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Zusammenfassung

Diese Arbeit befasst sichmit den Problemen undHerausforderungen fürMachine-learning-
basierte Methoden, die den Effekt von Proteinsequenzvarianten vorhersagen. Gegenwär-
tig ist es üblich, entweder alte, etablierte Methoden anzuwenden oder neue Ansätze zu
entwickeln, obwohl ein tieferes, allgemeines Verständnis für diese Vorhersagemethoden
fehlt.
Um bessere Kenntnisse über den Stand der Technik zu erlangen, haben wir neue Datensät-
ze erstellt und damit unabhängige Evaluierungen auf bisher nicht genutzten, experimen-
tellen Daten durchgeführt. Die erzeugten Datensätze bestehen aus Krankheitsvarianten
in Tieren sowie High-Throughput-Messungen der Proteinfunktion mit Deep-Mutational-
Scanning-Experimenten.
Die Analysen zeigen, dass Vorhersagemethoden dazu neigen, primär Varianten mit star-
kem, schädlichem Effekt zu detektieren. Diese weisen oft eine hohe Sequenzkonservie-
rung auf. Des Weiteren werden Varianten mit positivem Effekt generell vernachlässigt,
was sich in schlechten Vorhersagen derselben widerspiegelt. Allgemein lässt sich fest-
halten, dass keine einzelne Methode unter allen Umständen die beste Leistung zeigt.
Zukünftige Anstrengungen werden daher nötig sein, um die Defizite zu beseitigen. Dies
wird es ermöglichen, die Methoden auch für klinische Anwendungen einzubeziehen und
damit die umfassende Einführung von Präzisionsmedizin zu unterstützen. Diesbezüglich
liegt der Beitrag dieser Arbeit im Bereitstellen des nötigen Wissens, um sowohl die um-
sichtige Anwendung von aktuellen Methoden als auch die gezielte Neuentwicklung von
Vorhersagemethoden voranzutreiben.
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Abstract

This thesis discusses the issues with and challenges faced by machine learning-based
methods which predict the effect of protein sequence variants. Current practice favors
the usage of either long-established methods or development of novel approaches, despite
lacking a deeper understanding of effect predictors in general.
To gain insights into the state of the art, we assembled new datasets and performed inde-
pendent evaluations on previously untapped experimental data. The generated datasets
consist of disease variants in animals, and high-throughput measurements of protein
function by deep mutational scanning assays.
The analyses illustrate that prediction methods are heavily biased towards deleterious,
high effect variants which exhibit strong sequence conservation. We further show that
variants with beneficial effect are generally neglected, resulting in poor performance of
their prediction. Overall, no single prediction method performs best under all circum-
stances. Thus, future endeavors are necessary to remedy these deficiencies. Accounting
for them will allow those methods to support clinical action and drive the large-scale
adoption of precision medicine. In this regard, the significance of this study lies in pro-
viding the knowledge required for both the sensible application of current prediction
methods as well as the targeted development of new predictors.
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Chapter 1

Introduction

1.1 Genetic variation

Genomes are the manuals of life which contain the information required for the devel-
opment of an organism. However, not every organism of the same species shares the
exact same genome. For humans in particular, genetic variation is what defines us as
individuals. It determines the way we look, our behavior, preferences and predispositions.
As such, understanding whether a genetic change will have an effect and what it will be
is inherently interesting. Both to us as individuals as well as to every industry that aims
to offer a product tailored to their customers, such as personalized medicine.

In 2003, the human genome project concluded by presenting "the" human genome after
working over a decade on its determination. In truth, it was a mosaic of genetic material
from a number of European individuals combined (Collins et al., 2003b). Nevertheless,
having the genome sequence did not immediately elucidate the inner workings of our
complex organism. Despite knowing the alphabet, grammar and now also the full text of
this "book of life", interpreting it still provides a challenge to this day. Researchers alike
were, in retrospect, overly optimistic about the opportunities the human genome would
offer, in particular regarding the outlook of personalized medicine (Collins et al., 2003a;
Shendure et al., 2019). Even 15 years later the promise of drugs developed to every indi-
vidual’s needs is far from being a reality. These days, precision medicine seems more likely,
i.e., treatments tailored towards groups of individuals for example with the same genetic
makeup (Ashley, 2016; Rost et al., 2016; Morganti et al., 2020; Claussnitzer et al., 2020).
However, this is far from trivial as 54% of protein-coding variants were unique to just
one in 60,000 humans (Lek et al., 2016). Furthermore, with around 1,150,000 protein-
coding positions in the human genome and 19 possible changes for each, more than 200
million changes are possible. Yet, the outcome is known for only around 85,000 , i.e.,
less than 0.05 percent (The Uniprot Consortium, 2019; Landrum et al., 2016). Therefore,
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2 CHAPTER 1. INTRODUCTION

one of the crucial impediments for attaining precision medicine is the interpretation of
genetic variation (Daneshjou et al., 2017; J. Shendure and J. M. Akey, 2015; Manolio
et al., 2017).
To assist in closing the divide between known sequence variants and their outcome,
dedicated variant effect prediction methods (VEPs) began to be developed concurrently
with the human genome project’s conclusion (Ng and Steven, 2001; Ramensky et al.,
2002). Their goal is to predict the effect of a sequence variant in silico while using only
information about sequences and structures from public databases as input and without
the need for time-consuming and costly wet-lab experiments. As the speed at which
genome sequences and with that genetic variation can be determined rapidly increases,
VEPs are struggling to keep up. In the remainder of this chapter, more recent advances
in sequencing, the types and effects of genetic variations, as well as popular VEPs and
their issues will be discussed.

1.1.1 High-throughput sequencing

The human genome project still relied on Sanger Sequencing which remains a viable
method for small-scale projects. For larger efforts such as whole-genome sequencing
(WGS), it has been replaced by a set of high-throughput sequencing (HTS) methods,
also referred to as next-generation sequencing (Goodwin et al., 2016; Levy and Myers,
2016; van Dijk et al., 2018). Common to all of them is an increase in sequencing speed at
reduced cost (Figure 1.1). In the context of HTS, a read refers to a stretch of nucleotide
sequence that can be detected within one operation from a single molecule. Depending
on the particular HTS method, the maximum length of sequencing reads might be shorter,
or the error rate higher than for Sanger sequencing (Pfeiffer et al., 2018; Bowden et al.,
2019). However, some of the initial shortcomings have been resolved algorithmically or
by improvements to the methods themselves. Statistical underpinnings of interpreting
the data have also matured to be more robust (Carss et al., 2019).
HTS has enabled a multitude of new experimental venues or spurred research in existing
fields. For example, in cancer research, increasing sequencing capabilities have led to the
discovery of mutational signatures specific to certain cancer types which are important
for clinical action (Alexandrov and Stratton, 2014; Aravanis et al., 2017; Cieslik and
Chinnaiyan, 2020). HTS also enabled single-cell sequencing which determines the genetic
makeup of just one individual cell and thus elucidates the heterogeneity of cells in, e.g.,
developmental processes or within healthy as well as cancer tissue (Kolodziejczyk et al.,
2015; Gawad et al., 2016). Deep mutational scanning (DMS) describes a framework
for evaluating the functional outcome of every possible variant in a protein of interest
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Figure 1.1. Decline in sequencing costs. Since the inception of high-throughput se-
quencing technologies around 2008, the associated costs have decreased exponentially.
Denoted amounts include sequencing machines and materials but not associated ex-
penditures such as quality control, management, development and processing of raw
sequencing output. Costs are denoted in US$ and the data underlying these plots are
provided by the NIH (Wetterstrand, 2019).

and thereby tries to close the gap between sequence data and interpretation (Fowler
and Fields, 2014). Perhaps most importantly, whole-exome sequencing (WES), which is
limited to protein-coding sequences, as well asWGS have benefited greatly fromHTS. This
lead to increasingly larger efforts both to determine additional reference genomes as well
as to study the genetic variation within (Martinez and Nelson, 2010). Naturally, the study
of the human genome landscape has been a particular focal point. For example, just five
years after the determination of the human genome, the 1000 genomes project started.
At its conclusion in 2015 stood 2,504 human genomes from populations all over the world
(The 1000 Genomes Project Consortium, 2010, 2012, 2015). In parallel, another large
effort studied the human microbiome and its effects on health (The Human Microbiome
Project Consortium, 2012; The Integrative HMP (iHMP) Research Network Consortium,
2014). More recently an initiative limited to the United Kingdom successfully sequenced
100,000 human genomes (Genomics England, 2017) and several other countries are
working on similar projects.
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Human WES and WGS is now being offered by various companies around the often
cited $1,000 threshold and costs are certainly below $10,000 even for single laborato-
ries (Schwarze et al., 2018, 2019). This sparks ethical concerns as well as technological
challenges regarding data processing and storage. Moreover, the tremendous amount of
data resulting from HTS also highlights the deficits still present in its interpretation (J.
Shendure and J. M. Akey, 2015; Manolio et al., 2017).

1.1.2 Types of genetic variation

The advances in HTS outlined above form the basis for pervasive detection of genetic
variation (Pavlopoulos et al., 2013). However, to determine a change one first has to
establish a baseline to deviate from. For a set of common organisms including Homo
sapiens, the Genome Reference Consortium maintains such a reference (Schneider et al.,
2017). With the baseline, currently GRCh38 for human, any deviation from it can be
regarded as a manifestation of genetic variation. However, a single reference is necessarily
always biased and not an accurate representation of the complete human population. This
lead to recent arguments for using a collection of sequences referred to as pan-genome
instead (Sherman and Salzberg, 2020). Either way, such differences are not uncommon:
Any two unrelated individuals differ in their genomes at four to five million sites, i.e.,
about 0.1% of the total 3 billion nucleotides (The 1000 Genomes Project Consortium,
2015). Given the human genome’s size, the number of possible changes is in the order of
1010. These changes can be caused by genetic recombination or DNA repair mechanisms
and errors therein, as well as at random. Depending on whether the variants occur in
somatic or germline cells, they can be inherited by offspring. Since humans are diploid
organisms, we carry two copies of every genetic locus. Each copy is referred to as an
allele. The minor allele frequency describes how often the second most common allele
is found in a given population. Variants are often considered rare if they have a minor
allele frequency of for example less than 1% or less than 0.1%, and common otherwise.
Since the terms such as mutation or polymorphism carry negative connotations to many
readers and are therefore often interpreted wrong, all types of genetic changes will be
referred to as variants throughout this thesis (Richards et al., 2015). Epigenetic changes,
i.e., changes outside of the genomic sequence are not discussed here. The different types
of variation which can occur are outlined in the following two subsections.

Structural variants

Alongside many other findings, efforts such as the 1000 genomes project also revealed
that the majority of changed nucleotides in the human genome are caused by so-called
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structural variants, although they make up only 0.1% of all variants in the population. It
is also noteworthy that current, reference-based HTS approaches as described in Subsec-
tion 1.1.1 are less sensitive to many types of structural variation meaning that the real
occurrences may be higher (Chaisson et al., 2015). The 2019 gnomAD-SV analysis based
on WGS data from almost 15,000 individuals also supports this (Collins et al., 2019).
Typically, structural variants denote large changes that affect at least around 1,000 bases
(Feuk et al., 2006). Among them, copy number variations (CNVs), such as insertions, dele-
tions and duplications describe the addition or removal of nucleotide stretches. The length
of the duplicated elements can vary from di-nucleotides to whole genes. Furthermore,
specific duplicated subsequences show a different number of repeats between individuals.
Besides CNVs, inversions describe cases in which part of the sequence is reversed while
the overall length remains unaffected. Several of the described variation types can also
occur simultaneously leading to more complex changes. Furthermore, these changes can
also occur on the level of chromosomes, therefore affecting even larger portions of the
genome.

Single position variants

Before HTS methods were able to detect the pervasiveness of structural variants, smaller,
local changes were thought to be the main source of human genetic variation. Indeed,
single nucleotide variants (SNVs) account for around 85% of the variation every indi-
vidual carries compared to the human reference genome (The 1000 Genomes Project
Consortium, 2015). When including short insertions or deletions, the portion rises to
more than 99.9%. SNVs are often distinguished from single nucleotide polymorphisms,
i.e., SNVs that occur in the population with a certain frequency. Within this thesis, no
such distinction is made.
Most SNVs are found in non-coding regions of the genome—i.e., outside of genes which
are translated into proteins—and are considered rare since they are present in less than
1% of the population (Lek et al., 2016). SNVs in coding regions can be either synony-
mous or non-synonymous. Synonymous SNVs, also referred to as silent variants, alter a
nucleotide but not the encoded amino acid as a result of the genetic code’s redundancy.
Non-synonymous SNVs change the encoded amino acid and therefore translate to an
altered protein sequence. As a special case, nonsense variants change a tri-nucleotide
encoding for an amino acid to a STOP-codon which leads to premature termination of
translation.
On the level of proteins, changes of single residues are also referred to as single amino
acid variants (SAVs). SAVs are typically denoted in a short-hand such as MET1ILE, mean-
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ing that methionine at position 1 is changed to isoleucine. Throughout this work, SAVs
will be denoted this way but using the amino acid one letter code, i.e., M1I for the pre-
vious example. It is important to note that a SAV is not necessarily the change of just
one nucleotide in the gene sequence but could also denote a complete exchange of the
underlying codon. To further differentiate SAVs, a change that could be achieved with
just one nucleotide alteration is referred to as SNV-possible (Bromberg et al., 2013). How-
ever, this definition does not take into account the actual codon found at the position of
interest but rather all theoretically possible changes. For example, given a protein with
arginine at position 8, the list of SNV-possible variants includes R8W and R8H, although
R8W can only be achieved with a single nucleotide change if the underlying codon for
arginine is CGG or AGG, while R8H requires one of the codons CGU and CGC. From here
on out, the standard genetic code is assumed for the definition of SNV-possible. Opposed
to SNV-possible stands the set of 19-non-native variants, i.e., the change of a given amino
acid to all other nineteen standard proteinogenic amino acids.

1.2 Effect of genetic variation

The outcome of most variants as outlined in Subsection 1.1.2 is unknown, i.e., they
are variants of unknown significance. Their effect can range from none at all to the
most extreme cases of disease development. For this distinction it is crucial to consider
the level at which effects are measured. If a variant does not lead to a disease or any
other discernible phenotypic change on the organism level it could be considered to
not have an effect, that is, to be neutral or wildtype-like. Nevertheless the variant in
question might have an effect on the protein function on a smaller scale, such as reduced
enzymatic activity. Knowledge of this effect is still relevant for understanding the changes
to molecular pathways and how several co-occurring variants might lead to larger scale
effects. Even if the effect is strictly limited to the protein in question, whether one or both
copies of the gene are changed, i.e., whether the variant is hetero- or homozygous, can
affect its consequences. Finally, variants might indeed not have any measurable effect
and just be the manifestation of evolution.

Another factor still highly underrepresented in experimental data is that a variant’s effect
can be beneficial as well. This is also often referred to as a "gain-of-function". While the
typical assumption is that the variant has a deleterious effect, it may be increased as well.
An increase in enzymatic activity constitutes a beneficial variant effect on the level of
protein function, however this doesn’t necessarily imply a positive outcome on the level
of the organism. The increased function might throw a pathway out of balance leading
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to undesired effects. As another example, increased virulence is a beneficial effect for the
virus but not the host, same as increased antibiotic resistance in pathogenic bacteria.

Finally, it is important to realize that many traits do not behave according to straight-
forward Mendelian inheritance where a single gene is responsible for all phenotypic
changes. In so-called complex or quantitative traits, variants at multiple genomic loci
all contribute with typically small effect to the overall organismal phenotype (Mackay
et al., 2009). In the same way that, e.g., adult human height is influenced by hundreds
of known variants at hundreds of loci, diseases can also be attributed to a set of changes
which all contribute to factors such as onset or severity (Marouli et al., 2017; Plomin
et al., 2009; Manolio et al., 2009). Such polygenic diseases are among the most common
human diseases including diabetes, various heart conditions, and cancer types (Khera
et al., 2018). Furthermore, much of the phenotypic heritability in humans appears to be
driven not by the most common variants but rather extremely rare ones that have been
observed only once in the population (Hernandez et al., 2019). At the same time it is
hotly debated whether common variants have more functional impact than rare ones
(Mahlich et al., 2017; Alhuzimi et al., 2018; Laddach et al., 2019).

In the following, Subsection 1.2.1 will give an overview of the type of effects variants can
display. Subsection 1.2.2 highlights different approaches for determining these effects
in wet lab experiments, with particular focus on a recent method referred to as deep
mutational scanning (Subsection 1.2.3 on page 10). Finally, Subsection 1.2.4 on page 12
outlines various resources that catalog variants for which effects have been determined.

1.2.1 Examples of variation effects

A well-known example of structural variation is how often the tri-nucleotide CAG coding
for glutamine repeats near the N-terminus of the human protein huntingtin. The number
of repeats is highly correlated with the development and onset of Huntington’s disease
(Myers, 2004; Saudou and Humbert, 2016). Another example is the 32 nucleotide dele-
tion in CCR5, commonly termed CCR5-∆32 which leads to a frameshift and premature
termination of the chemokine receptor’s translation. While recent research also suggests
detrimental effects of this variant, homozygous carriers of CCR5-∆32 have long been
known to be effectively immune to HIV infection (Dean et al., 1996; Barmania and Pep-
per, 2013). Finally, the duplication of a gene can intuitively affect its expression and
prevalence in the cell which might in turn lead to changes in molecule concentrations or
pathway activity - an effect referred to as gene dosing. Such CNVs have been implicated
with various diseases including Alzheimer’s, autism and HIV susceptibility (Feuk et al.,
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2006; Freeman, 2006). Larger scale structural variants are well known through diseases
such as Down syndrome caused by the (partial) duplication of chromosome 21.
SAVs have traditionally been the focus of research. To give just some examples of their
possible effects, OMIM (Subsection 1.2.4, Amberger et al., 2019) currently catalogs some
5,500 phenotypes with a known cause, around 11,000 of which are SAVs (Sherry et al.,
2001). Sensitivity to alcohol is one of those phenotypes (OMIM identifier 100650) and
common in East Asian populations due to variantE504K in aldehyde dehydrogenase which
performs a crucial step in alcohol metabolism (Figure 1.2). Another popular example
is variant E7V in hemoglobin which causes sickle-cell anaemia when homozygous, but
confers increased resistance to malaria when only one copy of the gene carries the variant.
Depending on the context, it can therefore also be seen as an example of a variant with
beneficial effect. Similar so-called protective variants have been identified for diseases
including type 1 and 2 diabetes, various cancers or inflammatory bowel disease (Butler
et al., 2017).
In human, the number of SAVs found in every individual is comparable to the number
of synonymous variants - around 10,000 each (The 1000 Genomes Project Consortium,
2015). However, effects are much more studied for the SAVs. Intuitively one might not
expect synonymous variants to have an effect on protein function. After all, the resulting
amino acid chain remains unaffected. Nonetheless, their common designation as "silent"
variants is misleading since they can, for example, influence factors such as translation
fidelity by changes to less frequent codons which can in turn affect co-translational
protein folding (Sauna and Kimchi-Sarfaty, 2011). Codon changes may further influence
regulation mechanisms, post-translational modifications as well as RNA structure and
stability. For example, Crouzon syndrome can be caused by the synonymous variants
A344A and P361P which affect splice site usage (Fenwick et al., 2014).

