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Abstract

When designing structures with internal flow, a typical task is to opti-
mize specific flow characteristics, such as the pressure loss, without
violating stress constraints in the structure. The task is challenging
if the stresses are influenced by the fluid-structure interaction. The
first part of this thesis presents a method, which solves this task by
gradient-based shape optimization. The method assumes a one-way
coupling and relies on high-fidelity models. An essential ingredient of
the method is a grid-based parameterization of the shape using Vertex
Morphing. This parameterization enables a quick set-up of the opti-
mization problem and provides high optimization potential. So far,
Vertex Morphing was primarily used in optimization problems, which
involve a single physical discipline. This work extends Vertex Morph-
ing for an application in multidisciplinary problems. Two extensions
are presented: one to control several meshes simultaneously, and
one to control volume meshes. The latter is used to avoid a separate
adaption of the structure mesh after a shape update. The thesis shows
that Vertex Morphing allows a consistent parameterization across
multiple grids without extra modeling effort. In order to determine
the required gradients, coupled adjoint sensitivity analysis is applied.
In this context, a partitioned solution strategy is presented, which
avoids the computation of cross-derivatives. The approach allows
the use of already established adjoint solvers to compute the coupled
gradients. The sensitivity analysis is verified using a 2D and 3D exam-
ple. Finally, the overall optimization process is demonstrated with
a representative part. The results show that one may significantly
optimize structures with internal flow using the presented method,
even with strongly conflicting response functions.

The result of a shape optimization with Vertex Morphing is a dis-
crete free-form surface. In contrast, modern design processes often
rely on computer-aided design (CAD). In CAD, however, free-form
surfaces are typically described by non-uniform rational B-splines
(NURBS). Therefore, it is often necessary to convert the obtained
discrete free-form surface into a NURBS-based CAD model. In the
second part of this thesis, a method is presented, which automatizes
this step. The method is referred to as B-Rep morphing. The cen-
tral idea in B-Rep morphing is to deform an existing CAD model of
the initial design to match the optimization results. The deforma-
tion is achieved by mapping the optimization results onto the given
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CAD model. Unlike many other approaches, B-Rep morphing consid-
ers general boundary-representation (B-Rep) models with trimmed
surfaces and multiple patches. Therefore, the mapping operation
is extended by constraints. Coupling constraints are introduced to
preserve the continuity between surfaces as much as possible. De-
sign constraints are suggested to consider design requirements that
are independent of the optimization results. A multi-stage regular-
ization is applied to enforce smooth surfaces and a practical layout
of the control points. The method’s capabilities are demonstrated
at different examples ranging from a generic test case over a valve
housing with internal flow to a complex sheet metal part (car door).
The influence of the refinement of the CAD model is discussed. The
results show: B-Rep morphing allows the seamless integration of
grid-based shape optimization into a CAD process. B-Rep morphing
is applicable in all cases where a CAD model must be adapted to a
simulated deformation. With B-Rep morphing, a high surface quality
may be achieved in the deformed CAD model.
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Zusammenfassung

Bei der Konstruktion von Strukturen mit Innenströmung besteht eine
typische Aufgabe darin, bestimmte Eigenschaften der Strömung zu
optimieren, z.B. den Druckverlust, ohne dabei Spannungsnebenbe-
dingungen in der Struktur zu verletzen. Die Aufgabe ist anspruchsvoll,
wenn die Spannungen durch die Fluid-Struktur-Wechselwirkung be-
einflusst werden. Im ersten Teil dieser Arbeit wird eine Methode
vorgestellt, die diese Aufgabe durch gradientenbasierte Formopti-
mierung löst. Die Methode geht von einer einseitigen Kopplung aus
und stützt sich auf detaillierte Simulationsmodelle. Ein wesentlicher
Bestandteil der Methode ist eine gitterbasierte Parametrisierung der
Form mittels Vertex Morphing. Diese Parametrisierung ermöglicht
einen schnellen Aufbau des Optimierungsproblems und bietet ein
hohes Optimierungspotenzial. Bislang wurde Vertex Morphing vor
allem bei Optimierungsproblemen eingesetzt, die einzelne physikali-
sche Disziplinen betreffen. Diese Arbeit erweitert Vertex-Morphing
für eine Anwendung im multidisziplinären Kontext. Es werden zwei
Erweiterungen vorgestellt: eine zur gleichzeitigen Steuerung mehre-
rer Netze, und eine zur Steuerung von Volumennetzen. Letztere wird
genutzt, um eine separate Anpassung des Strukturgitters nach einer
Formänderung zu vermeiden. Die Arbeit zeigt, dass Vertex Morphing
eine konsistente Parametrisierung über mehrere Gitter hinweg und
ohne zusätzlichen Modellierungsaufwand ermöglicht. Zur Bestim-
mung der erforderlichen Gradienten wird eine gekoppelte adjungier-
te Sensitivitätsanalyse genutzt. In diesem Zusammenhang wird eine
partitionierte Lösungsstrategie vorgestellt, die die Berechnung von
Ableitungen über mehrere Domänen hinweg vermeidet. Damit ist es
möglich, die gekoppelten Gradienten mit bereits etablierten adjun-
gierten Lösern zu berechnen. Die Sensitivitätsanalyse wird anhand
eines 2D- und 3D-Beispiels verifiziert. Schließlich wird der gesamte
Optimierungsprozess an einem repräsentativen Bauteil demonstriert.
Die Ergebnisse zeigen, dass es mit der vorgestellten Methode möglich
ist, Strukturen mit Innenströmung deutlich zu optimieren, auch bei
stark widersprüchlicher Antwortfunktionen.

Das Ergebnis einer Formoptimierung mittels Vertex Morphing ist eine
diskrete Freiformfläche. Moderne Entwicklungsprozesse bauen dage-
gen häufig auf eine rechnergestützte Konstruktion (CAD), worin Frei-
formflächen typischerweise durch „non-uniform rational B-Splines“
(NURBS) beschrieben werden. Daher muss die diskrete Freiformflä-
che oft in ein NURBS-basiertes CAD-Modell überführt werden. Im
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zweiten Teil dieser Arbeit wird eine Methode vorgestellt, die diesen
Schritt automatisiert. Die Methode wird als B-Rep Morphing bezeich-
net. Die zentrale Idee von B-Rep Morphing ist es, ein vorhandenes
CAD-Modell des ursprünglichen Entwurfs so zu verformen, dass es
mit den Ergebnissen der Optimierung übereinstimmt. Die Verfor-
mung wird dabei durch eine Abbildung des Optimierungsergebnisses
auf dem gegebenen CAD-Modell erreicht. Im Gegensatz zu vielen
anderen Ansätzen berücksichtigt das B-Rep Morphing allgemeine
Begrenzungsflächenmodelle („B-Rep models“) mit getrimmten Ober-
flächen und vielen Patches. Dazu wird der Abbildungsvorgang um
Nebenbedingungen erweitert. Kopplungsbedingungen werden ein-
geführt, um die Kontinuität zwischen Oberflächen weitestgehend
zu erhalten. Konstruktionsbedingungen werden vorgeschlagen, um
von der Optimierung unabhängige Anforderungen an das Design zu
berücksichtigen. Eine mehrstufige Regularisierung wird angewandt,
um glatte Oberflächen und eine zweckmäßige Anordnung der Kon-
trollpunkte zu erzwingen. Die Eigenschaften der Methode werden an
verschiedenen Beispielen demonstriert. Die Beispiele reichen von ei-
nem generischen Testfall über ein Ventilgehäuse mit Innenströmung
bis hin zu einem komplexen Blechbauteil (Autotür). Der Einfluss der
Verfeinerung des CAD-Modells wird diskutiert. Die Ergebnisse zeigen:
Mit B-Rep Morphing ist es möglich, eine gitterbasierter Formoptimie-
rung nahtlos in einen CAD-Prozess zu integrieren. B-Rep Morphing
ist in allen Fällen anwendbar, in denen ein CAD-Modell an eine simu-
lierte Verformung angepasst werden muss. Mit B-Rep Morphing kann
eine hohe Oberflächenqualität im verformten CAD-Modell erreicht
werden.
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1
INTRODUCTION

Numerical shape optimization has become a standard technology in many
fields of research and development. Crucial for a successful shape opti-
mization is the parameterization of the underlying geometry. Depending
on the parameterization and the corresponding design freedom, numer-
ical shape optimization can be used to fine-tune a shape or to identify
entirely new shapes in search of more efficient designs. Generally, one
may distinguish two different kinds of parameterization:

1. one that relies on an extra parameter model,

2. one that utilizes given simulation grids.

