
ORIGINAL ARTICLE
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Abstract
Primary glandular bladder tumours (bladder adenocarcinoma [BAC], urachal adenocarcinoma [UAC], urothelial carci-
noma with glandular differentiation [UCg]) are rare malignancies with histological resemblance to colorectal adeno-
carcinoma (CORAD) in the majority of this subgroup. Definite case numbers are very low, molecular data are limited
and the pathogenesis remains poorly understood. Therefore, this study was designed to complement current knowledge
by in depth analysis of BAC (n = 12), UAC (n = 13), UCg (n = 11) and non-invasive glandular lesions (n = 19). In
BAC, in addition to known alterations in TP53, Wnt, MAP kinase and MTOR pathway, mutations in SMAD4, ARID1A
and BRAF were identified. Compared to published data on muscle invasive bladder cancer (BLCA) and CORAD, UCg
exhibited frequent “urothelial” like alterations while BAC and UAC were characterised by a more “colorectal” like
mutational pattern. Immunohistochemically, there was no evidence of DNA mismatch repair deficiency or PD-L1
tumour cell positivity in any sample. Depending on the used antibody 0–45% of BAC, 0–30% of UCg and 0%
UAC cases exhibited PD-L1 expressing tumour associated immune cells. A single BAC (9%, 1/11) showed evidence
of ARID1A protein loss, and two cases of UCg (20%, 2/10) showed loss of SMARCA1 and PBRM1, respectively.
Taken together, our data suggest at least in part involvement of similar pathways driving tumourigenesis of adenocar-
cinomas like BAC, UAC and CORAD independent of their tissue origin. Alterations of TERT and FBXW7 in single
cases of intestinal metaplasia further point towards a possible precancerous character in line with previous reports.
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Introduction

Primary adenocarcinoma of the bladder is a rare malignancy
accounting for < 2% of all bladder cancers [1]. Thus, in
Germany, less than 200 cases of adenocarcinoma are expected
each year (about 16.400 new bladder cancer cases in 2016)
[2]. Besides pure primary bladder adenocarcinoma (BAC),
glandular and mucinous differentiation of bladder tumours
(1.6% or 0.8% of invasive high-grade tumours) can be found
as a sign of de-differentiation in high-grade urothelial tumours
(UCg; urothelial carcinoma with glandular differentiation) [3,
4]. Additionally, urachal adenocarcinomas (UAC; tumours
arising from embryonic urachal remnants) also present as
glandular or mucinous adenocarcinomas. Due to their special
origin and different treatment strategies, they are usually con-
sidered separately. BAC can exhibit various phenotypes: en-
teric/colonic, mucinous/colloid, signet-ring cell, clear cell,
hepatoid, mixed and adenocarcinoma not otherwise specified
(NOS; if without a specific glandular growth pattern) [5]. This
phenotypical diversity turns them into diagnostically chal-
lenging tumours, since—first of all—metastatic carcinomas
must be excluded [6].

So far, the pathogenesis of BAC remains poorly under-
stood, and morphological resemblance to colorectal adenocar-
cinomas (CORAD) suggests potential analogies. Next-
generation sequencing (NGS) data have improved our knowl-
edge of genetic driver alterations in urothelial carcinomas [7]
and CORAD [8], and first NGS data are now available for rare
BAC [9, 10] and UAC [11–16]. Additionally, a few single
gene sequencing reports for BAC and UAC (e.g. BRAF,
EGFR, KRAS, NRAS, PIK3CA, TERT) have been published
[17–21]. Due to these studies alterations in “urothelial” (e.g.
RB1) as well as “colorectal” (e.g. APC, KRAS), associated
genes have been identified for BAC and UAC. An involve-
ment ofMAP kinase, MTOR,Wnt and TP53 pathway in BAC
[9] and UAC [13] has been described.

However, these previous studies did not comparatively an-
alyse BAC, UCg, UAC and possible precancerous glandular
lesions (cystitis glandularis [CG] and intestinal metaplasia
[IM]) in parallel to reveal specific tumourigenic events and
pathways for each entity.

