
Technische Universität München

Fakultät für Mathematik

Lehrstuhl für Operations Research

Min-Sum Set Cover, OR-Scheduling,
and Related Problems

Felix Happach

Vollständiger Abdruck der von der Fakultät für Mathematik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:

Prüfer der Dissertation:

Prof. Dr. Gero Friesecke

1. Prof. Dr. Andreas S. Schulz

2. Prof. Dr. Thomas Lidbetter
(Rutgers University)

Die Dissertation wurde am 22.06.2020 bei der Technischen Universität München
eingereicht und durch die Fakultät für Mathematik am 15.09.2020 angenommen.

Acknowledgments
During the past years as a doctoral candidate, I have had the pleasure of meeting with
and benefiting from many people both on a professional and on a personal level. I am
grateful to all my friends, family, colleagues and other people who have accompanied
me during these almost four years.
A special thanks goes, of course, to my supervisor Andreas S. Schulz who guided

and supported me all these years. Whenever I knocked on his door, he provided me
with helpful advice and new interesting problems, ideas and “low hanging fruit”. He
gave me the freedom to work on whichever topic I liked and, even though I started out
working on a completely different problem in the beginning, I was attracted to the field
of scheduling problems and approximation algorithms by his enthusiasm. His profound
knowledge in the area and his encyclopedic recall of the literature and techniques aided
me in various glassboard discussions and whenever I got stuck or needed some input.
I am also much obliged to my mentor Steffen Borgwardt who supported me con-

tinuously since and beyond my master thesis project. He has always had an open
ear for questions of any kind. Especially, I very much appreciate him giving me the
opportunity to visit the University of Colorado Denver for six weeks. This research
stay was an experience from which I have benefited incredibly and that I will never
forget (not only because it resulted in a joint paper, which, unfortunately, did not fit
the topic of this thesis, but also personally).

Also, I want to thank Thomas Lidbetter, whom I had the pleasure to meet at MAPSP
2019, for the many fruitful discussions there and during his visit at TU Munich. His
valuable input triggered new ideas and results on some open problems I had been
struggling with for quite some time.
Moreover, I am thankful to all the current and former members of the Operations

Research Group at TU Munich for being such great colleagues and friends. Thanks also
to all the other members of the Discrete Mathematics, Optimization and Convexity
Group (or, as I am still used to it, the “M9 Group”) in Garching. In particular, I
want to thank Matthias Brugger, Ulf Friedrich, Marinus Gottschau, Marcus Kaiser,
Marilena Leichter, Clara Waldmann and Stefan Weltge for the fruitful discussions on
common projects, helpful advice and joint brainstorming on “my problems” as well
as the fun together beyond research and teaching. Further, I would like to thank my
(former) office mates Max Fiedler, Diogo Poças and Alexandros Tsigonias-Dimitriadis.

Last but not least, I am deeply grateful to my wife Carmen for all her love and
continuous support. Without you, I would not have been able to accomplish everything
that I did, especially during the past few months. Thank you for always having my
back! I love you!

Felix Happach

Abstract
We address various scheduling problems with OR-precedence constraints that are
extensions of min-sum set cover, minimum latency set cover and generalized min-
sum set cover. Using machinery from the theory of scheduling, we devise new exact
and approximative algorithms for variants of these problems. We consider two main
objective functions: makespan and total weighted completion time. For the makespan,
we present an approximation algorithm, provide a lower bound on the approximation
factor and present a polynomial time algorithm for the preemptive case. We study the
relation between min-sum covering problems and OR-scheduling to minimize the total
weighted completion time, and propose various algorithms, e.g., for laminar generalized
min-sum set cover and a generalization of precedence-constrained min-sum set cover.
Moreover, we present a framework for obtaining 4η-approximation algorithms for
various linear ordering problems that generalize precedence-constrained single-machine
scheduling. Some algorithms in this thesis are based on linear programs. We review
classical LP formulations from the literature in the OR-scheduling context, characterize
valid inequalities and analyze the integrality gaps of these relaxations. Finally, we
discuss a different scheduling model, which is called concurrent open shop, and present
a new approximation algorithm for the preemptive variant with release dates.

Zusammenfassung
Wir betrachten diverse Scheduling-Probleme mit OR-Vorgängerbeziehungen, welche
Erweiterungen von Min-Sum Set Cover, Minimum Latency Set Cover und Generalized
Min-Sum Set Cover sind. Mit Hilfe von Methoden aus der Schedulingtheorie leiten
wir neue exakte und approximative Algorithmen für Varianten dieser Probleme her.
Wir betrachten zwei der wichtigsten Zielfunktionen aus dem Gebiet des Scheduling:
die gesamte Produktionsdauer und die Summe der gewichteten Fertigstellungszeiten.
Für die Produktionsdauer liefern wir eine untere Schranke für die Approximierbarkeit
und geben einen Approximationsalgorithmus für den allgemeinen Fall sowie einen
polynomiellen Algorithmus für den Fall mit Job-Unterbrechungen an. Außerdem un-
tersuchen wir den Zusammenhang zwischen Min-Sum Set Cover und OR-Scheduling
und formulieren diverse Algorithmen u.a. für Laminar Generalized Min-Sum Set Cover
sowie eine Verallgemeinerung von Precedence-Constrained Min-Sum Set Cover. Wir
präsentieren ein Grundgerüst, um 4η-Approximationsalgorithmen für Verallgemeine-
rungen von Schedulingproblemen zu erhalten. Manche Algorithmen in dieser Arbeit
basieren auf linearen Programmen. Wir analysieren klassische LP-Formulierungen aus
der Literatur im OR-Scheduling Kontext, charakterisieren zulässige Ungleichungen und
studieren die Ganzzahligkeitslücke dieser Relaxierungen. Schlussendlich betrachten wir
ein weiteres Scheduling-Modell, Concurrent Open Shop, und geben einen neuen Appro-
ximationsalgorithmus für die Variante mit Unterbrechungen und Freigabezeitpunkten
der Jobs an.

Contents

1 Introduction 1
1.1 Notation and Preliminaries . 3

1.1.1 Complexity and Approximation Algorithms 3
1.1.2 Graphs and Graph Classes . 6
1.1.3 Polyhedra and Linear Programming 7
1.1.4 Scheduling . 10

1.2 Min-Sum Set Cover and Scheduling with OR-Precedence Constraints . 13
1.2.1 Min-Sum Set Cover and Some Generalizations 13
1.2.2 Scheduling with OR-Precedence Constraints 14

1.3 Overview of the Thesis and Main Results 19

2 Makespan Minimization with OR-Precedence Constraints 23
2.1 Related Work and Our Results . 23
2.2 Preliminaries . 26

2.2.1 Related Algorithms for AND-Scheduling 26
2.2.2 Earliest Start Schedules and Minimal Chains 29

2.3 Approximability and Hardness of the Non-Preemptive Variant 31
2.3.1 List Scheduling is a 2-Approximation Algorithm 31
2.3.2 An Inapproximability Result 33

2.4 A Polynomial-Time Algorithm for the Preemptive Variant 36
2.5 Open Problems . 42

3 Combinatorial Algorithms for the Sum of Weighted Completion Times 45
3.1 Related Work and Our Results . 45
3.2 Preliminaries . 48

3.2.1 Pipelined Set Cover and All-But-Constant Min-Sum Set Cover 49
3.2.2 Density-Maximizing Initial Sets for AND-Scheduling 51

3.3 Bipartite OR-Scheduling is Hard . 54
3.4 Algorithms for Laminar Min-Sum Covering Problems 55

3.4.1 Laminar All-But-Constant Min-Sum Set Cover 58
3.4.2 Laminar Generalized Min-Sum Set Cover 64

3.5 A Framework for Approximating Scheduling Problems 70
3.5.1 A Density-Maximizing Greedy Algorithm 71
3.5.2 Two 4-Approximation Algorithms for OR-Scheduling Problems 74

3.6 Open Problems . 78

v

4 Linear Programming Relaxations and LP Based Algorithms 81
4.1 Related Work and Our Results . 81
4.2 Preliminaries: LP Formulations for AND-Scheduling 85

4.2.1 Completion Time Variables . 85
4.2.2 Linear Ordering Variables . 88
4.2.3 Time-Indexed Variables . 89

4.3 Time-Indexed Formulation . 92
4.3.1 Approximating Bipartite AND/OR-Scheduling 92
4.3.2 A 4-Approximation for All-But-One Min-Sum Set Cover 100

4.4 Linear Ordering Formulation . 103
4.4.1 Bipartite OR-Precedence Constraints 104
4.4.2 Acyclic Precedence Graphs . 109

4.5 Completion Time Formulation . 116
4.5.1 Generalized Minimal Chains . 116
4.5.2 The Minimal Chain Relaxation 119

4.6 Open Problems . 124

5 Preemptive Concurrent Open Shop with Release Dates 127
5.1 Introduction and Related Work . 127
5.2 A 2-Approximation Algorithm . 129

5.2.1 A Valid LP Relaxation . 129
5.2.2 Preemptive List Scheduling . 131

5.3 Open Problems . 133

Bibliography 135

Chapter 1

Introduction

This thesis addresses various min-sum covering problems and related scheduling pro-
blems, studies their connection and presents algorithms therefor. All problems discussed
in this thesis fall into the large class of combinatorial optimization problems, which
are characterized as those problems where one “searches for an optimum object in
a finite collection of objects” ([147], page 1). For a detailed study on combinatorial
optimization, we refer to the textbooks of Korte and Vygen [102], Papadimitriou and
Steiglitz [132] and Schrijver [147].

The basis of the models studied here is min-sum set cover, which was introduced by
Feige, Lovász and Tetali [44, 45]. Min-sum set cover is a variant of the well-known set
cover problem, which is one of the classical problems in combinatorial optimization [98].
In set cover, one intends to find a smallest collection of given sets over a finite ground set
of elements that covers all elements. Min-sum set cover and the extensions considered
in this thesis can be seen as variants of set cover, where one means to find a linear
ordering of the elements that satisfies some constraints and is optimal with respect to
some objective function. These problems are tackled by interpreting them as instances
of scheduling problems with so-called OR-precedence constraints. Scheduling is an
abstract framework for many real-world scenarios that go beyond simple assignment
problems. In scheduling, one tries to find an optimal assignment of jobs to machines
while (at the same time) attempting to obtain an optimal ordering of jobs allocated to
the individual machines subject to certain constraints.

A prime example for a scheduling problem arises in, e.g., doctors’ offices or in surgery
every day. There are several patients arriving over time, but there is only a limited
number of doctors and rooms available. The patients have varied needs that require
a varied timespan, varied technical equipment, a varied number of persons present
during surgery, etc. More generally, we have jobs (patients) with varied processing
times that have to be assigned to a limited number of machines (rooms, doctors). The
jobs might also compete for several resources (equipment, specific persons such as an
anesthesiologist), have weights (some surgery might be more urgent than others), or
are only available in a certain time interval, etc. The goal is to find an assignment of
the jobs to the machines and an ordering of the jobs on each machine that minimizes
the sum of weighted completion times (“urgent jobs preferably first”).

1

Chapter 1 Introduction

Also the well-known traveling salesperson problem (TSP), one of the classical problems
in combinatorial optimization [35], can be viewed as a scheduling problem. Here, we
are given a set of n cities with pairwise symmetric non-negative distances, i.e., the cost
of traveling from city i to city j equals the cost of traveling from j to i. The task is to
find a tour of minimum cost that visits each city exactly once. (For more information
on TSP as well as applications and solution approaches, we refer the reader to the
textbook of Lawler et al. [110].) On a more abstract level, one can reformulate TSP
as follows: Find a linear ordering of the cities of minimum cost, where the incurred
cost of a city depends on the previously visited city. This is a scheduling problem with
one machine where each city corresponds to a job, and the processing time of each job
depends on the preceding job(s). The objective is to minimize the makespan, i.e., the
completion time of the last job.
These examples only cover a very small class of scheduling models. In this thesis,

we do not consider specific applications of scheduling problems, but rather conduct
fundamental research. That is, we analyze these problems from an abstract way, and
present basic algorithms to obtain optimal or approximately optimal feasible solutions.
Before we introduce the models and the main concepts in Section 1.1, we want to give a
brief overview of the historical development of (parts of) the field. For a more detailed
historical overview of the area, we refer to [138].
Although the first scheduling problem was mentioned by Gantt [51] in 1913, one

could say that the research area of scheduling was actually founded in the 1950’s by
the seminal papers of Johnson [95], Jackson [91], Smith [157] and McNaughton [123],
see [138]. During the next decades, the number of different settings and results increased
rapidly: Single-machine, parallel identical machines, unrelated machines, flow shop,
job shop, (different types of) precedence-constraints, release dates, deadlines, several
objective functions, etc.1 In 1979, some of the major researchers in the field published
an influential survey [68] in which they introduced a unified notation to classify the
different scheduling models.
In the 1960’s and 1970’s, research focused on obtaining efficient algorithms for

certain scheduling problems or showing that such algorithms cannot exist under some
complexity assumptions, see Section 1.1.1. The goal of many papers in the field, such as,
e.g., [86, 47, 129, 130, 32, 85, 162, 23, 113, 52, 108, 112], was to distinguish the “border”
between “efficiently solvable problems” and “hard problems”. For those problems that
were classified to be “hard”, research then concentrated on finding guarantees for
provably good approximate solutions, see, e.g., [66, 67, 144, 107, 84, 115, 148, 71].
One paper that should be mentioned explicitly is the seminal paper of Graham [66].
Graham introduced a very simple algorithm called list scheduling that, to this day,
is used as a framework for many scheduling algorithms. He further proved that this
algorithm achieves provably good solutions for a very basic scheduling problem, thereby
presenting one of the first approximation algorithms in scheduling [138].

1See Section 1.1.4 for an explanation of some of these terms.

2

1.1 Notation and Preliminaries

Note that the above references are not exhaustive and only comprise very restricted
classes of deterministic scheduling models that are most closely related to the scheduling
models studied in this thesis. We introduce these models in Sections 1.1.4 and 1.2.2.
Another popular research direction is stochastic scheduling, where some of the input
data is given by probability distributions, but which is not considered here. For an
extensive survey on scheduling problems, we refer to, e.g., [111, 27, 136, 114].

In this thesis, we focus on various deterministic scheduling problems, mostly where
jobs are subject to a specific type of precedence constraints, see Chapters 2 to 4, and
where jobs consist of different tasks, see Chapter 5. We review the relevant literature
and introduce the problem specific tools and preliminaries at the beginning of the
respective chapters.

1.1 Notation and Preliminaries
This section lays the foundation for the notation and terminology used throughout
the thesis. The set of real numbers, integers and positive integers is denoted by R, Z
and N, respectively. Further, we let N0 := N ∪ {0} be the set of non-negative integers,
and define [n] := {1, . . . , n} for any n ∈ N and [0] := ∅. If a set N1 is a subset of a
set N2 and they might coincide, we denote this by N1 ⊆ N2. If N1 is a strict subset
of N2, we write N1 (N2. The cardinality of a set N is denoted by |N | and its power
set is 2N := {S |S ⊆ N}.

1.1.1 Complexity and Approximation Algorithms
A key research area in combinatorial optimization is the design and analysis of algorithms
and the closely related complexity theory. When confronted with an optimization
problem Π, we intend to design an algorithm that returns an optimal solution for any
instance of Π. We mainly focus on minimization problems, where an optimal solution
is a feasible solution of lowest objective function value. For maximization problems,
we seek a feasible solution with highest possible objective value. Theoretically, finding
an optimal solution is often possible by, e.g., enumerating all feasible solutions and
picking the best one. In practice, however, the number of feasible solutions might be
huge compared to the actual instance of the problem. We simplify all notions and
concepts in this section as far as possible to improve readability. For details, we refer
to the textbook of Garey and Johnson [53].
For every optimization problem (“What is an optimal solution for instance I?”),

there is a corresponding decision variant. As input, the decision problem receives an
integer K ∈ Z, in addition to the instance I, and asks whether there is a feasible
solution of I with objective value at most K (for minimization) or at least K (for
maximization), respectively. Depending on whether the answer to the decision problem
is “yes” or “no”, we call the instance a Yes-instance or No-instance, respectively.

3

Chapter 1 Introduction

Example 1.1 (Decision Variant for TSP)
The optimization version of TSP is “What is the minimal cost of a tour that visits
each city exactly once?”, and the corresponding decision version is “Is there a tour
that visits each city exactly once of cost at most K?”.

It is clear that, if we can solve an optimization problem, we can also solve the
corresponding decision version: If we have an optimal solution for an instance, we can
easily compare its objective value to K. On the other hand, if the decision variant is
“hard”, then the optimization problem is also “hard”. Therefore, instead of considering
the optimization problem itself, we can often restrict to the corresponding decision
variant.

Running Time. The main quantitative measures for analyzing algorithms are the
input size of an instance and the running time of an algorithm. The input size of
an instance I of an optimization problem Π is the number of bits needed to store
the information that defines I. The running time of an algorithm is the number of
elementary operations that the algorithm needs until it returns a feasible solution.
Typically, the running time is measured by a function g(n) that indicates the number
of elementary operations the algorithm requires in the worst-case until in terminates
on an instance of size at most n.

In theoretical computer science, one often does not consider the exact running time,
but focuses on upper and lower bounds. A helpful tool for this is the O-notation. Let
g1, g2 : N → N be two functions. We write g1 ∈ O(g2) if there are n0, c ∈ N such
that g1(n) ≤ c g2(n) for all n ≥ n0. Conversely, we write g2 ∈ Ω(g1) if g1 ∈ O(g2). A
standard notion in theoretical computer science is polynomial running time.

Definition 1.2 (Polynomial-Time Algorithm)
Let Π be an optimization problem. An algorithm Alg has polynomial running
time if there is a polynomial g : N→ N such that, for every instance I of Π of size
at most n, the worst-case running time of Alg on I is in O(g(n)). If Alg returns
an optimal solution for every instance I of Π and has polynomial running time,
we call it a polynomial-time algorithm for Π.

Complexity Classes. We say an decision problem Π is solvable in polynomial time
if there is a polynomial-time algorithm for Π. The set of polynomial-time solvable
optimization problems is denoted by the complexity class P. Unfortunately, most
problems in combinatorial optimization probably do not lie in this class, but in a larger
class called NP. The complexity class NP is defined as the set of problems for which a
non-deterministic polynomial-time algorithm exists. Roughly speaking, a problem Π is
in NP if we can check in polynomial time whether a given solution is feasible for the
decision version of Π. Note that P ⊆ NP.

4

1.1 Notation and Preliminaries

We say that a problem Π′ reduces to Π if there is a polynomial-time algorithm that
maps instances of Π′ to instances of Π, and has the property that the input instance is
a Yes-instance of Π′ if and only if the output instance is a Yes-instance of Π. That is,
we can express Π′ as a special case of Π. If Π′ reduces to Π then Π is “harder” than Π′
in some sense. A problem Π is called NP-complete if it is contained in NP and every
Π′ ∈ NP reduces to Π. We say a problem Π is NP-hard if there is an NP-complete
problem Π′ that reduces to Π. Note that if Π′ reduces to Π and Π reduces to Π, then
Π′ reduces to Π, i.e., reductions are transitive. A problem is strongly NP-hard if it
remains NP-hard, even if all numerical parameters are bounded by a polynomial in the
input dimension [52].

In 1971, Cook [33] identified the first NP-complete problem: Satisfiability, which
asks whether there is a true/false assignment of variables such that a given boolean
formula is satisfied. In a seminal paper, Karp [98] showed that many standard
combinatorial optimization problems, such as, e.g., Clique, Set Cover, Exact
Cover and Partition, are NP-complete.2 He presented a list of 21 problems that,
to this day, are used to show NP-hardness of optimization problems. The results
of Cook [33] and Karp [98] led to a number of follow-up works that classified many
combinatorial optimization problems to be either in P, i.e., “easy problems”, or NP-
hard, i.e., “hard problems”. It is a long outstanding open question in theoretical
computer science and mathematics whether the complexity classes P and NP coincide,
i.e., whether there is an NP-complete problem that is contained in P.3 The common
conjecture is that P 6= NP.

Approximation Algorithms. Unless P = NP, we cannot hope to find polynomial-time
algorithms for NP-hard optimization problems. One way to circumvent this is to relax
the condition of optimality and focus on approximately optimal solutions instead.

Definition 1.3 (Approximation Algorithm)
Let Π be a minimization problem, Alg a polynomial-time algorithm and η ≥ 1.
For every instance I of Π, let Opt(I) and Alg(I) denote the optimal objective
value of I and the objective value of the solution returned by Alg, respectively.
We call Alg an η-approximation algorithm for Π if

Alg(I)
Opt(I) ≤ η for all instances I of Π. (1.1)

If Π is a maximization problem, we call Alg an η-approximation algorithm if

Opt(I)
Alg(I) ≤ η for all instances I of Π. (1.2)

2We refer to the appendix of [53] for an extensive list of NP-complete problems. The “classical”
NP-hard problems of [98, 53] are written in capital letters throughout the thesis.

3www.claymath.org/millennium-problems/p-vs-np-problem (last checked: June 10, 2020)

5

www.claymath.org/millennium-problems/p-vs-np-problem

Chapter 1 Introduction

Technically, one has to be careful about the signs of the objective values. For most
combinatorial optimization problems, we can assume, w.l.o.g., that the objective value
of any feasible solution is positive, i.e., the ratios in Definition 1.3 are well-defined. We
call an approximation algorithm a constant-factor approximation if the factor η does
not depend on the input size of the instance.
For η ≥ 1 and K ∈ N, the approximate decision variant of a minimization problem

Π asks whether there is a feasible solution of objective value ≤ η K or if all feasible
solutions have objective value strictly greater than K. Note that the approximate
decision problem might return any answer if there is a feasible solution in the half-open
interval (K; η K]. The approximate decision variant of a maximization problem is
defined similarly and asks whether there is a feasible solution of objective value at
least 1

η K or whether all solutions have objective value < K. Observe that, for η = 1,
the approximate decision problem and the decision problem coincide. We say that an
optimization problem Π is NP-hard to η-approximate if the corresponding approximate
decision problem for η is NP-hard. An optimization problem Π is said to be APX-hard
if there is a constant η > 1 such that it is NP-hard to η-approximate Π.

A (1+ε)-approximation algorithm whose running time is polynomial in the input size
and 1/ε for any fixed ε > 0 is called a polynomial-time approximation scheme or PTAS.
If the running time is polynomial in the size of the instance and in 1/ε, it is called a
fully polynomial-time approximation scheme or FPTAS. Note that there is no PTAS
for APX-hard problems, unless P = NP. Garey and Johnson [52] showed that the
existence of an FPTAS for a strongly NP-hard problem would imply P = NP. We refer
to the textbooks of Hochbaum [83] and Williamson and Shmoys [165] and references
therein for more details and examples on the design and analysis of approximation
algorithms, as well as for concepts of proving hardness of approximation.

1.1.2 Graphs and Graph Classes

Graphs are useful combinatorial objects to encode dependencies and connections
between elements of a finite set. The field of graph theory is a complete research
area on its own from which we only need very few notions. We refer to [36] for an
overview on basic graph theory, concepts and terminology, and to [124] for related
basic algorithms and data structures.
A directed graph, or digraph, G = (N,E) consists of a set of nodes N and a set of

arcs E ⊆ N ×N . The nodes in {i ∈ N | (i, j) ∈ E} are called predecessors of a node
j ∈ N , and the successors of j are the nodes in {i ∈ N | (j, i) ∈ E}. A subgraph of G
is a digraph G′ = (N ′, E′) with N ′ ⊆ N and E′ ⊆ E ∩ (N ′ ×N ′). For a given set of
nodes S ⊆ N , we call G[S] := (S,E ∩ (S × S)) the subgraph induced by S. A path in G
is a subset of nodes {i1, . . . , i`} ⊆ N such that (iq, iq+1) ∈ E for all q ∈ [`− 1], and if
i1 = i`, we call {i1, . . . , i`} a cycle. We say a node i is reachable from a node j if there
exists a path in G that starts at j and ends at i.

6

1.1 Notation and Preliminaries

chain

intree

outtree

bipartite

inforest

outforest

acyclic

Fig. 1.1: Overview of the main digraph classes considered in this thesis. An arrow from class
Λ1 to Λ2 indicates that Λ1 is a special case of Λ2. The directed graph depicted here
is itself acyclic. If we remove the node “chain” or “acyclic” from the graph, we obtain
an intree or outforest, respectively.

A graph traversing algorithm is an algorithm that starts at a given node in G and
recursively enumerates all its successors, see, e.g., Chapter 9 of [124]. That is, a graph
traversing algorithm enumerates all nodes that are reachable from the start node.
Standard graph traversing algorithms are, e.g., breadth-first search or depth-first search
that run in polynomial time in the size of the graph.

Graph Classes. A digraph G = (N,E) is called acyclic if it does not contain a cycle,
and bipartite if the set of nodes can be partitioned into N = A ∪̇B such that E ⊆ A×B.
If every node of a directed acyclic graph has at most one successor, we call the digraph
an inforest. Similarly, an outforest is a directed acyclic graph where every node has
at most one predecessor. A node of an inforest or outforest is called a root if it has
no successors or predecessors, respectively. An inforest with only one root is called
an intree. Similarly, an outforest that contains only one root is called an outtree. A
directed graph is said to be a chain if it is an intree and an outtree at the same time.
Figure 1.1 illustrates the relation between these different graph classes.

1.1.3 Polyhedra and Linear Programming

A commonly used approach to tackle combinatorial optimization problems is to encode
the set of feasible solutions as a set of high-dimensional vectors and to transform the
objective function to a linear function from the space of these vectors to the real line.

7

Chapter 1 Introduction

For TSP, we could, for instance, introduce a binary variable xij for every pair of
cities i and j that indicates whether we go from city i directly to j (xij = 1) or not
(xij = 0). The set of feasible tours can then be described as the set of all integer points
in Rn(n−1)/2 that satisfy certain constraints, see Example 1.4. The length of a tour is
then the sum over all variables xij times the cost of traveling from i to j.

Example 1.4 (A Formulation for TSP)
The following formulation for TSP is due to Dantzig, Fulkerson and Johnson [35].
There is a one-to-one correspondence between optimal tours and optimal solutions of
the following integer program:

min
n∑
i=1

n∑
j=1
j 6=i

cij xij (1.3a)

s.t.
n∑
j=1
j 6=i

xij = 2 ∀ i ∈ [n], (1.3b)

∑
i∈S

∑
j∈S\{i}

xij ≤ |S| − 1 ∀S ([n], (1.3c)

xij ∈ {0, 1} ∀ i, j ∈ [n], i 6= j. (1.3d)

Here, cij indicates the cost of traveling from city i to j. Constraints (1.3b) ensure that
we enter and leave every city exactly once, and constraints (1.3c) that the resulting
solution does not contain any subtours, i.e., is indeed a proper tour.

The objects we obtain via this geometric interpretation are so-called polyhedra.
The framework of optimizing linear functions over a polyhedron is known as linear
programming. In the related field of integer programming, we want to optimize linear
functions over all integral points in a polyhedron, as in Example 1.4. In this section,
we recall the most important notions and results of the theory of integer and linear
programming. The reader is referred to, e.g., [145, 131] for more details.

Polyhedra. We assume that a vector x ∈ Rn is a column vector, and denote the
corresponding transposed row vector by xT . The scalar product of two vectors x, d ∈ Rn
is defined as dTx :=

∑n
q=1 dqxq. For d ∈ Rn and γ ∈ R, the set {x ∈ Rn | dTx = γ}

is called a hyperplane and {x ∈ Rn | dTx ≤ γ} is the corresponding halfspace. A set
P ⊆ Rn is called a polyhedron if there is a matrix D ∈ Zm×n and a vector b ∈ Zm
such that P = {x ∈ Rn |Dx ≤ b}.4 A bounded polyhedron is called a polytope. For
d ∈ Rn and γ ∈ R, we call dTx ≤ γ a constraint, and we say the constraint is valid for
P if dT y ≤ γ for all y ∈ P . We say a constraint is tight at P if it is valid, and if it is
satisfied with equality for some y ∈ P .

4Dx ≤ b means that each component of Dx is less or equal than the respective component of b.

8

1.1 Notation and Preliminaries

Let V = {v1, . . . , v`} ⊆ Rn be a finite set of vectors. The convex hull of V is defined
as the set conv(V) := {

∑`
q=1 λqvq |λ1, . . . , λ` ≥ 0,

∑`
q=1 λq = 1}, and the linear hull of

V is lin(V) := {
∑`
q=1 λqvq |λ1, . . . , λ` ∈ R}. A set X ⊆ Rn is called an affine subspace

if there is x ∈ Rn and a finite set V ⊆ Rn such that X = {x + v | v ∈ lin(V)}. The
dimension of X is equal to the dimension of the linear subspace lin(V). A set Y ⊆ Rn
is called convex if λx + (1 − λ) y ∈ Y for all x, y ∈ Y and λ ∈ [0; 1]. Note that
polyhedra are convex. The dimension of a convex set Y ⊆ Rn, denoted by dim(Y), is
the dimension of an inclusion-minimal affine subspace that contains Y . A finite set
V = {v0, . . . , v`} ⊆ Rn is called affinely independent if dim(conv({vq−v0 | q ∈ [`]})) = `.
Let P be a polyhedron, H ⊆ Rn a hyperplane, and let H≤ be the halfspace corre-

sponding to H. If P ⊆ H≤ and P ∩H 6= ∅ then H is called supporting hyperplane at P ,
and F = P ∩H is called a face of P . Note that F is a polyhedron. We call F a vertex
of P if dim(F) = 0, i.e., F is a singleton, and we call it a facet if dim(F) = dim(P)− 1.
We say that the constraint H≤ defines the face F . Note that F is a facet of P if F
contains an affinely independent set V ⊆ F with |V | = dim(P).

Linear and Integer Programming. Let P = {x ∈ Rn |Dx ≤ b} be a rational po-
lyhedron and consider the linear function cTx for some c ∈ Zn. One can minimize
cTx over P in polynomial time in the input size of P using the ellipsoid algorithm of
Khachiyan [99, 49]. Note that maximizing cTx is equivalent to minimizing −cTx, so
we can, w.l.o.g., restrict to minimization problems. It is well-known that, if P is a
polytope, there is an optimal solution of the linear program, or LP, min{cTx |x ∈ P}
that is a vertex of P . Grötschel, Lovász and Schrijver [70] showed that, even if the size
of P is not polynomial in the input size of an optimization problem Π, one can still
solve the linear program in polynomial time in the input size of Π, if one can solve the
corresponding separation problem in polynomial time. The separation problem for an
LP is, given a vector x, to decide whether x ∈ P or find a valid constraint dT y ≤ γ of
P that is violated by x, i.e., such that dT y ≤ γ < dTx for all y ∈ P .

Definition 1.5 (Integer Program and LP Relaxation)
Let P be a rational polyhedron. Then min{cTx |x ∈ P ∩ Zn} is called an integer
program, and min{cTx |x ∈ P} its (LP) relaxation. A vector x ∈ P is called
feasible for the LP, and x ∈ P ∩ Zn is called feasible for the integer program. The
set conv(P ∩ Zn) is called the integer hull of P .

The integer hull of a polyhedron is again a polyhedron, and solving the integer pro-
gram min{cTx |x ∈ P∩Zn} is equivalent to solving the LP min{cTx |x ∈ conv(P∩Zn)}
over the integer hull. Although we can optimize a linear function over a polyhedron P ,
it is NP-hard to optimize the function over P ∩ Zn in general. Even recognizing
whether a polyhedron coincides with its integer hull, i.e., whether P = conv(P ∩Zn), is
NP-hard [133]. The optimal objective value of an integer program is not less than the
optimal solution of its LP relaxation, i.e., min{cTx |x ∈ P ∩ Zn} ≥ min{cTx |x ∈ P}.

9

Chapter 1 Introduction

The ratio between the optimal objective value of an integer program and its relaxation
is called the integrality gap.5

Definition 1.6 (Integrality Gap)
Let min{cTx |x ∈ P ∩ Zn} be an integer program and min{cTx |x ∈ P} its LP
relaxation. For c ∈ Zn, let x∗c and xc be optimal solutions of the integer program
and its relaxation, respectively. The integrality gap of P is defined as the supremum
over the ratios of the optimal objective values, supc∈Zn

cT x∗c
cT xc

.

There might be several LP relaxations for the same integer program, i.e., polytopes
P and Q such that P ∩ Zn = Q ∩ Zn, but P 6= Q. If the integrality gap of P is less
than the integrality gap of Q, we say that P is stronger than Q. Typically, we want
to find LP relaxations for combinatorial optimization problems that are as strong as
possible, but can still be solved in polynomial time in the input size of the problem.

A common approach to design approximation algorithms, which we use in Chapters 4
and 5, is to come up with a strong LP relaxation for the problem and bound the cost
of the solution returned by the algorithm by the cost of an optimal LP solution. That
is, given a problem Π, find D ∈ Zm×n and b ∈ Zm and set P = {x ∈ Rn |Dx ≤ b}
such that there is a one-to-one correspondence between integer points in P ∩ Zn and
feasible solutions of Π. If the algorithm solves the LP over P to obtain a feasible
integer solution, e.g., through rounding, then one has to take care that the LP can be
solved in polynomial time. Such approximation algorithms are called LP based. Note
that the integrality gap gives a lower bound on the approximation ratio of an LP based
approximation algorithm.

Example 1.7 (Example 1.4 continued)
An LP relaxation of the integer program (1.3) is obtained by relaxing the binary
constraints (1.3d) to 0 ≤ xij ≤ 1. This LP relaxation is known as the Held-Karp
relaxation [80]. One can show that the integrality gap of this relaxation is at least 4

3 [164].
Also, it is possible to efficiently separate constraints (1.3c) [35], i.e., we can solve the
LP relaxation in polynomial time in the size of the TSP instance.

1.1.4 Scheduling
Since we consider two different main scheduling settings in this thesis (see Section 1.3),
we define in this section the notation for the main part of the thesis (Chapters 2 to 4)
only. The terminology and notation for the scheduling problem presented in the last
chapter is deferred to Section 5.1. We trust the reader will find this presentation more
natural rather than confusing.

5Technically, one has to be careful about the existence of optimal solutions and the objective
values being equal to zero or of different signs. However, since we consider integer programs and
LP relaxations of specific combinatorial optimization problems only, we can ignore such pathological
examples. That is, the integrality gap is well-defined and greater or equal than 1.

10

1.1 Notation and Preliminaries

j1 j2 j3

pj3

0 Cj1 Cj2 Sj3 Cj3

time

Fig. 1.2: A non-preemptive single-machine schedule j1 → j2 → j3. In sketches of schedules,
shaded areas correspond to idle time, and jobs are depicted as rectangles with length
corresponding to their processing time. Note that the machine is not idle at time
Cj1 because the next job immediately starts processing, i.e., Cj1 = Sj2 .

Schedules. Let n,m ∈ N. Let N be a set of n jobs and m be the number of machines.
We consider the setting of m parallel identical machines, i.e., all machines are of equal
speed and run in parallel. We call the corresponding scheduling problem a single-
machine problem if m = 1, and a parallel-machine problem if m > 1. Each job j ∈ N
is associated with a processing time pj ≥ 0, a weight wj ≥ 0 and a release date rj ≥ 0.
For a subset of jobs S ⊆ N , we abbreviate p(S) :=

∑
j∈S pj and w(S) :=

∑
j∈S wj . By

scaling the input data suitably, we may assume that all data are integral.

Definition 1.8 (Schedule)
A schedule is an assignment of the jobs in N to the machines such that

(i) each job j is processed by a machine for pj disjoint units of time,
(ii) no job starts before its release date, and

(iii) each machine processes only one job at a time.

Depending on the problem definition, jobs may be allowed to preempt and continue
on another machine (preemptive scheduling) or not (non-preemptive scheduling).

The start time and completion time of job j ∈ N is denoted by Sj and Cj , respectively.
Note that Cj ≥ Sj + pj , and equality holds if job j ∈ N is not preempted. If job i
directly precedes j on the same machine, we denote this by i→ j. A machine is idle in
the interval [s; t] if no job is processed by the machine at any point in time s < t′ < t.
We call a machine idle at time t if there is a sufficiently small ε > 0 such that the
machine is idle in the interval [t; t + ε]. An idle interval is an interval where some
machine is idle. Figure 1.2 illustrates a feasible single-machine schedule of three jobs.
Additionally, we consider precedence constraints on the set of jobs in form of a

directed graph G = (N,E), which we refer to as the precedence graph. We call i ∈ N
a predecessor of job j ∈ N if (i, j) ∈ E. Feasibility of a schedule depends on the
specific type of precedence relation. Typically, the literature focuses on what we call
AND-precedence constraints, see, e.g., [68, 111, 27]. In this case, any job j ∈ N requires
all its predecessors to be completed before it can start, i.e., Ci ≤ Sj for all (i, j) ∈ E.

11

Chapter 1 Introduction

For so-called AND/OR-precedence constraints, the predecessors of a job are partitioned
into AND-predecessors and OR-predecessors, see, e.g. [57, 43, 125]. In this setting, a
job j requires all its AND-predecessors and at least one of its OR-predecessors to be
completed before it can start. The case where all predecessors are OR-predecessors is
called scheduling with OR-precedence constraints and constitutes the main part of this
thesis. We elaborate on the different types of precedence constraints in Section 1.2.

Scheduling Environments. Graham et al. [68] introduced a three-field notation
α |β | γ to classify scheduling problems. Since then, other authors have extended
the original three-field notation and incorporated new settings. In this section, we
briefly mention the settings that are considered in this thesis.
The first parameter, α, indicates the machine environment. We mainly focus on

α ∈ {1, P, Pm} where the specific values indicate

1 : single-machine environment (m = 1),
P : parallel-identical-machine environment (m > 1),
Pm : parallel-identical-machine environment (m > 1) with fixed m.

The second parameter, β, describes the properties of the jobs. If β = ∅, then we
assume the default setting where jobs must not be preempted, all release dates are
equal to zero (rj = 0 for all j ∈ N) and there are no precedence constraints (E = ∅ in
the precedence graph). Else, β indicates the deviations from this default setting. The
most important values that β can attain in our settings are

rj : jobs have non-trivial release dates,
pmtn : jobs may be preempted and continue on a different machine,
prec : jobs are subject to AND-precedence constraints,
or-prec : jobs are subject to OR-precedence constraints,
ao-prec : jobs are subject to AND/OR-precedence constraints,
pj = 1 : jobs have unit-processing time,
pj ∈ {0, 1} : jobs have 0/1 processing time.

Note that β can be a subset of these values. If the precedence graph is, e.g., an
outtree, we denote this by, e.g., prec = outtree. If the precedence graph is an outforest
we can transform it to an outtree by adding a job with zero processing time and zero
weight and introducing an arc from this job to all roots of the outforest. It can be
easily verified that adding such a job does not alter the optimal solution. Similarly, we
can transform any inforest to an intree.

The last field, γ, describes the objective function of the problem. The two objective
functions we consider are minimizing the sum of weighted completion times or total weig-
hted completion time,

∑
j∈N wjCj , and minimizing the makespan, Cmax := maxj∈N Cj .

12

1.2 Min-Sum Set Cover and Scheduling with OR-Precedence Constraints

The objective functions are encoded via γ by the values∑
wjCj : minimize the sum of weighted completion times,∑
Cj : minimize the sum of completion times (wj = 1 for all j ∈ N),

Cmax : minimize the makespan.

Instead of minimizing the total weighted completion time,
∑
wjCj , one could also

minimize the average completion time, 1
n

∑
wjCj . Note that this is indeed equivalent.

1.2 Min-Sum Set Cover and Scheduling with OR-Precedence
Constraints

The two major problems that are considered in this thesis are called min-sum set cover
and OR-scheduling. In this section, we formally define the two problems as well as
some generalizations and discuss their connection. All of these problems are NP-hard,
as discussed in the main part of the thesis.

1.2.1 Min-Sum Set Cover and Some Generalizations
The following problem was first formulated by Feige, Lovász and Tetali [44]. Let U be
a finite set of elements and R ⊆ 2U a collection of subsets. For a given linear ordering
π : U → [|U |] of the elements in U , we define the covering time of R ∈ R as the first
point in time when an element in R appears in the linear ordering, π(R) := mine∈R π(e).

Definition 1.9 (Min-Sum Set Cover (MSSC))
Let U be a finite set of elements and R ⊆ 2U . The task is to find a linear ordering
π : U → [|U |] that minimizes the sum of covering times,

∑
R∈R π(R).

Note that MSSC can be seen as a min-sum variant of the well-known Set Cover
or the equivalent Hitting Set problem, which are NP-complete [98]. A natural
generalization of MSSC is to introduce covering requirements on the sets in R. In this
case, every set R ∈ R is associated with an integer κ(R) ∈ [|R|], and the covering time
of R is then the first point in time when κ(R) of its elements have appeared in the
linear ordering. That is, the covering time of R ∈ R is

π(R) := min
{
` ∈ [|U |]

∣∣ |{π−1(1), . . . , π−1(`)} ∩R| = κ(R)
}
. (1.4)

This problem is known as generalized min-sum set cover and was introduced in a
different but equivalent way under the term multiple intents re-ranking in [10] in the
context of web page rankings.6

6The term generalized min-sum set cover was coined by Bansal, Gupta and Krishnaswamy [14].

13

Chapter 1 Introduction

Definition 1.10 (Generalized Min-Sum Set Cover (GMSSC))
Let U be a finite set of elements and R ⊆ 2U with covering requirements κ : R → N.
The task is to find a linear ordering π : U → [|U |] that minimizes the sum of
covering times,

∑
R∈R π(R).

Note that MSSC is the special case of GMSSC with unit covering requirements.
The case where all covering requirements are equal to the cardinality of the sets, i.e.,
κ(R) = |R| for all R ∈ R, is known as minimum latency set cover (MLSC) and was
studied in [79]. Yet another important generalization of MSSC, which was proposed
in [128] and studied in [122], is to incorporate a partial order ≺ on the elements in U .7
That is, any feasible linear ordering π : U → [|U |] must satisfy π(e) < π(e′) whenever
e ≺ e′. This problem is known as precedence-constrained min-sum set cover.

Definition 1.11 (Precedence-Constrained MSSC (prec-MSSC))
Let U be a finite set of elements, ≺ ⊆ U × U a partial order on U , and R ⊆ 2U .
The task is to find a feasible linear ordering π : U → [|U |], i.e., e ≺ e′ implies
π(e) < π(e′), that minimizes the sum of covering times,

∑
R∈R π(R).

We can readily encode instances of these set covering problems via directed graphs.
Let H = (U ∪R, E) be a digraph with one node for every element in U and every set
in R. We introduce an arc (e,R) ∈ E from an element e to a set R if e ∈ R. The
resulting digraph H is called the covering graph of the instance and is bipartite. We
discuss these min-sum covering problems and other related problems in more detail in
Chapters 3 and 4.

Example 1.12 (Min-Sum Set Cover)
Consider the following instance of MSSC with U = [6] and subsets

R = {{1, 2}, {2, 3}, {2, 4}, {1, 4, 5}, {3, 5, 6}, {4, 5, 6}}. (1.5)

Figure 1.3 illustrates the instance and its covering graph. An optimal ordering of the
elements is 2→ 5→ 1→ 3→ 4→ 6 with an objective value of 9.

1.2.2 Scheduling with OR-Precedence Constraints
Consider an instance of MSSC represented by its covering graph H = (U ∪R, E). If
we interpret every node of H as a job, we can view MSSC as a scheduling problem:
For each element e ∈ U , we introduce a job je with processing time pje = 1 and weight
wje = 0, and for each set R ∈ R, we introduce a job jR with processing time pjR = 0
and weight wjR = 1. The arc set of H are OR-precedence constraints among the jobs.

7Any reader not familiar with partial orders is referred to [161] for more details.

14

1.2 Min-Sum Set Cover and Scheduling with OR-Precedence Constraints

1

2

3

4

5

6

1

2

3

4

5

6

{1, 2}

{2, 4}

{2, 3}

{1, 4, 5}

{3, 5, 6}

{4, 5, 6}

Fig. 1.3: The MSSC instance in Example 1.12 represented by elements and sets (left) and the
corresponding covering graph (right). The sets are depicted as colored dashed and
solid ellipses. For simplicity, the nodes in the covering graph corresponding to the
sets are depicted in the same style as the respective sets on the left.

That is, every set-job jR requires at least one of its predecessors in {je | e ∈ R} to be
completed before it can start processing.

Then, every single-machine schedule of the element-jobs in {je | e ∈ U} corresponds
to a linear ordering of the elements in U , and vice versa. Furthermore, minimizing the
sum of covering times,

∑
R∈R π(R), is equivalent to minimizing the sum of weighted

completion times,
∑
j wjCj , subject to the OR-precedence constraints given by H.

Hence, MSSC can be interpreted as a single-machine scheduling problem with 0/1
processing times and 0/1 weights. In this section, we define scheduling with OR-
precedence constraints, which constitutes the main part of this thesis.

OR-Scheduling. Recall the scheduling notation from Section 1.1.4. Let N be a set of
n jobs with processing times pj ∈ N0, weights wj ∈ N0 and release dates rj ∈ N0 for
all j ∈ N . Let G = (N,E∨) be a precedence graph on the jobs in N . For j ∈ N , we
denote the set of its predecessors by P(j) := {i ∈ N | (i, j) ∈ E∨}.

Definition 1.13 (OR-Scheduling)
Let N be a set of jobs and G = (N,E∨) a precedence graph. A schedule is said to
be feasible with respect to the OR-precedence constraints of G if

(i) it is feasible according to Definition 1.8, and
(ii) if P(j) 6= ∅ for j ∈ N , then there is i ∈ P(j) that precedes j, i.e., Ci ≤ Sj .

15

Chapter 1 Introduction

A job j ∈ N is called available at time t ≥ 0 if t ≥ rj and, unless P(j) = ∅, there is
i ∈ P(j) with Ci ≤ t. We call an instance of OR-scheduling bipartite if the precedence
graph G is bipartite. Recall that interpreting MSSC as a scheduling problem yields a
bipartite OR-scheduling instance to minimize the sum of weighted completion times.

The main variants of OR-scheduling considered in this thesis are makespan minimiza-
tion with and without preemption and minimizing the sum of weighted completion times
on a single machine. In an extension of the three-field notation of Graham et al. [68]
and [93], we are concerned with the following scheduling problems: P | rj , or-prec |Cmax,
P | rj , pmtn, or-prec |Cmax (Chapter 2) and 1 | or-prec |

∑
wjCj (Chapters 3 and 4).

In contrast to OR-scheduling as defined in Definition 1.13, the standard precedence
constraints considered in the literature, where a job requires all its predecessors to
be completed, are referred to as AND-precedence constrained scheduling or AND-
scheduling.8 The arc set in the corresponding precedence graph is then denoted by E∧.

In some statements and proofs it is convenient to assume that there is a unique
job without predecessors. We can, w.l.o.g., add such a job with zero processing
time and zero weight, and introduce an arc to all jobs j ∈ N with P(j) = ∅ in the
precedence graph without changing the instance. We call the unique job without
predecessors initial and denote it by jin. The corresponding precedence graph is
Gin := (N ∪{jin}, E∨ ∪{(jin, j) | P(j) = ∅}). An importation notion for OR-scheduling
is the notion of a feasible starting set.

Definition 1.14 (Feasible Starting Sets)
Let N be a set of jobs and G = (N,E∨) a precedence graph. A set S ⊆ N is
called a feasible starting set if all jobs in S are reachable from jin in the induced
subgraph Gin[S ∪ {jin}]. The set of feasible starting sets is denoted by FS.

If the precedence graph G is acyclic, we can characterize the set of feasible starting
sets equivalently as FS = {S ⊆ N | j ∈ S and P(j) 6= ∅ ⇒ P(j) ∩ S 6= ∅}. In some
sense, feasible starting sets can be seen as the counterpart of ideals of a partial order
(see [161]) in AND-scheduling, i.e., a subset of jobs that is closed under precedence
constraints. Note that N ∈ FS if and only if all jobs in N are reachable from jin in Gin.
Whether or not all jobs are reachable in Gin can be checked by a graph traversing
algorithm that starts at jin, see Section 1.1.2. So, we can check whether a given instance
of OR-scheduling has a feasible solution in polynomial time. Henceforth, we assume
that the instances we consider do have a feasible solution, i.e., N ∈ FS. Note that,
for OR-scheduling, the precedence graph may contain a cycle, whereas an instance of
AND-scheduling is feasible if and only if the precedence graph is acyclic.
Example 1.15 (OR-Scheduling and AND-Scheduling)
Let N = {i, j, k, k′} be a set of jobs of unit processing time and consider the precedence
graph G = (N,E) with E = {(i, k), (i, k′), (j, k), (k, k′)}. Figure 1.4 (left) illustrates
the precedence graph together with the initial job jin.