Generating a dedicated parameterization is time-consuming, often a non-
unique process, and, depending on the application, not always possible.
Alternatively, one may directly use the simulation grid to describe and
control the corresponding geometry, e.g., by defining the grid nodes as
the design variables. The advantage of such grid-based approaches is
that they do not require an extra modeling step. Also, they provide the
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1 Introduction

maximum possible design freedom for a given mesh. The disadvantage
is that they suffer from an ill-posed formulation, which typically causes
a mesh dependency and non-smooth shape gradients. Therefore, they
require a regularization, cf. Mohammadi et al. [1] and Jameson [2].

There are different grid-based approaches, which differ in how they regu-
larize the problem, see e.g. Azegami et al. [3], Scherer et al. [4], Shimoda
et al. [5], Le et al. [6], and Stück et al. [7]. This work considers the Vertex
Morphing Method or simply Vertex Morphing, Bletzinger [8] and Hojjat
et al. [9]. An integral part of the Vertex Morphing Method is a consistent
filtering operation, which ensures that the generated shapes (or shape up-
dates) are smooth. The effect of the filter is determined by a single quantity
- the filter radius. The filter radius introduces a length scale and provides a
simple handle to control shape modifications. The type of filter function
decides about the geometric continuity. It has been shown by Bletzinger
[10] that there is a perfect transition between Vertex Morphing and a pa-
rameterization using B-Splines. The advantage of Vertex Morphing is that
it provides a simple handle to control the geometry, requires no extra mod-
eling effort, yet it generates quality surfaces. In combination with the large
design-freedom inherent to any grid-based approach, it enables a quick
exploration of design potential. Vertex Morphing has proven its practical
relevance in many cases, both in the field of structural and fluid optimiza-
tion, Hojjat et al. [9], Baumgärtner et al. [11], Ertl et al. [12], Othmer [13],
and Najian Asl et al. [14].

First goal of this thesis

So far, Vertex Morphing has primarily been used in optimization problems
that involve a single physical discipline. This work considers a multidisci-
plinary design optimization (MDO) problem that frequently appears in
the design of structures with internal flow. When designing such parts,
a typical task is to find a shape, which optimizes specific characteristics
of the flow, such as the pressure loss, without violating stress constraints
in the structure. The task is challenging if the interaction between fluid
and structure influences the stresses. The first goal of this thesis is to de-
velop a method, which solves this task by numerical shape optimization.
The method shall enable a quick design optimization at maximal design
freedom without a costly setup of the optimization problem. Therefore,
we utilize a combination of Vertex Morphing and gradient-based shape
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1 Introduction

optimization. The method shall consider the inherent fluid-structure in-
teraction (FSI) in order to obtain valid design suggestions. In doing so, we
focus on one-way coupled systems where the fluid exerts forces on the
structure, but the latter is stiff enough so that its displacement does not
alter the flow. Considering, for example, valve blocks, hydraulic systems,
or internal flows in turbomachinery, one-way coupled problems where an
internal flow shall be optimized without violating stress constraints in the
surrounding structure represent a large class of applications. The physics
of the problem shall be analyzed using high-fidelity models in order to
obtain reliable designs.

From a method point of view, Vertex Morphing needs to be prepared for
MDO. To date, grid-based parameterization strategies are just little used
for the optimization of coupled problems. A primary reason is that only
with the advent of the coupled adjoint sensitivity analysis in the early
2000s, such a parameterization becomes a viable option in the first place.
Another reason is that coupled problems may consist of several different
numerical grids. Therefore, in the context of MDO, it is often claimed that a
grid-based approach results in an inconsistent parameterization, Samareh
[15]. The present thesis refutes this claim by presenting two extensions of
the Vertex Morphing Method that enable consistent control of arbitrary
meshes across several domains.

The intended optimization requires the computation of shape gradients by
a sensitivity analysis of the underlying multidisciplinary problem. Martins
et al. [16] provides a comprehensive overview over possible types of sensi-
tivity analyses for multidisciplinary systems. Peter et al. [17] and Keulen
et al. [18] also review different techniques, yet they focus on aerodynamic
or structural optimization. Decisive for the type of sensitivity analysis is
the ratio between the number of response functions versus the number
of constraints. In the present case, the grid-based parameterization im-
plies many design variables compared to which the number of response
functions is assumed to be small. So, an adjoint sensitivity analysis is su-
perior, cf. Peter et al. [17]. Also, since the problem includes fluid-structure
interaction, coupled adjoint sensitivity analysis is required. In this context,
we focus on partitioned solution strategies to exploit the advantages of
already existing solvers. We also restrict ourselves to a discrete adjoint
approach in favor of a consistent gradient computation. A continuous
coupled adjoint sensitivity analysis is, e.g., described in Fazzolari et al. [19].
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1 Introduction

For a comparison of the discrete and the continuous adjoint approach,
the reader is referred to Nadarajah et al. [20].

Coupled adjoint sensitivity analysis for FSI problems was initiated by
Maute et al. [21] and Martins et al. [22] and is continuously developed
ever since. For example, Barcelos et al. [23] suggested a solution strategy
that allows for an increased robustness and convergence rate compared
to conventional Gauss-Seidel schemes. Kenway et al. [24] presented a fully
scalable approach based on high-fidelity models, which allows for opti-
mizing entire aircraft configurations. Only recently, Sanchez et al. [25]
showed a coupled adjoint sensitivity analysis, which completely drops an
analytic formulation of the derivatives and only relies on algorithmic differ-
entiation. In this work, a coupled adjoint sensitivity analysis is developed,
which is tuned to the present one-way coupling and the selected param-
eterization strategy (Vertex Morphing). The resulting sensitivity analysis
does not require an explicit computation of derivatives across domain
boundaries (cross-derivatives). So, it can be applied in a fully partitioned
manner using existing single-disciplinary adjoint solvers. Also, it avoids
an extra mapping of sensitivity information between the domains. Both
characteristics render the method particularly attractive for practical ap-
plications. The proposed sensitivity analysis represents a variation of the
solution strategy presented in Najian Asl [26] and Najian Asl et al. [27]. In
these papers, a coupled adjoint sensitivity analysis is introduced, which
avoids the computation of cross-derivatives in general FSI problems. New
in the present work is the rigorous derivation of such a sensitivity analysis
for one-way coupled FSI problems.

From an application point of view, many studies discuss the shape opti-
mization of internal flows. However, they often include an optimization of
only the fluid domain. Xu et al. [28] and Verstraete et al. [29], for example,
present such a single-disciplinary optimization, whereas both rely on a
CAD parameterization and discrete adjoint sensitivity analysis. Papadim-
itriou et al. [30] presents a case, which too relies on a CAD parametric
but uses continuous adjoint sensitivity analysis. Also grid-based shape
optimization was already applied to optimize internal flows, see Hojjat
et al. [9] and Alessi et al. [31].

Compared to such single-disciplinary cases, only a few studies consider
problems in which the fluid interacts with the structure or where struc-
tural constraints must be satisfied. Heners et al. [32], for example, presents
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1 Introduction

an adjoint shape optimization that allows considering a time-depended
fluid-structure interaction. However, they focus on the coupling and do
not consider any constraints or response functions from the structural
domain. Another example is described in Stavropoulou [33]. Herein, the
author presents the optimization of an internal flow, which interacts with a
surrounding structure. In doing so, however, strong assumptions are intro-
duced regarding the underlying coupling and sensitivity analysis. Also, the
author does not consider any constraints. In the field of turbomachinery,
where the shape optimization of structures with internal flow is a frequent
problem, structural constraints have only recently been introduced, cf. Ver-
straete et al. [34] and Mueller et al. [35]. However, the mentioned papers
do not include multidisciplinary coupling or coupled sensitivity analysis.

This work presents a new method for the optimization of structures with
internal flow. The method enables the minimization of a specific flow char-
acteristic, such as pressure loss, while considering stress constraints from
the surrounding structure. In doing so, it considers a one-way coupling
between both domains, and it relies on the Vertex Morphing Method in
the parameterization of the shape. Thus the method provides high opti-
mization potential without requiring a costly setup of the optimization
problem.

Second goal of this thesis

The result of Vertex Morphing is a discrete free-form surface, e.g., given
as triangular mesh. By contrast, modern design processes often rely on
computer-aided design (CAD). In CAD, however, free-form surfaces are
typically described by non-uniform rational B-splines (NURBS). Therefore,
it is often necessary to convert the obtained discrete free-form surface
into a NURBS-based CAD model. Manual conversion is time-consuming,
however. So, it is of interest to automate this step. The second goal of this
thesis is to develop a method that automates the conversion.