Therefore, the aim of our study was to decipher ge-
nomic similarities and differences in glandular bladder
tumours (BAC, UAC and UCg) in comparison to pub-
licly available data on muscle invasive urothelial can-
cers (BLCA) and CORAD using a custom NGS panel
covering all exons of 20 urothelial and colorectal driver
genes in order to understand tumour biology and reveal
suitable (targeted) therapeutic concepts. Additionally, tu-
mours were screened for TERT promoter mutations and
analysed immunohistochemically for DNA mismatch re-
pair (MMR) deficiency, loss of SWI/SNF complex ex-
pression and PD-L1 expression.

Materials and methods

Patient samples and tissue microarray construction

Formalin-fixed, paraffin-embedded (FFPE) archival bladder
cancer specimens from ten different Institutes of Pathology
in Germany were collected. Each case was carefully checked
within the pathology archives/data bases and by cross-check
with the referring urologists in a three-step process to verify
correct classification and exclude metastatic tumours (see
Supplementary Methods 1 for further information). Tumour
classification was performed according to the 2017
International Union Against Cancer [22] and the 2016 World
Health Organization classification of bladder tumours [5]. In
total, n = 12 BAC (n = 9 enteric, n = 2 mucinous and n = 1
mixed morphology); n = 13 UAC (n = 10 mucinous and n =
3 enteric); and n = 11 UCg, n = 3 CG and n = 1 IMwere avail-
able for analysis with confirming clinical data, sufficient ma-
terial for sequencing and appropriate sequencing data for suc-
cessful single nucleotide variants (SNV) and copy number
alteration (CNA) analysis. In addition, n = 8 CG and n = 7
IM samples with low material were analysed only with
SNapShot® for TERT promoter mutations. Tissue microarrays
were constructed as previously described [6]. Clinico-
pathological data of the patient cohort are shown in Table 1
and of each patient individually in Supplementary Table 1.
The retrospective, anonymous study was approved by the lo-
cal Ethics Committee (EK 286/11).

Microdissection and DNA isolation

For microdissection, five to 15 freshly cut serial FFPE sec-
tions (4 μm) were deparaffinised and stained with 0.1%meth-
ylene blue. Using a stereo microscope, areas with tumour cells
were collected manually with sterile needles. DNA isolation
was performed by using QIAamp™ DNAMini Kits (Qiagen,
Hilden, Germany) according to the manufacturer’s
instructions.

Targeted next-generation sequencing

For NGS, a self-designed amplicon panel (TruSeq Custom
Amplicon v1.5, Illumina, San Diego, CA, USA) was used cov-
ering all coding exons of 20 genes known to be frequently mu-
tated in either BLCA or CORAD (APC, ARID1A, BRAF,
CDKN1A, CDKN2A, CTNNB1, FBXW7, FGFR3, HRAS,
KDM6A, KRAS, MSH6, NRAS, PIK3CA, PTEN, RB1,
SMAD4, STAG2, TP53, TSC1). Library preparation was per-
formed according to the manufacturer’s protocols, and sequenc-
ing was conducted on aMiSeq® benchtop sequencer (Illumina).
Raw data were processed directly on the MiSeq (MiSeq Control
Software, v2.6, Real-Time Analysis software, v1.18.54). For
alignment and variant calling, the SeqNext Module of the

Virchows Arch



Sequence Pilot software (version 4.4.0, JSI medical systems
GmbH, Ettenheim, Germany) was utilized. All non-
synonymous variants with a frequency of 10% and a coverage
of at least 200× were considered for further analysis. To exclude
potential germline variants, variants with an allele frequency >
1% in public population databases (gnomAD, [23]) were re-
moved prior to manual review of the remaining variants.
Additionally, all oncogene hotspots (RAS: Codon 12, 13, 59,
61, 117, 146; CTNNB1: Codon 33-45, BRAF: Codon 600,
PIK3CA: Codon 545, 1047, FGFR3: 11 activating mutations)
were examined for sufficient coverage, and hotspot variants with
a frequency of > 5% were added to the variant list.

High-level CNAs were identified from amplicon coverage
data with a recently developed algorithm, based on the efficiency
of PCR exponential growth of single amplicons in all measured
samples (ACopy, [24]). For visualisation of variants, oncoprints
were created with OncoPrinter on http://cbioportal.org [25, 26].