8That is, those scheduling problems with prec ∈ β in the notation of [68], see Section 1.1.4.

16

1.2 Min-Sum Set Cover and Scheduling with OR-Precedence Constraints

i j

kk′

jin

i j k k′

time

i j k′ k

time

Fig. 1.4: The precedence graph of the instance in Example 1.15 (left) and two schedules (right).
The arcs (jin, i) and (jin, j) from the initial job to the jobs without predecessors
are depicted as dashed arcs. The schedule on the top right is feasible for both
AND-constraints, i.e., E = E∧, and OR-constraints, i.e., E = E∨. The schedule on
the bottom right is only feasible for OR-constraints, since k′ → k.

The schedule i→ j → k → k′ (Figure 1.4 top right) is feasible for AND-precedence
constraints, i.e., for E = E∧, and OR-precedence constraints, i.e., E = E∨. The
schedule i→ j → k′ → k (Figure 1.4 bottom right) is only feasible for E = E∨, since k′
precedes k, which is not feasible for AND-constraints. For OR-precedence constraints,
i.e., E = E∨, the set of feasible starting sets FS is

{{i}, {j}, {i, j}, {i, k}, {i, k′}, {j, k}, {i, j, k}, {i, j, k′}, {i, k, k′}, {j, k, k′}, N}. (1.6)

Note that, e.g., {j, k′} /∈ FS, since there is no path from jin to k′ in Gin[{jin, j, k′}].

AND/OR-Scheduling. Amutual generalization of AND-scheduling and OR-scheduling
is to consider jobs that are subject to both AND-precedence constraints and OR-
precedence constraints. In this setting, the arc set of the precedence graph can be
partitioned into E = E∧ ∪̇E∨, where (i, j) ∈ E∧ indicates that i is an AND-predecessor
of j, and (i, j) ∈ E∨ means that i is an OR-predecessor of j. Again, we denote the set
of OR-predecessors of a job j ∈ N by P(j) := {i ∈ N | (i, j) ∈ E∨}.

Definition 1.16 (AND/OR-Scheduling)
Let N be a set of jobs and G = (N,E∧ ∪̇E∨) a precedence graph. A schedule is
said to be feasible with respect to the AND/OR-precedence constraints of G if

(i) it is feasible according to Definition 1.8,
(ii) Ci ≤ Sj for all (i, j) ∈ E∧, and

(iii) if P(j) 6= ∅ for j ∈ N , then there is i ∈ P(j) such that Ci ≤ Sj .

17

Chapter 1 Introduction

For AND/OR-scheduling, a job j ∈ N is called available at time t ≥ 0 if t ≥ rj ,
t ≥ max{Ci | (i, j) ∈ E∧} and, unless P(j) = ∅, there is i ∈ P(j) with Ci ≤ t.9
Obviously, AND-scheduling and OR-scheduling are special cases of Definition 1.16
where E∨ = ∅ and E∧ = ∅, respectively. We only focus on minimizing the sum of
weighted completion times on a single machine subject to certain types of AND/OR-
precedence constraints. The interested reader is referred to, e.g., [57, 43, 125] and
references therein for more details and other AND/OR-scheduling problems. The
following problem is denoted by 1 | ao-prec = A∨̇B |

∑
wjCj in an extension of the

three-field notation of [68] and [43], and is studied in Section 4.3.1.

Definition 1.17 (Bipartite AND/OR-Scheduling)
Let N = A ∪̇B be a set of jobs and G = (N,E∧ ∪̇E∨) be a precedence graph
with E∧ ⊆ (A × A) ∪ (B × B) and E∨ ⊆ A × B. The task is to find a feasible
single-machine schedule according to Definition 1.16 that minimizes the sum of
weighted completion times,

∑
j∈N wjCj .

One can check in polynomial time whether a given instance of AND/OR-scheduling
is feasible [125]. For bipartite AND/OR-scheduling, it is not hard to see that an
instance is feasible if and only if the subgraph of G on E∧, i.e., the restriction to the
AND-precedence constraints, is acyclic. Therefore, we also assume that all instances
of bipartite AND/OR-scheduling that are considered have a feasible solution. To
distinguish between AND-scheduling, OR-scheduling and AND/OR-scheduling, we
denote the arc set of the precedence graph by E∧, E∨ and E∧ ∪̇E∨, respectively.

Min-Sum Set Cover and Scheduling. Recall that we can express min-sum set cover
(Definition 1.9) as a bipartite OR-scheduling instance where all processing times
and weights are 0/1. In a similar way, bipartite AND/OR-scheduling, 1 | ao-prec =
A∨̇B |

∑
wjCj (Definition 1.17), generalizes precedence-constrained min-sum set cover

(Definition 1.11): We introduce a job je ∈ A with pje = 1 and wje = 0 for every element
e ∈ U , and a job jR ∈ B with pjR = 0 and wjR = 1 for every set R ∈ R. Further, we
let E∧ = {(je, je′) | e ≺ e′} ⊆ A × A and E∨ = {(je, jR) | e ∈ R} ⊆ A × B. Then, as
for min-sum set cover and bipartite OR-scheduling, finding a feasible single-machine
schedule that minimizes the sum of weighted completion times is equivalent to finding
a feasible linear ordering that minimizes the sum of the covering times.

Single-machine scheduling with AND-precedence constraints to minimize the sum of
weighted completion times is not only a special case of AND/OR-scheduling (Defini-
tion 1.16), but also of bipartite AND/OR-scheduling (Definition 1.17), where E∨ = ∅.
Woeginger [166] showed that every instance of 1 | prec |

∑
wjCj can be transformed to

a bipartite AND-scheduling instance with N = A ∪̇B and E∧ ⊆ A × B of the same

9We set the maximum over the empty set to max ∅ := −∞.

18

1.3 Overview of the Thesis and Main Results

MSSC GMSSC

AND-
scheduling

prec-MSSC

bipartite
OR-scheduling

OR-
scheduling

bipartite
AND/OR-
scheduling

AND/OR-
scheduling

Fig. 1.5: Overview of related problems defined in Section 1.2. All scheduling problems are
single-machine problems to minimize the sum of weighted completion times,

∑
wjCj .

An arrow from problem Π1 to Π2 indicates that Π2 generalizes Π1.

approximability threshold, where all jobs in A have unit processing time and zero
weight, and all jobs in B have zero processing time and unit weight. The precedence
graph of this bipartite instance can be viewed as the covering graph of an instance of
generalized min-sum set cover with an element for every job in A, and a set for every
job in B. Hence, 1 | prec |

∑
wjCj is equivalent to minimum latency set cover, which is

the special case of generalized min-sum set cover, where all covering requirements are
maximal, i.e., κ(R) = |R| for all R ∈ R. We can also interpret generalized min-sum set
cover in general as a bipartite scheduling problem with certain precedence constraints
where every job requires a certain number of its predecessors to be completed before it
can start. This extension of generalized min-sum set cover is discussed in more detail
in Sections 3.4 and 4.3.2.
Figure 1.5 illustrates the connection of the min-sum covering problems defined in

Section 1.2.1 and the single-machine scheduling problems to minimize the sum of
weighted completion times described above.

1.3 Overview of the Thesis and Main Results
The main part of this thesis comprises four chapters with Chapter 5 addressing a
different scheduling model, and which is written to be (almost) stand-alone except
for some general notions in Section 1.1. Chapters 2 to 4, which are concerned with
different variants of min-sum set cover and scheduling with OR-precedence constraints,
are subdivided in a similar way.

19

Chapter 1 Introduction

First, we give a short overview of the respective chapter and our main results. We
discuss related work and connect the related models and results from the literature
to our results and the problems considered in this work. In the preliminaries section,
we recall related algorithms, methods and definitions mostly from AND-scheduling
and introduce some important notions, if necessary. Afterwards, we state our main
results, and conclude each chapter with an open problems section, which is intended
as a starting point for future work. We elaborate on the structure and content of the
respective main parts of the chapters in the following paragraphs.
In Chapter 2, we study the makespan objective in a parallel machine environment

subject to OR-precedence constraints. This chapter largely coincides with work that
is available online in [74]. We show that the well-known list scheduling algorithm,
which is due to Graham [66], is a 2-approximation algorithm for P | rj , or-prec |Cmax
(Theorem 2.8) in Section 2.3.1. In Section 2.3.2, we propose a reduction from the
NP-hard Vertex Cover problem and conclude that the minimum makespan cannot
be approximated within a factor of 4

3 − ε, unless P = NP (Theorem 2.11). Finally, in
Section 2.4, we use the concept of minimal chains, which we introduce in Section 2.2.2,
and an algorithm of Lawler [109] for a related AND-scheduling problem to derive
a polynomial-time algorithm for the preemptive variant, i.e., for P | rj , pmtn, or-
prec |Cmax (Theorem 2.18).
Chapter 3 deals with the connection of variants of (generalized) min-sum set cover

and OR-scheduling to minimize the sum of weighted completion times. The results
in this chapter are also contained in work that is in preparation [75, 76, 77]. The
algorithms presented in this chapter are purely combinatorial, i.e., do not require
solving a linear program. In Section 3.3, we observe that bipartite OR-scheduling
is already strongly NP-hard, even for the simplest non-trivial processing times and
weights structure (Theorem 3.6). We then show, in Section 3.4, that min-sum set cover
and special cases of generalized min-sum set cover are solvable in polynomial time if we
restrict to laminar sets (Theorem 3.11). We also propose a 2-approximation algorithm
for laminar generalized min-sum set cover (Theorem 3.13 and Corollary 3.14). In
Section 3.5, we generalize a histogram argument of [45] for min-sum set cover to more
general scheduling problems and derive a general framework to obtain 4η-approximation
algorithms (Theorem 3.15), if an η-approximation oracle is available for computing a
density-maximizing feasible starting set. We present the framework in Section 3.5.1,
and apply it to OR-scheduling problems to obtain 4-approximate solutions if the
precedence graph is bipartite (Theorem 3.17) or in the form of an intree (Theorem 3.19)
in Section 3.5.2.

Chapter 4 is devoted to linear programming relaxations for OR-scheduling problems
with the total weighted completion time objective. An extended abstract of the results
in this chapter was published in [78], and a journal version of this work is available
in [77]. We first review the three classical LP relaxations in the literature of AND-
scheduling in Section 4.2, and discuss their OR-scheduling counterparts in Sections 4.3

20

1.3 Overview of the Thesis and Main Results

to 4.5. We present approximation algorithms based on time-indexed LPs for bipartite
AND/OR-scheduling (Theorem 4.4) and a special case of generalized min-sum set cover
(Theorem 4.10) with approximation guarantees of 2 maxb∈B |P(b)| and 4 in Sections 4.3.1
and 4.3.2, respectively. In Section 4.4, we discuss a formulation in linear ordering
variables, derive facet-defining inequalities for the integer hull (Theorems 4.13 and 4.17),
and show that the integrality gap of this formulation grows linear in the number of jobs,
even if we add these facet-defining constraints. Lastly, we present a natural extension of
the completion time formulation to OR-precedence constraints by generalizing the well-
known parallel inequalities of Wolsey [167] and Queyranne [139] using a generalization
of minimal chains (Theorem 4.23). We prove that this formulation also exhibits an
unbounded gap between optimal LP solution and optimum feasible schedule.

Finally, in Chapter 5, we consider the preemptive concurrent open shop setting, which
is a slightly different setting than in the previous chapters. We first introduce the
model and discuss related work in Section 5.1, and then present a 2-approximation
algorithm for the variant with non-trivial release dates (Theorem 5.3) in Section 5.2.
The algorithm is based on a linear program in completion time variables, which is
introduced in Section 5.2.1, and uses a preemptive list scheduling algorithm of [71],
which is presented in Section 5.2.2. This chapter, too, is concluded with some open
problems.

21

Chapter 2

Makespan Minimization with
OR-Precedence Constraints

In this chapter, we focus on OR-scheduling on parallel identical machines to minimize
the completion time of the last job. This chapter largely coincides with work that is
available online in [74].

2.1 Related Work and Our Results

Recall the notations of Sections 1.1.4 and 1.2.2. In this chapter, we study the
following problems, denoted by P | rj , or-prec |Cmax (non-preemptive variant) and
P | rj , pmtn, or-prec |Cmax (preemptive variant) in an extension of the three-field
notation of Graham et al. [68] and [93].

Definition 2.1 (OR-Scheduling to Minimize the Makespan)
Let n,m ∈ N, m ≥ 2, and let N be a set of n jobs and G = (N,E∨) be a
precedence graph. The task is to find a feasible schedule on m machines according
to Definition 1.13 that minimizes the makespan, Cmax = max{Cj | j ∈ N}.

We recall some preliminaries from related problems and introduce some terminology
in Section 2.2. In Section 2.3, we show that a standard list scheduling algorithm
achieves an approximation guarantee of 2 for P | rj , or-prec |Cmax, and that obtaining
a
(

4
3 − ε

)
-approximation for P | or-prec |Cmax is NP-hard for any ε > 0. Finally, we

show how we can use algorithms for the related AND-scheduling problems on outtrees
to obtain polynomial-time algorithms for P | rj , pmtn, or-prec |Cmax and P | rj , or-
prec, pj = 1 |Cmax in Section 2.4. We start out with some related work.

Non-Preemptive Scheduling. Garey and Johnson [52] proved that the non-preemptive
variant of makespan minimization is already strongly NP-hard in the absence of prece-
dence constraints and release dates. The problem remains NP-hard, even if the number
of machines is fixed to m = 2 [113]. The reductions are from 3-Partition, which is
strongly NP-complete, to P | |Cmax and from Partition to P2 | |Cmax, respectively.

23

Chapter 2 Makespan Minimization with OR-Precedence Constraints

In his seminal paper, Graham [66] showed that a simple algorithm called List
Scheduling achieves an approximation guarantee of 2 for P | |Cmax:

Consider the jobs in any arbitrary order. Whenever a machine is idle, execute the next
available job in the order on this machine. If no jobs are available, then wait until the

next point in time when a job becomes available.

We discuss this algorithm and its performance guarantee in more detail in the next
section. If the jobs are sorted in order of non-increasing processing times, then List
Scheduling is a 4

3 -approximation [67]. In the same paper [67], Graham also provided a
PTAS for Pm | |Cmax, i.e., if the number of machines is fixed. Sahni [144] presented
an FPTAS for Pm | |Cmax, and Hochbaum and Shmoys [84] gave the first PTAS for
P | |Cmax. The algorithm in [84] was improved in running time to the currently best-
known by Jansen [92]. Note that a PTAS is indeed the best algorithm for P | |Cmax to
be expected, since the existence of an FPTAS for a strongly NP-hard problem would
imply P = NP [52]. For non-trivial release dates, List Scheduling with an arbitrary
job order is a 2-approximation as observed in [72], and it is 3

2 -approximate if the jobs
are sorted in order of non-increasing processing times [28]. Hall and Shmoys [72] also
provided a PTAS for P | rj |Cmax.
Minimizing the makespan with AND-precedence constraints is strongly NP-hard,

even if the number of machines is fixed to m = 2 and the precedence graph consists of
disjoint chains [40]. That is, the problem P2 | prec = chains |Cmax is already strongly
NP-hard by a reduction from 3-Partition. List Scheduling is still 2-approximate
for P | prec |Cmax if the order of the jobs is consistent with the AND-precedence con-
straints [66]. The approximation factor can also be preserved for P | rj , prec |Cmax [72].

AND/OR-scheduling with an acyclic precedence graph and trivial release dates also
admits a 2-approximation algorithm [57]. Erlebach, Kääb and Möhring [43] showed
that the assumption on the precedence graph is not necessary, and presented a 2-
approximation for P | ao-prec |Cmax. Both algorithms first transform the instance to an
AND-scheduling instance by fixing a predecessor of the OR-precedence constraints for
every job j with P(j) 6= ∅. Then, they solve the resulting instance with AND-precedence
constraints using List Scheduling. In Section 2.3.1, we show that the makespan of
every feasible schedule without unnecessary idle time on the machines is at most twice
the optimal makespan, even if non-trivial release dates are involved.

Preemptive Scheduling and Unit Processing Times. If preemption is allowed, the
algorithm of McNaughton [123] computes an optimal schedule in the absence of release
dates and precedence constraints, i.e., P | pmtn |Cmax is solvable in polynomial time.
Minimizing the makespan with AND-precedence constraints and unit processing times
is strongly NP-hard [162]. Note that there is no benefit in preemption if pj = 1 for
all jobs j ∈ N . This implies that P | pmtn, prec |Cmax is strongly NP-hard in general.

24

2.1 Related Work and Our Results

Via a reduction from Clique, Lenstra and Rinnooy Kan [112] proved that it is NP-hard
to approximate P | prec, pj = 1 |Cmax better than 4

3 . In Section 2.3.2, we provide the
same lower bound for P | or-prec |Cmax using a reduction from Vertex Cover.
The problem P2 | prec, pj = 1 |Cmax is solvable in polynomial time [47, 32], but

the complexity of Pm | prec, pj = 1 |Cmax for m ≥ 3 remains open [53, 151, 12]. The
best-known approximation factors for P | prec, pj = 1 |Cmax are 4

3 (m = 3) [32, 107,
22] and 2− 7

3m+1 (m ≥ 4) [50]. The preemptive variant P | pmtn, prec |Cmax can be
approximated within 2 − 2

m [129, 107]. Assuming a variant of the Unique Games
Conjecture [100] together with a result of Bansal and Khot [15], Svensson [160] proved
that an approximation factor of 2 is essentially best possible for P | prec, pj = 1 |Cmax.
Levey and Rothvoss [118] and Garg [56] presented (1 + ε)-approximations for

Pm | prec, pj = 1 |Cmax that run in time nO(r) with r = (logn)O(log logn) and r =
(logn)O(1) for fixed ε > 0, respectively. This was improved by Kulkarni et al. [104],
who presented a (1 + ε)-approximation of similar running time as [118] for a variant of
Pm | pmtn, prec |Cmax where jobs may be preempted, but have to be continued on the
same machine. The algorithms in [118, 56, 104] use LP hierarchies. Roughly speaking,
these algorithms are LP based and the LP relaxation is strengthened in several rounds.
The number of rounds equals the parameter r above.

If we restrict the precedence constraints to be an outforest, then the preemptive
variant of AND-scheduling is solvable in polynomial time. These precedence graphs
are of special interest to us. Recall that, in an outforest, every node has at most
one predecessor. If the precedence graph is an outtree, requiring all predecessors
to be completed and requiring at least one of them is equivalent. Thus, AND- and
OR-precedence constraints coincide on outtrees.
A number of polynomial-time algorithms were proposed for preemptive AND-

scheduling to minimize the makespan when the precedence constraints are in form
of an outtree. Hu [86] proposed the first such algorithm for unit processing time
jobs, and Brucker, Garey and Johnson [23] presented an algorithm that can also
deal with non-trivial release dates. Monma [126] improved the running time of the
algorithm in [23] from O(n logn) to O(n). The first polynomial-time algorithm for
P | pmtn, prec = outtree |Cmax is due to Muntz and Coffman [130]. Later, Gonzalez
and Johnson [65] proposed an algorithm that has a better asymptotic running time
and uses fewer preemptions than the one in [130]. Finally, Lawler [109] presented
a polynomial-time algorithm for the preemptive variant with release dates, i.e., for
P | rj , pmtn, prec = outtree |Cmax, which is an extension of the algorithm in [23].
Most of these algorithms solve a symmetric scheduling problem on intrees. The

algorithm for outtrees is obtained by first solving the symmetric problem on the reverse
partial order and then flipping the schedule. We elaborate on this symmetry and these
algorithms in the next section. Johannes [93] presented a polynomial-time algorithm for
P | or-prec, pj = 1 |Cmax that uses similar ideas as Hu [86]. In Section 2.4, we use the
above algorithms to design polynomial-time algorithms for P | rj , pmtn, or-prec |Cmax
and P | rj , or-prec, pj = 1 |Cmax.

25

Chapter 2 Makespan Minimization with OR-Precedence Constraints

2.2 Preliminaries

Note that P | or-prec |Cmax is a generalization of P | |Cmax, which is already strongly
NP-hard [52]. If the precedence graph G is an outforest, then OR- and AND-precedence
constraints on G are equivalent. So, the NP-hardness result of Du, Leung and Young [40]
for chains implies that OR-scheduling to minimize the makespan remains strongly
NP-hard, even if the number of machines is fixed.

Proposition 2.2 (Du-Leung-Young [40])
Pm | or-prec = chains |Cmax is strongly NP-hard for all m ≥ 2.

2.2.1 Related Algorithms for AND-Scheduling

List Scheduling. Graham’s List Scheduling algorithm [66] not only applies for mini-
mizing the makespan, but is used as a framework for many other scheduling problems.
In principle, any scheduling algorithm that first chooses a linear ordering σ : N → [n]
on the jobs and processes the jobs according to this order is a list scheduling algorithm.
Note that List Scheduling never introduces unnecessary idle time. That is, if a machine
is idle, then all unscheduled jobs are currently processing or there is no available job at
that time. A schedule that is returned by List Scheduling is called a list schedule.

The general idea of showing that List Scheduling is a 2-approximation is to partition
the time interval from 0 to Cmax into two types of intervals: In the first type, all
machines are busy and, in the second one, some machine is idle. Then, the length of
each of these two types of intervals is bounded by the optimum makespan. We briefly
show why List Scheduling is 2-approximate for P | prec |Cmax in order to highlight
similarities and differences in the analysis to our OR-scheduling model later.

Proposition 2.3 (Graham [66])
List Scheduling is a

(
2− 1

m

)
-approximation for P | prec |Cmax.

Proof. There are two obvious lower bounds on the optimal makespan, C∗max. First,
no schedule can process more than m jobs at a time, so C∗max ≥ 1

m p(N). Second,
every job requires all its predecessors to be completed before it can start. Hence, the
optimal makespan is at least as large as the total processing time along any path in
the precedence graph G = (N,E∧). More precisely, for j ∈ N and a path S ⊆ N in G
that ends at j, it holds that C∗max ≥ p(S).
Consider the schedule that is returned by List Scheduling, and let k ∈ N be a job

with Ck = Cmax. Let j1 be a predecessor of k that completes last, i.e., (j1, k) ∈ E∧ and
Cj1 = max{Cj | (j, k) ∈ E∧}. In the same way, we construct a sequence of predecessors,
where jq is chosen such that (jq, jq−1) ∈ E∧ and Cjq = max{Cj | (j, jq−1) ∈ E∧} for all
q ≥ 1, until we reach a job j` without predecessors. This sequence of jobs corresponds
to a path S = {j`, . . . , j1, k} ⊆ N in G that ends at k.

26

2.2 Preliminaries

i6

i5

i4

i3

i2

j2j3 j1 i1

k

i4 i2

i6 i5 j1 i1

j3 j2 i3 k

0 Cmax

time

Fig. 2.1: An instance of P | prec |Cmax with its precedence graph (left) and a feasible list
schedule on three machines (right). The jobs in S = {j3, j2, j1, k} are highlighted in
gray in the schedule.

Let IS be the union of all intervals where a job in S is processed. Note that no
two jobs in S run simultaneously as every job in S requires its predecessor in S to be
completed before it can start. That is, the total length of these intervals is |IS | = p(S).
Figure 2.1 illustrates a list schedule and such a sequence of jobs.
Let IB = [0;Cmax] \ IS be the points in time when no job in S is being processed.

We claim that in IB, all machines are busy with jobs in N \ S. Suppose there is an
idle interval I = [s; t] ⊆ IB. Let jq ∈ S be the first job in S that starts after I, i.e.,
Sjq = min{Sj | j ∈ S, Sj ≥ t}. By definition of I ⊆ IB and our choice of jq, we know
that the predecessor jq+1 ∈ S of jq completes before I, i.e., Cjq+1 ≤ s. Since List
Scheduling never introduces unnecessary idle time, there is a predecessor i of jq that
completes somewhere in the interval [t;Sjq], as otherwise we could have started jq
during I. This, however, contradicts the definition of S because then Cjq+1 ≤ s < t ≤ Ci,
so job i would be part of S instead of jq+1. Thus, all machines are busy during the
intervals in IB, and |IB| ≤ 1

m p(N \ S). In total, we obtain

Cmax = Ck = |IB|+ |IS | ≤
1
m
p(N \ S) + p(S)

= 1
m
p(N) +

(
1− 1

m

)
p(S) ≤

(
2− 1

m

)
C∗max.

(2.1)

This proves the claim. 2

Similarly, one can prove that List Scheduling is a (2 − 1
m)-approximation for

P | rj , prec |Cmax, see [72]. The proof idea to show that List Scheduling is also 2-
approximate for OR-scheduling is similar to the proof of Proposition 2.3. However,
the analysis is slightly different, because we only know that at least one predecessor
completes before a job.

27

Chapter 2 Makespan Minimization with OR-Precedence Constraints

The performance guarantee of List Scheduling in Proposition 2.3 is tight. Consider an
instance with 2m− 1 jobs and no precedence constraints, i.e., E∧ = ∅. The processing
times are p1 = · · · = pm−1 = m− 1, pm = m and pm+1 = · · · = p2m−1 = 1. An optimal
solution is to pair jobs q and m+ q to run on one machine for all q ∈ [m− 1] and to
schedule job m on its own machine. This gives a schedule of makespan equal to m.
List Scheduling could first assign jobs 1, . . . ,m− 1 to the first m− 1 machines and all
jobs m+ 1, . . . , 2m− 1 to the last machine. At time m− 1, all jobs except for the m-th
job are completed. Then, job m is assigned to any machine, which yields a makespan
of 2m− 1.

A Symmetric Problem for P |prec |Cmax. As already mentioned in Section 2.1,
some algorithms for minimizing the makespan on outtrees [86, 130, 23, 109], actually
consider a slightly different problem. In general, minimizing the makespan, Cmax =
max{Cj | j ∈ N}, can be seen as a special case of minimizing the maximum lateness,
which is denoted by γ = Lmax in the three-field notation of [68]. In this setting, each
job j ∈ N has a deadline dj and its lateness is defined as Lj := max{0, Cj − dj}. The
maximum lateness of a schedule is then Lmax := max{Lj | j ∈ N}. By letting dj = 0
for every j ∈ N , it becomes clear that minimizing the makespan is a special case of
minimizing the maximum lateness.
There is yet another connection between the two objective functions, Cmax and

Lmax, when non-trivial release dates are involved. Consider the decision variants of
P | rj , prec |Cmax and P | prec |Lmax.10 For makespan minimization, we are given a
time horizon T ≥ 0 and the question is whether there exists a feasible schedule with
makespan less or equal than T or not. The decision version of maximum lateness asks
whether or not there is a feasible schedule with Lmax = 0.

Suppose we have a Yes-instance of P | rj , prec |Cmax, and consider a feasible schedule
that obeys the precedence constraints, where every job starts after its release date and
that has makespan less or equal than T . Now, we reverse the precedence constraints,
i.e., if (i, j) ∈ E∧ in the precedence graph, we introduce an arc (j, i) instead, and set
the deadline of job j to dj = T − rj . Note that the constructed instance is an instance
of P | prec |Lmax. Further, if we reverse the feasible schedule of P | rj , prec |Cmax, i.e.,
we set the starting time of job j to T −Cj and its completion time to T −Sj , we obtain
a feasible schedule for the corresponding instance of P | prec |Lmax with Lmax = 0.
Similarly, any Yes-instance of P | prec |Lmax can be transformed to a Yes-instance of
P | rj , prec |Cmax with T = max{dj | j ∈ N} and release dates rj = T − dj .
The algorithms of Brucker, Garey and Johnson [23] and Lawler [109] actually

solve P | prec = intree, pj = 1 |Lmax and P | pmtn, prec = intree |Lmax, respectively.
With the above observations, we can use these algorithms to obtain algorithms for
P | rj , prec = outtree, pj = 1 |Cmax and P | rj , pmtn, prec = outtree |Cmax, respecti-
vely. Given an AND-scheduling instance with release dates where the precedence

10Usually arbitrary deadlines are not explicitly listed in the three-field notation of P | prec |Lmax.

28

2.2 Preliminaries

constraints are in the form of an outtree, we construct the corresponding flipped in-
stance of minimizing the maximum lateness (with suitable T). The reversed precedence
constraints are then in form of an intree, so we can apply the respective algorithms
in [23, 109] to obtain an optimal solution, and reverse the resulting schedule.
Hu’s algorithm [86] for P | prec = outtree, pj = 1 |Cmax uses a similar idea. The

setting is slightly easier, since all release dates are trivial, i.e., the flipped maximum
lateness problem is actually an instance of P | prec = intree, pj = 1 |Cmax. The
algorithm assigns a label to each job which equals the distance (number of jobs on the
path) from that particular job to the unique root. In each step, a job with highest
label among all unscheduled jobs is assigned to the next idle slot on a machine. Muntz
and Coffman [130] combine this idea with processor sharing, i.e., a machine can process
more than one job at a time, and use [123] to obtain a feasible preemptive schedule.

The algorithm of Brucker, Garey and Johnson [23] for P | prec = intree, pj = 1 |Lmax
first modifies the deadlines so that they are consistent with the intree-precedence
constraints. That is, it starts with the root i, and updates the deadline of each
predecessor j to d′j = min{dj , di − 1}. This is then successively done for all jobs. The
modified deadlines d′j now have the property that (i, j) ∈ E∧ implies d′i < d′j . If the
original deadlines are trivial (dj = d for all j ∈ N), then d− d′j are precisely the labels
of Hu’s algorithm [86]. Finally, the jobs are scheduled earliest deadline first, a rule
that goes back to Jackson [91], with respect to the modified deadlines. Thereby, the
schedule obeys the precedence constraints.

2.2.2 Earliest Start Schedules and Minimal Chains
To analyze the performance of our algorithms in Sections 2.3.1 and 2.4, we use the
concept of what we call minimal chains. Informally, a minimal chain of a job k is a set
of jobs that need to be scheduled so that k can complete as early as possible. To define
these minimal chains properly, we use the notion of an earliest start schedule, see, e.g.,
[43, 125, 93]. Although these schedules are well-defined for general AND/OR-scheduling,
we only need and define them in the OR-scheduling context.

Definition 2.4 (Earliest Start Schedule)
Let N be a set of jobs and G = (N,E∨) a precedence graph. An earliest start
schedule is defined as a schedule on an infinite number of machines such that

(i) a job j without predecessors starts at time rj , and
(ii) a job j with P(j) 6= ∅ starts at time max{rj ,min{Ci | i ∈ P(j)}}.

Clearly, an earliest start schedule respects the OR-precedence constraints of the
instance, i.e., it is feasible according to Definition 1.13. Also, the completion time of a
job in any feasible schedule onmmachines is bounded from below by its completion time
in an earliest start schedule. That is, if Cj denotes the completion time of job j in an
earliest start schedule, then the optimum makespan satisfies C∗max ≥ max{Cj | j ∈ N}.

29

Chapter 2 Makespan Minimization with OR-Precedence Constraints

Note that an earliest start schedule is not necessarily unique, but the start and
completion times of all jobs are unique. Earliest start schedules can be constructed in
polynomial time by iteratively scheduling every job as early as possible [43].

Definition 2.5 (Minimal Chains)
Let N be a set of jobs and G = (N,E∨) a precedence graph. Let k ∈ N and let
Cj be the completion time of j ∈ N in an earliest start schedule (Definition 2.4).
A set L ⊆ N is called a minimal chain of k if L ∈ FS is an inclusion-minimal
feasible starting set with k ∈ L and maxj∈LCj = Ck. The set of minimal chains of
k is denoted byMC(k), and the length of the minimal chain of k is mc(k) := Ck.

We can construct a minimal chain of k by iteratively tracing back predecessors that
delay job k in an earliest start schedule. That is, starting at k, we mark one of its
predecessors j with Cj = Sk, and then proceed with j in the same manner, i.e., we mark
a predecessor i of j with Ci = Sj , and so on, until we reach a job i′ that starts at its
release date. If i′ has no predecessors, we are done. If P(i′) 6= ∅, we mark a predecessor
j′ of i′ with Cj′ ≤ Si′ , and continue with j′ as described above. The marked jobs now
correspond to a minimal chain of k. That is, a minimal chain L = {j1, . . . , j`} ∈ MC(k)
is a path in G with P(j1) = ∅, jq ∈ P(jq+1) for all q ∈ [` − 1] and j` = k such that
Sj1 = rj1 and Sjq = max{rjq , Cjq−1} for all 2 ≤ q ≤ `. We call jq the predecessor of
jq+1 in L for q ∈ [`− 1] and denote this by defining the set PL(jq+1) := {jq}. A job
jh ∈ L is said to dominate the minimal chain L if mc(k) = rjh +

∑`
q=h pjq .

Example 2.6 (Minimal Chains)
Let N = {j1, j2, j3, j4, j5, j6, j7, j8, k} with processing times pj1 = pj6 = pk = 1,
pj2 = pj3 = pj5 = pj7 = 2, pj4 = 3, pj8 = 4 and release dates rj1 = 2, rj2 = 1, rj6 = 4,
rj = 0 for all other jobs j. The precedence graph G and an earliest start schedule are
depicted in Figure 2.2.
The set of minimal chains of k is MC(k) = {{j2, j6, j7, k}, {j3, j5, j6, j7, k}} with

mc(k) = 8. The chain {j2, j6, j7, k} is dominated by j6, and {j3, j5, j6, j7, k} is domina-
ted by jobs j3 and j6. Note that {j1, j4, j7, k} ∈ FS with p({j1, j4, j7, k}) = 7, but if
we would want to schedule k via this chain, the processing is delayed by the release
date of job j1. The predecessor of k in both minimal chains is PL1(k) = PL2(k) = {j7}.

If the minimal chains are constructed as described above, the jobs preceding a job j
in a minimal chain L ∈MC(k) form a minimal chain of j. This motivates the following
definition.

Definition 2.7 (Closed Collection of Minimal Chains)
Let N be a set of jobs, G = (N,E∨) a precedence graph and Lk ∈MC(k) for all
k ∈ N . The collection of minimal chains {Lk | k ∈ N} is called closed if j ∈ Lk
implies Lj ⊆ Lk.

30

2.3 Approximability and Hardness of the Non-Preemptive Variant

j1

j2

j3

j4

j5

j6

j7

j8

k

j1 j6 j7

j2 j4 k

j3 j5 j8

0 rj1rj2 rj6

time

Fig. 2.2: The instance in Example 2.6 with precedence graph G (left) and an earliest start
schedule (right). The paths in G that correspond to the minimal chains inMC(k)
are depicted dashed and red, respectively. Jobs in minimal chains are highlighted in
gray and red, respectively. Dashed red arcs and two-colored jobs are contained in
both minimal chains.

2.3 Approximability and Hardness of the Non-Preemptive
Variant

We first show that Graham’s List Scheduling algorithm [66] is a 2-approximation
algorithm for P | rj , or-prec |Cmax in Section 2.3.1, and then show that already the
problem without release dates is APX-hard in Section 2.3.2.

2.3.1 List Scheduling is a 2-Approximation Algorithm

In the following, we denote the optimal makespan by C∗max. There are two obvious
lower bounds on the optimal makespan. First, any feasible schedule cannot do better
than splitting the total processing load equally among all machines, so C∗max ≥ 1

m p(N).
Second, every job requires at least one of its predecessors to be completed before it
can start. If we start with an empty schedule, the earliest possible completion time of
job j is, by definition, equal to its completion time in the earliest start schedule. Thus,
C∗max ≥ max{mc(j) | j ∈ N}.

Erlebach, Kääb and Möhring [43] presented a 2-approximation algorithm for AND/OR-
scheduling without release dates, P | ao-prec |Cmax. The algorithm first computes the
earliest start schedule, i.e., each job without predecessors starts at time 0, and each
job j with predecessors starts at time max{min{Ci | i ∈ P(j)},max{Ci | (i, j) ∈ E∧}}.
Then, for every job j with P(j) 6= ∅, an OR-predecessor with Ci = Sj is fixed to be
an AND-predecessor, i.e., the arc (i, j) ∈ E∧ is introduced. Finally, List Scheduling is
applied to the AND-instance P | prec |Cmax with precedence graph G = (N,E∧).

31

Chapter 2 Makespan Minimization with OR-Precedence Constraints

We show that also without transforming the instance, List Scheduling is 2-approximate
for OR-precedence constraints, even with non-trivial release dates. The proof uses
ideas of [72] and the proof of Proposition 2.3.

Theorem 2.8
List Scheduling is a

(
2− 1

m

)
-approximation for P | rj , or-prec |Cmax.

Proof. Consider the schedule that is returned by List Scheduling, and let k ∈ N be a
job with Ck = Cmax. If there is no idle time in the interval [0;Sk], then a similar chain
of inequalities as (2.1) with S = {k} yields Cmax ≤

(
2− 1

m

)
C∗max.

So suppose there is idle time, and let I be the union of all intervals in which some
machine is idle. Let S ⊆ N be a set of jobs such that {jin} ∪ S is a path in Gin from
the initial job to k. At every point in time t ∈ I, a job in S is either not yet released,
or is currently running on some machine. Otherwise, there is an unscheduled available
job in S that can be processed at time t.
Let L′ ∈MC(k) be a minimal chain of k and index the jobs L′ = {j1, . . . , j`} such

that j` = k, P(j1) = ∅, and jq ∈ P(jq+1) for all q ∈ [` − 1]. Recall that L′ is a
path in G. So, at every idle point in time, some job of L′ is either being processed
or not yet released. That is, the total idle time is |I| ≤ mc(k). Now, let h ∈ [`] be
maximal such that jh dominates the minimal chain L′, i.e., mc(k) = rjh +

∑`
q=h pjq .

Let L = {jh, . . . , j`}, and consider the points in time IL = [0; rjh] ∪
⋃
j∈L[Sj ;Cj] when

jh is not yet released or some job in L is being processed.11

W.l.o.g., we can assume that at least one machine is running during [0; rjh]. Otherwise,
if all machines were idle at some point t ∈ [0; rjh], then all jobs j with rj ≤ t are already
completed at time t. Thus, also in the optimum solution, no machine is running at
time t. So, we can disregard these time slots where no machine is running at all. That
is, during IB = [0;Cmax] \ IL, all machines are busy with jobs in N \ L and the total
processing load of jobs that are running in IB is less or equal than p(N \ L) − rjh .
Hence, |IB| ≤ 1

m (p(N \ L)− rjh) and we obtain

Cmax = Ck = |IB|+ |IL| ≤
1
m

(p(N \ L)− rjh) + rjh +
∑̀
q=h

pjq

= 1
m
p(N) +

(
1− 1

m

)
mc(k) ≤

(
2− 1

m

)
C∗max

(2.2)

This proves the claim. 2

Corollary 2.9
List Scheduling solves 1 | rj , or-prec |Cmax optimally.

11In contrast to the proof of Proposition 2.3, the intervals [Sj ;Cj] for j ∈ L are not necessarily
disjoint, because jobs in L might run in parallel. That is, instead of |IS | = p(S), as in the proof of
Proposition 2.3, we get |IL| ≤ rjh + p(L).

32

2.3 Approximability and Hardness of the Non-Preemptive Variant

2.3.2 An Inapproximability Result
In the remainder of this section, we derive a lower bound on the approximability of
OR-scheduling without release dates under the assumption P 6= NP. To obtain this
lower bound, we reduce the NP-complete Vertex Cover problem to P | or-prec |Cmax.
We show that if we could approximate P | or-prec |Cmax within some factor η < 4

3 , we
could solve Vertex Cover in polynomial time.

To define Vertex Cover, we need the notion of an undirected graph, see [36]. An
undirected graph G = (V, E) consists of a finite set of vertices V and a set of edges
E ⊆ {{v, u} | v, u ∈ V, v 6= u}, which are subsets of cardinality two of V .12 If {v, u} ∈ E
is an edge, we say that u, v ∈ V are incident to {v, u}.

Definition 2.10 (Vertex Cover)
Let G = (V, E) be an undirected graph. A vertex cover is a subset W ⊆ V such
that {v, u} ∩W 6= ∅ for all {v, u} ∈ E .

For K ∈ N and an undirected graph G, the Vertex Cover problem asks whether
there is a vertex cover of size at most K. Vertex Cover is NP-complete [98], even
when restricted to, e.g., undirected graphs with maximum degree equal to 3 [54]. Dinur
and Safra [37] proved that it is NP-hard to approximate Vertex Cover within a factor
of 1.36. Gavril (see [53], page 134), Bar-Yehuda and Even [21] and Hochbaum [82]
presented simple 2-approximation algorithms, and under a variant of the Unique
Games Conjecture [100], a factor of 2 is essentially best possible [101]. Our main
result in this section is that OR-scheduling has the same inapproximability bound as
AND-scheduling, see [112].

Theorem 2.11
It is NP-hard to

(
4
3 − ε

)
-approximate P | or-prec |Cmax for any fixed ε > 0.

To prove Theorem 2.11, we first describe a reduction from any Vertex Cover
instance to an instance of P | or-prec |Cmax. Then, we show that Vertex Cover
is a Yes-instance if and only if the corresponding instance of OR-scheduling has an
optimum makespan of 3 (Lemma 2.13). Hence, if we had an η-approximation algorithm
for P | or-prec |Cmax with η < 4

3 , we could use this algorithm to obtain a feasible
schedule with makespan at most η · 3 < 4. Since all input data in the instance are
integer, the makespan of any feasible schedule is also integer. So, a feasible solution
with makespan strictly less than 4 actually has makespan ≤ 3, i.e., the solution is
optimal. Thus, we could use the η-approximation algorithm to obtain an optimum
solution and decide whether the initial Vertex Cover instance is a Yes-instance,
implying P = NP.

12We distinguish between directed graphs G = (N,E), as in Section 1.1.2, and undirected graphs
G = (V, E) via the nomenclature of nodes versus vertices and arcs versus edges, respectively. Note that
arcs are tupels (i, j) ∈ E ⊆ N ×N and edges are sets {v, u} ∈ E ⊆ 2V .

33

Chapter 2 Makespan Minimization with OR-Precedence Constraints

We can assume K < |V | and |E| > 0, as otherwise Vertex Cover is trivial. Further,
if K ≥ |E|, then we can choose an incident vertex for every edge to be in the vertex
cover. So, w.l.o.g., we can assume K < min{|V |, |E|}.

The Reduction. Consider an instance of Vertex Cover, i.e., let G = (V, E) be
an undirected graph and K ∈ [min{|V |, |E|} − 1]. We now describe the construction
of the instance of P | or-prec |Cmax. The number of machines is m = |E| + |V | −K,
and the set of jobs consists of four disjoint sets, N = JK ∪̇ JV ∪̇ JE ∪̇X. We refer to
Example 2.12 for an instance of Vertex Cover and the corresponding OR-scheduling
instance.
In JK , we introduce K jobs of unit processing time. The sets JV and JE contain

a job jv and j{v,u} for every vertex v ∈ V and every edge {v, u} ∈ E , respectively.
The processing times of all jobs jv ∈ JV and j{v,u} ∈ JE are equal to 1. We set
the predecessors of an edge-job in JE to be the jobs corresponding to its incident
vertices, i.e., P(j{v,u}) = {jv, ju} for all {v, u} ∈ E . Moreover, we assign OR-precedence
constraints in JK × JV in the form of an outforest such that each job in JV is successor
of exactly one job in JK . This can be done since |JK | = K < |V | = |JV |. It is not
important which job in JK is the predecessor of which job in JV . We only need these
precedence constraints to ensure that no job in JV can start at time 0 and all jobs in
JV are available as soon as all jobs in JK are completed. The remaining jobs in X are
dummy jobs to enforce a certain structure of any optimal schedule. The set X contains
m−K jobs of processing time equal to 2, and these jobs do not have any predecessors
or successors. Note that X 6= ∅ because K < min{|V |, |E|}.
Example 2.12 (Reduction to P | or-prec |Cmax)
Let G = ({v1, v2, v3, v4}, {{v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}}) and K = 2. Figure 2.3
illustrates the precedence graph of the corresponding OR-scheduling instance and a
feasible schedule. It holds |V | = |E| = 4, so m = 6, |X| = 4 and |N | = 14. Note that
the jobs {jv2 , jv3} scheduled in the interval [1; 2] correspond to a vertex cover of size 2.

In fact, the instance of P | or-prec |Cmax is constructed such that any feasible schedule
of makespan ≤ 3 has a similar structure. If the makespan is ≤ 3, then all jobs in JE
need to be scheduled in the interval [2; 3]. Further, all jobs in JK and X have to start
at time 0. The cardinality of the set X ensures that there are exactly K slots in [1; 2]
left for jobs in JV . Since all jobs in JE have to be available at time 2, the vertex-jobs
in JV that are placed in [1; 2] correspond to a vertex cover, see Lemma 2.13. The
remaining vertex-jobs can be scheduled in [2; 3] in parallel to the edge-jobs in JE .

The following lemma together with the discussion after Theorem 2.11 completes the
proof of Theorem 2.11.
Lemma 2.13
Let G = (V, E) be an undirected graph and K ∈ [min{|V |, |E|} − 1]. Vertex Cover
is a Yes-instance if and only if the corresponding instance of P | or-prec |Cmax has
makespan ≤ 3.

34

2.3 Approximability and Hardness of the Non-Preemptive Variant

j1

j2

jv2

jv1

jv3

jv4

j{v1,v3}

j{v2,v3}

j{v2,v4}

j{v3,v4}

x2

x1

x3

x4

j1

j2

x1

x2

x3

x4

j{v1,v3}

j{v2,v3}

j{v2,v4}

j{v3,v4}

jv2

jv3

jv1

jv4

0 1 2 3

time

Fig. 2.3: The precedence graph of the instance of P | or-prec |Cmax in the reduction from
Vertex Cover for the instance in Example 2.12 (left) and a feasible schedule with
makespan ≤ 3 (right). To highlight the structure of the schedule, jobs in JK , JE and
X are depicted red, blue and gray, respectively.

Proof. Suppose Vertex Cover is a Yes-instance. Let W ⊆ V be a vertex cover of
size |W | ≤ K, and let JW ⊆ JV be the jobs corresponding to W . We can schedule
the jobs in a similar way as in Figure 2.3 (right). That is, we schedule all jobs in X
and JK in the intervals [0; 2] and [0; 1], respectively. So all jobs in JV are available at
time 1. In [1; 2], there are exactly m− |X| = K slots left in which we can schedule the
jobs in JW and some other jobs of JV \ JW if |W | < K. Hence, at time 2, all jobs in
JE are available and can be scheduled in [2; 3]. Finally, we schedule the remaining jobs
in JV on the remaining m− |E| = |V | −K machines in the interval [2; 3].
Now suppose that the instance of P | or-prec |Cmax has makespan ≤ 3. Recall that

m = |E|+ |V | −K and note that the total processing load of all jobs is∑
j∈N

pj = |JK |+ |JV |+ |JE |+ 2|X| = K + |V |+ |E|+ 2 (m−K) = 3m. (2.3)

So any feasible schedule with makespan ≤ 3 has a makespan of exactly 3 and there is
no idle time within the interval [0; 3]. Consider an optimal schedule of makespan equal
to 3. Due to the precedence constraints, no job in JV can start before time 1, and no
job in JE can start before time 2. So, the jobs JE are scheduled in the interval [2; 3].
Also, the jobs in JV that are scheduled in [1; 2] correspond to a vertex cover, since
otherwise not all jobs in JE would be available at time 2. It remains to be shown that
the set of jobs of JV scheduled in [1; 2] has cardinality at most K.

35

Chapter 2 Makespan Minimization with OR-Precedence Constraints

The total processing load of all jobs is equal to 3m, see (2.3). As there is no idle time
within [0; 3], exactly m jobs start at time 0. The only jobs that can start at time 0 are
those in JK ∪X (all other jobs have predecessors). Since |JK |+ |X| = K+m−K = m,
we know that the jobs in JK and X are scheduled in [0; 1] and [0; 2], respectively. This
leaves exactly m− |X| = K slots in [1; 2] in which only jobs of JV are scheduled. 2

Technically, it would suffice to let JK be a singleton that precedes all jobs in JV .
However, choosing |JK | = K, and, thus, the total processing load to be equal to 3m
makes the argument slightly easier. Note that the processing times in the OR-scheduling
instance in the reduction are in {1, 2} only. This is indeed necessary, i.e., we cannot
get a reduction for unit processing times. Also, the proof does not work if we allow
preemption. In this case, we could preempt a job in X at time 1, and process more
than K jobs of JV in the interval [1; 2]. In fact, as we see in the next section, we can
solve the variants with unit processing times or preemption in polynomial time.