1.2.2 Experimentally determining variant effect

As outlined above, knowing about the existence of a variant has become increasingly
easy while determining its effect largely remains a challenge. In the following, some of
the traditional and more recent experimental approaches that tackle this problem will
be outlined. Knowing how the effect of a variant was determined is important both for
sensible training of prediction methods and clinical action. Since this is the variant type
most relevant to the rest of this thesis, the outlined experiments focus on determining
the effect of SAVs.
Traditionally, datasets of experimentally verified SAV effect have originated from in vitro
studies of single variants of interest for example because they were expected to crucially
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(a) Wild-type (b) E504K variant

Figure 1.2. Effect of a single amino acid variant on enzymatic activity. Shown is the
exemplary effect of a SAV on the function of human aldehyde dehydrogenase. ALDH2
catalyzes the reaction of acetaldehyde to acetic acid, a crucial step in the degradation of
alcohol. The enzyme forms a homotetramer, i.e., four copies of the gene associate as sub-
units to build the active form of the protein. Visualized here is the interface between two
copies colored in red and green, respectively. Both chains are visualized in a cartoon view
with α-helices as ribbons and β-sheets as arrows. Specific residues which are described
below are further visualized as sticks. (a) shows wild-type ALDH2 where glutamic acid
(cyan) at position 504 forms hydrogen bonds (yellow dashed lines) with two arginines
at residues 281 (white) and 492 (magenta) in the dimer interface. (b) shows the E504K
variant (cyan) common in East Asian populations. The SAV is not directly affecting the
active site that catalyzes the reaction. However, the missing hydrogen bonds destabilize
the overall structure. While the tetramer still folds successfully, introduction of a disor-
dered region indirectly deforms the active site which significantly decreases its activity
(Larson et al., 2005). The defective enzyme can have consequences going beyond the
immediate discomfort of alcohol sensitivity since drinking despite being a carrier of
the variant has been implicated with increased risk for esophageal cancer (Brooks et al.,
2009; Ding et al., 2010). 3D structures were rendered in PyMol (Schrödinger LLC, 2019)
using PDB IDs 1o05 and 1zum (Larson et al., 2005; Hurley et al., 2001; Berman et al.,
2000; Burley et al., 2019)

affect protein functions. A further source for variants that warrant more detailed studies
are genome-wide association studies which identify statistically significant differences in
SAV frequencies within a large cohort of individuals with and without a trait of interest.
However, these analyses are not well suited for the identification of large effect SAVs since
these will not be common in the general population (Manolio et al., 2009; Marjoram et al.,
2014; Carss et al., 2019). Generally, any type of targeted analysis is limited in scope as it
requires prior knowledge of which variants could be interesting. With the advent of HTS
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methods, WES or even WGS has become a viable, less targeted approach for studying
the variants underlying in particular complex diseases (Bamshad et al., 2011; Kiezun
et al., 2012). Compared to association studies these sequencing efforts can detect both
common and rare variants. However, this approach still requires a sufficiently large and
specific sample of individuals, such as a disease cohort, to confidently associate identified
variants with the disease in question (Carss et al., 2019).
Alanine scanning, the systematic replacement of every amino acid by alanine, represents
an early approach for breaking out of targeted SAV effect analysis (Cunningham and
Wells, 1989). Nonetheless, every variant’s effect still had to be measured individually
which limits the scale of these studies. Furthermore, alanine scanning elucidates positions
which are sensitive to changes but probably not the effect size that can be expected of
those SAVs (Gray et al., 2017).
Generally, variants that have an effect are more studied than neutral ones. This is caused
by effect variants being more clinically relevant and actionable, but also the difficulty in
proving that a certain variant has no effect under all possible conditions. Nonetheless,
knowledge of neutral variants is crucial for example when developing prediction methods
as they provide the signal which machine learning models should differentiate effect
variants from (see Section 1.3). Since few experimentally determined neutral variants
are available, authors of prediction method often have to create synthetic datasets of
proxy-neutral variants. For example, SNAP used sequence changes between enzymes
that perform the same function as likely neutral SAVs (Bromberg and Rost, 2007). CADD,
assumes all variants which are fixed in the human population since the last common
ancestor to be effectively neutral as they have survived purifying selection (Rentzsch
et al., 2019; Sundaram et al., 2018).

1.2.3 Deep mutational scanning

More recently, another experimental approach, so-called multiplexed assays for variant
effect, has gained popularity (Starita et al., 2017). These assays essentially extend the
idea of alanine scanning while using the advances in HTS. As such, their key advantage
over previous methods is establishing a link between the variant in question and a specific
functional assay which can be measured on a high-throughput scale. Multiple approaches
have been developed based on this idea, including deep mutational scanning (DMS)
which evaluates the functional consequence of all SAVs in a protein of interest (Araya
and Fowler, 2011; Fowler and Fields, 2014).
In DMS, a sequence library with all possible variants is created through for example error-
prone PCR or a variety of more specialized protocols such as EMPIRIC, PALS, PFunkel or
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Nicking mutagenesis (Hietpas et al., 2012; Fowler et al., 2014; Wrenbeck et al., 2017a).
Next, the variant library is introduced into a selection system, i.e., an assay that specifically
links the variant sequence to the function of the studied protein. Ideally, the choice of
functional assay and intensity of functional pressure are optimized together to capture a
wide range of effect as opposed to just a small set of high effect variants. Possible assay-
types include display methods such as phage display, cell-based assays which link protein
function to cell fitness or cell-sorting, e.g., using fluorescence-activated cell sorting.

After variants have been introduced in the selection system, some sort of functional
pressure is imposed. For example, the assay might be constructed such that function
of the protein of interest is mandatory for cell survival. HTS is then used to determine
variant frequency before and after applying functional pressure. The application of HTS
in this step is the major improvement of DMS over earlier methods as it allows these
measurements to be efficiently determined simultaneously, and thus greatly increases
the possible throughput. To account for high error rates in some HTS methods, many
protocols employ paired-end reads, i.e., sequencing the DNA from both ends. Another
option is tagging each variant with a unique barcode (Mavor et al., 2016). Barcoding
has the additional advantage that it increases the sequence length which can be studied
beyond the maximum read length of the HTS method employed.

Finally, variant frequencies from sequencing are transformed into a functional score. In
the most simple case, the functional score is the fraction of the variant’s frequency after
and before applying selective pressure. This way, lower scores indicate variants which
have reduced function. Due to experimental design and noise, the wild-type does not
always result in a score of 1. Therefore, it is common to normalize the functional score by
the wildtype (wt) frequencies as shown in Equation 1.1 where 0 denotes the time point
before and 1 after applying selective pressure (Rubin et al., 2017).

∀ variants v, ER=
rat iov

rat iowt
=

countv,1

countv,0

countwt,1

countwt,0

(1.1)

The score may further be logarithmized. Any version of this scoring is commonly referred
to as the (log-scaled) enrichment ratio. For more sophisticated analysis like the calcu-
lation of confidence measures, toolkits such as Enrich2, dms_tools, PACT or the variant
effect map imputation webservice have been developed (Rubin et al., 2017; Bloom, 2015;
Klesmith and Hackel, 2019; Wu et al., 2019).
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Besides the increase in efficiency and ability to scale to thousands of variants,DMS also has
the added benefit of detecting variants with beneficial effect, whereas targeted analyses
are typically focused only on deleterious variation. The same goes for the detection of
variants that show no effect, i.e., are neutral under the given conditions of the assay. One
drawback is that each assay should be specific to the protein’s function, hence limiting
the scalability of the method. Furthermore, a single protein might lend itself to multiple
functional assays or have multiple functions which necessitates a more general or several
assays. Recently, a protocol termed VAMP-seq has been introduced as a more widely
applicable functional assay based on intracellular protein abundance (Matreyek et al.,
2018).

Apart from measurement of a protein’s natural function, DMS has further been applied to
screen proteins for example for improved drug binding, antibody affinity, using non-native
chemical stresses, or non-proteinogenic amino acids, and is also amenable to synthetic
proteins (Forsyth et al., 2013; Mavor et al., 2016, 2018; Tinberg et al., 2013; Procko et al.,
2013; Whitehead et al., 2012; Fujino et al., 2012; Rogers et al., 2018). DMS studies share
some aspects with directed evolution experiments which assay a wide range of variants for
engineering a protein of interest towards a specific purpose. In fact, protein engineering
has been performed based on the results from DMS studies for example by efficiently
screening for mutants that improve ligand binding (Wrenbeck et al., 2017b). Experiments
where the assay evaluates which variants can rescue the function of a mutant protein
have also been implemented with DMS and further highlight the wide applicability of
the method (Wu et al., 2013; Wagenaar et al., 2014).

Finally, in 2019 DMS data was used for inferring protein three-dimensional (3D) structure
(Chiasson and Fowler, 2019). Two groups independently presented similar approaches
for using the effect of several 100,000 double mutants obtained through DMS. From
these they determined co-evolutionary constraints which allowed the inference of 3D
protein structure at a resolution rivaling experimental structure determination methods
(Schmiedel and Lehner, 2019; Rollins et al., 2019). While the protein domain in question
was just 56 amino acids long and the DMS dataset unique in its high number of double
mutants, these approaches provide a promising outlook for future usage of DMS data in
one of the most challenging tasks of computational biology.

1.2.4 Resources of variant effect

The variety of variant effect types and approaches for their determination is reflected in
the number of resources cataloging them. This subsection will give a short overview of
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some commonly used databases. They serve as resources not only to researchers inter-
ested in particular variants but also developers of prediction methods who must carefully
assemble their training sets (cf. Section 1.3). The data in these resources might be any-
thing between a mere list of variants imputed from raw (sequencing) data or manually
curated information on the specific type and strength of effect caused by the variant.
One of the largest general databases for small variants such as SNVs, insertions and
deletions is dbSNP containing almost 700,000,000 entries in themost recent build (August
2019, Sherry et al., 2001). dbSNP reference identifiers are pervasive in the community due
to their stability and are used to uniquely identify a specific locus for a type of variation.
For example, identifier rs334 describes the locus in human hemoglobin where the SAV
E7V causes sickle-cell anemia. As a complement to dbSNP, dbVar similarly catalogs large,
structural variants (Lappalainen et al., 2013). Since 2017, both databases are focusing
on human variants and do not accept new submission for other organisms. Handling of
non-human variation has since been taken over by the European Variation Archive which
has a comparably broad focus and is in regular exchange with dbSNP and dbVar (EVA,
2019).
Many databases focus on variants implicated in (human) diseases. Arguably, the most
common one is OMIM which contains around 5,500 human phenotypes for which the
molecular basis, e.g., the SAV, is known (Amberger et al., 2019). Many of these diseases are
monogenic which leads to datasets built from OMIM being highly biased towards variants
with strong effect (see also Subsection 1.3.2). OMIA follows the same approach as OMIM
for animal phenotypes, in particularmodel organisms or those relevant for production and
breeding (Lenffer et al., 2006; OMIA, 2019). Mouse and rat variants are excluded since
they are contained in their own specialized databases (Eppig et al., 2015; Shimoyama
et al., 2015). HGMD is similar to OMIM, and a manually curated database focusing exclu-
sively on human germline disease variants (Stenson et al., 2017). It currently contains al-
most 270,000 variants of which only 170,000 are accessible through the non-professional
version. ClinVar is yet another database of human disease-associated variants but less
restrictive than OMIM and HGMD. It currently contains around 560,000 unqiue variants
(October 2019, Landrum et al., 2016). Finally, UniProtKB/Swiss-Prot offers humsavar, an
automatically created file of all around 80,000 human SAVs found in their database. Of
these, about 31,000 are associated with a disease (Release 2019_09, The Uniprot Con-
sortium, 2019).
Next to the wealth of resources focusing on disease variants, there are many other
databases with entries for a special type of variant. For example, IARC TP53 contains
variants of the human TP53 gene which codes for a transcription factor involved most
prominently in tumor progression (Bouaoun et al., 2016). MutHTP aggregates vari-
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ants in human transmembrane proteins from sources including humsavar and ClinVar
(Kulandaisamy et al., 2018). Variants obtained from multiplexed assays for variant effect,
including DMS studies can be found in MAVEDb (Esposito et al., 2019). Other databases
are primarily an aggregation of datasets: VariBench is a collection of variant effect datasets
which are categorized by specific effect types, diseases or proteins of interest (Sasidharan
Nair and Vihinen, 2013; Sarkar et al., 2019). Sets can further be redundancy reduced
among each other, thus building a convenient source of training and testing datasets for
the development of VEPs. Finally, dbNSFP contains predictions by 26 methods for all
possible human SNVs together with cross-references of effect annotations from sources
such as dbSNP and ClinVar (Liu et al., 2016).
As mentioned before (see Subsection 1.2.2), experimentally determining neutral variants
is difficult and several approaches to tackle this problem exist. Many of the previously
mentioned resources also contain variants annotated as neutral. However, for approaches
which define neutral variants based on their occurrence in sequencing data the gno-
mAD database should be pointed out (Karczewski et al., 2019). It contains data from
125,000 human WES and 15,000 human WGS studies and as such presents an invaluable
resource of high-quality HTS data. Initially, its focus was solely on exome data, made
available by the Exome Aggregation Consoritum (ExAC). Hence, data which is now found
in gnomAD is often still attributed to ExAC in publications.
Overlaps between the above-mentioned resources are common and often intended with
explicit cross-references. This way, every resource can play to its specific strength and
users choose the database best suited to their needs. Which resource to use for a given
project is therefore usually a matter of what exactly one wants to achieve and might
also be determined by factors such as a the programmatic accessibility. Especially when
using these resources for the creation of training and testing datasets of VEPs, the most
important point is to be aware of which type of data is being used since it will determine
the behavior and potential biases of the resulting method.

1.3 Prediction of variant effect

Variant effect prediction methods (VEPs) assess the outcome of a given variant in silico
avoiding costly and time-consuming experiments. As simple as this definition is, the
reality of the field presents itself to be far more complex. With which types of variants
(see Subsection 1.1.2 on page 4), what effects (see Section 1.2 on page 6) and based on
which data (see Subsection 1.2.4 on page 12) training is performed, are just three major
points differentiating VEPs. Probably the most comprehensive overview of VEPs, as well
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as some resources, is currently provided by VIPdb (Hu et al., 2019). It catalogs more than
150 VEPs and denotes information about reference, access and in particular which variant
types are supported as input. Below, Subsection 1.3.1 describes some exemplary VEPs
focusing on the prediction of SAV effects—the most commonly predicted type of variant.
Subsection 1.3.2 on page 20 then discusses various challenges of which are important to
recognize when using their results.

1.3.1 Overview of variant effect predictors

Approaches focused on exploiting conservation patterns

The first VEPs harnessed conservation patterns from homology information to determine
the evolutionary tolerance of a variant. The assumption behind this approach is that sites
are conserved for a reason. They are under more evolutionary pressure not to change
in order to maintain function. To exploit this idea, a VEP might first build a multiple
sequence alignment (MSA) which represents a family of proteins. SIFT, short for sorting
intolerant from tolerant, is an early prediction method based solely on this concept and
remains popular to this day (Kumar et al., 2009; Ng and Henikoff, 2003). Given an input
sequence of interest, an MSA is created from the results of performing a homology search
with PSI-BLAST (Altschul, 1997). From this alignment, SIFT extracts the occurrence of
every amino acid at every position, normalized by the frequency of the most common
amino acid. If the resulting value for a SAV is below an empirically defined threshold,
the variant is predicted to have an effect. In addition, SIFT provides a confidence value
for every position which is based on the number of amino acids that are observed at
that position in the alignment. The basic concept—SAVs which alter conserved positions
are likely to have an effect—still lies at the basis of most current VEPs. PROVEAN is a
direct improvement on SIFT using a very similar approach but adding support for small
insertions and deletions. Furthermore, it introduces a more sensitive treatment of PSI-
BLAST results which makes the method more powerful for large protein families that
contain many similar sequences (Choi et al., 2012).

MutationAssessor is another VEP that heavily relies on conservation (Reva et al., 2011).
It predicts the functional impact of variants based on two complementary evolutionary
scores: In an MSA created by MUSCLE (Edgar, 2004), and using homologs from a BLAST
search against UniProtKB, the conservation score measures the change of entropy in every
column of the alignment when a variant is introduced. This score is position-specific and
depends on the original and mutated amino acid but it is constant for all sequences in the
alignment with the same conditions. The second specificity score follows the same idea
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of entropy changes introduced by variants. It is based on further clustering all sequences
in the alignment into subfamilies which differ at a subset of positions determinant for
their functions. Both scores are combined by averaging to form the final prediction score.

Application of machine learning to the variant effect prediction problem

Machine learning generally describes the act of training a program on performing a
specific task without explicitly writing the rules to achieve this but rather by providing a
general framework and examples to learn from (Larrañaga et al., 2006; Chicco, 2017).
This is important for tasks where such a set of rules cannot be realistically determined or
would be too complex to program. In computational biology some of the most common
frameworks, also referred to as models, are neural networks, support vector machines,
hidden Markov models or random forests (Jensen and Bateman, 2011). In the most
common case of so-called supervised learning, the model is trained with a set of inputs
for which the intended output is known. The type of inputs, typically referred to as
features, can be anything in a representation suitable for the program. For example,
a protein sequence can be represented using one-hot encoding, or by its conservation
information as obtained from an MSA and formalized in a position-specific scoring matrix
(PSSM, Table 1.1). A variant in the sequence could be expressed simply by using the same
input representation twice. Once with the original sequence and once with the sequence
containing the variant. Given the inputs, the output to be learned has to be defined as
well. For a given SAV this could be either ’neutral’ or ’effect’—a classification task—, or
the strength of effect over a range of values—a regression task. Throughout the training
process a set of parameters depending on the specificmachine learningmodel is optimized
to yield the desired output, given the inputs. At the same time, care must be taken to
train a model that generalizes well and is not just a perfect representation of the training
set. This can be ensured by applying the final trained model on an additional test dataset
which contains inputs that have not been used for training and are not similar to those.
When every step is performed with care, the performance on this test set is an indication
of what the model will achieve when applied to unknown data points.
PolyPhen-2 builds upon the previously discussed conservation concept but applies a ma-
chine learning approach (Adzhubei et al., 2010, 2013). A naïve Bayes classifier is trained
to predict SAV effect using eleven input features of which eight are related to sequence
conservation. The other three features represent structural properties of the protein and
are related to its accessible surface area and stability. The structural features can only
be included in the prediction when a protein with solved 3D structure related to the
prediction query can be retrieved. Using this framework, two models of PolyPhen-2 were
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Table 1.1. Numeric representations of an amino acid sequence. To use a protein
sequence as input for most machine learning models, the characters need to be trans-
formed into a series of numbers or replaced by a set of features that represent the
information in the amino acid sequence. There are several ways this can be achieved.
Two representations are shown here as an example with the first five residues MDLSA
of protein BRCA1. In every row, that is, at every position in the protein, 20 possible
inputs exist. (a) shows a so-called one-hot encoding where 20 values represent these 20
possible inputs and only the one actually encountered is set to 1 while all others are set
to 0. (b) shows one possibility of incorporating information about conserved residues in
the input. Based on a homology search for similar proteins, e.g., from related organisms,
an MSA can be created. Given the MSA one can assign each possible substitution a value
representing how often it was observed in the data. For example, the MSA might show
that the methionine at position 1 is often conserved in related proteins and therefore
a large value of 9 is assigned (highlighted in green). Other substitutions such as M1P
are rarely observed and therefore assigned a small value (highlighted in red). This for-
mat is referred to as a PSSM and a common output of homology search tools such as
PSI-BLAST.

(a) One-hot encoding

A R N D C Q E G H I L K M F P S T W Y V
M 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
D 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
A 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(b) Evolutionary conservation

A R N D C Q E G H I L K M F P S T W Y V
M −3 −4 −4 −5 −3 −3 −4 −5 −4 2 1 −4 9 −2 −5 −4 −3 −4 −3 0
D 2 −3 −1 6 −4 −2 1 −3 −3 −4 −4 −2 −4 −1 −3 1 0 −5 −3 −3
L −1 −1 −3 −3 −1 −1 0 −2 0 0 3 −1 4 0 −3 −1 1 1 −2 0
S 1 −2 −2 −1 −2 1 0 −1 −1 −2 −2 1 1 −4 2 4 0 −4 −3 −3
A 3 1 −1 −2 −2 −1 −1 −1 −1 −2 −1 −1 2 −2 −3 2 2 1 −2 0

trained which both focus on human disease-causing SAVs. One of them tries to adjust
for SAVs with less strong effects as they may appear in complex polygenic diseases, the
other is trained for SAVs with strong effects as they are common in Mendelian diseases.

SNAP (Screening for non-acceptable polymorphisms, Bromberg and Rost, 2007) and its
successor SNAP2 (Hecht et al., 2015) are VEPs similar to PolyPhen-2 in that they apply
machine learning to the problem and supplement conservation based input features with
structural ones. While SNAP2 is based on larger set of features and uses a neural network
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as machine learning model, the first major difference is that the structural features are
not extracted from homologs with determined 3D structures. Instead, features such as
the secondary structure of every residue are predicted from sequence by other integrated
methods—in this case ReProf (Rost and Sander, 1994; Yachdav et al., 2014). The second
major difference lies in the training data. While PolyPhen-2 focuses on disease variants,
SNAP2 was mostly trained on functional effect SAVs and hence predicts a different type
of effect. This fact is also reflected in the raw output values which are almost binary in
the case of PolyPhen-2 and more continuous for SNAP2.
MutPred combines tens of different prediction methods, each targeting particular aspects
of structure and function (Li et al., 2009). The final model distinguishes between disease-
causing variants and polymorphic SAVs from UniProtKB/Swiss-Prot which are considered
neutral. Ultimately, the aim of this approach is to highlight the molecular mechanism of
a disease as part of the prediction. Through the ensemble of methods, MutPred provides
not only the classification of a SAV as effect or neutral, but also a suggestion of why an
effect was predicted, e.g., because the SAV was in an important protein-DNA binding site.
The concept has been improved and updated to current training datasets with MutPred2
(Pejaver et al., 2017) and three related VEPs have been developed for predicting the effect
of variants other than SAVs (Mort et al., 2014; Pagel et al., 2017, 2019).