SNaPshot® analysis for TERT and FGFR3 mutations

SNapShot® Multiplex System assay (Applied Biosystems,
Foster City, USA) was used to simultaneously screen for 11
known activating FGFR3 point mutations (R248C, S249C,
G372C, S373C, Y375C, G382R, A393E, K652E, K652M,
K652Q and K652T, [27]) and for TERT promoter mutations
at positions -124 (C228T) and -146 (C250T) [28, 29].

Immunohistochemical analysis of DNA mismatch
repair proteins, SWI/SNF complex and PD-L1

TMAs were stained for DNA mismatch repair proteins
(MLH1, MSH2, MSH6, PMS2), programmed death-ligand 1
(PD-L1) and SWI/SNF complex components (SMARCB1,
SMARCA2, SMARCA4, PBRM1, ARID1A) to assess pro-
tein expression. A detailed description of the utilized staining
methods, antibodies and scoring systems are found in
Supplementary Methods 2–4.

Results

Genomic alterations in glandular bladder tumours

DNA of 36 glandular bladder tumours (12 BAC, 13 UAC and
11 UCg) was successfully sequenced and analysed for SNVs
and CNAs. BACmainly exhibited an enteric type (9/12) while
most UAC showed a mucinous histology (10/13). Clinico-
pathological data of the patient cohort are listed in Table 1
(for more detailed data see Supplementary Table 1). Since
all oncogenic hotspots except for FGFR3 were sufficiently
covered, 11 activating FGFR3 mutations were additionally
sequenced with SNaPshot® analysis. All detected presumably
somatic alterations for BAC, UAC and UCg are summarised
in Fig. 1. Only one of the analysed samples (UAC, mucinous
type) showed no alteration. All other samples harboured be-
tween 1 and 9 different changes (all identified SNVs and
CNAs are listed in Supplementary Tables 2 and 3). Most fre-
quent alterations in all three subgroups were SNVand CNA of
TP53, ARID1A, RB1, KRAS and PIK3CA (Fig. 1).
Additionally, SMAD4 was altered in BAC (33%, 4/12) and
UAC (23%, 3/13), but not in any of the UCg samples. On
the other hand, TERT promoter mutations were present in
64% (7/11) of UCg cases but only in two (17%, 2/12) BAC
cases (both enteric type) and no UAC sample (0/13). All de-
tected TERTmutations were located at position -124 (C228T).
Due to the low number of analysed cases, a correlation of
identified alterations with either mucinous or enteric morphol-
ogy was not feasible. We detected two mutations of CTNNB1
(1/12 BAC; 1/13 UAC) and six mutations of APC (3/12 BAC;
2/13UAC; 1/11 UCg); however,CTNNB1mutations were not
common activation hotspot mutations and no nuclear β-

Table 1 Clinico-pathological data of patient cohort

Bladder
adenocarcinoma
(n = 12)

Urachal
adenocarcinoma
(n = 13)

Urothelial carcinoma
with glandular
differentiation
(n = 11)

Patient age (years)

30–49 1 7 2

50–69 4 5 3

70–89 7 1 6

Gender

Female 3 6 3

Male 9 7 8

Tumour stage

pT1 6 – 4

pT2 2 – 3

pT3 2 – 4

Tx 2 2 0

TIIIA – 6 –

TIIIB – 4 –

TIIIC – 1 –

Tumour grade

G1 0 1 0

G2 10 10 2

G3 2 2 9

Nodal status

N0 1 8 1

N1 0 0 2

Nx 11 5 8

Subtype

Enteric 9 3 –

Mucinous 2 10 –

Mixed 1 0 –
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catenin staining was detected in subsequent immunohisto-
chemistry (see Table 2).

Next, analysed genes were categorised in three subgroups,
i.e. an” urothelial” group with ten genes frequently altered in
BLCA, a colorectal group with nine genes known to be affect-
ed in CORAD and a third group with only two genes (TP53
and PIK3CA) which are both commonly mutated in both tu-
mour entities. UCg showed higher frequencies for alterations
in BLCA associated urothelial genes (e.g. TERT, RB1, STAG2,
KDM6A, CDKN1A, CDKN2A, ARID1A) while BAC and
UAC exhibited genomic alterations in colorectal genes (e.g.
KRAS, SMAD4, PTEN, APC) as well as in urothelial genes
(e.g. ARID1A, RB1). These results can be quantified through
calculation of cumulative frequencies for alterations of each of
the three groups for BAC, UAC and UCg (Fig. 1) confirming
a high participation of urothelial genes in UCg genesis (53%)
and an involvement of both urothelial and colorectal genes in
BAC (29% vs. 44%) and UAC (24% vs. 40%) development.
Additionally, we determined such frequencies for BLCA and
CORAD utilising publicly available SNVand CNA data from
The Cancer Genome Atlas Research Network (TCGA) (n =
406 BLCA, n = 526 CORAD, accessed through http://
cbioportal.org, [30]). The individual alteration frequencies
for BLCA and CORAD for all 21 genes are shown in
Supplementary Figure 1. Comparison of these cumulative

