observations: Cosmological Interpretation. Astrophys. J. Suppl., 192:18, 2011.
arXiv:1001.4538, doi:10.1088/0067-0049/192/2/18.

[20] M. Milgrom. A Modification of the Newtonian dynamics as a possible alternative
to the hidden mass hypothesis. Astrophys. J., 270:365–370, 1983. doi:10.1086/

161130.

[21] G. W. Angus, B. Famaey, and D. A. Buote. X-ray Group and cluster mass profiles
in MOND: Unexplained mass on the group scale. Mon. Not. Roy. Astron. Soc.,
387:1470, 2008. arXiv:0709.0108, doi:10.1111/j.1365-2966.2008.13353.x.

[22] S. Bharadwaj and S. Kar. Modeling galaxy halos using dark matter with pressure.
Phys. Rev., D68:023516, 2003. arXiv:astro-ph/0304504, doi:10.1103/PhysRevD.
68.023516.

[23] H. Velten and D. Schwarz. Dissipation of dark matter. Phys. Rev., D86:083501,
2012. arXiv:1206.0986, doi:10.1103/PhysRevD.86.083501.

[24] S. W. Randall, M. Markevitch, D. Clowe, A. H. Gonzalez, and M. Bradac. Con-
straints on the Self-Interaction Cross-Section of Dark Matter from Numerical Sim-
ulations of the Merging Galaxy Cluster 1E 0657-56. Astrophys. J., 679:1173–1180,
2008. arXiv:0704.0261, doi:10.1086/587859.

[25] C. S. Frenk and S. D. M. White. Dark matter and cosmic structure. Annalen Phys.,
524:507–534, 2012. arXiv:1210.0544, doi:10.1002/andp.201200212.

[26] K. Abazajian. Linear cosmological structure limits on warm dark matter. Phys. Rev.,
D73:063513, 2006. arXiv:astro-ph/0512631, doi:10.1103/PhysRevD.73.063513.

146

http://arxiv.org/abs/astro-ph/0307212
http://dx.doi.org/10.1146/annurev.astro.41.111302.102207
http://dx.doi.org/10.1146/annurev.astro.41.111302.102207
http://arxiv.org/abs/astro-ph/9801193
http://arxiv.org/abs/astro-ph/9801193
http://dx.doi.org/10.1086/311314
http://arxiv.org/abs/astro-ph/0209205
http://dx.doi.org/10.1086/367556
http://arxiv.org/abs/astro-ph/0208394
http://dx.doi.org/10.1046/j.1365-8711.2003.06550.x
http://dx.doi.org/10.1046/j.1365-8711.2003.06550.x
http://arxiv.org/abs/astro-ph/9805201
http://arxiv.org/abs/astro-ph/9805201
http://dx.doi.org/10.1086/300499
http://arxiv.org/abs/astro-ph/9812133
http://dx.doi.org/10.1086/307221
http://arxiv.org/abs/1001.4538
http://dx.doi.org/10.1088/0067-0049/192/2/18
http://dx.doi.org/10.1086/161130
http://dx.doi.org/10.1086/161130
http://arxiv.org/abs/0709.0108
http://dx.doi.org/10.1111/j.1365-2966.2008.13353.x
http://arxiv.org/abs/astro-ph/0304504
http://dx.doi.org/10.1103/PhysRevD.68.023516
http://dx.doi.org/10.1103/PhysRevD.68.023516
http://arxiv.org/abs/1206.0986
http://dx.doi.org/10.1103/PhysRevD.86.083501
http://arxiv.org/abs/0704.0261
http://dx.doi.org/10.1086/587859
http://arxiv.org/abs/1210.0544
http://dx.doi.org/10.1002/andp.201200212
http://arxiv.org/abs/astro-ph/0512631
http://dx.doi.org/10.1103/PhysRevD.73.063513


BIBLIOGRAPHY

[27] R. de Putter et al. New Neutrino Mass Bounds from Sloan Digital Sky Survey
III Data Release 8 Photometric Luminous Galaxies. Astrophys. J., 761:12, 2012.
arXiv:1201.1909, doi:10.1088/0004-637X/761/1/12.