New possibilities from HTS data

Improvements in HTS and methods for high-throughput variant effect determination (see
Subsections 1.1.1 and 1.2.2) lead to increasingly large amounts of potential training data.
Generally, this is to the benefit of traditional machine learning approaches. However, it
further opens the possibility for applying deep learning methods which typically require
several magnitudes larger training data (Angermueller et al., 2016; Jurtz et al., 2017;
Eraslan et al., 2019). This approach which effectively consists of using neural networks
with more than one hidden layer, has recently seen a renaissance in machine learning.
As datasets grow, applying deep learning techniques might be necessary to extract the
best features from the high-dimensional data, potentially unsupervised, i.e., without any
knowledge about the structure and labels of the data (Cao et al., 2019; Riesselman
et al., 2017). In particular, recent advances using methodology from the field of natural
language processing for the extraction of high quality embeddings, that is, representations
of biological sequences, have shown promising results and will likely lead to a new class of
VEPs in the near future (Heinzinger et al., 2019; Rives et al., 2019; Shamsi et al., 2020).
CADD also benefits from the increase in HTS data and is one of the fewer methods which
use genomic instead of protein sequences as input (Kircher et al., 2014; Rentzsch et al.,
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2019). CADD was trained on a dataset of variants that arise when comparing the current
human genome to the last common ape ancestor’s. These variants are fixed and therefore
assumed to be effectively neutral as purifying selection would have otherwise removed
them from the population. On the other hand, effect variants created in silico are not
under evolutionary pressure and are expected to have primarily deleterious effects. With
this training set, CADD extracts hundreds of features and trains a logicistic regression
model for the prediction of variant effect.

With the exponential increase in sequencing data, execution speed has also come into
focus as a relevant factor. The VAAST variant prioritizer aims at not necessarily predicting
a perfect approximation of every variant’s score, but rather providing a rough—and highly
scalable—filter for prioritizing variants of high interest that warrant further investigation
(Flygare et al., 2018). This is achieved without machine learning using only a likelihood-
ratio test based on conservation and whether a variant is homo- or heterozygous. The
approach makes the VEP particularly well suited to help interpret the results of WES or
WGS studies. While it is this methods’ expressed goal, the fact is that every VEP can really
only provide a filter for finding variants of interest as results are never accurate enough
to directly act on them (see Subsection 1.3.2).

Finally, the increased prevalence of DMS has lead to the development of a VEP based
on this new kind of data (Gray et al., 2018). Envision is an ensemble of decision trees
trained with a relatively standard feature set including evolutionary and structure infor-
mation. However, the unique training set consists only of variants from DMS experiments
and—unlike most VEPs—the model was trained as a regression predictor, i.e., it aims to
predict the strength of effect. Envision thereby extends variant effect prediction to new
avenues and further holds the potential for significant improvements since it is based on
a type of data that will likely see large increases in the near future.

Meta-predictors

dbNSFP categorizes VEPs as conservation scores, functional prediction scores, general
prediction scores, and ensemble scores (Liu et al., 2016). An example of the last class is
the consensus predictor REVEL which applies a random forest machine learning model
(Ioannidis et al., 2016). However, the only input features are predictions of variant effect
from a set of 13 VEPs, including the previously described SIFT, PROVEAN, MutationAsses-
sor, PolyPhen-2 and MutPred. Similar approaches are used by VEPs such as Condel, Logit
or MetaSVM and MetaLR (González-Pérez and López-Bigas, 2011; Li et al., 2013; Dong
et al., 2015).
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1.3.2 Challenges

Reliance on sequence conservation

The majority of VEPs uses sequence conservation as one of or even their only input fea-
ture (Subsection 1.3.1). Typically, this information is obtained in one way or another by
building an MSA from sequences homologous to the query. This is intuitively a promising
approach since positions that show high conservation are likely to be functionally impor-
tant. A variant in such a position is therefore likely to have an effect and the approach is
generally powerful (Andersen et al., 2017; Stein et al., 2019; Zhang et al., 2019). How-
ever, training VEPs on this data also brings issues with it. Firstly, not all residues are
conserved because of their functional importance and secondly, positions which show low
conservation can still be crucial for function (Sun and Yu, 2019). For example, a variant
may be species-specific and important for function but will appear as non-conserved when
building an MSA from related species’ homologous sequences.

The problem of bias towards conserved residues is further compounded by the machine
learning applied to train VEPs. It is a highly complex and difficult task to ensure that the
training recognizes conservation as an important feature, yet maintains the generalized
understanding that not every variant at a conserved position should automatically be
predicted as having an effect. Rather, the hope of training a predictor with multiple input
features is that the VEP recognizes patterns beyond this simple inference. Unfortunately,
evaluations of VEPs throughout the years consistently highlight that this issue is far from
solved (Fowler and Fields, 2014; Miller et al., 2017,2019b; Cline et al., 2019). For example,
in a recent study by Sun and Yu (2019) eleven of the twelve evaluated VEPs—including
most of those mentioned in Subsection 1.3.1—showed significantly increased false posi-
tive predictions of variants as having an effect at conserved positions. Furthermore, all
VEPs performed significantly worse in recognizing disease causing variants at residues
with low conservation.

As a final point, Miller et al. (2017) introduced the distinction of residues in two cate-
gories: Toggle positions where a variant either has a strong effect or not and rheostat
positions where multiple variants lead to a range of effect strengths. Toggle positions
are usually conserved leading to effect variants well recognizable by VEPs (Miller et al.,
2017). Furthermore, positions where no variant has an effect are usually non-conserved.
However, rheostat positions show varying levels of conservation which motivates their
integration in the training process of future VEPs (Miller et al., 2019a).
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Bias towards deleterious effect variants

The training sets of many VEPs are biased towards deleterious effect variants and high ef-
fect SAVs as they are common for example in Mendelian disease variants from OMIM (see
Subsection 1.2.4). Along with this comes a bias in predictions to typically overestimate
effects (Figure 1.3, Richards et al., 2015; Anderson and Lassmann, 2018; Andersen et al.,
2017; Niroula and Vihinen, 2019). This issue is worsened by the fact that pathogenic
variants are often located at conserved positions (Sun and Yu, 2019). VEPs are therefore
often biased towards high effect variants and conservation which both reinforce each
other.

Furthermore, neutral or beneficial effect variants are typically not recognized well. For ex-
ample, the five most commonly used algorithms in dbNSFP agreed for 79% of pathogenic
variants, but only 33% of neutral ones (Kim et al., 2019). A similar bias was observed
when evaluating predictions of ClinVar variants. Here, false positives, i.e., neutral vari-
ants predicted as having an effect, were much higher than false negatives. On a set of
neutral ExAC variants, the performance of ten VEPs differed widely and even the best
method still predicted every twelfth variant as having an effect (Niroula and Vihinen,
2019). Nowadays negligence of neutral variants in training sets is a recognized problem
and one common approach to tackle it is using variants that became fixed in the human
population. However, this is not an ideal solution either since fixed variants could also
have a beneficial effect (Subsection 1.2.4, Rentzsch et al., 2019). Variants with experi-
mentally determined beneficial effect on the other hand should become more common
with the rise of DMS studies and can thus be better accounted for during the development
of future VEPs.

Quality and heterogeneity of training data

Given the multitude of resources outlined in Subsection 1.2.4, it may seem that collection
of training data is not a challenge in itself. However, as previously discussed, method
developers have to exercise great care when assembling their data sets to avoid the intro-
duction of biases to the VEP. The underlying training data is also not perfect and contains
inconsistent annotations between different laboratories or large-scale sequencing efforts
(Kim et al., 2019)—despite efforts to standardize what is considered an effect at differ-
ent levels (cf. following Subsection, Richards et al., 2015). Another point that must be
recognized is that proteins can have multiple functions. Therefore, some variants might
have an effect in one condition or on one function but not the other. For example, this
has been extensively studied for Ubiquitin (Mavor et al., 2016, 2018, 2019; Roscoe et al.,
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Figure 1.3. Variant predictions are often biased towards effect. Shown are predic-
tions of variant effect by the VEPs SIFT, PolyPhen-2 and SNAP2 which were performed
on a set of 17,781 SAVs from 22 DMS experiments (see Chapter 3 on page 47). Naïve
Conservation represents a simple prediction based on a homology search by PSI-BLAST.
The x-axis denotes the prediction score scaled to lie within the interval [0,1]. For all
predictions, higher values denote increased affirmation by the VEP that the SAV has
an effect. Therefore, a value of 0 denotes a prediction of no effect, i.e., a neutral SAV,
while a value of 1 denotes a SAV predicted to very likely have an effect. For the exper-
imentally determined effect (dashed black line), values denote increasing strength of
effect as measured by the underlying DMS assays. The y-axis represents the density
function from the Gaussian kernel density estimation. Intuitively it shows the number
of data points with the respective effect score. All predictions methods show a clear
shift of values towards effect when compared to the experimental measurements. Naïve
Conservation shows that this effect cannot be attributed solely to reliance on conserved
residues for prediction.

2013; Roscoe and Bolon, 2014) and BRCA1 (Starita et al., 2015; Findlay et al., 2018). In
such cases one can expect that a VEP either only correctly detects variants which show
a signal in all cases or only those specific to one condition or function. The decision be-
tween these options lies in how and on what data training was performed. Given that,
one could argue that it makes sense to have a specialized VEP for every class of proteins.
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However, such a predictor would have a very limited range of application. Furthermore,
suchmeasures are not generally necessary. For example, integral membrane proteins are a
notoriously difficult to handle and a highly specific protein class (Reeb et al., 2014; Punta
et al., 2019). Nonetheless, they are seemingly not posing a particularly hard challenge to
VEPs. Although few variants in typical training sets are of membrane proteins, prediction
performance was found to be comparable to that on soluble proteins for a set of VEPs
including most of those mentioned in Subsection 1.3.1 (Orioli and Vihinen, 2019).
Another major point to consider is that although most resources supply only high qual-
ity data, it is far from trivial to arrive at this point and not everything deposited can
automatically be considered a gold standard (Arthur et al., 2015; Harrison and Rehm,
2019). Issues arise already at the level of (high-throughput) sequencing where differ-
ent methods achieve varying fidelity. The problem is further compounded by the choice
among numerous read mappers and variant callers which then have to be applied to the
raw data, yielding the variants that can finally be used for training a prediction method.
On this level, the Genome in a Bottle Consortium provides benchmark human genomes
and corresponding variant calling together with tools for automated assessments of HTS
pipelines (Zook et al., 2014, 2019). PrecisionFDA is another initiative benchmarking
various aspects of HTS pipelines with the goal of making their results more clinically
actionable (precisionFDA, 2019). A final aspect is that many variants, in particular SAVs,
come from WES since it is cheaper to perform than WGS. However, WGS provides more
and higher quality SAVs (Belkadi et al., 2015).

Different interpretations of variant effect

Arguably, the largest issue in understanding and comparing the results from different
VEPs lies in the fact that it is a matter of definition what exactly constitutes a variant’s
effect (see Section 1.2). For example, J. Shendure and J. M. Akey (2015) suggested to
consider the views of (i) fitness, i.e., how a variant effects the organism’s reproductive
ability, (ii) pathogenicity, i.e., whether the variant leads to disease development, and
(iii) molecular function, which describes the effect on the respective protein’s function,
e.g., enzymatic activity. The last two in particular are popular choices when developing
a VEP but describe two highly different cases (Gray et al., 2018). This heterogeneity of
effect is reflected in the goals and thereby training sets, features and prediction behaviors
of different VEPs (Sun and Yu, 2019). A common approach to tackle non-consistent
prediction results is to apply multiple VEPs and evaluate their consensus (Richards et al.,
2015) or explicitly developing a meta-predictor such as REVEL (see Subsection 1.3.1). In
theory, such meta-predictors could harness the complementing strengths of differently
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trained VEPs. However, there are conflicting results on the success of such approaches
for variant effect prediction (Grimm et al., 2015; Daneshjou et al., 2017; Anderson and
Lassmann, 2018; Sun and Yu, 2019). Often a meta-analysis may further obfuscate the
signal and an expert user would benefit from seeing the raw prediction results while
knowing about the potential focus and bias of each method (Vihinen, 2020).
A related point is that not all tools predict variant effect on a continuous scale. This works
for toggle positions, but for rheostats a more fine-grained distinction than neutral or ef-
fect is necessary. Envision is one of the few VEPs trained as a regression-based prediction
method and therefore intrinsically accounts for this. For SNAP2 it has been shown that
the output scores correlate with effect strength, although the method was not explicitly
trained for this (Bromberg and Rost, 2007; Bromberg et al., 2013; Mahlich et al., 2017).
Other methods like PolyPhen-2 or SIFT provide almost binary prediction outputs mak-
ing such analyses challenging. On a higher level, complex diseases also pose a similar
continuous effect challenge as they are elicited by numerous small effect variants (Wray
et al., 2013). Precisely because complex diseases are so poorly captured by current VEPs,
the increased use of endophenotypes has been suggested (Masica and Karchin, 2016).
Endophenotypes are quantifiable traits such as enzymatic activity with clearer genetic
cause than for example the complex diseases that develop as a phenotype from multiple
underlying endophenotypes. It is reasonable to assume that endophenotypes will be eas-
ier to predict by VEPs than disease outcome. Current approaches might only need small
adjustments together with new training data to capture them.
Finally, VEPs do not consider the conditions in which the variant appears, including
whether a variant appears in the germline or somatic cells (Carss et al., 2019; Gray et al.,
2018). VEPs also do not account for additional variants which may occur together with
the one being predicted. This is a major flaw since correlated variants can have varying
outcomes ranging from reinforcing the effect to a complete rescue (Göbel et al., 1994;
Kowarsch et al., 2010). For example, one can imagine that the substitution of a small
amino acid like alanine by a large one such as tyrosine can severely affect the stability
of the protein, especially when occurring in the protein interior. However, if at the same
time a large amino acid which lies opposite in 3D space is substituted by a much smaller
one, the variant may be tolerated and not have an effect. Such cases can be one source
of incomplete penetrance, i.e., a variant leading to a phenotype in one person but not
another. Seminal work by Hopf et al. (2017) has lead to the development of EVmutation, a
VEP which exploits information about sequence co-evolution and can be applied to predict
the effects of multiple variants occurring together. While there are several challenges to
this approach, in particular lack of data for the large number of parameters that need to
be tuned, EVmutation shows how future VEPs might account for the issue of co-occurring
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variants.

Evaluation and clinical use of VEPs

In the same way that every tool is biased by its training data and therefore predicts a
very specific aspect of the effect spectrum, evaluations can fall into the same trap when
assembling test datasets. This is intrinsically true for the evaluation every method devel-
oper performs as part of the machine learning process while building the tool. However,
it is also key for independent evaluations performed by researchers assessing published
methods. If a VEP performs well in an evaluation setting, the narrower the test data, the
likelier that the achieved performance is just a sign of bias being confirmed in testing
and results will not generalize well. Therefore, evaluations should ideally aim to assess
as widely as possible but must in addition always outline in detail exactly what data was
used to obtain the results since none will ever be pervasive enough to capture all aspects.
Ideally, experimental datasets essentially tailored as test for specific VEPs’ goals would be
created alongside (Miller et al., 2019b). This, however, is currently an unrealistic scenario
given the number of avenues that would have to be covered and implicated cost.
In terms of evaluating VEPs, the Critical Assessment of Genome Interpretation (CAGI)
should be highlighted (Andreoletti et al., 2019). Strongly related to similar efforts from
other fields such as structure (CASP) or function (CAFA) prediction, the idea of CAGI is
to use previously unpublished variant effect data and collect blind predictions by VEP
developers on this data. Once the submission deadline has closed, the predictions will
be evaluated by independent assessors. The need of unpublished variant effect data
somewhat limits the pervasiveness that CAGI can achieve. Therefore, it usually consists of
several challenges which each focus on, e.g., a particular protein or disease phenotype. In
2018, the fifth iteration of CAGI concluded with the evaluation of 14 challenges assessing
a range of variants from regulatory and non-synonymous over those affecting splicing to
disease variants, for example in breast cancer. The design of CAGI enables an independent,
recurrent view to the field of variant effect prediction and continues to give valuable
insights such as VEPs’ reliance on sequence conservation and bias towards effect variants
(Cline et al., 2019; Miller et al., 2019b; Zhang et al., 2019; Monzon et al., 2019) or
optimization for classification of high effect variants rather than regression (Pejaver et al.,
2019).
Grimm et al. (2015) identified two major points affecting assessment of VEPs which are
pervasive in the field: The first, "type 1 circularity", describes an overlap between the
training and testing data. This may seem like a trivial point and every method developer
should bewell aware that testing cannot be performed on samples that the VEP has already
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seen in training without introducing a severe bias to resulting performance measures.
However, the problem is more complex for independent evaluations since the testing
dataset for such an effort has to be kept disjoint from all evaluated VEPs’ training data.
The issue is particularly poignant for consensus prediction methods as the training data of
all underlying methods must be considered. "Type 2 circularity" describes a more complex
problem which arises through biases in experiments and variant effect databases. Many
database entries are genes which contain a multitude of effect variants. Once an effect
variant has been identified in a specific gene, there is increased interest to experimentally
study further variants in the gene increasing the known effect variants. When training
a VEP on such datasets it is very likely that it will learn not to distinguish those variants
as having an effect but rather learning that every variant in the gene has an effect. This
creates a bias towards predicting effect variants in general and furthermore makes the
detection of neutral variants in such a gene unlikely. However, identifying neutral variants
next to effect variants is arguably one of the most important tasks for a VEP. After all,
the simple association of considering every variant in a "disease gene" as having an
effect would not require a method which employs advanced machine learning. This
issue could also be one possible explanation for the fact that SIFT, PolyPhen-2 and SNAP2
differed much more on variants without experimental information than those with known
outcomes (Reeb et al., 2016; Mahlich et al., 2017).

In the end, the goal of studying variant effect is to arrive at clinically actionable knowledge
about sequence variation which can be used to improve the quality of human lives. Carss
et al. (2019) name three steps for the clinical interpretation of a variant: (i) being sure
that its detection is not a technical error and hence a false positive, (ii) ensuring the
variant has an effect on the gene product, and (iii) being confident that the change in
function actually causes a clinical phenotype. VEPs answer the second part but not the first
and third. Furthermore, summarizing the previous paragraphs one can say that current
VEPs are good at distinguishing effect and neutral variants only on average. This makes
them useful tools for the prioritization of variants, yet completely unsuited for direct
clinical application. In fact, a recent publication found a small set of VEPs to perform
significantly worse on clinically applicable variants when compared to typically used
evaluation sets (Gunning et al., 2020). Not only are error rates too high but understanding
of their occurrence is too low to ethically use them for patient diagnosis. It seems neither
likely nor necessarily desirable that VEPs will ever be reliable enough for direct clinical
application. However, as the prospect of personal genomes becoming widely available in
the near future is increasingly realistic, the demand for interpretation of the raw data will
grow. Therefore, the most reasonable outcome might be a combination of prioritization
through VEPs together with more focused experimental approaches such as DMS studies
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and expert clinical knowledge (Stein et al., 2019; Anderson and Lassmann, 2018; Gelman
et al., 2019; Sruthi and Prakash, 2020; Lauschke and Ingelman-Sundberg, 2020).

1.3.3 Conclusions

Given the number of VEPs already published, it appears judicious not to carelessly con-
tribute another contender vying with 150 methods for the attention of users. Even more
so since experience shows that VEPs such as SIFT or PolyPhen-2 remain in use longer
than they should, given their shortcomings compared to more recent approaches. Fur-
thermore, I argue that when VEPs are only successful on average, understanding when
and why they fail is more important for the development of the field than slight improve-
ments in a performance measure. The more people publish new methods with volatile
evaluations instead of focusing on the understanding of what is already there, the more
confusing the field becomes. This thesis is therefore neither directly addressing all of the
challenges highlighted in this Subsection nor presenting a new VEP. Rather, it aims to
provide insights about two aspects of current variant effect prediction to help understand
the results of already published VEPs and drive their development as well as support their
clinical adoption.
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Chapter 2

Human and animal disease SAVs

2.1 Introduction

Since the 20th century, the use of organisms beside humans for studying biology in general
or disease in particular has tremendously accelerated research. For example, experiments
in fruit flies, zebrafish or thale cress have shaped our understanding of developmental
genetics. Mice have proven an invaluable model, especially of human disease (Müller and
Grossniklaus, 2010). These so-called model organism allowed research that would have
been deemed too costly, time-consuming or unethical in humans (Davis, 2004; Russell
et al., 2017). Recent advances including HTS (Subsection 1.1.1) make earlier uses of
model organisms such as the discovery of disease genes seem superfluous (Aitman et al.,
2011). However, they are likely to still play a significant role in research for example to
study the pathways, function and molecular mechanism underlying those disease genes.
All these topics are more accessible and less complex in well-studied model organisms
with less constraints on the type of experiments that can be performed.
Due to the extensive studies on model organisms as well as production and companion
animals, variants and their effect are also known for those species. However, VEPs have for
the longest time not made use of these resources, neither for training nor testing. There
are multiple reasons for this. Data is far less accessible, especially programmatically,
which means that the assembly of a dataset equates significant manual curation work.
Furthermore, VEPs are often designed for assessing the effect of variants primarily in
humans. Including variants from other organisms during training might increase the
noise and contribute to decreased understanding of the model’s behavior.
Recently, two VEPs made use of animal variant data and lead to the development of
specifically trained methods for the detection of effect variants in mice and dogs (Groß
et al., 2018; Capriotti et al., 2019a). However, the question remains to which degree
traditional VEPs can be used to assess the effect of animal variants. In fact, how well can
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VEPs such as SNAP2, which was trained to predict molecular effect, assess high effect
disease variants in either humans or animals? Furthermore, how do disease variants from
animals compare to those in human, and what happens if a variant is transferred between
organisms in the same way an in vitro experiment might do with a model organism?