Converting a discrete surface into a NURBS model corresponds to a clas-
sical reverse engineering (RE) task in CAD. For an introduction to the
topic, the reader is referred to Várady et al. [36]. More recent surveys are
Buonamici et al. [37], Chang et al. [38], and Berger et al. [39]. Following
the classification in Buonamici et al. [37], one can distinguish between
feature-based reconstruction and free-form strategies. Feature-based re-
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1 Introduction

construction aims at generating parametric models. They often work with
geometric primitives or features that are detected, fitted, and joined, see,
e.g., Benkő et al. [40] and Bénière et al. [41]. By contrast, free-form strate-
gies use free-form geometries, such as B-Splines or NURBS, to reconstruct
a CAD model. Popular strategies introduce a patchwork of free-form sur-
faces, fit them to the input data, and enforce continuity constraints across
the individual boundaries. In doing so, continuity constraints are enforced
either directly using a constrained fitting technique, cf. Tsai et al. [42], or
in a post-processing step using stitching, as in Milroy et al. [43]. Other
strategies that create a CAD model with fee-form surfaces are, for example,
described in Eck et al. [44], Rouhani et al. [45], and Becker et al. [46].

This work deals with grid-based shape optimization, which yields free-
form geometries. Consequently, only free-form strategies are considered.
Furthermore, the focus is set on strategies that deal with B-Splines or
NURBS. Unlike many RE strategies, we assume an alreadyexisting CAD
model, i.e., the CAD model of the initial (non-optimized) design. Given an
initial CAD model, there is no need to create a new CAD topology. Instead,
the existing CAD model can be deformed to match the optimization results.
By that, it is possible to preserve knowledge and design intents inherent
to the original model as much as possible.

Deforming an existing NURBS-based CAD model corresponds to a stan-
dard NURBS fitting problem. See, for example, Piegl et al. [47] for an in-
troduction. However, state-of-the-art fitting techniques seem to be lim-
ited when applied to practical CAD models. One reason is that practical
CAD models include, among other things, heavy trimming, a very irregular
arrangement of many surfaces, or a non-matching parameterization be-
tween the individual surfaces. Maintaining the original surface continuity
or defining a well-conditioned numerical problem hence becomes a chal-
lenge. Analyzing the state-of-the-art, it seems that current NURBS fitting
techniques are not readily applicable for the deformation of practical CAD
models because:

• They only consider a single patch or a single free-form surface, Brujic
et al. [48], Fisher [49], Greco et al. [50], and Pottmann et al. [51].

• They include multiple patches, but assume small deformations so
that the coupling between individual surfaces is negligible, Sarraga
[52] and Weiss et al. [53].
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• They consider multiple patches and continuity constraints, but im-
pose strict requirements on the parameterization of adjacent sur-
faces, Kruth et al. [54].

• They do not include trimming, Ma et al. [55] and Dan et al. [56]. In
general, many free-form strategies do not include trimming, cf. Tsai
et al. [42], Eck et al. [44], Greiner et al. [57], and Krishnamurthy et al.
[58]. The reason is that such strategies keep the individual surfaces
as simple as possible when generating a new CAD topology.

• They focus on particular types of surfaces like sweeps, Bartoň et al.
[59].

• They use subsequent surface fitting and stitching to enforce or main-
tain geometric continuity, Milroy et al. [43]. The author of this thesis
considers this as sub-optimal, as it tends to produce unwanted lo-
cal modifications along surface boundaries, especially with heavily
trimmed surfaces. In contrast to that, incorporating continuity con-
straints directly into the fitting problem tends to produce better
results.

A method, which was explicitly developed to deform a practical CAD model
based on simulation results, is presented in Gaun et al. [60]. The method
handles CAD models that include multiple patches and trimming. Also, it
considers continuity requirements between individual surfaces. It relies on
a separate fitting of edges and surfaces and enforces G 1-continuity by an
extra continuity correction (stitching). This approach implies that all edges
in the CAD model can be assigned with (enough) nodes in the simulation
mesh - at least within an acceptable tolerance. This requirement, however,
limits the method’s applicability, as there are often cases where edges do
not have corresponding nodes1. Also, the separate fitting and stitching is
sub-optimal in the case of heavily trimmed models.

Louhichi et al. [61] presents another method to update CAD models based
on a simulated displacement. The method relies on a subsequent recon-
struction (not morphing) of edges and surfaces. A central characteristic
of the method is that it requires the identification of model edges in the

1 For example, when an edge does not represent a geometric feature but an internal
model boundary between two adjacent surfaces.
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deformed simulation mesh. The identification implies an extra feature
recognition or a tight CAD/CAE integration, where the relation between
CAD and mesh is known. This requirement limits the applicability of the
method. Also, the authors do not specifically address the surface continu-
ity. Indeed, the separate reconstruction of edges automatically ensures a
watertight model, but they do not consider G 1-continuity.

Given the limitations above, this work proposes a new method for the
intended conversion. In doing so, a particular focus is set on problems aris-
ing with practical CAD models. The method has the following properties:
It maps a displacement field (shape change) from a simulation grid onto
a given CAD model. As a result, one obtains a deformed CAD model that
reflects the simulation results. The method can handle general boundary
representation (B-Rep) models, including multiple patches, trimming, and
continuity constraints. It also supports design constraints. Hence one may
enforce geometric requirements, which deviate from the input but are
necessary to obtain a feasible design. Since the method works with general
B-Rep models, and its purpose is to morph an existing CAD geometry such
that it matches a simulated deformation, we refer to the method as B-Rep
morphing.

Contribution of this thesis

• Preparation of Vertex Morphing for an application in MDO, which in-
cludes an extension of the method to enable the handling of volume
meshes as well as several meshes simultaneously.

• Development of a method for shape optimization of structures with
internal flow considering one-way fluid-structure interaction.

• Derivation of a specialized coupled adjoint sensitivity analysis, which
can be realized with established single-disciplinary adjoint solvers.

• Development of a method (B-Rep-Morphing) to convert the results
of a grid-based shape optimization into a CAD model.

Outline

Chapter 2 starts with the introduction of the Vertex Morphing Method. It
also presents two extensions, which allow an application of Vertex Morph-
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ing in MDO problems.

Chapter 3 covers the development of the intended multidisciplinary opti-
mization approach. First, the problem is formulated, and the basic solution
approach is discussed. The next section introduces the parameterization.
Then the required coupled sensitivity analysis is developed. Afterwards,
test cases are introduced based on which the sensitivity analysis is veri-
fied. Finally, the whole multidisciplinary process is applied to optimize a
representative structure.

Chapter 4 proceeds with the development of B-Rep morphing. First, the
basic idea is presented, and general assumptions are introduced. Then
essential fundamentals regarding NURBS and B-Rep models are reviewed.
The next section discusses special integration methods, which are required
for B-Rep morphing. Afterwards, the underlying mapping operation is for-
mulated. In the following sections, the mapping operation is more and
more extended to account for practical CAD models. Those extensions in-
clude regularization, constraints, and surface smoothing. Another section
discusses the necessary geometry refinement. At the end of the chapter,
the method is showcased with several practical examples, including the
results from chapter 3.

Chapter 5 finally summarizes the outcome of this work.

9
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2
THE VERTEX MORPHING METHOD

This chapter presents the Vertex Morphing Method. In doing so, the orig-
inal method is discussed, and two extensions are proposed: one for the
simultaneous control of geometry and mesh and one for the simultaneous
control of several meshes. The two extensions significantly broaden the
possible field of application of Vertex Morphing. In particular, they allow
the method to be applied in the context of MDO.

2.1 Basic Vertex Morphing

Vertex Morphing in its basic form is a method to control the geometry of
a design surface within a shape optimization process, cf. Bletzinger [8]
and Hojjat et al. [9]. The central idea is the introduction of a control field
based on which the geometry of the design surface is derived. The design
surface is in the following referred to as ΓD , the control field and the result-
ing geometry as s̃(ξ) = [s̃x , s̃y , s̃z ]T ∈R3 and x̃D (ξ) = [x̃D ,x , x̃D ,y , x̃D ,z ]T ∈R3,
respectively. Both s̃ and x̃D depend on the surface coordinates of a fixed
reference configuration, ξ= [ξx ,ξy ,ξz ]T ∈ Γ

(0)
D . The reference configura-
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2 The Vertex Morphing Method

tion is defined to be the initial design surface, Γ (0)D . The space in which the
geometry is defined is referred to as the geometry space. The space in which
the control field is defined is referred to as the control space. Optimization
problems are formulated in the control space.