2.4 A Polynomial-Time Algorithm for the Preemptive Variant
In contrast to the non-preemptive setting, an optimal preemptive schedule never has
idle time if there are available jobs. Without preemption, it could make sense to leave a
machine idle, although there is an available job j, if, e.g., a long job i becomes available
soon. If preempting jobs is allowed, we could just schedule a fraction of j, and once i
becomes available, we preempt j and process i.
The main result of this section is a polynomial-time algorithm for the preemptive

variant of minimizing the makespan, P | rj , pmtn, or-prec |Cmax. Recall that all pro-
cessing times and release dates of jobs are non-negative integers. So, preemptive and
non-preemptive scheduling of unit processing time jobs is equivalent, since there is no
need to preempt. Thus, a polynomial-time algorithm for the preemptive variant also
solves P | rj , or-prec, pj = 1 |Cmax.

The algorithm is summarized in Algorithm 1 and works as follows. First, we compute
a closed collection of minimal chains {Lj | j ∈ N} with Lj ∈ MC(j) for all j ∈ N
(Definition 2.7). Then, we define a directed graph G′ by removing all arcs from the
precedence graph that are not part of the paths that correspond to the minimal chains.
Observe that G′ is an outforest if the collection of minimal chains is closed. Now, we
apply Lawler’s algorithm [109] for the AND-instance P | rj , pmtn, prec = outtree |Cmax
with precedence graph G′ to compute a preemptive schedule. The returned schedule is
feasible for the initial instance, because G′ is a subgraph of the original precedence
graph. For unit processing times, we could use the algorithms of Brucker, Garey and
Johnson [23] or Monma [126] instead of Lawler’s algorithm [109].

The idea of using an earliest start schedule, constructing an outforest G′ and solving
the related AND-instance on G′ was previously used in [93] to get a polynomial-
time algorithm for P | or-prec, pj = 1 |Cmax. Algorithm 1 extends this idea and uses
the notion of minimal chains to handle also non-trivial release dates and preemption.

36

2.4 A Polynomial-Time Algorithm for the Preemptive Variant

Input: Instance of P | rj , pmtn, or-prec |Cmax
Output: A feasible schedule for P | rj , pmtn, or-prec |Cmax

1 Construct an earliest start schedule;
2 Compute a closed collection {Lj | j ∈ N} with Lj ∈MC(j) for all j ∈ N ;
3 E′ ← ∅;
4 for j ∈ N do
5 Enumerate the jobs in Lj = {j1, . . . , j`} so that jq ∈ PLj (jq+1) for all

q ∈ [`− 1];
6 E′ ← E′ ∪ {(j1, j2), (j2, j3), . . . , (j`−1, j`)};
7 end
8 Set G′ = (N,E′);
9 Apply Lawler’s algorithm [109] for P | rj , pmtn, prec = outtree |Cmax on G′;

10 return schedule returned by Lawler’s algorithm [109];

Algorithm 1: An algorithm for P | rj , pmtn, or-prec |Cmax.

Observe that the algorithm in [93] cannot be extended to the preemptive case. Although
one could split all jobs into a sequence of unit processing time jobs, the size of the
resulting instance is exponential in the size of the initial instance. Instead of showing
optimality of the schedule returned by Algorithm 1 directly, we analyze the structure of
an optimal preemptive schedule. More precisely, we show that, for any closed collection
of minimal chains, there is an optimal preemptive schedule that is feasible for the
transformed precedence graph G′. Correctness of Algorithm 1 then follows from the
correctness of Lawler’s algorithm [109], see Theorem 2.18.

To analyze the structure of an optimal schedule, we need some additional notation.
If jobs are allowed to preempt, we want to “keep track” of how much of the minimal
chain of a job is already processed at every point in time. To formalize this, we consider
an equivalent instance of unit processing time jobs by splitting every job. Note that the
size of this new instance is not polynomial in the size of the initial instance. However,
this is not a problem because we never explicitly construct the new instance. It is used
only for the analysis of Algorithm 1.

Definition 2.14 (Preemptive Instance)
Let N be a set of jobs and G = (N,E∨) a precedence graph. The preemptive
instance on the job set N (p) is defined as follows:

(i) for every j ∈ N introduce pj jobs j1, . . . , jpj ∈ N (p) of unit processing time,
(ii) for all j ∈ N , set P(j1) = {ipi | (i, j) ∈ E∨} and P(jq) = {jq−1} for all

2 ≤ q ≤ pj , and
(iii) set rjq = rj for all q ∈ [pj] and j ∈ N .

37

Chapter 2 Makespan Minimization with OR-Precedence Constraints

W.l.o.g., we neglect jobs of zero processing time, as they can be scheduled as soon as
they become available without increasing the load on that machine. Note that, if all jobs
have unit processing time, then N (p) = N . Every feasible (non-preemptive) schedule
for the preemptive instance corresponds to a feasible preemptive schedule for the initial
instance, and vice versa. We informally extend the definitions of feasible starting sets
(Definition 1.14) and minimal chains (Definition 2.5) to fractions of jobs via the original
definitions on the preemptive instance. Note that (the lengths of) all minimal chains
coincide with the non-preemptive instance. That is, if i ∈ Lj ∈ MC(j) for j ∈ N ,
then, for jq ∈ N (p) with q ∈ [pj], there is Ljq ∈MC(jq) such that i1, . . . , ipi ∈ Ljq . We
call these minimal chains Lj1 ∈MC(j1), . . . , Ljpj ∈MC(jpj) the natural extensions of
Lj ∈MC(j). The collection of the natural extensions {Lj | j ∈ N (p)} is closed if and
only if the corresponding collection {Lj | j ∈ N} is closed.

Definition 2.15 (Inverted Jobs)
Let N be a set of jobs and G = (N,E∨) a precedence graph. Let j ∈ N , L ∈MC(j)
and let i ∈ L be the predecessor of j in L, i.e., PL(j) = {i}. Consider a feasible
schedule with completion times Ck for every k ∈ N . We call the pair (i, j) inverted
if Ci ≥ Cj . The number of inverted pairs in the schedule is denoted by IC .

Our approach for proving correctness of Algorithm 1 is as follows. Suppose we
have an optimal preemptive schedule that is not feasible for the AND-instance on the
constructed precedence graph G′. Then the corresponding schedule of the preemptive
instance contains at least one inverted pair. Lemma 2.16 describes a procedure that
swaps two jobs i, k ∈ N (p) that are scheduled consecutively. We apply this procedure
to successively swap two jobs until the inverted pair is not inverted anymore. The
procedure does not cause additional inversions and does not increase the makespan, so
we obtain an optimal schedule with strictly fewer inverted pairs. Thereby, we show
that there always exists an optimal solution without inversions (Lemma 2.17).
For the notation of Lemma 2.16, we neglect release dates. We describe how to

incorporate release dates in the proof of Lemma 2.17, which together with Lemma 2.16
proves correctness of Algorithm 1. Recall that all jobs in N (p) have unit processing
time, i.e., Sj = Cj − 1 for all j ∈ N (p) and any schedule.

Lemma 2.16
Let {Lj | j ∈ N (p)} be a closed collection of minimal chains and let C∗j be the completion
time of j ∈ N (p) in a feasible schedule for the preemptive instance. Let i ∈ N (p) with
C∗i ≥ 2, and let J−i = {j ∈ N (p) |C∗j = C∗i − 1} be the jobs scheduled directly before i.
Assume that |J−i | = m and C∗j ≤ C∗i − 2 for j ∈ PLi(i).13 Then, there is k ∈ J−i such
that swapping i and k, i.e., setting C ′i = C∗i − 1 = C∗k , C ′k = C∗k + 1 = C∗i and C ′j = C∗j
for all j ∈ N (p) \ {i, k}, yields a feasible schedule with C ′max = C∗max and IC′ ≤ IC∗.

13So, moving i to [C∗i − 2;C∗i − 1] does not violate its precedence constraints or cause an inversion.

38

2.4 A Polynomial-Time Algorithm for the Preemptive Variant

S′ J ′

S

i

k

J−i Ji ∪ {i}

t− 1 t t+ 1

S′ J ′

k

i

J−i Ji ∪ {i}

t− 1 t t+ 1

Fig. 2.4: Relevant time slots [t− 1; t+ 1] in the initial schedule (left) and final schedule (right),
respectively. The arcs indicate that the respective job in S′ is the predecessor of the
corresponding job in J ′. The sets S′, J ′ and S are depicted in red, gray and blue,
respectively. In this example, J = ∅, so Ji = J ′.

Proof. To shorten notation, set t = C∗i − 1. Note that the makespan does not change
if we swap two unit processing time jobs. Let Ji = {j ∈ N (p) \ {i} | C∗j = t+ 1} be the
jobs running in parallel to i on the other machines. Note that |Ji| ≤ m− 1, and recall
that there are |J−i | = m jobs that are being processed directly before i. For j ∈ N (p),
let Aj = {j′ ∈ N (p) |C∗j′ < C∗j } be the set of jobs that complete before j starts.

Let J ′ = {j ∈ Ji | PLj (j) ∩ J−i 6= ∅} ∪ {j ∈ Ji | |P(j) ∩Aj | = 1 and P(j) ∩Aj ⊆ J−i }
be the set of jobs that are scheduled parallel to i and that are processed directly after
their predecessor in the minimal chain or directly after the only predecessor preceding
them in the schedule. Let S′ ⊆ J−i be the set of these predecessors of jobs in J ′. We
do not want to swap i with a job in S′, since this would cause an inversion or yield an
infeasible schedule. Note that |S′| ≤ |J ′|, and let S = J−i \ S′ and J = Ji \ J ′. Then,
|S| = m− |S′| ≥ m− |J ′| ≥ |Ji|+ 1− |J ′| = |J |+ 1 ≥ 1, so S 6= ∅. We claim that any
k ∈ S satisfies the statement. Figure 2.4 illustrates the sets and the corresponding
schedules before and after swapping i and k.
Let k ∈ S, and consider the resulting schedule after swapping k and i. Feasibility

of the initial schedule implies that at most m jobs are running at any point in time.
Scheduling k one time slot later does not violate any precedence constraints or cause an
additional inversion by definition of S. Also, moving i one time slot forward is feasible
and does not cause an inversion by assumption. All other jobs remain unchanged, so
the resulting schedule is feasible and IC′ ≤ IC∗ . 2

For the following lemma, we consider the instance with the initial job jin, which is
the only job without predecessors, i.e., the set of jobs is N (p) ∪ {jin} and pjin = 0.

39

Chapter 2 Makespan Minimization with OR-Precedence Constraints

Lemma 2.17
Let {Lj | j ∈ N (p)} be a closed collection of minimal chains Lj ∈MC(j) for all j ∈ N (p).
There exists an optimal schedule of the preemptive instance with no inverted pairs.

Proof. Recall that all processing times of jobs in N (p) are equal to 1. Consider an
optimal schedule with completion times C∗j for all j ∈ N (p) such that the number of
inversions IC∗ is minimal among all optimal solutions, and suppose that IC∗ ≥ 1. We
show how to construct a schedule with C ′max = C∗max and IC′ < IC∗ using Lemma 2.16.
Since the schedule is optimal, the initial job jin starts at time 0. Let j ∈ N (p) and

i ∈ PLj (j) such that (i, j) is an inverted pair, i.e., C∗i ≥ C∗j ≥ mc(j) ≥ mc(i) + 1. We
index the jobs in Lj = {j0, j1, . . . , j`, j`+1} ∈ MC(j) such that jin = j0, i = j`, j = j`+1
and jq−1 ∈ PLj (jq) for all q ∈ [`+ 1]. Note that mc(jq−1) + 1 ≤ mc(jq) ≤ C∗jq for all
q ∈ [`+ 1] and mc(j0) = mc(jin) = 0.

Using Lemma 2.16, we move the jobs j1, . . . , j` successively (in this order) to the front
such that they complete at times mc(j1), . . . ,mc(j`), respectively. For all k ∈ N (p), it
holds

C∗k ≥ mc(k) ≥ rk + pk = rk + 1. (2.4)

So, we can swap those jobs k ∈ {j1, . . . , j`} that do not complete at time mc(k) to
the front without violating their respective release date. Thereby, we obtain a schedule
that satisfies

0 = C ′j0 < mc(j1) = C ′j1 < mc(j2) = C ′j2 < · · · < mc(j`) = C ′j` < C ′j . (2.5)

Since we first move job j1 to the front, then j2, and so on, we ensure that, when we
apply Lemma 2.16 for i = jq (in the notation of Lemma 2.16), then its predecessor jq−1
completes at time mc(jq−1) < mc(jq). So, the assumptions of Lemma 2.16 are satisfied.
The procedure of Lemma 2.16 does not violate any release dates, since k ∈ S (in the
notation of Lemma 2.16) is scheduled later and it is feasible to schedule jq earlier due
to (2.4) for all q ∈ [`].
Figure 2.5 illustrates the current completion times and the time slots in which we

move the jobs in the minimal chain Lj . Note that it is not necessary to move the
job j = j`+1. However, by applying Lemma 2.16, it might happen that k = j (in the
notation of Lemma 2.16) is chosen, i.e., j is “passively moved back”. Similarly, a job jh
might be “passively moved back” when we swap jq with q < h to the front. This is not
a problem, since we deal with jh in a later iteration.
Multiple application of Lemma 2.16 ensures that the resulting schedule is feasible

and has no more inversions than the initial schedule. Further, Lemma 2.16 implies
C ′max = C∗max, and IC′ < IC∗ because i and j are not inverted anymore, see (2.5). This
contradicts the choice of the initial schedule being an optimal solution with fewest
inversions. Hence, there exists an optimal solution without inversions, which proves
the claim. 2

40

2.4 A Polynomial-Time Algorithm for the Preemptive Variant

j1

j2

j3

j4

j

0 mc(j1)mc(j2) rj3 mc(j3)mc(j4)

time

Fig. 2.5: Illustration of the procedure to move jobs in Lj \ {j} = {j1, j2, j3, j4} to the front.
Blank squares are jobs not in Lj . Arrows indicate into which time slot we want to
move the respective jobs. The jobs are moved “lowest index first” rather than all at
once. Note that mc(j3) > mc(j2) + 1 because rj3 = 3.

We are now ready to prove our main theorem in this section.

Theorem 2.18
Algorithm 1 solves P | rj , pmtn, or-prec |Cmax to optimality in polynomial time.

Proof. First, observe that the digraph G′ constructed by Algorithm 1 is a subgraph of
the initial precedence graph G. Since the schedule returned by the algorithm is feasible
for the AND-instance on G′ (this follows from correctness of Lawler’s algorithm [109]),
it is feasible for the OR-instance on G. Construction of the earliest start schedule and
Lawler’s algorithm run in polynomial time [43, 109]. Also, we can compute the closed
collection of minimal chains and construct G′ in polynomial time. So, Algorithm 1
runs in polynomial time and returns a feasible schedule.
As for optimality of the schedule returned by Algorithm 1, let {Lj | j ∈ N} be

the closed collection of minimal chains that is computed in line 2, and let G′ be the
corresponding subgraph of G. Since {Lj | j ∈ N} is closed, G′ is an outforest. Thus,
OR- and AND-precedence constraints on G′ are equivalent.
Consider the schedule returned by Algorithm 1, i.e., by Lawler’s algorithm [109]

on G′, and let Cmax be its makespan. Since the schedule is feasible for the OR-instance
with precedence graph G′, it is also feasible for the initial precedence graph G. By
Lemma 2.17, there exists an optimal solution with makespan C∗max for the instance on G
that is also feasible for the instance on G′. Since the schedule returned by Algorithm 1
is optimal for the instance on G′, it holds Cmax ≤ C∗max. This proves the claim. 2

41

Chapter 2 Makespan Minimization with OR-Precedence Constraints

Recall that, for unit processing time jobs, there is no need to preempt. In this case,
we could replace Lawler’s algorithm [109] in Algorithm 1 by, e.g., one of the algorithms
in [23, 126]. The following corollary extends the result of [93] to release dates.

Corollary 2.19
Algorithm 1 solves P | rj , or-prec, pj = 1 |Cmax to optimality in polynomial time.

2.5 Open Problems
Since the preemptive problem can be solved in polynomial time (Theorem 2.18), it
seems natural to focus on the non-preemptive variant. Note that the approximation
factor 2− 1

m of List Scheduling (Theorem 2.8) is strictly less than 2, but approaches 2
as m increases. An obvious research question is to get the approximation factor down
to 2− ε for some fix ε > 0. Conversely, one could also try to find stronger lower bounds
than the one presented in Theorem 2.11.

Problem 2.20
Close the gap of

[
4
3 ; 2
]
in the approximation guarantee for P | or-prec |Cmax.

The performance guarantees in Theorems 2.8 and 2.18 match the best-known ones
for minimizing the makespan if the precedence graph is an outtree. Recall that, in this
special case, AND-scheduling and OR-scheduling coincide. Clearly, any improvement
for OR-scheduling directly transfers to AND-scheduling on outtrees. On the other hand,
due to its close connection with (closed collections of) minimal chains, any progress on
the approximation factor for AND-scheduling on outtrees might also be applicable to
OR-scheduling.

Problem 2.21
Is there a (2− ε)-approximation for P | prec = outtree |Cmax for a fix ε > 0?

Recall that AND-scheduling and OR-scheduling to minimize the makespan remain
strongly NP-hard, even when the number of machines is fixed [40]. Nonetheless, there
are (1 + ε)-approximation algorithms with slightly super-polynomial running time for
AND-scheduling of unit processing time jobs [118, 56] and a variant of preemption [104].
OR-scheduling of unit processing time jobs or with preemption can be solved in
polynomial time, even when the number of machines is not fixed, see Theorem 2.18.
However, it is not clear whether better approximation ratios than 2 are possible for
non-preemptive OR-scheduling if the number of machines is fixed.

Problem 2.22
Is there a (2− ε)-approximation for Pm | or-prec |Cmax for a fix ε > 0?

42

2.5 Open Problems

Note that the inapproximability result of Theorem 2.11 does not apply if m is
constant. Fixing the number of machines in the reduction would mean that we fix the
number of vertices in the undirected graph. In this case, we can solve Vertex Cover
by full enumeration of all |2V | = 2|V | (which is a constant) candidates for vertex covers.
Recall that, unless P = NP, an FPTAS for OR-scheduling is out of reach, even if we
fix the number of machines [52, 40]. Nevertheless, there could be η-approximation
algorithms with η < 4

3 or even η = 1 + ε for some arbitrary small but fix ε > 0.

Problem 2.23
Is there a PTAS for Pm | or-prec |Cmax?

Svensson [160] discovered an interesting connection between makespan minimization
and minimizing the sum of weighted completion times for AND-scheduling. He showed
that, under a variant of the Unique Games Conjecture [100], if there is no (2 − ε′)-
approximation algorithm for minimizing the sum of weighted completion times on
a single machine, then there is no (2 − ε)-approximation algorithm for makespan
minimization. Finding a similar connection for OR-scheduling, or between AND-
scheduling and OR-scheduling, might solve some of the aforementioned open problems.

43

Chapter 3

Combinatorial Algorithms for the Sum of
Weighted Completion Times

In this chapter, we present combinatorial exact and approximate algorithms for variants
of min-sum set cover and OR-scheduling on a single machine to minimize the sum of
weighted completion times. Parts of this chapter coincide with work that is available
online in [75, 77]. The results in Section 3.4 are work in progress [76].

3.1 Related Work and Our Results
The problems considered in this chapter are special cases of generalized min-sum set
cover (Definition 1.10) and variants of 1 | or-prec |

∑
wjCj . Recall the min-sum covering

problems of Section 1.2.1 and their connection to OR-scheduling, see Figure 1.5.
In Section 3.2, we introduce further variants of (generalized) min-sum set cover, and

we revisit some important definitions and results from AND-scheduling. We continue
with analyzing the frontier between problems that are solvable in polynomial time and
NP-hard problems. More precisely, we show that bipartite OR-scheduling is strongly
NP-hard, even when restricted to unit processing times or unit weights (Section 3.3),
and present polynomial-time algorithms for variants of generalized min-sum set cover
if the family of sets R is laminar (Section 3.4.1). We also propose a 2-approximation
algorithm for GMSSC on laminar sets in Section 3.4.2. In Section 3.5.1, we provide a
general framework to obtain approximation algorithms for scheduling problems using
a density-maximizing Greedy algorithm. Finally, we propose two applications of this
framework in the context of OR-scheduling and present 4-approximation algorithms for
1 | or-prec = bipartite |

∑
wjCj and 1 | or-prec = intree |

∑
wjCj in Section 3.5.2. We

begin with reviewing some related work. Figure 3.2 in Section 3.2.1 gives an overview
of the problems that are discussed in this chapter and the related problems in the
literature, which we describe briefly in the following paragraphs.

Min-Sum Set Cover and Related Problems. The basic problem is min-sum set cover
(Definition 1.9), which was first studied in [44]. Min-sum set cover (MSSC) is related
to the chromatic sum problem that was introduced by Kubicka and Schwenk [103].

45

Chapter 3 Combinatorial Algorithms for the Sum of Weighted Completion Times

Here, we are given an undirected graph G = (V, E), and the task is to find a feasible
coloring, i.e., a partition of the vertices V = V1 ∪̇ · · · ∪̇V` such that no two adjacent
vertices are assigned the same color, i.e., for all {v, u} ∈ E , v ∈ Vq implies u /∈ Vq. The
objective is to find a feasible coloring that minimizes

∑`
q=1 q · |Vq|.

Note that chromatic sum can be seen as a special case of MSSC, see also [44, 45]: For
an undirected graph G = (V, E), we introduce a set in R for every vertex in V and an
element in U for every independent set of G.14 The set corresponding to v ∈ V contains
all elements that correspond to independent sets containing v. However, this reduction
is not of polynomial size, as one would have to list all independent sets of G. Observe
that min-sum set cover and chromatic sum are min-sum variants of the well-known
Set Cover (or the equivalent Hitting Set) problem and the Chromatic Number
problem, respectively. These problems were shown to be NP-complete by Karp [98],
and it is NP-hard to obtain constant-factor approximations for Set Cover [39] and
Chromatic Number [169].
Chromatic sum can be solved in linear time for trees [103]. For bipartite graphs,

the problem is APX-hard and admits a 10
9 -approximation [20].15 Bar-Noy et al. [18]

showed that greedily picking an independent set of maximum cardinality and removing
those vertices gives a 4-approximation for arbitrary graphs, assuming that one can find
such an independent set in polynomial time. If a maximum independent set can be
approximated within a factor of η ≥ 1, the algorithm in [18] yields a 4η-approximation
for chromatic sum. Bar-Noy, Halldórsson and Kortsarz [19] provided an example for
which the approximation ratio of 4 of the Greedy algorithm is tight.

Feige, Lovász and Tetali [44] observed that applying the Greedy algorithm of [18]
to min-sum set cover, which is to choose the element in U that is contained in most
uncovered sets next, yields a 4-approximation for MSSC. They simplified the proof by
analyzing the performance ratio via a time-indexed linear program (see Section 4.2.3)
instead of comparing the Greedy solution directly to the optimum. In the journal
version [45] of their paper, they further simplified the proof to an elegant histogram
framework, which inspired the result in Section 3.5, and they proved that one cannot
approximate min-sum set cover strictly better than 4, unless P = NP.
The histogram proof of [45] was generalized by Iwata, Tetali and Tripathi [90] to

obtain a 4-approximation for the minimum linear ordering problem, which generalizes
min-sum set cover. Other generalizations of MSSC and the results in [45] were proposed
in, e.g., [97, 159]. More recently, a similar proof was used in [122] to get a 4

√
|U |-

approximation for precedence-constrained min-sum set cover (Definition 1.11), and
in [81] to get an 8-approximation algorithm for expanding search, a problem that
was introduced by Alpern and Lidbetter [6]. Happach, Hellerstein and Lidbetter [75]
generalized the histogram proof of [90] to linear ordering problems with subadditive
cost functions or superadditive weight functions and proposed new applications of this

14An independent set of an undirected graph G is a subset of vertices S ⊆ V such that the induced
subgraph G[S] := (S, E ∩ 2S) contains no edges, see [36].

15An undirected graph G = (A ∪̇B, E) is bipartite if {v, u} ∈ E implies v ∈ A and u ∈ B.

46

3.1 Related Work and Our Results

histogram framework.16 In Section 3.5.1, we present a special case of the framework
in [75] in the context of single-machine scheduling problems, which generalizes the
histogram proofs in [45, 122, 81]. We then provide two applications for OR-scheduling
and obtain 4-approximation algorithms for restricted precedence graphs in Section 3.5.2.
The special case of min-sum set cover where every set in R contains at most two

elements is called min-sum vertex cover (MSVC) and is APX-hard [45]. The Greedy
algorithm for MSSC is 4-approximate for MSVC as well, and this analysis is tight [45].
Feige, Lovász and Tetali [44, 45] provided a 2-approximation algorithm for MSVC that
is based on a time-indexed linear program and uses randomized rounding. Bansal et
al. [13] used the same LP to obtain a 16/9-approximation for MSVC.

Munagala et al. [128] generalized MSSC by introducing non-negative costs for each
element in U and non-negative weights for each set in R. This problem, which is
called pipelined set cover, is formally defined in Section 3.2.1. Among other things, the
authors in [128] proved that the natural extension of the Greedy algorithm of [45] for
min-sum set cover still yields a 4-approximation for pipelined set cover.
Recall the generalized min-sum set cover or GMSSC (Definition 1.10) that was

introduced in [10]. The extreme cases κ(R) = 1 and κ(R) = |R| are min-sum set
cover and the minimum latency set cover problem, respectively. The latter was
studied in [79] and is closely related to single-machine scheduling with AND-precedence
constraints [166]. Over time, several constant-factor approximations for generalized
min-sum set cover were proposed. Bansal, Gupta and Krishnaswamy [14] presented the
first such algorithm with an approximation guarantee of 485, which was improved to 28
by Skutella and Williamson [156] and then to 12.4 by Im, Sviridenko and Zwaan [88].
The algorithms in [14, 156] use the same time-indexed linear program and the algorithm
in [88] is based on a so-called configuration LP. The currently best-known approximation
ratio for generalized min-sum set cover is 4.642 and is due to Bansal et al. [13], who use
the canonical time-indexed LP of [14]. In Section 3.4, we present polynomial-time and
approximation algorithms for variants of GMSSC if the family of sets R is laminar.

Related Work in Scheduling. The first polynomial-time algorithm for scheduling
jobs on a single machine to minimize the sum of weighted completion times is due
to Smith [157]. With AND-precedence constraints, the problem is strongly NP-
hard via a reduction from Linear Arrangement [108, 112]. It remains strongly
NP-hard, even if we restrict to unit processing times [112] or bipartite precedence
graphs [166]. Various 2-approximation algorithms based on linear programs [148, 71,
30] (see also Sections 4.1 and 4.2) as well as combinatorial algorithms [25, 120] exist for
1 | prec |

∑
wjCj . Assuming a variant of the Unique Games Conjecture [100], Bansal

and Khot [15] showed that an approximation ratio of 2 is essentially best possible.

16A set function g : 2N → Z is called subadditive if g(S ∪ R) ≤ g(S) + g(R) for all S,R ⊆ N . A
function g : 2N → Z is called superadditive if g(S ∪R) ≥ g(S) + g(R), i.e., if −g is subadditive.

47

Chapter 3 Combinatorial Algorithms for the Sum of Weighted Completion Times

AND-scheduling, i.e., 1 | prec |
∑
wjCj , is solvable in polynomial-time for certain

precedence graphs. Horn [85] proposed the first polynomial-time algorithm for inforests
and outforests, which was improved in running time by Adolphson and Hu [2]. Forests
are special cases of so-called series-parallel graphs, see, e.g., [161]. If the precedence
graph is series-parallel, then 1 | prec |

∑
wjCj can be solved in polynomial time [108].

The key idea in [108] is to use the natural decomposition of a series-parallel graph to
concatenate and merge optimal schedules for smaller instances to obtain an optimal
schedule for the initial instance. Similar techniques led to polynomial-time algorithms
for AND-scheduling problems with series-parallel precedence graphs and other objective
functions, see, e.g., [1, 127]. Optimality of Lawler’s algorithm [108] was reproved in [63]
using so-called two-dimensional Gantt charts of [42]. We elaborate on these two-
dimensional Gantt charts in Section 3.2.2. In a series of papers [30, 34, 7], the result of
Lawler [108] was generalized to two-dimensional partial orders, see Section 4.2.2.
Sidney [152] proved a fundamental structural property of optimal solutions for

1 | prec |
∑
wjCj , which now is known as the Sidney decomposition. More precisely, he

showed that there exists an optimal solution that subsequently schedules a density-
maximizing initial set of the so far unscheduled jobs, see Section 3.2.2. Lawler [108]
presented a polynomial-time algorithm to get such density-maximizing initial sets
through minimum cut computations, see also [135]. However, this does not give a
polynomial time algorithm, since Sidney’s result [152] does not specify the order of the
jobs within each density-maximizing set. The algorithm in [108] was used independently
by Chekuri and Motwani [25] and Margot, Queyranne and Wang [120] to obtain a
2-approximation algorithm for 1 | prec |

∑
wjCj that successively computes a density-

maximizing initial set and schedules the jobs within this set in any feasible order. In
Section 3.5, we use a similar idea for OR-scheduling.

Scheduling on parallel machines with OR-precedence constraints and unit processing
time jobs to minimize the sum of completion times, P | or-prec, pj = 1 |

∑
Cj , can

be solved in polynomial time [93]. However, once we want to minimize the sum of
weighted completion times, the single-machine problem with unit processing times
already becomes strongly NP-hard [93]. In Section 3.3, we extend this result by showing
that the problem remains NP-hard, even if we restrict the weights to be 0/1.

3.2 Preliminaries

We introduce a generalization of MSSC and a special case of GMSSC with restricted
covering requirements in Section 3.2.1. Then, in Section 3.2.2, we recall some related
results for AND-scheduling that are based on density-maximizing sets. An important
notion that we use in Section 3.4 are laminar sets.

Definition 3.1 (Laminar Sets)
A family of sets R is called laminar if R ∩ S ∈ {∅, R, S} for all R,S ∈ R.

48

3.2 Preliminaries

1

2

3

4

5

1

2

3

4

5

Fig. 3.1: A collection of laminar sets over U = [5] (left) and the corresponding inforest-
representation (right). The sets are depicted as colored dashed and solid lines. For
simplicity, the nodes in the digraph corresponding to the sets are depicted in the
same style as the respective sets on the left.

If R is laminar, then for every R ∈ R that is contained in some R′ ∈ R, i.e., R (R′,
there is a unique inclusion-minimal set S ∈ R with S) R. This motivates the
following inforest-representation of a collection of laminar sets R ⊆ 2U over a finite set
of elements U : We introduce a node for every element in U and every set in R. The
successor of e ∈ U is the unique inclusion-minimal set in R that contains e. Similarly,
the successor of a set in R is its (unique) inclusion-minimal superset in R. Figure 3.1
depicts a laminar set family and the corresponding inforest-representation.

3.2.1 Pipelined Set Cover and All-But-Constant Min-Sum Set Cover
Consider an instance of min-sum set cover with a finite set of elements U and a collection
of subsets R ⊆ 2U . Munagala et al. [128] proposed the following generalization of
MSSC where every element e ∈ U and every set R ∈ R is associated with a cost ce ∈ N
and weight wR ∈ N, respectively. For a given linear order π : U → [|U |], the covering
cost of R ∈ R is defined as

πc(R) := min
{ ∑

f∈U
π(f)≤π(e)

cf
∣∣∣ e ∈ R}. (3.1)

Since the costs are positive, the covering cost of πc(R) is attained for the element in R
that appears first in the linear ordering. In particular, for unit costs, the covering cost
and covering time of a set coincide, i.e., πc(R) = π(R).

Definition 3.2 (Pipelined Set Cover)
Let U be a finite set of elements with costs ce ∈ N for e ∈ U , and let R ⊆ 2U with
weights wR ∈ N for R ∈ R. The task is to find a linear ordering π : U → [|U |] that
minimizes the sum of weighted covering costs,

∑
R∈RwR πc(R).

49

Chapter 3 Combinatorial Algorithms for the Sum of Weighted Completion Times

MSSC

4-approx
no (4− ε)-approx

pipelined
set cover

4-approx

bipartite
OR-scheduling

4-approx

AND-
scheduling

2-approx
no (2− ε)-approx under UGC

laminar
MSSC

poly-time

OR-scheduling
on intrees
4-approx

OR-scheduling

MSVC

16/9-approx
APX-hard

all-but-one
MSSC

4-approx

all-but-K
MSSC

4-approx

laminar all-
but-K MSSC

poly-time

laminar
GMSSC

2-approx

GMSSC

4.642-approx

Fig. 3.2: Overview of related problems and results. An arrow from problem Π1 to Π2 indicates
that Π2 generalizes Π1. Problems in rectangular frames are explicitly considered
in this thesis, and our results are depicted in bold. All-but-one MSSC (rectangular
dashed frame) is discussed in Chapter 4.

Note that min-sum set cover is the special case of pipelined set cover with unit costs
and unit weights. We represent an instance of pipelined set cover via its covering graph
H = (U∪R, E) and interpret this as a bipartite OR-scheduling instance. Then, each job
that corresponds to an element e ∈ U has processing time ce and zero weight, and each
job that corresponds to a set R ∈ R has zero processing time and weight wR. Natural
questions that arise in the context of scheduling problems are whether approximation
guarantees still hold for arbitrary processing times and how much the input data have
to be restricted to obtain a problem that is solvable in polynomial time. In Section 3.5.2,
we prove that the approximation factor of 4 for pipelined set cover can be preserved for
bipartite OR-scheduling in general. Further, we observe that bipartite OR-scheduling
remains strongly NP-hard, even if we restrict to unit processing times or unit weights
in Section 3.3.
Recall the definition of generalized min-sum set cover from Definition 1.10. In

Section 3.4, we show that if we restrict to a laminar family of sets R ⊆ 2U , the
following special case of GMSSC becomes solvable in polynomial time.

50

3.2 Preliminaries

Definition 3.3 (All-But-K Min-Sum Set Cover)
Let U be a finite set of elements, K ∈ N0 and R ⊆ 2U with covering requirements
κ : R → N where κ(R) = max{1, |R|−K} for all R ∈ R. The task is to find a linear
ordering π : U → [|U |] that minimizes the sum of covering times,

∑
R∈R π(R).

For this natural special case between min-sum set cover (κ(R) = 1) and minimum
latency set cover (κ(R) = |R|), the covering time of every set is the first point in time
when all but a constant of its elements have appeared in the linear ordering. If a
set contains less than K elements, it is covered by its first element. In Section 4.3.2,
we present an LP based 4-approximation for the special case where K = 1, i.e., for
all-but-one MSSC. Note that MSSC is a special case of all-but-K MSSC if we choose K
suitably large. Recall that, for MSVC, every set in R is of cardinality two, so MSVC is
not only a special case of MSSC, but also of all-but-one MSSC. For K = 0, we obtain
minimum latency set cover (MLSC) [79], which has the same approximability threshold
as AND-scheduling [166].

If the collection of sets R is laminar, we highlight this by speaking of, e.g., laminar
min-sum set cover instead of MSSC. When we represent an instance of laminar MSSC
via its inforest-representation, it becomes clear that laminar MSSC is a special case
of OR-scheduling on intrees to minimize the sum of weighted completion times (with
the element-jobs having unit processing time and zero weight, the set-jobs having zero
processing time and unit weight and an additional dummy job with zero processing
time and weight that forms the root of the intree). Figure 3.2 illustrates the connection
of the problems considered in this chapter, as well as the currently best-known upper
and lower bounds on the approximation factors.

3.2.2 Density-Maximizing Initial Sets for AND-Scheduling
For a subset of jobs S ⊆ N , we define its density to be the ratio of its total weight
and its total processing time, ρ(S) := w(S)

p(S) . Smith [157] showed that, for one of the
most basic scheduling problems, 1 | |

∑
wjCj , an optimal solution can be achieved

by scheduling the jobs in non-increasing order of their density wj
pj
. (The density wj

pj

is also known as the Smith ratio of j ∈ N .) That is, enumerate the jobs such that
w1
p1
≥ w2

p2
≥ · · · ≥ wn

pn
, and schedule them in the order 1 → 2 → · · · → n. Today, this

algorithm is known as Smith’s rule. We include the proof of the following statement,
as it has a neat geometric interpretation that we use later.
Proposition 3.4 (Smith [157])
Smith’s rule (schedule the jobs in non-increasing order of wjpj) is optimal for 1 | |

∑
wjCj.

Proof. We prove the claim using an interchange argument and the two-dimensional
Gantt charts of [42], see also [63, 114]. To this end, we introduce a rectangle of height
wj and width pj for every job j ∈ N . Consider a feasible schedule that processes the
jobs in order j1 → j2 → · · · → jn and let Cj be the completion time of job j ∈ N .

51

Chapter 3 Combinatorial Algorithms for the Sum of Weighted Completion Times

w(N)

p(N)

wi

pi

wj

pj

w(N)

p(N)pi pj

Fig. 3.3: Geometric interpretation of a schedule as a two-dimensional Gantt chart (left). The
gray area underneath the upper envelope (blue solid line) equals the sum of weighted
completion times. The slopes of the diagonals (blue dashed lines) are the negative
Smith ratios. If we swap two consecutive jobs, we obtain the Gantt chart on the
right. The area highlighted in red between the diagonals of the new (blue dashed)
and old (gray dashed) schedule equals the difference in the objective values.

We place the rectangle of j1 in a two-dimensional coordinate system so that its upper
left corner is at (0, w(N)) and its lower right corner has coordinates (pj1 , w(N \ {j1})).
In a similar way, we align the rectangles of j2, j3, . . . , jn in this order such that the
upper left corner touches the lower right corner of the previous rectangle. That is,
for q ∈ {2, . . . , n}, the upper left and lower right corner of the rectangle of jq are at
(Cjq−1 , w({jq, . . . , jn})) and (Cjq , w({jq+1, . . . , jn})), respectively. Note that the lower
right corner of the last rectangle, which corresponds to jn, has coordinates (p(N), 0).
Figure 3.3 (left) illustrates this arrangement. Observe that the slope of each rectangle,
i.e., the diagonal from its upper left to its lower right corner, equals the negative
Smith ratio of the corresponding job. The area underneath the upper envelope of the
rectangles equals the objective value of the schedule,

∑n
q=1wjqCjq .

Consider any optimal schedule that is not in line with Smith’s rule, and let i→ j be
two consecutive jobs with wi

pi
<

wj
pj
. If we swap the two rectangles corresponding to i

and j, we obtain the picture on the right of Figure 3.3. Note that no rectangles other
than those of i and j are altered. Further, the area between the upper envelope of the
rectangles and their diagonals does not depend on the order of the rectangles. That
is, only the area underneath the diagonals changes if we swap i and j. The difference
in the objective values equals the negative of the area between the diagonals of the
old and new schedule, which is highlighted in red in Figure 3.3 (right). This area is
strictly positive, since wj

pj
> wi

pi
, which is a contradiction to the optimality of the initial

schedule. Note that the objective value (the area of the Gantt chart) of any solution in
line with Smith’s rule is equal, which proves the claim. 2

52

3.2 Preliminaries

Note that, in a schedule that is in line with Smith’s rule, the diagonals of the
rectangles in the corresponding two-dimensional Gantt chart form a convex piecewise
linear function, see Figure 3.3 (right). Observe that the slope of the diagonal from
(0, w(N)) to (p(N), 0) equals −ρ(N) = −w(N)

p(N) . Similarly, for any set of jobs S ⊆ N
that are scheduled consecutively, the slope of the diagonal from the upper left corner
of the rectangle of the first job in S to the lower right corner of the rectangle of the
last job in S equals the negative density of S.

Sidney [152] generalized Smith’s rule to AND-scheduling. A set S ⊆ N is called initial
with respect to (w.r.t.) the precedence graph G = (N,E∧) if j ∈ S and (i, j) ∈ E∧
imply i ∈ S. Let N = S1 ∪̇S2 ∪̇ · · · ∪̇S` be a partition such that, for all h ∈ [`],⋃h
q=1 Sq is initial w.r.t. G and ρ(Sh) ≥ ρ(S) for every S ⊆ N \

⋃h−1
q=1 Sq that is initial

w.r.t. G[N \
⋃h−1
q=1 Sq]. There exists an optimal schedule for 1 | prec |

∑
wjCj that

schedules the jobs in the order S1 → S2 → · · · → S`, where the jobs within each subset
are scheduled in an optimal order [152]. The partition S1 ∪̇S2 ∪̇ · · · ∪̇S` is called a
Sidney decomposition of N . Chekuri and Motwani [25] and, independently, Margot,
Queyranne and Wang [120] combined Sidney’s result with the following observation.

Proposition 3.5 (Checkuri-Motwani [25], Margot-Queyranne-Wang [120])
Suppose that N is a density-maximizing initial set for an instance of 1 | prec |

∑
wjCj,

i.e., ρ(N) ≥ ρ(S) for all initial S ⊆ N . Then any feasible schedule is a 2-approximate
solution.

Proof. The following proof was proposed in [63]. Consider an optimal solution and its
two-dimensional Gantt chart, see, e.g., Figure 3.3. For ` ∈ [n], we denote the first ` jobs
in the schedule by S`. Since the schedule is feasible, S` is initial and ρ(S`) ≤ ρ(N) by
assumption. Hence, in the two-dimensional Gantt chart of that schedule, the diagonal
from the upper left corner of the rectangle of the first job in the schedule to the lower
right corner of the rectangle of the last job in S` is above the diagonal from (0, w(N))
to (p(N), 0). This holds for all ` ∈ [n]. So, the area underneath the upper envelope of
the rectangles, which equals the optimal objective value, is at least 1

2w(N) p(N), which
corresponds to the area of the triangle that is defined by the diagonal from (0, w(N))
to (p(N), 0) and the coordinate axes. The claim follows from the observation that any
feasible schedule has an objective value ≤ w(N) p(N). 2

Proposition 3.5 together with the algorithm in [108] to compute a density-maximizing
initial set yields a 2-approximation algorithm for 1 | prec |

∑
wjCj . In Section 3.5, we

use a similar density-maximizing Greedy idea to obtain approximation algorithms for
OR-scheduling. The main difference of OR-scheduling compared to AND-scheduling is
that a decomposition result similar to Sidney [152] does not exist. In particular, the
example in [45], which demonstrates that the performance guarantee of the Greedy
algorithm for MSSC is tight, shows that a Sidney-like decomposition does not necessarily
yield an optimal solution, if the density-maximizing feasible starting set is not unique.

53

Chapter 3 Combinatorial Algorithms for the Sum of Weighted Completion Times

Feige, Lovász and Tetali [45] presented an instance of MSVC where, after each iteration
of the Greedy algorithm, there are two density-maximizing sets in the remaining
instance. These sets each comprise of a single job with unit processing time and all its
successors, which have zero processing time. In every iteration, Greedy picks one of
these sets, whereas an optimum solution would be to always pick the other set.

3.3 Bipartite OR-Scheduling is Hard
As already indicated, see, e.g., Figure 3.2, bipartite OR-scheduling generalizes several
NP-hard problems, so it is certainly NP-hard. Theorem 3.6 strengthens the NP-
hardness result of Johannes [93], who showed that 1 | or-prec, pj = 1 |

∑
wjCj is

strongly NP-hard.

Theorem 3.6
The following are strongly NP-hard: 1 | or-prec = bipartite, pj ∈ {0, 1} |

∑
Cj and

1 | or-prec = bipartite, pj = 1 |
∑
wjCj with wj ∈ {0, 1}.

Proof. The reduction goes from Exact Cover which is known to be NP-complete [98].
Exact Cover remains strongly NP-hard even if all sets contain only three elements,
see [53]. That is, the input of an instance of Exact Cover consists of a positive
integer ` ∈ N, a finite set of elements U = {e1, . . . , e3`} and a collection of subsets
R ⊆ 2U with |R| = 3 for all R ∈ R. The task is to decide whether or not there is an
exact cover for U , i.e., whether there is T ⊆ R with |T | = ` such that U =

⋃
R∈T R.

Consider an instance of Exact Cover and the following reduction to bipartite
OR-scheduling. We introduce one job for every set in R (set-jobs) and one job for every
element of U (element-jobs). The precedence graph is given by G = (R∪ U,E∨) with
E∨ = {(R, e) ∈ R×U | e ∈ R}.17 Observe that G is bipartite and that each set-job has
exactly three successors. The weights and processing times depend on the scheduling
problem we want to reduce to:

(i) for 1 | or-prec = bipartite, pj ∈ {0, 1} |
∑
Cj , we set pR = 1 for all R ∈ R and

pe = 0 for all e ∈ U , and
(ii) for 1 | or-prec = bipartite, pj = 1 |

∑
wjCj , we set wR = 0 for all R ∈ R and

we = 1 for all e ∈ U .

Note that, for both bipartite OR-scheduling problems, the element-jobs are the only
jobs with zero processing time or positive weight, respectively. So, an optimal schedule
processes all successors of a set-job immediately after the set-job completes.
Suppose we are given a Yes-instance and let T = {R1, . . . , R`} ⊆ R be an exact

cover for U . A feasible single-machine schedule is to first schedule the set-job R1
followed by its three successors (the elements in R1), then the set-job R2 followed by its

17Note that G is obtained from the covering graph of the instance by reversing all arc directions.

54

3.4 Algorithms for Laminar Min-Sum Covering Problems

three successors (the elements in R2), and so on. The objective value of this schedule
for (i), i.e., 1 | or-prec = bipartite, pj ∈ {0, 1} |

∑
Cj , is equal to

∑
R∈R

CR +
∑̀
q=1
|Rq|CRq =

|R|∑
q=1

q + 3
∑̀
q=1

q = |R|(|R|+ 1) + 3`(`+ 1)
2 . (3.2)

For (ii), i.e., 1 | or-prec = bipartite, pj = 1 |
∑
wjCj , the objective value equals

∑
e∈U

Ce =
∑̀
q=1

∑
e∈Rq

Ce =
∑̀
q=1

(
(4q − 2) + (4q − 1) + 4q

)
= 6`2 + 3`. (3.3)

These are, in fact, the lowest possible objective values of any feasible schedule, since
every set-job is predecessor of exactly three element-jobs. That is, at most three
element-jobs become available when a set-job completes. So, any schedule with the
above objective values, (3.2) or (3.3), starts with ` contiguous and disjoint “blocks” of
the form Rq → eq1 → eq2 → eq3 with Rq = {eq1 , eq2 , eq3} ∈ R for some q ∈ [`]. The sets
corresponding to these ` set-jobs then form an exact cover for U . Hence, if we could solve
1 | or-prec = bipartite, pj ∈ {0, 1} |

∑
Cj or 1 | or-prec = bipartite, pj = 1 |

∑
wjCj

with wj ∈ {0, 1} in polynomial time, then we could decide whether or not a given
instance of Exact Cover is a Yes-instance. 2

Note that the second problem in Theorem 3.6 is a special case of the problem
considered in [93], and that 1 | or-prec, pj = 1 |

∑
Cj is trivial.

3.4 Algorithms for Laminar Min-Sum Covering Problems
In the previous section, we observed that bipartite OR-scheduling is already strongly
NP-hard for unit processing times and 0/1 weights, or vice versa. Thus, restriction of
the processing times or weights does not seem to make OR-scheduling “significantly
easier” from a complexity perspective. Another possibility to simplify bipartite OR-
scheduling is to restrict the precedence relation further. For min-sum covering problems,
this results in restricting the collection of subsets R ⊆ 2U . One typical special case of
set cover problems is to restrict R to be laminar, see Definition 3.1.

We show that laminar MSSC and laminar all-but-K MSSC can be solved to optima-
lity in polynomial time, and then propose a 2-approximation algorithm for laminar
generalized min-sum set cover in Section 3.4.2. Recall that MSSC is a special case of
all-but-K MSSC, i.e., any algorithm for the latter problem also solves MSSC. Before
we turn to the more involved algorithm for laminar all-but-K MSSC in Section 3.4.1,
we show that the natural Greedy algorithm for MSSC computes an optimal solution
if the sets in R are laminar. We consider the more general weighted laminar MSSC,
where each set in R is associated with a positive weight and the task is to minimize
the sum of weighted covering times. That is, in each step, the Greedy algorithm picks
the element in U that covers a subset of R of maximum total weight next.

55

Chapter 3 Combinatorial Algorithms for the Sum of Weighted Completion Times

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Fig. 3.4: The instance of Figure 3.1 with unit weights (left) and the uncovered sets after
times 1 (middle) and 2 (right) for the ordering 1 → 4 → 5 → 2 → 3. The
objective value of this ordering is 14, and an optimal ordering for this instance is,
e.g., 2 → 1 → 5 → 4 → 3 with an objective value of 9. With e = 2, we get that
R+

e = {{2}, {2, 3}}, R−e = {{2, 3, 4, 5}, {1, 2, 3, 4, 5}} and R = {2, 3, 4, 5}. Hence,
f = 4 and R+

f = {{4, 5}}.