To answer these questions, we first assembled a dataset of 5,661 human disease SAVs
from OMIM and manually curated another set of 117 animal disease SAVs from OMIA
(Figure 2.1). Since SNAP2 contained OMIM variants in its training set, we re-trained
a version of SNAP2 without any disease variants. The remaining SAVs in the training
set mostly originated from PMD. Thus, the resulting VEP is focused on the prediction of
molecular effect. Due to their popularity and difference in focus, SIFT and PolyPhen-2
were also evaluated. All three VEPs predicted at least 75% of the 5,661 SAVs to have an
effect, with PolyPhen-2 being the top performer at 85%. However, this is not surprising
since PolyPhen-2 is trained exclusively on human disease variants which are expected
to overlap with our set of OMIM SAVs. Furthermore, a set of neutral variants showed
that SNAP2 predicted fewest of them to have an effect (18%) while PolyPhen-2 had the
highest number of false positive predictions (25% of neutral SAVs predicted as effect).
SIFT and PolyPhen-2 therefore achieve their higher effect variant detection only at the
cost of predicting too much effect in general.
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Figure 2.1. Source organism of 117 animal disease SAVs. SAVs were manually
curated from the OMIA database, release 08/2015 (Lenffer et al., 2006). Taxonomic
identifiers of organismswere translated to their common name using the NCBI Taxonomy
database (Federhen, 2012).

While it is common practice to observe human disease variants in model organism, VEPs
are typically not applied to the same task. Using SNAP2, we evaluated the subset of
4,229OMIM SAVs which could be mapped to homologous mouse proteins. Effect pre-
dicted for these variants was lower in the mouse proteins (78%) compared to the original
human ones (82%). There are several possible explanations for this finding. For exam-
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ple, even with a generally high sequence identity of the mouse orthologs, few changed
residues could have an effect on the molecular mechanism which leads to the disease
phenotype in humans. If for example the SAV is correlated with another variant, our
approach of transferring only one change can lead to a different epistatic environment
and thus influence the SAV’s effect. It must also be noted that the difference between
the two sets are too small for the only 4,229 samples to confidently infer a definite effect.
As more monogenic disease SAVs are discovered in humans and animals alike, future
analyses based on larger datasets might provide deeper insights into the problem.
Our analysis also provided data points on the issue of VEPs’ bias towards sequence conser-
vation (cf. Subsection 1.3.2). We assembled two sets of SAVs which described the same
change than each OMIM SAV, i.e., the original and variant amino acid were the same.
One set consisted only of SAVs at residues which were at least as conserved as the residue
of the original disease SAV. The other set contained SAVs at less conserved positions.
Effect predictions for the SAVs at conserved positions were almost as high as those for
the original disease SAVs (79%) while those at less conserved positions were predicted
to have significantly less effect (50%). Furthermore, re-training SNAP2 but excluding
features related to sequence conservation, largely attenuated this difference to just 53%
and 50% predicted effect, respectively. While this is a strong display of the importance
conservation has on the predictions of SNAP2, and likely other VEPs as well, we also found
that simply using a conservation threshold to perform naïve effect predictions performed
worse. Thus, while challenged by conservation bias, VEPs do provide added value to the
prediction task.
Overall, this analysis showed that VEPs capture the effect of disease SAVs well. Even when
the method was not trained on variants with phenotypic changes but rather effect on
protein function, as was the case for SNAP2. Such disease SAVs in humans and animals
presented signals even stronger than all effect variants in the SNAP2 training set and were
detected even without any disease variants presented during training. This is partially
owed to the high sequence conservation of residues where these SAVs are found. VEPs are
clearly biased towards predicting effect at such residues, but still outperform simplistic
approaches based on sequence conservation thresholds. Future methods must carefully
treat their feature sets to reduce the bias of homology information and will at the same
time benefit from including additional types of sequence variants in the training set—for
example, those from DMS experiments as discussed in Chapter 3.

2.2 Journal article
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Abstract
Developments in experimental and computational biology are advancing our understanding

of how protein sequence variation impacts molecular protein function. However, the leap

from the micro level of molecular function to the macro level of the whole organism, e.g. dis-
ease, remains barred. Here, we present new results emphasizing earlier work that sug-

gested some links from molecular function to disease. We focused on non-synonymous

single nucleotide variants, also referred to as single amino acid variants (SAVs). Building

upon OMIA (Online Mendelian Inheritance in Animals), we introduced a curated set of 117

disease-causing SAVs in animals. Methods optimized to capture effects upon molecular

function often correctly predict human (OMIM) and animal (OMIA) Mendelian disease-caus-

ing variants. We also predicted effects of human disease-causing variants in the mouse

model, i.e. we put OMIM SAVs into mouse orthologs. Overall, fewer variants were predicted

with effect in the model organism than in the original organism. Our results, along with other

recent studies, demonstrate that predictions of molecular effects capture some important

aspects of disease. Thus, in silicomethods focusing on the micro level of molecular function

can help to understand the macro system level of disease.

Author Summary

The variations in the genetic sequence between individuals affect the gene-product, i.e. the
protein differently. Some variants have no measurable effect (are neutral), while others
affect protein function. Some of those effects are so severe they cause so called monogenic
Mendelian diseases, i.e. diseases triggered by a single letter change. Some in silicomethods
predict the molecular impact of sequence variation. However, both experimental and
computational analyses struggle to generalize from the effect upon molecular protein func-
tion to the effect upon the organism such as a disease. Here, we confirmed that methods
predicting molecular effects correctly capture the type of effects causing Mendelian
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diseases in human and introduced a data set for animal diseases that was also captured by
predictions methods. Predicted effects were less when in silico testing human variants in
an animal model (here mouse). This is important to know because “mouse models” are
common to study human diseases. Overall, we provided some evidence for a link between
the molecular level and some type of disease.

Introduction
Protein sequences span three orders of magnitude in their lengths (30-30k residues). Aspects
of molecular function are often captured by ‘sub-units’, e.g. by domains or domain-like frag-
ments [1,2] that are, on average, about 100 residues long [3,4]. The variation of a single amino
acid (SAV) can change the function of a multi-domain protein and many changes in molecular
function lead to disease. In fact, OMIM, the database of Online Mendelian Inheritance in Man
[5], archives thousands of SAVs that cause Mendelian diseases. On the other hand, databases
such as the Protein Mutant Database (PMD) catalogue tens of thousands SAVs altering molec-
ular function; many of those have not been observed to cause a phenotype on the level of the
organism. Sequencing everyone on this globe, will we observe almost all possible SAVs? The
answer remains subject for speculation. Obvious exceptions include embryonically lethal vari-
ants and not all variants will occur in germ lines.

Deep mutational scanning studies that change every residue in a protein to all non-native
amino acids suggest a conundrum: for almost every position (each residue) both neutral and
effect SAVs exist [6–8], i.e. most residue positions are at the same time sensitive and robust to
variants. A variety of computational methods predict the effect of SAVs. Although most meth-
ods have many goals, we can simplify by distinguishing methods that focus more on predicting
the effect of SAVs upon (Mendelian) disease [9–15] and upon molecular function or structure
[16–20]. In silicomethods focusing on molecular function [21,22] correlate more with experi-
mental deep mutational scans than those focusing on disease [8,23].

The “micro” perspective of molecular function is often probed through in vitro assays of pro-
teins or cells, while in vivo screens often focus on observing the “macro” level through the impact
upon the entire organism or system, e.g. in form of a disease phenotype. Molecular impact does
not directly correspond to system impact, i.e. functional effects of variants usually do not directly
explain diseases. Relating the two levels of variant effects is of utmost importance, for example to
understand diseases and to develop treatments. Successful drugs often mechanistically bridge this
gap: the molecular agent (drug) affects the organism/system (disease).

Here, we show a few links that suggest howmolecular effect predictions can capture some
aspects of diseases. Our findings are largely based on a manually curated set of variants (SAVs)
fromOMIA (Online Mendelian Inheritance in Animals), a database cataloging expert curated
monogenic diseases in animals and their relevant variants [24]. Methods focusing on the molecu-
lar impact of variants predict disease-causing variants in animals and human (taken from OMIM
[5]). We also addressed the question how prediction methods behave for model systems, e.g. by
predicting variants in mice to study human diseases. The latter analysis might be particularly rel-
evant in light of a recent discussion about the validity of using mouse models [25,26].

Results and Discussion

OMIM variants predicted to have strong effect
SIFT [27] predicts the impact of variants upon molecular protein function by assessing
the disruption of conserved residues. SNAP [17] predicts this impact by considering

Predicted Sequence Variants Link to Disease

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005047 August 18, 2016 2 / 14



evolutionary, functional and structural features. Our newer method SNAP2 [16] also
trained on disease-causing variants. To avoid the overlap of variant sets used for SNAP2
training and those used in this work, we trained a SNAP2 version, using only variants with
impact upon molecular function, i.e. leaving out all human disease variants from OMIM or
HumVar [28] but keeping the variants from PMD. PolyPhen-2 also uses evolutionary and
structural features to predict the effect of disease-causing mutations in human [12]. We pre-
dicted the effect of disease-causing SAVs from OMIM through PolyPhen-2, SIFT and the
re-trained version of SNAP2 (not using disease variants). All three methods predicted very
strong functional effects (Fig 1A). PolyPhen-2 predicted the highest fraction (85%) of the
OMIM SAVs to have effects, followed by SNAP2 (78%) and SIFT (76%). Monitoring effect
predictions for a set of neutral SAVs (TrNeutral), showed that both PolyPhen-2 and SIFT
reached higher effect fractions at the expense of more false positives (TrNeutral bars
higher): the differences OMIM-TrNeutral were the same between SNAP2 and PolyPhen-2
(60%). Another crucial difference was that the numbers for SNAP2 were derived without
using the data used for training, while the results for PolyPhen-2 overlapped substantially
with the training data used for that method. Machine learning methods usually perform
better on the training than on the testing data. For instance, the SNAP2 version trained
with OMIM reached 80% effect predictions for OMIM as opposed to 78% for the version
not trained on OMIM.

Another crucial aspect was that SNAP2 predicted its training set of effect SAVs less well
than the OMIM SAVs (Fig 1A: TrEffect 75% vs. OMIM 78%). For us, this was the most out-
standing example for a new data set outperforming the training set in 23 years of machine
learning in biology [29]. The label “disease” seemingly generates more consistent data than
experimental measurements of functional disruption.

Previous analyses showed the strength of the molecular effect to correlate with the SNAP
score: higher SNAP scores indicate more reliable predictions and stronger effects [17,30]. This
implies that in silico predictions can accurately sort thousands of variants relevant for some
investigation by their likely molecular impact without the need to provide any additional anno-
tations. Thus, the high amount of SNAP2 effect predictions for OMIM variants (Fig 1A:
OMIM higher than for TrEffect) suggested very strong effects upon molecular function. For
variants associated with Mendelian disease, this result was expected.

Manually curated OMIA data set
OMIA [24], the database for Online Mendelian Inheritance in Animals, collects expert annota-
tions for monogenic diseases in animals. Mouse and rat data are excluded, as those variants
and annotations are available through the specialized databases RGD [31] and MGD [32].
Unfortunately, none of those resources readily provided the data needed for our analysis. Very
few of the, e.g. 600 variants with known disease associations in OMIA, which range from large
structural variants to single nucleotide variants and SAVs, were in a machine-readable stan-
dard format such as “sequence variant XpositionY causes effect”. Moreover, the protein
sequences referenced by the variants remained obfuscated. Several person-months got us from
OMIA to a set of just 117 single disease associated variants with matching sequences (Methods,
S2 and S3 Tables). Incidentally, we note that OMIA’s value to the genomics, proteomics and
health-related research communities might significantly increase if their high-quality manually
curated data were readily available to automated analyses across the spectrum of gene- and
protein-science. For similar database-related reasons and time constraints, mouse and rat vari-
ants could not be included in this analysis. As an additional complication, studies in mouse
and rat typically focus on whole gene knockouts rather than on effects of SAVs.
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Fig 1. Predictions of SAV effects upon function and disease across species. The numbers above bars give the number of SAVs in the set.A: Three
methods (SNAP2 [16], SIFT [27], PolyPhen-2 [12]) predicted SAV effects upon molecular function (TrEffect/TrNeutral) and upon disease (OMIM).
Exclusively for this panel SNAP2 was trained without using disease SAVs from OMIM [5] or HumVar [28]. The SNAP2 version trained exclusively on
molecular function clearly captured aspects of OMIM-disease SAVs (leftmost bar OMIM higher than 2nd to the left TrEffect). TrNeutral was the SNAP2
training set of variants without effect. Comparing the bars for TrNeutral and OMIM for each method pointed to differential thresholds: Polyphen-2 correctly
predicted more effect in OMIM than SNAP2 but also incorrectly predicted more effect in the neutral data, i.e. simply predicted more effect variants.B:OMIM
is repeated from A. SNAP2 captured disease signals in humans and animals at similar levels. OMIA contained disease SAVs from animals other than mouse
and rat (mostly dog and cattle).C: SNAP2 predicted OMIM SAVs with less effect in mouse orthologs than in human. Left bar (OMIMwith mouse ortholog):
SNAP2 predictions for the subset of all 4,229 OMIM SAVs for which we found a mouse ortholog. Right bar (OMIM in mouse): SNAP2 predictions when
putting the human SAV into the mouse sequence.D:Disease variants happen in non-random positions. Left bar (NotOMIM conserved): in each protein with
an OMIM SAV, we predicted the effect of all SAVs with a level of sequence conservation� that of the OMIM variant. Right bar (NotOMIM not conserved):
predictions for SAVs in non-OMIM positions with conservation < that of the OMIM SAV. Obviously, OMIM SAVs were very well conserved.

doi:10.1371/journal.pcbi.1005047.g001
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Slightly more effect for OMIA than for OMIM variants
All methods optimized to predict disease causes, for obvious reasons of data availability and
clinical relevance, focus on human variants. In contrast, methods such as SIFT and SNAP2 per-
form at similar levels for other organisms. Here, we applied SNAP2 to our curated set of OMIA
variants (SAVs). Although this data set was small, it was particularly interesting for testing,
because those variants had not been available for the training of methods before.

SNAP2 predicted more OMIA variants with effects than in the SNAP2-effect training set
(Fig 1A TrEffect 75% vs. Fig 1B OMIA 80%). Additionally, OMIA variants were predicted with
slightly higher effect than those from OMIM (Fig 1B: OMIM 78% vs. OMIA 80%). This result
suggested Mendelian disease-SAVs to have stronger effect in animals than in human. The sim-
ple asymmetry in what is considered a disease in animals and human might explain this obser-
vation. For example, non-lethal abnormalities such as variation in hair-growth might be
perceived as a human disease, while the equivalent may not be an animal disease worth noting.
In fact, the “disease-ness” of hair/fur length differences actually depends on the animal in ques-
tion; e.g. the furs of dogs differ between breeds (an intended result of breeding). OMIA is there-
fore likely to focus on more lethal variants than OMIM and SNAP2 predictions simply mirror
this expectation.

Disease-variants affect the carrier more than other species
When experimental biology builds an animal model for a human disease, disease-causing
human variants are introduced into the animal. Can in silicomethods achieve the same? We
took the mutations (SAVs) from OMIM and predicted the effect of the same variant in the
mouse homolog (Fig 1C). The disease-causing SAVs from human were predicted with slightly
less effect in the mouse model (Fig 1C: left bar higher than right). We might rationalize this
observation by arguing that the OMIM SAV has been observed because it had such a strong
effect, slight alterations to the sequence might reduce the signal. Although we have some addi-
tional evidence supporting this view (S1 Fig), it remains very speculative. OMIM SAVs are by
no means random mutations and in 95% of the cases with OMIM SAVs, the amino acid was
the same in human and mouse (not unexpected, given the results presented in the next para-
graph). Whatever the cause, this effect should be taken into account when creating animal
models for human diseases.

Position of variant more important than its type
We know that the positions of OMIM variants are not random. In silico, we can easily intro-
duce OMIM-like variants elsewhere in the protein. For each OMIM variant (XnY, i.e. amino
acid X at residue n mutated to amino acid Y), we have to find another position (m 6¼n) and in
silico vary XmY. Then we compare the predicted effect XnY to those predicted for XmY. As we
suspect that OMIM SAVs tend to be more conserved within the evolution of protein families
than randomly chosen positions in the same protein, we can additionally constrain our analysis
by postulating that we find positionsm such that the conservation ofm� that for n (Fig 1D:
NotOMIM conserved). We can contrast this to a sampling in which we predict the effect for less
well-conserved positions (m conserved< n, Fig 1D: NotOMIM not conserved). This seemingly
simple scheme opens another complication: we could additionally choose variants of the native
amino acid against all other 19 non-native ones (19-non native), or we could restrict our vari-
ants to the subset of those variants that are reachable by a single nucleotide variation (SNV-
possible). For simplicity, we only reported results for the SNV-possible version of randomly
chosen variants. We observed that a randomly chosen SNV-possible amino acid variant at
each OMIM position was predicted with slightly lower effect than the original OMIM SAV (S1
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Fig: OMIM_rand vs. OMIM). More importantly, our results confirmed the expected impor-
tance of residue conservation: SNAP2 predicted almost the same effect for the OMIM variant
as for NotOMIM SAVs of similar conservation (Fig 1B OMIM vs. Fig 1D NotOMIM con-
served). Conversely, replacing the disease variant XnY at all positions m with less conservation
(XmY) was predicted with substantially lower effect (Fig 1D: NotOMIM conserved vs. NotO-
MIM not conserved). Interestingly, random SNV-possible variants at OMIM or NotOMIM
conserved positions were predicted with an equal number of effect variants (S1 Fig).

We further applied a version of SNAP2 that did not use conservation (i.e. alignments) as
input but was otherwise trained as the default version. This alignment-free version predicted
the same trend, but with significantly reduced difference between predicted effect at OMIM
and NotOMIM positions (S2 and S3 Figs). Repeating the above analyses for the OMIA set pro-
duced similar results (S4–S7 Figs).

The strong dependence of results on conservation suggested that predicting disease-causing
variants would only require the definition of a single threshold, i.e. predict variant as disease if
the conservation at its position is above an empirically chosen value. However, we sampled a
different conservation threshold for each protein by picking the level of conservation equal to
or higher than that observed for each OMIM/OMIA variant. Accordingly, a simple method
that predicts every SNV-possible SAV at positions above a single conservation threshold as
having an effect, would over-predict effect substantially (S1 Fig, S4 and S6 Figs, S8 Fig).

Variants with known experimental observations might be biased
SIFT and SNAP2 were optimized on molecular effect variants, PolyPhen-2 [12] on disease vari-
ants. Nevertheless, the three agreed on 68% of the variants with known experimental molecular
effects [16]. In predicting the effect on molecular function, SNAP2 performed best for difficult
variants [16], i.e. those that were predicted differently by two methods (as effect by one, as neu-
tral by the other). Most relevant and available experimental results have been used for method
development. Do computational methods inherit a bias from the experimental data?

We can address the question about bias in the experimental data through comprehensive in
silicomutagenesis [33], i.e. by predicting the effect of all possible SAVs; such studies are also
referred to as the completemutability landscape [21]. There are two approaches for such a
complete mutagenesis: 19 non-native SAVs (large-scale in silicomutagenesis), or SNV-possible
SAVs. The second approach produces a subset of the first with different statistical features
[30]. The first solution furthers our understanding of protein function in the context of its
mutability landscape; the second simulates the types of changes that can happen in evolution.

Methods differ in their predictions for experimentally annotated SAVs, as well as for in sil-
ico assays of complete mutagenesis (19-non native SAVs). For instance, SIFT and SNAP2 pre-
dictions differ more for all possible SAVs in human than for variants with effect on molecular
function from PMD (S1 Table). A similar difference is implied between SIFT and PolyPhen-2
[34]. Although the differences amount to “just” 3–8 percentage points, they imply prediction
differences for millions of variants. Why do the predictions of the two methods agree more for
experimental annotations than for all possible variants?

Assume that the existing methods converged toward the same solution for known data due
to the lack of diversity in the training data, i.e. the same data enforces the same lesson. Put dif-
ferently, the experimental data focuses on some particular type of effect (that might be easier to
predict than the types that remain unknown). This assumption would explain our findings but
it seems incorrect. Firstly, methods have not used the exact same type of data: some focus on
molecular function, others on disease-causing variants. Secondly, prediction agreement
between methods is not higher for strong-impact, disease-causing variants from OMIM than
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for the neutral and molecular function effect variants from PMD, although stronger variants
are predicted better [17,30]. Thirdly, additional recent tests confirm the important differences
in predictions for larger data sets, where methods tend to agree more for some observed
human variants and less so for others. Thus, the agreement between methods for experimen-
tally annotated data sets is not explained by the assumption that they learned the same from
the restricted data.