In the Vertex Morphing Method, the following relation is established be-
tween the geometry of the design surface and the control field:

x̃D (ξi ) =
ˆ
Γ (0)D

A(ξ−ξi )s̃(ξ)dΓ
(0)
D (2.1)

Herein, ξi denotes a specific point on Γ (0)D . As one can see, the geometry
results from a convolution of the control field with a kernel function A.
Through the convolution, the geometry at ξi is linked to the geometry at
points in the vicinity of ξi . The kernel function characterizes the type of
link. In this work, we assume the kernel function to be a linear hat function
defined as follows:

A =







c

�

1−
‖ξ−ξi ‖2

r

�

, if ‖(ξ−ξi )‖2 < r

0, otherwise
(2.2)

In the previous equation, c is a constant scaling factor. For normalization
purposes, the scaling factor is chosen such that the kernel function satisfies
the property:

ˆ
Γ (0)D

A(ξ−ξi )dΓ
(0)
D = 1 (2.3)

r represents an arbitrary radius that limits the area of influence of the
kernel function. In (2.1), this radius defines which part of the control field
influences a given point of the geometry. Vice versa, it defines which parts
of the geometry are influenced by a given point of the control field, i.e., a
given control point. The strictly local influence of the kernel function is a
crucial characteristic of the Vertex Morphing Method. Given the definition
of the kernel function in (2.2) and (2.3), (2.1) corresponds to a smoothing
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2.1 Basic Vertex Morphing

or filtering operation. A and r are therefore called the filter function and
the filter radius, respectively.

The filtering operation enables the generation of globally smooth shapes,
whereas the filter radius introduces a minimal or characteristic length-
scale below which geometrical fluctuations are suppressed. Due to this
effect, the filter radius acts as a design parameter (the only one in Vertex
Morphing). The larger the filter radius, the smoother is the resulting ge-
ometry, i.e., the resulting geometry is more and more characterized by
low-frequent modes. By contrast, the smaller the filter radius, the more
geometrical details are possible.

For numerical analysis, the geometry and the control field must be dis-
cretized. The discretization of both quantities requires a meshing of the
design surface in reference configuration, Γ (0)D . Generally, the meshing of
the design surface may be different in the case of x̃D and s̃.

In grid-based shape optimization, the mesh for the discretization of the
geometry is given. It corresponds to the mesh of the underlying numerical
simulation1, or more precisely, the part of it, which covers Γ (0)D . The number
of nodes in this mesh is in the following represented by m , the correspond-
ing set of nodes by ξ̂G = [ξT

G ,1,ξT
G ,2, . . . ,ξT

G ,m ]
T . ξG = [ξG ,x ,ξG ,y ,ξG ,z ]T ∈ Γ

(0)
D

denotes the coordinates of a single node in the mesh. Evaluating x̃D at all
m nodes, one obtains a set of points representing the discrete geometry of
the design surface. In between those points, we approximate the geometry
using the interpolation scheme from the underlying numerical simulation.

For the discretization of the control field, we require another mesh. The
number of nodes in this mesh is represented by n , the corresponding set of
nodes by ξ̂C = [ξT

C ,1,ξT
C ,2, . . . ,ξT

C ,n ]
T . ξC = [ξC ,x ,ξC ,y ,ξC ,z ]T ∈ Γ

(0)
D denotes

the coordinates of a single node in the mesh. Evaluating the control field
at all n nodes yields a set of discrete control points. In between the control
points, the control field is approximated using standard finite element
basis functions. Denoting control points as s̃ j and basis functions as Nj ,
the discretization of the control field reads:

s̃=Nj (ξ)s̃ j j = 1...n (2.4)

1 E.g., a structural analysis based on the finite element method.
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In general, one can choose an arbitrary mesh to discretize the control field.
However, one needs to consider that the refinement of this mesh deter-
mines the design freedom in the controlled geometry. A smart approach is
to use the same mesh as already used for the discretization of the geometry,
i.e., the mesh of the underlying numerical simulation. In the context of
shape optimization, this choice has two advantages:

1. No further modeling is necessary. That is, no explicit parameteriza-
tion or definition of the control field is required.

2. We can exploit the maximum design freedom of the given mesh.

Alternatively, one may also use two different meshes for the discretization
of the control field and the geometry. Note in this context that by choosing
n <m , the geometry is naturally smoothed. In this case, the smoothing is a
direct consequence of the reduced design freedom. However, controlling
the smoothness by the discretization of the control field requires extra
modeling effort. Also, it is significantly less intuitive compared to the choice
of a single filter radius as in the filtering. Therefore, one typically uses the
same mesh for the discretization of x̃D and s̃ and regulates the smoothness
solely through the filter radius. The filter radius hence represents the only
design parameter in the Vertex Morphing Method.

Introducing (2.4) in (2.1) and considering the discretization of the geome-
try and the control field, one obtains:

x̃D (ξG ,i ) =

�ˆ
Γ (0)D

A(ξ−ξG ,i )Nj (ξ)dΓ
(0)
D

�

s̃ j i | j = 1 . . . m |n (2.5)

or in abbreviated form:

x̃D ,i = B j (ξ,ξG ,i )s̃ j i | j = 1 . . . m |n (2.6)

In (2.5), the discrete control points are taken out of the integral. The re-
maining integral represents a general morphing function denoted as B j . If
A and Nj are polynomial functions of degree p and q , respectively, then
B j is a piecewise polynomial function of degree (p +q +1). More precisely,
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2.1 Basic Vertex Morphing

Bletzinger [10] showed that (2.5) corresponds to the implicit definition of a
B-Spline of degree (p +q +1). As a result, the geometry follows a B-Spline
curve or B-Spline surface, respectively. The role of the above-introduced
control points is thus equivalent to the role of control points in B-Splines.
The combination of control field and local filtering operation allows the
Vertex Morphing Method to generate smooth shapes with a surface quality
that is comparable to CAD geometries. For a more detailed discussion of
the filtering, the corresponding smoothing properties, and the implicit
definition of B-Splines in the context of Vertex Morphing, the interested
reader is referred to Bletzinger [8, 10].

Having discretized x̃D and s̃, one can compute the convolution integral in
(2.5) numerically. In practice, an approximation of the integral is sufficient.
Therefore, the midpoint Riemann sum is applied. To formulate the Rie-
mann sum, we evaluate the integral at all nodes of the mesh of the control
field that lay within one filter radius around the geometry point ξG ,i . We
refer to the coordinates of those nodes as ξC , j . At every ξC , j it holds Nj = 1.

Each ξC , j is assigned with a local fraction of the design surface, dΓ (0)D , j . We
then approximate the integral by a weighted sum of the contributions from
all neighboring nodes. Afterwards, we scale the weighted sum by the sum
of all weights. This "post-scaling" ensures the normalization condition
specified in (2.3) without a prior determination of the scaling factor c . The
integral is finally computed as follows:

x̃D ,i =

n
∑

j=1

A(ξC , j −ξG ,i )dΓ
(0)
D , j s̃ j

n
∑

j=1

A(ξC , j −ξG ,i )dΓ
(0)
D , j

= Ai j s̃ j i = 1 . . . m (2.7)

Herein, Ai j denotes a mapping or filter matrix that translates the position
of the control points into an actual geometry. In general, Ai j can be used
to map any quantity from control space to geometry space. Rewriting (2.7)
in matrix notation, we obtain the following equation:

x̂D
3m×1

= A
3m×3n

ŝ
3n×1

(2.8)
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2 The Vertex Morphing Method

In that, x̂D = [x̃T
D ,1, . . . , x̃T

D ,m ]
T represents the discrete geometry of the design

surface and ŝ= [s̃T
1 , . . . , s̃T

n ]
T the set of control points.

From (2.7), it is clear that the same Ai j applies to all coordinate directions
of a single control point. That is, the geometry can be computed indepen-
dently in all coordinate directions using only a reduced mapping matrix of
size m ×n . This characteristic can be exploited in the implementation of
the Vertex Morphing Method to lower the associated computational effort
and memory requirements.

2.2 Control of geometry updates

Defining the geometry as in (2.7) implies a smoothing of the original design
surface, Γ (0)D . I.e., a design surface which is non-smooth by construction,
since it contains edges or corners, for example, will lose important geo-
metrical features. In practice, such a change of the original design is often
unwanted. Instead, it is often required to start from a fixed initial design
and only introduce geometry updates. Hence, geometrical features may
be preserved. Because of this requirement, Vertex Morphing is often used
to control geometry updates instead of the geometry itself.