frequencies for glandular bladder tumours with BLCA and
CORAD (Fig. 2) visualises the similarities between UCg
and BLCA confirming the above identified urothelial
mutational pattern of UCg while proposing a distinct genetic
subgroup for BAC and UAC involving urothelial and
colorectal aspects.

DNA mismatch repair enzyme expression
and immunohistochemical evaluation of the SNF/SWF
complex activity in glandular bladder tumours

Microsatellite instability indicated by DNA mismatch repair en-
zyme deficiency is well known in CORAD and less frequent in
BLCA.Neither one of the analysedBAC (0/12), UAC (0/11) nor
UCg (0/9) cases showed a loss of MLH1/PMS2 or MSH2/
MSH6 expression (Supplementary Table 3).

By analysing the expression of five subunits of the SWI/
SNF complex (INI1/SMARCB1, SMARCA2, SMARCA4,
ARID1A, PBRM1), we further explored the relevance of al-
terations in chromatin remodelling in glandular differentiated
tumours. One BAC sample (9%, 1/11) exhibited loss of
ARID1A expression (Fig. 3b) associated with a truncating
ARID1A mutation and additional loss of the non-mutated al-
lele in the tumour tissue (Fig. 3c and d). Two UCg samples
(20%, 2/10) showed loss of SMARCA1 and PBRM1

Fig. 1 Genomic alterations in glandular bladder tumours. Non-
synonymous variants (missense, truncating, inframe and promoter muta-
tions) and CNA (amplifications and deletions) of 21 genes with mutation
frequencies for each gene in each subgroup are shown (*only hotspots

analysed with SNaPshot®). Overall, 36 glandular bladder tumours were
analysed (n = 12 BAC, n = 13 UAC and n = 11 UCg). Additionally, cu-
mulative frequencies for alterations of “urothelial” or “colorectal” asso-
ciated genes are depicted for each subgroup
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respectively, while for two evaluable UAC, no evidence of
expression loss of any of the tested markers was detected
(Supplementary Table 3).

PD-L1 expression in glandular bladder tumours

Since immune checkpoint inhibitors (ICI) have been recently
approved for treatment of advanced bladder cancers with the
necessity of PD-L1 “positivity” in a first-line setting, analysis

of PD-L1 expression in glandular bladder cancer might reveal
a treatment option for these rare subtypes. Due to the known
heterogeneous performance of currently available anti-PD-L1
antibodies [31], all available samples (12 BAC, 3 UAC and 10
UCg) were stained with four different anti-PD-L1 antibody
clones (28-8, SP142, SP263, 22C3). Overall, no tumour cell
staining (defined as TPS ≥ 1) was observed and none of the
three tested UAC showed an immune cell (IC) staining.
Depending on the used antibody in 0–45% BAC and 0–30%
UCg cases, PD-L1-expressing immune cells were detected
(BAC: 3/12 [28-8], 0/12 [SP142], 5/11 [SP263], 3/10
[22C3], UCg: 2/10 [28-8], 0/10 [SP142], 3/10 [SP263], 1/9
[22C3]) with up to three BAC (25%) and three UCg (30%)
cases exhibiting an IC-Score above the current threshold for
1st-line atezolizumab therapy in metastatic bladder cancer
(IC-Score ≥ 2; Supplementary Figure 2 c and d).
Additionally, with obtained CPS (combined positivity score),
none of the BAC cases was eligible for 1st- l ine
pembrolizumab therapy while two UCg cases (20%) with an
CPS ≥ 10 could be considered (Supplementary Figure 2 a and
b). A detailed list of all PD-L1 results (TPS, IC-Score and
CPS) for all tested samples and antibodies can be found in
Supplementary Table 3.