Lemma 3.7
The Greedy algorithm is optimal for weighted laminar min-sum set cover.

Proof. W.l.o.g., we assume that R contains no duplicate sets. Otherwise, we could
increase the weight wR ∈ N of a set R ∈ R correspondingly and remove its copies.
For f ∈ U , let Rf = {R ∈ R | f ∈ R} be the sets that contain f , and let e ∈ U be
an element that the Greedy algorithm could pick first, i.e., w(Re) ≥ w(Rf) for all
f ∈ U . Consider any optimal linear ordering π : U → [|U |], and suppose that e is
not the first element, i.e., π(e) > 1. We give a procedure of how to alter the optimal
solution without increasing the objective function value such that e appears first in the
linear ordering. We can iteratively repeat this argument for the other elements until
the optimal solution coincides with the Greedy solution. Since the optimal and Greedy
solution were chosen arbitrarily, this proves the claim.
Let R+

e = {R ∈ Re |π(R) = π(e)} be the sets that are covered by e, and let
R−e = Re \ R+

e be the sets that were covered by previous elements in π. If R−e = ∅,
then let f ∈ U be the element with π(f) = 1. Else, since R is laminar and the sets in
R−e are covered before time π(e), we get that S ⊇ R for all S ∈ R−e and R ∈ R+

e . In
particular, there is an inclusion-minimal set R ∈ R−e that was covered by some element
f ∈ U with π(f) < π(e), i.e., π(R) = π(f). Observe that f ∈ R ⊆ S for all S ∈ R−e
implies π(S) ≤ π(f) for all S ∈ R−e and, further, R−e ⊆ Rf . So, f covers the last
uncovered set(s) in R−e , and we can write Rf = R−e ∪̇R+

f .18 Thus, w(Re) ≥ w(Rf)
implies w(R+

e) ≥ w(R+
f). Figure 3.4 illustrates the respective sets in a suboptimal

ordering for the instance of Figure 3.1.
18In contrast to the definition ofR+

e , the setR+
f might contain sets that are covered before time π(f).

56

3.4 Algorithms for Laminar Min-Sum Covering Problems

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Fig. 3.5: The instance of Figure 3.4 (left), and the uncovered sets after time 1 (middle) and
time 2 (right) for the ordering 1 → 2 → 5 → 4 → 3 after swapping 2 and 4 in
the linear ordering in Figure 3.4. The objective value of this ordering is 11. In
the next iteration, we choose e = 2 and f = 1. The corresponding sets are then
R+

e = {{2}, {2, 3}, {2, 3, 4, 5}}, R−e = {R} with R = {1, 2, 3, 4, 5} and R+
f = {{1}}.

The resulting ordering 2→ 1→ 5→ 4→ 3 after swapping 2 and 1 is indeed optimal.

Let S = {f ′ ∈ U |π(f) < π(f ′) < π(e)} be the elements that appear between f
and e in the linear ordering. We swap f and e, i.e., we consider the linear ordering
π′ : U → [|U |] with π′(e) = π(f), π′(f) = π(e) and π′(f ′) = π(f ′) for all f ′ ∈ U \{e, f}.
Compared to π, the covering time in π′ of all sets in R+

e decreases by |S|+ 1, sets in
R+
f are covered at most |S|+ 1 time steps later, and the covering times of all other sets

remain unchanged. Figure 3.5 illustrates the resulting linear ordering after swapping e
and f in the ordering in Figure 3.4. The difference in the objective values of π and π′ is∑

R∈R
wR

(
π′(R)− π(R)

)
≤ (|S|+ 1)

(
w(R+

f)− w(R+
e)
)
≤ 0. (3.4)

So, swapping e and f in the linear ordering does not increase the objective value, and
e appears earlier in the new linear ordering. We can repeat this procedure iteratively
until π′(e) = 1. (Note that the set R+

e is strictly larger in the next iteration.) 2

Recall the min-sum set cover instance in Example 1.12, see also Figure 1.3. Note
that R is not laminar. For unit weights, the Greedy algorithm could choose the linear
ordering 4 → 3 → 2 → 1 → 5 with an objective value of 10. The optimal objective
value for this instance is 9, i.e., Greedy is not optimal.

Restricting to laminar sets does simplify min-sum set cover, but the Greedy algorithm
is not necessarily optimal for laminar generalized min-sum set cover with arbitrary cove-
ring requirements. Consider an instance with U = {1, 2, 3} and R = {{1}, {2}, {2, 3}}.
The covering requirements and the weights of the sets are equal to their cardinality,
i.e., this is an instance of weighted laminar MLSC. Figure 3.6 illustrates the instance.

57

Chapter 3 Combinatorial Algorithms for the Sum of Weighted Completion Times

1 2 3

Fig. 3.6: An instance of weighted laminar MLSC with sets depicted in black. For weights
wR = |R| for all R ∈ {{1}, {2}, {2, 3}}, an optimum solution is to order the elements
2→ 3→ 1 with an objective value of 8. For weights w{1} = w{2,3} = 2 and w{2} = 1,
an optimum solution is 1→ 2→ 3 with an objective value of 10.

An optimal solution is to order the elements 2→ 3→ 1. The objective value of this
ordering is 1 + 2 · 2 + 3 = 8. Since elements 1 and 2 both cover a set of weight 1, the
Greedy algorithm can choose either of the two elements. By perturbing the weights
slightly, we may assume that the Greedy algorithm chooses 1 first. In the next iteration,
the algorithm is left with elements 2 (which covers a set of weight 1) and 3 (which does
not cover a set). Thus, the Greedy algorithm returns the solution 1 → 2 → 3 with
an objective value of 1 + 2 + 2 · 3 = 9. Hence, the solution returned by the Greedy
algorithm is not optimal.
In this example, it seems natural to prefer element 2 over 1, since element 2 not

only covers the set {2}, but also “partially covers” {2, 3}. One idea to incorporate this
intuition into the Greedy algorithm is to choose the element e ∈ U that maximizes
the partially covered total weight

∑
R3 e

wR
κ(R) next. The summand of each set is the

ratio of its weight to the number of elements needed to cover the set. After each
iteration, the covering requirements of all sets that contain the chosen element have to
be decremented.

However, even this more intuitive Greedy algorithm can be tricked by adapting the
weights in the above example slightly. Consider again the instance in Figure 3.6, but
with new weights w{1} = w{2,3} = 2 and w{2} = 1. In the first iteration, the variant of
the Greedy algorithm can again choose element 1 or 2, since w{1}

1 = 2 = w{2}
1 + w{2,3}

2 .
Suppose element 2 is chosen first. In the next step, the corresponding ratios are
w{1}

1 = 2 = w{2,3}
1 . So, the Greedy can break ties arbitrarily and might return the

ordering 2→ 3→ 1 with an objective value of 1 + 2 · 2 + 2 · 3 = 11. With these weights,
however, an optimum solution is 1→ 2→ 3 with an objective value of 2 + 2 + 2 · 3 = 10.
So, it seems, one needs an algorithm that is more involved than a standard Greedy
approach to tackle laminar generalized min-sum set cover.

3.4.1 Laminar All-But-Constant Min-Sum Set Cover

We now turn to the special case of laminar all-but-K min-sum set cover. That is, the
collection of sets R is laminar (Definition 3.1), and the covering requirements are of the
form κ(R) = max{1, |R|−K} for all R ∈ R and some K ∈ N0 (Definition 3.3). Since R
is laminar, there is a unique inclusion-minimal superset for every e ∈ U and every R ∈ R,
unless it is not contained in any other set. For R ∈ R, we denote the set of elements that
are not contained in any subset S ∈ R of R by FR := {e ∈ R |@S ∈ R with e ∈ S (R}.

58

3.4 Algorithms for Laminar Min-Sum Covering Problems

The elements in FR are called free in R. A set S ∈ R with S (R is called maximal
in R w.r.t. R if there is no S′ ∈ R with S (S′ (R.19 We can partition a set R ∈ R
into a disjoint union

R = FR ∪
⋃

S∈R, S(R
max w.r.t. R

S. (3.5)

The idea of the algorithm to solve laminar all-but-K min-sum set cover is as
follows: First, we construct an equivalent instance of laminar MLSC (Algorithm 2
and Lemmas 3.9 and 3.10), and then we solve this instance to optimality (Theorem 3.11).
We actually consider the more general weighted laminar all-but-K min-sum set cover,
where every set R ∈ R is associated with a positive weight wR ∈ N. To distinguish an
instance of all-but-K MSSC from its equivalent MLSC instance, the sets in the MLSC
instance are indicated with an overline, i.e., are denoted by R, S, etc. Similarly, we
denote the collection of sets of the MLSC instance by R. To describe the algorithm,
we need the notion of a level of a set.

Definition 3.8 (Level of a Set)
Let R be laminar, R ∈ R and FR ⊆ R be the free elements in R. The level of R is
recursively defined as

(i) lev(R) := 0 if R = FR, i.e., there is no S ∈ R with S (R, and
(ii) lev(R) := 1 + max{lev(S) |S ∈ R, S (R maximal in R w.r.t. R}.

The algorithm to transform an instance of all-but-K MSSC to an equivalent instance
of MLSC works as follows: We iterate over the levels, i.e., we start with the sets in
R at level 0, which do not contain any subset in R. Since the elements in U are
indistinguishable, it does not matter which κ(R) of the |R| elements cover a set R ∈ R.
We remove |R| − κ(R) of the free elements from any set R at level 0. Note that
these elements are not removed from the instance, but are now free in the unique
inclusion-minimal superset of R. The resulting set, which is a subset of R, is denoted
by R. We continue in the same manner with the sets at levels 1, . . . , |U |, i.e., we remove
|R| − κ(R) of the free elements in R. If there are not enough free elements to be
removed, we additionally remove the maximal (in R w.r.t. R) singleton sets {e} ∈ R
with e ∈ R of lowest weight from R, and “place” them into the inclusion-minimal
superset of R instead. Lemma 3.9 states that this can be done in a feasible way.
Thereby, we successively decrease the size of all sets in R until their cardinalities

coincide with their covering requirements. This procedure might produce duplicate
sets if we create the set R when dealing with a set R ∈ R, although the collection R
already contains a set S = R from an earlier iteration where S ∈ R was considered.
In this case, the “old set” S ∈ R is replaced by the “new set” R, i.e., we update R.

19Note that S (R with S ∈ R can be maximal in R w.r.t. R, although R is not contained in R.

59

Chapter 3 Combinatorial Algorithms for the Sum of Weighted Completion Times

Fig. 3.7: An iteration of Algorithm 2 for K = 2. On the left, the current set R and its
inclusion-minimal superset are depicted in blue and red, respectively. All other sets
are depicted in black. Since |FR| = 1 < 2 = |R| − K = κ(R), also a singleton is
removed from R. The resulting set R is depicted in blue dashed lines on the right.

The weight of R is the sum of the weights of S and R. Note that this case only occurs
if R is a superset of S, i.e., if lev(R) > lev(S). By updating R in this particular way,
we ensure that S (R is maximal in R w.r.t. R if and only if the corresponding set
S ∈ R with S (R is maximal in R w.r.t. R. Also, if R = {e} is a singleton, then
e ∈ S ⊆ R for all subsets S ∈ R of R ∈ R.
The algorithm is summarized in Algorithm 2. The free elements and singleton sets

in the current set R are defined in lines 4 and 5, respectively. The if-clause in line 6
checks whether there are “enough” free elements to be removed. If not, the algorithm
chooses all free elements and the singleton sets of lowest weight to be removed in
line 11. Finally, the if-clause in line 14 checks whether a set is duplicated, and if so, the
“old set” is replaced by the “new one” and the weights are updated accordingly. Note
that Algorithm 2 runs in polynomial time, since every set in R is considered exactly
once. Figure 3.7 illustrates an iteration of the algorithm. The following lemma shows
that there are always enough free elements and singletons to be removed, and that the
output of Algorithm 2 is an instance of weighted laminar minimum latency set cover.
Lemma 3.9
Algorithm 2 works correctly, i.e., for every R ∈ R, we have |R| ≤ |F | + |S| + κ(R),
where F are the free elements and S are the singletons in the iteration of R. Further,
the resulting collection R is laminar.

Proof. We prove the first part of the statement by induction on the level. If lev(R) = 0
then R = F , i.e., |R| ≤ |F |+κ(R) by non-negativity of κ(R). Let ` ∈ [|U |] and consider
a set with lev(R) = `. By induction hypothesis, all sets S ∈ R with lev(S) ≤ `−1 were
already processed by the algorithm in previous iterations. Note that |S| = κ(S) ≤ |S|
for S ∈ R and its corresponding set S ∈ R. Similar to (3.5), we get

R = F ∪
⋃

S∈R, S(R
max w.r.t. R

S = F ∪
⋃
{e}∈S

{e} ∪
⋃

S∈R, S(R
max w.r.t. R
|S|≥2

S. (3.6)

60

3.4 Algorithms for Laminar Min-Sum Covering Problems

Input: Instance (U,R, κ) of weighted laminar all-but-K MSSC
Output: Instance (U,R, κ) of weighted laminar MLSC

1 R ← ∅;
2 for ` = 0, 1, . . . , |U | do
3 for R ∈ R with lev(R) = ` do
4 F ← R \

⋃
{S |S ∈ R, S (R};

5 S ← {{e} ∈ R
∣∣∣ {e} (R is maximal in R w.r.t. R};

6 if |F | ≥ |R| − κ(R) then
7 Choose F− ⊆ F of cardinality |R| − κ(R);
8 else
9 Sort S in non-decreasing order of the weights;

10 Let S− ⊆ S be the first |R| − κ(R)− |F | elements of S;
11 F− ← F ∪ {e | {e} ∈ S−};
12 end
13 R← R \ F−;
14 if ∃S ∈ R with S = R then
15 R ← (R \ {S}) ∪ {R} and wR ← wS + wR;
16 else
17 R ← R∪ {R} and wR ← wR;
18 end
19 end
20 end
21 return instance (U,R, κ) with requirements κ : R → N, κ(R) = |R|;

Algorithm 2: An algorithm to transform an instance of weighted laminar
all-but-K MSSC into an equivalent instance of weighted laminar MLSC.

If R contains no maximal subsets w.r.t. R of cardinality ≥ 2, then |R| = |F |+ |S| ≤
|F |+ |S|+κ(R). Further, κ(R) = 1 implies κ(S) = 1 for all S (R, S ∈ R. In that case,
all sets S ∈ R with S (R are singletons. So, assume there is at least one maximal
subset w.r.t. R of cardinality ≥ 2 and κ(R) = |R| −K > 1. With (3.6), we obtain

|R| = |F |+ |S|+
∑

S∈R, S(R
max w.r.t. R
|S|≥2

|S| = |F |+ |S|+
∑

S∈R, S(R
max w.r.t. R
|S|≥K+2

κ(S)

= |F |+ |S|+
∑

S∈R, S(R
max w.r.t. R
|S|≥K+2

(|S| −K) ≤ |F |+ |S|+ |R| −K

= |F |+ |S|+ κ(R).

(3.7)

61

Chapter 3 Combinatorial Algorithms for the Sum of Weighted Completion Times

As for the second part of the statement, let R` be the current collection of subsets at
the end of the for-loop for ` ∈ {0, 1, . . . , |U |}. Clearly, R0 is laminar, since it comprises
disjoint sets. Now, assume that R`−1 is laminar for some ` ∈ [|U |]. In the next iteration
of the outer for-loop, the set R is derived from R ∈ R with lev(R) = ` by removing
free elements and singletons. Note that R ∈ R` is a superset of all non-singleton
sets S ∈ R`−1 with S (R, S ∈ R. By induction, R`−1 ∪ {R} is laminar. Also,
since R is laminar, two sets R,R′ ∈ R with lev(R) = lev(R′) = ` do not intersect by
Definition 3.8. Hence, the resulting sets R,R′ ∈ R` do not intersect either. So, R` is
laminar and, therefore, R = R|U | is laminar as well. This proves the claim. 2

Lemma 3.10
Let I be an instance of weighted laminar all-but-K min-sum set cover, and let I be the
corresponding instance of weighted laminar minimum latency set cover that is returned
by Algorithm 2. Then any optimal solution for I is also optimal for I.

Proof. Consider a linear ordering π : U → [|U |] that is optimal for I. We show that
we can alter π without increasing its objective value such that it is also feasible for I.
So, any optimal solution for I has lower total weighted covering time than π. This
proves the claim, since any feasible solution for I is also feasible for I.

For R ∈ R, let FR and SR be the free elements and singletons in the corresponding
iteration of Algorithm 2, respectively. Let S ′R = {S ∈ R |S (R, κ(S) = 1} be
the subsets of R that correspond to the singletons in SR. That is, S ′R is the set of
“pre-images” of the singletons in SR. Recall that every set R is covered as soon as κ(R)
elements appear in the linear ordering. In particular, π(e) ≥ π(S′) for all {e} ∈ SR and
S′ ∈ S ′R with e ∈ S′. We show by induction on the level that, w.l.o.g., the following
holds for all R ∈ R:

(i) π(S) ≤ π(R) for all S ⊆ R, S ∈ R with κ(S) > 1,
(ii) π(e) > π(R) for all e ∈ FR \R, and

(iii) if π(f) ≤ π(R) < π(e) for e, f ∈ R with {e}, {f} ∈ SR, then w{f} ≥ w{e}.

Observe that π is feasible for the MLSC instance I if it satisfies these three conditions.
The first condition yields that the subsets with non-unit requirement of every set have
no higher covering time than the set itself. Conditions (ii) and (iii) state that a set is
not preceded by the elements and singletons that were removed by Algorithm 2. It
remains to be shown that we can alter the optimal solution π in such a way that it
satisfies (i), (ii) and (iii).

For lev(R) = 0, (i) and (iii) are trivially true. As for (ii), suppose there is e ∈ FR \R
with π(e) ≤ π(R). The set R is covered as soon as κ(R) elements have appeared,
so there is f ∈ R with π(R) < π(f). Recall that lev(R) = 0 implies that R does
not contain any subsets of R. Hence, e and f are contained in the same sets in R.

62

3.4 Algorithms for Laminar Min-Sum Covering Problems

So, swapping e and f , i.e., setting π′(e) = π(f) and π′(f) = π(e), does neither destroy
feasibility of the linear ordering nor does the objective value increase. This establishes
the base case. Now, let R ∈ R with lev(R) ≥ 1, i.e., R contains at least one subset
of R.

(i) For κ(R) = 1, the statement is trivially true because then κ(S) = 1 holds for all
S (R. So, assume κ(R) = |R|−K and suppose a set S (R with κ(S) = |S|−K
is covered after R, i.e., π(S) > π(R). That is, K elements of S appear strictly
after time π(S). Since S is covered as soon as κ(S) elements of S have appeared,
there is an element in S ⊆ R that appears at time π(S) > π(R). Hence, at least
K + 1 elements of R appear strictly after time π(R). This is a contradiction
to the feasibility of the solution, because then at most |R| − (K + 1) < κ(R)
elements of R appear before time π(R).

(ii) Suppose there is an element e ∈ FR \R with π(e) ≤ π(R). Similar to the base
case, there is f ∈ R with π(R) < π(f). If there is a set S (R, S ∈ R with e ∈ S,
then e ∈ FR implies that e was also part of the free elements in the iteration of S,
i.e., e ∈ FS \ S. By induction (lev(S) < lev(R)), we get that π(e) > π(S). So,
e does not contribute to the covering of any subset of R, but only to supersets
R′ ⊇ R with R′ ∈ R. But then f ∈ R ⊆ R′ implies that we can swap e and
f without loosing feasibility or increasing the objective value (some sets that
contain f might be even covered earlier).

(iii) Suppose there are e, f ∈ R with {e}, {f} ∈ SR and π(f) ≤ π(R) < π(e) such
that w{f} < w{e}. The sets in S ′R that contain e or f have a lower level than R.
By induction and (ii), all sets in S ′R that contain e or f are covered at time
π(e) or π(f), respectively. Since {e}, {f} ∈ SR are maximal in R w.r.t. R, the
corresponding sets Se, Sf ∈ R with Se = {e} and Sf = {f} are maximal in R
w.r.t. R. Hence, there is no S′ (R, S′ ∈ R with Se (S′ (R or Sf (S′ (R.
That is, e and f do not contribute to the covering of any subset of R other
than the subsets of Se and Sf , respectively. Similar to (ii) above, we obtain a
feasible linear ordering if we swap e and f (together with the corresponding sets
in S ′R). Further, this new linear ordering has a strictly better objective value,
since w{f} < w{e}, similar to (3.4). This contradicts to the optimality of π.

Thus, we can assume that the optimal solution π : U → [|U |] satisfies (i), (ii) and (iii).
That is, π is feasible for the MLSC instance I. Hence, any optimal solution for I is
also optimal for the initial instance I of all-but-K MSSC. 2

Lemma 3.9 shows that the instance returned by Algorithm 2 is indeed an instance of
laminar minimum latency set cover, and Lemma 3.10 states that solving this instance
is equivalent to solving the initial instance of laminar all-but-K min-sum set cover. We
are now in the position of proving the main result of this section.

63

Chapter 3 Combinatorial Algorithms for the Sum of Weighted Completion Times

Theorem 3.11
Weighted laminar all-but-K min-sum set cover can be solved in polynomial time.

Proof. Consider an instance I of weighted laminar all-but-K MSSC. First, we apply
Algorithm 2, which runs in polynomial time, to obtain the corresponding instance I of
weighted laminar minimum latency set cover. By Lemma 3.10, any optimal solution
for I is also optimal for I. It remains to be shown that we can solve weighted laminar
MLSC in polynomial time.
Let I = (U,R, κ) be an instance of weighted laminar MLSC. We construct an

equivalent AND-scheduling instance by using the intree representation of I. That is,
we introduce a job je for every element e ∈ U and a job jR for every set R ∈ R. The
processing times and weights of the jobs are pje = 1, wje = 0 for all e ∈ U and pj

R
= 0,

wj
R

= wR for all R ∈ R. The jobs {je | e ∈ U} do not have any predecessors, and, for
R ∈ R, the predecessors of jR are the jobs corresponding to the maximal subsets and
the free elements in R. That is, we introduce an arc (jS , jR) ∈ E∧ in the precedence
graph for all S,R ∈ R if S (R is maximal in R w.r.t. R, and an arc (je, jR) ∈ E∧ for
every R ∈ R and free element e ∈ FR. Clearly, there is a one-to-one correspondence
between a linear ordering of the elements in U and a feasible single-machine schedule
of the jobs in {je | e ∈ U}. Also, finding a linear ordering that minimizes the sum of
weighted covering times is equivalent to finding a schedule that minimizes the sum of
weighted completion times.

Since R is laminar, every set in R is maximal in at most one set and every element is
free in at most one set. So, every job of the scheduling instance described above has at
most one successor, i.e., the constructed precedence graph G = (N,E∧) is an inforest,
where N = {je | e ∈ U} ∪ {jR |R ∈ R} is the set of jobs. Hence, we can solve weighted
laminar MLSC by solving the corresponding scheduling problem 1 | prec |

∑
wjCj with

an inforest precedence graph, which can be done in polynomial time [85]. 2

Note that the all-but-constant structure of the covering requirements is crucial for
the inequality in (3.7) and, thus, for the correctness of Algorithm 2. In particular, the
algorithm does not work if, for instance, a superset S of some set R satisfies κ(S) < κ(R).
Thus, it seems that one needs other ideas to show that laminar generalized min-sum
set cover can be solved in polynomial time, in case it is contained in P at all.

3.4.2 Laminar Generalized Min-Sum Set Cover

Next, we present a 2-approximation algorithm for generalized min-sum set cover on
a laminar family of sets R. This result is achieved by combining an algorithm of Im,
Sviridenko and Zwaan [88] for the preemptive variant of generalized min-sum set cover
with the observation that there is no benefit in preemption if the sets are laminar. We
first define preemptive generalized min-sum set cover and then discuss our algorithm
and the connection to [88].

64

3.4 Algorithms for Laminar Min-Sum Covering Problems

To illustrate preemptive GMSSC, it is convenient to interpret an instance of GMSSC
as a scheduling problem with a job of unit processing time for every element and a
job of zero processing time for every set together with the natural precedence relation
defined by the covering graph. The job corresponding to set R ∈ R requires at least
κ(R) of its predecessors to be completed before it can start. If we assign a weight of
zero to each element-job and a weight of one to each set-job, it becomes clear that
the single-machine scheduling problem with the sum of weighted completion times
objective is equivalent to generalized min-sum set cover.
Preemptive generalized min-sum set cover can be seen as the preemptive variant

of this scheduling problem with the relaxed covering requirement that, for the job
corresponding to R ∈ R to become available, a total processing load of at least κ(R) of
its predecessors needs to be completed. Formally, instead of defining a linear ordering,
we denote the fraction of element e ∈ U that is assigned to time t ∈ [|U |] by xet ∈ [0; 1].
Certainly, each element needs to be completely assigned, i.e.,

∑|U |
t=1 xet = 1 for all e ∈ U ,

and a total fraction of one is assigned to each point in time, i.e.,
∑
e∈U xet = 1 for all

t ∈ [|U |]. The covering time of a set R ∈ R is then defined as

π(R) := min
{
t ∈ [|U |]

∣∣∣ ∑
e∈R

t∑
τ=1

xeτ ≥ κ(R)
}
. (3.8)

Note that (3.8) coincides with (1.4) if all xet are binary, i.e., define a linear ordering.
Im, Sviridenko and Zwaan [88] proposed a so-called configuration LP and showed

that it is a valid relaxation for preemptive generalized min-sum set cover. This LP
can be solved in polynomial time despite an exponential number of variables [88]. The
authors use the concept of random α-points, which we discuss and also use in Chapter 4,
to obtain a 2-approximate solution for preemptive GMSSC. Moreover, they present
a procedure to transform any preemptive solution into a non-preemptive one. This
transformation brings another factor of 6.2 in the approximation factor, which yields a
12.4-approximation for generalized min-sum set cover in total, see [88].

Our main result in this section is that, for laminar generalized min-sum set cover,
any preemptive solution can be transformed into a non-preemptive solution without
increasing the objective value. Thereby, the algorithm of [88] for preemptive GMSSC
in combination with our transformation yields a 2-approximation algorithm for laminar
generalized min-sum set cover.

As input, the algorithm to transform a preemptive solution for laminar generalized
min-sum set cover into a non-preemptive one receives the covering times of the sets
in a feasible preemptive solution. The sets are processed in an earliest covering time
first manner (ties are broken arbitrarily). That is, in each iteration an element of
an uncovered set with lowest covering time is scheduled. If the set R considered
in the current iteration contains no uncovered subsets in R, then the element is
chosen arbitrarily within R (recall that the elements are indistinguishable). Else,
the current set is updated to an uncovered subset of R of lowest covering time.

65

Chapter 3 Combinatorial Algorithms for the Sum of Weighted Completion Times

Input: Instance (U,R, κ) of laminar GMSSC and a feasible preemptive solution
with covering times π′ : R → [|U |]

Output: Feasible non-preemptive solution of laminar GMSSC in form of a linear
ordering of the elements

1 S ← R and t← 1;
2 while t ≤ |U | do
3 Choose R ∈ argmin{π′(S) |S ∈ S};
4 while ∃S ∈ S with S (R do
5 Set R′ ← R and choose R ∈ argmin{π′(S) |S ∈ S, S (R′};
6 end
7 Choose e ∈ R and set π(e)← t;
8 for S ∈ S with e ∈ S do
9 κ(S)← κ(S)− 1;

10 if κ(S) = 0 then
11 S ← S \ {S} and π(S)← t;
12 else
13 S ← (S \ {S}) ∪ {S \ {e}};
14 end
15 t← t+ 1;
16 end
17 end
18 return π;

Algorithm 3: An algorithm to transform a preemptive solution of laminar
generalized min-sum set cover into a non-preemptive one.

In this way, the element scheduled next is always chosen from the most urgent subset(s).
Finally, after an element is scheduled, this element is removed from the instance and
the covering requirements are updated accordingly. The covering time of a set is the
first point in time when its remaining covering requirement is set to zero. The complete
algorithm is summarized in Algorithm 3.
Note that Algorithm 3 returns a feasible (non-preemptive) solution for generalized

min-sum set cover, since exactly one element is assigned to time t (line 7) in each
iteration of the outer while-loop. If a set is covered, it is removed from the instance
in line 11 and its covering time is set to t.20 Else, the element is removed from the
instance and the set is updated accordingly. Before we show that the covering times of
the solution returned by Algorithm 3 satisfy π(R) ≤ π′(R) for all R ∈ R, we illustrate
the procedure using an example.

20Technically, one does not need to assign the covering time of a set in line 11, as the covering time
is already well-defined by the linear ordering π : U → [|U |], see (1.4).

66

3.4 Algorithms for Laminar Min-Sum Covering Problems

1 2 3

4 5 6

7 8 9

6 9 1 9 6 2 4 5 7 8 5 1 7 3 8 2

6 9 7 4 8 1 3 5 2

1 2 3 4 5 6 7 8 9t =

Fig. 3.8: The instance of Example 3.12 (left), and a feasible preemptive solution (top right) and
the solution returned by Algorithm 3 (bottom right) illustrated as single-machine
schedules. Note that the order of the elements within one time slot [t − 1; t] is
arbitrary and the covering times are integers by definition, see (3.8).

Example 3.12 (Preemptive Laminar Generalized Min-Sum Set Cover)
Consider the instance depicted in Figure 3.8 (left) with U = [9] and

R = {{1}, {2}, {3}, {1, 2, 3}, {4, 7}, {5, 8}, {4, 5, 7, 8}, {6, 9}}. (3.9)

The covering requirements are κ({1}) = κ({2}) = κ({3}) = 1, κ({1, 2, 3}) = κ({4, 7}) =
κ({5, 8}) = κ({6, 9}) = 2 and κ({4, 5, 7, 8}) = 3. Consider the preemptive solution on
the top right of Figure 3.8. The covering times are π′({6, 9}) = 3, π′({4, 5, 7, 8}) = 6,
π′({1}) = π′({4, 7}) = 7, π′({3}) = π′({1, 2, 3}) = 8 and π′({2}) = π′({5, 8}) = 9.
In the first iteration, the algorithm chooses R = {6, 9} and, since the set comprises

free elements only, elements 6 and 9 are scheduled first. For t = 3, Algorithm 3 first
picks R = {4, 5, 7, 8}. Since this set contains uncovered subsets, the algorithm updates
R = {4, 7} in the while-loop in line 5. Similar to before, the elements 4 and 7 are
scheduled next. At time t = 5, the algorithm again chooses R = {4, 5, 7, 8} and updates
R = {5, 8} in line 5 (note that {4, 7} is covered already). Since {5, 8} contains free
elements only, an arbitrary element (in this case 8) is chosen, and {4, 5, 7, 8} is covered
at time 5. The next uncovered set is {1}, so the algorithm chooses element 1 at time 6.
Next, w.l.o.g., {1, 2, 3} is chosen, which contains the still uncovered sets {2} and {3}.
Since π′({3}) < π′({2}), Algorithm 3 updates R = {3} and schedules element 3. So,
sets {3} and {1, 2, 3} are covered at time 7. Finally, the algorithm proceeds with the
remaining sets {5, 8} and {2} and schedules elements 5 and 2 last.
The covering times of the solution returned by Algorithm 3 are π({6, 9}) = 2,

π({4, 7}) = 4, π({4, 5, 7, 8}) = 5, π({1}) = 6, π({3}) = π({1, 2, 3}) = 7, π({5, 8}) = 8
and π({2}) = 9. Note that π(R) ≤ π′(R) for all R ∈ R.

Instead of breaking ties in lines 3 and 5 arbitrarily, we now assume that Algorithm 3
processes a set R completely in the following iterations of outer while-loop before it
continues with a set disjoint from R. For convenience, we refrain from making this
explicit in the algorithm.

67

Chapter 3 Combinatorial Algorithms for the Sum of Weighted Completion Times

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

Fig. 3.9: The sets contained inR−R∪{R} (left) andDR (right) forR = {1, 2, 3} in the instance of
Example 3.12. Recall that π′({1, 2, 3}) = 8, so R−R = {{6, 9}, {4, 5, 7, 8}, {4, 7}}. The
inclusion-maximal sets in R−R containing free elements are DR = {{6, 9}, {4, 5, 7, 8}}.

Theorem 3.13
Given a feasible preemptive solution for laminar generalized min-sum set cover
with covering times π′ : R → [|U |], Algorithm 3 returns a feasible non-preemptive
solution with covering times π(R) ≤ π′(R) for all R ∈ R.

Proof. W.l.o.g., we assume that a set R ∈ R with |R| > κ(R) contains no free elements,
i.e., FR = ∅ and any such set decomposes into subsets, see (3.5). Any “reasonable
solution” for laminar GMSSC will never choose a free element in R if there is still an
element in some subset of R available. That is, we can apply a preprocessing algorithm
similar to Algorithm 2 that successively removes free elements from sets R ∈ R with
|R| > κ(R) and places those elements in the inclusion-minimal superset of R.
Let R ∈ R be the set chosen by Algorithm 3 after the last iteration of the inner

while-loop (line 5) at time t ∈ [|U |]. We consider the instance reduced to the sets
disjoint from R that are covered by time π′(R) in the preemptive solution. Let
R−R = {S ∈ R |π′(S) ≤ π′(R), S ∩ R = ∅} be those sets. Further, we let DR ⊆ R−R
be the set of inclusion-maximal sets in R−R that contain free elements. Note that R−R
and DR are laminar and that the sets in DR are disjoint by construction. Figure 3.9
illustrates R−R and DR for R = {1, 2, 3} in the instance and preemptive solution of
Example 3.12, see also Figure 3.8.

We claim that, for every S ∈ R−R, there is a set S′ ∈ DR such that S ⊆ S′. Suppose
not, and let S ∈ R−R be a set so that there is no S′ ∈ DR with S ⊆ S′. If there is
S′ ∈ DR with S ⊇ S′, then S contains no free elements by definition of DR. So, S
decomposes into subsets in R−R and at least one of these subsets is disjoint from all
sets in DR (for otherwise S ⊆ S′). Let S ∈ R−R with S ⊆ S be an inclusion-minimal
set that is disjoint from all sets in DR. Since S is inclusion-minimal, it contains free
elements. So, it is contained in DR, which is a contradiction.

68

3.4 Algorithms for Laminar Min-Sum Covering Problems

We can assume that the sets in R−R (and, therefore, also those in DR) are covered
before time π(R) by Algorithm 3 in previous iterations. Otherwise, if ties were broken
in favor of R in line 3, we can remove the corresponding sets from R−R and DR. So, the
sets in R−R precede R in the non-preemptive solution, i.e., π(S) < π(R) for all S ∈ R−R.
For the covering time of R, we obtain

π(R) = κ(R) + |{e ∈ S |S ∈ R−R, π(e) < π(R)}|
= κ(R) + |{e ∈ S |S ∈ DR, π(e) < π(R)}| = κ(R) +

∑
S∈DR

κ(S). (3.10)

The first equality is by definition of the covering time and since the sets in R−R are
precisely those sets that are covered before R and are disjoint from R (i.e., any element
in such a set does not contribute to the covering of R). The second equality holds
because every S ∈ R−R is contained in some S′ ∈ DR and DR ⊆ R−R. The last equality
is due to the fact that sets in DR are disjoint and every set S ∈ R is covered as soon
as κ(S) of its elements have appeared in the linear ordering.

On the other hand, let νe(t) =
∑t
τ=1 xeτ ∈ [0; 1] be the fractional amount of element

e ∈ U that appears before time t ∈ [|U |] in the preemptive solution. For the covering
time of R in the preemptive solution, we have

π′(R) =
∑
e∈U

νe(π′(R)) =
∑
e∈R

νe(π′(R)) +
∑
e/∈R

νe(π′(R))

≥ κ(R) +
∑

e: ∃S∈R−R
with e∈S

νe(π′(R)) = κ(R) +
∑
S∈DR

∑
e∈S

νe(π′(R))

≥ κ(R) +
∑
S∈DR

∑
e∈S

νe(π′(S)) ≥ κ(R) +
∑
S∈DR

κ(S).

(3.11)

The first inequality holds since the first sum in the second row contains fewer summands
than the last sum in the first row and

∑
e∈R νe(π′(R)) ≥ κ(R) by the definition of the

covering time, see (3.8). The equality in the second row is similar to (3.10) and the
second inequality follows from νe(t) ≥ νe(s) for t ≥ s and all e ∈ U . Hence, when
comparing (3.10) and (3.11), we get π(R) = κ(R) +

∑
S∈DR κ(S) ≤ π′(R) for any

R ∈ R that is considered explicitly by Algorithm 3 after line 5.
Finally, let S ∈ R be a set that is never chosen explicitly by the algorithm, but is

covered in line 11 because its covering requirement is set to zero in the iteration where
R ∈ R is considered. Since S was not yet considered by the algorithm in lines 3 or 5,
it satisfies π′(S) ≥ π′(R). By construction, π(S) ≤ π(R). With (3.10) and (3.11), we
get π(S) ≤ π(R) ≤ π′(R) ≤ π′(S), which yields the claim. 2

In summary, we obtain a 2-approximation algorithm for generalized min-sum set
cover on laminar sets. As before, we get an approximation factor of 2 even for the
more general weighted version with weights wR ∈ N for all R ∈ R.

69

Chapter 3 Combinatorial Algorithms for the Sum of Weighted Completion Times

Corollary 3.14
There is a 2-approximation algorithm for weighted laminar generalized min-sum set
cover.

Proof. First, we use the algorithm of [88] to obtain a 2-approximate solution for
preemptive laminar generalized min-sum set cover. Note that the algorithm in [88]
also works for the weighted variant. Then, we apply Algorithm 3 to transform this
preemptive solution into a non-preemptive one. By Theorem 3.13, the objective value
of the solution returned by Algorithm 3 is

∑
R∈RwR π(R) ≤

∑
R∈RwR π

′(R). Since
preemptive generalized min-sum set cover is a relaxation of GMSSC and the algorithm
of [88] is 2-approximate, we have

∑
R∈RwR π

′(R) ≤ 2
∑
R∈RwR π

∗(R), where π∗(R)
are the covering times of an optimum solution for the instance of laminar GMSSC. 2

For preemptive GMSSC in general, the approximation factor of 2 presented in [88]
is essentially best possible assuming a variant of the Unique Games Conjecture [100].
Note that there is no benefit in preempting jobs in AND-scheduling, which can be seen
as a special case of GMSSC [166]. Since a factor of 2 is essentially best possible for
(preemptive) AND-scheduling under a variant of the Unique Games Conjecture [100,
15], this conditional lower bound translates to preemptive generalized min-sum set cover.
Bansal et al. [13] showed that the gap between the costs of an optimal non-preemptive
and an optimal preemptive solution for general GMSSC can be as large as 4. Hence,
using a preemptive solution to construct a non-preemptive one as proposed by [88]
cannot yield an approximation factor strictly better than 8 for GMSSC in general.
Note that it is not clear whether preemptive generalized min-sum set cover (and,

thus, the non-preemptive variant) is NP-hard at all for laminar sets. In particular, a
polynomial-time algorithm for (weighted) laminar generalized min-sum set cover might
be possible.

3.5 A Framework for Approximating Scheduling Problems

We now present a framework to obtain 4η-approximation algorithms for various sche-
duling and min-sum ordering problems, assuming that we have an η-approximation for
finding a density-maximizing set to start with at hand. This framework is a generaliza-
tion of the histogram proof in [45], the idea of which was also used in similar proofs in,
e.g., [159, 90, 122, 81]. To stay consistent with the overall terminology in this thesis, we
tailor the framework to scheduling problems only. The general case with more general
cost and weight functions, as well as applications in scheduling, pipelined set cover
and boolean function evaluation, is studied in [75]. That is, the content of this section
is not solely restricted to OR-scheduling, but applies to any sort of single-machine
scheduling problem to minimize the sum of weighted completion times.

70

3.5 A Framework for Approximating Scheduling Problems

3.5.1 A Density-Maximizing Greedy Algorithm

Recall that the Greedy algorithm of [18, 44, 45] for min-sum set cover chooses the
element that covers the most uncovered sets next. For pipelined set cover, Munagala et
al. [128] considered the natural extension of the Greedy algorithm, which chooses the
element e ∈ U that maximizes the ratio w(Re)

ce
next, where Re are the uncovered sets

that contain e. The same idea of choosing (or rather approximating) a feasible subset
of elements that maximizes the ratio of covered weight to incurred cost was used to
obtain approximation algorithms for precedence-constrained min-sum set cover [122]
and expanding search [81].
Suppose we are given an arbitrary scheduling problem on a set of jobs N . Let

FS ⊆ 2N be the equivalent of feasible starting sets (Definition 1.14), i.e., FS contains
exactly those subsets of jobs that can start in a feasible schedule. For scheduling with
precedence constraints, regardless of whether AND, OR or AND/OR, FS contains
the initial sets that are closed under the respective precedence constraints. Recall the
definition of the density ρ(S) = w(S)

p(S) of a set S ⊆ N . We assume in the following that
we are given an η-approximation algorithm with η ≥ 1 for finding a set of maximum
density in FS. Note that η = 1 means that we can find such a density-maximizing
set in polynomial time. In Section 3.5.2, we present polynomial-time algorithms for
finding a density-maximizing feasible starting set for 1 | or-prec = bipartite |

∑
wjCj

and 1 | or-prec = intree |
∑
wjCj .

The algorithm works as follows and is referred to as density-maximizing Greedy. We
start with an empty schedule and the set of jobs N . First, we apply the η-approximation
algorithm to get a set S ∈ FS with ρ(S) ≥ 1

η ρ
∗, where ρ∗ is the maximum density

of any set in FS. Then, we append the jobs in S in any feasible order at the end of
the current schedule, and remove the jobs in S from the instance. Finally, we update
the set FS ⊆ 2N\S accordingly, and repeat. The technique is similar to (and unifies)
results in AND-scheduling [157, 85, 152, 25, 120], min-sum set cover [18, 45, 122] and
expanding search [6, 46, 81].

Theorem 3.15
Given an η-approximation algorithm for finding a density-maximizing set in FS,
the density-maximizing Greedy algorithm is a 4η-approximation algorithm for the
initial scheduling problem.

Proof. The proof is fairly similar to the histogram proof in [45]. Suppose the density-
maximizing Greedy terminates after h iterations, where we added a η-approximate
density-maximizing set to the end of the current schedule in each iteration. For ` ∈ [h],
let J` be the set of jobs that is scheduled in the `-th iteration, and let S` =

⋃h
q=` Jq

be the set of remaining jobs at the beginning of iteration `. The set of subsets of
jobs that can be appended to the current schedule at the beginning of iteration ` is
denoted by FS`, i.e., FS` ⊆ 2S` contains the sets S ⊆ S` such that (N \ S`)∪ S ∈ FS.

71

Chapter 3 Combinatorial Algorithms for the Sum of Weighted Completion Times

C∗j

wj

φ`

w(J`)

q′

Fig. 3.10: The histograms corresponding to the optimal solution (left) and to the schedule
returned by the density-maximizing Greedy (right). The point q′ is contained in
the `-th column of the second histogram.

By the choice of J`, we get ρ(J`) ≥ ρ(J)
η for all J ∈ FS`. The completion time of job

j ∈ N in the schedule returned by the density-maximizing Greedy algorithm and an
arbitrary but fixed optimal solution is denoted by CGj and C∗j , respectively.

With φ` = w(S`)
w(J`) p(J`) = w(S`)

ρ(J`) the objective value of the Greedy solution is

∑
j∈N

wj C
G
j ≤

h∑
`=1

∑
j∈J`

wj
∑̀
q=1

p(Jq) =
h∑
`=1

p(J`)
h∑
q=`

w(Jq)

=
h∑
`=1

p(J`)w(S`) =
h∑
`=1

w(J`)φ`.

(3.12)

We construct two histograms that represent the objective values of the optimal
solution and the solution returned by the density-maximizing Greedy, respectively. We
show that if we shrink the second histogram by a factor of 2 in horizontal direction and
a factor of 2η in vertical direction, it fits into the first one. This then yields the claim.
The first histogram contains a column for each job j ∈ N with width wj and

height C∗j in the order the jobs appear in the optimal solution. Note that the height
of the columns is non-decreasing and that the total area of the histogram is equal to
the optimal objective value,

∑
j∈N wjC

∗
j , see Figure 3.10 (left). The second histogram

consists of h columns, one for each iteration of the density-maximizing Greedy, in the
order the iterations appear in the algorithm. The width of column ` ∈ [h] is w(J`), and
its height is equal to φ`, see Figure 3.10 (right). The total area of the second histogram
is equal to

∑h
`=1w(J`)φ` ≥

∑
j∈N wj C

G
j , see (3.12).

Now, we shrink the second histogram by a factor 2 in width and a factor 2η in height,
and align it to the right, i.e., such that the lower right corner of the rightmost column
has coordinates (w(N), 0), see Figure 3.11. The total area of the shrunk histogram is
equal to 1

4η
∑h
`=1w(J`)φ`. We claim that the shrunk histogram is completely contained

72

3.5 A Framework for Approximating Scheduling Problems

q

φ`
2η

w(S`)
2

Fig. 3.11: The shrunk histogram (dark gray) aligned right inside the first histogram (light
gray). The point q corresponds to q′ in Figure 3.10 (right) after shrinking.

in the first histogram. This then implies that the area of the shrunk histogram is less
or equal than

∑
j∈N wjC

∗
j . Together with (3.12) this yields

∑
j∈N

wj C
G
j ≤

h∑
`=1

w(J`)φ` ≤ 4η
∑
j∈N

wj C
∗
j . (3.13)

To prove the claim, let q′ be a point in the second histogram, and suppose it is
contained in column `. Let q be the corresponding point in the shrunk histogram.
That is, the height of q is at most 1

2ηφ`, and its distance to the right is at most
1
2
∑h
q=`w(Jq) = 1

2w(S`).
Let ρ∗ = max{ρ(J) | J ∈ FS`}, and recall that J` satisfies ρ(J`) ≥ 1

ηρ
∗. No schedule

(not even an optimal one) can cover more than an amount of λρ∗ of weight of the jobs
in S` during λ time units. Hence, within 1

2ηφ` time units, the optimal solution cannot
cover more than an amount of 1

2ηφ` ρ
∗ ≤ 1

2ηφ` η ρ(J`) = 1
2φ` ρ(J`) of weight of jobs

in S`. So, at time 1
2ηφ, the remaining unscheduled weight of jobs in S` is at least

w(S`)−
1
2ηφ` ρ

∗ ≥ w(S`)−
1
2ηφ` η ρ(J`) = w(S`)−

1
2
w(S`)
ρ(J`)

ρ(J`) = 1
2w(S`). (3.14)

Thus, the point
(
w(N)− w(S`)

2 , φ`2η

)
is contained in the first histogram. Since q is to

the lower right of
(
w(N)− w(S`)

2 , φ`2η

)
and the column heights of the first histogram

are non-decreasing, q is contained in the first histogram. This proves the claim. 2

73

Chapter 3 Combinatorial Algorithms for the Sum of Weighted Completion Times

j1
3
1

j2
5
2

j3
4
2

k1
1

i1
2

Fig. 3.12: An instance of bipartite OR-scheduling with A = {i, k} and B = {j1, j2, j3}. The
ratio next to job j is wj

pj
. The sets are Jk = {k, j1, j2} and Ji = {i, j1, j3} with

ρ(Jk) = 9
4 >

8
5 = ρ(Ji). For the construction of Jk, we have ρ({j1}) > 1 = ρ({k}),

ρ({j2}) > 4
2 = ρ({k, j1}) and ρ({j3}) < 9

4 = ρ(Jk), so j3 is not included into Jk.

Note that the histogram of [45] in Figure 3.10 (left) is just the flipped two-dimensional
Gantt chart of [42, 63]. Successively scheduling a density-maximizing set is similar
to Sidney’s decomposition [152] and the algorithms of [25, 120] for AND-scheduling.
However, we do not get an approximation factor of 2 (or 2η) for the density-maximizing
Greedy algorithm via this approach, because, e.g., for scheduling with OR-precedence
constraints, there is no Sidney-like decomposition in general. For an example, we refer
to the instance of min-sum vertex cover in [45] showing that the Greedy algorithm for
min-sum set cover is tight.

3.5.2 Two 4-Approximation Algorithms for OR-Scheduling Problems
In this section, we present polynomial-time algorithms to compute density-maximizing
feasible starting sets for OR-scheduling with precedence graphs that are bipartite or in
the form of an intree. Thus, the density-maximizing Greedy algorithm described in the
previous section is a 4-approximation algorithm for 1 | or-prec = bipartite |

∑
wjCj

and 1 | or-prec = intree |
∑
wjCj .