Adjusting the Vertex Morphing Method to control geometry updates is
straightforward. Starting from the discrete definition of the geometry in
(2.8) and given a reference design identified by the superscript (0), it holds:

x̂D = Aŝ= Aŝ(0)+A∆ŝ (2.9a)

Aŝ(0) = x̂(0)D (2.9b)

A∆ŝ=∆x̂D (2.9c)

The properties of Vertex Morphing are preserved. That is, updates gener-
ated according to (2.9c) show a characteristic length-scale in the order of
the selected filter radius. Moreover,∆x̂D represents discrete points of an
otherwise smooth field of geometry updates,∆x̃D . In the case of polyno-
mial basis and filter functions,∆x̃D takes the form of a B-Spline curve or
surface. So, geometry updates generated according to (2.9c) may be con-
sidered as "smooth". An important difference to the original formulation
is that the actual position of the control points, ŝ, is irrelevant and must
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Figure 2.1: Geometry update computed by Vertex Morphing in
case of a discrete line. We assume a linear displacement of the

control points and a linear filter function with r = 0.2.

never be calculated. Only the displacement of the control points,∆ŝ, is of
importance.

The computation of a geometry update using Vertex Morphing is demon-
strated in figure 2.1. The figure shows the case of a discrete line. Starting
from the original geometry of the line, x̂(0)D , an update∆x̂D shall be com-
puted using the Vertex Morphing Method. To avoid additional modeling
effort, we use the given mesh for both the discretization of the geometry
and the discretization of the control field, i.e. x̂(0)D = ξ̂G = ξ̂C . A linear dis-
placement of the control points is assumed. For the filtering, we chose a
linear hat function as described in (2.2), whereas the filter radius shall be
r = 0.2. The geometry update is computed according to (2.9c). Figure 2.1
shows the corresponding result.

As one can see in the figure, the filtering within the Vertex Morphing
Method translates the non-smooth displacement of the control points
into a smooth update of the geometry. Since we assumed a linear displace-
ment of the control points and a linear filter function, ∆x̂D follows the
curve of a piecewise cubic B-Spline.

In figure 2.1, one can also see that the geometry is only updated in parts
of the domain. This result is a consequence of the local definition of the
filtering operation, which limits the area of influence of a control point
on the geometry. Control points influence the geometry only within one
filter radius around the corresponding point on the design surface, ξC , j .
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2 The Vertex Morphing Method

So, in this example, the displacement of the control points in the region
−0.2<ξ< 0.2 updates the geometry in the region −0.4<ξ< 0.4. Outside
this region, the geometry remains unchanged. The local influence of the
control points in Vertex Morphing is comparable to the local influence of
the control points in B-Splines.

In the later shape optimization,∆ŝ corresponds to the set of design vari-
ables. Accordingly, we need to compute design sensitivities of the form
d I /d∆ŝ, whereas I denotes an arbitrary response function. Considering
(2.9), the required design sensitivities can be computed as follows:

d I

d∆ŝ
=

d I

d x̂D

d x̂D

d∆ŝ
=

d I

d x̂D
A (2.10)

Note from (2.10) and (2.9c) that the filtering operation is applied twice
in the context of shape optimization: once to map sensitivities from the
geometry space to the control space according to (2.10), and once to map
design updates in the opposite direction according to (2.9c).

2.3 Simultaneous control of geometry and mesh

Originally, Vertex Morphing was introduced to control surfaces. That is, if
the surface represents the boundary of a volume, then an extra simulation
is necessary to adapt the volume mesh to modifications on the boundary.
Consider for example the discretization presented in figure 2.2(a). If one
of the boundaries is modified by Vertex Morphing, nodes in the interior
have to follow to preserve a valid mesh.

From a theoretical point of view, Vertex Morphing is not limited to a spe-
cific topology. That is, with the same logic as introduced in section 2.1,
one can also use Vertex Morphing to control entire volume meshes. In
the shape optimization of volumetric parts, controlling the volume mesh
would mean that no extra simulation of the mesh motion is necessary.
While this approach seems a natural extension of the Vertex Morphing
Method, there is no reported application, and it has not been investigated
in the literature to date. This work shall catch up on this. So, having in mind
a simultaneous control of geometry and mesh, the following extension of
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2.3 Simultaneous control of geometry and mesh

the original Vertex Morphing Method is proposed:

x̃D (ξi ) =
ˆ
Ω(0)D

A(ξ−ξi )s̃(ξ)dΩ
(0)
D (2.11)

Comparing (2.11) to (2.1), we find that the only difference to the original
formulation is the extended integration domain, Ω(0)D . The latter specifies
the domain in which Vertex Morphing shall control a given mesh. This
domain includes the actual design surface, i.e., Γ (0)0 ⊂Ω

(0)
D , and all regions

of the mesh which shall adapt to a modification of the design surface.
Analogously to the original Vertex Morphing, (0) indicates the reference
configuration given by the initial design.

The modified integration domain implies that ξ ∈Ω(0)D . So, in the extended
Vertex Morphing, ξ represents spatial coordinates. By contrast, in the orig-
inal formulation, ξ represented surface coordinates. Also, x̃D and s̃ are
defined over a volumetric domain. Accordingly, x̃D describes not just the
geometry (boundary) of an underlying body, as in the original formulation,
but its position at all ξ ∈Ω(0)D .

Note that x̃D in (2.11) is still generated by a convolution of a control field
with a kernel function. So, the extended Vertex Morphing inherits the
smoothing properties of the original method.

For numerical analysis, x̃D and s̃ must be discretized. The discretization is
performed analogously to the approach explained in section 2.1. Based on
the discretized quantities, the integral in (2.11) is approximated using a
mid-point Riemann sum. The current design is then computed as follows:

x̃D ,i =

n
∑

j=1

A(ξC , j −ξG ,i )dΩ
(0)
D , j s̃ j

n
∑

j=1

A(ξC , j −ξG ,i )dΩ
(0)
D , j

= Ai j s̃ j i = 1 . . . m (2.12)

Similarly to the original method, ξG ,i represents the coordinates of a node
in the mesh used to discretize the geometry. ξC , j represents the coordi-
nates of a node in the mesh used to discretize the control field. Both meshes
are volume meshes in this case.
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2 The Vertex Morphing Method

Note from a comparison of (2.7) and (2.12) that the implementation of the
extended formulation mostly corresponds to that of the original formula-
tion. The only difference is that in the extended formulation, each node
in the mesh of the control field must be assigned with a volume fraction,
dΩ(0)D , j , instead of a surface fraction, dΓ (0)D , j .

Following the matrix notation in (2.8), we define x̂D = [x̃T
D ,1, . . . , x̃T

D ,m ]
T and

ŝ= [s̃T
1 , . . . , s̃T

n ]
T . The latter represents the set of control points, the former

the coordinates of the nodes in the mesh to be controlled.

In the following, the extended method is demonstrated with an example.
Consider again the mesh in figure 2.2(a). Vertex Morphing shall be used to
control all nodes of the mesh simultaneously. That is,Ω(0) covers the entire
structure. The original mesh shall not be modified. Instead, only mesh
updates shall be introduced. Accordingly, we replace x̂D and ŝ by∆x̂D and
∆ŝ, respectively. The given mesh represents the initial design, x̂(0)D . It also
provides a discretization of the design domain in reference configuration,
Ω(0). In order to avoid extra modeling effort, we chose x̂(0)D = ξ̂G = ξ̂C . So,
there are as many control points as nodes in the mesh. For the filtering, we
use the linear hat function from (2.2). In favor of low-frequent and globally
smooth updates, a large filter radius of r = 0.3 is specified, which makes
up 30% of the width of the structure.

Given this setup, a linear displacement,∆ŝ, is assumed for all control points
(see figure 2.2(b)). The resulting mesh update computed by the extended
Vertex Morphing Method is visualized in figure 2.2(c).

Figure 2.2(c) shows that the displacement of the control points leads to an
update of the entire mesh. As one can see, an extra adaption of the interior
nodes is not necessary. The interior nodes already move consistently with
the boundary nodes that define the shape. Note in this context that the
linear displacement of the control points is translated into a smooth mesh
update. In fact, since∆ŝ is linear and a linear filter function was defined,
the update along any curve within the mesh corresponds to a cubic B-
Spline (see, e.g., the upper and lower boundary in figure 2.2(c)). The results
also show that the mesh update is low-frequent and globally smooth. This
result is a consequence of the relatively large filter radius.

Looking closer at the individual elements in figure 2.2(c), it is striking that
the mesh update did not destroy the element quality. Instead, we observe a
smooth distribution of the motion throughout the mesh. The smooth mesh
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(a) Input mesh that represents the intial design, x̂(0)D .