Could it be that we already have an experimental record for most effect variants? If true, the
observed method correlation would be explained. For OMIM, this completeness assumption
might not be too far from the truth: It has been argued that through recent advances in deep
sequencing the majority of disease-causing variants, in particular in coding regions which are
tractable through whole exome sequencing, have already been observed and many are to follow
in the near future [35]. However, large-scale in silicomutagenesis strongly suggests that many
effect variants remain experimentally uncharacterized. If true, the method agreement for
experimental annotations would not be explained.

Alternatively, differences between in silicomutagenesis predictions and experimental
annotations might originate from the bias in the experimental data. Many reasons would
explain such a bias. Firstly, the in vitro assays may not capture all interactions and constraints
under which proteins exist in vivo. Secondly, the experimental thresholds for the degree of
functional impact (e.g. change in ΔΔG of binding) required to report a variant as “effect” or
“neutral” are subjective. Computational methods will likely zoom into the most consistent
data, i.e. the strongest or simplest effects. Bias might also be introduced by the difficulty in
relating the molecular to the system level, e.g. not every variant that has a high effect on
molecular function challenges the organism. Conversely, not every disease is caused by a sin-
gle SAV. On the contrary, most diseases are likely caused by much more complex mecha-
nisms than single variants. For example, in cancer many variants may affect molecular
function; some of these “drive” the cancerous growth, others simply piggyback (passenger
mutations). The two have very different biological traits and can be distinguished in silico
[36]. Nevertheless, the gain from molecular functional effect predictions for describing odds
in prognosis is still limited [37].

Finally, the methods’ high agreement might originate from the codon usage. While there is
no comprehensive explanation that convincingly maps the codon usage to the biophysical fea-
tures of the encoded amino acids, there are some preferences built into one of the three bases
[38]. SNV-possible variants might therefore tend to alter the biophysical features of an amino
acid less than other substitutions. Methods such as SNAP2 are trained to consider variants that
maintain the biophysical environment of a residue to be more neutral than others. Hence,
SNV-possible might be predicted as more neutral than amino acid substitutions that required
more than one nucleotide change. However, since most experimental annotations report effect
SAVs, the codon usage correlations are unlikely to help explain the agreement.

Capturing phenotype effects through molecular function predictions?
In order to bridge the gap from effect upon single protein to effect upon organism, we clearly
also have to consider the interaction context of a protein. For instance, predicted effects upon
molecular function are much more likely to imply effects upon the organism if the protein is a
key player in a crucial pathway than if the protein is “just” a structural protein. Indeed, OMIM
SAVs may be so damaging because they preferentially hit crucial proteins. OMIM SAVs consti-
tute one link between molecular effect and disease, albeit possibly an exceptional one. Poly-
Phen-2 and SNAP2 trained on such disease-effects. The fact that they predict those very well,
therefore, is not very meaningful. However, when we retrained a version of SNAP2 without
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any disease- or system-level related SAVs, we could still predict OMIM SAVs very well (Fig 1).
Thus, we established one link between molecular and organism effect.

How could we bridge the gap from the molecular level to that of the organism more effi-
ciently for a larger set of SAVs? As already mentioned: we might succeed by including more
relevant knowledge related to interactions. However, success toward this end remains incom-
plete for the time being. Alternatively, we might consider the integration of gene prioritization
tools. These integrate additional orthogonal data such as expression patterns, subcellular locali-
zation, information from literature or otherwise manually curated annotations [39,40]. For
example, recent work has seen the development of a model to distinguish loss-of-function
genes in human, based on conservation and protein interaction data [41]. This however is
based on variants that lead to a complete loss of the transcript and therefore not comparable to
the SAV effect prediction by SNAP2.

Another idea is to move from the level of SAVs to that of correlated variants [8,23]. This
remains challenging: no method can yet predict the effect for all possible pairs of SAVs in all
human proteins. However, even for the proteins for which some methods can achieve this:
such a refinement might contribute much toward increasing the agreement between computa-
tional and experimental deep mutagenesis studies. However, it might contribute little for better
bridging the micro and macro level.

Conclusion
We have presented evidence that methods optimized for predicting the effects of SAVs upon
molecular function, such as SNAP2, capture the type of strong effect that leads to monogenic
diseases. This was sustained even when excluding disease-causing SAVs from training. Possi-
bly, OMIM-like means “effect upon molecular function strong enough to not have to consider
anything else”. We also showed that Mendelian disease-causing SAVs in animals from OMIA
(mostly dog and cattle) were predicted even more successfully than those from OMIM. Both
these results (OMIM higher than training data although not used, OMIA even higher) imply
that methods not focused on phenotype level effects, can capture the strong underlying func-
tional effect signal. OMIM-like SAVs often hit the most conserved position, but a trivial predic-
tion solely based on this conservation fell much behind the level of performance reached by
methods such as SNAP2 or PolyPhen-2. Generally, computational and experimental analyses
of molecular effects of SAVs cannot explain the effects upon the organism. The integration of
gene prioritization and the incorporation of additional data from interactions might contribute
to bridging this gap.

Materials and Methods

Collecting OMIA variants
We annotated sequence variants in animals using the SQL dump of OMIA (release 08/2015)
[24]. Gene symbols and the text from the sectionMolecular basis were extracted for all diseases
(i) considered as defect by OMIA and (ii) with the causal variant known. We then read the text
and publications to extract variant annotations in the standard format of, e.g. A11W: native
alanine (A) at residue position 11 mutated to tryptophan (W). OMIA already contained 82 var-
iants in this format possibly enabling automated extraction through a regular expression. How-
ever, at least one of the 82 was outdated; this fact was mentioned in the description, but would
have been missed by automation. Our effort yielded another 96 variants. Thus, we could use
178 OMIA variants in total. Next, we retrieved the protein sequences of the OMIA variants by
querying UniProtKB (release 2015_08) with the gene symbol and NCBI taxonomy identifier
extracted from OMIA. When we had multiple matches, we chose the top match. Among the

Predicted Sequence Variants Link to Disease

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005047 August 18, 2016 8 / 14



178 variants, three synonymous variants were excluded. Of the remaining 175, 12 had to be
excluded because the above protocol did not yield a sequence. In 46 cases a sequence could be
retrieved but the amino acid found at the position denoted by OMIA was not the one found in
the sequence at that position, e.g. for OMIA variant A11W, the amino acid at position 11 in the
sequence was not alanine (A). In 110 cases the amino acid was found as expected and in seven
additional cases shifting the position by +1 yielded the expected sequence. The “+1” accounts
for sequences stored without the initiator methionine. Our final data set of 117 variants from
99 sequences (S2 Table) is available at https://rostlab.org/resources/omia. The attrition rate
leading to the 117 mutations is summarized again in S3 Table. Most of the variants in the final
dataset were from dogs (39%) and cattle (21%). These ratios were comparable to those for orig-
inal 178 variants (44% and 21%). We annotated another 12 positions with single amino acid
deletions and 48 variants leading to premature stop codons. However, since SNAP2 only pre-
dicts effect for changes of amino acids not their removal or premature stop of the amino acid
sequence, these were not used in the further analysis.

OMIM, SNPdbe, and PMD
We extracted 5,661 OMIM [5] variants with sequences from SNPdbe [42]. SNAP2 [16] was
trained on SAVs from PMD, the Protein Mutation Database [43] as well as human disease vari-
ants from OMIM and HumVar [5,28]. For the sets shown in Fig 1A, we trained a version of
SNAP2 on only molecular effect variants, i.e. without variants from OMIM or HumVar, and
show cross-validation results for that (TrEffect and TrNeutral). In all other cases, the training
set of SNAP2 also included disease variants [16].

Ortholog mapping for OMIM variants to mouse
Human homologs of the animal genes from OMIM were retrieved using the Biomart interface
[44] of Ensembl Genes 82 (release 09/2015) [45]. 271 sequences from the OMIMmutation set
were removed because they were not found in the Ensembl set. The remaining 1,293 sequence
pairs were aligned using the global alignment implemented in BioPython’s globalds with BLO-
SUM62 as substitution matrix, gap open -10 and gap extend -0.5 [46]. Variants at positions
with insertions (aligned against a gap) were removed. After transferring the variants from the
human to the mouse sequence, some variants implied no change because for the human X2Y
variant, the mouse had Y as its native amino acid, i.e. the “variant” in mouse would have been a
synonymous Y2Y. Removing all such cases and their respective variant in human, the final set
comprised 4,229 variants (of the original 5,661 OMIM variants) in both human and the mouse
homologs, i.e. the “in silico humanized mouse model” (denoted as “OMIM in mouse” in Fig 1).

Prediction methods
For all variants, effects were predicted by SIFT [27,47], PolyPhen-2 [12] and SNAP2 [16]. We
used SNAP2 with the parameter tolerate, that performs predictions even if underlying methods
fail, to obtain results for all variants. For some analyses (S2 and S3 Figs, S5 and S7 Figs), we
used SNAP2 without alignments as input, by using the skip parameter. SIFT predictions were
obtained locally with version 4.0.3b [47]. PolyPhen-2 predictions were obtained locally using
version 2.2.2 [12]. All three methods used a BLAST database created by merging PDB and Uni-
ProtKB (release 2015_08), followed by a redundancy reduction at 80% sequence identity with
CD-HIT [48,49]. We used the default cutoffs of each method to obtain binary predictions into
either effect or neutral for every variant.
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Statistics
The background effects for the OMIM data (Figs 1D and S1 and S8) were estimated as follows:
At every disease variant position, we mutated to either (i) the amino acid denoted in the disease
SAV (OMIM, Figs 1D and S8) or (ii) considered one randomly out of the SNV-possible vari-
ants, i.e. mutations to amino acids that could occur by a single nucleotide change (OMIM_-
rand, S1 Fig). This simplification was imposed by the incompleteness in the knowledge of the
underlying DNA sequences. We assume that our hack approximation to “all SNV-possible”
provides a sufficiently accurate approximation.

For the non-disease positions, we sampled a random set of positions without known disease
variants from the same proteins (NotOMIM). Non-disease positions were never sampled from
the first and last 10 residues of a sequence, since SNAP2 uses an input window size of 21. The
predicted effect at the NotOMIM positions was evaluated as before. (i) Either given an OMIM
mutation such as I10L, we randomly picked a non-disease position with isoleucine and
mutated it to leucine (NotOMIM, Figs 1D and S8). (ii) Alternatively, we chose a random SNV-
possible variant from non-disease positions (NotOMIM_rand, S1 Fig).

For the conserved non-disease positions (NotOMIM conserved) we considered only non-
disease positions that were at least as conserved as the known disease position. For instance,
assume a protein P contains two disease variants X25Y and A100B. Randomly choose one out
of all positions other than 25 and 100 in P that is at least as conserved as position 25. Then do
the same for position 100 and all other variants in other proteins. Skip, if the disease position is
the one most conserved in that protein and there is no other position with an equally high con-
servation. For the not conserved positions, we accordingly used all positions with conservation
lower than that of the OMIM SAV. Conservation was measured through the information per
position value from PSI-BLAST PSSMs created by querying the OMIM sequences against the
80% redundancy reduced database of UniProtKB and PDB mentioned in the previous section.
At each NotOMIM conserved or not conserved position, effects were predicted as outlined
above for cases i (NotOMIM (not) conserved, Figs 1D and S8) and ii (NotOMIM_rand (not)
conserved, S1 Fig).

The same was repeated using SNAP2 without alignments as input (S2 and S3 Figs). We also
show results for the full set of variants, e.g. “all @ NotOMIM_rand not conserved” are all SNV-
possible mutations at all non-disease positions that are less conserved than the position of the
original OMIM SAV. “all @ NOT-OMIM conserved” are all OMIM SAVs at all eligible non-
disease positions (S1 and S8 Figs). All analyses were also performed on the OMIA set (S4–S7
Figs).

Supporting Information
S1 Fig. SNAP2 predictions towards random SNV-possible variants at different positions in
the OMIM set. Analogous to Fig 1D of the main paper but mutating positions to random
SNV-possible variants instead of using the OMIM SAV. “OMIM” is repeated from Fig 1A as
reference. The numbers above bars give the number of SAVs in the set. Sets prefixed with “all
@” contain all possible mutations in the respective set, instead of a random sample.
(TIF)

S2 Fig. SNAP2 predictions without alignment input at different positions in the OMIM
set. Analogous to Fig 1D of the main paper but using SNAP2 without alignments input.
“OMIM using alignments” is repeated from Fig 1A as a reference. The numbers above bars
give the number of SAVs in the set. Sets prefixed with “all @” contain all possible mutations in
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the respective set, instead of a random sample.
(TIF)

S3 Fig. SNAP2 predictions without alignment input and towards random SNV-possible
variants at different positions in the OMIM set. Analogous to Fig 1D of the main paper but
mutating positions to random SNV-possible amino acids instead of using the OMIM SAV.
Additionally, SNAP2 is used without alignment input. “OMIM using alignments” is repeated
from Fig 1A as a reference. The numbers above bars give the number of SAVs in the set. Sets
prefixed with “all @” contain all possible mutations in the respective set, instead of a random
sample.
(TIF)

S4 Fig. SNAP2 predictions at different positions in the OMIA set. Analogous to Fig 1D of
the main paper but on the OMIA set. “OMIA” is repeated from Fig 1B as a reference. The num-
bers above bars give the number of SAVs in the set. Sets prefixed with “all @” contain all possi-
ble mutations in the respective set, instead of a random sample.
(TIF)

S5 Fig. SNAP2 predictions without alignment input at different positions in the OMIA set.
Analogous to Fig 1D of the main paper but using SNAP2 without alignments input and on the
OMIA set. “OMIA using alignments” is repeated from Fig 1B as a reference. The numbers
above bars give the number of SAVs in the set. Sets prefixed with “all @” contain all possible
mutations in the respective set, instead of a random sample.
(TIF)

S6 Fig. SNAP2 predictions towards random SNV-possible variants at different positions in
the OMIA set. Analogous to Fig 1D of the main paper but using OMIA and mutating positions
to random SNV-possible variants instead of using the OMIA SAV. “OMIA” is repeated from
Fig 1B as reference. The numbers above bars give the number of SAVs in the set. Sets prefixed
with “all @” contain all possible mutations in the respective set, instead of a random sample.
(TIF)

S7 Fig. SNAP2 predictions without alignment input and towards random SNV-possible
variants at different positions in the OMIA set. Analogous to Fig 1D of the main paper but
using OMIA and mutating positions to random SNV-possible amino acids instead of using the
OMIA SAV. Additionally, SNAP2 is used without alignment input. “OMIA using alignments”
is repeated from Fig 1B as a reference. The numbers above bars give the number of SAVs in the
set. Sets prefixed with “all @” contain all possible mutations in the respective set, instead of a
random sample.
(TIF)

S8 Fig. SNAP2 predictions at different positions in the OMIM set. Analogous to Fig 1D of
the main paper. “OMIM” is repeated from Fig 1A as a reference. The numbers above bars give
the number of SAVs in the set. Sets prefixed with “all @” contain all possible mutations in the
respective set, instead of a random sample.
(TIF)

S1 Table. Pairwise agreement of effect prediction. Shown is the percentage of entries in the
respective dataset for which the two given methods agree in binary prediction, i.e. both predict
a neutral or effect variation.
(DOC)
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S2 Table. The set of 117 OMIA mutations. The 117 mutation extracted by manual review
from the OMIA database. Shown are only entries for which a sequence could be found and the
mutation mapped onto the sequence (cf. S3 Table). All diseases are considered a defect by
OMIA annotation. Organism shows the NCBI taxonomy id. Variants marked with �, are those
where the position was shifted one forward (Methods, S3 Table). The full set including the
sequences is also available at rostlab.org/resources/omia.
(DOC)

S3 Table. Attrition rate of OMIA annotations. AA deletion describes cases where a single
amino acid is deleted without affecting the reading frame. Nonsense are mutations to a prema-
ture stop codon. These two cases were extracted from OMIA but not used in the analysis. For
the amino acid substitution set No seq. describes that no sequence was found for the given com-
bination of taxonomy id and gene id (Methods). No match describes that a sequence was found
but the amino acid at the position given by OMIA was not the one expected from the annotated
mutation.Match are all cases where this was the case, andMatch+1 were the amino acid fit
after shifting one position to the right. Highlighted in green are the cases forming the final set
of 117 mutations used for the analysis.
(DOC)
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And into the mountains I go, to lose my mind and find my soul

Adapted from John Muir

Chapter 3

SAVs from DMS studies

3.1 Introduction

Traditional datasets used for training and assessing VEPs are often biased by deleterious,
high effect disease variants (Section 1.3), e.g., from the database OMIM which contains
SAVs that cause disease phenotypes in human. DMS presents a novel experimental ap-
proach that has the potential to drive a significant shift in the field of VEPs and beyond by
providing less biased high-throughput measurements of deleterious as well as beneficial
variant effect on the level of protein function (Subsection 1.2.3).

With more DMS data becoming available, the VEP Envision has recently been trained
exclusively on such SAVs (Gray et al., 2018). Furthermore, the method is trained as a
regression predictor, i.e., it estimates the degree of effect a SAV has on protein function.
We analyzed how well this novel method maintains its performance on a larger dataset
of DMS studies which have become available since its development. We also assessed
how the focus on regression affects the ability to distinguish between SAVs in just two
classes, neutral and effect. Furthermore, the majority of traditional classification VEPs
such as SIFT, Polyphen-2 or SNPA2 have not seen this type of data or the specific variants
during their training (Kumar et al., 2009; Adzhubei et al., 2013; Hecht et al., 2015). This
creates the opportunity to perform an unbiased assessment. For example, we evaluated
how those methods deal with the task of predicting the precise degree of effect or what
their behavior is towards beneficial effect SAVs. This chapter contains additional data and
analyses that are not part of the publication and also extends the discussion to include
more recent developments in the fast-growing field of DMS.

47
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3.2 Methods

This section introduces methodology which extends the one in the manuscript or is im-
portant for understanding the additional findings presented here (Reeb et al., 2020, see
Section 3.5).
To build a new dataset for the assessment of VEPs we searched the literature for DMS
studies, excluding those with less than 100 variants reported in total. We specifically
did not exclude sets with only segments of proteins analyzed, since our goal is not to
train on this data but only to analyze agreement. For that, fragments do not pose an
issue. Functional effect scores were either retrieved from the Supplemental Information
of papers or requested from the authors. The heterogeneity of functional assays employed
seemed to be reflected in the various data formats used. Since publication of this work, a
new resource for multiplexed variant effect data, MaveDB, has been published (Esposito
et al., 2019). This should make future endeavors in a similar direction significantly easier
as it provides a central resource with a well-defined data format. The resulting dataset
contains SAVs from 22 different DMS studies (Table 3.1). To allow a fair comparison
between methods, assessments are always performed on a set of SAVs that every VEP
provided a prediction for. SetCommon is the largest common subset of 17,781 deleterious
effect SAVs from all DMS studies for which that is the case.
Functional scores from every DMS assay were normalized to lie between 0, denoting no
or wt-like effect, to 1, the highest effect SAVs. The resulting score distributions differ
significantly between experiments. However, applying further score normalization such
as in Gray et al. (2018) would not make the distributions more comparable, rather in
that analysis, scores were distributed similar to begin with. Since our goal is primarily to
analyze the relationship between experimental measurements and predicted effect, not
to train on those scores, no additional normalization is required andmight even obfuscate
trends in the data. Deleterious and beneficial effect SAVs were always treated separately
since experimental assays cannot be assumed to behave evenly for both. Furthermore, not
splitting by effect type would entail that the highest deleterious effect is treated equally
to the highest beneficial effect which does not appear justifiable in any circumstance.
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Table 3.1. Overview of the evaluated deep mutational scanning datasets. 22 datasets were collected from literature. Dataset
identifier denotes the short name used to refer to the set throughout this work. Many analyses were limited to the largest common
subset of experiments to which every prediction method could be applied. This subset of SAVs is referred to as SetCommon and
consists of the datasets highlighted in bold font. FACS is short for fluorescence-activated cell sorting, DBMS stands for droplet-based
microfluidic screening. For assay types, dpl. is short for display.