Recall that the related AND-scheduling problems 1 | prec = intree |
∑
wjCj and

1 | prec = outtree |
∑
wjCj are solvable in polynomial time [85], whereas 1 | prec =

bipartite |
∑
wjCj is NP-hard [166]. Since AND-precedence constraints and OR-

precedence constraints coincide on outtrees, we get that 1 | or-prec = outtree |
∑
wjCj

can be solved in polynomial time. For technical reasons, we define ρ(∅) := −1. So,
ρ(∅) < 0 ≤ ρ(S) for any non-trivial S ⊆ N .

Bipartite OR-Scheduling. Consider an instance of 1 | or-prec = biparitite |
∑
wjCj

with precedence graph G = (A ∪̇B,E∨) and set of feasible starting sets FS ⊆ 2A ∪̇B.
W.l.o.g., we can assume that all jobs without predecessors are contained in A, i.e.,
j ∈ B implies P(j) 6= ∅. Hence, the jobs in A are the singleton feasible starting sets,
i.e., {i} ∈ FS for all i ∈ A.

74

3.5 A Framework for Approximating Scheduling Problems

Input: Instance of 1 | or-prec = bipartite |
∑
wjCj

Output: Set J ∈ FS with ρ(J) = max{ρ(S) |S ∈ FS}

1 for i ∈ A do
2 Ji ← {i}, Si ← {b ∈ B | i ∈ P(b)} and q ← 1;
3 Sort jobs in Si = {bi1, . . . , bi|Si|} in non-increasing order of their density;
4 while q ≤ |Si| and ρ({biq}) > ρ(Ji) do
5 Ji ← Ji ∪ {biq} and q ← q + 1;
6 end
7 end
8 Let k ∈ argmax{ρ(Ji) | i ∈ A};
9 return Jk;

Algorithm 4: An algorithm to compute a density-maximizing set in FS for
bipartite OR-scheduling.

We define a set Ji ∈ FS for every i ∈ A so that Jk with ρ(Jk) = max{ρ(Ji) | i ∈ A} is
a density-maximizing feasible starting set (Lemma 3.16). For i ∈ A, we set Ji := {i}∪Bi
where Bi = {bi1, . . . , bi`} ⊆ {b ∈ B | i ∈ P(b)} is inclusion-maximal such that

(i) ρ({bi1}) ≥ ρ({bi2}) ≥ · · · ≥ ρ({bi`}) ≥ ρ({b}) for all b ∈ {j ∈ B\Bi | i ∈ P(j)}, and
(ii) ρ({biq}) > ρ({i, bi1, . . . , biq−1}) for all q ∈ [`].

The sets Ji can be constructed in polynomial time by successively adding a successor
of i with highest density to Ji if this increases the overall density of the set, see
Algorithm 4. Figure 3.12 depicts an instance and the corresponding sets.
Lemma 3.16
Algorithm 4 computes a density-maximizing feasible starting set for bipartite precedence
graphs G = (A ∪̇B,E∨).

Proof. Let S ∈ FS be an inclusion-minimal density-maximizing feasible starting set,
and let k ∈ argmax{ρ(Ji) | i ∈ A} be the job whose set Jk is returned by Algorithm 4.
We show that ρ(S) = ρ(Jk). Note that A ∩ S 6= ∅, since S ∈ FS and P(b) 6= ∅ for all
b ∈ B. Further, ρ({j}) ≤ ρ(S) for every j /∈ S with j ∈ A or j ∈ B with P(j) ∩ S 6= ∅
because otherwise we could add j to S and obtain a feasible starting set S ∪ {j} ∈ FS
with ρ(S ∪ {j}) > ρ(S). We claim that Ji ⊆ S for all i ∈ A ∩ S.

Let i ∈ A ∩ S and suppose by contradiction Ji 6⊆ S. Recall that Ji = {i} ∪Bi where
Bi = {bi1, . . . , bi`} ⊆ {b ∈ B | i ∈ P(b)} satisfies (i) and (ii). Let h ∈ [`] be minimal
such that bih ∈ Bi \ S, i.e., {i, bi1, . . . , bih−1} ⊆ S. By the above observations and
the construction of Ji, it holds ρ(S) ≥ ρ({bih}) > ρ({i, bi1, . . . , bih−1}) (condition (ii))
and ρ(S) ≥ ρ({bih}) ≥ ρ({biq}) ≥ ρ({b}) for all q ≥ h and b ∈ B \ Bi with i ∈ P(b)
(condition (i)). But then S \ ({i} ∪ {b ∈ B | i ∈ P(b)}) is a feasible starting set with
strictly higher density than S. Hence, Ji ⊆ S for all i ∈ A ∩ S.

75

Chapter 3 Combinatorial Algorithms for the Sum of Weighted Completion Times

Let i ∈ A ∩ S and suppose S) Ji, i.e., S = Ji ∪̇S′ for some S′ 6= ∅. Since S was
chosen to be inclusion-minimal, ρ(S) ≥ ρ(Ji) ≥ ρ({b}) for all b ∈ {j ∈ B \Bi | i ∈ P(j)}
implies S ∩ {j ∈ B \ Bi | i ∈ P(j)} = ∅. Hence, S′ ∈ FS is a feasible starting set as
well. The density of S is equal to

ρ(S) = w(S)
p(S) = w(Ji) + w(S′)

p(Ji) + p(S′) = λρ(Ji) + (1− λ)ρ(S′), (3.15)

where λ = p(Ji)
p(Ji)+p(S′) ∈ [0; 1]. Maximality of ρ(S) and (3.15) imply ρ(S) = ρ(Ji) = ρ(S′).

This proves the claim. 2

Due to Lemma 3.16, we can apply the density-maximizing Greedy algorithm from
Section 3.5.1 and use Algorithm 4 to compute a density-maximizing set in each iteration.
After scheduling the set Jk that was returned by Algorithm 4, we have to update
the sets A and B. That is, we remove Jk from the instance and move the jobs in
{j ∈ B | k ∈ P(j)} into A (and delete all ingoing arcs), since these jobs are now
available. This gives a 4-approximation for bipartite OR-scheduling, which generalizes
the results of [45, 128] for min-sum set cover and pipelined set cover. The following
theorem follows from Theorem 3.15 and Lemma 3.16.

Theorem 3.17
The density-maximizing Greedy together with Algorithm 4 is a 4-approximation
algorithm for 1 | or-prec = bipartite |

∑
wjCj.

OR-Scheduling on Intrees. We can also compute density-maximizing feasible starting
sets in polynomial time for 1 | or-prec = intree |

∑
wjCj . Let G = (N,E∨) be the

precedence graph and recall that every job has at most one successor in G if G is an
inforest. Recall the definition of a path, which is a subset of jobs {j1, . . . , j`} ⊆ N
such that (jq, jq+1) ∈ E∨ for all q ∈ [` − 1]. A stem in G is a path where j1 has no
predecessors, i.e., a stem is a path that is a feasible starting set. Lemma 3.18 shows
that a density-maximizing stem in G is also a density-maximizing feasible starting set.
Lemma 3.18
A density-maximizing feasible starting set for precedence graphs G = (N,E∨) in form
of an inforest can be computed in polynomial time.

Proof. Since G = (N,E∨) is an inforest, the number of paths starting at a given
node is bounded by the total number of nodes |N | = n. Therefore, the total number
of stems is O(n2). So, we can enumerate all stems and pick the one with highest
density. It remains to be shown that a density-maximizing stem is indeed also a
density-maximizing feasible starting set.
To this end, let S ∈ FS be a density-maximizing feasible starting set, and suppose

S is not a stem. That is, S contains at least two jobs i and j without a predecessor.

76

3.5 A Framework for Approximating Scheduling Problems

i j1 · · · j`

k · · · root· · ·j

Fig. 3.13: Paths starting at i and j to “their” root in G[S] and their intersection point k.

Note that the induced subgraph G[S] is also an inforest. Since every job has at most
one successor, any job without a predecessor induces a unique path to a root of G[S].
Let k ∈ S be the job where the unique paths of i and j in G[S] meet, see Figure 3.13.
(Note that k does not exist if i and j are in different connected components.)

Let Ji = {i, j1, . . . , j`} be the set of jobs on the path from i to k such that j` ∈ P(k).
If k does not exist, let Ji be the path starting at i to the corresponding root in G[S].
By construction, Ji ∈ FS is a stem and S′ = S \ Ji ∈ FS is a feasible starting set.
Similar to (3.15) in the proof of Lemma 3.16, we obtain ρ(S) = ρ(Ji) = ρ(S′) by the
maximality of ρ(S). This proves the claim. 2

Observe that, if we remove a stem from an inforest, the digraph decomposes into in-
trees again. That is, we can successively remove a density-maximizing stem from the pre-
cedence graph and apply the density-maximizing Greedy algorithm from Section 3.5.1.
By Lemma 3.18, this gives a 4-approximation algorithm for OR-scheduling on intrees.

Theorem 3.19
The density-maximizing Greedy is a 4-approximation algorithm for 1 | or-prec =
intree |

∑
wjCj if we schedule a density-maximizing stem in each iteration.

Note that the proof of Lemma 3.18 also works for more general digraphs such as
multitrees, which were proposed by [48] as a generalization of rooted trees. A directed
acyclic graph G = (N,E) is called a multitree if, for each j ∈ N , the set of nodes that
are reachable from j form an outtree. Equivalently, G is a multitree if it is diamond
free, i.e., for every pair of nodes i, j ∈ N , there is at most one path from i to j [48].
Similar to Lemma 3.18, a density-maximizing outtree rooted at a job without

predecessors is a density-maximizing feasible starting set if the graph is a multitree.
One can easily verify that the proof of Lemma 3.18 still works if we informally replace
stem and path by outtree and inforest by multitree. In particular, if G[S] is not an
outtree, where S is a density-maximizing set, then there are two jobs i, j ∈ S without
a predecessor. In this case, i and j induce unique outtrees in G[S], instead of paths to
a root as in the proof of Lemma 3.18. (Note that there might exist several jobs like k
where the two outtrees “meet”.) Let Si, Sj ⊆ S be the set of jobs that are contained in
the outtree in G[S] rooted at i and j, respectively. For Ji = Si \ Sj , we obtain that
ρ(Ji) = ρ(S \ Ji) = ρ(S) similar to (3.15).

77

Chapter 3 Combinatorial Algorithms for the Sum of Weighted Completion Times

Let i ∈ N with P(i) = ∅. Since the nodes reachable from i form an outtree in G by
definition of a multitree, we can use a dynamic program similar to the subalgorithm of
Horn [85] to compute a density-maximizing outtree Ji rooted at i. Then, we choose
the outtree with maximum density over all jobs without predecessors. Note that the
precedence graph is still diamond free after removing an outtree Ji (and all arcs going
into Ji). Hence, the density-maximizing Greedy is also 4-approximate in this more
general setting.

3.6 Open Problems
Bipartite OR-scheduling is not just NP-hard as a generalization of min-sum set cover,
but already for the simplest non-trivial processing times and weights, see Theorem 3.6.
On the positive side, the extension of the Greedy algorithm for min-sum set cover,
namely the density-maximizing Greedy described in Section 3.5, is 4-approximate
for bipartite OR-scheduling in general (Theorem 3.17). Feige, Lovász and Tetali [45]
showed that no polynomial-time algorithm can do better than 4, even for min-sum
set cover. However, for unit processing times or unit weights, bipartite OR-scheduling
might admit better approximation guarantees.
Problem 3.20
Are there (4− ε)-approximation algorithms for 1 | or-prec = bipartite, pj = 1 |

∑
wjCj

or 1 | or-prec = bipartite |
∑
Cj for a fix ε > 0?

In Section 3.4, we observed that variants of GMSSC are solvable in polynomial
time if the collection of subsets is laminar. The proof of Lemma 3.7 fails for laminar
pipelined set cover, since the covering cost of a set that is covered by an element in S
changes if we swap e and f (in the notation of the proof of Lemma 3.7). The procedure
of transforming an instance of laminar GMSSC to an equivalent instance of MLSC
(Algorithm 2) does not work if the requirements are not of an “all-but-constant” form.
Further, it is not clear whether laminar generalized min-sum set cover, for which we
propose a 2-approximation algorithm (Corollary 3.14), is NP-hard at all.
Problem 3.21
Is there a polynomial-time algorithm for laminar generalized min-sum set cover?

All results in Section 3.4 use the property that the collection of subsets R is laminar.
Since all-but-K min-sum set cover generalizes min-sum set cover (by choosing K ∈ N
sufficiently large), there is no (4− ε)-approximation algorithm for all-but-K min-sum
set cover with arbitrary R, unless P = NP [45]. Note that MLSC is a special case of
1 | prec |

∑
wjCj and can, therefore, be approximated within a factor of 2 [148, 71, 30,

25, 120]. In Section 4.3.2, we propose a 4-approximation algorithm for the special case
where K = 1. It seems natural to ask whether an approximation factor of 4 is possible
for arbitrary K ∈ N.

78

3.6 Open Problems

Problem 3.22
Is there a 4-approximation algorithm for all-but-K min-sum set cover for all K ∈ N?

The best-known approximation guarantee for generalized min-sum set cover (with
arbitrary requirements) so far is 4.642 [13]. The authors in [88, 13] conjecture that
GMSSC admits a 4-approximation algorithm as does min-sum set cover. Note that
generalized min-sum set cover falls into the framework discussed in Section 3.5. That
is, an η-approximation algorithm with η ≤ 1.16 or a polynomial-time algorithm for
finding a density-maximizing subset of elements and covered sets would improve the
approximation factor for GMSSC.

Problem 3.23
Is there a 4-approximation algorithm for generalized min-sum set cover?

It would be of interest to find further applications of the density-maximizing Greedy
framework in the variant discussed in this thesis or in the more general setting of [75].
In particular, for applications that do not seem to be as obvious as scheduling problems,
this framework might offer new possibilities to obtain approximation algorithms. Also
other special cases of OR-scheduling fall into this Greedy framework and might admit
4η-approximation algorithms like bipartite OR-scheduling (Theorem 3.17) or OR-
scheduling on intrees (Theorem 3.19). Note that it is not clear whether the latter
problem is NP-hard or solvable in polynomial time.

Problem 3.24
Is there a polynomial-time algorithm for 1 | or-prec = intree |

∑
wjCj?

Recall that OR-scheduling is strongly NP-hard, even if the precedence graph is
bipartite (Theorem 3.6) and that there are constant-factor approximation algorithms
for some special cases (Theorems 3.17 and 3.19). Since the only known lower bound
on the approximability of OR-scheduling is 4 from min-sum set cover [45], it would
be interesting to show whether there is a constant-factor approximation algorithm for
OR-scheduling in general.

Problem 3.25
Is there a constant-factor approximation for 1 | or-prec |

∑
wjCj?

79

Chapter 4

Linear Programming Relaxations and LP
Based Algorithms

In this chapter, we study various LP relaxations, and present LP based approximation
algorithms for scheduling problems that generalize precedence-constrained min-sum set
cover and all-but-one min-sum set cover. The results in this chapter were presented at
WAOA 2019 [78]. A journal version of this work is available online in [77].

4.1 Related Work and Our Results
Besides discussing standard linear programming relaxations for scheduling problems in
the context of OR-precedence constraints, we present new approximation algorithms
for 1 | ao-prec = A∨̇B |

∑
wjCj (Definition 1.17) and all-but-one min-sum set cover

(Definition 3.3) in this chapter. Recall the min-sum covering problems of Sections 1.2.1
and 3.2.1 and their connection to scheduling, see Figures 1.5 and 3.2.

In Section 4.2, we discuss three classical LP formulations for AND-scheduling from the
literature. We present new approximation algorithms that are based on time-indexed
LP formulations for bipartite AND/OR-scheduling and the precedence-constrained
variant of min-sum vertex cover in Section 4.3.1. Further, we give a 4-approximation
algorithm for a scheduling problem that generalizes all-but-one min-sum set cover in
Section 4.3.2. In Sections 4.4 and 4.5, we study other standard LP formulations for
scheduling problems in linear ordering and completion time variables, respectively. We
present classes of valid inequalities for each of these formulations and show that the
integrality gaps grow linear in the number of jobs if OR-precedence constraints are
involved, even with the additional constraints. Figure 4.1 gives an overview of the
problems that are discussed in Section 4.3 and the related problems in the literature.
To avoid redundancy, we do not repeat the relevant results in the literature that were
already discussed in Chapter 3 and refer the reader to Section 3.1 instead.

81

Chapter 4 Linear Programming Relaxations and LP Based Algorithms

Precedence-Constrained MSSC and Set Cover. As an extension of min-sum set
cover, which was studied in [44, 45], Munagala et al. [128] introduced pipelined set
cover (Definition 3.2) and showed that the natural extension of the Greedy algorithm is
also 4-approximate in this more general setting. Munagala et al. [128] posed as an open
problem whether pipelined set cover still admits a constant-factor approximation if AND-
precedence constraints in form of a partial order ≺ are incorporated on the elements.
That is, any feasible linear ordering π : U → [|U |] must satisfy π(e) < π(e′) whenever
e ≺ e′. This question was partly settled by McClintock, Mestre and Wirth [122]. They
presented a 4

√
|U |-approximation algorithm for precedence-constrained min-sum set

cover (Definition 1.11). The algorithm uses a
√
|U |-approximative Greedy algorithm

on a problem called max-density precedence-closed subfamily together with a histogram
argument similar to [45] and Section 3.5.
McClintock, Mestre and Wirth [122] also proposed a reduction from the so-called

planted dense subgraph conjecture [24] to precedence-constrained MSSC. Roughly
speaking, the conjecture says that, for all ε > 0, there is no polynomial-time algorithm
that can decide with advantage > ε whether a random graph onm vertices is drawn from
(m,mα−1) or contains a subgraph drawn from (

√
m,
√
m
β−1) for certain parameters

0 < α, β < 1.21 If the conjecture holds true, then this implies that there is no
O(|U |1/12−ε)-approximation algorithm for precedence-constrained MSSC [122].
In Section 4.3.1, we propose a (2∆ + ε)-approximation algorithm for bipartite

AND/OR-scheduling, 1 | ao-prec = A∨̇B |
∑
wjCj , where ∆ = max{|P(b)| | b ∈ B} is

the maximum number of OR-predecessors of any one job in B. Recall that bipartite
AND/OR-scheduling generalizes precedence-constrained MSSC, see Section 1.2.2 and
Figure 1.5. This implies a 2∆-approximation for precedence-constrained min-sum set
cover and a 4-approximation for precedence-constrained min-sum vertex cover. We
further argue how the reduction from the planted dense subgraph problem in [122]
implies that no O(∆1/3−ε)-approximation algorithm exists for bipartite AND/OR-
scheduling, if the planted dense subgraph conjecture holds true.
The ordinary Set Cover and the equivalent Hitting Set problem [98] are also

special cases of 1 | ao-prec = A∨̇B |
∑
wjCj .22 Consider an instance of the Hitting

Set problem with a finite set of elements U and a family of sets R ⊆ 2U . We can
introduce a job in A with pa = 1 and wa = 0 for every element in U and a job in B
with pb = wb = 0 for every set in R. The OR-precedence constraints E∨ ⊆ A×B are
given by the covering graph of the instance. Further, we include an additional job x in
B with px = 0 and wx = 1, and introduce an arc (b, x) ∈ E∧ for every job b ∈ B \ {x}.

21A random (undirected) graph drawn from (m, p) contains m vertices and the probability of the
existence of an edge between any two vertices is equal to p.

22For Set Cover, one tries to find a subset of R of minimum cardinality that covers all elements
in U and, for Hitting Set, one wants to determine a subset U ′ ⊆ U of minimum cardinality such
that each set in R contains an element of U ′. Such a subset U ′ is called a hitting set. By exchanging
the role of U and R and reversing all arcs in the covering graph, it becomes clear that Set Cover
and Hitting Set are equivalent. Since Hitting Set (“find a subset of elements”) is closer to our
definition of MSSC (“order the elements”), we use the hitting set terminology in the following.

82

4.1 Related Work and Our Results

MSSC

4-approx
no (4− ε)-approx

bipartite
OR-scheduling

4-approx

bipartite
AND/OR-
scheduling

(2∆ + ε)-approx
no O(∆1/3−ε)-approx??

MSVC

16/9-approx
APX-hard

precedence-
constrained

MSVC
4-approx

precedence-
constrained

MSSC

4
√
|U |-approx

no O(|U |1/12−ε)-approx??

AND/OR-
scheduling

n-approx
no 2(logn)1−γ

-approx

all-but-one
MSSC

4-approx

GMSSC

4.642-approx

AND-
scheduling

2-approx
no (2− ε)-approx under UGC

Hitting Set

ln(|R|)-approx
no (1− ε) ln(|R|)-approx

Fig. 4.1: Overview of related problems and results. An arrow from problem Π1 to Π2 indicates
that Π2 generalizes Π1. Problems in rectangular frames are explicitly considered in
this thesis, and our results are depicted in bold. Bipartite OR-scheduling (rectangular
dashed frame) is discussed in Chapter 3. Lower bounds indicated with “??” are
assuming hardness of the planted dense subgraph problem [24].

If the Hitting Set instance admits a hitting set of cardinality `, we first schedule
the corresponding ` element-jobs in A, so all set-jobs are available for processing at
time `. Then, job x can complete at time `, which gives an overall objective value
of `. Similarly, any schedule with objective value equal to ` implies that all set-jobs
are completed before time `, so there exists a hitting set of size at most `.

Hitting Set can be approximated within a factor of ln(|R|) [94, 119, 31], and
this is best possible, unless P = NP [39]. The algorithms in [94, 119, 31] are Greedy
heuristics. In the unweighted version [94, 119], the element that “hits” most uncovered
sets is chosen in each iteration. Chvátal [31] generalized this to the weighted version,
where each set and each element is associated with a non-negative weight and cost,
respectively. In each step, Greedy chooses the element e ∈ U that maximizes the
ratio of total weight of uncovered sets that contain e to the cost of e [31]. Figure 4.1
illustrates the connections between the problems discussed in this chapter and the
relevant literature.

83

Chapter 4 Linear Programming Relaxations and LP Based Algorithms

Bar-Yehuda and Even [21] and Hochbaum [82] presented maxR∈R |R|-approximations
for Hitting Set. The approximation factor is equal to the maximum cardinality of a
set in R. Note that the approximation factor of ln(|R|) in [94, 119, 31] is better than
maxR∈R |R| in [21, 82] in general. However, for Vertex Cover (see Section 2.3.2),
which is a special case of Set Cover, the algorithms in [21, 82] yield a constant
approximation ratio of 2. The algorithm of Bar-Yehuda and Even [21] is purely
combinatorial, whereas the algorithm of Hochbaum [82] requires solving the canonical
LP for Set Cover. In the reduction from Hitting Set to 1 | ao-prec = A∨̇B |

∑
wjCj

described above, maxR∈R |R| equals the parameter ∆ = max{|P(b)| | b ∈ B} in the
approximation factor we present in Section 4.3.1.

Scheduling Polyhedra and AND/OR-Scheduling. We already discussed some related
work on AND-scheduling in Section 3.1. The first constant-factor approximation
algorithm for 1 | prec |

∑
wjCj was proposed by Hall, Shmoys and Wein [73]. It had

an approximation factor of 4 + ε. Their algorithm is based on a time-indexed linear
program and α-point scheduling with a fixed value of α.23 Our algorithms in Section 4.3
are also based on time-indexed linear programs and random α-point scheduling, similar
to, e.g., [59, 73, 71, 149, 26, 62]. One new element here is to not use a global value
for α, but to use different values of α for the jobs in A and B, respectively. This is
crucial in order to obtain feasible schedules in the end.
First polyhedral studies for scheduling problems date back to Balas [11] and Wol-

sey [167]. There are three standard LP formulations in the single-machine scheduling
literature, see, e.g., [140] for a survey. The first type of polytopes is based on time-
indexed variables (introduced by [41, 158]) and forms the basis of the approximation
algorithms presented in Section 4.3. Other typical linear programming formulations are
based on linear ordering variables (introduced by [137]) and completion time variables
(introduced by [167, 139]). Schulz [148] used an LP in completion time variables to
obtain the first 2-approximation algorithm for 1 | prec |

∑
wjCj . The formulation in

linear ordering variables played an important role in better understanding Sidney’s
decomposition [152, 34], and in uncovering the connection between AND-scheduling
and Vertex Cover [30, 34, 7]. We elaborate on these formulations and further related
results in Section 4.2.

Scheduling with AND/OR-precedence constraints (Definition 1.16) to minimize the
maximum lateness was first considered in [58, 57]. Erlebach, Kääb and Möhring [43]
studied the sum of weighted completion times objective on a single machine. They
showed that 1 | ao-prec |

∑
wjCj does not admit constant-factor approximations, unless

P = NP, which is in contrast to scheduling with AND-precedence constraints only.
The inapproximability proof uses a problem called Label Cover [9]. Goldwasser
and Motwani [64] reduced Label Cover to an AND/OR-scheduling model where
some jobs may be skipped, i.e., do not have to be processed. Erlebach, Kääb and
Möhring [43] extended the reduction in [64] to 1 | ao-prec, pj = 1 |

∑
wjCj , see also [96].

23The concept of α-points is introduced in Section 4.2.3.

84

4.2 Preliminaries: LP Formulations for AND-Scheduling

Let 0 < c < 1
2 and γ = (log logn)−c. It is NP-hard to approximate the sum of weighted

completion times of unit processing time jobs on a single machine within a factor of
2(logn)1−γ if AND/OR-precedence constraints are involved [64, 43]. The precise factor
comes from the hardness of Label Cover, see [38]. The precedence graph in the
reduction of [64, 43] consists of four layers with an OR/AND/OR/AND-structure.
Erlebach, Kääb and Möhring [43] also showed that scheduling the jobs in order of

non-decreasing processing times (among the available jobs) yields an n-approximation
algorithm for 1 | ao-prec |

∑
wjCj . For unit weights, this algorithm, which is commonly

known as shortest processing time first, has an approximation guarantee of
√
n [43]. It

can easily be verified that bipartite AND/OR-scheduling (Definition 1.17), which we
consider in Section 4.3.1, is a special case of the problem considered in [43].

4.2 Preliminaries: LP Formulations for AND-Scheduling
In this section, we present the three classical linear programming formulations for
single-machine scheduling problems with AND-precedence constraints. The different
types of variables discussed are completion time variables (Section 4.2.1), linear ordering
variables (Section 4.2.2) and time-indexed variables (Section 4.2.3), respectively. For a
more detailed survey, we refer to, e.g., [140, 114].

4.2.1 Completion Time Variables
The LP relaxation in completion time variables contains one variable Cj for every job
j ∈ N , which indicates the completion time of this job. This type of variables was
introduced by Wolsey [167] and Queyranne [139], who showed that the completion
times of any feasible single-machine schedule satisfy the so-called parallel inequalities.
Proposition 4.1 (Wolsey [167], Queyranne [139])
Let N be a set of jobs. The convex hull of all feasible completion time vectors for
1 | |

∑
wjCj is exactly the set of vectors C ∈ RN that satisfy

∑
j∈S

pj Cj ≥
1
2

(∑
j∈S

pj

)2
+ 1

2

(∑
j∈S

p2
j

)
∀S ⊆ N. (4.1)

We do not prove Proposition 4.1, but we briefly argue why any feasible completion
time vector for 1 | |

∑
wjCj satisfies (4.1) using the two-dimensional Gantt charts of [42]

and Smith’s rule ([157], Proposition 3.4), see also [114]. To shorten notation, we let
g : 2N → N0 be defined as g(S) := 1

2

(∑
j∈S pj

)2
+ 1

2

(∑
j∈S p

2
j

)
. That is, the parallel

inequalities (4.1) can be written as∑
j∈S

pj Cj ≥ g(S) for all S ⊆ N. (4.2)

85

Chapter 4 Linear Programming Relaxations and LP Based Algorithms

p(S)

p(S)

pj

pj

p(S)

p(S)

pj

pj

Fig. 4.2: Geometric interpretation of the parallel inequalities (4.1). The gray area underneath
the blue line (left) equals the sum of weighted completion times of an optimal schedule
with weights wj = pj for j ∈ S and wj = 0 for j /∈ S. This area can be decomposed

into the red and blue areas on the right. The red area equals 1
2

(∑
j∈S pj

)2
, and the

sum of the blue areas is equal to 1
2
∑

j∈S p
2
j . So, the gray area equals g(S).

Consider a subset of jobs S ⊆ N and define weights wj = pj for j ∈ S and wj = 0
for j /∈ S. Clearly, a schedule that minimizes the sum of weighted completion times
with respect to these weights processes all jobs with non-zero weight before all jobs
with zero weight (recall that there are no precedence constraints). That is, jobs in
S precede those not in S in any optimal schedule. We interpret such a schedule via
the corresponding two-dimensional Gantt chart of [42], see Figure 4.2 (left). Observe
that the height and width of the rectangle for any j ∈ S is equal by the choice of the
weights. That is, the rectangles corresponding to the jobs in S are squares.

By Smith’s rule (Proposition 3.4), any schedule that processes the jobs in S before
those not in S is optimal with respect to the objective function

∑
j∈N wjCj , independent

of the order of the jobs within S. The area underneath the upper envelope of the
rectangles, which equals the objective value, is equal to g(S), see Figure 4.2 (right). So,
an optimum solution has objective value equal to

∑
j∈N wj Cj =

∑
j∈S pj Cj = g(S).

Since an optimal solution minimizes the sum of weighted completion time, we obtain
that any feasible schedule satisfies

∑
j∈S pj Cj ≥ g(S).

Note that the parallel inequalities are valid for any arbitrary schedule and that
Proposition 4.1 does not consider AND-precedence constraints. We can model AND-
constraints in an intuitive way with completion time variables via a constraint

Cj ≥ Ci + pj for all (i, j) ∈ E∧. (4.3)

Together with the objective function to minimize the sum of weighted completion
times, we obtain the following valid LP relaxation for 1 | prec |

∑
wjCj :

86

4.2 Preliminaries: LP Formulations for AND-Scheduling

min
∑
j∈N

wj Cj (4.4a)

s.t.
∑
j∈S

pj Cj ≥
1
2

(∑
j∈S

pj

)2
+ 1

2

(∑
j∈S

p2
j

)
∀S ⊆ N, (4.4b)

Cj − Ci ≥ pj ∀ (i, j) ∈ E∧, (4.4c)
Cj ≥ 0 ∀ j ∈ N. (4.4d)

The number of constraints of LP (4.4) is exponential. The right hand side g(S) of
constraints (4.4b) is a supermodular function [139]. Hence,

∑
j∈S pj Cj − g(S) is a

submodular function in S for fixed values of Cj .24 A violated inequality can be found
by minimizing this submodular function and checking whether its minimum is less
than zero, which can be done in (strongly) polynomial time [146, 89].

Queyranne [139] proposed a more efficient separation algorithm for constraints (4.4b):
Given a completion time vector, sort the jobs in non-decreasing order of the Cj values,
i.e., assume that the jobs are enumerated so that C1 ≤ C2 ≤ · · · ≤ Cn. Then, a “most
violated” constraint of type (4.4b) is obtained for S = [`] for some ` ∈ [n], if a violated
constraint exists [139]. The running time of this algorithm is O(n log(n)) for sorting
the jobs [124, 139]. Hence, LP (4.4) can be solved in polynomial time [70, 139].

Note that LP (4.4) is just a relaxation for AND-scheduling. That is, any completion
time vector that corresponds to a feasible schedule for 1 | prec |

∑
wjCj is feasible

for LP (4.4), but not every feasible vector for the LP can be expressed as a convex
combination of completion time vectors of feasible schedules. Queyranne and Wang [142]
studied the convex hull of all feasible completion time vectors for 1 | prec |

∑
wjCj .

They identified facet-defining inequalities and characterized the convex hull of all
feasible completion time vectors if the precedence graph is series-parallel.

Observe that, since 1 | prec |
∑
wjCj is NP-hard [108, 112], one cannot hope to find

a complete description of the convex hull of all feasible completion time vectors similar
to Proposition 4.1, unless P = NP. Schulz [148] proposed a 2-approximation algorithm
for 1 | prec |

∑
wjCj that solves LP (4.4) and schedules the jobs in non-decreasing

order of their LP values. Hall et al. [71] presented an instance where the optimal
objective value of LP (4.4) and the objective value of an optimal feasible schedule are
apart by a factor of 2. This implies that the “integrality gap” between an optimal
solution of LP (4.4) and an optimal feasible schedule is equal to 2. In Section 4.5, we
generalize the parallel inequalities (4.1) to OR-precedence constraints using generalized
minimal chains (Definition 4.21), and show that a corresponding LP relaxation similar
to LP (4.4) exhibits an unbounded gap between optimal LP solution and optimal
feasible schedule.

24Submodularity and supermodularity are defined in Section 4.5.1.

87

Chapter 4 Linear Programming Relaxations and LP Based Algorithms

4.2.2 Linear Ordering Variables
The linear ordering relaxation for single-machine scheduling problems was proposed by
Potts [137]. It is based on binary linear ordering variables δij that indicate whether job
i precedes job j (δij = 1) or not (δij = 0). To obtain a feasible single-machine schedule,
the jobs need to satisfy total ordering constraints, i.e., for every pair of distinct jobs,
one job must precede the other:

δij + δji = 1 for all i, j ∈ N : i 6= j. (4.5)

Moreover, the linear ordering needs to be consistent, i.e., if job i precedes j and j
precedes k, then i also precedes k. This is achieved by transitivity constraints:

δij + δjk + δki ≥ 1 for all i, j, k ∈ N. (4.6)

The completion time of job j is the sum of the processing times of all jobs that
precede j plus its own processing time. If we set δii = 1 for all i ∈ N , the sum of
weighted completion times can be written as∑

j∈N
wj Cj =

∑
j∈N

wj
∑
i∈N

pi δij =
∑
j∈N

∑
i∈N

wj pi δij . (4.7)

Together with AND-precedence constraints, which can be easily modeled by set-
ting δij = 1 for all (i, j) ∈ E∧, we obtain a polynomial size integer program for
1 | prec |

∑
wjCj . The LP relaxation is obtained by relaxing the integrality constraints

δij ∈ {0, 1} to δij ≥ 0:

min
∑
j∈N

∑
i∈N

wj pi δij (4.8a)

s.t. δij + δji = 1 ∀ i, j ∈ N : i 6= j, (4.8b)
δij + δjk + δki ≥ 1 ∀ i, j, k ∈ N, (4.8c)

δij = 1 ∀ (i, j) ∈ E∧ or i = j, (4.8d)
δij ≥ 0 ∀ i, j ∈ N. (4.8e)

Note that there is a one-to-one correspondence between feasible integer solutions for
LP (4.8) and feasible single-machine schedules (without idle time). Schulz [148] and
Chudak and Hochbaum [30] used LP (4.8) to derive 2-approximation algorithms for
1 | prec |

∑
wjCj . Chudak and Hochbaum [30] replaced the transitivity constraints (4.8c)

by the valid constraints δki ≤ δkj for all (i, j) ∈ E∧ and all k ∈ N \ {i, j}. The
resulting linear program, which we denote by CH-LP in the following, can be solved
combinatorially by minimum cut computations in a suitable graph [30]. Chudak and
Hochbaum [30] observed that Cj =

∑
i∈N pi δij , where δ is the optimal solution to

CH-LP, is feasible for the completion time LP (4.4). Thus, similar to [148], scheduling
the jobs in non-decreasing order of Cj values yields a 2-approximate solution.

88

4.2 Preliminaries: LP Formulations for AND-Scheduling

A similar observation was previously made by Queyranne and Schulz [140] and
Schulz [148], who showed that any feasible solution for LP (4.8) defines a feasible
solution for the completion time LP (4.4) by setting Cj =

∑
i∈N pi δij . Chekuri and

Motwani [25] gave a lower bound of 2 on the integrality gap of LP (4.8). Together
with the results in [140, 148, 30], this implies that the integrality gap of LP (4.8) is
equal to 2. In Section 4.4, we present facet-defining inequalities for the linear ordering
formulation if OR-precedence constraints are involved, and show that the integrality
gap is unbounded, even if we add these additional constraints.
The work of [30] triggered an interesting connection between AND-scheduling and

Vertex Cover. Correa and Schulz [34] proposed a new linear relaxation, and showed
that solving their LP is, in fact, equivalent to solving CH-LP. The linear program
in [34] can be interpreted as an LP relaxation of a Vertex Cover instance on a
certain graph [34]. Correa and Schulz [34] also proved that all known 2-approximation
algorithms for 1 | prec |

∑
wjCj [148, 71, 30, 25, 120] are consistent with Sidney’s

decomposition [152], even those algorithms [148, 71, 30] that do not use Sidney’s
result explicitly. Ambühl and Mastrolilli [7] presented a polynomial-time procedure to
transform any feasible (integer) solution for CH-LP to a feasible (integer) solution for
Potts’ original LP (4.8) [137] of the same objective value. Thereby, [34, 7] established
that AND-scheduling is, in fact, a Vertex Cover problem. As a consequence,
1 | prec |

∑
wjCj can be solved in polynomial time if the precedence graph represents a

two-dimensional partial order, which generalizes the result of Lawler [108] for series-
parallel graphs. In a follow-up paper, Ambühl et al. [8] used dimension theory of partial
orders to derive several new approximation guarantees for AND-scheduling with special
precedence graphs.

4.2.3 Time-Indexed Variables

The integrality gaps of the OR-scheduling counterparts of LPs (4.8) and (4.4) grow
linear in the number of jobs, see Sections 4.4 and 4.5, respectively. Therefore, we focus
on time-indexed LP relaxations for our approximation algorithms in Section 4.3. These
formulations are based on binary variables xjt for every job j ∈ N and every point in
time t ∈ [T], where T is a suitably chosen time horizon. The variable xjt indicates
whether job j completes at time t (xjt = 1) or not (xjt = 0). This formulation was
proposed by Dyer and Wolsey [41] and studied by Sousa and Wolsey [158].
Note that a job with processing time pj cannot complete at any point in time

{1, . . . , pj − 1}. This can be modeled by defining a variable xjt only for t ≥ pj . As a
time horizon, we can choose T = p(N). To obtain a feasible single-machine schedule,
every job has to be completed at some point in time, i.e.,

T∑
t=1

xjt = 1 for all j ∈ N. (4.9)

89

Chapter 4 Linear Programming Relaxations and LP Based Algorithms

Further, no two jobs may overlap, which is ensured by the following constraint:

∑
j∈N

t∑
τ=max{1,t−pj+1}

xjτ ≤ 1 for all t ∈ [T]. (4.10)

Intuitively, constraint (4.10) “blocks” the preceding pj time slots if job j completes
at time t. Finally, we can incorporate AND-precedence constraints as in [73] via the
constraints

t+pj∑
τ=1

xjτ ≤
t∑

τ=1
xiτ for all (i, j) ∈ E∧ and t ∈ [T − pj]. (4.11)

That is, if j completes at time t+ pj , then job i must be completed by time t.
Thus, we obtain the following valid LP relaxation for 1 | prec |

∑
wjCj by relaxing

the integrality constraints xjt ∈ {0, 1} to xjt ≥ 0:

min
∑
j∈N

T∑
t=1

wj t xjt (4.12a)

s.t.
T∑
t=1

xjt = 1 ∀ j ∈ N, (4.12b)

∑
j∈N

t∑
τ=max{1,t−pj+1}

xjτ ≤ 1 ∀ t ∈ [T], (4.12c)

t+pj∑
τ=1

xjτ −
t∑

τ=1
xiτ ≤ 0 ∀ (i, j) ∈ E∧, ∀ t ∈ [T − pj], (4.12d)

xjt ≥ 0 ∀ j ∈ N, ∀ t ∈ {pj , . . . , T}. (4.12e)

There is a one-to-one correspondence between feasible integer solutions for LP (4.12)
and feasible single machine schedules. Note that the size of LP (4.12) is not polynomial
in the input size of the scheduling instance. One way to circumvent this problem is to
consider an interval-indexed formulation instead, see, e.g., [73, 71] and Section 4.3.1.
Typically, going from time-indexed LPs to interval-indexed LPs has to be paid for by
an additional “+ε” in the approximation factor, see, e.g., [73, 71, 150]. Queyranne
and Schulz [140] and Schulz [148] observed that any feasible solution x for LP (4.12)
defines a feasible solution for the completion time LP (4.4) by setting Cj =

∑T
t=1 t xjt.

Thus, the integrality gap of the time-indexed LP (4.12) is at most 2.
Our approximation algorithms in Section 4.3 are based on the concept of α-points,

which was introduced in [73, 134]. For a given 0 < α ≤ 1 and a feasible solution x for
LP (4.12), the α-point of a job j is the first integer point in time when an α-fraction of
job j is completed in the solution x.

90

4.2 Preliminaries: LP Formulations for AND-Scheduling

1 3 2 4 2 1 3 1 4 2

t
1/2
3 t

1/2
2 t

1/2
1 t

1/2
4

1 2 3 4t =

time

Fig. 4.3: A preemptive schedule for the instance and solution x in Example 4.3. Note that the
α-points are independent of the ordering of the jobs within each interval [t− 1; t].

Definition 4.2 (α-Points)
Let x be a feasible solution for LP (4.12) and let α ∈ (0; 1]. The α-point of j ∈ N
is defined as

tαj := min
{
t ∈ [T]

∣∣∣ t∑
τ=1

xjτ ≥ α
}
. (4.13)

We refer to [154] and references therein for several applications of α-point scheduling.
For unit processing time jobs, the variables xjt are defined for all j ∈ N and t ∈ [T]. In
this case, α-points can be illustrated by interpreting x as a preemptive single-machine
schedule that processes an xjt-fraction of job j in the interval [t− 1; t]. The ordering
of the jobs in {j ∈ N |xjt > 0} within each interval [t− 1; t] is arbitrary.

Example 4.3 (Preemptive Schedule and α-Points)
Consider an instance on four jobs [4] with unit processing times and no precedence
constraints. Let T = p([4]) = 4 and let x be defined via the following table:

t = 1 2 3 4
job 1 1/4 0 1/2 1/4
job 2 1/4 2/3 0 1/12
job 3 1/2 0 1/2 0
job 4 0 1/3 0 2/3

Note that the column sums and row sums are all equal to 1. So, x satisfies con-
straints (4.12b) and (4.12c), i.e., x is feasible for LP (4.12). Figure 4.3 illustrates a
corresponding preemptive schedule. Recall that the ordering of the jobs within each
interval [t− 1; t] is arbitrary. The 1

2 -points of the jobs are t1/21 = 3, t1/22 = 2, t1/23 = 1
and t1/24 = 4.

91

Chapter 4 Linear Programming Relaxations and LP Based Algorithms

4.3 Time-Indexed Formulation
In this section, we use time-indexed formulations similar to LP (4.12) to derive
approximation algorithms for bipartite AND/OR-scheduling (Definition 1.17) and
all-but-one min-sum set cover (Definition 3.3). The algorithms are based on α-point
scheduling (Definition 4.2).

4.3.1 Approximating Bipartite AND/OR-Scheduling
Consider an instance of 1 | ao-prec = A∨̇B |

∑
wjCj with precedence graph G =

(A ∪̇B,E∧ ∪̇E∨) where E∧ ⊆ (A×A) ∪ (B ×B) and E∨ ⊆ A×B. W.l.o.g., suppose
that E∧ is transitively closed, i.e., (i, j) ∈ E∧ and (j, k) ∈ E∧ implies (i, k) ∈ E∧. We
may further assume that there are no redundant OR-precedence constraints, i.e., if
(a, b) ∈ E∨ and (a′, a) ∈ E∧, then (a′, b) /∈ E∨. Otherwise, we could remove the arc
(a, b) from E∨, since any feasible schedule has to schedule a′ before a.

Let ∆ := max{|P(b)| | b ∈ B} be the maximum number of OR-predecessors of a job
in B. One can see that ∆ is bounded from above by the cardinality of a maximum
independent set in the induced subgraph on E∧ ∩ (A × A). Note that ∆ is often
relatively small compared to the total number of jobs. For instance, if the precedence
constraints are derived from an underlying graph, where the predecessors of each
edge are its incident vertices (as in MSVC), then ∆ ≤ 2. If P(b) = ∅ for all b ∈ B,
then the instance of bipartite AND/OR-scheduling is an instance of scheduling with
AND-precedence constraints only. In this case, we set ∆ = 1 in the following.

Theorem 4.4
There is a 2∆-approximation algorithm for bipartite AND/OR-scheduling with
0/1 processing times, i.e., for 1 | ao-prec = A∨̇B, pj ∈ {0, 1} |

∑
wjCj. Moreover,

there is a (2∆ + ε)-approximation algorithm for 1 | ao-prec = A∨̇B |
∑
wjCj for

any ε > 0.

First, we exhibit a randomized approximation algorithm for 1 | ao-prec = A∨̇B,
pj ∈ {0, 1} |

∑
wjCj , and then we show how to derandomize it. This proves the first

part of Theorem 4.4. Recall from Figure 4.1 that bipartite AND/OR-scheduling with
pa = 1 for a ∈ A and pb = 0 for all b ∈ B generalizes precedence-constrained MSSC.
A natural question that arises in the context of real-world scheduling problems is

whether approximation guarantees for 0/1-problems still hold for arbitrary processing
times. As observed by Munagala et al. [128], the natural extension of the Greedy
algorithm for min-sum set cover still works, if the processing times of jobs in A are
arbitrary, but all jobs in B have zero processing time, and there are no AND-precedence
constraints. Once jobs in B have non-zero processing times, their analysis of the Greedy
algorithm fails. Our algorithm can be extended to arbitrary processing times (which
proves the second part of Theorem 4.4) and, additionally, release dates.

92

4.3 Time-Indexed Formulation

Note that the result of Theorem 4.4 improves upon the algorithm of [122] for
precedence-constrained MSSC in two ways. First, the approximation factor of 2∆
does not depend on the total number of jobs, but on the maximum number of OR-
predecessors of a job in B. In particular, we immediately obtain a 4-approximation
algorithm for the special case of precedence-constrained MSVC. Secondly, our algorithm
works for arbitrary processing times, additional AND-precedence constraints on B×B,
and it can be extended to non-trivial release dates rj ≥ 0 of the jobs. Note that, in
general, the parameters ∆ of Theorem 4.4 and

√
|U | of [122] are incomparable. In

most practically relevant instances, ∆ should be considerably smaller than
√
|U |.

It is important to highlight that the approximation factor of 2∆ in Theorem 4.4 does
not contradict the conjectured hardness of precedence-constrained MSSC stated in [122].
The set A in the reduction of [122] from the planted dense subgraph problem contains a
job for every vertex and every edge of the random graph on m vertices. Each vertex-job
consists of the singleton {0}, and each edge-job is a (random) subset of [`] = {1, . . . , `}
for some non-negative integer `.25 Each vertex-job is an AND-predecessor of the
incident edge-jobs. Every element in [`] appears in expectation in mp2 many edge-jobs,
where p is a carefully chosen probability. If we interpret this as a scheduling problem,
we can delete the dummy element 0 from the instance. So the maximum indegree of a
job in B = [`] (maximum number of appearances of the element) is ∆ ≈ mp2 ≥ m1/4,
see [122]. Hence the gap Ω(m1/8) in the reduction translates to a gap of Ω(

√
∆) in

our setting. Therefore, if the planted dense subgraph conjecture [24] holds true, then
there is no O(∆1/3−ε)-approximation algorithm for 1 | ao-prec = A∨̇B |

∑
wjCj for

any ε > 0.
Note that, in the reduction from Hitting Set to 1 | ao-prec = A∨̇B |

∑
wjCj , the

parameter ∆ equals the maximum cardinality of any set in the Hitting Set instance.
Bar-Yehuda and Even [21] and Hochbaum [82] presented approximation algorithms for
Hitting Set with a guarantee of ∆. Hence, the 2∆-approximation of Theorem 4.4 does
not contradict the hardness of obtaining a (1− ε) ln(|R|)-approximation for Hitting
Set [39]. If the planted dense subgraph conjecture [24] is false, then constant-factor
approximations for 1 | ao-prec = A∨̇B |

∑
wjCj with E∧ ⊆ A × A may be possible.

However, the reduction from Hitting Set shows that, in general, we cannot get a
constant-factor approximation if E∧ ∩ (B ×B) 6= ∅, unless P = NP.

A New Algorithm for Precedence-Constrained MSSC. W.l.o.g., we may assume
that wa = 0 for all a ∈ A. Otherwise, we can shift a positive weight of a job in A to an
additional successor in B with zero processing time. Further, we may assume that all
data are integer and pj ≥ 1 for every job j ∈ N that has no predecessors (otherwise
such a job can be disregarded). So, no job can complete at time 0 in a feasible schedule.
Let pj ∈ {0, 1} for all j ∈ N , and let T = p(N) be the time horizon. We consider the
time-indexed LP (4.12) with additional constraints corresponding to E∨.