We choose x̂(0)D = ξ̂G = ξ̂C .
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(b) Linear∆ŝ visualized on ξ̂C .
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(c) ∆x̂D visualized on ξ̂G

Figure 2.2: Demonstration of simultaneous control of geometry
and mesh using Vertex Morphing.

motion is again a consequence of the filtering, which in this case, ensures
that mesh updates of neighboring nodes are similar. The similar motion
of neighboring nodes locally reduces the deformation of the elements and
globally avoids an unnecessary mesh distortion. It also causes elements
that are small compared to the filter radius to move as an almost rigid
body. In this regard, the resulting quality seems to be comparable to other
dedicated mesh motion strategies.

The previous results show that we can use Vertex Morphing in the extended
form to unify the control of geometry and mesh. In the context of shape
optimization, this unification has the following advantages:
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• No extra simulation of the mesh motion is required when changing
the geometry.

• As there is no extra simulation of the mesh motion, there are also no
contributions from such a simulation that need to be considered in
the design sensitivity analysis from equation (2.10).

• The smoothing properties of Vertex Morphing can be utilized to
maintain a valid mesh throughout the optimization.

The disadvantages of such a unification are:

• The filter radius must span over a large fraction of the mesh. More
precisely, the fraction must be large enough to distribute a given
geometry update into the volume properly. This requirement sets a
rather high lower limit on the filter radius. Figure 2.3 illustrates the
problem.

• The filter radius must be large enough to span over several elements
within the mesh. Otherwise, proper filtering is not possible. So, the
size of the elements in the volume mesh must be considered in the
choice of r .

• Control points have a local influence. That means, updating an indi-
vidual control point will only cause a mesh motion within one filter
radius around its corresponding surface node, see figure 2.3. This
behavior limits the possible mesh adaption and is different from
global mesh-motion strategies such as the pseudo-elastic approach.

• Given the local influence, mesh updates are only introduced in areas,
which are relevant for the given response functions (areas with high
sensitivity values). Conversely, areas with vanishing sensitivities are
not considered in the mesh update. This limitation tends to generate
local motion patterns.

To explain the last aspect, consider the example shown in figure 2.4. The
figure shows a mesh, for which we assume an artificial sensitivity vector,
d I /d x̂D . The sensitivity vector only has non-zero values at the node on
the lower right corner (see figure 2.4(a)). Additionally, we assume a linear
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r

x̂(0)D = ξ̂G = ξ̂C

ξ1

(a) A small radius will only cause local updates,
which may quickly lead to mesh distortions.

x̂(0)D = ξ̂G = ξ̂C

r

ξ1

(b) With a large radius, there is enough space
to relocate nodes within the volume mesh.

Figure 2.3: Dependency of the mesh motion on r in the
extended Vertex Morphing. ξ1 denotes an arbitrary node in the

mesh. If the associated control point is modified, it will only cause
a mesh motion within the orange region.

filter function A and r = 0.2. So, the filter radius is small compared to the
dimensions of the structure. Filtering the given sensitivities according to
(2.10), we obtain the design sensitivities in the control space. Note that
the local filtering transforms the concentrated sensitivity information in
the geometry space into a more distributed sensitivity information in the
control space. The distribution is locally limited by the filter radius r .

Now, from the design sensitivities we define an update of the control points
in direction of the steepest descent,∆ŝ=−d I /d∆ŝ. Based on the latter,
we compute a mesh update according to (2.9c), which implies another
filtering operation. The result is shown in figure 2.4(c). Note in the figure
that the mesh update is again locally limited by the filter radius r . So, in
total, the update of the mesh concentrates around the node with non-zero
sensitivities. In practice, this characteristic may lead to the aforementioned
local motion patterns.

All the disadvantages mentioned above limit the applicability of the ex-
tended method to cases where the filter radius is already large by design.
However, there are many applications where this is the case. In such cases,
the disadvantages are less pronounced or even negligible, and the ad-
vantages of the simultaneous control of geometry and mesh by Vertex
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0 max

(a) ‖d I /d x̂D ‖

0 max

r

(b) ‖d I /d∆ŝ‖
0 max

r
r

(c) ‖∆x̂D ‖

Figure 2.4: Concentrated mesh update around an area with a
high sensitivity value.

Morphing can be exploited.

2.4 Simultaneous control of several meshes

In Vertex Morphing, the geometry of a body is defined according to (2.5).
Note in the previous equation that the geometry is exclusively defined by
the control field and the filter function. The discretization of the geometry
is irrelevant and only determines its numerical resolution. That means, the
same control field and the same filter function always describe the same
underlying geometry2 independent of how it is actually discretized. The
fact that the description of the geometry is independent of its discretization
renders the Vertex Morphing Method mesh-independent, which is one of
its central properties.

A mesh-independent description of the geometry is essential for physically
meaningful shape optimization. However, in the context of Vertex Morph-

2 Or the same geometry update, if we use Vertex Morphing to control geometry updates.
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2.4 Simultaneous control of several meshes

ing, it has another technical implication. I.e., if the controlled geometry
is exclusively defined by the control field and the filter function, then a
single set of parameters can be used to control several discretizations of
the same geometry simultaneously. Controlling several discretizations at
a time is useful, for example, in the context of MDO, especially in cases
where the design surface is part of an interface between several coupled
domains. In such a case, a modification of the design surface must be con-
sistently translated to all domains. "Consistent" means that the position
of the meshes relative to each other does not change, and the connectivity
between the domains is preserved. By a straightforward extension, one can
use Vertex Morphing to simultaneously control several meshes based on a
consistent description of the geometry across the domains. The extension
is presented in the following. Najian Asl [26] already showed an applica-
tion, where Vertex Morphing was used to control two surface meshes at a
time. New in this thesis is the generalization and rigorous discussion of
the extension.

The consistent control of several meshes using Vertex Morphing implies
that one set of control points is combined with several discretizations of
the same geometry. From a theoretical point of view, the original Vertex
Morphing already covers such a scenario because the discretization of the
control field is arbitrary, and the discretization of the geometry is irrelevant
for its description. Therefore, an extension of the theory is not necessary.
Since there are no further theoretical implications, all characteristics of
the Vertex Morphing Method equally apply to all controlled meshes. I.e.,
the generated designs are smooth and, due to the mesh-independence,
they all describe the same underlying geometry.

From an implementation point of view, the extension requires two adjust-
ments compared to the original Vertex Morphing Method: First, to avoid
an extra modeling effort, one of the given meshes must be selected for the
discretization of the control field, ξ̂C . By contrast, in the original method,
we assumed that there is just one input mesh and thus no choice if an extra
modeling effort shall be avoided. Evaluating the control field at all nodes
of ξ̂C yields the common set of control points, ŝ.

Second, the discrete geometry, x̂D , must be computed for each of the given
meshes separately according to (2.7). Therefore, dedicated mapping matri-
ces are required. For a consistent description of the geometry, the mapping
matrices must be determined based on the same combination of filter func-
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2 The Vertex Morphing Method

tion (A) and filter radius (r ).

Considering both adjustments, we establish the following relation between
the selected control points and the given meshes:

x̂D k
3mk×1

= A k
3mk×3n

ŝ
3n×1

k = 1 . . . # meshes (2.13)

Herein, ŝ represents the common set of control points, x̂D k the geometry
described on mesh k , and A k the corresponding mapping matrix. mk

denotes the number of nodes of the k -th mesh and n corresponds to the
number of control points. As one can see, the size of a mapping matrix
varies depending on the number of nodes in the relevant meshes. The
individual terms are factorized according to (2.7). It is important to realize
that the same set of control points controls the geometry in all meshes.
So, an update of ŝ causes a simultaneous update of all x̂D k . If all mapping
matrices build upon the same filter settings, then all x̂D k describe the same
underlying geometry. An update of the control points would then lead to
a consistent update of every mesh.

The following example shall demonstrate the simultaneous control of
several meshes by Vertex Morphing.

Consider the case in figure 2.5. In this case, there are three different meshes,
x̂(0)D 1, x̂(0)D 2, and x̂(0)D 3. The individual meshes describe three different parts
of the same initial geometry, i.e., a rectangle. The first mesh comprises
the entire rectangle (figure 2.5(a)), whereas the remaining two meshes
describe two different line segments of it (figure 2.5(b)).

All meshes shall be parameterized such that they can be modified simulta-
neously. In doing so, a change in the control points shall cause a consistent
modification of all meshes. So, the meshes shall not change their relative
position to each other. The initial geometry shall not be modified. Instead,
the parameterization shall only introduce geometry updates. The three
given meshes represent the initial geometry.