Dataset identifier Protein Assay type Protein source
organism Reference

ccdB Toxin CcdB Growth E. coli Adkar et al. (2012)
YAP1 Transcriptional coactivator YAP1 Phage dpl. H. sapiens Araya et al. (2012)
MAPK1 Mitogen-activated protein kinase 1 Growth H. sapiens Brenan et al. (2016)
BRCA1 Breast cancer type 1 susceptibility protein Growth H. sapiens Findlay et al. (2018)
CCR5 C-C chemokine receptor type 5 FACS H. sapiens Heredia et al. (2018)
CXCR4 C-X-C chemokine receptor type 4 FACS H. sapiens Heredia et al. (2018)
HSP82_2011 ATP-dependent molecular chaperone HSP82 Growth S. cerevisiae Hietpas et al. (2011)
HSP82_2013 ATP-dependent molecular chaperone HSP82 Growth S. cerevisiae Hietpas et al. (2013)
HSP82_2013_Exp ATP-dependent molecular chaperone HSP82 Growth S. cerevisiae Jiang et al. (2013)
GAL4 Regulatory protein GAL4 Growth S. cerevisiae Kitzman et al. (2014)
LGK Levoglucosan kinase Growth L. starkeyi Klesmith et al. (2015)
PPARG Peroxisome proliferator-activated receptor γ FACS H. sapiens Majithia et al. (2016)
PTEN Phosphatase and tensin homolog FACS H. sapiens Matreyek et al. (2018)
TPMT Thiopurine S-methyltransferase FACS H. sapiens Matreyek et al. (2018)
haeIIIM Modification methylase HaeIII Growth H. aegyptius Rockah-Shmuel et al. (2015)
bgl3 β-glucosidase DBMS Streptomyces Romero et al. (2015)
GFP Green fluorescent protein FACS Ae. victoria Sarkisyan et al. (2016)
Ube4b Ubiquitin conjugation factor E4 B Phage dpl. M. musculus Starita et al. (2013)
BRCA1_2015_Y2H Breast cancer type 1 susceptibility protein Growth H. sapiens Starita et al. (2015)
BRCA1_2015_E3 Breast cancer type 1 susceptibility protein Phage dpl. H. sapiens Starita et al. (2015)
bla β-lactamase TEM Growth E. coli Stiffler et al. (2015)
IgG1 Immunoglobulin gamma-1 heavy chain Yeast dpl. H. sapiens Traxlmayr et al. (2012)
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The VEPs used for comparison to the functional effect scores include classification meth-
ods, PolyPhen-2, SIFT, and SNAP2, as well as the regression predictor Envision which was
trained on DMS data (Subsection 1.3.1). Since sequence conservation is such an impor-
tant feature for the prediction of variant effect, an additional baseline method was created
based on PSI-BLAST: The homology search tool was run with three iterations against
UniProtKB and estimations of variant effect calculated based on the resulting PSSM. Fre-
quent substitutions, i.e., positive values, were treated as having no or low effect, while
uncommon substitutions with negative values were considered as effect predictions. This
predictor is referred to as Naïve Conservation in the following.
Two measures were used to assess the agreement of VEPs’ predictions with the experimen-
tally determined effect of SAVs. Correlation performance was evaluated with Spearman’s
ρ (Equation 3.1, Virtanen et al., 2020). As the ranked variable version of the more com-
mon correlation measure Pearson’s R, ρ is more suitable for data that is not normally
distributed or contains outliers —both of which cases apply to the DMS datasets analyzed
here (Wilcox, 2016). Furthermore, R requires a linear relationship between the predicted
and measured effects. While this would be desirable, it seems overly strict to require this
level of agreement from VEPs, in particular given the heterogeneity of DMS assays. ρ,
on the other hand, only measures a monotonic relationship, i.e., if experimentally mea-
sured effect increases so should the predicted effect strength. Arguably, this is already
sufficiently useful and details of the exact nature of the relationship between predictions
and experiments could be determined in future analyses when performance has reached
a level where this appears warranted.

Spearman’s ρ (ρ) = n
∑n

i=1 r x i r yi −
∑n

i=1 r x i

∑n
i=1 r y i

Ç

n
∑n

i=1 r x i
2 − (
∑n

i=1 r x i)
2
Ç

n
∑n

i=1 r y i
2 − (
∑n

i=1 r y i)
2

Mean squared error (MSE)= 1
n

n
∑

i=1

(yi − x i)
2

where
n= Number of SAVs

x i, yi = Experimentally measured/predicted effect score for SAV i

r x i, r yi = Rank of the i-th experimental measure/prediction
(3.1)

The second measure used for evaluation is an error measure, the Mean squared error
(MSE, Equation 3.1, Pedregosa et al., 2011). MSE complements the qualitative ρ by pro-
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viding an absolute measure which assesses how close every predicted effect score is to
the experimentally determined effect score of the respective SAV. This is an important
addition since the degree of effect can be important, e.g., in precision medicine appli-
cations, but might be obscured in ρ with its limitation to monotonic relationships. A
baseline for both ρ and MSE is provided by the Naïve Conservation predictor. 95% confi-
dence intervals (CIs) for ρ and MSE were estimated using percentile bootstrapping with
1,000 samples and replacement (Bishara and Hittner, 2017).

For classification performance analyses, SAVs were assigned to classes "effect" or "neutral"
by two orthogonal methods: (i) In dataset SetCommonSyn95 SAVs are defined as being
neutral when their functional score in the DMS assay is within the middle 95% range of
synonymous variants’ scores on the same protein. (ii) SetCommonAuthor is constructed
with SAVs for which authors of the original publication provided class assignments (Ta-
ble A.1). Both sets represent the largest common subset of SAVs that each of the five VEPs
can perform a prediction for. Given these sets, the prediction performance was assessed
using receiver operating characteristic (ROC) curves and the area under that curve (AUC).
This choice eschews picking a single threshold at which to assess VEPs and thus allows
a more detailed look at every method’s performance over the whole range of predicted
values. Furthermore, it allows the assessment of Envision where choosing a threshold is
not intended in general and every single choice would be arbitrary and potentially biased.
ROCs, AUCs, as well as their 95% CIs were calculated in R using package pROC which
implements the DeLong method instead of bootstrapping (ci.se, ci.auc, R Core Team,
2020; Turck et al., 2011; DeLong et al., 1988). In addition to ROC curves, precision-recall
curves show the trade-off between the two measures defined in Equation 3.2 (Pedregosa
et al., 2011).

True positive (TP)= Effect SAV predicted as having an effect
False positive (FP)= Neutral SAV predicted as having an effect
True negative (TN)= Neutral SAV predicted as not having an effect
False negative (FN)= Effect SAV predicted as not having an effect

Precision= TP
TP + FP

Recall= TP
TP + FN

(3.2)
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3.3 Additional results and discussion

3.3.1 Correlation performance for SIFT and PolyPhen-2

SIFT and PolyPhen-2 belong to a category of VEPs which were specifically designed to
predict SAVs only in two classes. Therefore, one could argue that their prediction scores
should not be treated as continuous measures. For this reason, they were excluded from
the analysis in Reeb et al. (2020). However, given the popularity of these tools, users
may still be inclined to apply the VEPs in this way—despite the developers’ intentions.
We provide an overview of the performance to be expected in this case.
On deleterious effect SAVs of SetCommon, both tools show almost binary prediction scores
and are heavily skewed towards effect (Figure 3.1). The resulting correlation performance
is better than random but both VEPs are outperformed by SNAP2 (ρ = 0.41, 95% CI =
[0.4,0.42]) and only PolyPhen-2 achieves better correlation than the baseline represented
by Naïve Conservation (ρ = 0.29 [0.28,0.3]). Among all five VEPs, MSE is worst for SIFT,
followed by Polyphen-2. This is in line with expectations, given their intended application
and training which focused on discriminating between two classes and primarily high
effect SAVs. Overall, the two VEPs are therefore least suited for estimating effect strength
and should indeed not be applied for this purpose.

3.3.2 Low correlation for Envision

Envision was trained on data from DMS assays, distinct from the test set used here, and
employs a regression prediction as opposed to the classification approach of traditional
VEPs. As such, it is poised to perform well in our evaluation. However, the achieved
correlation performance is low (ρ = 0.1 [0.08, 0.11]). Given the significantly higher cross-
validation performance of ρ = 0.5 reported during training of the method and confirmed
by the authors on an independent test set, the weak performance comes as a surprise (Gray
et al., 2018). Nonetheless, our findings corroborate another recent study on a set of three
DMS assays which also found Envision’s performance around the level we observed on
our larger set (ρ ∈ {−0.44,0.09, 0.27}, Sruthi and Prakash, 2020). This doesn’t invalidate
the approach itself and a regression predictor for variant effect is in fact highly desirable.
However, while larger SAV datasets from DMS studies enable such endeavors, the volatile
performance also indicates that much remains to be learned.
One relevant factor for this result could lie in the completeness of Envision’s input features.
When available, the VEP makes use of features from protein 3D structure, with the B
factor and solvent accessibility being the two most important features overall (Gray et al.,
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Figure 3.1. Agreement between experimentally determined and predicted SAV
effect. Hexbin plots show the effect of 17,781 deleterious effect SAVs in SetCommon
against predicted effect by classification VEPs (a) SIFT and (b) PolyPhen-2. Marginals
denote distributions of the respective scores together with a kernel density estimate
(blue). Normalized scores range from no effect (0) to the highest effect observed or pos-
sible to predict (1). Footers denote Spearman’s ρ and the mean squared error with their
respective 95% confidence intervals determined by a percentile bootstrap. A dashed
red line represents the linear least squares regression.

2018). However, 3D structures are not available for all query sequences and the authors
highlight that performance on their training set decreases by 39% without structural
features. Indeed, structural features were missing for around 80% of all residues in the ten
proteins from SetCommon (Figure 3.2). On the other hand, there is no clear relationship
between the lack of structural input features and the correlation performance achieved.
Evolutionary features extracted from MSAs were also important and their exclusion lead
to an 18% decreased performance during training. While all but one of those features
are available for more than 96% of residues in our set, this highlights the impact those
inputs have. How exactly the alignments were created between the publication and the
automated webserver could therefore lead to differences in performance, as confirmed
in personal communication with the authors.

Finally, DMS data is still new, in particular to the field of VEPs. How exactly scores from
DMS experiments should be treated and normalized is an active discussion in the field.
Some of the differences in performance are therefore likely caused by contrasting ap-
proaches in the treatment of the underlying scores. This leads to differently oriented
training and evaluation sets which creates challenges similar to those in evaluating tra-
ditional VEPs (cf. Subsection 1.3.2).
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Figure 3.2. Completeness of the two most important Envision input features. Bars
denote the fraction of residues in the respective proteins where the structural input
features "Solvent accessibility" and "B factor" exist. "Overall" refers to all residues in all
ten proteins. Datasets are sorted by ascending correlation performance on the subset of
SAVs for which Envision and all other VEPs in our analysis provided a prediction.

3.3.3 Correlation with beneficial effect variants

Normalizing all scores to lie within the interval [0, 1] is required to perform comparisons
on the complete set of SAVs. However, this approach necessarily disregards the underlying
score distributions of every DMS experiment. For example, a low MSE is easier to reach
when most of the scores are clustered in a small interval with some outliers. Furthermore,
the highest effect score measured by one assay might not be directly comparable to
that from another due to experimental setups. Therefore, it is worthwhile to investigate
agreement of predictions on the level of single DMS experiments as well.

For beneficial effect SAVs, the highest correlation can be observed on variants from Ube4b
(Figure 3.3a). While the set contains just 247 SAVs and CIs are accordingly large, the
trend appears clear. This is interesting, given that the distribution of experimental scores
is clearly shifted towards low effect. One could hypothesize that the training set compo-
sition of VEPs such as SNAP2 creates a bias towards only detecting low beneficial effect
variants. However, the experimental distribution on β-lactamase TEM (bla) is similarly
skewed towards low effect and correlation performance is significantly lower on this set
(Figure 3.3b). Furthermore, SNAP2 prediction scores are heavily skewed, in particular
when compared to those on deleterious effect SAVs. This indicates that traditional VEPs
are likely to mistake beneficial effect variants as having no or low effect. One possible
explanation for this is that evolutionary information appears to be a less useful signal for
beneficial effect SAVs, as evidenced by the drop in performance of Naïve Conservation
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(ρ = −0.08 [−0.09,−0.06]). Intuitively, this makes sense since beneficial effects may of-
ten not be detrimental to the organism and are thus under less evolutionary pressure.
Given the previously discussed issues in the training of VEPs such as SNAP2 and their
bias towards sequence conservation, these results are consistent (cf. Subsection 1.3.2).
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Figure 3.3. SNAP2 predictions of beneficial effect. Hexbin plots show the effect of
beneficial effect SAVs from DMS studies (a) Ube4b and (b) bla against predictions of
the best VEP on these sets, SNAP2. Performance measures, CIs and marginals are as
described in Figure 3.1.

3.3.4 Influence of DMS functional assay type

The effect values determined by a DMS study are affected by the particular experimental
setup employed. As pointed out in Subsection 1.2.3, the functional assays used to impose
selective pressure have to be specific for the protein function of interest and can mea-
sure activity in various ways. A common choice are growth- or fitness-based assays that
evaluate the SAV’s effect by coupling protein function to cell growth or survival. Other
approaches, such as protein display or fluorescence-activated cell sorting, could be con-
sidered a more direct, or at least different, measure of protein function. This distinction
can be important since reduced fitness does not necessarily mandate impaired function of
the protein in question. Furthermore, lower protein function might show only little effect
on fitness (Capriotti et al., 2019b). For example, in a highly conserved region of Hsp82,
variants that lead to a 79% reduced protein function resulted in only a 5% fitness decline
(Jiang et al., 2013). Variants with less effect on function were indistinguishable from the
wild-type due to the shape of the elasticity function between the protein’s function and
organism fitness.
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Figure 3.4. Performance of effect prediction between different DMS assay types.
Scatterplots show the performance of VEPs Envision and SNAP2 in predicting the effect
determined through DMS experiments. SAVs are split between either deleterious or
beneficial effect. Points are colored by whether the respective dataset’s selection assay is
growth-based or using some other selection (Table 3.1). Note that Envision predictions
exist for only a subset of all DMS datasets and plots thus contain fewer points compared
to SNAP2.

Among the 22 primary DMS measurements used in this study, 11 use assays that can be
classified as growth-based (Table 3.1). For both deleterious and beneficial effect SAVs no
major differences in prediction performance between SAVs from the two assay types can
be observed (Figure 3.4). The only clear difference is found for Envision’s ρ on deleterious
effect. However, with just three growth-based assays the sample size is too small for any
reliable inference. The method’s training set was also balanced with four out of nine
assays being growth-based. If a bias of Envision towards growth-based selections were
observed on a larger dataset, this would offer strong support that selection type must be
accounted for during training. However, the data presented here indicates no impact of
assay type on effect prediction performance.

A recent study evaluated the usage of variant effect determined by DMS studies for
identifying human disease variants from ClinVar (Livesey and Marsh, 2019). For this
purpose, SAV effects from growth-based assays showed significantly better classification
performance. This suggests that VEPs such as PolyPhen-2—which focus on the prediction
of variant effect in the context of human disease—could particularly benefit from using
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growth-based DMS data in their training.

3.3.5 Classification of SAVs based on definitions by authors of DMS studies

The analyses of classification performance in Reeb et al. (2020) are based on distinguish-
ing neutral and effect SAVs by the effect of synonymous variants which yields the set
referred to as SetCommonSyn95. While this is a sensible approach that generalizes well,
an alternative view presents itself for the specific subset of DMS studies analyzed here.
For some sets, authors of the studies already provided definitions into classes themselves.
One could argue that these are valuable in that they take into account specifics of the
protein in question and might thus be more accurate. Such definitions were available for
six of the 22 DMS studies and were clustered into two classes. The only beneficial effect
variants in this set were 33 SAVs from haeIIIM, thus no distinction between deleterious
and beneficial effect was made. In total, the set contained 8,944 SAVs. Of those, only
6,410 SAVs from studies BRCA1, PTEN and TPMT had predictions from all VEPs. This
largest common subset is referred to as SetCommonAuthor in the following.
Comparing the ROC curves and resulting AUCs to those from deleterious effect SAVs
in SetCommonSyn95 shows slightly better prediction performance by all methods on
SetCommonAuthor (cf. Figures A.1a and 3.5). The improved performance could stem
from the specific subset of just three DMS studies. However, AUCs for all VEPs on BRCA1,
PTEN and TPMT were similar or lower when using class definitions based on synonymous
variants’ effects. Thus, the increased performance is indeed caused by the difference in
assigning classes and indicates that classifications performed by authors of DMS studies
capture a different aspect. However, the ranking between methods is only partly affected:
Envision performs marginally better but still clearly worse than all VEPs specialized for
classification. SIFT also remains the second-worst method separated by a large margin
from the top three. Among those, SNAP2 shows the highest performance (AUC= 0.78),
closely followed by PolyPhen-2 (0.77) and Naïve Conservation (0.76). Unlike on SetCom-
monSyn95, these differences are not statistically significant and 95% confidence intervals
of all three VEPs overlap.
Besides the higher overall performance, the shape of the precision recall curves is highly
similar between the two classification schemes for all VEPs (Figure A.1b). PolyPhen-2
and SIFT which have almost binary prediction outputs show little room for achieving
a trade-off between precision and recall. In fact, the two curves do not overlap until
the maximal threshold and a recall of 0 is reached. Even the naïve approach based on
PSI-BLAST profiles offers this to some degree, although its prediction output is by design
limited to only around 20 distinct values. Envision shows generally poor performance
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Figure 3.5. Binary prediction performance between class definitions. Classification
performance of VEPs is summarized by the area under the receiver operating characteris-
tic curve (AUC). SetCommonAuthor consists of 6,410 SAVs classified as either having an
effect or being neutral by the authors of the respective DMS studies. SetCommonSyn95
contains 13,796 SAVs with classes defined by the effect exhibited by synonymous vari-
ants in each DMS study (Reeb et al., 2020). Error bars denote 95% confidence intervals.

in line with the achieved AUC. However, more interesting is the sharp drop in precision
at a high threshold by more than 0.3 with the following rise to a precision of 1. Closer
analysis reveals that performance is relatively stable on BRCA1, while the drop is caused
by SAVs from TPMT and the subsequent rise by those from PTEN. Although there is no
clear explanation for this behavior, the fact that it only appears for Envision indicates
a potential bias and further underlines the VEP to be less well suited for classification.
Arguably, the smoothest transition between precision and recall as well as overall stability
is achieved by SNAP2. This can be regarded as manifestation of its careful training and
also forms the foundation for SNAP2 scores to correlate with effect strength.

3.4 Conclusions and outlook

Increasingly large variant effect data from the advances in next-generation sequencing
have lead to new discoveries, opportunities, and challenges in the field of variant effect
prediction. DMS is one technique based on these developments and has seen tremendous
growth in recent years, contributing large amounts of SAVs with known effect on protein
function. Our analyses highlight that traditional VEPs trained as classification methods on
non-DMS SAVs capture some aspects of effect in this new data. On the other hand, a VEP
specifically developed on DMS SAVs offers complementary strengths but also highlights
that more improvements are necessary. Generally, the findings of this study give impor-
tant pointers for the development of better VEPs in the future. For example, no single
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score could express the overall performance of methods in all possible applications. Thus,
optimization of VEPs during training must not focus on a single value either. Furthermore,
deleterious effect SAVs are predicted significantly better than beneficial effect variants.
Finally, no method performed well for both classification as well as regression tasks. While
this is expected, the benefit VEPs provide towards precision medicine will increase by
finding a better trade-off. This could be accomplished by a singular new method or astute
combination of complementary approaches.
Several issues regarding the underlying data remain to be solved as well. For example,
comparisons of multiple experimental measurements on the same protein showed differ-
ing agreements, highlighting the heterogeneity of assays. Naturally, prediction methods
can only ever hope to capture one of such facets of effect or, alternatively, detect the set
of variants that exhibit an effect on function in every type of functional assay. Another
aspect to consider for future endeavors is that methods trained on data from two different
assays for the same protein might learn and then predict different types of effect. This can
create a situation akin to that of current VEPs trained on various subsets of variants which
are thus both difficult to fairly evaluate as well as to apply without expert knowledge of
every VEP’s specific intricacies.
Regarding experimental values,we evaluated the correlation between predicted effect and
functional effect scores as they were published by the authors of DMS studies employing
as little normalization as possible. Many authors provided the scores as the logarithm of
read counts before and after applying functional pressure, potentially normalized to the
wild-type. Others have used more sophisticated approaches to better reflect a variant’s
impact on function. While all are sensible, it makes scores even more heterogeneous. For
a different approach, one might want to retrieve the raw sequencing data for every study
and process scores in a common pipeline, including error correction measures. This is
possible with methods such as Enrich2, dms_tools or PACT (Rubin et al., 2017; Bloom,
2015; Klesmith and Hackel, 2019). Since noise is a common problem in DMS studies
(Starita et al., 2017), this might yield more comparable scores. However, heterogeneity
of the employed functional assays and how direct their measure of protein function is
will remain.
Future evaluations might concentrate on additional DMS datasets which are not ana-
lyzed here. For example, a set of DMS studies has focused on viral proteins and how
their variants affect virus proliferation. While the efficiency of invasion and replication
within host cells is indeed those proteins’ function, none of the prediction methods eval-
uated here have been trained to recognize the effect of SAVs in viruses. Viral proteins
form a particularly interesting case since one of the main features in common variant
prediction methods is evolutionary information and viruses are under markedly different
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evolutionary pressure (Krupovic and Bamford, 2011). As so patently shown by the 2020
COVID-19 pandemic caused by SARS coronavirus 2, the impact these proteins can have
on a global scale is arguably unmatched. Thus, anything helping in understanding their
mechanisms and supporting respective research will provide a benefit to population and
economic health alike. Recently, a new study found performance in predicting the effect
of variants on viral proteins significantly lower when compared to SAVs in human, yeast
or bacterial proteins (Livesey and Marsh, 2019). Indeed, one of the main drivers for this
effect appeared to be low sequence diversity in alignments of viral proteins which current
VEPs cannot account for. Even more so, the best performing VEP overall was among the
worst on viral proteins. Therefore, much remains to be discovered in this area and there
is a large potential for improvement of VEPs.
Finally, the study mentioned above also found that an unsupervised probabilistic method
showed the best performance in predicting SAV effects as determined by DMS studies
(Livesey and Marsh, 2019). This should be a clear sign for future VEPs that, despite DMS
providing a wealth of potentially valuable training data, improvements in the field may
not come from falling into the same traps again and developing incrementally better
methods using increasingly complex models. Rather, the evolutionary information in the
sequence appears to already provide crucial signals which should first be understood and
harnessed in as direct as possible ways while avoiding the currently present biases.