25The definition of MSSC in [122] is reversed, i.e., the sets are ordered and an element is covered as
soon as a set that contains the element appears in the linear ordering.

93

Chapter 4 Linear Programming Relaxations and LP Based Algorithms

The resulting linear relaxation is

min
∑
b∈B

T∑
t=1

wb t xbt (4.14a)

s.t.
T∑
t=1

xjt = 1 ∀ j ∈ N, (4.14b)

∑
j∈N

t∑
τ=t−pj+1

xjτ ≤ 1 ∀ t ∈ [T], (4.14c)

t+pb∑
τ=1

xbτ −
∑

a∈P(b)

t∑
τ=1

xaτ ≤ 0 ∀ b ∈ B : P(b) 6= ∅, ∀ t ∈ [T − pb], (4.14d)

t+pj∑
τ=1

xjτ −
t∑

τ=1
xiτ ≤ 0 ∀ (i, j) ∈ E∧, ∀ t ∈ [T − pj], (4.14e)

xjt ≥ 0 ∀ j ∈ N, ∀ t ∈ [T]. (4.14f)

Constraints (4.14b) and (4.14c) ensure that each job is executed and no jobs overlap,
respectively. Note that only jobs with pj = 1 appear in (4.14c). Constraints (4.14d)
and (4.14e) ensure OR- and AND-precedence constraints, respectively. Note that we
can solve LP (4.14) in polynomial time, since T ≤ n.
Let x be an optimal fractional solution of LP (4.14). We call Cj =

∑T
t=1 t xjt the

fractional completion time of j ∈ N . Note that
∑
j∈N wj Cj is a lower bound on the

objective value of an optimal integer solution, which corresponds to an optimal schedule.
For 0 < α ≤ 1 and j ∈ N , we denote its α-point by tαj (Definition 4.2).
The algorithm works as follows and is summarized in Algorithm 5. First, we solve

LP (4.14) to optimality, and let x be an optimal fractional solution (line 1). Then, we
draw β at random from the interval (0; 1] with density function f(β) = 2β, and set
α = β

∆ .26 In line 5, we compute tαa and tβb for all jobs a ∈ A and b ∈ B, respectively.
We sort the jobs in order of non-decreasing values tαa (a ∈ A) and tβb (b ∈ B), and
denote this total order by ≺. If there is b ∈ B and a ∈ P(b) with tαa = tβb , we set
a ≺ b. Similarly, we set i ≺ j, if (i, j) ∈ E∧ and tαi = tαj (for i, j ∈ A) or tβi = tβj (for
i, j ∈ B).27 All other ties are broken arbitrarily. The partial order ≺′ defined in the
if-clauses in lines 11 and 14 ensures precisely these conditions. In line 19, the partial
order ≺′ is extended to a total order ≺ on N , which can be done in polynomial time.

26Choosing α as a function of β is crucial in order to obtain a feasible schedule in the end. This
together with (4.14d) ensures that at least one OR-predecessor of a job b ∈ B completes early enough
in the constructed schedule. The density function f(β) = 2β is chosen to cancel out an unbounded
term of 1

β
in the expected value of the completion time of job b, as in [59, 149].

27Recall that E∧ ⊆ (A×A) ∪ (B ×B), so (i, j) ∈ E∧ implies i, j ∈ A or i, j ∈ B.

94

4.3 Time-Indexed Formulation

Input: Instance I of 1 | ao-prec = A∨̇B, pj ∈ {0, 1} |
∑
wjCj

Output: Feasible schedule for I

1 Solve LP (4.14) and let x be an optimum solution;
2 Draw β randomly from (0; 1] with density function f(β) = 2β and set α = β

∆ ;
3 for j ∈ N do
4 Set µ← α (if j ∈ A) or µ← β (if j ∈ B);
5 Compute tµj = min{t ∈ [T] |

∑t
τ=1 xjτ ≥ µ};

6 end
7 for i ∈ N do
8 Set λ← α (if i ∈ A) or λ← β (if i ∈ B);
9 for j ∈ N do

10 Set µ← α (if j ∈ A) or µ← β (if j ∈ B);
11 if tλi < tµj then
12 Set i ≺′ j;
13 end
14 if tλi = tµj and (i, j) ∈ E∧ ∪ E∨ then
15 Set i ≺′ j;
16 end
17 end
18 end
19 Let ≺ be a total order of N such that i ≺′ j implies i ≺ j;
20 return Schedule that processes jobs in order of ≺;

Algorithm 5: An algorithm for bipartite AND/OR-scheduling.

The next lemma shows that ordering jobs according to ≺ yields a feasible schedule
whose expected objective value is at most 2∆ times the optimum.
Lemma 4.5
Algorithm 5 is a randomized 2∆-approximation algorithm for 1 | ao-prec = A∨̇B,
pj ∈ {0, 1} |

∑
wjCj.

Proof. Note that Algorithm 5 runs in polynomial time, since we can solve LP (4.14)
in polynomial time. We first show that scheduling the jobs in order of ≺ yields a
feasible schedule for any fixed 0 < β ≤ 1. Recall the definition of ∆ = maxb∈B |P(b)|.
Let 0 < β ≤ 1 and set α = α(β) = β

∆ as in line 2 of Algorithm 5.
Note that tαi ≤ tαj for any (i, j) ∈ E∧∩(A×A) and tβi ≤ t

β
j for any (i, j) ∈ E∧∩(B×B)

by (4.14e). The if-clauses in lines 11 and 14 in Algorithm 5 ensure i ≺ j whenever
(i, j) ∈ E∧. For b ∈ B with P(b) 6= ∅, constraint (4.14d) implies

β ≤
tβ
b∑

τ=1
xbτ ≤

∑
a∈P(b)

tβ
b
−pb∑
τ=1

xaτ . (4.15)

95

Chapter 4 Linear Programming Relaxations and LP Based Algorithms

So, there is ab ∈ P(b) such that

tβ
b
−pb∑
τ=1

xabτ ≥
β

|P(b)| ≥ α. (4.16)

Hence, tαab ≤ tβb , and thus ab ≺ b by lines 11 and 14. So, ≺ satisfies all precedence
constraints, and Algorithm 5 returns a feasible schedule.

As for the approximation factor, let νj(t) =
∑t
τ=1 xjτ be the fraction of job j that is

completed by time t ∈ {0, . . . , T}, as in the proof of Theorem 3.13. Note that νj(0) = 0,
νj(T) = 1 and tγj ≤ t if γ ≤ νj(t). For 0 < γ ≤ 1 and j ∈ N , we observe, similar to [61,
149], that

∫ 1

0
tγj dγ =

T∑
t=1

∫ νj(t)

νj(t−1)
tγj dγ ≤

T∑
t=1

(
νj(t)− νj(t− 1)

)
t

=
T∑
t=1

(
t∑

τ=1
xjτ −

t−1∑
τ=1

xjτ

)
t =

T∑
t=1

xjt t = Cj .

(4.17)

Note that there is no “idle time” on the machine in the optimal fractional solution x,
i.e.,

∑
i∈N νi(t

β
j) pi = tβj for all i, j ∈ N and 0 < β ≤ 1. The completion times of the

schedule returned by the algorithm for a specific realization of β are denoted by Cj(β).
Let b ∈ B and i ∈ N such that i precedes b in the schedule returned by Algorithm 5,
i.e., i ≺ b. By construction, we have α ≤ νi(tβb) (if i ∈ A) and α ≤ β ≤ νi(tβb) (if i ∈ B),
respectively. So,

αCb(β) =
∑
i�b

αpi ≤
∑
i�b

νi(tβb) pi ≤ tβb . (4.18)

Thus, the expected completion time of b ∈ B is

E[Cb(β)] =
∫ 1

0
f(β)Cb(β) dβ ≤

∫ 1

0
f(β) ∆

β
tβb dβ = 2∆

∫ 1

0
tβb dβ ≤ 2∆Cb. (4.19)

Since only jobs in B contribute to the objective function, this yields the claim. 2

For fixed x and 0 < β ≤ 1, we call the schedule that orders the jobs according to
≺ the β-schedule of x. Given x and 0 < β ≤ 1, we can construct the β-schedule in
polynomial time. We derandomize Algorithm 5 by an observation similar to [26, 62]:
List all possible schedules that occur as β goes from 0 to 1, and pick the best one. The
next lemma shows that the number of different β-schedules is not too large.

Lemma 4.6
For every x, there are O(n2) different β-schedules.

96

4.3 Time-Indexed Formulation

Proof. Note that, as β goes from 0 to 1, α(β) = β
∆ is a linear function with values

from 0 to 1
∆ . We interpret the fractional solution x as a preemptive schedule where an

xjt-fraction of job j is contiguously scheduled in time slot [t− 1; t]. The order of jobs
in the β-schedule of x only changes if the α(β)-point or β-point of a job in A or B
reaches a point when this job gets preempted, respectively. So, the number of different
β-schedules is bounded from above by the number of preemptions in x. Each job is
preempted at most once within each time step. Recall that T ∈ O(n), since pj ∈ {0, 1}
for all j ∈ N . Hence, there are at most nT ∈ O(n2) preemptions. 2

Lemmas 4.5 and 4.6 together prove the first part of Theorem 4.4. Recall that ∆ ≤ 2
for precedence constrained MSVC, which yields the following corollary of Theorem 4.4.

Corollary 4.7
There is a 4-approximation algorithm for precedence-constrained min-sum vertex cover.

Extensions of the Algorithm. If we use an interval-indexed LP instead of a time-
indexed LP (see also [73, 71]), then Algorithm 5 can be generalized to arbitrary
processing times. This proves the second part of Theorem 4.4. Let ε′ > 0, and recall
that all processing times are non-negative integers. Let T = p(N) be the time horizon,
and let L be minimal such that (1 + ε′)L−1 ≥ T . Set T0 := 1, and let T` := (1 + ε′)`−1

for every ` ∈ [L]. We call (T`−1;T`] the `-th interval for ` ∈ [L]. (The first interval is
the singleton (1; 1] := {1}.) We introduce a binary variable xj` for every j ∈ N and for
every ` ∈ [L] that indicates whether or not job j completes in the `-th interval. If we
relax the integrality constraints on the variables, we obtain the following relaxation
similar to LP (4.14) and [73, 71]:

min
∑
b∈B

L∑
`=1

wb T`−1 xb` (4.20a)

s.t.
L∑
`=1

xj` = 1 ∀ j ∈ N, (4.20b)

∑
j∈N

∑̀
q=1

pj xjq ≤ T` ∀ ` ∈ [L], (4.20c)

∑̀
q=1

xbq −
∑

a∈P(b)

∑̀
q=1

xaq ≤ 0 ∀ b ∈ B : P(b) 6= ∅, ∀ ` ∈ [L], (4.20d)

∑̀
q=1

xjq −
∑̀
q=1

xiq ≤ 0 ∀ (i, j) ∈ E∧, ∀ ` ∈ [L], (4.20e)

xj` ≥ 0 ∀ j ∈ N, ∀ ` ∈ [L] : T`−1 ≥ pj . (4.20f)

97

Chapter 4 Linear Programming Relaxations and LP Based Algorithms

Given ε′, the size of LP (4.20) is polynomial, so we can solve it in polynomial time.
Again, (4.20b) ensures that every job is executed. Constraints (4.20c) are valid for
any feasible schedule, since the total processing time of all jobs that complete within
the first ` intervals cannot exceed T`. Constraints (4.20d) and (4.20e) ensure that, at
the end of each interval, the fractions of the jobs satisfy OR- and AND-precedence
constraints, respectively.
Let x be an optimal fractional solution of LP (4.20), and let Cj =

∑L
`=1 T`−1 xj`.

Note that
∑
j∈N wj Cj is a lower bound on the optimal objective value of an integer

solution, which is a lower bound on the optimal value of a feasible schedule. Let
`αj := min{` ∈ [L] |

∑`
q=1 xjq ≥ α} be the α-interval of job j ∈ N . This generalizes the

notion of α-points from Definition 4.2.
The algorithm for arbitrary processing times is similar to Algorithm 5. Informally,

one only has to replace tµj by `µj in Algorithm 5. Therefore, we refer to the new
algorithm as Algorithm 5 with intervals. More precisely, the algorithm works as follows.
Instead of solving LP (4.14) in line 1, we solve LP (4.20) with ε′ = ε

2∆ to achieve an
approximation factor of 2∆ + ε. Let x be an optimal solution of LP (4.20). We draw
β at random from the interval (0; 1] with density function f(β) = 2β, and set α = β

∆ .
In line 5, we compute `αa and `βb for all jobs a ∈ A and b ∈ B, respectively. We again
sort the jobs in order of non-decreasing values `αa (a ∈ A) and `βb (b ∈ B) and denote
this total order by ≺. If `αa = `βb for some b ∈ B and a ∈ P(b), set a ≺ b. Similarly, set
i ≺ j if (i, j) ∈ E∧ and `αi = `αj (for i, j ∈ A) or `βi = `βj (for i, j ∈ B). All other ties
are broken arbitrarily. Finally, the jobs are scheduled in the order of ≺.
Lemma 4.8
For any ε > 0, Algorithm 5 with intervals is a randomized (2∆ + ε)-approximation for
1 | ao-prec = A∨̇B |

∑
wjCj.

Proof. The proof is similar to the proof of Lemma 4.5. Note that ε′ = ε
2∆ is polynomial

in the input. So, we can solve LP (4.20) in polynomial time and, thus, Algorithm 5
with intervals runs in polynomial time. Let x be an optimal solution of LP (4.20) and
let Cj =

∑L
`=1 T`−1 xj` be the fractional completion time of j ∈ N .

Let 0 < β ≤ 1 and α = α(β) = β
∆ . For any (i, j) ∈ E∧, observe that `αi ≤ `αj (for

i, j ∈ A) and `βi ≤ `
β
j (for i, j ∈ B) due to (4.20e). Constraints (4.20d) imply that, for

every b ∈ B with P(b) 6= ∅, there is ab ∈ P(b) that satisfies

`β
b∑

q=1
xabq ≥

β

|P(b)| ≥ α. (4.21)

So, `αab ≤ `
β
b . Hence, ordering the jobs according to ≺ respects all precedence constraints

due to the if-clauses in lines 11 and 14 in Algorithm 5 (with intervals). Thus, the
schedule returned by Algorithm 5 with intervals is feasible.

98

4.3 Time-Indexed Formulation

As for the approximation factor, let νj(`) = νj(T`) =
∑`
q=1 xjq be the fraction of job

j that is completed until time T` for ` ∈ {0, . . . , L}. Note that νj(0) = 0, νj(L) = 1
and T`γj−1 ≤ T`−1 for γ ≤ νj(`). We obtain

∫ 1

0
T`γj−1 dγ =

L∑
`=1

∫ νj(`)

νj(`−1)
T`γj−1 dγ ≤

L∑
`=1

(
νj(`)− νj(`− 1)

)
T`−1

=
L∑
`=1

∑̀
q=1

xjq −
`−1∑
q=1

xjq

T`−1 =
L∑
`=1

xj` T`−1 = Cj .

(4.22)

Let b ∈ B and i ∈ N with i ≺ b. Then, α ≤ νi(`βb) (if i ∈ A) and α ≤ β ≤ νi(`βb) (if
i ∈ B), respectively. Further, (4.20c) implies

α
∑
i�b

pi ≤
∑
i�b

νi(`βb) pi =
∑
i�b

`β
b∑

q=1
pi xiq ≤

∑
i∈N

`β
b∑

q=1
pi xiq ≤ T`β

b
(4.23)

Let Cj(β) be the completion time of job j in the schedule returned by the algorithm for
a realization of β. It holds Cb(β) ≤

∑
i�b pi for all b ∈ B. So, Cb(β) ≤

∑
i�b pi ≤ 1

αT`β
b

by (4.23). If we draw β randomly from (0; 1] with density function f(β) = 2β, then
the expected completion time of b ∈ B is

E[Cb(β)] ≤
∫ 1

0
f(β) ∆

β
T
`β
b
dβ =

∫ 1

0
f(β) ∆

β
(1 + ε′)T

`β
b
−1 dβ

= 2∆(1 + ε′)
∫ 1

0
T
`β
b
−1 dβ ≤ (2∆ + ε)Cb,

(4.24)

where the last inequality is due to (4.22) and the choice of ε′. Since only jobs in B
contribute to the objective value, this proves the claim. 2

The algorithm can be derandomized similar to Lemma 4.6. We interpret x as a
preemptive schedule that assigns jobs to intervals. Note that each job is preempted at
most once per time interval (T`−1;T`]. So, the number of β-schedules is bounded from
above by nL, which is polynomially bounded in the input size. This proves the second
part of Theorem 4.4.

Algorithm 5 can be further extended to cope also with non-trivial release dates. To
do so, we add constraints to LP (4.14) and LP (4.20) that ensure that no job completes
too early. More precisely, fix xjt = 0 for all j ∈ N and t < rj + pj in LP (4.14), and
xj` = 0 for all j ∈ N and T`−1 < rj + pj in LP (4.20), respectively. When scheduling
the jobs according to ≺, we might have to add idle time in order to respect the release
dates. This increases the approximation factor slightly.

99

Chapter 4 Linear Programming Relaxations and LP Based Algorithms

Lemma 4.9
There is a (2∆+2)- and (2∆+2+ε)-approximation algorithm for 1 | rj , ao-prec = A∨̇B,
pj ∈ {0, 1} |

∑
wjCj and 1 | rj , ao-prec = A∨̇B |

∑
wjCj, respectively.

Proof. The proof works similar to the proofs of Lemmas 4.5 and 4.8 and is inspired
by [73]. We formulate the proof only for the case of arbitrary processing times. It can
be easily adapted to the 0/1 case, by informally replacing T` and ` by t, and by setting
ε′ = 0. Similar to before, ordering the jobs according to ≺ respects all precedence
constraints. If we add idle time where necessary, such that each job starts only after
its release date, the schedule returned by the algorithm is feasible.

As for the approximation factor, assume that there are jobs with non-trivial release
dates, and let 0 < β ≤ 1. Let b ∈ B and i ∈ A with i ≺ b. Then, β > 0 implies
α = β

∆ > 0, and, thus, T
`β
b
≥ T`αi ≥ ri. Similarly, T

`β
b
≥ T

`βi
≥ ri for i ∈ B and i ≺ b.

Hence, T
`β
b
≥ maxi�b ri. The completion time of b ∈ B in the schedule returned by the

algorithm for a specific realization of β is

Cb(β) ≤ max
i�b

ri +
∑
i�b

pi ≤ T`β
b

+ 1
α
T
`β
b

=
(

1 + ∆
β

)
T
`β
b
≤ 1 + ∆

β
T
`β
b
, (4.25)

where the second inequality follows from (4.23). Note that (4.23) is not affected by
release dates, since we only bound α ≤ νi(`βb) =

∑`β
b
q=1 xiq and use constraint (4.20c).

If we choose ε′ = ε
2∆+2 , then similar to (4.24), the expected value of the completion

time of b ∈ B is

E[Cb(β)] ≤
∫ 1

0
f(β) 1 + ∆

β
T
`β
b
dβ = 2(∆ + 1)(1 + ε′)

∫ 1

0
T
`β
b
−1 dβ

≤ (2∆ + 2 + ε)Cb.
(4.26)

Note that only jobs in B contribute to the objective value. We can derandomize similar
to Lemma 4.6, since each job only gets preempted at most once per time slot/interval,
also in the presence of release dates. This proves the claim. 2

4.3.2 A 4-Approximation for All-But-One Min-Sum Set Cover
Recall that we can model GMSSC (Definition 1.10) as single-machine scheduling
problem to minimize the sum of weighted completion times with job set N = A ∪̇B,
processing times pj ∈ {0, 1}, and certain precedence requirements κ(b) on the jobs
in B. We denote the set of predecessors of a job b ∈ B by P(b). In this section, we use
Algorithm 5 to obtain a 4-approximation algorithm for all-but-one min-sum set cover
and the corresponding more general scheduling problem. Recall that all-but-one MSSC
is the special case of generalized min-sum set cover where κ(b) = max{1, |P(b)| − 1}
for all b ∈ B. So, each job in B requires all but one of its predecessors to be completed
before it can start, unless it has only one predecessor (Definition 3.3).

100

4.3 Time-Indexed Formulation

The linear programming formulation is similar to LP (4.14) and is based on the
following observation. Suppose we want to schedule a job b ∈ B with |P(b)| ≥ 2 at
time t ≥ 0. Then, at least |P(b)| − 1 of its predecessors have to be completed before
time t. Equivalently, for each pair of distinct i, j ∈ P(b), at most one of the two jobs
i, j may complete after t. This gives the following linear relaxation with the same
time-indexed variables as before and time horizon T = p(N) ≤ n:

min
∑
b∈B

T∑
t=1

wb t xbt (4.27a)

s.t.
T∑
t=1

xjt = 1 ∀ j ∈ N, (4.27b)

∑
j∈N

t∑
τ=t−pj+1

xjτ ≤ 1 ∀ t ∈ [T], (4.27c)

t+pb∑
τ=1

xbτ −
t∑

τ=1
(xiτ + xjτ) ≤ 0 ∀ b ∈ B, ∀i, j ∈ P(b), ∀ t ∈ [T − pb], (4.27d)

t+pb∑
τ=1

xbτ −
t∑

τ=1
xiτ ≤ 0 ∀ b ∈ B : P(b) = {i}, ∀ t ∈ [T − pb], (4.27e)

xjt ≥ 0 ∀ j ∈ N, ∀ t ∈ [T]. (4.27f)

Constraints (4.27b) and (4.27c) again ensure that each job is processed and no jobs
overlap, respectively. Note that only jobs with non-zero processing time contribute
to (4.27c). If |P(b)| = 1, then (4.27e) dominates (4.27d). It ensures that the unique
predecessor of b ∈ B is completed before b starts. Note that this is a classical AND-
precedence constraint, which does not affect the approximation factor.
For |P(b)| ≥ 2, (4.27d) models the above observation. Suppose at most |P(b)| − 2

predecessors of b complete before t. Then, there are distinct i, j ∈ P(b) such that∑t
τ=1(xiτ + xjτ) = 0 ≥

∑t+pb
τ=1 xbτ , so b cannot complete by time t+ pb.

LP (4.27) can be solved in polynomial time. Similar to Algorithm 5 and its extensions
in Section 4.3.1, we first solve LP (4.27) and let x be an optimal fractional solution.
We then draw β randomly from the interval (0; 1] with density function f(β) = 2β,
and schedule the jobs in A and B in order of non-decreasing β

2 -points and β-points,
respectively.28 Again, we break ties consistently with the precedence constraints. For
convenience, we do not make this algorithm explicit, as it suffices to use Algorithm 5
with LP (4.27) and α = β

2 .

28Choosing β
2 for the jobs in A ensures that at most one of the predecessors of a job b ∈ B is

scheduled after b in the constructed schedule

101

Chapter 4 Linear Programming Relaxations and LP Based Algorithms

Theorem 4.10
There is a 4-approximation algorithm for all-but-one min-sum set cover.

Proof. The proof is fairly similar to the proof of Lemma 4.5. Let x be an optimal
fractional solution to LP (4.27) and let Cj =

∑T
t=1 t xjt be the fractional completion

time of job j. Let b ∈ B with |P(b)| ≥ 2, and let 0 < β ≤ 1 and α = β
2 . Then, at least

|P(b)| − 1 predecessors of b have their α-point before time tβb . Suppose not, and let
i, j ∈ P(b) such that tαi , tαj > tβb . It holds

tβ
b
−pb∑
τ=1

(xiτ + xjτ) ≤
tβ
b∑

τ=1
xiτ +

tβ
b∑

τ=1
xjτ < α+ α = β ≤

tβ
b∑

τ=1
xbτ , (4.28)

which contradicts (4.27d). So, the schedule returned by Algorithm 5 with LP (4.27)
and α = β

2 is feasible.
Similar to (4.17) in the proof of Lemma 4.5, we observe that

∫ 1
0 t

β
b dβ ≤ Cb. Let

Cj(β) be the completion time of j in the resulting schedule for a realization of β, and let
≺ be the order of the jobs in this schedule. Observe that Cb(β) =

∑
i�b pi ≤

tβ
b
α = 2

β t
β
b ,

as in (4.18). If we draw β randomly from (0; 1] with density function f(β) = 2β, the
expected completion time of b ∈ B is

E[Cb(β)] =
∫ 1

0
f(β) 2

β
tβb dβ = 4

∫ 1

0
tβb dβ ≤ 4Cb. (4.29)

Since only jobs in B contribute to the objective function, this gives a randomized
4-approximation algorithm for all-but-one min-sum set cover. The algorithm can be
derandomized similar to Lemma 4.6, which proves the claim. 2

Note that the algorithm also works if jobs in B have unit processing time. We can
extend it to arbitrary processing times and release dates similar to Lemmas 4.8 and 4.9.
If we choose ε′ = ε

4 and solve the corresponding interval-indexed formulation instead of
LP (4.27), we obtain a (4 + ε)-approximation for any ε > 0 for the corresponding sche-
duling problem. Again, AND-precedence constraints do not affect the approximation
factor, similar to Lemmas 4.5 and 4.8. The following lemma shows that the analysis in
Theorem 4.10 is tight.
Lemma 4.11
The integrality gap of LP (4.27) is equal to 4.

Proof. Note that Theorem 4.10 yields an upper bound of 4 on the integrality gap.
As for the lower bound, let n ≥ 4 be an even integer. Let A = {a1, . . . , an} and
B = {b1, . . . , bn} with P(b`) = A \ {a`} and κ(b`) = n − 2 for all ` ∈ [n]. Figure 4.4
depicts the precedence graph of this instance. Further, let pa = wb = 1 and wa = pb = 0
for all a ∈ A and b ∈ B. Note that this is an instance of all-but-one min-sum set cover.

102

4.4 Linear Ordering Formulation

a1 a2 a3 a4

b1 b2 b3 b4

Fig. 4.4: Precedence graph of the instance (here with n = 4) for which the integrality gap of
LP (4.27) approaches 4.

An optimal solution is to schedule the jobs in A in any arbitrary order, and then
process each job in B as early as possible. W.l.o.g., we assume that the jobs in A are
scheduled such that job a` ∈ A completes at time `. So, jobs bn−1, bn ∈ B both can
complete at time n− 2, and all other jobs in B complete at time n− 1. The objective
value of this schedule is equal to 2(n− 2) + (n− 2)(n− 1) = (n− 2)(n+ 1).

On the other hand, consider the following fractional solution with xat = 1
n for all

a ∈ A and 1 ≤ t ≤ n = T . For b ∈ B, set xbt = 2
n for 1 ≤ t ≤ n

2 and xbt = 0
else. One can easily verify that this solution is feasible for LP (4.27). (Note that
constraints (4.27e) do not appear, since |P(b)| ≥ 2 for all b ∈ B.) Its objective value is
equal to

∑
b∈B

n∑
t=1

t xbt = n

n
2∑
t=1

t
2
n

= n

2

(
n

2 + 1
)

= 1
4n(n+ 2). (4.30)

So, the integrality gap of LP (4.27) approaches 4 as n goes to infinity. 2

Lemma 4.11 shows that the approximation ratio of 4 in Theorem 4.10 is the best we
can get if we stick to LP (4.27). However, this does not rule out the existence of, e.g.,
combinatorial algorithms or stronger formulations for all-but-one MSSC, which could
give approximation guarantees better than 4.

4.4 Linear Ordering Formulation
In this section, we show that the natural LP formulation in linear ordering variables
exhibits an integrality gap (Definition 1.6) that is linear in the number of jobs when OR-
precedence constraints are involved, even on instances where ∆ = maxb∈B |P(b)| = 2.
We first restrict to bipartite precedence graphs of the form G = (A ∪̇B,E∨) with
E∨ ⊆ A × B in Section 4.4.1. We present a class of facet-defining inequalities and
show that the integrality gap of the LP formulation remains unbounded, even if we
add these facet-defining constraints. In Section 4.4.2, we extend the results to general
acyclic precedence graphs using the notion of bottlenecks (Definition 4.15).

103

Chapter 4 Linear Programming Relaxations and LP Based Algorithms

4.4.1 Bipartite OR-Precedence Constraints
Let G = (A ∪̇B,E∨) with E∨ ⊆ A × B be a bipartite precedence graph. W.l.o.g.,
we may assume that every job in B has a predecessor, i.e., P(b) 6= ∅ for all b ∈ B.
Recall the linear ordering formulation LP (4.8) of Potts [137]. A nice feature of this
formulation is that we can model OR-precedence constraints in a very intuitive way
with constraints

∑
i∈P(j) δij ≥ 1 for all j ∈ N with P(j) 6= ∅. This gives the following

polynomial size linear ordering relaxation for OR-scheduling:
min

∑
j∈N

∑
i∈N

wj pi δij (4.31a)

s.t. δij + δji = 1 ∀ i, j ∈ N : i 6= j (4.31b)
δij + δjk + δki ≥ 1 ∀ i, j, k ∈ N (4.31c)∑

i∈P(j)
δij ≥ 1 ∀ j ∈ N : P(j) 6= ∅, (4.31d)

δii = 1 ∀ i ∈ N, (4.31e)
δij ≥ 0 ∀ i, j ∈ N. (4.31f)

Note that (4.31d) only applies to jobs in B if the precedence graph is bipartite.
We set δii = 1 in (4.31e), so the completion time of job j is Cj =

∑
i∈N pi δij . Every

feasible single-machine schedule without idle time corresponds to a feasible integer
solution of LP (4.31), and vice versa. Recall that, for AND-scheduling, the linear
ordering formulation LP (4.8) has an integrality gap of 2, see Section 4.2.2. However,
in the presence of OR-precedence constraints, the gap of LP (4.31) grows linearly in
the number of jobs, even if ∆ = 2, i.e., if every job in B has at most two predecessors.
Lemma 4.12
There is a family of instances such that the integrality gap of LP (4.31) is Ω(n).

Proof. Let n ∈ N be a multiple of 3. Consider an instance that consists of ` = n
3

copies of the following directed graph on three jobs {i, j, k}. The processing times and
weights are equal to pi = pk = 1, pj = 0 and wi = wk = 0, wj = 1. The jobs i, k do
not have predecessors, and P(j) = {i, k}. We indicate the job sets of copy q ∈ [`] by
Nq = {iq, jq, kq}, and set N = N1 ∪ · · · ∪N`. That is, A = {i1, . . . , i`, k1, . . . , k`} and
B = {j1, . . . , j`}. Note that |N | = 3` = n and ∆ = 2, see Figure 4.5 for an example.
Any feasible schedule has to schedule iq or kq before jq for all q ∈ [`]. Further,

any optimal schedule will always schedule jq immediately after iq or kq, whichever
completes first. Since piq = pkq = 1 for all q ∈ [`], it does not matter whether iq or kq
precedes jq, and the order of the copies does not matter either. So, an optimal integer
solution has an objective value of∑̀

q=1
q = `(`+ 1)

2 ∈ Ω(n2). (4.32)

104

4.4 Linear Ordering Formulation

i1

j1

k1 i2

j2

k2 . . .

. . .

i`

j`

k`

Fig. 4.5: An OR-scheduling instance for which LP (4.31) exhibits an integrality gap that
is linear in the number of jobs. The processing times and weights are pjq = 0,
piq = pkq = 1 and wjq = 1, wiq = wkq = 0 for all q ∈ [`].

On the other hand, consider the following fractional solution. For all q ∈ [`] set
δiqjq = δkqjq = δiqkq = 1

2 . For distinct q1, q2 ∈ [`], set δiq1 iq2
= δkq1kq2

= δjq1jq2
=

δiq1kq2
= 1

2 and δiq1jq2
= δkq1jq2

= 0. Further, let δij = 1 − δji and δii = 1 for all
distinct i, j ∈ N . Note that δ is a feasible solution of LP (4.31).
As for the objective value, recall that pjq = wiq = wkq = 0 and piq = pkq = wjq = 1

for all q ∈ [`]. So, the only variables that contribute to the objective function with a
non-zero coefficient are δiq1jq2

and δkq1jq2
for all q1, q2 ∈ [`]. The coefficient of these

variables is equal to 1. Further, δiq1jq2
= δkq1jq2

= 0 for distinct q1, q2 ∈ [`]. Hence, the
objective value of δ is equal to

∑̀
q1=1

∑̀
q2=1

(
δiq1jq2

+ δkq1jq2

)
=
∑̀
q=1

(
δiqjq + δkqjq

)
=
∑̀
q=1

(1
2 + 1

2

)
= ` ∈ O(n). (4.33)

Since δ is feasible, the optimal objective value of LP (4.31) is O(n). The gap of (4.32)
and (4.33) and, thus, the integrality gap of LP (4.31) is Ω(n). 2

Note that the instance in the proof of Lemma 4.12 satisfies |P(b)| ≤ 2 for all b ∈ B.
For this special case, we exhibit facet-defining inequalities in the remainder of this
section. If |P(b)| ≤ 2 for all b ∈ B, then LP (4.31) can be written as

min
∑
j∈N

∑
i∈N

wj pi δij (4.34a)

s.t. δij + δji = 1 ∀ i, j ∈ N : i 6= j, (4.34b)
δij + δjk + δki ≥ 1 ∀ i, j, k ∈ N, (4.34c)

δab + δa′b ≥ 1 ∀ b ∈ B : P(b) = {a, a′}, (4.34d)
δij = 1 ∀ i, j ∈ N : i = j or P(j) = {i}, (4.34e)
δij ≥ 0 ∀ i, j ∈ N. (4.34f)

Note that constraints (4.34b) and (4.34c) coincide with the corresponding constraints
in LP (4.31). Constraints (4.34d) model the OR-precedence constraints for jobs b ∈ B
with |P(b)| = 2. For b ∈ B with |P(b)| = 1, the corresponding OR-precedence
constraint is included in (4.34e). The main result in this section is a characterization
of facet-defining constraints for the linear ordering LP (4.34).

105

Chapter 4 Linear Programming Relaxations and LP Based Algorithms

Theorem 4.13
For all b ∈ B and P(b) = {a, a′}, the constraints

δaa′ + δa′b ≥ 1 (4.35)

are valid for the integer hull of LP (4.34). Moreover, if they are tight, then they are
either facet-defining or equality holds for all feasible integer solutions of LP (4.34).

It can easily be verified that the fractional solution in the proof of Lemma 4.12
satisfies (4.35), and is feasible for LP (4.34). Hence the integrality gaps of LPs (4.31)
and (4.34) remain linear in the number of jobs, even if we add constraints (4.35). The
remainder of this section is dedicated to prove Theorem 4.13.
In the following, we interchangeably use δ to denote a total order of the jobs, i.e.,

a single-machine schedule, and the corresponding 0/1 vector of the linear ordering
polytope LP (4.34). First, we discuss why constraints (4.35) are valid for any feasible
schedule. Note that any schedule (whether it is feasible w.r.t. the precedence constraints
or not) violates at most one of the constraints δaa′ + δa′b ≥ 1 or δa′a + δab ≥ 1, since
δaa′ + δa′a = 1 by (4.34b). Hence, in order for one of these inequalities to be violated,
we need δab = δa′b = 0. But then b precedes a and a′, so the precedence constraints
of b are violated, and the schedule is infeasible. Note that constraints (4.35) together
with (4.34b) dominate constraints (4.34d).

To prove the second part of Theorem 4.13, we make use of the following polyhedral
observation. Let Q be the integer hull of the feasible region of LP (4.34) if we replace
constraints (4.34e) by (4.31e), i.e., we remove all OR-precedence constraints with only
one OR-predecessor from the precedence graph G. That is,

Q := conv({δ ∈ {0, 1}n2 | (4.34b),(4.34c),(4.34d),(4.31e)}). (4.36)

The precedence graph of the resulting OR-scheduling instance is denoted by G′. Note
that this instance satisfies |P(b)| ∈ {0, 2} for all b ∈ B.

Clearly, all feasible vectors δ ∈ Q satisfy 0 ≤ δij ≤ 1 for all i, j ∈ N . That is, for all
distinct i, j ∈ N , the removed constraint of (4.34e) defines a supporting hyperplane
at Q, which we call Hij . In particular, for any facet F of Q, either F ∩Hij ∈ {∅, Q∩Hij}
or F ∩Hij is a facet of Q∩Hij . So, in order to prove Theorem 4.13, it suffices to show
that constraints (4.35) are facet-defining for Q. We do so by exhibiting dim(Q) affinely
independent feasible vectors of Q that satisfy (4.35) with equality. Similar to [69, 140],
it is easy to see that Q is not contained in any lower dimensional affine subspace than
the one spanned by constraints (4.34b) and (4.31e). So, the dimension of Q is equal to
d = n(n−1)

2 . The following lemma completes the proof of Theorem 4.13.

Lemma 4.14
Constraints (4.35) are facet-defining for Q.

106

4.4 Linear Ordering Formulation

a

b

a′ a

b

a′

j

i a

b

a′ j

Fig. 4.6: Precedence graphs for n = 3 (left), and for n ≥ 4 with B \ {b} 6= ∅ (middle) and
B\{b} = ∅ (right). The crossed out arc cannot occur, since |P(b)| = 2 by assumption.

Proof. Let b ∈ B with P(b) = {a, a′}. We prove the statement by exhibiting d affinely
independent integer feasible points for Q that satisfy δaa′ + δa′b = 1. Recall that the
instance on G′ that corresponds to Q satisfies |P(b′)| ∈ {0, 2} for all b′ ∈ B. The proof
goes by induction on the number of jobs n.

The base case is n = 3, i.e., d = 3. There is only one possible precedence graph G′ that
can occur, see Figure 4.6 (left). All feasible schedules for G′ are a→ a′ → b, a′ → a→ b,
a→ b→ a′ and a′ → b→ a. Obviously, all but the first schedule, a→ a′ → b, satisfy
δaa′ + δa′b = 1, and their respective δ-vectors are affinely independent. So, the claim
holds for n = 3.
By induction hypothesis, we may assume that δaa′ + δa′b ≥ 1 is facet-defining for

all instances on n − 1 ≥ 3 jobs with |P(b′)| ∈ {0, 2} for all b′ ∈ B. Now, consider
an instance on n ≥ 4 jobs with |P(b′)| ∈ {0, 2} for all b′ ∈ B. We remove a job
j ∈ N \ {a, a′, b} from the instance in such a way that we can apply the induction
hypothesis. Then, we construct affinely independent feasible vectors based on the set
of affinely independent vectors from the instance on n− 1 jobs. Feasibility of δ for Q
then follows from feasibility of the constructed schedule.

Note that the removed job j can be chosen to have no successor. Either B \ {b} 6= ∅
or, if B \ {b} = ∅, then there is a job in A \ {a, a′} without successors, since |P(b)| = 2,
see Figure 4.6 (middle and right). Hence, we can choose j ∈ B \ {b}, or j ∈ A \ {a, a′}
has neither predecessors nor successors. If we remove j (and all arcs that end in j)
from the instance, we are left with an instance on n− 1 jobs. By our choice of j, this
instance satisfies |P(b′)| ∈ {0, 2} for all b′ ∈ B \ {j}.

Thus, the induction hypothesis applies and there is a set D′ of d′ = (n−1)(n−2)
2 affinely

independent vectors that satisfy δaa′ + δa′b = 1. Note that these vectors correspond
to feasible schedules on the instance without j. If we add j to the instance again, we
add n− 1 variables, which we index by δij for i ∈ N \ {j}.29 Suppose the last n− 1
coordinates of the vectors correspond to these entries. We show how to extend the
affinely independent vectors in D′ to d = d′ + (n− 1) affinely independent vectors D
in higher dimensional space. For the sake of simplicity, we omit “transpose” in the
following and assume that all vectors are column vectors.

29Technically, we also add the variables δji for all i ∈ N \ {j} and δjj . However, δjj is set to 1
by (4.31e) and has no effect on the other constraints or (4.35). Also, δji for i ∈ N \ {j} is fixed
by (4.31b) and does not influence (4.35). So, we can ignore these variables.

107

Chapter 4 Linear Programming Relaxations and LP Based Algorithms

First, assume that j was chosen to have neither predecessors nor successors. Note
that the vectors in D1 = {(δ, 0, . . . , 0) | δ ∈ D′} are feasible (j is scheduled first),
affinely independent and satisfy (4.35) with equality. It holds |D1| = |D′| = d′. Let
(δ, 0, . . . , 0) ∈ D1 be a schedule, where j starts first. We can successively move j “to
the back” of this schedule without loosing feasibility. Thereby we obtain a set of
vectors D2 = {(δ, 1, 0, . . . , 0), (δ, 1, 1, 0, . . . , 0), . . . , (δ, 1, . . . , 1, 0), (δ, 1, . . . , 1)} (up to
permutation of the last n − 1 coordinates). Note that the components that appear
in (4.35) are not changed compared to δ, so all vectors in D2 satisfy (4.35) with equality.
Obviously, the set D1 ∪D2 is affinely independent and |D1 ∪D2| = d′ + n − 1 = d,
which proves the claim.

Now, assume that j ∈ B\{b}. That is, it might not be feasible to schedule j first, and
we cannot move j through the schedule as before. Consider a schedule δ that schedules
the jobs in order a′ → b→ a→ (A \ {a, a′})→ (B \ {j, b}), where the sets A \ {a, a′}
and B \ {j, b} are scheduled in any arbitrary order. Clearly, δ is a feasible schedule for
the instance on n− 1 jobs and satisfies δaa′ + δa′b = 1. Hence, we may, w.l.o.g., assume
that δ ∈ D′. Let δj = (δ, 1, . . . , 1) be the schedule that first schedules N \{j} according
to δ and processes j last. Note that the vectors in D3 = {(δ, 1, . . . , 1) | δ ∈ D′} 3 δj
are feasible (j is scheduled last), affinely independent and satisfy (4.35) with equality
by the induction hypothesis. It holds |D3| = |D′| = d′. Next, we construct a set D4 of
|D4| = n− 1 vectors such that the set D3 ∪D4 is affinely independent.
For every i ∈ N \ {j, a′}, let δi be the schedule that orders all jobs according to δj ,

but shifts i to the back of the schedule. That is, δi swaps the order of i and the set
of jobs that appear after i in δj . In particular, δiij = 0. Further, we define δa′ to be
the schedule that orders the jobs a→ b→ (A \ {a, a′})→ (B \ {j, b})→ j → a′. So,
compared to δj , job a′ is moved to the back and the order of b and a is reversed (this
is crucial to maintain feasibility). Let D4 = {δi | i ∈ N \ {j}} with |D4| = n− 1, and
note that any δi ∈ D4 is feasible, since no job in B has exactly one predecessor.

For i 6= a′ we did not swap the order of a′ and {b, a} compared to δ, so δi satisfies (4.35)
with equality. For i = a′, it holds δa′aa′ + δa

′
a′b = 1 + 0 = 1. Further, for i ∈ N \ {j},

δij = 1 for all δ ∈ D3 and δkij = 0 if and only if k = i for all δk ∈ D4. So, D3 ∪D4 are
d′ + n− 1 = d affinely independent feasible vectors that satisfy (4.35) with equality.
This proves the claim. 2

Recall that the fractional solution δ in the proof of Lemma 4.12 satisfies (4.35), so the
integrality gap remains linear, even with these additional constraints. In generalized
min-sum set cover, each job b requires at least κ(b) ∈ [|P(b)|] of its predecessors to be
completed before it can start. This can also be easily modeled with linear ordering
variables by introducing a constraint

∑
a∈P(b) δab ≥ κ(b). However, note that the

instance in the proof of Lemma 4.12 is an instance of min-sum vertex cover (which is a
special case of min-sum set cover and all-but-one min-sum set cover). So, already for
κ(b) = 1 or κ(b) = max{1, |P(b)| − 1} and ∆ = 2, the linear ordering formulation has
an unbounded integrality gap.

108

4.4 Linear Ordering Formulation

4.4.2 Acyclic Precedence Graphs
In this section, we extend Theorem 4.13 from bipartite OR-scheduling to arbitrary
acyclic precedence graphs. For this purpose, we need the notion of bottleneck sets.
Informally, a job i is called a bottleneck if it is crucial for the execution of another job
j 6= i. In this case, j is contained in the bottleneck set of i, i.e., the processing of j
cannot start before i is completed.

Definition 4.15 (Bottlenecks and Bottleneck Sets)
Let N be a set of jobs and G = (N,E∨) a precedence graph. We call i ∈ N a
bottleneck if i cannot be scheduled last in any feasible single-machine schedule. The
set of bottlenecks is denoted by B. For i ∈ B, the bottleneck set of i is defined as
Bi := {j ∈ N \ {i} | j is preceded by i in every feasible single-machine schedule}.
Further, we call j ∈ Bi maximal in Bi if there is no k ∈ Bi with j ∈ Bk.

Note that i ∈ B implies Bi 6= ∅. Let further B :=
⋃
i∈B Bi be the set of all jobs that

are contained in some bottleneck set. The next lemma summarizes some properties of
bottleneck sets. In particular, the set of bottleneck sets {Bi | i ∈ B} is laminar.
Lemma 4.16
Let G = (N,E∨) be a precedence graph and let i, k ∈ N and k ∈ B. The following hold:

(i) i ∈ Bk =⇒ Bi ⊆ Bk
(ii) Bi ∩ Bk 6= ∅ for i 6= k implies i ∈ Bk or k ∈ Bi

(iii) If i ∈ B, then i ∈ Bk ⇐⇒ Bi (Bk
(iv) For i ∈ B, there is exactly one k ∈ B such that i ∈ Bk is maximal in Bk
(v) Bk =

⋃{
{i} ∪̇ Bi

∣∣ i maximal in Bk
}
and this union is disjoint

Proof. Recall the definition of the initial job jin and the associated digraph Gin from
Section 1.2.2. Note that i ∈ Bk if and only if every (jin, i)-path in Gin contains k.

(i) For i /∈ B, the claim is trivially true, as Bi = ∅ ⊆ Bk, so assume i ∈ B. For
j ∈ Bi, every (jin, j)-path in Gin contains i and, since i ∈ Bk, every (jin, i)-path
contains k. So, every (jin, j)-path also contains k, which yields j ∈ Bk.

(ii) Let i 6= k and j ∈ Bi ∩ Bk, i.e., every (jin, j)-path in Gin contains both i and k.
Every such path contains i and k in a fixed order, say first k then i. Otherwise,
if there was a (jin, j)-path where i precedes k, then one could “shortcut” from i
directly to j and “skip” k which contradicts j ∈ Bk. This also implies that every
(jin, i)-path contains k, i.e., i ∈ Bk. If the order of i and k in every (jin, j)-path
is reversed, then one obtains k ∈ Bi by similar arguments.

(iii) Suppose i ∈ B, i.e., Bi 6= ∅. The first implication follows from (i) and the fact
that i /∈ Bi, so {i} ∪̇ Bi ⊆ Bk. On the other hand, Bi (Bk implies k 6= i and
∅ 6= Bi = Bi ∩ Bk. The claim follows from (ii) and the fact that k /∈ Bk) Bi
implies k /∈ Bi.

109

Chapter 4 Linear Programming Relaxations and LP Based Algorithms

(iv) If i ∈ Bk is not maximal then there exists j ∈ B ∩ Bk such that i ∈ Bj . Further,
j ∈ Bk implies Bj (Bk by (iii). Since 1 ≤ |Bj | < |Bk|, we can apply the same
argument iteratively and obtain that i is maximal in some bottleneck set. Now
suppose i ∈ B is maximal in Bk and Bj for two jobs k, j ∈ B with k 6= j. In
particular, i ∈ Bk ∩ Bj . So, k ∈ Bj (or j ∈ Bk) by (ii), which is a contradiction
to the maximality of i in Bj (or Bk).

(v) By (i), we can write Bk =
⋃
i∈Bk({i} ∪ Bi). For every non-maximal element

j ∈ Bk, there exists i ∈ Bk with {j} ∪ Bj ⊆ Bi. Iteratively, we obtain that
every non-maximal element and its bottleneck set are contained in some Bi where
i ∈ Bk is maximal in Bk. By (iv), we can partition Bk into its maximal elements
and their bottleneck sets. 2

Note that we can compute bottlenecks and bottleneck sets in polynomial time by
shortest path computations in Gin. Suppose we want to decide whether i ∈ B and, if
so, return Bi. We impose weights of zero on each arc, except for the incoming arcs into
node i, to which we assign unit weight. Then, we compute all shortest (jin, j)-paths
in Gin, and all jobs j whose shortest path has non-zero length are contained in Bi.
Note that (v) in Lemma 4.16 is similar to (3.5).