To establish a parameterization that simultaneously controls all the given
grids, we follow the logic in (2.13). To restrict the parameterization to geom-
etry updates, we replace x̂D k and ŝ in (2.13) by∆x̂D k and∆ŝ, respectively.
The discretization of the geometry is given by x̂(0)D 1 = ξ̂G 1, x̂(0)D 2 = ξ̂G 2, and

x̂(0)D 3 = ξ̂G 3. For the discretization of the control field, we choose x̂(0)D 1 = ξ̂C as
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(a) Volume mesh with 390 nodes, which also serves
as discretization of the control field: x̂(0)D 1 = ξ̂C .
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(b) Two discrete lines with each 101 nodes: x̂(0)D 2

(bottom) and x̂(0)D 3 (top).
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(c) ∆x̂D 1,∆x̂D 2 &∆x̂D 3 after a linear displacement
of the control points,∆ŝ (cf. figure 2.2(b)).
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(d) Close-up that shows a consistent update of x̂D 1
(mesh) and x̂D 2 (points).

Figure 2.5: Demonstration of simultaneous control of several
meshes using Vertex Morphing.

it covers the entire rectangle and hence also the remaining two meshes. For
the filtering, we use a linear hat filter as describe in (2.2). Aiming for low-
frequent and globally smooth updates, we specify a large filter radius of
r = 0.3, which corresponds to 30% of the width of the rectangle. In order to
obtain a consistent parameterization, we use the same filter function and
the same filter radius for every combination of∆x̂D k and∆ŝ. Eventually,
we obtain the following parameterization:

∆x̂D 1
1170×1

= A 1
1170×1170

∆ŝ
1170×1

(2.14a)
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2 The Vertex Morphing Method

∆x̂D 2
303×1

= A 2
303×1170

∆ŝ
1170×1

(2.14b)

∆x̂D 3
303×1

= A 3
303×1170

∆ŝ
1170×1

(2.14c)

According to previous relations, a displacement of the control points will
cause a simultaneous update of all meshes. Since we use the same control
field and the same filter settings in the construction of A 1, A 2 and A 3,
the updates will be consistent as they all describe the same underlying
geometry update. Note that x̂D 1 represents a volume mesh in this 2D
case. Choosing the latter for the discretization of the control field, one can
control the entire volume mesh at once. Accordingly, the computation of
(2.14a) implies an extended integration as presented in section 2.3. Note
that with the chosen discretization of the control field, A 1 is square, but
A 2 and A 3 are rectangular matrices.

Depending on the displacement of the control points, (2.14) will lead to
different updates of the geometry. The figures 2.5(c) and 2.5(d) present the
result for a linear displacement of the control points. The latter corresponds
to the linear displacement shown in figure 2.2(b).

From the results, we first observe that the specified displacement of the
control points translates into a simultaneous update of all meshes. So,
a separate mapping of the update from one domain to another is not
necessary. Moreover, the updates in all meshes are smooth. In fact, since
ŝ is linear and a linear filter function was defined, the update along any
curve within the rectangle corresponds to a cubic B-Spline. Note in this
context that the B-Spline is visible in all three meshes. The observation of
the same B-Spline in all meshes indicates the fact that the smoothing in
Vertex Morphing equally applies to all controlled meshes.

The second striking observation is that all three meshes essentially show
the same geometric update, just for different parts of the domain. This
observation visualizes the fact that the specified parameterization does not
depend on the actual discretization of the geometry. From the result, one
can also observe that this mesh-independence yields a consistent update
of all meshes, i.e., the position of the meshes relative to each other does
not change and initially overlapping sections do not drift apart. Figure
2.5(d) provides a close-up that highlights this effect. Note herein that x̂D 2

perfectly follows x̂D 1. Moreover, looking at the locations where x̂D 1 and x̂D 2

coincide, one can see that nodes with the same coordinates are subjected
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2.5 Damping

to the same geometric update. Again this reflects the mesh-independent
parameterization. In between the overlapping nodes, x̂D 2 further resolves
the underlying geometry due to its finer discretization.

The last striking observation from the result in figure 2.5(c) is that, in combi-
nation with the extension from section 2.3, the presented parameterization
can control various types of meshes at the same time. In this case, for ex-
ample, it controls a volume mesh together with two discrete lines. Note
in this context that all meshes are linked together: x̂D 2 is attached to the
boundary of x̂D 1 and x̂D 3 is embedded into x̂D 1 along the center-line of
the rectangle. The consistent modification of all meshes preserves these
geometric links.

2.5 Damping

Vertex Morphing allows for a high degree of freedom in the optimization
of design surfaces. In practice, this freedom is often limited by interfaces
to adjacent non-design areas, which must not be modified. Establishing
a valid transition between design and non-design domain requires the
definition of relevant geometric constraints. Generally, such geometric
constraints must be formulated explicitly and considered by the optimiza-
tion algorithm. However, in Vertex Morphing, there is a simple alternative,
i.e., damping. This section introduces the relevant approach.

Damping means weighting the local shape updates such that: 1) They are
zero directly at the interface to the non-design domain. 2) They are contin-
uously increasing within a transition zone. 3) They are not modified after
some distance away from the non-design domain. The implementation
of damping is straightforward and only affects the parameterization. One
only needs to multiply the local shape or geometry update by a damping
factor d ∈ [0, 1]:

∆x̂D ,i = di Ai j∆ŝ j (2.15)

The damping factor is computed based on the distance of a given node in
ξ̂G to the non-design domain. The corresponding function is called damp-
ing function. Generally, the damping function is arbitrary, and its only
purpose is to establish a smooth transition between the extreme values of
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2 The Vertex Morphing Method

d = 0 (fully damped geometry update) and d = 1 (no active damping). A
reasonable choice is a function, which shows vanishing tangents at d = 0
and d = 1. By that, the local impact on the continuity of the geometry
update is reduced. A possible function, which we also use in this work, is
the following:

di =







0.5−0.5 cos

�

π
ξ̂G ,i − ξ̂∂ Γ ,i

rd

�

, if |ξ̂G ,i − ξ̂∂ Γ ,i |< rd

1, otherwise

(2.16)

Herein, ξ̂G ,i represents the x -, y -, or z -coordinate of a node in ξ̂G . The
part of ξ̂G which is connected to the non-design domain is referred to as
ξ̂∂ Γ ⊂ ξ̂G . For each node in ξ̂G , one determines the closest node in ξ̂∂ Γ . The
x -, y -, or z -coordinate of the closest node is represented by ξ̂∂ Γ ,i . Hence,
�

ξ̂G ,i − ξ̂∂ Γ ,i

�

describes the distance of a given node to the non-design
domain in one of the three coordinate directions.

rd specifies a damping radius. The latter defines the transition zone with
active damping. Generally, the damping radius is arbitrary and depends
on the individual application. It is recommended, though, to chose d in
the order of the filter radius r so that the modified geometry update has a
similar characteristic length-scale as the original one.

The central characteristic of damping is that it is simple to implement
but still effective. Damping corresponds to an implicit formulation of
geometric constraints by which certain design areas may be fixed. "Im-
plicit" means that the relevant constraint is directly incorporated in the
parameterization instead of explicitly formulated as a separate function.
Consequently, damping has no impact on the choice of the optimization
algorithm. Another important characteristic of damping is that it can be
applied in all coordinate directions independently. That is, one may use
damping to suppress updates of the geometry in one direction but still
allow modifications in all the others.

The effect of damping shall be demonstrated in the following. Therefore,
consider again the example introduced in the previous section (figure
2.5). In this example, we used Vertex Morphing to update three different
meshes simultaneously. In doing so, we assumed a linear displacement of
the control field. The latter led to the mesh (geometry) updates presented
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2.5 Damping

in figure 2.5(c). In this figure, one could see that the assumed displacement
of the control points causes a significant update in all meshes. Note that
such an update is problematic if some boundaries are not allowed to move.

Given the same linear displacement of the control points, we now assume
that the left and right boundary of the rectangular structure must not be
modified, since they interface to a surrounding part, for example. Damping
shall be applied to establish a transition between the fixed boundaries and
the actual mesh update computed based on the Vertex Morphing Method.
For this purpose, the relation in (2.14) is adjusted as follows:

∆x̂D 1,i = di A1,i j∆ŝ j (2.17a)

∆x̂D 2,i = di A2,i j∆ŝ j (2.17b)

∆x̂D 3,i = di A3,i j∆ŝ j (2.17c)

In all of the previous equations, the damping factors, di , are computed
using the damping function from (2.16) with a damping radius of rd = r =
0.3. So, the damping radius is defined to be equal to the filter radius. The
resulting damping function is visualized in figure 2.6(a). Note in the figure
that only in the range of one damping radius around the left and the right
edge (x = 0 and x = 1) d 6= 1. This range corresponds to the zone of active
damping. Within that zone, the damping factor continuously decreases
towards the non-design domain until directly at the fixed edges the mesh
updates are completely suppressed, i.e., d = 0.