3.5 Journal article
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Abstract

Background: Deep mutational scanning (DMS) studies exploit the mutational landscape of sequence variation by
systematically and comprehensively assaying the effect of single amino acid variants (SAVs; also referred to as missense
mutations, or non-synonymous Single Nucleotide Variants – missense SNVs or nsSNVs) for particular proteins. We
assembled SAV annotations from 22 different DMS experiments and normalized the effect scores to evaluate variant
effect prediction methods. Three trained on traditional variant effect data (PolyPhen-2, SIFT, SNAP2), a regression method
optimized on DMS data (Envision), and a naïve prediction using conservation information from homologs.

Results: On a set of 32,981 SAVs, all methods captured some aspects of the experimental effect scores, albeit not the
same. Traditional methods such as SNAP2 correlated slightly more with measurements and better classified binary states
(effect or neutral). Envision appeared to better estimate the precise degree of effect. Most surprising was that the simple
naïve conservation approach using PSI-BLAST in many cases outperformed other methods. All methods captured
beneficial effects (gain-of-function) significantly worse than deleterious (loss-of-function). For the few proteins with
multiple independent experimental measurements, experiments differed substantially, but agreed more with each other
than with predictions.

Conclusions: DMS provides a new powerful experimental means of understanding the dynamics of the protein
sequence space. As always, promising new beginnings have to overcome challenges. While our results demonstrated
that DMS will be crucial to improve variant effect prediction methods, data diversity hindered simplification and
generalization.

Keywords: Sequence variation, Variant effect prediction, Deep mutational scanning, Non-synonymous sequence variant,
Missense variant, Single nucleotide variant

Background
Recent human sequencing projects conclude that we all
carry about 10,000 single amino acid variants (SAVs;
also referred to as missense mutations, or non-
synonymous Single Nucleotide Variants: nsSNVs) with
respect to the “reference genome” and by 20,000 for

every pair of unrelated individuals [1, 2]. Many of these
SAVs are assumed to be neutral, while others might
change protein function, contributing to complex phe-
notypes and causing diseases. Unfortunately, the gap be-
tween SAVs with and without experimental characterization
continues to widen [3]: for only one in 10,000 of the known
SAVs some experimental information is available [4, 5]. On
top, many of those for which something is known may be
incorrect disease associations [6]. Without improving the
ability to interpret SAV effects, both on the level of the
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organism and the protein, the promise of precision medicine
will remain, importantly unmet [7–10].
Through the increased efficiency of sequencing, a pro-

cedure formerly used primarily in silico [11, 12] has be-
come feasible for experiments, namely assessing the effect
of all possible SAVs in a protein, i.e. all possible amino
acid mutations. In such deep mutational scanning (DMS)
studies [13, 14], a sequence library with all possible vari-
ants is subjected to selection. In the simplest case, the
(logarithmic) difference between sequence frequencies
with and without selection pressure yield an effect score
for individual or combinations of variants [8, 15–17]. Vari-
ants with beneficial and deleterious effect on protein func-
tion are discovered together with a quantification of how
much effect. Thus, DMS aims at measuring the landscape
of functional fitness for select proteins [18].
DMS also screens proteins for improved drug binding,

antibody affinity, using non-native chemical stresses, or
non-proteinogenic amino acids, and on synthetic pro-
teins [19–26]. Finally, DMS share objectives with di-
rected evolution, benefiting protein engineering [14].
One major challenge for DMS is the development of an

assay to measure effect. Evaluating proteins with multiple
functions requires multiple assays [8]. For instance, for the
Ubiquitin-60S ribosomal protein L40 variant effects have
been assessed through their direct impact on yeast growth
and through the impaired activation by the E1 enzyme
[27, 28]. Similarly, BRCA1 has been assayed through E3
ubiquitin ligase activity and through BARD1 binding and
transcript abundance [29, 30]. Even for the same assay,
specific experimental conditions might influence measure-
ments [31]. Recently, a protocol for measuring protein
abundance has been suggested as a proxy for function and
applicable to many proteins [32]. The conclusions from
DMS studies are limited by the validity of their functional
assays; inferences of more complex effect relationships
such as disease risk or clinically actionable pathogenicity
often remain too speculative [8, 17]. On top, variants
might affect molecular function as assayed by DMS al-
though being clinically benign, i.e. not causing disease.
Long before experimental DMS, prediction methods

had addressed the same task in silico [33–41]. These
methods were developed on very limited data; many fo-
cused on disease-causing SAVs from OMIM [42], others
used databases such as PMD [43] cataloguing variants by
effect upon protein function or structure. CADD solved
the problems of data limitation and bias by considering all
mutations that have become fixed in the human popula-
tion as neutral and a simulated set of all other variants as
having an effect [35]. The training dataset determines the
type of effect methods can learn. Consequently, methods
differ and work only on the type of SAV used for develop-
ment. Given the limitations in today’s data, all methods
have been optimized on relatively small, unrepresentative

subsets: fewer than 85,000 of all possible 217 million hu-
man SAVs (< 0.04%) have some experimental annotations
[44, 45]. Methods agree much more with each other for
SAVs with than for those without annotations [46].
DMS datasets constitute a uniquely valuable resource

for the evaluation of current SAV effect prediction
methods [17, 47, 48], not the least, because most have not
used those data. The Fowler lab has, recently, published
an excellent analysis of prediction methods on DMS data-
sets and developed a new regression-based prediction
method, Envision, trained only on DMS data [49]. Here,
we focus on the analysis of a larger set of DMS studies
and present trends in their correlation with SAV effects
predicted by four variant effect prediction methods.

Results
DMS studies not complete yet
Our Deep Mutational Scanning (DMS) analyses began
with 22 separate experimental datasets from 18 unique
proteins, since some experiments were performed on the
same protein (Supplementary Online Material (SOM),
Fig. S1a, Table S1) [29, 30, 32, 50–65]. In total the set
contained 68,447 variants (Fig. S1); 2358 (3%) of these
were synonymous, the other 97% constituted SAVs (or
missense mutations).
Only ten of the 22 sets (45%) scored some variants for

at least 98% of the residues (Table S1). Four DMS stud-
ies provided functional scores for over 90% of all pos-
sible 19 non-native SAVs. On average, 66% of the
residues had SAVs with both deleterious and beneficial
effects (Table S2; those two could be seen as “disruptive
variants” arching over gain- and loss-of-function). Most
SAVs were beneficial for only 3 of 22 studies (14%), for
the other 19 studies deleterious outnumbered beneficial
SAVs by factors of 1.5–22.5 (Fig. S1b). Due to asymmet-
ries in numbers and experimental fidelity, deleterious
and beneficial SAVs were analyzed separately.

Some correlation achieved by all methods
SetCommon constituted a subset of all 22 datasets with
32,981 effect SAVs (17,781 deleterious) for which we
had predictions from each method (Table 1). Although
all predictions differed from the experiments, all corre-
lated slightly positively for deleterious SAVs (Spearman
ρ ≥ 0.1, Fig. 1a-c, Tables 2, S3). The 95% confidence in-
tervals (CIs) of methods did not overlap, and their differ-
ences were statistically significant (Table S4).
Both SIFT [39] and PolyPhen-2 [37] are optimized for

capturing binary effects, not correlations, as confirmed
by recent studies [47, 49]. Consequently, analysis for
these was confined to binary predictions. SNAP2 [38]
and Envision [49] scores appeared, overall, less binary
(Figs. 1a-b). SNAP2 distributions were skewed toward
high effect, while Envision also succeeded in detecting
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SAVs with less pronounced effects (Fig. 1a-b). Predic-
tions by Naïve Conservation, based on PSI-BLAST pro-
files, correlated more with the DMS experiments than
Envision (Fig. 1c).

Envision might approximate experimental values best
When evaluating methods by the numerical difference be-
tween experimental and predicted variant effect scores
(mean squared error, MSE), Envision appeared best,
followed at considerable distance by Naïve Conservation
and SNAP2 (Fig. 1, Table 2). However, its low MSE par-
tially originated from predicting no SAV with strong effect
(the highest Envision score was 61% of the possible max-
imum – 0.61). This resembled the experimental distribu-
tion skewed towards low effect (Fig. 1b, gray distributions
next to x- and y-axes). Indeed, shuffling the prediction
scores yielded the same MSE (Fig. S2a). Predicting a nor-
mal distribution around the experimental mean, per-
formed slightly worse but still better than all other
prediction methods (Fig. S2b). When considering each
DMS measurement separately, Envision also appeared to
perform best except for the transcriptional coactivator
YAP1 (YAP1) with the most uniform distribution of effect
scores (similar number of lowest, medium, and strongest
effects observed; Fig. S3b, Table S5).

All classification methods detect increasing effect
strength
Do methods work better for SAVs with stronger observed
effect? Toward this end, the experimental scores were
sorted into 20 bins of increasing effect strength, and the
effect predictions in each bin (here referred to as recall)
were monitored for all prediction methods. All classifica-
tion methods tended to reach higher recall levels for SAVs
with stronger effects (Fig. 2a, higher values toward the
right). Furthermore, all methods also show an increase
without a clear saturation point showing that the range of

Table 1 Number of SAVs in aggregated datasetsa

Number of SAVs

Total Neutral Deleterious Beneficial

SetAll 66,089 818 b 45,382 19,889

SetCommon 32,981 0 17,781 15,200

SetCommonSyn90 15,621 8926 4545 2150

SetCommonSyn95 15,621 10,587 3209 1825

SetCommonSyn99 15,621 13,506 1548 567
aSetAll depicts the total number of SAVs collected, while SetCommon contains
only SAVs with predictions from every analyzed method. SetCommonSyn
contains all SAVs with predictions where a thresholding scheme could be
applied to yield classification of SAVs into neutral and effect (see Methods).
The number of SAVs in every single DMS experiment are depicted in Fig. S1
and Table S1
bThe ccdB set classifies variant effect in categories and contains 818 non-
synonymous variants which fall in the same category as the wild-type. Hence
these SAVs could be considered neutral

Fig. 1 DMS experiments vs. variant effect predictions. In a hexbin
plot, 17,781 deleterious effect SAVs in SetCommon were compared
to normalized scores for three prediction methods (SNAP2 [38],
Envision [49], and Naïve Conservation). Values on both axes range
from 0 (neutral) to 1 (maximal effect) as denoted by the gradient
from white (neutral) to red (effect). Dashed red lines give linear
least-squared regressions. Marginals denote distributions of
experimental and predicted scores with a kernel density estimation
overlaid in blue. The footer denotes Spearman ρ, Pearson R and the
mean squared error together with the respective 95% confidence
intervals. The method scores are given on the y-axes and reveal the
method: a SNAP2, b Envision – the only method trained on DMS
data, c Naïve Conservation read off PSI-BLAST profiles
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Table 2 Pearson ρ and mean squared error (MSE) for methods on SetCommona

deleterious SAVs (n = 17,781) beneficial SAVs (n = 15,200)

ρ MSE ρ MSE

SNAP2 0.41 [0.40, 0.42] 0.3 [0.30, 0.30] 0.02 [0.01, 0.04] 0.23 [0.23, 0.24]

Envision 0.1 [0.08, 0.11] 0.06 [0.06, 0.07] −0.14 [−0.16, − 0.13] 0.05 [0.04, 0.05]

Naïve Conservation 0.29 [0.27, 0.30] 0.19 [0.19, 0.19] −0.08 [− 0.09, − 0.06] 0.19 [0.19, 0.20]
aSetCommon denotes the set of SAVs with predictions from every method (see Methods). ρ denotes Spearman ρ (higher is better), MSE the mean squared error
(lower is better, Methods, SOM_Note3). Values in brackets are 95% confidence intervals

Fig. 2 Recall proportional to deleterious DMS effect scores. The continuous normalized DMS scores with deleterious effect in SetCommon were
split into 20 bins of equal size. a In each bin the fraction of SAVs predicted as having an effect by the binary classification methods (PolyPhen-2
[37], SIFT [39] and SNAP2 [38]) was shown. Naïve Conservation read off PSI-BLAST profiles was treated as an effect prediction when scores were
above 0. For all other methods the default score thresholds were applied. b shows the values adjusted for the amount of effect predicted in the
first bin
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increasing effect strength is detected. For some methods
the difference between the least- and most-effect bins was
higher than for others, i.e. their predictions distinguished
more between high and low experimental scores (Fig. 2b).

Beneficial effects difficult to predict
Unlike for deleterious SAVs, no method correlated, on
average, with beneficial effect SAVs (− 0.14 ≤ ρ ≤ 0.02,
Tables 2, S6, Fig. S4). Furthermore, most methods essen-
tially predicted similar numbers or lower numbers of ef-
fect variants irrespective of the observed effect strength
with the exception of SNAP2 that detected some high
effect SAVs (Fig. S5). The conservation-based prediction
also decreased substantially from a Spearman ρ of 0.29
for deleterious to − 0.08 for beneficial SAVs (Table 2,
Fig. S4c). SNAP2 scores were shifted more toward lower
effect than for deleterious SAVs (Fig. 1a and Fig. S4a,
gray distributions). In contrast to Spearman ρ, the MSE
for beneficial effect SAVs was similar to that for deleteri-
ous SAVs. Envision again was by far best (MSE = 0.05,
Tables 2, S7, Fig. S6). However, although Envision used
25% beneficial effect SAVs for development (SOM_
Note1), the correlation was much lower for beneficial
than for deleterious SAVs (ρ = − 0.14 versus 0.1).

Experimental agreement sets the benchmark for
prediction methods
The above comparisons of experimental and predicted
SAV effects raise the question of what agreement can
realistically be obtained. One proxy for an answer is the
comparison of different DMS studies conducted on the
same protein. Such data were available for 11 measure-
ments on 4 proteins (Table S8, Fig. S7); unfortunately,
Envision predictions were available for only one of those
proteins (BRCA1). For deleterious SAVs, the lowest cor-
relation was that between two measurements on breast
cancer type 1 susceptibility protein, BRCA1 and
BRCA1_2015_E3 (ρ = 0.21, Fig. S7b). Rather than experi-
mental noise, the low correlation might also originate
from different experimental setups employed for multi-
functional proteins such as BRCA1. The strong correl-
ation (ρ = 0.93) between two experiments that measured
the same condition for bla (beta-lactamase TEM precur-
sor; bla and bla_2014, Fig. S7h) provided a single case in
strong support of such an explanation. To compare pre-
diction methods and experiments, we assessed the differ-
ence in ρ and MSE for each combination of the 11
measurements (Fig. 3). Experiments clearly agreed more
with each other than with SNAP2 and Naïve Conserva-
tion on the same datasets (Fig. 3: all values negative).

Fig. 3 Experimental agreement vs. predictions. For every pair of experimental measurements on the same protein (Table S1), the agreement
between two experiments and that between each experiment and the predictions of SNAP2 and Naïve Conservation are compared. a Δρ =
0.5*(ρ(× 1,p1) + ρ(× 2,p2)) - ρ(× 1,× 2), (b) ΔMSE =MSE(× 1,× 2) - 0.5*(MSE(× 1,p1) + MSE(× 2,p2)). Where × 1/× 2 are the experiments and p1/p2 the
predictions on the two experiments, all of which are calculated based on the largest possible set of SAVs. Negative values on the y-axes thus
imply that the agreement between experiments is higher than that between experiment and prediction, positive values that predictions
agree more
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Experiments did not correlate at all with each other
for beneficial effect (mean ρ = 0.03) although the MSE
remained low (mean MSE = 0.05, Table S8, Fig. S8). The
major issue for this comparison was the small number
of only 572 SAVs.

Assessment of binary classification (neutral/effect) similar
to regression
Scores from binary classification methods (neutral or ef-
fect) are often assessed through receiver operating char-
acteristic (ROC) curves avoiding to choose particular
thresholds to distinguish neutral and effect. Toward this
end, we assigned classes to SAVs through normalization
by experimental measurements of synonymous variants
[60] (Methods). Other solutions are feasible, each with
their own ad hoc parameter choices and flaws implying
that the following results provide one snapshot instead
of a sustained method ranking.
On the 3209 deleterious effect SAVs of SetCommonSyn95

(10,587 neutral, Table 1, Fig. S9), SNAP2 achieved the high-
est area under the curve (AUC, 0.76, 95% CI [0.75, 0.77]). It
was the only method statistically significantly better than
Naïve Conservation (0.73 [0.72, 0.74], Figs. 4, S10 Table
S9). Precision-recall curves also highlighted the smooth
transition of SNAP2 scores opposed to those for Naïve
Conservation although the peak performance was similar
for both (Fig. S11). Envision - not developed for this task -
performed better than random, but clearly worse than the
classification methods (AUC= 0.55 [0.54, 0.56]). However,
the four proteins considered here (BRCA1, PPARG, PTEN
and TPMT), also correlated above average for SNAP2,
PolyPhen-2 and SIFT (Table S3). Using different thresholds
in severity to classify SAVs did not qualitatively change
these major findings (SetCommonSyn90, SetCommonSyn99,
Fig. S12a-b).
At their default thresholds SIFT, PolyPhen-2, and

SNAP2 consider over two thirds of the neutral variants
to have an effect. Interestingly, the behavior of Envision
trained on DMS data was the reverse as previously illus-
trated by the maximal scores reaching only up to 61% of
the possible maximal values (and thereby contributing to
a seemingly low MSE).
Beneficial SAVs were also difficult to classify: PolyPhen-

2 and SNAP2 performed best with AUC = 0.62, followed
by SIFT, while Envision predictions were not better than
random (Fig. S13, Fig. S12c-d, Table S9). Naïve Conserva-
tion also performed significantly worse at a level of ran-
dom predictions.

Discussion
No clear winner in predicting effect variants
We compared the predictions of five methods with SAV
effects determined by DMS experiments. SNAP2 was
trained on binary classification data (effect or neutral).

Nevertheless, predictions have been shown to correlate
with effect strength [5, 66, 67]. To a degree, the Deep
Mutational Scanning (DMS) data replicated this finding,
highlighting that even methods trained for classification
capture aspects of effect strength.
Sorting DMS scores into 20 bins and including classifi-

cation methods SIFT and PolyPhen-2 in the analysis, all
methods indicated better recognition of high effect
SAVs. This finding might be attributed to the bias of
classifications methods towards high effect variants, a
common criticism in the field [68–71]. We observed the
same trend for Naïve Conservation exclusively using
PSI-BLAST profiles to predict SAV effects. This empha-
sized the importance of this signal but to some extend
also explained the traditional classification methods’ bias
since they all rely on this input.
The significantly better performance of Envision in es-

timating the precise degree of effect especially suggested
value in this approach. However, the low MSE was

Fig. 4 Classification performance of all prediction methods. Shown
are ROC curves for 13,796 deleterious effect SAVs which were
classified into either neutral, defined by the middle 95% of the
scores from synonymous variants, or effect (SetCommonSyn95).
Shaded areas around lines denote 95% confidence intervals. The
legend denotes the AUC for each of the five prediction methods,
along with the 95% confidence intervals. Horizontal dashed lines
denote the default score threshold used by SNAP2 (blue) and
SIFT (green)
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largely explained by that Envision correctly predicted the
overall distribution of experimental scores. Thus, the
definite distinction between ‘good prediction’ and ‘ad-
vantageous bias’ remained elusive.
When treating DMS effect scores as binary assign-

ments (neutral or effect), ROC curves highlighted the
high false positive rates of the evaluated classification
methods. A similar perspective on over-prediction has
recently been observed for ClinVar data [69]. Over-
prediction might be encouraged by the way many users
of prediction methods mistakenly chose their tools,
namely by testing a small set of SAVs they know have
an effect and valuing methods highest when they predict
effects for more of those.