Consider an instance of 1 | or-prec |
∑
wjCj with job set N ′ and an acyclic precedence

graph G′ = (N ′, E′). By introducing dummy jobs of zero processing time, we can
transform the precedence graph such that every job has at most two predecessors. That
is, for every j ∈ N with |P(j)| ≥ 3, we replace the subgraph G′[{j}∪P(j)] by a binary
(in)tree with root j and one leaf for every i ∈ P(j). The “inner nodes” of this tree
have zero processing time. Note that, if we do this for every job with more than two
predecessors, we obtain a precedence graph G = (N,E), where each job has at most
two predecessors. Since the dummy jobs have zero processing time and the size of G is
polynomial in the size of G′, we can solve the initial OR-scheduling instance by solving
the instance on G. Hence, assuming |P(j)| ≤ 2 for a job j ∈ N is no restriction.
Recall the linear ordering LP (4.31) and the definition of bottleneck sets (Defini-

tion 4.15). Our main result in this section is an extension of Theorem 4.13.

Theorem 4.17
Let N be a set of jobs and G = (N,E∨) an acyclic precedence graph. For all j ∈ N
and P(j) = {i, i′}, the constraints

δii′ + δi′j ≥ 1 (4.37)

are valid for the integer hull of LP (4.31). Moreover, (4.37) holds with equality for
all feasible integer solutions for LP (4.31) if i ∈ Bi′ , and it is facet-defining for the
integer hull of LP (4.31) if i /∈ Bi′.

110

4.4 Linear Ordering Formulation

Note that validity of constraints (4.37) follows similarly as for (4.35) in the bipartite
case. The case when i is part of the bottleneck set of i′ is straight forward. We state
this as a lemma to reference it later.
Lemma 4.18
Let j ∈ N and P(j) = {i, i′}. If i ∈ Bi′ , then δii′ + δi′j = 1 holds for all feasible integer
solutions for LP (4.31).

Proof. Note that i ∈ Bi′ and P(j) = {i, i′} imply j ∈ Bi′ . So, all feasible integer
solutions δ for LP (4.31) satisfy δi′j = δi′i = 1, which together with (4.31b) proves the
claim. 2

The proof for the case i /∈ Bi′ of Theorem 4.17 is similar to the one of Lemma 4.14.
The idea is, again, to remove one job and apply induction. However, the proof of
Theorem 4.17 is more involved, since the removed job might alter some bottleneck
sets. For instance, a job that was in no bottleneck set in G might become part of a
bottleneck set in the smaller instance because we removed one of the “alternative paths”
in G. Further, it is not clear rightaway whether the removed job can be chosen to have
no predecessors or no successors, as in the proof of Lemma 4.14. The following lemma
is an auxiliary result that allows us to restrict to cases where there exists a suitable
job that can be removed.
Lemma 4.19
Let G = (N,E∨) be an acyclic precedence graph. Let j ∈ N with P(j) = {i, i′} and
n ≥ 4. If all jobs in N \ {i, i′, j} have predecessors and successors, i.e.,

{k ∈ N \ {i, i′, j} | P(k) = ∅ or k /∈ P(k′) for all k′ ∈ N} = ∅, (4.38)

then Bi = N \ {i} or Bi′ = N \ {i′}.

Proof. Suppose all jobs in N \ {i, i′, j} have predecessors and successors. So, all jobs
in N \ {i, i′, j} are contained in (non-trivial) paths in G that begin and end in the set
{i, i′, j}. Since G is acyclic and j has only two predecessors, no such path begins or
ends at j. Further, all paths go, w.l.o.g., from i to i′, and there are no paths in the
opposite direction. This implies that all jobs except for i itself are contained in the
bottleneck set of i, i.e., Bi = N \ {i}. Similarly, Bi′ = N \ {i′} holds if all paths go
from i′ to i. 2

Note that the bottleneck sets influence the dimension of the linear ordering polytope.
Let K =

∑
k∈N |Bk| be the sum of the cardinalities of all bottleneck sets. Observe that,

similar to [69, 140], the dimension of the integer hull of LP (4.31) is d = n(n−1)
2 −K.

The ratio n(n−1)
2 is due to the explicit equalities (4.31b) and (4.31e). Since j′ ∈ Bk

implies δkj′ = 1 by definition of a bottleneck set, we loose one dimension for every
appearance of a job in another one’s bottleneck set. The following lemma together
with Lemma 4.18 concludes the proof of Theorem 4.17.

111

Chapter 4 Linear Programming Relaxations and LP Based Algorithms

i

j

i′ i

j

i′

Fig. 4.7: Possible graphs G1 (left) and G2 (right) for the base case n = 3 and i /∈ Bi′ .

Lemma 4.20
Let G = (N,E∨) be an acyclic precedence graph. Let j ∈ N and P(j) = {i, i′}. If
i /∈ Bi′, then constraint (4.37) is facet-defining for the integer hull of LP (4.31).

Proof. We prove the statement by exhibiting d = n(n−1)
2 −K affinely independent

feasible integer solutions for LP (4.31) that satisfy δii′ + δi′j = 1. As before, we use δ
interchangeably for schedules and the corresponding 0/1 vector, and omit “transpose”
for the sake of simplicity and assume that all vectors are column vectors. The proof
goes by induction on the number of jobs n.
The base case is n = 3, i.e., d = 3−K. There are two possible acyclic precedence

graphs, see Figure 4.7. For G1, we have K = 0. Note that G1 is the same as in the base
case in the proof of Lemma 4.14, see also Figure 4.6 (left). For G2, we have K = 2,
since Bi = {i′, j}. The only feasible schedules for G2 are i → i′ → j and i → j → i′.
Clearly, only the second schedule satisfies (4.37) with equality. This establishes the
base case for n = 3.

By induction hypothesis, we may assume that δii′ + δi′j ≥ 1 is facet-defining for all
instances on n− 1 ≥ 3 jobs where i is not contained in the bottleneck set of i′. Recall
that on instances where i is contained in the bottleneck set of i′, the inequality is tight
for all feasible integer vectors by Lemma 4.18. We remove a job x ∈ N \ {i, i′, j} from
the instance and, depending on whether or not i is contained in the bottleneck set of i′
on the smaller instance, we apply Lemma 4.18 or the induction hypothesis, respectively.
Let x ∈ N \ {i, i′, j} be a job with no predecessors or no successors. If no such job

exists, i.e., all jobs in N \ {i, i′, j} have predecessors and successors, then Lemma 4.19
applies. The assumption i /∈ Bi′ and Lemma 4.19 yield Bi = N \ {i}. In this case,
let x ∈ N \ {i, i′, j} be maximal in Bi with i ∈ P(x).30 Since Bi = N \ {i}, job i is
the only job without a predecessor and δik = 1 for all k ∈ N \ {i} and all feasible
schedules. That is, all feasible schedules process i first. Hence, we can remove i (and all
components δik and δki) from the instance, adapt the parameters n and K accordingly,
and treat x as if P(x) = ∅.

If we remove x from the instance, we obtain an instance with n− 1 jobs. Let B′k be
the bottleneck set of k ∈ N \ {x} on the instance with precedence graph G[N \ {x}].
It holds B′k ⊇ Bk \ {x} for all k ∈ N \ {x}, since x might have been a predecessor of
some job in B′k in the initial instance on G.

30Note that such a job exists, since n ≥ 4 and all jobs other than i′ and j lie on paths from i to i′
in the precedence graph, see proof of Lemma 4.19.

112

4.4 Linear Ordering Formulation

Let K ′ =
∑
k∈N\{x} |B′k|, and let D′ be an inclusion-maximal affinely independent

set of feasible integer solutions for LP (4.31) for the new instance on G[N \ {x}] that
satisfy (4.37) with equality. If i /∈ B′i′ , we get by induction hypothesis that

|D′| = d′ := (n− 1)(n− 2)
2 −K ′ = d− (n− 1) +K −K ′. (4.39)

If i ∈ B′i′ , then Lemma 4.18 implies |D′| = d′ + 1. By adding x to the instance again,
we add n− 1 “free” variables, which we index by δkx for all k ∈ N \ {x}. Suppose the
last n− 1 coordinates of the vectors correspond to these entries. Similar to the proof
of Lemma 4.14, we show how to extend the set D′ to an affinely independent set of
vectors in higher dimensional space. We distinguish several cases, depending on how
the bottleneck sets in G[N \ {x}] differ from those in the initial instance.
First, let us define a useful “standard schedule” δ for the smaller instance on

G[N \ {x}]. The standard schedule processes each bottleneck set contiguously, the
jobs in B′k \ Bk are processed before those in Bk \ {x} for all k ∈ N \ {x} (recall that
Bk \ {x} ⊆ B′k), and the jobs in Bx are scheduled last. Such a schedule exists and
is feasible because the set of bottleneck sets {Bk | k ∈ N} is laminar (Lemma 4.16).
Further, this schedule shall satisfy (4.37) with equality. Observe that j ∈ Bk for some
k ∈ N if and only if {i, i′} ⊆ {k} ∪ Bk, and similarly for B′k. So, i′ ∈ B′k \ Bk and
i ∈ {k}∪Bk imply j ∈ B′k \Bk. For i = k, we can schedule the jobs in order i→ j → i′

and, for i ∈ Bk, we can schedule i′ → j → i. In either case, constraint (4.37) is satisfied
with equality. Similarly, if i and i′ are interchanged. Hence, there is a feasible schedule
δ with the following properties:

(i) the jobs in B′k are scheduled contiguously directly after k for all k ∈ N \ {x},
(ii) the jobs in Bk \ {x} are scheduled after those in B′k \ Bk for all k ∈ N \ {x},

(iii) the jobs in N \ ({x} ∪ Bx) precede those in Bx, and
(iv) j is scheduled directly before the latter of the jobs i and i′.

Note that condition (iv) implies δii′ + δi′j = 1. We have to distinguish two main
cases, namely whether x has successors or not.
If x has no successors, then B′k = Bk \ {x} and Bx = ∅. The set of vectors

D0 = {(δ, 1, . . . , 1) | δ ∈ D′} is feasible (x is scheduled last) and affinely independent.
Let S = {k ∈ N \ {x} |x /∈ Bk} be the set of jobs that do not contain x in their
bottleneck set, and let p = |S|. Note that K −K ′ = n− 1− p. We construct a set D1
of cardinality p = d− d′ vectors such that D0 ∪D1 is affinely independent.
Note that Bk = B′k for all k ∈ S. For any k ∈ S, we consider a feasible schedule δk

for the instance G[N \ {x}] that processes the jobs in {k} ∪ Bk last. For k ∈ S \ {i, i′},
we can take δ and shift {k} ∪ Bk to the back of the schedule. If i′ ∈ S, we might have
to reverse the order of i and j to maintain feasibility. If i′ precedes j in δ, then j
is scheduled directly before i in δ by (iv). Hence, we can swap the order of i and j,
and move i′ and its bottleneck set to the back. The resulting schedule δi′ is feasible.

113

Chapter 4 Linear Programming Relaxations and LP Based Algorithms

That is, δi′ orders the jobs i→ j → i′ → Bi′ (with other jobs before i′ according to δ).
If i ∈ S and i′ /∈ Bi, then j /∈ Bi. So, similar to δi′ , the vector δi can be chosen to
process the jobs i′ → j → i → Bi (with other jobs before i according to δ). If i ∈ S
and i′ ∈ Bi, we can choose δi such that j is the first job of Bi, i.e., i→ j → (Bi \ {j})
(with other jobs before i according to δ). In either case, δkii′ + δki′j = 1 for k ∈ S, i.e.,
(4.37) is satisfied with equality.

For every k ∈ S, consider the schedule δk and process x directly before k, which
is feasible, since x has no successors and by the definition of S. Suppose the last
n− 1 coordinates corresponding to δkx (with k ∈ N \ {x}) are of the block structure
(δS , δS) ∈ {0, 1}n−1−p × {0, 1}p, where δS and δS correspond to all pairs (k, x) with
k /∈ S and k ∈ S, respectively. Let D1 = {(δk, δk

S
, yk) | k ∈ S}, where yk ∈ {0, 1}|S|

with ykk′x = 0 if and only if k′ ∈ ({k} ∪ Bk) ∩ S, be the set of vectors corresponding to
these schedules. It holds |D1| = |S| = p and the set D1 is affinely independent.
To see this, recall that the set of bottleneck sets is laminar. If Bk ∩ Bk′ = ∅ for

k, k′ ∈ S, then the vectors yk and yk
′ have zeros at different coordinates. If the

bottleneck sets intersect, then, w.l.o.g., {k′} ∪ Bk′ ⊆ Bk. In this case, ykkx = 0 6= yk
′
kx.

Further, D0 ∪ D1 is affinely independent, since every vector in D1 has at least one
zero-entry in its last |S| components, whereas the vectors in D0 have all ones. It holds
|D0 ∪D1| = d′ + p = d′ + n− 1−K +K ′ = d, see (4.39). This proves the statement
for the case that x has no successors.

If x has successors then P(x) = ∅ by our choice of x. When we add x to the instance,
|Bx| jobs become part of its bottleneck set. On the other hand, adding x might also
lessen some bottleneck sets, so K ≤ K ′ + |Bx|. Recall the “standard schedule” δ and
consider the set of vectors D2 = {(δ, 0, . . . , 0) | δ ∈ D′}. The vectors in D2 are feasible
(x is scheduled first), affinely independent and |D2| ∈ {d′, d′+ 1} depending on whether
i /∈ B′i′ (induction hypothesis) or i ∈ B′i′ (Lemma 4.18). We construct two sets D3 and
D4 such that D = D2 ∪D3 ∪D4 are d affinely independent vectors.

As for D3, consider the schedule (δ, 0, . . . , 0) that schedules the jobs according to δ
and processes x first. Recall that δ processes the jobs in Bx last by (iii). Note that Bx
might be empty, i.e., |Bx| = 0. Suppose the last |Bx| coordinates correspond to the job
pairs (k, x) with k ∈ Bx. These entries form a block of zeros, which we denote by δBx .
Similar to the proof of Lemma 4.14, we can successively move x directly before the
first job of Bx without loosing feasibility. Thereby, we obtain a set of vectors

D3 = {(δ, y, δBx) | y ∈ {(1, 0, . . . , 0), . . . , (1, . . . , 1)} ⊆ {0, 1}n−1−|Bx|}. (4.40)

The coordinates in y correspond to the pairs (k, x) with k /∈ Bx. Note that D2 ∪D3 are
affinely independent, all vectors inD3 satisfy (4.37) with equality and |D3| = n−1−|Bx|.
If K = K ′ + |Bx| then Bk = B′k for all k ∈ N \ {x}, i.e., x does not lessen any

bottleneck sets. In particular, |D2| = d′ by induction hypothesis (i /∈ Bi′ = B′i′) and
|D2 ∪D3| = d′ + n− 1− |Bx| = d−K ′ +K − |Bx| = d, see (4.39), yields the claim.

114

4.4 Linear Ordering Formulation

So assume K < K ′ + |Bx|, i.e., there are k ∈ N \ {x} with B′k) Bk. Note that

K ′ + |Bx| −K =
∑

k∈N\{x}
|B′k|+ |Bx| −

∑
k∈N
|Bk|

=
∑

k∈N\{x}
(|B′k| − |Bk|) =

∑
k∈N\{x}

|B′k \ Bk|.
(4.41)

As for the construction of D4, we exhibit affinely independent sets Dk for all k ∈ N \{x}
with B′k \ Bk 6= ∅ so that D4 =

⋃
kDk. Consider again the schedule (δ, 0, . . . , 0) that

processes x first. Recall that δ schedules k directly before B′k by (i), and B′k \ Bk
before Bk by (ii). For k /∈ {i, i′}, let Dk be the set of vectors obtained from the
schedule (δ, 0, . . . , 0) when shifting k successively before the first job of Bk. Similar
to (4.40), we obtain |B′k \ Bk| affinely independent vectors.

For k ∈ {i, i′} this argument also works if k′ ∈ {i, i′}\{k} is not contained in B′k \Bk.
Recall that δ orders the jobs k → j → k′ (with some other jobs between k and j). If
k′ ∈ B′k \ Bk, then j ∈ B′k \ Bk, and we have to be careful when moving k “to the back”,
similar to the construction of, e.g., δi′ before. That is, we move k directly before j,
reorder the jobs {k, j, k′} in a feasible way such that (4.37) is satisfied with equality,
and then move k further until it is processed directly before the first job of Bk.

More precisely, suppose k′ ∈ B′k \ Bk. For k = i, we have k′ = i′. In this case, when
we reach a schedule where i→ j → i′ are scheduled contiguously, which occurs by (iv),
we reorder the jobs to i′ → i→ j (while keeping all other jobs unchanged), and then
continue with moving i further to the back. This gives in total |Di| = |B′i \ Bi| affinely
independent vectors. For k = i′, we get k′ = i. When we reach the contiguous ordering
i′ → j → i, we reorder the jobs such that i → j → i′ (while keeping all other jobs
unchanged).31 Thereby, we obtain |Di′ | = |B′i′ \ Bi′ | − 1 affinely independent vectors.
Note that this only occurs if i ∈ B′i′ \ Bi′ . If i /∈ B′i′ , then |Di′ | = |B′i′ \ Bi′ |.
Now, set D4 =

⋃
kDk and D = D2 ∪D3 ∪D4. Similar to y in (4.40), the entries

(δk′1k, . . . , δk′`k) for k′q ∈ B′k \ Bk form a sequence of vectors (1, 0, . . . , 0),. . . , (1, . . . , 1, 0),
(1, . . . , 1) ∈ {0, 1}|B′k\Bk| when shifting k directly before Bk. Since all entries δk′k are
equal to zero for k′ ∈ B′k \ Bk and δ ∈ D \Dk, we get that D is an affinely independent
set. As for the cardinality of D, observe that, if i ∈ B′i′ \ Bi′ , it holds |D2| = d′ + 1
by Lemma 4.18 and Di′ = |B′i′ \ Bi′ | − 1. Else, |D2| = d′ by induction hypothesis and
|Dk| = |B′k \ Bk| for all k ∈ N \ {x}. In either case,

|D| = |D2|+ |D3|+ |D4| = d′ + n− 1− |Bx|+
∑

k∈N\{x}
|B′k \ Bk|

= d′ + n− 1− |Bx|+K ′ + |Bx| −K = d,

(4.42)

where the third and last equality is due to (4.41) and (4.39), respectively. This proves
the claim. 2

31We have to exclude the order i→ i′ → j, which would be similar to the case k = i, because the
inequality (4.37) is strict for this ordering.

115

Chapter 4 Linear Programming Relaxations and LP Based Algorithms

4.5 Completion Time Formulation
In this section, we extend the parallel inequalities of [167, 139] and present a completion
time formulation for OR-scheduling in Section 4.5.2. We then show that this LP has
an unbounded gap between optimal LP solution and optimal feasible schedule, even on
bipartite instances with ∆ = 2. We start out with a necessary notion in Section 4.5.1.

4.5.1 Generalized Minimal Chains
The following definition extends the notion of minimal chains from Definition 2.5.
Recall that, in Definition 2.5, a minimal chain of a job k ∈ N is a set of jobs that
needs to be scheduled to complete k as early as possible. Now, consider an arbitrary
subset of jobs S ⊆ N . We define the length of a minimal chain w.r.t. the set S to be
the amount of extra time we need at least to complete k, provided that the jobs in S
are already fixed in the schedule. The minimal chain of k w.r.t. S is the set of jobs in
N \ S that have to be processed to complete k in that time.

Definition 4.21 (Generalized Minimal Chains)
Let N be a set of jobs and G = (N,E∨) a precedence graph. Let FS ⊆ 2N be the
set of feasible starting sets. For an arbitrary subset S ⊆ N and a job k ∈ N , we
define the length of the minimal chain of k w.r.t. S as

mc(S, k) := min
{∑
j∈L

pj
∣∣∣L ⊆ N : ∃ Ŝ ⊆ S ∪ L with k ∈ Ŝ ∈ FS

}
. (4.43)

A set L ∈ argmin{mc(S, k)} is called a minimal chain of k w.r.t. S. The set of
minimal chains is denoted byMC(S, k).

In the absence of release dates,MC(∅, k) =MC(k), i.e., Definition 4.21 generalizes
Definition 2.5. The function mc(·, k) is non-increasing, i.e., mc(S, k) ≥ mc(S′, k) for
all k ∈ N and S ⊆ S′ ⊆ N . Since the processing times are non-negative, there exists a
minimal chain L ∈MC(S, k) with L ∩ S = ∅. If we enumerate the jobs of a minimal
chain L = {j1, . . . , j`} ∈ MC(S, k) suitably, then {j1, . . . , jq} ∈ MC(S, jq) for all q ∈ [`].
In other words, if job j is contained in a minimal chain L, then the jobs preceding j in
L form a minimal chain of j.

Observe that the value mc(S, k) equals the length of a shortest path from the initial
job jin to k in Gin if we impose weights of 0 and pj on all arcs (i, j) for j ∈ S and j /∈ S,
respectively. We denote this weighted directed graph by Gin(S). Recall that shortest
paths can be computed in polynomial time, see, e.g., [124, 102]. That is, given a set
S ⊆ N and a job k ∈ N , we can compute a minimal chain L ∈MC(S, k) in polynomial
time. Figure 4.8 illustrates the minimal chains of a job k w.r.t. two different sets in
the corresponding weighted digraphs.

116

4.5 Completion Time Formulation

1

2

3

4

5

k

jin

5

2

1

4

4

3

3

1

1

1

1

2

3

4

5

k

jin

5

2

0

0

0

3

3

1

1

1

Fig. 4.8: Weighted digraphs Gin(∅) (left) and Gin({3, 4}) (right) for an instance with processing
times p1 = 5, p2 = 2, p3 = pk = 1, p4 = 4 and p5 = 3. The red arcs correspond to
the paths of the minimal chains {3, 5, k} ∈ MC(∅, k) and {2, k} ∈ MC({3, 4}, k) of k
w.r.t. the empty set and {3, 4}, respectively.

Before we proceed with the LP formulation, we observe some properties of the set
functionmc(·, k) : 2N → N0. Two important notions for set functions are submodularity
and supermodularity, which refine subadditivity and superadditivity, respectively. A
set function g : 2N → Z is called submodular if g(S ∪ {j})− g(S) ≥ g(S′ ∪ {j})− g(S′)
for all S ⊆ S′ ⊆ N and j /∈ S′. A function g is called supermodular if −g is submodular.
We call g modular if it is both submodular and supermodular. The following lemma
summarizes the inclusion-minimal and inclusion-maximal graph classes where mc(·, k)
is (not) submodular and (not) supermodular (anymore), respectively.
Lemma 4.22
Let N be a set of jobs, k ∈ N and G = (N,E∨) be a precedence graph. The minimal
chain function mc(·, k) : 2N → N0 is

(i) modular if G is an outforest,
(ii) supermodular but not submodular if G is bipartite, and

(iii) neither supermodular nor submodular if G is an intree (but not a chain).

Proof. Throughout the proof, let S ⊆ S′ ⊆ N and j ∈ N \ S′.

(i) Let G be an outforest, and let Ŝ ⊆ N be the set of jobs on the unique path
that starts at a root of G and ends at k. Since G is an outforest, we have
Ŝ \ S ∈MC(S, k) and Ŝ \ S′ ∈MC(S′, k). It holds

mc(S ∪ {j}, k)−mc(S, k) = p
(
Ŝ \ (S ∪ {j})

)
− p

(
Ŝ \ S

)
=
{

0 if j /∈ Ŝ,
−pj if j ∈ Ŝ.

(4.44)

Similarly for S′. So, mc(S ∪ {j}, k)−mc(S, k) = mc(S′ ∪ {j}, k)−mc(S′, k).

117

Chapter 4 Linear Programming Relaxations and LP Based Algorithms

i

k

j i i′

k

j′ j

Fig. 4.9: Precedence graphs for which mc(·, k) is not submodular (left) and not supermodular
(right). All processing times are equal to 1. For the left instance, choose S = ∅ and
S′ = {i}, and for the right instance, let S = {i} and S′ = {i, j′}.

(ii) Let G = (A ∪̇B,E∨) with E∨ ⊆ A × B be bipartite. To prove that mc(·, k) is
supermodular, we need to distinguish several cases. First suppose that k ∈ A.
Then, mc(S, k) = pk if k /∈ S and mc(S, k) = 0 otherwise. For j = k, we get
mc(S ∪ {k}, k) = 0 = mc(S′ ∪ {k}, k), and mc(S, k) = pk = mc(S′, k), since
k /∈ S′ ⊇ S. If j 6= k, then mc(S ∪ {j}, k) = mc(S, k) and mc(S′ ∪ {j}, k) =
mc(S′, k), since j does not contribute to a minimal chain of k. (Recall that
there are no ingoing arcs at k ∈ A because E∨ ⊆ A × B.) So, in either case,
mc(S ∪ {j}, k)−mc(S, k) = mc(S′ ∪ {j}, k)−mc(S′, k).
Now suppose that k ∈ B, and let i ∈ argmin{pi′ | i′ ∈ P(k)} be a potential
candidate in a minimal chain of k. (W.l.o.g., we can assume pi > 0.) That is,
mc(S, k) = pi+pk if S∩(P(k)∪{k}) = ∅, mc(S, k) = pi if S∩(P(k)∪{k}) = {k},
mc(S, k) = pk if S ∩ P(k) 6= ∅ and k /∈ S, and mc(S, k) = 0 if S ∩ P(k) 6= ∅ and
k ∈ S. Similarly for S′. For j = k, we get that mc(S∪{k}, k)−mc(S, k) = −pk =
mc(S′∪{k}, k)−mc(S′, k), since k /∈ S′ ⊇ S and the term pi (if it appears) cancels
out. If j 6= k and j ∈ B, then including j into the sets has no effect on the length
of a minimal chain, i.e., mc(S∪{j}, k) = mc(S, k) andmc(S′∪{j}, k) = mc(S′, k).
In any case, mc(S ∪ {j}, k)−mc(S, k) = mc(S′ ∪ {j}, k)−mc(S′, k).
Finally, suppose that k ∈ B, j ∈ A and i ∈ argmin{pi′ | i′ ∈ P(k)} with pi > 0. If
j /∈ P(k), then including j to any of the sets has no effect, i.e., mc(S ∪ {j}, k) =
mc(S, k) and mc(S′∪ {j}, k) = mc(S′, k). For j ∈ P(k), it holds mc(S∪{j}, k)−
mc(S, k) ∈ {−pi, 0}, depending on whether or not S ∩ P(k) = ∅. Similarly
for S′. If mc(S ∪ {j}, k) −mc(S, k) = −pi, then mc(S ∪ {j}, k) −mc(S, k) ≤
mc(S′∪{j}, k)−mc(S′, k) holds in any case. Further,mc(S∪{j}, k)−mc(S, k) = 0
implies that adding j to S has no effect on the length of a minimal chain. So
S already contains a job in P(k), i.e., S ∩ P(k) 6= ∅. Since S ⊆ S′ we get that
also S′ ∩P(k) 6= ∅, and thus mc(S′ ∪ {j}, k)−mc(S′, k) = 0. On the other hand,
mc(S′ ∪ {j}, k) − mc(S′, k) = −pi implies S′ ∩ P(k) = ∅ because adding j to
S′ affects the length of a minimal chain. Since S′ ⊇ S, we get S ∩ P(k) = ∅,
so mc(S ∪ {j}, k) − mc(S, k) = −pi. Hence, mc(·, k) is supermodular if G is
bipartite.

118

4.5 Completion Time Formulation

To see that mc(·, k) is not necessarily submodular, consider the instance in
Figure 4.9 (left), which is bipartite. For S = ∅ and S′ = {i}, we obtain

mc(S ∪ {j}, k)−mc(S, k) = −1 < 0 = mc(S′ ∪ {j}, k)−mc(S′, k). (4.45)

So, mc(·, k) is not submodular.
(iii) The instances depicted in Figure 4.9 are both intrees. We already observed that

mc(·, k) is not necessarily submodular, see (4.45) and Figure 4.9 (left). For the
instance on the right of Figure 4.9, set S = {i} and S′ = {i, j′}. Then

mc(S ∪ {j}, k)−mc(S, k) = 0 > −1 = mc(S′ ∪ {j}, k)−mc(S′, k). (4.46)

So, the minimal chain function mc(·, k) is neither submodular nor supermodular
for intrees that are no chains. 2

Recall from Figure 1.1 that Lemma 4.22 indeed covers all graph classes from
Section 1.1.2. In particular, the minimal chain function is neither supermodular
nor submodular for inforests or general acyclic graphs, and it is supermodular and
submodular for chains and outtrees.

4.5.2 The Minimal Chain Relaxation

Recall the parallel inequalities (Proposition 4.1) of Wolsey [167] and Queyranne [139]
and the definition of generalized minimal chains (Definition 4.21). For k ∈ N , we define
a function gk : 2N → N0 via

gk(S) := 1
2

(∑
j∈S

pj +mc(S, k)
)2

+ 1
2

(∑
j∈S

p2
j +mc(S, k)2

)
for all S ⊆ N. (4.47)

Note that gk(S) = g(S) if k ∈ S and S ∈ FS is a feasible starting set, since then
mc(S, k) = 0. That is, gk extends the function g from Section 4.2.1. We can generalize
the parallel inequalities (4.1) to what we call minimal chain inequalities. The next
theorem is similar to Proposition 4.1. However, in contrast to Proposition 4.1, we only
get a necessary condition for the feasibility of completion time vectors.

Theorem 4.23
Let N be a set of jobs and G = (N,E∨) a precedence graph. Any completion time
vector C ∈ RN that corresponds to a feasible single-machine schedule w.r.t. G
satisfies the minimal chain inequalities∑

j∈S
pj Cj +mc(S, k)Ck ≥ gk(S) for all k ∈ N and S ⊆ N. (4.48)

119

Chapter 4 Linear Programming Relaxations and LP Based Algorithms

p(L)

p(L)

j

k
p(L)

p(L′)

j

k
p(L)

p(L)− pk

j

k

Fig. 4.10: Excerpt of the two-dimensional Gantt chart corresponding to the optimal schedule
with j ∈ S (left). Note that there are rectangles of jobs in L \ {k} that have zero
height between the rectangles corresponding to j and k. If we replace L ∈MC(S, k)
by some L′ such that k ∈ S ∪ L′ ∈ FS, we obtain the picture in the middle with
p(L′) ≥ p(L). The difference in the area is highlighted in red. The right picture
depicts the situation that a job j ∈ S is scheduled between the first job of L and k.

Proof. For k /∈ S, it holdsmc(S, k) = pk+mc(S∪{k}, k), and thus gk(S) ≥ gk(S∪{k}).
Note that the left hand sides of (4.48) for S and S ∪ {k} coincide in this case. So, for
k ∈ S, (4.48) is dominated by the corresponding inequality for k and S \ {k}. Further,
for k ∈ S ∈ FS, it holds mc(S, k) = 0, so (4.48) is equivalent to the parallel inequality
of [167, 139]:

∑
j∈S

pj Cj ≥ gk(S) = 1
2

(∑
j∈S

pj

)2
+ 1

2

(∑
j∈S

p2
j

)
= g(S). (4.49)

Note that all unit vectors have positive scalar product with the left hand side of (4.48),
so idle time in a schedule only increases the left hand side of (4.48). Hence, it suffices
to show that all completion time vectors of schedules without idle time satisfy (4.48)
for k ∈ N and S ⊆ N \ {k} with S /∈ FS.
Fix k ∈ N and S ⊆ N \ {k} such that S /∈ FS is not a feasible starting set. Let

L ∈ MC(S, k) be a minimal chain and note that k ∈ L. We define weights wj = pj
for j ∈ S, wk = mc(S, k) and wj = 0 for j ∈ N \ (S ∪ {k}). Consider a schedule
(which is not necessarily feasible) that processes all jobs in S before those in L, and all
jobs in N \ (S ∪ L) last. Further, k shall be the last job in L. Similar to Figure 4.2
in Section 4.2.1, one can verify that the objective value of such a schedule is equal
to gk(S). Figure 4.10 (left) illustrates an excerpt of the two-dimensional Gantt chart.
We now argue why any feasible schedule has an objective value of at least gk(S).

Clearly, processing jobs in N \ (S ∪ L) before k increases the objective function value.
By the definition of L ∈ MC(S, k), altering L, i.e., exchanging some jobs in L, only
increases the width of the rectangle corresponding to L. That is, among all feasible
schedules, the contribution of k to the area of the Gantt chart is minimal if k is preceded
by the jobs in L \ {k}, see Figure 4.10 (middle).

120

4.5 Completion Time Formulation

By Smith’s rule [157], the objective value of the schedule is independent of the
particular order of the jobs in S ∪ {L}, where we interpret L as a single job (all “jobs”
in S ∪ {L} have Smith ratio equal to 1). Suppose we want to schedule a job j ∈ S
between the first job of L and k. By Smith’s rule, we can assume that j is the job
that directly precedes the first job of L in the schedule. Then, by moving j between
the first job of L and k, the completion time of j is increased, whereas the completion
time of k remains, see Figure 4.10 (right). Thus, the objective function value increases.
Hence, no feasible schedule has lower objective value than the schedule that processes
the jobs in the order S → (L \ {k}) → k → (N \ (S ∪ L)). Recall that this schedule
has objective value equal to gk(S), so any feasible schedule satisfies (4.48). 2

Note that inequality (4.48) is satisfied with equality for a feasible schedule that
processes the jobs in S ∪ L before those in N \ (S ∪ L) and schedules the jobs in L
contiguously with k being the last job in L. Theorem 4.23 suggests the following
natural minimal chain relaxation for 1 | or-prec |

∑
wjCj :

min
∑
j∈N

wj Cj (4.50a)

s.t.
∑
j∈S

pj Cj +mc(S, k)Ck ≥ gk(S) ∀ k ∈ N, ∀S ⊆ N, (4.50b)

Cj ≥ 0 ∀ j ∈ N. (4.50c)

The parallel inequalities are implicitly contained in (4.50b) for k ∈ S ∈ FS. Note
that it is not clear how to separate constraints (4.50b) in polynomial time. That is, it
is not clear whether LP (4.50) can be solved in polynomial time, which is in contrast to
the corresponding completion time LP (4.4) for AND-scheduling [139, 148, 71]. Even
if we could solve LP (4.50) in polynomial time, scheduling the jobs in non-decreasing
order of their LP values, similar to [148], does not necessarily yield a feasible schedule.
Let ` ∈ N. Consider a bipartite OR-scheduling instance with n = 2`+ 1 jobs and

sets A = {a, i1, . . . , i`} and B = {j1, . . . , j`}. The processing times and weights are
pa = `

2 , wa = 0, and piq = wjq = 1, wiq = pjq = 0 for all q ∈ [`]. The predecessors of
jobs in B are P(jq) = {a, iq} for all q ∈ [`]. Figure 4.11 on the next page illustrates the
precedence graph. One can check that the vector C defined as Cjq = 1, Ciq = q + 1
for all q ∈ [`] and Ca = 3

2` + 1 is feasible for LP (4.50), see proof of Lemma 4.24.
Constraints (4.50b) with k = jq and S = ∅ imply Cjq ≥ mc(∅, jq) = 1 for all q ∈ [`].
Since the jobs in {j1, . . . , j`} are the only ones with non-zero weight, C is an optimal
solution for LP (4.50). It satisfies Cjq < Ciq < Ca for all q ∈ [`]. Thus, scheduling the
jobs in non-decreasing order of their Cj values does not yield a feasible solution.
The above instance also shows that the gap of LP (4.50) can grow linearly in the

number of jobs, even for instances with bipartite precedence graphs and ∆ = 2. Recall
that, for AND-scheduling, the gap between an optimal LP solution of LP (4.4) and an
optimal feasible schedule is equal to 2 [148, 71].

121

Chapter 4 Linear Programming Relaxations and LP Based Algorithms

j1 j2 · · · j`

i1 i2 · · · i`

a

Fig. 4.11: Instance that rules out a list scheduling algorithm with the LP values of an optimum
solution of LP (4.50) and for which LP (4.50) exhibits an “integrality gap” that
is linear in the number of jobs. The processing times and weights are pa = `

2 ,
wa = wiq = pjq = 0, and wjq = piq = 1 for all q ∈ [`].

Lemma 4.24
There is a family of instances such that the gap between an optimal solution of LP (4.50)
and an optimal schedule is Ω(n).

Proof. Consider the instance in Figure 4.11 described above. It holds mc(∅, iq) =
mc(∅, jq) = 1 < `

2 = mc(∅, a) for all q ∈ [`]. Note that ∆ = 2. Due to the structure
of the precedence relation, there are only two reasonable ways to schedule the jobs
that are feasible. Let C ′ and C ′′ be the completion time vectors of schedules that
order the jobs a → {j1, . . . , j`} → {i1, . . . , i`} and {iq → jq} → a, respectively. The
notion {iq → jq} indicates that we schedule pairs iq → jq for all q ∈ [`] consecutively
in arbitrary order. The objective function values of C ′ and C ′′ are equal to `2

2 and∑`
q=1 q = `(`+1)

2 , respectively. One can easily verify that any other schedule, which is
not of a similar form as C ′ and C ′′, has a strictly larger objective value than C ′ or C ′′.
Since `2

2 < `(`+1)
2 , C ′ is an optimal schedule with an objective value of Ω(n2).

Recall the solution C defined as Cjq = 1, Ciq = q + 1 for all q ∈ [`] and Ca = 3
2`+ 1.

The objective function value of C is equal to ` ∈ O(n), so the gap of the objective
function values of C ′ and C is Ω(n). It remains to be shown that C is feasible
for LP (4.50), i.e., it satisfies constraints (4.50b). Note that C corresponds to a
schedule with idle time on the single machine (i.e., no jobs overlap) of the following
form: idle → {j1, . . . , j`} → {i1, . . . , i`} → idle → a. That is, it satisfies the parallel
inequalities

∑
j∈S pj Cj ≥ g(S) for all S ⊆ N of [167, 139]. We show that C also

satisfies constraints (4.50b).
Let k ∈ A and S ⊆ N . The value of mc(S, k) is equal to 0 (if k ∈ S) or pk (if k /∈ S).

In either case, we obtain

gk(S) = 1
2

(∑
j∈S∪{k}

pj

)2
+ 1

2

(∑
j∈S∪{k}

p2
j

)
= g(S ∪ {k}), (4.51)

122

4.5 Completion Time Formulation

and, thus, ∑
j∈S

pj Cj +mc(S, k)Ck =
∑

j∈S∪{k}
pj Cj ≥ g(S ∪ {k}) = gk(S). (4.52)

Recall that pj = 0 for j ∈ B, i.e., all terms in (4.50b) for j ∈ B ∩ S are zero. So, it
suffices to restrict to S ⊆ A in the following. Let k = jq ∈ B for some q ∈ [`], and set
h = |S ∩ {i1, . . . , i`}| ≤ `. First, suppose a ∈ S, so mc(S, k) = 0. It holds

gk(S) = 1
2

(
`

2 + h

)2
+ 1

2

(
`2

4 + h

)
= `2

4 + 1
2 h

2 + `+ 1
2 h. (4.53)

We obtain ∑
j∈S

pj Cj +mc(S, k)Ck = paCa +
∑

i∈S∩{i1,...,i`}
piCi

≥ `

2

(3
2`+ 1

)
+

h∑
q=1

(q + 1) ≥ `2

4 +
(
`

2 + 1
)
h+ h(h+ 1)

2

≥ `2

4 + `+ 1
2 h+ 1

2h
2 = gk(S).

(4.54)

The first inequality holds with equality if the h jobs in S ∩ {i1, . . . , i`} are those with
lowest indices, otherwise the inequality is strict. For the second inequality, we use
`+ 1 ≥ h.
If a /∈ S, and iq ∈ S, we get mc(S, k) = 0 and gk(S) = 1

2 h
2 + 1

2 h = h(h+1)
2 . Similar

to before, we obtain∑
j∈S

pj Cj +mc(S, k)Ck =
∑

i∈S∩{i1,...,i`}
piCi ≥

h∑
q=1

(q + 1) ≥ h(h+ 1)
2 = gk(S). (4.55)

Finally, if P(k) ∩ S = ∅, then mc(S, k) = 1. So,

gk(S) = 1
2(h+ 1)2 + 1

2(h+ 1) = h+ 1
2 (h+ 2), (4.56)

and ∑
j∈S

pj Cj +mc(S, k)Ck =
∑

i∈S∩{i1,...,i`}
piCi + Ck ≥

h∑
q=1

(q + 1) + 1

= h(h+ 1)
2 + h+ 1 = h+ 1

2 (h+ 2) = gk(S).

(4.57)

Hence, C satisfies constraints (4.50b) for all k ∈ N and S ⊆ N , and is feasible for
LP (4.50). 2

Lemma 4.24 shows that one needs further (stronger) valid inequalities than the
minimal chain inequalities (4.50b) to obtain an LP based constant-factor approximation
algorithm similar to, e.g., [148], for (bipartite) OR-scheduling.

123

Chapter 4 Linear Programming Relaxations and LP Based Algorithms

4.6 Open Problems
Lemmas 4.12 and 4.24 indicate that the linear ordering formulation and completion
time formulation fail to derive LP based approximation algorithms for OR-scheduling
problems. Therefore, we base our algorithms in Section 4.3 on time-indexed linear
programs. The approximation ratios of 2∆ for bipartite AND/OR-scheduling (Theo-
rem 4.4) and 4 for all-but-one min-sum set cover (Theorem 4.10) yield upper bounds on
the integrality gaps of LPs (4.14) and (4.27), respectively. For LP (4.27), Lemma 4.11
gives a matching lower bound of 4 and shows that the analysis of the 4-approximation
algorithm is tight. It is not clear whether the analysis of Algorithm 5 in Section 4.3.1
is best possible. In view of the integrality gaps in Sections 4.4 and 4.5, it would be
interesting to obtain stronger bounds on the integrality gap of LP (4.14).
Problem 4.25
What is the integrality gap of the time-indexed LP (4.14)?

Erlebach, Kääb and Möhring [43] presented a lower bound of 2(logn)1−γ with γ =
(log logn)−c and 0 < c < 1

2 on the approximability for AND/OR-scheduling. The set
of jobs in the reduction of [64, 96] from Label Cover consists of five disjoint sets
N1 ∪̇N2 ∪̇N3 ∪̇N4 ∪̇N5 and the precedence graph is of a layered OR/AND/OR/AND
structure, i.e., E∧ ⊆ (N2×N3)∪ (N4×N5) and E∨ ⊆ (N1×N2)∪ (N3×N4). Further,
the graph restricted to the set N \N1 is an intree, see [64, 96]. Although this graph
already seems very restricted, the precedence graph for a bipartite AND/OR-scheduling
instance is not of this structure. Hence, there might be a better (or even constant-factor)
approximation algorithm for this case. Recall that the reduction from Hitting Set to
bipartite AND/OR-scheduling shows that there is no constant-factor approximation
if E∧ ∩ (B × B) 6= ∅ in general, unless P = NP. Note that the precedence relation
E∧∩(B×B) in the reduction is a bipartite intree, i.e., already very restrictive. However,
constant-factor approximation algorithms are within the realms of possibility if, for
instance, E∧ ⊆ A×A.
Problem 4.26
Are there constant-factor approximation algorithms for restricted cases of bipartite
AND/OR-scheduling?

Answering this question in the affirmative could also give an answer to the planted
dense subgraph conjecture [24, 122]. Recall that, if the conjecture is true, obtaining
a constant-factor approximation for precedence-constrained min-sum set cover is NP-
hard [122]. Hence, if we had a constant-factor approximation algorithm for bipartite
AND/OR-scheduling with E∧ ⊆ A×A, this would disprove the planted dense subgraph
conjecture.
Problem 4.27
Prove or disprove the planted dense subgraph conjecture.

124

4.6 Open Problems

Since the approximation factor for bipartite AND/OR-scheduling only depends on
the parameter ∆, we obtain a 4-approximation for precedence-constrained min-sum
vertex cover (Corollary 4.7). The unconstrained version of min-sum vertex cover can
be approximated within a factor of 16/9 [13] and is APX-hard [45]. That is, there is
an ε > 0 such that it is NP-hard to approximate MSVC better than 1 + ε. Natural
open questions are to improve the 16/9-approximation of [13], to improve the lower
bound on the approximation factor, or to improve the approximation factor of 4 for
precedence-constrained MSVC.

Problem 4.28
Close the gap of [1 + ε; 4] in the approximation guarantee of precedence-constrained
min-sum vertex cover.

In Section 4.3.2, we present a tight 4-approximation algorithm for all-but-one min-
sum set cover. Feige, Lovász and Tetali [45] showed that 4 is best possible for min-sum
set cover, unless P = NP. This gives a lower bound of 4 on the approximability of
generalized min-sum set cover. For the special case of all-but-one min-sum set cover,
the only known lower bound is APX-hardness from min-sum vertex cover [45].

Problem 4.29
Is there a (combinatorial) (4− ε)-approximation algorithm for all-but-one min-sum set
cover?

Even though the LP formulations in linear ordering and completion time variables
seem to fail in the presence of OR-precedence constraints (Lemmas 4.12 and 4.24), one
could try to find stronger valid inequalities for either of these formulations that cut off
the presented counterexamples. To solve the completion time formulation LP (4.50) in
polynomial time, we also require a polynomial-time separation oracle for the minimal
chain inequalities (4.50b).

Problem 4.30
Can constraints (4.50b) be separated in polynomial time?

125

Chapter 5

Preemptive Concurrent Open Shop with
Release Dates

In this last chapter, we consider a scheduling environment that is different from the
previously considered problems. We introduce the setting and give some related work in
Section 5.1, and then devise a 2-approximation for the preemptive variant in Section 5.2.

5.1 Introduction and Related Work

The problem considered here is the preemptive variant of concurrent open shop with
release dates. Let m,n ∈ N. We are given a set M of m machines and a set N of n
jobs. Each job j ∈ N consists of m operations {Oij | i ∈ M}, one for each machine.
Operation Oij requires pij ≥ 0 units of time on machine i ∈M and is released at time
rij ≥ 0. An operation may have zero processing time, but we assume there is at least
one operation of each job and on each machine that has non-zero processing time.
Otherwise, we may disregard this job or machine, respectively. Finally, each job j ∈ N
is assigned a non-negative weight wj ≥ 0. Similar to Section 1.1.4, we can assume that
all data are integral by scaling suitably.

The completion time of operation Oij is denoted by Cij , and it is defined as the first
point in time at which its processing is completed. The completion time of job j ∈ N
is then defined as the completion time of its latest operation, i.e., Cj := maxi∈M Cij .

Definition 5.1 (Preemptive Concurrent Open Shop with Release Dates)
Let M be a set of machines and N a set of jobs with operations {Oij | i ∈M} for
each j ∈ N . A schedule is called feasible if

(i) operation Oij is processed for pij units of time by machine i,
(ii) no operation Oij starts before its release date rij , and

(iii) every machine processes at most one operation at a time.

Note that operations may be preempted. The task is to find a feasible schedule
that minimizes the sum of weighted completion times,

∑
j∈N wj Cj .

127

Chapter 5 Preemptive Concurrent Open Shop with Release Dates

O11 O12 O11

O22 O21

p21

0 r12

C22

C2 C11
C1

time

Fig. 5.1: A feasible preemptive schedule for two jobs and two machines. Operation O11 is
preempted so that O12 can start at its release date (all other release dates are equal
to zero). The lengths of the operations indicate the processing times.

Following the notation of [116], we denote this problem by PD | rij , pmtn |
∑
wjCj

in an extension of the notation of [68]. Figure 5.1 illustrates a feasible schedule for
preemptive concurrent open shop with release dates for two jobs and two machines. If
m = 1 or if all operations of a job have equal processing times (pij = pj) and equal
release dates (rij = rj), then the problem is equivalent to the single-machine problem
1 | rj , pmtn |

∑
wjCj , which is already strongly NP-hard [106]. If all operations of a

job have equal release dates, i.e. rij = rj , we call the release dates job-dependent. In
the related open shop problem, no two operations of the same job may be scheduled
simultaneously. This is obviously more restrictive, and the schedule in Figure 5.1 would
not be feasible for open shop. We refer to [111, 27, 136, 114] for more details.

Related Work. Concurrent open shop scheduling was first studied by Ahmadi and
Bagchi [4], and is known to be strongly NP-hard, even if m = 2 and all release dates
are trivial [168]. In the absence of release dates, Wang and Chen [163] presented an
approximation algorithm with a guarantee of 16

3 based on an interval-indexed linear
program. Several research groups decreased the approximation factor to 2 using LP
relaxations in completion time variables [29, 55, 117, 121]. The algorithms in [29, 55,
117] solve the LPs exactly, whereas Mastrolilli et al. [121] presented a combinatorial
Greedy algorithm and used the LP only for the analysis. Using a construction of [121],
Bansal and Khot [16] and Kumar et al. [105] independently showed that 2 is essentially
best possible under a variant of the Unique Games Conjecture [100]. Sachdeva and
Saket [143] strengthened this inapproximability result and proved that there is no
(2− ε)-approximation, unless P = NP. Note that there is no benefit in preemption if
all release dates are trivial. Thus, the 2-approximations and inapproximability results
carry over to the preemptive variant without release dates.