[28] V. N. Lukash, E. V. Mikheeva, and A. M. Malinovsky. Formation of the large-
scale structure of the Universe. Phys. Usp., 54:983–1005, 2011. arXiv:1209.0371,
doi:10.3367/UFNe.0181.201110a.1017.

[29] S. Tremaine and J. E. Gunn. Dynamical Role of Light Neutral Leptons in Cosmology.
Phys. Rev. Lett., 42:407–410, 1979. [,66(1979)]. doi:10.1103/PhysRevLett.42.407.

[30] S. D. M. White, C. S. Frenk, and M. Davis. Clustering in a Neutrino Dominated
Universe. Astrophys. J., 274:L1–L5, 1983. [,80(1984)]. doi:10.1086/161425.

[31] B. Moore, S. Ghigna, F. Governato, G. Lake, T. R. Quinn, J. Stadel, and P. Tozzi.
Dark matter substructure within galactic halos. Astrophys. J., 524:L19–L22, 1999.
arXiv:astro-ph/9907411, doi:10.1086/312287.

[32] A. A. Klypin, A. V. Kravtsov, O. Valenzuela, and F. Prada. Where are the missing
Galactic satellites? Astrophys. J., 522:82–92, 1999. arXiv:astro-ph/9901240,
doi:10.1086/307643.

[33] H.-Y. Chiu. Symmetry between particle and anti-particle populations in the uni-
verse. Phys. Rev. Lett., 17:712, 1966. doi:10.1103/PhysRevLett.17.712.

[34] G. Steigman. Cosmology Confronts Particle Physics. Ann. Rev. Nucl. Part. Sci.,
29:313–338, 1979. doi:10.1146/annurev.ns.29.120179.001525.

[35] R. J. Scherrer and M. S. Turner. On the Relic, Cosmic Abundance of Stable
Weakly Interacting Massive Particles. Phys. Rev., D33:1585, 1986. [Erratum: Phys.
Rev.D34,3263(1986)]. doi:10.1103/PhysRevD.33.1585,10.1103/PhysRevD.34.

3263.

[36] H. Baer, K.-Y. Choi, J. E. Kim, and L. Roszkowski. Dark matter production in the
early Universe: beyond the thermal WIMP paradigm. Phys. Rept., 555:1–60, 2015.
arXiv:1407.0017, doi:10.1016/j.physrep.2014.10.002.

[37] M. Cirelli, N. Fornengo, and A. Strumia. Minimal dark matter. Nucl. Phys.,
B753:178–194, 2006. arXiv:hep-ph/0512090, doi:10.1016/j.nuclphysb.2006.

07.012.

[38] S. D. Thomas and J. D. Wells. Phenomenology of Massive Vectorlike Doublet Lep-
tons. Phys. Rev. Lett., 81:34–37, 1998. arXiv:hep-ph/9804359, doi:10.1103/

PhysRevLett.81.34.

[39] M. W. Goodman and E. Witten. Detectability of Certain Dark Matter Candidates.
Phys. Rev., D31:3059, 1985. [,325(1984)]. doi:10.1103/PhysRevD.31.3059.

[40] A. H. G. Peter, V. Gluscevic, A. M. Green, B. J. Kavanagh, and S. K. Lee. WIMP
physics with ensembles of direct-detection experiments. Phys. Dark Univ., 5-6:45–74,
2014. arXiv:1310.7039, doi:10.1016/j.dark.2014.10.006.

[41] T. Marrodán Undagoitia and L. Rauch. Dark matter direct-detection experiments.
J. Phys., G43(1):013001, 2016. arXiv:1509.08767, doi:10.1088/0954-3899/43/
1/013001.