Family conservation carries most important signal
Most surprising was the overall good performance of Naïve
Conservation. Disease causing SAVs from OMIM typically
affect the most conserved residues [46], and machine-
learning based predictions have been criticized to largely
capture conservation [17, 70, 72–74]. Furthermore, simple
conservation patterns can capture aspects of variant effects
[75]. Our findings partially validated this for DMS experi-
ments, although the effect distributions observed by DMS
and predicted by Naïve Conservation differed substantially
(Fig. 1c, gray distributions). Another recent analysis also
found a method heavily relying on evolutionary information
as one of the best performers on DMS data, although more
sophisticated than our naïve approach [48, 76].

Beneficial effects neither correctly predicted, nor
consistent between experiments
The bad correlation and classification performance of
beneficial effect SAVs by all methods suggested those to
have distinctly different signatures than deleterious
SAVs, missed by current approaches. Generally, SAVs
with neutral or beneficial effects are often not recog-
nized well [69, 77]. In part, this is attributable to the lack
of respective experimentally verified data useable for
training sets. For beneficial effect variants, the rise of
DMS studies could help to alleviate this problem and
lead to the development of less biased methods.
Agreement between experimental studies was particu-

larly low for beneficial effect SAVs. Maybe DMS assays
are still biased towards measuring deleterious effects.
These results put the seemingly poor predictions of
beneficial SAVs into perspective. Generally, the wide
variation of correlation between experiments for differ-
ent datasets/proteins has also been observed in another
recent DMS analysis [48].

Conclusions
Deep mutational scanning (DMS) studies set out to explore
the relation between protein sequence and molecular

function. We collected 22 DMS experiments and focused on
single amino acid variants (SAVs, also referred to as missense
mutations or non-synonymous SNVs). Most studies probe
only a small subset of all possible variants (for a protein with
N residues, there are 19*N non-native SAVs). Two experi-
ments probing the same protein tended to agree more with
each other than with predictions for deleterious effect (Fig.
3). Nonetheless, experiments also disagreed significantly
(Table S8). No single measure captured all aspects of the
comparison between experiments and predictions, e.g. the
ranking of methods changed crucially depending on the
measure used to compare (Table 2, SOM_Note2).
We analyzed five variant effect prediction methods:

Envision was trained on DMS data, PolyPhen-2, SIFT
and SNAP2 were methods developed to classify into ef-
fect/neutral, and Naïve Conservation (essentially using
PSI-Blast conservation to predict effect/neutral) was
added to gauge the importance of evolutionary conserva-
tion for the prediction. For deleterious SAVs, all
methods reached slightly positive Spearman ρ correla-
tions with the DMS experiments (Fig. 1). The classifica-
tion method SNAP2 correlated most with effect
strength, although most of the correlation was explained
by simple conservation. The lowest mean squared error
(MSE) was achieved by Envision. Its MSE was as low as
that between experiments, although most of the low
MSE could be explained by correctly predicting the dis-
tribution of scores (Fig. 1, Fig. S2a). All methods per-
formed better on SAVs with deleterious (akin to loss-of-
function) than with beneficial (gain-of-function) effect.
However, experimental agreement was also almost non-
existing for beneficial effects.
Although binary classification methods, surprisingly,

captured aspects of non-binary measurements, they per-
formed much better for the binary classification task
(projecting DMS results onto neutral vs. effect; Fig. 4).
Notably, Naïve Conservation captured effect better than
some more advanced tools. Methods performed better
for SAVs with stronger experimental effect scores (Fig.
2: higher toward right), although most classifiers tended
to substantially over-predict at their default scores (Fig.
4). Overall, our analyses confirm some of the trends
from other reviews of DMS data [48, 49].
The challenge for the next generation of prediction

methods will be to learn from the diversity of DMS. To
give just one example: OMIM, a popular source of train-
ing data, contained ~ 11,000 SAVs referenced in dbSNP
(02/2019, [78]). This is a magnitude matched by a single
large DMS experiment. The generality of a single SAV
might not be comparable between the sets, yet DMS
opens up variant effect prediction to new methodologies,
possibly even to deep learning approaches [79, 80]. The
enriched data might also allow methods to distinguish
between toggle and rheostat positions [73]. Furthermore,

Reeb et al. BMC Bioinformatics          (2020) 21:107 Page 7 of 12



DMS studies contain many beneficial effect SAVs that
have, so far, been underrepresented. Finally, DMS fo-
cuses on molecular function, i.e. some of the disruptive
SAVs (deleterious or beneficial) might correspond to
clinically benign SAVs. Nevertheless, DMS will likely
give rise to new methods better predicting SAV effects
upon molecular protein function and upon organisms.
In fact, growth-based DMS assays have been shown to
be predictive of human disease SAVs in a recent study
[48]. Therefore, a combination of experimental data with
new prediction methods might be what is needed to at-
tain the goals of precision medicine.

Methods
Dataset collection
Figure 5 sketches the basic workflow of this analysis. We
retrieved all DMS datasets available by June 2019 that
report over 100 SAVs available from the literature. Func-
tional effect scores were taken directly from the supple-
mental material published or requested from the authors
(Table S10). The data were formatted in a variety of for-
mats including Excel, and tab- or comma-separated files.
Scores were manually mapped either to the UniProtKB
identifier given in the publication or to its closest
BLAST match (Table S11) [44, 81]. Six of the 22 experi-
ments contained up to five substitutions (pairwise se-
quence identity ≥98%); those were maintained for
prediction. We refer to the combined data as SetAll (66,
089 SAVs) supplemented by SetCommon with 32,981
SAVs for which we had a prediction from every method
tested (Table 1). SetCommon contained SAVs from ten
of the 22 experiments: YAP1, MAPK1, BRCA1, CCR5,

CXCR4, GAL4, PPARG, PTEN, TPMT, and Ube4b
(Table S1). During completion of this manuscript,
MaveDB, a centralized resource of multiplexed assays of
variant effect has been published [8, 82]. MaveDB identi-
fiers exist for ten of our 22 datasets (November 2019,
Table S10).
SetAll contained several proteins with multiple inde-

pendent experimental measurements. Inclusion of add-
itional sets analyzed previously [49], yielded a total of
three measurements for Hsp82 and BRCA1 and two for
both beta-lactamase and ubiquitin (Table S1) [27, 28,
83]. Performance measures were calculated only on
SAVs and not between DMS measurements from the
same publication. For analysis of beneficial effect SAVs,
all studies on Hsp82 had to be excluded since the sets
contain only three of those SAVs each.

Processing functional effect scores
Several DMS studies provide multiple effect scores for the
same protein of which we decided on only one per set
(Table S12). In the following processing, effect scores were
left as provided by the authors as much as possible but ad-
justed such that the wild-type score for each measurement
(Table S13) became 0, and larger values denoted more ef-
fect. Next, scores were interpolated, separately for each of
the 22 DMS measurements, to lie between 0 and 1 (high-
est effect). This interpolation did not affect Spearman ρ or
the mean squared error within each dataset. Beneficial
and deleterious effects had to be analyzed separately be-
cause experimental assays were not symmetrical and fur-
ther normalization might over- or underrepresent effects.
The resulting score distributions differed significantly

Fig. 5 Concept of analysis. Experimental scores of variant effects (missense mutations, or single amino acid variants, labelled SAVs) from Deep
Mutational Scanning (DMS) experiments were compared to in silico prediction methods. Envision was the only method developed on DMS data;
it provides continuous scores mirroring the DMS data. SIFT, PolyPhen-2 can be evaluated as binary classification methods. SNAP2 is a classification
method but provides continuous scores that can also be used. Naïve Conservation is provided as a baseline for both cases
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between experiments (e.g. in contrast to the more homo-
geneous subset used previously [49]).
We also created sets with binary classifications (effect

vs. neutral) from all DMS studies with synonymous vari-
ants: The middle 95% of effect score values from syn-
onymous variants was used to define which SAVs were
considered neutral. All SAVs outside this range were
considered as effect. We applied the same procedure
using 90% or 99% of synonymous variants’ values and
refer to the thresholding schemes as syn90, syn95, and
syn99. Applying these schemes to the four experiments
in SetCommon which have synonymous variants
(BRCA1, PTEN, TPMT, PPARG) yields SetCommon-
Syn90|95|99. Again, deleterious and beneficial effect
SAVs were analyzed separately.

Performance measures
Experiments and predictions were compared through
three measures (SOM_Note3, SOM_Note2): (1) mean
squared error (MSE) calculated with the scikit-learn
metrics module [84]; (2) Pearson R (pearsonr) and (3)
Spearman ρ (spearmanr) both calculated with the SciPy
stats module [85]. For convenience linear least-squares
regression lines (linregress) were added to the correl-
ation plots. Pearson R was added for ease of comparison
to others but not discussed as it is not robust and most
datasets violated both its validity assumptions (normal
distribution & absence of significant outliers [86]). We
further found no evidence to supplement MSE by a
measure more robust to outliers (SOM_Note2). 95%
confidence intervals (CIs) for R, ρ and MSE were esti-
mated using a percentile bootstrap with 1000 random
samples with replacement.
The performance of binary predictions (effect vs. neu-

tral) was measured through receiver operating character-
istic (ROC) curves and the area under those curves
(AUC) calculated through the pROC package in R,
which was also used to calculate 95% confidence inter-
vals of ROC (ci.se) and AUC (ci.auc) [87, 88]. Addition-
ally, precision-recall curves were created using scikit-
learn (precision-recall-curve). These are defined with TP
as true positives (predicted and observed as effect), FP as
false positives (predicted as effect, observed as neutral),
and FN as false negatives (predicted neutral, observed ef-
fect): Precision = TP/(TP + FP), Recall = True Positive
Rate = TP/(TP + FN) and False Positive Rate = FP/(FP +
TN).

Prediction methods
The sequences determined during dataset collection
were used as input to a set of commonly used variant ef-
fect prediction methods. Each method was run to pre-
dict the effect of all 19 non-native amino acids at every
position in the protein. SNAP2 [38] was run locally using

default parameters on UniProtKB (Release 2018_09).
SIFT version 6.2.1 [39] was run locally (UniProtKB/
TrEMBL Release 2018_10). PolyPhen-2 [37] predictions
were retrieved from the webserver in batch mode with
classification model humdiv on genome assembly
GRCh37/hg19 and default parameters [89]. Predictions
failed for all relevant residues of the three DMS studies
on Hsp82. Envision [49] predictions were retrieved on-
line which requires UniProtKB identifiers as input [90].
Therefore, Envision predictions could be analyzed only
for ten proteins (Table S14). While SNAP2 and SIFT
predicted all SAVs, PolyPhen-2 and Envision failed for
some residues, shrinking the size of the datasets. We al-
ways report performance on the largest common subset
of SAVs per dataset.
As a baseline, predictions were also created by running

PSI-BLAST with three iterations on UniProtKB (Release
2018_09). Scores from the resulting profile (position-
specific scoring matrix) had their signs flipped and were
then directly used as a measure of effect, i.e. less fre-
quent substitutions have a higher effect than conserved
ones. We refer to this method as Naïve Conservation.
The prediction was not intended to be the most accurate
conservation score possible but rather to represent a
suitable baseline since (PSI-)BLAST results are used in
some way as input feature by all methods analyzed here.
For SIFT, scores were reversed such that higher values

implied higher effect. The same was done for Envision
predictions of deleterious effect. Envision predictions of
beneficial effect were treated separately and mapped to
the range of [0,0.2]. This yielded the same performance
than scaling between [0,1] or no scaling (SOM_Note4).
Finally, prediction scores of all methods were adjusted to
lie between 0 (no effect) and 1 (highest effect) using the
theoretical maximum and minimum prediction value of
every method.
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So go ahead, break stuff.
Break yourself on the once-hard edges of yourself.

And recycle the debris into the foundation of your future.
Mark Twight - Kiss Or Kill: Confessions of a Serial Climber

Chapter 4

Conclusion

The field of variant effect prediction is in a state of contradiction. In a health care sys-
tem with access to ever cheaper sequencing capacities, VEPs play an important part in
providing actionable interpretation. Hundreds of such tools are available. Yet, our under-
standing of performance and behavior is at odds with their increasing significance and
the role they are considered for in precision medicine. By analyzing the most popular
VEPs currently used, this thesis has highlighted shortcomings and provides directions for
future enhancements.

We assembled novel datasets of monogenic disease-causing SAVs in human as well as
mouse, demonstrating that these variants exhibit a high effect signal. The popularity of
these SAVs for training of VEPs identifies a major source of bias, further compounded by
the variants’ high sequence conservation. A second assessment provided further support
for this as well as other known issues, and farther elucidated original problems. Using
experimental data from DMS assays, we proved that no VEP currently captures all aspects
of variant effect on protein function in a continuous form. Nor does a single commonly
used score suffice for portraying the results of such an assessment. These points persist
even when evaluating prediction performance in the more established approach of classi-
fying SAVs as either having an effect or not. Additionally, variants with beneficial effect on
protein function poignantly emphasized how they are neglected by current VEPs and thus
present one of the major challenges for future methods. At the same time, they provided
a strong point for using DMS data in prospective analyses as well as VEP development.

Overall, there is still plenty of room for improvements in a field within computational
biology that was established decades ago. While this thesis presents the challenges for
VEPs in 2020, it does not offer the gratification of an immediate solution. Integrating the
knowledge presented by this thesis in new methods will be the task of future research.
Likely, improvements will emerge from both better understanding of problems and care-
ful application of new method development techniques, as well as a further increase in
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experimental data. It is reasonable to assume that these changes will not be wholly com-
pleted within a single generation of novel VEPs. However, if the field seeks to continue
supporting human healthcare, these tasks must be tackled sooner rather than later. Find-
ing the most suitable combination of predictions and experimental measurements will
be the determinant for enabling true precision medicine.



Appendix A

Additional data

Table A.1. SAV classifications provided by DMS study authors. Detailed information
on how classification of SAVs into either effect or neutral were performed for our analysis.
References to columns or worksheets are indexed at 1 and refer to the files denoted in
Table S10 of Reeb et al., 2020

Dataset identifier Classification scheme
BRCA1 Column 17 provides a classification into 3 bins: functional (FUNC),

non-functional (LOF) and intermediate (INT). The average binned
value for each position is the highest effect class encountered, i.e.
INT if at least one INT, LOF if at least one LOF, otherwise FUNC. For
our classification into neutral and effect, INT is discarded, FUNC is
assigned as neutral, LOF as effect.

HSP82_2011 The manuscript implies a classification of < −0.4 (deleterious),
< 0.1 (neutral), > 0.1 (beneficial). The values of every codon are
averaged. No beneficial effect variants exist.

HSP82_2013 Author-provided binning from the manuscript based on the nor-
malized selection coefficient s is: beneficial (s > 0.01), wt-like
(−0.01 < s < 0.01) deleterious (−0.5 < s < −0.01), strongly dele-
terious (s < −0.5). wt-like is mapped to neutral, the rest to effect.
This score uses the same measurement as the one for correlation,
i.e. the selection coefficient at 30°. No beneficial effect variants ex-
ist for this condition.

PTEN Column 6 contains a classification into four states and is parsed
into two binary scores. ’possibly low’ and ’possibly wt’ entries are
ignored, ’wt’ is assigned as neutral, ’low’ as effect.

TPMT Same as PTEN.
haeIIIM The manuscript contains cutoffs for classification into deleterious

(≤ 0.6), neutral (]0.6, 1.1]) and beneficial effects (> 1.1). Deleteri-
ous and beneficial are both assigned as effect. We use the strongest
selection after 17 rounds.
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Figure A.1. Classification performance on SAVs with class definitions by authors
of DMS studies. Analogously to Figure 4 in Reeb et al. (2020), the performance of
five VEPs is assessed on set of SAVs that were categorized as either neutral or effect
by authors of the respective DMS studies (see Table A.1). (a) shows ROC curves with
shaded areas and numbers in parentheses denoting 95% confidence intervals. (b) plots
precision and recall against increasingly strict thresholds for considering a prediction
as having an effect. Thresholds for every method were scaled to the interval [0, 1] for
plotting.



Appendix B

Publication summaries with
individual contributions

B.1 Predicted Molecular Effects of Sequence Variants Link to System

Level of Disease

This publication primarily investigates two aspects of variant effect prediction: (i) The
behavior of VEPs regarding the prediction of disease variants in humans as well as animals,
and (ii) the relationship of those and other variants to sequence conservation.
Disease variants in humans as found in databases like OMIM traditionally constituted
a major part of VEPs’ training data (Amberger et al., 2019). Here, we first evaluated
how a set of 5,661 SAVs from OMIM is predicted by the commonly used VEPs SNAP2,
PolyPhen-2 and SIFT (Hecht et al., 2015; Adzhubei et al., 2013; Kumar et al., 2009).
All three showed high sensitivity, predicting at least 75% of the SAVs to have an effect.
However, an additional set of neutral variants highlighted that SIFT and PolyPhen-2
achieved their higher effect variant detection only at the cost of predicting too much
effect in general. Interestingly, SNAP2 was re-trained for this analysis without disease
SAVs and still predicted more effect for the set of OMIM SAVs than for its own training set
of effect variants from other sources. An additional set of 117 disease SAVs from animals
was manually curated from the OMIA database (Lenffer et al., 2006; OMIA, 2019). While
this sample size is too small to draw definite conclusions on larger sets, even more animal
disease SAVs were predicted to have an effect than those from humans.
In experimental biology it is common to study variants outside of their natural host. For
example, human diseases and their underlying SAVs are commonly studied in mouse
models. We transferred the concept to an in silico evaluation by introducing OMIM SAVs
into the respective mouse homologs. In this case, less variants in the animal model were
predicted to have an effect compared to human. Reasons for this behavior could for ex-
ample be slight changes between the human and homologous sequences which influence
the SAVs’ effects through a different epistatic environment.
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The final analysis aimed to shed light on the importance and bias of VEPs regarding
sequence conservation. We showed that OMIM SAVs when transferred to other positions
in the sequence which were at least as conserved as the original position, were predicted
with similar levels of effect. More so, random variants at other, at least equally conserved
positions, were also predicted similarly. This behavior mostly perished when removing
features related to sequence conservation from the SNAP2 prediction input. Together,
these findings indicate that conservation is a primary driver of effect prediction. While the
feature is clearly relevant, VEPs are easily biased to consider every change at conserved
positions to have an effect.
Jonas Reeb (JR), Maximilian Hecht (MH), Yannick Mahlich and Burkhard Rost (BR) con-
ceptualized the work. JR performed data curation, analyses, methodology, and visual-
ization. MH provided help with SNAP2 and contributed to additional analyses and data
curation. BR and Yana Bromberg provided supervision. BR provided funding. JR wrote
the initial manuscript draft with BR. All authors reviewed and approved of the final
manuscript.

B.2 Variant effect predictions capture some aspects of deep muta-

tional scanning experiments

DMS represents a novel experimental approach for the high-throughput measurement
of SAV effects, utilizing the advances in next-generation sequencing. Due to the data’s
novelty only one VEP, Envision, has so far been trained on DMS SAVs. We harnessed this
unique opportunity to provide an unbiased assessment of the established VEPs SNAP2,
SIFT, and PolyPhen-2 together with Envision on a set of 17,781 SAVs with deleterious
effect.
The effect signal of SAVs from DMS experiments was captured by VEPs only to a degree.
Classification methods such as SNAP2 performed best when assessing the correlation
between experimentally measured and predicted effect on a continuous scale (Spearman’s
ρ = 0.41, 95% confidence interval= [0.4,0.42]). Generally, classification VEPs performed
better for SAVs with stronger observed effect and detected the increase in effect well.
On the other hand, Envision which was trained as a regression predictor, appeared to
best approximate the precise degree of effect (Mean squared error = 0.09 [0.06,0.07]).
However, this seemingly good performance is at least partially owed to not predicting
any SAVs as having a high effect. Interestingly, a naïve prediction method based solely
on PSI-BLAST sequence conservation scores exhibited the second best performance after
SNAP2 (ρ = 0.29 [0.28,0.3]).
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Assessing VEPs on a classification task, i.e., predicting whether a SAV is neutral or has an
effect, showed SNAP2 as the best performing method (AUC = 0.76 [0.75, 0.77]). Yet, this
was the only VEP statistically significantly better than the naïve prediction approach (AUC
= 0.73 [0.72,0.74]). Envision, not trained on this task, performed better than random
but clearly worse than all other VEPs. Additional analyses of 15,200 SAVs with beneficial
effect showed severely reduced prediction performance by all methods, effectively on the
level of random guessing.
Overall, this analysis provided unique insights regarding the performance of established
VEPs on this new type of experimental dataset. Traditional classification methods and
a novel regression approach showed complementary strengths. However, the agreement
between independent experimental measurements was always higher than between pre-
dictions and experiments. Furthermore, a simplistic approach using only sequence con-
servation information already provided much of the signal captured. Finally, beneficial
effect SAVs also highlighted that much remains to be done for future VEPs.
Jonas Reeb (JR) and Burkhard Rost (BR) conceptualized the initial idea for the work.
Theresa Wirth performed preliminary analyses and data curation. JR expanded the con-
cept with BR. JR established novel resources and performed data curation for new and
final analyses. JR developed the methodology and visualization. BR provided supervision
and funding. JR wrote the original manuscript draft with BR. All authors reviewed and
approved of the final manuscript.
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