128

5.2 A 2-Approximation Algorithm

To the best of the author’s knowledge, concurrent open shop has only been consi-
dered with job-dependent release dates, rij = rj , so far and not with general release
dates rij . Non-preemptive concurrent open shop with job-dependent release dates can
be approximated within a factor of 3 [55, 117, 5]. The algorithms of Garg, Kumar and
Pandit [55] and Leung, Li and Pinedo [117] both solve an LP relaxation in completion
time variables and then schedule the operations in non-decreasing order of their LP
solution values. Ahmadi et al. [5] consider a more general problem of scheduling coflows
and propose a combinatorial 3-approximation algorithm that is analyzed via an LP
in completion time variables and that generalizes the 2-approximation of [121]. Im et
al. [87] discuss matroid coflows and, as a by-product, present a (2+ε)-approximation for
preemptive concurrent open shop scheduling with job-dependent release dates. Their
algorithm is based on a time-indexed linear program.

5.2 A 2-Approximation Algorithm
We observe that a standard linear programming relaxation together with an algorithm
of Hall et al. [71] for the related single-machine problem, 1 | rj , pmtn |

∑
wjCj , already

achieves an approximation guarantee of 2 for PD | rij , pmtn |
∑
wjCj . In contrast

to previous work [55, 117, 5, 87], we consider a more general problem, where each
operation Oij has an individual release date rij . Our approach avoids the additive
ε > 0 in the approximation guarantee of [87], and, thus, we obtain the best possible
approximation factor for this problem (unless P = NP, see [143]).

We introduce the LP relaxation of the problem in Section 5.2.1. Then, we show that
scheduling the operations on each machine in non-decreasing order of their LP solution
according to a simple list scheduling algorithm of [71] gives a 2-approximate solution
in Section 5.2.2.

5.2.1 A Valid LP Relaxation
The LP relaxation is based on completion time variables introduced by Wolsey [167]
and Queyranne [139], see Section 4.2.1. The relaxation presented here generalizes the
ones of [141, 60, 61, 62] for the single-machine problem and of Mastrolilli et al. [121]
for concurrent open shop scheduling without release dates. Let Cij be a variable that
indicates the completion time of operation Oij in a schedule. Note that for every i ∈M ,
the schedule restricted to the operations {Oij | j ∈ N} is a feasible single-machine
schedule. Recall from Proposition 4.1 that any schedule satisfies the constraints

∑
j∈S

pij Cij ≥
1
2

(∑
j∈S

pij

)2
+ 1

2
∑
j∈S

p2
ij ∀S ⊆ N, ∀ i ∈M. (5.1)

129

Chapter 5 Preemptive Concurrent Open Shop with Release Dates

pi(S)

pi(S)

pij

pij

pi(S)

ri(S)

pij

pij

Fig. 5.2: Geometric interpretation of (5.1) (left) and the corresponding shifted Gantt chart for
constraints (5.2) (right). The gray area on the left underneath the upper envelope of
the rectangles (blue line) equals the right hand side of (5.1). The area on the right
corresponds to the right hand side of (5.2). It equals the blue area, which is precisely
ri(S) pi(S), plus the gray area on the left.

For S ⊆ N and i ∈ M , let pi(S) :=
∑
j∈S pij and ri(S) := minj∈S rij . Let S ⊆ N

such that ri(S) > 0. Recall the interpretation of (5.1) via a two-dimensional Gantt
chart, where the area of the Gantt chart equals the right hand side of (5.1), see
Figure 4.2 in Section 4.2.1 and [42, 63]. No operation in {Oij | j ∈ S} can start before
time ri(S). So, compared to (5.1), the completion time of each operation has to be
increased by at least ri(S) to obtain a feasible schedule. That is, the Gantt chart
is “shifted to the right” by an amount of ri(S), see Figure 5.2. Thus, we obtain the
following valid inequality for all S ⊆ N and i ∈M , see also [141, 60, 61, 62]:

∑
j∈S

pij Cij ≥
1
2

(∑
j∈S

pij

)2
+ 1

2
∑
j∈S

p2
ij + ri(S) pi(S). (5.2)

Using 1
2
∑
j∈S p

2
ij ≥ 0, we relax (5.2) and obtain the valid inequalities

∑
j∈S

pij Cij ≥ pi(S)
(
ri(S) + 1

2 pi(S)
)

∀S ⊆ N, ∀ i ∈M. (5.3)

Thereby, we obtain the following LP relaxation for PD | rij , pmtn |
∑
wjCj with

variables Cj and Cij for j ∈ N and i ∈M :

min
∑
j∈N

wj Cj (5.4a)

s.t.
∑
j∈S

pij Cij ≥ pi(S)
(
ri(S) + 1

2 pi(S)
)

∀i ∈M, ∀S ⊆ N, (5.4b)

Cj ≥ Cij ∀i ∈M, ∀ j ∈ N. (5.4c)

130

5.2 A 2-Approximation Algorithm

Although the number of constraints is exponential, we can solve LP (5.4) in polyno-
mial time by efficiently separating constraints (5.4b), see [141, 60]. For any machine i,
the schedule of operations {Oij | j ∈ N} is a feasible single-machine schedule, which
gives constraints (5.4b). Further, constraints (5.4c) link the completion times of the
operations to the completion time of the respective job and, thus, to the objective
function. So, the optimal objective value

∑
j∈N wj Cj of LP (5.4) is a lower bound on

the optimal objective value of a feasible preemptive schedule. We can relax LP (5.4)
further by removing the variables Cij , dropping constraints (5.4c) and replacing (5.4b)
accordingly:

min
∑
j∈N

wj Cj (5.5a)

s.t.
∑
j∈S

pij Cj ≥ pi(S)
(
ri(S) + 1

2 pi(S)
)

∀i ∈M, ∀S ⊆ N. (5.5b)

Note that if pij 6= 0, we can rewrite constraints (5.5b) for S = {j} and i ∈ M as
Cj ≥ rij + 1

2pij ≥ 0. That is, the completion time of each job is greater or equal than
the release dates of its operations. We assume that, for S = {j} and i ∈ M with
pij = 0, constraints (5.5b) are simplified to Cj ≥ rij , although we do not state this
explicitly in LP (5.5).

5.2.2 Preemptive List Scheduling

In this section, we use an optimal solution of LP (5.5) to construct a preemptive
feasible schedule. To this end, let Cj be the completion time corresponding to a fixed
optimal solution of LP (5.5) of job j ∈ N . We call Cj the fractional completion time
of j. First, we sort the jobs in non-decreasing order of their fractional completion
times Cσ−1(1) ≤ Cσ−1(2) ≤ · · · ≤ Cσ−1(n), where σ : N → [n] is a linear ordering of N ,
and ties are broken arbitrarily. Then, we schedule the i-th operations of the jobs on
machine i according to the preemptive list scheduling algorithm of Hall et al. [71],
which works as follows.

Fix i ∈ M and consider the i-th operations of the jobs in order of the list σ one
at a time. For operation Oij , let t ≥ rij be the first point in time after rij when
machine i is idle. Let t′ > t be maximal such that machine i is idle in the interval [t; t′].
If t′ − t ≥ pij , then operation Oij can be scheduled completely within this interval,
starting at time t. Otherwise, start operation Oij at time t and schedule it for t′−t time
units. Then, preempt Oij at time t′, and continue it at the next point in time when the
machine is idle. Once machine i processed operation Oij for pij time units, pick the
next operation Oik with σ(k) = σ(j) + 1 in the list. Repeat the above procedure until
all operations {Oij | j ∈ N} are scheduled. The complete algorithm is summarized in
Algorithm 6.

131

Chapter 5 Preemptive Concurrent Open Shop with Release Dates

Input: Instance of PD | rij , pmtn |
∑
wjCj

Output: A feasible schedule for PD | rij , pmtn |
∑
wjCj

1 Solve LP (5.5) and let C be an optimal solution;
2 Let σ : N → [n] so that Cσ−1(1) ≤ · · · ≤ Cσ−1(n) (break ties arbitrarily);
3 for i ∈M do
4 for ` = 1, . . . , n do
5 Let j ∈ N such that σ(j) = `, set t′ ← rij and p← pij ;
6 while p > 0 do
7 t← min{s ≥ t′ |machine i is idle at time s};
8 t′ ← max{s > t |machine i is idle in [t; s]};
9 if t′ − t ≥ p then

10 schedule operation Oij in [t; t+ p] on machine i, set p← 0;
11 else
12 schedule operation Oij partially in [t; t′] on machine i;
13 set p← p− (t′ − t);
14 end
15 end
16 end
17 end
18 return schedule;

Algorithm 6: A 2-approximation algorithm for PD | rij , pmtn |
∑
wjCj .

Note that if operation Oij has to be preempted at time t′, then another operation
Oik with σ(k) < σ(j) is released at time t′. Let Cij be the completion time of operation
Oij in the schedule returned by Algorithm 6. Clearly, we get a feasible preemptive
single-machine schedule on every machine i ∈M . The following lemma is similar to
Lemma 2.8 in [71]. We include the proof for completeness.

Lemma 5.2
The completion times of the schedule returned by Algorithm 6 satisfy Cij ≤ 2Cj for
all j ∈ N and all i ∈M .

Proof. Fix i ∈M , and rename the jobs such that C1 ≤ C2 ≤ · · · ≤ Cn. Let j ∈ N and
consider the iteration of the algorithm where operation Oij was placed on machine i.
That is, consider a partial schedule where only jobs in [j] = {1, . . . , j} are placed on
the machine.
Let Sik be the starting time of operation Oik. Let S ⊆ {k ∈ [j] |Cik ≤ Cij} be the

set of jobs such that there is no idle time in the interval [Sik;Cij] in the partial schedule.
Note that the set S is not empty, since j ∈ S. Let j′ ∈ S be the job with rij′ = ri(S).

132

5.3 Open Problems

There is no idle time in [rij′ ;Cij′] because we could have scheduled (parts of) operation
Oij′ earlier otherwise. So, in the interval [ri(S);Cij], machine i is busy with jobs in S
and all jobs in S are completed. Thus,

Cij = ri(S) +
∑
k∈S

pik ≤ 2
(
ri(S) + 1

2pi(S)
)
. (5.6)

If pi(S) = 0, then Cij = rij ≤ Cj ≤ 2Cj by constraints (5.5b). Else,

pi(S)Cij ≤ 2 pi(S)
(
ri(S) + 1

2 pi(S)
)
≤ 2

∑
k∈S

pik Ck ≤ 2 pi(S)Cj . (5.7)

The first and second inequality are due to (5.6) and (5.5b), respectively. The last
inequality holds, since Ck ≤ Cj for all k ∈ S ⊆ [j]. The claim now follows if we divide
both sides of (5.7) by pi(S) > 0. 2

In summary, we obtain the following main result of this chapter.

Theorem 5.3
Algorithm 6 is a 2-approximation algorithm for PD | rij , pmtn |

∑
wjCj.

Proof. Recall that we can solve LP (5.5) and construct the schedules on each machine
i ∈M in polynomial time. That is, Algorithm 6 runs in polynomial time. If we process
the operations on machine i according to Algorithm 6, we obviously obtain a feasible
schedule for PD | rij , pmtn |

∑
wjCj . The completion time of job j is Cj = maxi∈M Cij

and Lemma 5.2 yields∑
j∈N

wj Cj =
∑
j∈N

wj max
i∈M

Cij ≤
∑
j∈N

wj max
i∈M

2Cj = 2
∑
j∈N

wj Cj . (5.8)

This proves the claim. 2

Recall that we can assume that all data are integral, and observe that there is no
need to preempt if pij ∈ {0, 1} for all i ∈M and j ∈ N . So, Theorem 5.3 immediately
yields the following corollary.

Corollary 5.4
Algorithm 6 is a 2-approximation algorithm for PD | rij , pij ∈ {0, 1} |

∑
wjCj.

5.3 Open Problems
Due to a result of [143], the approximation ratio of Theorem 5.3 is tight, unless P = NP.
However, Algorithm 6 requires the “heavy machinery” of separating constraints (5.5b).

133

Chapter 5 Preemptive Concurrent Open Shop with Release Dates

The (2 + ε)-approximation algorithm of Im et al. [87] does not need separation, but
is based on a time-indexed LP the size of which is exponential in the input. When
decreasing the size of this LP to be polynomial in the input, the approximation
guarantee increases by ε > 0, similar to our results in Section 4.3. It would be an
interesting research question to design a purely combinatorial algorithm similar to
the algorithms for concurrent open shop without release dates [121] and coflows with
release dates [5].
Problem 5.5
Is there a combinatorial 2-approximation algorithm for PD | rij , pmtn |

∑
wjCj?

It seems natural that applying a non-preemptive list scheduling algorithm instead of
the algorithm of [71] in Algorithm 6 should give a 2-approximation for PD | rij |

∑
wjCj .

So far, the best approximation ratio for non-preemptive concurrent open shop with
job-dependent release dates is 3 [55, 117, 5]. All these algorithms use LPs in completion
time variables with constraints Cij ≥ rij + pij and (5.1), although in [5] it is only used
for the analysis of a combinatorial algorithm, similar to [121]. One possibility to obtain
an approximation factor < 3 might be to replace these constraints by (5.2) or (5.3) and
find a different way of analyzing the approximate solution.
Problem 5.6
Is there a 2-approximation algorithm for PD | rij |

∑
wjCj?

Note that the algorithm of Hall et al. [71] can cope with AND-precedence constraints
on the set of jobs. If the ordering σ in Algorithm 6 respects these AND-precedence
constraints, a 2-approximation for PD | rij |

∑
wjCj would also yield a 2-approximation

for the single-machine problem 1 | rj , prec |
∑
wjCj . For this problem, there was some

progress in the attempt of decreasing the approximation ratio to 2 recently [155, 153],
but a clean 2-approximation is still open.
Problem 5.7
Is there a 2-approximation algorithm for 1 | rj , prec |

∑
wjCj?

Recall that PD | rj , pmtn |
∑
wjCj is equivalent to the single-machine problem

1 | rj , pmtn |
∑
wjCj if pij = pj for all j ∈ N and i ∈ M . The latter problem is

strongly NP-hard [106], but it admits a PTAS [3]. For unit processing times, there
is no need to preempt, and 1 | rj , pj = 1 |

∑
wjCj is solvable in polynomial time [17].

That is, PD | rj , pij = 1 |
∑
wjCj can be solved in polynomial time. However, it is

not clear what the complexity of PD | rij , pij ∈ {0, 1} |
∑
wjCj is, i.e., the variant in

Corollary 5.4 with individual release dates and unit processing time operations, but
where a job might not have an operation on every machine.
Problem 5.8
Is there a polynomial-time algorithm for PD | rij , pij ∈ {0, 1} |

∑
wjCj?

134

Bibliography

[1] H. M. Abdel-Wahab and T. Kameda. “Scheduling to minimize maximum cu-
mulative cost subject to series-parallel precedence constraints”. In: Operations
Research 26.1 (1978), pp. 141–158.

[2] D Adolphson and T. C. Hu. “Optimal linear ordering”. In: SIAM Journal on
Applied Mathematics 25.3 (1973), pp. 403–423.

[3] F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis,
M. Queyranne, M. Skutella, C. Stein, and M. Sviridenko. “Approximation
schemes for minimizing average weighted completion time with release dates”.
In: Proceedings of the 40th Annual Symposium on Foundations of Computer
Science. IEEE, 1999, pp. 32–43.

[4] R. H. Ahmadi and U. Bagchi. “Scheduling of multi-job customer orders in
multi-machine environments”. In: ORSA/TIMS, Philadelphia (1990).

[5] S. Ahmadi, S. Khuller, M. Purohit, and S. Yang. “On scheduling coflows”. In:
Proceedings of the 19th International Conference on Integer Programming and
Combinatorial Optimization. Vol. 10328. LNCS. Springer, 2017, pp. 13–24.

[6] S. Alpern and T. Lidbetter. “Mining coal or finding terrorists: The expanding
search paradigm”. In: Operations Research 61.2 (2013), pp. 265–279.

[7] C. Ambühl and M. Mastrolilli. “Single machine precedence constrained schedu-
ling is a vertex cover problem”. In: Algorithmica 53.4 (2009), 488–503.

[8] C. Ambühl, M. Mastrolilli, N. Mutsanas, and O. Svensson. “On the approximabi-
lity of single-machine scheduling with precedence constraints”. In: Mathematics
of Operations Research 36.4 (2011), pp. 653–669.

[9] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. “The hardness of approximate
optima in lattices, codes, and systems of linear equations”. In: Journal of
Computer and System Sciences 54.2 (1997), pp. 317–331.

[10] Y. Azar, I. Gamzu, and X. Yin. “Multiple intents re-ranking”. In: Proceedings
of the 41st Annual ACM Symposium on Theory of Computing. ACM, 2009,
pp. 669–678.

[11] E. Balas. “On the facial structure of scheduling polyhedra”. In: Mathematical
Programming Study 24 (1985), pp. 179–218.

135

Bibliography

[12] N. Bansal. Scheduling: Open problems old and new. MAPSP 2017, www.mapsp2017.
ma.tum.de/MAPSP2017-Bansal.pdf. last checked: June 10, 2020.

[13] N. Bansal, J. Batra, M. Farhadi, and P. Tetali. “Improved approximations for
min sum vertex cover and generalized min sum set cover”. In: arXiv:2007.09172
(2020).

[14] N. Bansal, A. Gupta, and R. Krishnaswamy. “A constant factor approximation
algorithm for generalized min-sum set cover”. In: Proceedings of the 21st Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2010, pp. 1539–1545.

[15] N. Bansal and S. Khot. “Optimal long code test with one free bit”. In: Proceedings
of the 50th Annual IEEE Symposium on Foundations of Computer Science. IEEE,
2009, pp. 453–462.

[16] N. Bansal and S. Khot. “Inapproximability of hypergraph vertex cover and
applications to scheduling problems”. In: Proceedings of the 37th Internatio-
nal Colloquium on Automata, Languages and Programming. Vol. 6198. LNCS.
Springer, 2010, pp. 250–261.

[17] P. Baptiste. “Scheduling equal-length jobs on identical parallel machines”. In:
Discrete Applied Mathematics 103.1-3 (2000), pp. 21–32.

[18] A. Bar-Noy, M. Bellare, M. M. Halldórsson, H. Shachnai, and T. Tamir. “On
chromatic sums and distributed resource allocation”. In: Information and Com-
putation 140.2 (1998), pp. 183–202.

[19] A. Bar-Noy, M. M. Halldórsson, and G. Kortsarz. “A matched approximation
bound for the sum of a greedy coloring”. In: Information Processing Letters
71.3-4 (1999), pp. 135–140.

[20] A. Bar-Noy and G. Kortsarz. “Minimum color sum of bipartite graphs”. In:
Journal of Algorithms 28.2 (1998), pp. 339–365.

[21] R. Bar-Yehuda and S. Even. “A linear-time approximation algorithm for the
weighted vertex cover problem”. In: Journal of Algorithms 2.2 (1981), pp. 198–
203.

[22] B. Braschi and D. Trystram. “A new insight into the Coffman–Graham algo-
rithm”. In: SIAM Journal on Computing 23.3 (1994), pp. 662–669.

[23] P. Brucker, M. R. Garey, and D. S. Johnson. “Scheduling equal-length tasks
under treelike precedence constraints to minimize maximum lateness”. In: Mat-
hematics of Operations Research 2.3 (1977), pp. 275–284.

[24] M. Charikar, Y. Naamad, and A. Wirth. “On approximating target set se-
lection”. In: Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques. Vol. 60. Leibniz International Proceedings in Infor-
matics (LIPIcs). 2016, 4:1–4:16.

136

www.mapsp2017.ma.tum.de/MAPSP2017-Bansal.pdf
www.mapsp2017.ma.tum.de/MAPSP2017-Bansal.pdf

[25] C. Chekuri and R. Motwani. “Precedence constrained scheduling to minimize
sum of weighted completion times on a single machine”. In: Discrete Applied
Mathematics 98.1-2 (1999), pp. 29–38.

[26] C. Chekuri, R. Motwani, B. Natarajan, and C. Stein. “Approximation techniques
for average completion time scheduling”. In: SIAM Journal on Computing 31.1
(2001), pp. 146–166.

[27] B. Chen, C. N. Potts, and G. J. Woeginger. “A review of machine scheduling:
Complexity, algorithms and approximability”. In: Handbook of Combinatorial
Optimization. Springer, 1998, pp. 1493–1641.

[28] B. Chen and A. P. A. Vestjens. “Scheduling on identical machines: How good
is LPT in an on-line setting?” In: Operations Research Letters 21.4 (1997),
pp. 165–169.

[29] Z.-L. Chen and N. G. Hall. Supply chain scheduling: Assembly systems. Tech. rep.
Department of Systems Engineering, University of Pennsylvania, 2000.

[30] F. A. Chudak and D. S. Hochbaum. “A half-integral linear programming re-
laxation for scheduling precedence-constrained jobs on a single machine”. In:
Operations Research Letters 25.5 (1999), pp. 199–204.

[31] V. Chvátal. “A greedy heuristic for the set-covering problem”. In: Mathematics
of Operations Research 4.3 (1979), pp. 233–235.

[32] E. G. Coffman and R. L. Graham. “Optimal scheduling for two-processor
systems”. In: Acta Informatica 1.3 (1972), pp. 200–213.

[33] S. A. Cook. “The complexity of theorem-proving procedures”. In: Proceedings
of the 3rd Annual ACM Symposium on Theory of Computing. ACM, 1971,
pp. 151–158.

[34] J. R. Correa and A. S. Schulz. “Single-machine scheduling with precedence
constraints”. In: Mathematics of Operations Research 30.4 (2005), pp. 1005–
1021.

[35] G. Dantzig, R. Fulkerson, and S. Johnson. “Solution of a large-scale traveling-
salesman problem”. In: Journal of the Operations Research Society of America
2.4 (1954), pp. 393–410.

[36] R. Diestel. Graph Theory. Vol. 173. Graduate Texts in Mathematics. Springer,
2017.

[37] I. Dinur and S. Safra. “The importance of being biased”. In: Proceedings on
34th Annual ACM Symposium on Theory of Computing. ACM, 2002, pp. 33–42.

[38] I. Dinur and S. Safra. “On the hardness of approximating label-cover”. In:
Information Processing Letters 89.5 (2004), pp. 247–254.

137

Bibliography

[39] I. Dinur and D. Steurer. “Analytical approach to parallel repetition”. In: Pro-
ceedings of the 46th Annual ACM Symposium on Theory of Computing. ACM,
2014, pp. 624–633.

[40] J. Du, J. Y.-T. Leung, and G. H. Young. “Scheduling chain-structured tasks
to minimize makespan and mean flow time”. In: Information and Computation
92.2 (1991), pp. 219–236.

[41] M. E. Dyer and L. A. Wolsey. “Formulating the single machine sequencing
problem with release dates as a mixed integer program”. In: Discrete Applied
Mathematics 26.2-3 (1990), pp. 255–270.

[42] W. L. Eastman, S. Even, and I. M. Isaacs. “Bounds for the optimal scheduling
of n jobs on m processors”. In: Management Science 11.2 (1964), pp. 268–279.

[43] T. Erlebach, V. Kääb, and R. H. Möhring. “Scheduling AND/OR-networks
on identical parallel machines”. In: Revised Papers of the 1st International
Workshop on Approximation and Online Algorithms. Vol. 2909. LNCS. Springer,
2003, pp. 123–136.

[44] U. Feige, L. Lovász, and P. Tetali. “Approximating min-sum set cover”. In:
Proceedings of the 5th International Workshop on Approximation Algorithms
for Combinatorial Optimization. Vol. 2462. LNCS. Springer, 2002, pp. 94–107.

[45] U. Feige, L. Lovász, and P. Tetali. “Approximating min sum set cover”. In:
Algorithmica 40.4 (2004), pp. 219–234.

[46] R. Fokkink, T. Lidbetter, and L. A. Végh. “On submodular search and machine
scheduling”. In: Mathematics of Operations Research 44.4 (2019), pp. 1431–1449.

[47] M. Fujii, T. Kasami, and K. Ninomiya. “Optimal sequencing of two equivalent
processors”. In: SIAM Journal on Applied Mathematics 17.4 (1969), pp. 784–789.

[48] G. W. Furnas and J. Zacks. “Multitrees: Enriching and reusing hierarchical
structure”. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 1994, pp. 330–336.

[49] P. Gács and L. Lovász. “Khachiyan’s algorithm for linear programming”. In:
Mathematical Programming Study 14 (1981), pp. 61–68.

[50] D. Gangal and A. G. Ranade. “Precedence constrained scheduling in (2 −
7/(3p+ 1))· optimal”. In: Journal of Computer and System Sciences 74.7 (2008),
pp. 1139–1146.

[51] H. L. Gantt. Work, Wages, and Profits. New York: Engineering Magazine Co.,
1913.

[52] M. R. Garey and D. S. Johnson. “Strong NP-completeness results: Motivation,
examples, and implications”. In: Journal of the ACM 25.3 (1978), pp. 499–508.

138

[53] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. WH Freeman and Company, San Francisco, 1979.

[54] M. R. Garey, D. S. Johnson, and L. J. Stockmeyer. “Some simplified NP-
complete problems”. In: Proceedings of the 6th Annual ACM Symposium on
Theory of Computing. ACM, 1974, pp. 47–63.

[55] N. Garg, A. Kumar, and V. Pandit. “Order scheduling models: Hardness and
algorithms”. In: Proceedings of the 27th International Conference on Foundations
of Software Technology and Theoretical Computer Science. Vol. 4855. LNCS.
Springer, 2007, pp. 96–107.

[56] S. Garg. “Quasi-PTAS for scheduling with precedences using LP hierarchies”.
In: Proceedings of the 45th International Colloquium on Automata, Languages,
and Programming. Vol. 107. Leibniz International Proceedings in Informatics
(LIPIcs). 2018, 59:1–59:13.

[57] D. W. Gillies and J. W.-S. Liu. “Scheduling tasks with AND/OR precedence
constraints”. In: SIAM Journal on Computing 24.4 (1995), pp. 797–810.

[58] D. W. Gillies. “Algorithms to schedule tasks with AND/OR precedence con-
straints”. PhD thesis. University of Illinois at Urbana-Champaign, 1993.

[59] M. X. Goemans. Cited as personal communication in [149]. 1996.
[60] M. X. Goemans. “A supermodular relaxation for scheduling with release dates”.

In: Proceedings of the 5th International Conference on Integer Programming
and Combinatorial Optimization. Vol. 1084. LNCS. Springer, 1996, pp. 288–300.

[61] M. X. Goemans. “Improved approximation algorithms for scheduling with release
dates”. In: Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete
Algorithms. SIAM, 1997, pp. 591–598.

[62] M. X. Goemans, M. Queyranne, A. S. Schulz, M. Skutella, and Y. Wang.
“Single machine scheduling with release dates”. In: SIAM Journal on Discrete
Mathematics 15.2 (2002), pp. 165–192.

[63] M. X. Goemans and D. P. Williamson. “Two-dimensional Gantt charts and a
scheduling algorithm of Lawler”. In: SIAM Journal on Discrete Mathematics
13.3 (2000), pp. 281–294.

[64] M. Goldwasser and R. Motwani. “Intractability of assembly sequencing: Unit
disks in the plane”. In: Proceedings of the 5th International Workshop on
Algorithms and Data Structures. Vol. 1272. LNCS. Springer. 1997, pp. 307–320.

[65] T. F. Gonzalez and D. B. Johnson. “A new algorithm for preemptive scheduling
of trees”. In: Journal of the ACM 27.2 (1980), pp. 287–312.

[66] R. L. Graham. “Bounds for certain multiprocessing anomalies”. In: Bell System
Technical Journal 45.9 (1966), pp. 1563–1581.

139

Bibliography

[67] R. L. Graham. “Bounds on multiprocessing timing anomalies”. In: SIAM Journal
on Applied Mathematics 17.2 (1969), pp. 416–429.

[68] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. “Op-
timization and approximation in deterministic sequencing and scheduling: A
survey”. In: Annals of Discrete Mathematics. Vol. 5. Elsevier, 1979, pp. 287–326.

[69] M. Grötschel, M. Jünger, and G. Reinelt. “Facets of the linear ordering polytope”.
In: Mathematical Programming 33.1 (1985), pp. 43–60.

[70] M. Grötschel, L. Lovász, and A. Schrijver. “The ellipsoid method and its
consequences in combinatorial optimization”. In: Combinatorica 1.2 (1981),
pp. 169–197.

[71] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. “Scheduling to minimize
average completion time: Off-line and on-line approximation algorithms”. In:
Mathematics of Operations Research 22.3 (1997), pp. 513–544.

[72] L. A. Hall and D. B. Shmoys. “Approximation schemes for constrained scheduling
problems”. In: Proceedings of the 30th Annual Symposium on Foundations of
Computer Science. IEEE, 1989, pp. 134–139.

[73] L. A. Hall, D. B. Shmoys, and J. Wein. “Scheduling to minimize average
completion time: Off-line and on-line algorithms”. In: Proceedings of the 7th
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 1996, pp. 142–
151.

[74] F. Happach. “Makespan minimization with OR-precedence constraints”. In:
arXiv:1907.08111 (2019).

[75] F. Happach, L. Hellerstein, and T. Lidbetter. “A general framework for approx-
imating min sum ordering problems”. In: arXiv:2004.05954 (2020).

[76] F. Happach and M. Leichter. “On the generalized min-sum set cover problem
with laminar sets”. In preparation.

[77] F. Happach and A. S. Schulz. “Approximation algorithms and LP relaxations
for scheduling problems related to min-sum set cover”. In: arXiv:2001.07011
(2020).

[78] F. Happach and A. S. Schulz. “Precedence-constrained scheduling and min-sum
set cover”. In: Revised Selected Papers of the 17th International Workshop
on Approximation and Online Algorithms. Vol. 11926. LNCS. Springer, 2020,
pp. 170–187.

[79] R. Hassin and A. Levin. “An approximation algorithm for the minimum latency
set cover problem”. In: Proceedings of the 13th Annual European Symposium on
Algorithms. Vol. 3669. LNCS. Springer, 2005, pp. 726–733.

140

[80] M. Held and R. M. Karp. “The traveling-salesman problem and minimum
spanning trees”. In: Operations Research 18.6 (1970), pp. 1138–1162.

[81] B. Hermans, R. Leus, and J. Matuschke. “Exact and approximation algorithms
for the expanding search problem”. In: arXiv:1911.08959 (2019).

[82] D. S. Hochbaum. “Approximation algorithms for the set covering and vertex
cover problems”. In: SIAM Journal on Computing 11.3 (1982), pp. 555–556.

[83] D. S. Hochbaum. Approximation Algorithms for NP-hard Problems. PWS Pu-
blishing Co., 1997.

[84] D. S. Hochbaum and D. B. Shmoys. “A polynomial approximation scheme for
scheduling on uniform processors: Using the dual approximation approach”. In:
SIAM Journal on Computing 17.3 (1988), pp. 539–551.

[85] W. A. Horn. “Single-machine job sequencing with treelike precedence ordering
and linear delay penalties”. In: SIAM Journal on Applied Mathematics 23.2
(1972), pp. 189–202.

[86] T. C. Hu. “Parallel sequencing and assembly line problems”. In: Operations
Research 9.6 (1961), pp. 841–848.

[87] S. Im, B. Moseley, K. Pruhs, and M. Purohit. “Matroid coflow scheduling”.
In: Proceedings of the 46th International Colloquium on Automata, Languages,
and Programming. Vol. 132. Leibniz International Proceedings in Informatics
(LIPIcs). 2019, 145:1–145:14.

[88] S. Im, M. Sviridenko, and R. van der Zwaan. “Preemptive and non-preemptive
generalized min sum set cover”. In: Mathematical Programming 145.1-2 (2014),
pp. 377–401.

[89] S. Iwata, L. Fleischer, and S. Fujishige. “A combinatorial strongly polynomial
algorithm for minimizing submodular functions”. In: Journal of the ACM 48.4
(2001), pp. 761–777.

[90] S. Iwata, P. Tetali, and P. Tripathi. “Approximating minimum linear ordering
problems”. In: Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques. Vol. 7408. LNCS. Springer, 2012, pp. 206–217.

[91] J. R. Jackson. Scheduling a production line to minimize maximum tardiness.
Tech. rep. 43. Management Science Research Project, University of California,
1955.

[92] K. Jansen. “An EPTAS for scheduling jobs on uniform processors: Using an
MILP relaxation with a constant number of integral variables”. In: SIAM Journal
on Discrete Mathematics 24.2 (2010), pp. 457–485.

[93] B. Johannes. “On the complexity of scheduling unit-time jobs with OR-precedence
constraints”. In: Operations Research Letters 33.6 (2005), pp. 587–596.

141

Bibliography

[94] D. S. Johnson. “Approximation algorithms for combinatorial problems”. In:
Journal of Computer and System Sciences 9.3 (1974), pp. 256–278.

[95] S. M. Johnson. “Optimal two-and three-stage production schedules with setup
times included.” In: Naval Research Logistics Quarterly 1.1 (1954), pp. 61–68.

[96] V. Kääb. “Scheduling with AND/OR-networks”. PhD thesis. Technische Uni-
versiät Berlin, Germany, 2003.

[97] H. Kaplan, E. Kushilevitz, and Y. Mansour. “Learning with attribute costs”.
In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing.
2005, pp. 356–365.

[98] R. M. Karp. “Reducibility among combinatorial problems”. In: Complexity of
Computer Computations. Springer, 1972, pp. 85–103.

[99] L. G. Khachiyan. “A polynomial algorithm in linear programming (in Russian)”.
In: Doklady Akademii Nauk SSSR 244 (1979), 1093–1096.

[100] S. Khot. “On the power of unique 2-prover 1-round games”. In: Proceedings
of the 34th Annual ACM Symposium on Theory of Computing. ACM, 2002,
pp. 767–775.

[101] S. Khot and O. Regev. “Vertex cover might be hard to approximate to within
2− ε”. In: Journal of Computer and System Sciences 74.3 (2008), pp. 335–349.

[102] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms.
Vol. 21. Algorithms and Combinatorics. Springer, 2017.

[103] E. Kubicka and A. J. Schwenk. “An introduction to chromatic sums”. In: Pro-
ceedings of the 17th conference on ACM Annual Computer Science Conference.
ACM. 1989, pp. 39–45.

[104] J. Kulkarni, S. Li, J. Tarnawski, and M. Ye. “Hierarchy-based algorithms for
minimizing makespan under precedence and communication constraints”. In:
Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM. 2020, pp. 2770–2789.

[105] A. Kumar, R. Manokaran, M. Tulsiani, and N. K. Vishnoi. “On LP-based
approximability for strict CSPs”. In: Proceedings of the 22nd Annual ACM-
SIAM Symposium on Discrete Algorithms. SIAM, 2011, pp. 1560–1573.

[106] J. Labetoulle, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. “Preemp-
tive scheduling of uniform machines subject to release dates”. In: Progress in
Combinatorial Optimization. Elsevier, 1984, pp. 245–261.

[107] S. Lam and R. Sethi. “Worst case analysis of two scheduling algorithms”. In:
SIAM Journal on Computing 6.3 (1977), pp. 518–536.

142

[108] E. L. Lawler. “Sequencing jobs to minimize total weighted completion time
subject to precedence constraints”. In: Annals of Discrete Mathematics. Vol. 2.
Elsevier, 1978, pp. 75–90.

[109] E. L. Lawler. “Preemptive scheduling of precedence-constrained jobs on parallel
machines”. In: Deterministic and Stochastic Scheduling. Springer, 1982, pp. 101–
123.

[110] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. The
Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization.
John Wiley & Sons, Inc., 1985.

[111] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. “Sequen-
cing and scheduling: Algorithms and complexity”. In: Handbooks in Operations
Research and Management Science 4 (1993), pp. 445–522.

[112] J. K. Lenstra and A. H. G. Rinnooy Kan. “Complexity of scheduling under
precedence constraints”. In: Operations Research 26.1 (1978), pp. 22–35.

[113] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. “Complexity of machine
scheduling problems”. In: Annals of Discrete Mathematics. Vol. 1. Elsevier, 1977,
pp. 343–362.

[114] J. K. Lenstra and D. B. Shmoys. “Elements of Scheduling”. In: arXiv:2001.06005
(2020).

[115] J. K. Lenstra, D. B. Shmoys, and E. Tardos. “Approximation algorithms for
scheduling unrelated parallel machines”. In: Mathematical Programming 46.1-3
(1990), pp. 259–271.

[116] J. Y.-T. Leung, H. Li, and M. Pinedo. “Order scheduling in an environment with
dedicated resources in parallel”. In: Journal of Scheduling 8.5 (2005), pp. 355–
386.

[117] J. Y.-T. Leung, H. Li, and M. Pinedo. “Scheduling orders for multiple pro-
duct types to minimize total weighted completion time”. In: Discrete Applied
Mathematics 155.8 (2007), pp. 945–970.

[118] E. Levey and T. Rothvoss. “A (1+epsilon)-approximation for makespan schedu-
ling with precedence constraints using LP hierarchies”. In: Proceedings of the
48th Annual ACM Symposium on Theory of Computing. ACM, 2016, pp. 168–
177.

[119] L. Lovász. “On the ratio of optimal integral and fractional covers”. In: Discrete
Mathematics 13.4 (1975), pp. 383–390.

[120] F. Margot, M. Queyranne, and Y. Wang. “Decompositions, network flows, and
a precedence constrained single-machine scheduling problem”. In: Operations
Research 51.6 (2003), pp. 981–992.

143

Bibliography

[121] M. Mastrolilli, M. Queyranne, A. S. Schulz, O. Svensson, and N. A. Uhan.
“Minimizing the sum of weighted completion times in a concurrent open shop”.
In: Operations Research Letters 38.5 (2010), pp. 390–395.

[122] J. McClintock, J. Mestre, and A. Wirth. “Precedence-constrained min sum set
cover”. In: Proceedings of the 28th International Symposium on Algorithms and
Computation. Vol. 92. Leibniz International Proceedings in Informatics (LIPIcs).
2017, 55:1–55:12.

[123] R. McNaughton. “Scheduling with deadlines and loss functions”. In:Management
Science 6.1 (1959), pp. 1–12.

[124] K. Mehlhorn and P. Sanders. Data Structures and Algorithms: The Basic Toolbox.
Springer, 2008.

[125] R. H. Möhring, M. Skutella, and F. Stork. “Scheduling with AND/OR precedence
constraints”. In: SIAM Journal on Computing 33.2 (2004), pp. 393–415.

[126] C. L. Monma. “Linear-time algorithms for scheduling on parallel processors”.
In: Operations Research 30.1 (1982), pp. 116–124.

[127] C. L. Monma and J. B. Sidney. “Sequencing with series-parallel precedence
constraints”. In: Mathematics of Operations Research 4.3 (1979), pp. 215–224.

[128] K. Munagala, S. Babu, R. Motwani, and J. Widom. “The pipelined set cover
problem”. In: Proceedings of the 10th International Conference on Database
Theory. Vol. 3363. LNCS. Springer, 2005, pp. 83–98.

[129] R. R. Muntz and E. G. Coffman Jr. “Optimal preemptive scheduling on
two-processor systems”. In: IEEE Transactions on Computers 100.11 (1969),
pp. 1014–1020.

[130] R. R. Muntz and E. G. Coffman Jr. “Preemptive scheduling of real-time tasks
on multiprocessor systems”. In: Journal of the ACM 17.2 (1970), pp. 324–338.

[131] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
Wiley, 1999.

[132] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Dover Publications Inc., 1998.

[133] C. H. Papadimitriou and M. Yannakakis. “On recognizing integer polyhedra”.
In: Combinatorica 10.1 (1990), pp. 107–109.

[134] C. Phillips, C. Stein, and J. Wein. “Minimizing average completion time in
the presence of release dates”. In: Mathematical Programming 82.1-2 (1998),
pp. 199–223.

[135] J.-C. Picard. “Maximal closure of a graph and applications to combinatorial
problems”. In: Management Science 22.11 (1976), pp. 1268–1272.

144

[136] M. L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer, 2016.
[137] C. N. Potts. “An algorithm for the single machine sequencing problem with

precedence constraints”. In: Mathematical Programming Study 13 (1980), pp. 78–
87.

[138] C. N. Potts and V. A. Strusevich. “Fifty years of scheduling: A survey of
milestones”. In: Journal of the Operational Research Society 60.sup1 (2009),
S41–S68.

[139] M. Queyranne. “Structure of a simple scheduling polyhedron”. In: Mathematical
Programming 58.1-3 (1993), pp. 263–285.

[140] M. Queyranne and A. S. Schulz. Polyhedral approaches to machine scheduling.
Tech. rep. 408/1994. Department of Mathematics, Technical University of Berlin,
1994.

[141] M. Queyranne and A. S. Schulz. “Scheduling unit jobs with compatible release
dates on parallel machines with nonstationary speeds”. In: Proceedings of
the 4th International Conference on Integer Programming and Combinatorial
Optimization. Vol. 920. LNCS. Springer, 1995, pp. 307–320.

[142] M. Queyranne and Y. Wang. “Single-machine scheduling polyhedra with prece-
dence constraints”. In: Mathematics of Operations Research 16.1 (1991), pp. 1–
20.

[143] S. Sachdeva and R. Saket. “Optimal inapproximability for scheduling problems
via structural hardness for hypergraph vertex cover”. In: Proceedings of the 28th
Conference on Computational Complexity. IEEE, 2013, pp. 219–229.

[144] S. K. Sahni. “Algorithms for scheduling independent tasks”. In: Journal of the
ACM 23.1 (1976), pp. 116–127.

[145] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
Inc., 1998.

[146] A. Schrijver. “A combinatorial algorithm minimizing submodular functions in
strongly polynomial time”. In: Journal of Combinatorial Theory, Series B 80.2
(2000), pp. 346–355.

[147] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Vol. 24.
Algorithms and Combinatorics. Springer, 2003.

[148] A. S. Schulz. “Scheduling to minimize total weighted completion time: Perfor-
mance guarantees of LP-based heuristics and lower bounds”. In: Proceedings of
the 5th International Conference on Integer Programming and Combinatorial
Optimization. Vol. 1084. LNCS. Springer, 1996, pp. 301–315.

145

Bibliography

[149] A. S. Schulz and M. Skutella. “Random-based scheduling: New approximations
and LP lower bounds”. In: Proceedings of the International Workshop on Rando-
mization and Approximation Techniques in Computer Science. Vol. 1269. LNCS.
Springer, 1997, pp. 119–133.

[150] A. S. Schulz and M. Skutella. “Scheduling-LPs bear probabilities randomized
approximations for min-sum criteria”. In: Proceedings of the 5th Annual European
Symposium on Algorithms. Vol. 1284. LNCS. 1997, pp. 416–429.

[151] P. Schuurman and G. J. Woeginger. “Polynomial time approximation algorithms
for machine scheduling: Ten open problems”. In: Journal of Scheduling 2.5
(1999), pp. 203–213.

[152] J. B. Sidney. “Decomposition algorithms for single-machine sequencing with
precedence relations and deferral costs”. In: Operations Research 23.2 (1975),
pp. 283–298.

[153] R. Sitters and L. Yang. “A (2 + ε)-approximation for precedence constrained
single machine scheduling with release dates and total weighted completion time
objective”. In: Operations Research Letters 46.4 (2018), pp. 438–442.

[154] M. Skutella. “List scheduling in order of α-points on a single machine”. In:
Efficient Approximation and Online Algorithms. Vol. 3484. LNCS. Springer,
2006, pp. 250–291.

[155] M. Skutella. “A 2.542-approximation for precedence constrained single machine
scheduling with release dates and total weighted completion time objective”. In:
Operations Research Letters 44.5 (2016), pp. 676–679.

[156] M. Skutella and D. P. Williamson. “A note on the generalized min-sum set cover
problem”. In: Operations Research Letters 39.6 (2011), pp. 433–436.

[157] W. E. Smith. “Various optimizers for single-stage production”. In: Naval Research
Logistics Quarterly 3.1-2 (1956), pp. 59–66.

[158] J. P. Sousa and L. A. Wolsey. “A time indexed formulation of non-preemptive
single machine scheduling problems”. In: Mathematical Programming 54.1-3
(1992), pp. 353–367.

[159] M. Streeter and D. Golovin. “An online algorithm for maximizing submodular
functions”. In: Proceedings of the 22nd Annual Conference on Neural Information
Processing Systems. 2009, pp. 1577–1584.

[160] O. Svensson. “Conditional hardness of precedence constrained scheduling on
identical machines”. In: Proceedings of the 42nd Annual ACM Symposium on
Theory of Computing. ACM, 2010, pp. 745–754.

[161] W. T. Trotter. Combinatorics and Partially Ordered Sets: Dimension Theory.
John Hopkins University Press, 1992.

146

[162] J. D. Ullman. “NP-complete scheduling problems”. In: Journal of Computer
and System Sciences 10.3 (1975), pp. 384–393.

[163] G. Wang and T. C. E. Cheng. “Customer order scheduling to minimize total
weighted completion time”. In: Omega 35.5 (2007), pp. 623–626.

[164] D. P. Williamson. “Analysis of the Held-Karp heuristic for the traveling salesman
problem”. MA thesis. Massachusetts Institute of Technology, 1990.

[165] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011.

[166] G. J. Woeginger. “On the approximability of average completion time scheduling
under precedence constraints”. In: Discrete Applied Mathematics 131.1 (2003),
pp. 237–252.

[167] L. A. Wolsey. Mixed integer programming formulations for production planning
and scheduling problems. Invited Talk at the 12th International Symposium on
Mathematical Programming. MIT, Cambridge, MA, 1985.

[168] J. Yang. “The complexity of customer order scheduling problems on parallel
machines”. In: Computers & Operations Research 32.7 (2005), pp. 1921–1939.

[169] D. Zuckerman. “Linear degree extractors and the inapproximability of max clique
and chromatic number”. In: Proceedings of the 38th Annual ACM Symposium
on Theory of Computing. ACM, 2006, pp. 681–690.

147

	Introduction
	Notation and Preliminaries
	Complexity and Approximation Algorithms
	Graphs and Graph Classes
	Polyhedra and Linear Programming
	Scheduling

	Min-Sum Set Cover and Scheduling with OR-Precedence Constraints
	Min-Sum Set Cover and Some Generalizations
	Scheduling with OR-Precedence Constraints

	Overview of the Thesis and Main Results

	Makespan Minimization with OR-Precedence Constraints
	Related Work and Our Results
	Preliminaries
	Related Algorithms for AND-Scheduling
	Earliest Start Schedules and Minimal Chains

	Approximability and Hardness of the Non-Preemptive Variant
	List Scheduling is a 2-Approximation Algorithm
	An Inapproximability Result

	A Polynomial-Time Algorithm for the Preemptive Variant
	Open Problems

	Combinatorial Algorithms for the Sum of Weighted Completion Times
	Related Work and Our Results
	Preliminaries
	Pipelined Set Cover and All-But-Constant Min-Sum Set Cover
	Density-Maximizing Initial Sets for AND-Scheduling

	Bipartite OR-Scheduling is Hard
	Algorithms for Laminar Min-Sum Covering Problems
	Laminar All-But-Constant Min-Sum Set Cover
	Laminar Generalized Min-Sum Set Cover

	A Framework for Approximating Scheduling Problems
	A Density-Maximizing Greedy Algorithm
	Two 4-Approximation Algorithms for OR-Scheduling Problems

	Open Problems

	Linear Programming Relaxations and LP Based Algorithms
	Related Work and Our Results
	Preliminaries: LP Formulations for AND-Scheduling
	Completion Time Variables
	Linear Ordering Variables
	Time-Indexed Variables

	Time-Indexed Formulation
	Approximating Bipartite AND/OR-Scheduling
	A 4-Approximation for All-But-One Min-Sum Set Cover

	Linear Ordering Formulation
	Bipartite OR-Precedence Constraints
	Acyclic Precedence Graphs

	Completion Time Formulation
	Generalized Minimal Chains
	The Minimal Chain Relaxation

	Open Problems

	Preemptive Concurrent Open Shop with Release Dates
	Introduction and Related Work
	A 2-Approximation Algorithm
	A Valid LP Relaxation
	Preemptive List Scheduling

	Open Problems

	Bibliography