147

http://arxiv.org/abs/1201.1909
http://dx.doi.org/10.1088/0004-637X/761/1/12
http://arxiv.org/abs/1209.0371
http://dx.doi.org/10.3367/UFNe.0181.201110a.1017
http://dx.doi.org/10.1103/PhysRevLett.42.407
http://dx.doi.org/10.1086/161425
http://arxiv.org/abs/astro-ph/9907411
http://dx.doi.org/10.1086/312287
http://arxiv.org/abs/astro-ph/9901240
http://dx.doi.org/10.1086/307643
http://dx.doi.org/10.1103/PhysRevLett.17.712
http://dx.doi.org/10.1146/annurev.ns.29.120179.001525
http://dx.doi.org/10.1103/PhysRevD.33.1585, 10.1103/PhysRevD.34.3263
http://dx.doi.org/10.1103/PhysRevD.33.1585, 10.1103/PhysRevD.34.3263
http://arxiv.org/abs/1407.0017
http://dx.doi.org/10.1016/j.physrep.2014.10.002
http://arxiv.org/abs/hep-ph/0512090
http://dx.doi.org/10.1016/j.nuclphysb.2006.07.012
http://dx.doi.org/10.1016/j.nuclphysb.2006.07.012
http://arxiv.org/abs/hep-ph/9804359
http://dx.doi.org/10.1103/PhysRevLett.81.34
http://dx.doi.org/10.1103/PhysRevLett.81.34
http://dx.doi.org/10.1103/PhysRevD.31.3059
http://arxiv.org/abs/1310.7039
http://dx.doi.org/10.1016/j.dark.2014.10.006
http://arxiv.org/abs/1509.08767
http://dx.doi.org/10.1088/0954-3899/43/1/013001
http://dx.doi.org/10.1088/0954-3899/43/1/013001


BIBLIOGRAPHY

[42] R. Bernabei et al. The DAMA/LIBRA apparatus. Nucl. Instrum. Meth., A592:297–
315, 2008. arXiv:0804.2738, doi:10.1016/j.nima.2008.04.082.

[43] E. Aprile et al. Dark Matter Search Results from a One Ton-Year Exposure of
XENON1T. Phys. Rev. Lett., 121(11):111302, 2018. arXiv:1805.12562, doi:10.
1103/PhysRevLett.121.111302.

[44] A. Tan et al. Dark Matter Results from First 98.7 Days of Data from the PandaX-
II Experiment. Phys. Rev. Lett., 117(12):121303, 2016. arXiv:1607.07400, doi:
10.1103/PhysRevLett.117.121303.

[45] S. P. Ahlen, F. T. Avignone, R. L. Brodzinski, A. K. Drukier, G. Gelmini, and
D. N. Spergel. Limits on Cold Dark Matter Candidates from an Ultralow Back-
ground Germanium Spectrometer. Phys. Lett., B195:603–608, 1987. doi:10.1016/
0370-2693(87)91581-4.

[46] C. E. Aalseth et al. CoGeNT: A Search for Low-Mass Dark Matter using p-type Point
Contact Germanium Detectors. Phys. Rev., D88:012002, 2013. arXiv:1208.5737,
doi:10.1103/PhysRevD.88.012002.

[47] Q. Yue et al. Limits on light WIMPs from the CDEX-1 experiment with a p-
type point-contact germanium detector at the China Jingping Underground Labo-
ratory. Phys. Rev., D90:091701, 2014. arXiv:1404.4946, doi:10.1103/PhysRevD.
90.091701.

[48] G. K. Giovanetti et al. A Dark Matter Search with MALBEK. Phys. Procedia,
61:77–84, 2015. arXiv:1407.2238, doi:10.1016/j.phpro.2014.12.014.

[49] R. Agnese et al. Maximum Likelihood Analysis of Low Energy CDMS II Germanium
Data. Phys. Rev., D91:052021, 2015. arXiv:1410.1003, doi:10.1103/PhysRevD.
91.052021.

[50] R. Agnese et al. Search for Low-Mass Weakly Interacting Massive Particles Us-
ing Voltage-Assisted Calorimetric Ionization Detection in the SuperCDMS Exper-
iment. Phys. Rev. Lett., 112(4):041302, 2014. arXiv:1309.3259, doi:10.1103/

PhysRevLett.112.041302.