Genomic alterations in glandular precancerous
lesions

To gain further insights into the development of BAC, we se-
quenced potential precancerous glandular bladder lesions. Three
cases with CG and only one sample with IM were suitable for
SNVand CNA analysis with NGS, while the residual cases (n=
15) were only sufficient for TERT-SNapShot® analysis (clinico-
pathological data Supplementary Table 1). Interestingly, in one
IM sample, a TERT promoter mutationwas detectable at position
-124 (C228T). All other IM and CG samples displayed TERT
wildtype in SNapShot® analysis. The three sequenced CG cases
showed neither oncogenic SNV nor CNA in any of the 20 genes,
but in the IM sample, a FBXW7 alteration (R505G) predicting
loss of function was identified (Supplementary Tables 2 and 3).

Discussion

In this study, we investigated a cohort of glandular bladder–
related cancers and non-invasive glandular lesions of the blad-
der (CG and IM) for genetic profiles. Overall, we assessed the
total coding sequence of 20 genes by NGS and additional
hotspots of FGFR3 and TERT by SNapShot® analysis, in
order to compare these profiles with publicly available
datasets of BLCA and CORAD. The main questions we
wanted to address are the following: (i) are our findings con-
sistent with existing limited data on BAC, UAC and UCg? (ii)
are they molecularly related to BLCA or CORAD? (iii) are

Table 2 ß-Catenin protein expression and APC andCTNNB1mutations

Sample ß-Catenin
staining (nucleus)

APC
mutations

CTNNB1
mutations

AE-1 na

AE-2 Negative

AE-3 Negative

AE-4 Negative

AE-5 Negative

AE-6 Negative 22% G502E 24% E53K

AE-7 Negative

AE-8 Negative 86% E1573*

AE-9 Negative

AM-1 Negative

AM-2 Negative

AEM-1 Negative 38% S1465fs

UM-1 Negative

UM-2 Negative

UM-3 Positive

UM-4 Negative

UM-5 Negative

UM-6 Negative

UM-7 Negative

UM-8 Negative 28% M485I

UM-9 Negative 28% W383G

UM-10 Negative

UE-1 Negative

UE-2 Negative

UE-3 Negative 86% K1199*

UCg-1 na

UCg-2 Negative

UCg-3 Negative

UCg-4 Negative

UCg-5 Negative

UCg-6 Negative 66% V2630I

UCg-7 Negative

UCg-8 Negative

UCg-9 Negative

UCg-10 Negative

UCg-11 Negative

na not available
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there molecular events defining preinvasive glandular precan-
cerous lesions? and (iv) are there any distinct therapeutic op-
tions for these tumour entities that might improve the current
rather organ confined therapeutic regimes?

For rare BAC, currently, only one genomic profiling study
(15 samples/51 genes) has been published identifying geno-
mic alterations in genes of MAP kinase, MTOR, Wnt and
TP53 pathways [9]. Another study on adenocarcinoma was
recently presented but has not yet been published (14 BAC
and 10 UAC/275 genes) [10]. Roy et al. described APC and

CTNNB1 mutations and nuclear ß-catenin expression (alter-
ations of Wnt signaling) to be involved in BAC development
[9]. In line with this study, we detected similar genomic alter-
ation frequencies for APC and CTNNB1, but we could not
show immunohistochemical nuclear ß-catenin translocation,
and thus activation of the canonical Wnt pathway cannot be
confirmed. We also revealed variants in the Wnt pathway-
regulating gene SMAD4, which have not been described to
be altered in BAC so far. SMAD4 is a tumour suppressor,
and transcription factor of the TGF-ß pathway and loss of

Fig. 3 Enteric BAC with loss of ARID1A. HE (a) and anti-ARID1A (b)
staining of a case of BAC (enteric type) with loss of ARID1A expression
in tumour tissue (black scale bar equals 250 μm). c Truncating ARID1A
mutation with an allele frequency of 88% (c.6160G>T, p.Glu2054*, es-
timated tumour content 80%). d Relative coverage for all exons of

ARID1A showing a deletion for sample AE-8. These results were derived
through calculation of the relative coverage deviation of each amplicon
from the coverage of five correlated amplicons of the same sample. In a
normal diploid state with two copies, no deviation in coverage would be
detected (= 0)