[51] J. Conrad, J. Cohen-Tanugi, and L. E. Strigari. WIMP searches with gamma rays in
the Fermi era: challenges, methods and results. J. Exp. Theor. Phys., 121(6):1104–
1135, 2015. [Zh. Eksp. Teor. Fiz.148,no.6,1257(2015)]. arXiv:1503.06348, doi:

10.1134/S1063776115130099.

[52] J. M. Gaskins. A review of indirect searches for particle dark matter. Contemp.
Phys., 57(4):496–525, 2016. arXiv:1604.00014, doi:10.1080/00107514.2016.

1175160.

[53] M. Cirelli, G. Corcella, A. Hektor, G. Hutsi, M. Kadastik, P. Panci, M. Raidal,
F. Sala, and A. Strumia. PPPC 4 DM ID: A Poor Particle Physicist Cook-
book for Dark Matter Indirect Detection. JCAP, 1103:051, 2011. [Erra-
tum: JCAP1210,E01(2012)]. arXiv:1012.4515, doi:10.1088/1475-7516/2012/

10/E01,10.1088/1475-7516/2011/03/051.

[54] L. Bergstrom, P. Ullio, and J. H. Buckley. Observability of gamma-rays from dark
matter neutralino annihilations in the Milky Way halo. Astropart. Phys., 9:137–162,
1998. arXiv:astro-ph/9712318, doi:10.1016/S0927-6505(98)00015-2.

148

http://arxiv.org/abs/0804.2738
http://dx.doi.org/10.1016/j.nima.2008.04.082
http://arxiv.org/abs/1805.12562
http://dx.doi.org/10.1103/PhysRevLett.121.111302
http://dx.doi.org/10.1103/PhysRevLett.121.111302
http://arxiv.org/abs/1607.07400
http://dx.doi.org/10.1103/PhysRevLett.117.121303
http://dx.doi.org/10.1103/PhysRevLett.117.121303
http://dx.doi.org/10.1016/0370-2693(87)91581-4
http://dx.doi.org/10.1016/0370-2693(87)91581-4
http://arxiv.org/abs/1208.5737
http://dx.doi.org/10.1103/PhysRevD.88.012002
http://arxiv.org/abs/1404.4946
http://dx.doi.org/10.1103/PhysRevD.90.091701
http://dx.doi.org/10.1103/PhysRevD.90.091701
http://arxiv.org/abs/1407.2238
http://dx.doi.org/10.1016/j.phpro.2014.12.014
http://arxiv.org/abs/1410.1003
http://dx.doi.org/10.1103/PhysRevD.91.052021
http://dx.doi.org/10.1103/PhysRevD.91.052021
http://arxiv.org/abs/1309.3259
http://dx.doi.org/10.1103/PhysRevLett.112.041302
http://dx.doi.org/10.1103/PhysRevLett.112.041302
http://arxiv.org/abs/1503.06348
http://dx.doi.org/10.1134/S1063776115130099
http://dx.doi.org/10.1134/S1063776115130099
http://arxiv.org/abs/1604.00014
http://dx.doi.org/10.1080/00107514.2016.1175160
http://dx.doi.org/10.1080/00107514.2016.1175160
http://arxiv.org/abs/1012.4515
http://dx.doi.org/10.1088/1475-7516/2012/10/E01, 10.1088/1475-7516/2011/03/051
http://dx.doi.org/10.1088/1475-7516/2012/10/E01, 10.1088/1475-7516/2011/03/051
http://arxiv.org/abs/astro-ph/9712318
http://dx.doi.org/10.1016/S0927-6505(98)00015-2


BIBLIOGRAPHY

[55] D. J. Thompson et al. Calibration of the Energetic Gamma-Ray Experiment Tele-
scope (EGRET) for the Compton Gamma-Ray Observatory. Astrophys. J. Suppl.,
86:629–656, 1993. doi:10.1086/191793.

[56] W. B. Atwood et al. The Large Area Telescope on the Fermi Gamma-ray Space
Telescope Mission. Astrophys. J., 697:1071–1102, 2009. arXiv:0902.1089, doi:

10.1088/0004-637X/697/2/1071.

[57] J. Aleksic et al. Performance of the MAGIC stereo system obtained with Crab
Nebula data. Astropart. Phys., 35:435–448, 2012. arXiv:1108.1477, doi:10.1016/
j.astropartphys.2011.11.007.

[58] J. Holder et al. Status of the VERITAS Observatory. AIP Conf. Proc., 1085(1):657–
660, 2009. arXiv:0810.0474, doi:10.1063/1.3076760.

[59] F. Aharonian et al. Observations of the Crab Nebula with H.E.S.S. Astron. As-
trophys., 457:899–915, 2006. arXiv:astro-ph/0607333, doi:10.1051/0004-6361:
20065351.

[60] M. Actis et al. Design concepts for the Cherenkov Telescope Array CTA: An ad-
vanced facility for ground-based high-energy gamma-ray astronomy. Exper. Astron.,
32:193–316, 2011. arXiv:1008.3703, doi:10.1007/s10686-011-9247-0.

[61] J. Hisano, S. Matsumoto, and M. M. Nojiri. Explosive dark matter annihila-
tion. Phys. Rev. Lett., 92:031303, 2004. arXiv:hep-ph/0307216, doi:10.1103/

PhysRevLett.92.031303.

[62] J. Hisano, S. Matsumoto, M. M. Nojiri, and O. Saito. Non-perturbative effect on
dark matter annihilation and gamma ray signature from galactic center. Phys. Rev.,
D71:063528, 2005. arXiv:hep-ph/0412403, doi:10.1103/PhysRevD.71.063528.

[63] N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner. A Theory of Dark
Matter. Phys. Rev., D79:015014, 2009. arXiv:0810.0713, doi:10.1103/PhysRevD.
79.015014.

[64] M. Beneke, C. Hellmann, and P. Ruiz-Femenia. Heavy neutralino relic abundance
with Sommerfeld enhancements - a study of pMSSM scenarios. JHEP, 03:162, 2015.
arXiv:1411.6930, doi:10.1007/JHEP03(2015)162.

[65] M. Baumgart, I. Z. Rothstein, and V. Vaidya. Calculating the Annihilation Rate of
Weakly Interacting Massive Particles. Phys. Rev. Lett., 114:211301, 2015. arXiv:

1409.4415, doi:10.1103/PhysRevLett.114.211301.

[66] G. Ovanesyan, T. R. Slatyer, and I. W. Stewart. Heavy Dark Matter Annihilation
from Effective Field Theory. Phys. Rev. Lett., 114(21):211302, 2015. arXiv:1409.

8294, doi:10.1103/PhysRevLett.114.211302.

[67] M. Bauer, T. Cohen, R. J. Hill, and M. P. Solon. Soft Collinear Effective Theory for
Heavy WIMP Annihilation. JHEP, 01:099, 2015. arXiv:1409.7392, doi:10.1007/
JHEP01(2015)099.

[68] G. Ovanesyan, N. L. Rodd, T. R. Slatyer, and I. W. Stewart. One-loop correction to
heavy dark matter annihilation. Phys. Rev., D95(5):055001, 2017. [Erratum: Phys.
Rev.D100,no.11,119901(2019)]. arXiv:1612.04814, doi:10.1103/PhysRevD.100.
119901,10.1103/PhysRevD.95.055001.