Fig. 2 Comparison of cumulative frequencies of alterations in
“urothelial” or “colorectal” genes between glandular bladder tumours,
BLCA and CORAD. Calculated cumulative alteration frequencies for
BAC, UAC, UCg, BLCA and CORAD for ten “urothelial” (ARID1A,
CKN1A, CDKN2A, FGFR3, HRAS, KDM6A, STAG2, RB1, TERT,
TSC1), nine “colorectal” (APC, BRAF, CTNNB1, FBXW7, KRAS,

MSH6, NRAS, PTEN, SMAD4) and two additional genes commonly
altered in both (TP53, PIK3CA). °Data for BLCA and CORAD
alterations for the 21 genes was obtained from The Cancer Genome
Atlas Research Network (TCGA) pan-cancer analysis project (accessed
through http://cbioportal.org, [30])
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function alterations have been shown to cause, for instance,
impaired response to chemotherapy in colorectal cancer [32].
Downregulation of SMAD4 expression has been identified in
pancancer transcriptome analysis to be characteristic for ade-
nocarcinoma independent of origin [33]. However, functional
SMAD4 inactivation alone is not sufficient for tumour initia-
tion, but it is thought to promote tumour progression in con-
junction with additional alterations, e.g. activating KRAS
(pancreatic duct adenocarcinoma) or inactivating APC alter-
ations (colorectal cancer) [34]. TP53 was the most frequently
altered gene in the study of Roy et al. and ours, and alterations
of FBXW7 (no hotspot variants but cases with loss of function
through either mutation or deletion detected) were similar [9].
Previous single gene analyses already identified KRAS muta-
tions in BAC [17], which were also present in our cohort (n =
2). Roy et al. reported PIK3CA mutations as a potential
druggable target in BAC [9], which we also confirmed in
two samples. Furthermore, we identified two cases with
BRAF mutations of which one (sample AEM-1) exhibited a
hotspot V600E variant. To our knowledge,BRAF has not been
reported to be altered in BAC before but could represent an
important drug target [35]. A key observation of Roy et al. was
the absence of any SNV or CNA in BAC with mucinous
histology [9]; however, both analysed mucinous BAC cases
in our cohort exhibited several mutations in KRAS, TP53 and
ARID1A, SMAD4, TP53, respectively. This discrepancy might
be due to the low number of analysed cases in both studies
(3/15 and 2/12 exhibited mucinous morphology). TERT pro-
moter mutations were rarely detected in our study (2/12) in
accordance with previously published data (4/14, 0/10 and 2/
15 respectively). However, our samples were enteric BAC,
whereas Cowan et al. detected TERT promoter mutations only
in non-enteric BAC and Roy et al. in enteric and non-enteric
(single-cell) BAC [9, 18], which are no longer considered to
be BAC according to the current WHO classification [36]. In
their overview of glandular bladder tumours, Taylor et al.
hypothesised that BAC with TERT mutation might represent
an urothelial subgroup [37]. In our cohort, both TERTmutated
enteric BAC specimens (AE-3 and AE-6) additionally exhib-
ited colorectal characteristics, i.e. alterations in SMAD4 and
PTEN. Taken together, the current results for BAC from our
study and from Roy et al. present BAC as a distinct entity
exhibiting both characteristics of urothelial (e.g. TERT muta-
tions, alterations in chromatin remodelling) and colorectal
cancer (e.g. alterations in Wnt pathway) [9].

For UAC, several studies have been published whichmain-
ly focus on current therapeutic targets [11–16]. Reis et al.
identified, for instance, various druggable alterations (e.g.
BRAF mutations, single cases of MET, ERBB2 and EGFR
amplification) while exome-wide studies revealed recurrent
alterations in TP53, Wnt/TGF-ß and MAP kinase pathways
similar to those detected in our study including 13 UAC sam-
ples. In the exome study of Lee et al., UAC samples clustered

as a distinct group between BLCA and CORAD comparing
CNA profiles [11]. Analogously, our results support this no-
tion as UAC exhibit not only urothelial but also frequent co-
lorectal like alterations. This corroborates the hypothesis that
BAC and UAC could be genetically specified as a distinct
group between BLCA and CORAD with genetic similarities,
although both develop from different sites (urothelium versus
urachal remnants) with and without exposure to urine. So far,
we are not able to answer the question why site different
adenocarcinomas (BAC, UAC) seem to be genetically similar
and show overlapping mutational patterns with CORAD in-
cluding TP53,KRAS and SMAD4 [8], as their only similarities
are the enteric/goblet cell types. Bearing in mind that SMAD4
function is thought to be a characteristic of adenocarcinomas
[33], triggering tumour progression in close association with
further mutational drivers such as activating KRAS, involve-
ment of comparable molecular pathways driving
tumourigenesis of adenocarcinomas like BAC, UAC and
CORAD could be suggested independently of the tissue
origin.

For UCg—to our best knowledge—there is only a single
gene analysis while no genomic profiling studies have been
published so far, excluding those analysing BLCAwith mixed
features (squamous, glandular, etc.) [38]. Vail et al. identified
72% (21/29) of UCg as TERT mutated, comparable to our
study (64%; 7/11) [39]. Although showing a slightly higher
mutational rate in some “colorectal-like” genes (KRAS, APC,
CTNNB1) than BLCA, UCg mainly harboured frequent alter-
ations in distinct urothelial-like genes (e.g. TERT, RB1,
CDKN1A, ARID1A and KDM6A) as well as TP53 and
PIK3CA. A particularly conspicuous aspect is the high level
of TERT mutations in UCg which differ from UAC or BAC
with only low numbers of TERT mutated cases [40].

We furthermore identified a TERT promoter mutation and a
missense FBXW7 variant in one of the tested glandular
preinvasive lesions (IM sample). The detected FBXW7
R505G mutation is located in the WD repeat domain at a
recurrently altered hotspot (R505) with R505L and R505C
associated with a loss of function through disruption of sub-
strate binding [41, 42]. The tumour suppressor FBXW7 binds
to proto-oncogenes mediating degradation, while dysregula-
tion leads to chromosomal instability and tumourigenesis due
to accumulation of oncoproteins [43]. In line with previous
analysis of TERT promoter mutations in glandular bladder
tumours including 25 benign glandular lesions of the bladder
(with 5 CG samples amongst Brunn nests, cystitis cystica and
nephrogenic adenoma), we did not detect any TERT variants
in the tested CG samples [39]. While a few previous studies
also detected neoplastic changes in IM (e.g. telomere shorten-
ing and chromosomal abnormalities) suggesting IM to be a
precursor of adenocarcinoma, accumulating studies showed
coexistence of IM and CG with bladder cancer as well as in
benign bladder specimens and no correlation between
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occurrence of IM and risk for progression to tumour [44–46].
Thus, the debate is still ongoing and further molecular analysis
with larger sample numbers and clinical follow-up are needed
in order to prove or disprove the precancerous nature of these
lesions.

Finally, we assessed our cohort for current predictive im-
munohistochemical marker expression, i.e. DNA mismatch
repair, SWI/SNF complexes and PD-L1. We found no defi-
ciency in DNA mismatch repair enzymes in UCg, BAC and
UAC in concordance with the described low frequency of
DNA mismatch repair defects in bladder cancer [47] and re-
cent UAC [12] and BAC data [48]. Single SWI/SNF alter-
ations (ARID1A loss in one BAC sample; no alterations in
the two analysed UAC samples; two UCg cases with loss of
either SMARCA2 or PBMR1 expression) can be found pre-
dominantly in the urothelial glandular tumours, with currently
no therapeutic consequences [49]. None of the glandular blad-
der tumours showed PD-L1 expression in tumour cells, but up
to 45% (5/11) of BAC and 30% of UCg cases (3/10) showed
PD-L1 expression in immune cells; thus, ICI might be a treat-
ment option for a subset of advanced BAC and UCg.

In conclusion, the identified mutational patterns propose
not only some molecular similarities but also differences be-
tween BAC, UAC and to a certain extent also CORAD,
whereas UCg follow a urothelial (BLCA) tumourigenesis.
We are aware of the limited sample numbers of these rare
tumours in our study; thus, the tumours should be further
investigated in larger multi-institutional cohorts especially
considering future therapeutic approaches. Additionally, ICI
seems to be a reasonable treatment option for a subgroup of
BAC and UCg, but less indicated in UAC. Moreover, infre-
quent molecular alterations of TERT and FBXW7 in IM sug-
gest a possible precancerous character in line with previous
rare reports.
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