149

http://dx.doi.org/10.1086/191793
http://arxiv.org/abs/0902.1089
http://dx.doi.org/10.1088/0004-637X/697/2/1071
http://dx.doi.org/10.1088/0004-637X/697/2/1071
http://arxiv.org/abs/1108.1477
http://dx.doi.org/10.1016/j.astropartphys.2011.11.007
http://dx.doi.org/10.1016/j.astropartphys.2011.11.007
http://arxiv.org/abs/0810.0474
http://dx.doi.org/10.1063/1.3076760
http://arxiv.org/abs/astro-ph/0607333
http://dx.doi.org/10.1051/0004-6361:20065351
http://dx.doi.org/10.1051/0004-6361:20065351
http://arxiv.org/abs/1008.3703
http://dx.doi.org/10.1007/s10686-011-9247-0
http://arxiv.org/abs/hep-ph/0307216
http://dx.doi.org/10.1103/PhysRevLett.92.031303
http://dx.doi.org/10.1103/PhysRevLett.92.031303
http://arxiv.org/abs/hep-ph/0412403
http://dx.doi.org/10.1103/PhysRevD.71.063528
http://arxiv.org/abs/0810.0713
http://dx.doi.org/10.1103/PhysRevD.79.015014
http://dx.doi.org/10.1103/PhysRevD.79.015014
http://arxiv.org/abs/1411.6930
http://dx.doi.org/10.1007/JHEP03(2015)162
http://arxiv.org/abs/1409.4415
http://arxiv.org/abs/1409.4415
http://dx.doi.org/10.1103/PhysRevLett.114.211301
http://arxiv.org/abs/1409.8294
http://arxiv.org/abs/1409.8294
http://dx.doi.org/10.1103/PhysRevLett.114.211302
http://arxiv.org/abs/1409.7392
http://dx.doi.org/10.1007/JHEP01(2015)099
http://dx.doi.org/10.1007/JHEP01(2015)099
http://arxiv.org/abs/1612.04814
http://dx.doi.org/10.1103/PhysRevD.100.119901, 10.1103/PhysRevD.95.055001
http://dx.doi.org/10.1103/PhysRevD.100.119901, 10.1103/PhysRevD.95.055001


BIBLIOGRAPHY

[69] M. Baumgart, T. Cohen, I. Moult, N. L. Rodd, T. R. Slatyer, M. P. Solon, I. W.
Stewart, and V. Vaidya. Resummed Photon Spectra for WIMP Annihilation. JHEP,
03:117, 2018. arXiv:1712.07656, doi:10.1007/JHEP03(2018)117.

[70] M. Beneke and V. A. Smirnov. Asymptotic expansion of Feynman integrals
near threshold. Nucl. Phys., B522:321–344, 1998. arXiv:hep-ph/9711391, doi:

10.1016/S0550-3213(98)00138-2.

[71] V. Smirnov. Applied asymptotic expansions in momenta and masses. Applied
Asymptotic Expansions in Momenta and Masses, Edited by Vladimir A. Smirnov,
Springer Tracts in Modern Physics, vol. 177, 177, 01 2001. doi:10.1007/

3-540-44574-9_1.

[72] T. Becher and M. Neubert. Drell-Yan Production at Small qT , Transverse Parton
Distributions and the Collinear Anomaly. Eur. Phys. J., C71:1665, 2011. arXiv:

1007.4005, doi:10.1140/epjc/s10052-011-1665-7.

[73] J.-y. Chiu, F. Golf, R. Kelley, and A. V. Manohar. Electroweak Sudakov corrections
using effective field theory. Phys. Rev. Lett., 100:021802, 2008. arXiv:0709.2377,
doi:10.1103/PhysRevLett.100.021802.

[74] J.-y. Chiu, F. Golf, R. Kelley, and A. V. Manohar. Electroweak Corrections in
High Energy Processes using Effective Field Theory. Phys. Rev., D77:053004, 2008.
arXiv:0712.0396, doi:10.1103/PhysRevD.77.053004.

[75] J.-y. Chiu, A. Jain, D. Neill, and I. Z. Rothstein. The Rapidity Renormaliza-
tion Group. Phys. Rev. Lett., 108:151601, 2012. arXiv:1104.0881, doi:10.1103/
PhysRevLett.108.151601.

[76] J.-Y. Chiu, A. Jain, D. Neill, and I. Z. Rothstein. A Formalism for the Systematic
Treatment of Rapidity Logarithms in Quantum Field Theory. JHEP, 05:084, 2012.
arXiv:1202.0814, doi:10.1007/JHEP05(2012)084.

[77] M. Baumgart, T. Cohen, E. Moulin, I. Moult, L. Rinchiuso, N. L. Rodd, T. R.
Slatyer, I. W. Stewart, and V. Vaidya. Precision Photon Spectra for Wino Annihi-
lation. JHEP, 01:036, 2019. arXiv:1808.08956, doi:10.1007/JHEP01(2019)036.

[78] M. Beneke, C. Hellmann, and P. Ruiz-Femenia. Non-relativistic pair annihila-
tion of nearly mass degenerate neutralinos and charginos III. Computation of
the Sommerfeld enhancements. JHEP, 05:115, 2015. arXiv:1411.6924, doi:

10.1007/JHEP05(2015)115.

[79] M. Beneke, C. Hellmann, and P. Ruiz-Femenia. Non-relativistic pair annihilation
of nearly mass degenerate neutralinos and charginos I. General framework and S-
wave annihilation. JHEP, 03:148, 2013. [Erratum: JHEP10,224(2013)]. arXiv:

1210.7928, doi:10.1007/JHEP10(2013)224,10.1007/JHEP03(2013)148.

[80] G. T. Bodwin, E. Braaten, and G. P. Lepage. Rigorous QCD analysis of inclu-
sive annihilation and production of heavy quarkonium. Phys. Rev., D51:1125–
1171, 1995. [Erratum: Phys. Rev.D55,5853(1997)]. arXiv:hep-ph/9407339, doi:
10.1103/PhysRevD.55.5853,10.1103/PhysRevD.51.1125.

[81] M. Beneke, R. Szafron, and K. Urban. Wino potential and Sommerfeld effect at NLO.
Phys. Lett., B800:135112, 2020. arXiv:1909.04584, doi:10.1016/j.physletb.

2019.135112.

150

http://arxiv.org/abs/1712.07656
http://dx.doi.org/10.1007/JHEP03(2018)117
http://arxiv.org/abs/hep-ph/9711391
http://dx.doi.org/10.1016/S0550-3213(98)00138-2
http://dx.doi.org/10.1016/S0550-3213(98)00138-2
http://dx.doi.org/10.1007/3-540-44574-9_1
http://dx.doi.org/10.1007/3-540-44574-9_1
http://arxiv.org/abs/1007.4005
http://arxiv.org/abs/1007.4005
http://dx.doi.org/10.1140/epjc/s10052-011-1665-7
http://arxiv.org/abs/0709.2377
http://dx.doi.org/10.1103/PhysRevLett.100.021802
http://arxiv.org/abs/0712.0396
http://dx.doi.org/10.1103/PhysRevD.77.053004
http://arxiv.org/abs/1104.0881
http://dx.doi.org/10.1103/PhysRevLett.108.151601
http://dx.doi.org/10.1103/PhysRevLett.108.151601
http://arxiv.org/abs/1202.0814
http://dx.doi.org/10.1007/JHEP05(2012)084
http://arxiv.org/abs/1808.08956
http://dx.doi.org/10.1007/JHEP01(2019)036
http://arxiv.org/abs/1411.6924
http://dx.doi.org/10.1007/JHEP05(2015)115
http://dx.doi.org/10.1007/JHEP05(2015)115
http://arxiv.org/abs/1210.7928
http://arxiv.org/abs/1210.7928
http://dx.doi.org/10.1007/JHEP10(2013)224, 10.1007/JHEP03(2013)148
http://arxiv.org/abs/hep-ph/9407339
http://dx.doi.org/10.1103/PhysRevD.55.5853, 10.1103/PhysRevD.51.1125
http://dx.doi.org/10.1103/PhysRevD.55.5853, 10.1103/PhysRevD.51.1125
http://arxiv.org/abs/1909.04584
http://dx.doi.org/10.1016/j.physletb.2019.135112
http://dx.doi.org/10.1016/j.physletb.2019.135112


BIBLIOGRAPHY
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