Using the adjusted parameterization from (2.17), the linear displacement
of the control points from before leads to the new mesh updates presented
in figure 2.6(b). In the figure, one can observe the following:

• The damping successfully avoids a modification of the fixed bound-
aries (left and right edge). Therefore, compare the result to the one
in figure 2.5(c), which, by contrast, shows a vertical displacement
everywhere in the mesh.

• Within the damping zone, there is a continuous transition between
the fixed boundary and the modified meshes.
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(a) Damping function based on (2.16).
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(b) Same case as in figure 2.5, but with active damp-
ing. The figure shows∆x̂D 1,∆x̂D 2 &∆x̂D 3 after a lin-
ear displacement of the control points.

Figure 2.6: Example of Vertex Morphing with active damping.

• Beyond the damping zone, the mesh updates correspond to the ones
from figure 2.5(c). This result is expected, as the parameterization
does not differ from the previous example in this region.

• The damping equally applies to all meshes, so that the updates re-
main consistent. Note from this result that damping may be well
combined with all the above-presented extensions of Vertex Morph-
ing.

• There is a slight hump in all meshes at x = 0.3 and x = 0.7.

The last characteristic is a consequence of the fact that we compute the
damped geometry by multiplication of two functions with different conti-
nuity properties, i.e., the damping function and the function that describes
the geometry update. This difference leads to a jump in the continuity of
the damped update at the transition from d < 1 to d = 1. Generally, it holds
that damping can cause visible changes in the continuity of the geometry
update at the borders of the damping zone.

Also important to mention is that the simple scaling may cause the damp-
ing function to become visible within the damping zone. Note, e.g., the
apparent cosine curve around the fixed boundaries in figure 2.6(b). More-
over, if the damping radius is chosen to be different from the filter radius,
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2.5 Damping

then the damped geometry update will show different characteristic length
scales in the damping zone and the rest of the design domain.

The continuity jumps, the visibility of the damping function, and the possi-
ble influence on the characteristic length scale are the essential disadvan-
tages of the presented damping. In practice, though, these disadvantages
are often acceptable in favor of a feasible design. To minimize the negative
influence of damping, one may restrict the damping to specific coordinate
directions or apply different damping radii in different regions of the mesh.

If damping is applied within a gradient-based shape optimization process,
it must also be considered in the sensitivity analysis. The damping factors
are typically determined only once at the beginning of the optimization
based on the initial design. That is, the damping factors are not depending
on the updates of the control points. Therefore, its integration into a given
sensitivity analysis is straightforward. Considering (2.15) and given that
x̂i = x̂ (0)i +∆x̂i , the adjusted sensitivity analysis for an arbitrary response
function I reads:

d I

d∆ŝi
=

d I

d x̂D ,i

d x̂D ,i

d∆ŝ j
=

d I

d x̂D ,i
di Ai j (2.18)
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3
OPTIMIZING INTERNAL FLOWS UNDER

STRESS CONSTRAINTS

In this chapter, we develop a method for the shape optimization of struc-
tures with internal flow1. The method shall allow optimizing internal flows2

while considering stress constraints from the surrounding structure. More-
over, it shall enable a quick exploration of design potential based on input
from high-fidelity simulations.

3.1 Problem formulation and assumptions

Optimizing an internal flow while considering stress constraints from the
surrounding structure represents a multidisciplinary optimization prob-
lem, which includes an analysis of the present fluid-structure interaction.
In terms of the latter, we assume a stationary one-way coupling. "Station-
ary" means, steady-state conditions are applicable, and time derivatives

1 like, for example, valve blocks or tubomachinery
2 for example, in terms of pressure loss or similar objective functions
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3 Optimizing internal flows under stress constraints

can be neglected. "One-way coupling" means the fluid exerts forces on the
structure, and the structure responds with a displacement that causes in-
ternal stresses. However, a coupling in the opposite direction is neglected.
That is, displacements are assumed to be small enough not to alter the
fluid flow. The assumption of a stationary one-way coupling is reasonable
in many practical applications, especially when dealing with structures
made from high-strength materials.

The multidisciplinary shape optimization problem is formulated based
on a two-field approach, such as in Fazzolari et al. [19] or Kenway et al.
[24]. In the following, we assume that the relevant equations are already
discretized. In discrete form, the optimization problem reads:

minimize
s

J (xF (s), w) (3.1a)

subject to R F (xF (xD ,F (s)), w) = 0 (3.1b)

RS (xS (xD ,S (s)), u, w) = 0 (3.1c)

g i ≤ 0 (3.1d)

whereas g i =σi (xS (xD ,S (s)), u, w)−σmax i = 1, . . . , nσ (3.1e)

Herein, J represents the objective function, i.e., a function that describes
a characteristic of the internal flow. R F and RS denote the governing
equations of the fluid and the structure in residual form. w and u are
the state vectors of the fluid and the structure, respectively. g i refers to
inequality constraints that limit the allowed stresses inside the structure.
σi represents the relevant internal stress, which we herein measure as von
Mises stresses. nσ denotes the total number of stress constraints andσmax

specifies the upper threshold.

xF and xS are the coordinates of the nodes of the fluid and the structure
mesh, respectively. The "wet" interface between both domains is referred
to as ΓI . On ΓI , the meshes are assumed to be non-matching.

The design surface is represented by ΓD and the geometry of the design
surface by xD . To avoid clutter in the later derivations, we drop the •̂ in the
description of discrete geometries:

x̂→ x (3.2)
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3.1 Problem formulation and assumptions

We assume that ΓD includes ΓI either in parts or entirely. So, given two
non-matching meshes, there are two different discretizations of the design
surface. Depending on the domain, we refer to the discrete geometry of the
design surface as xD ,F or xD ,S . Along the common boundary, a modification
of the geometry on one side needs to be consistently mapped to the other.

xD ,F and xD ,S are controlled by a set of design variables, s. Generally, the
design variables are determined by the parameterization strategy. In this
work, we use the Vertex Morphing Method to parameterize the shape.
Details on the parameterization and the actual definition of the design
variables follow in section 3.3.

During the optimization, xD ,F and xD ,S are subject to changes. In both
domains, the changes on the boundary must be translated into the interior
to avoid distorting meshes. Dedicated mesh motion strategies are used
to determine the corresponding mesh motion. Given the fluid and the
structure domain, we require two strategies. In each strategy, we compute
an update of the volume mesh, ∆xF or ∆xS , based on an update of the
geometry on the design surface,∆xD ,F or∆xD ,S .

Details on the fluid, the structure and the coupling

The fluid is assumed to be incompressible, viscous, fully turbulent, and
governed by the Reynolds-averaged Navier–Stokes (RANS) equations com-
bined with the Menter SST turbulence model. We consider the finite vol-
ume method for the numerical solution of the fluid problem. The applica-
tion of RANS is essential for the herein presented optimization approach.
By contrast, the incompressibility, the turbulence model, and the finite
volume method are just specific assumptions resulting from the targeted
application. The proposed optimization approach is expected to work
equally well for compressible flows, other turbulence models, or a finite
element approach. Given the assumption of a one-way coupling, the fluid
flow is independent of the state of the structure.

For the structure, an elastic behavior without material or geometric nonlin-
earity is assumed. We consider the finite element method for the numerical
analysis of the structure. Accordingly, it holds:

RS = K (xS (xD ,S (s)))u− fS (xD ,S (s), w) = 0 (3.3)
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3 Optimizing internal flows under stress constraints

Herein, K is the global stiffness matrix, which explicitly depends on the
grid coordinates and, because of the mesh motion, implicitly depends on
the design surface and so the design variables. fS represents the external
force vector acting on the structure. Due to the excitation of the structure
by the fluid, fS depends on the state variables of the fluid, w. Furthermore,
fS is depending on xD ,S since the design surface extends over ΓI .

The relation between fS and w arises from the coupling condition. Due
to the assumed one-way coupling, there is only one coupling condition,
i.e., the requirement of dynamic equilibrium3. In continuous form, the
dynamic equilibrium requires:

σ̃S ñS =−σ̃F ñF on ΓI (3.4)

Herein, ñF and ñS refer to the local unit surface normals in both domains.
We assume that ñF =−ñS . σ̃F and σ̃S are the local stress tensors. Since we
assume only small displacements, there is no need to distinguish between
the deformed and the undeformed state in the description of the stresses.
Defining local traction vectors t̃F and t̃S , one can abbreviate (3.4) to:

t̃S = t̃F on ΓI (3.5)

Since the structure is excited by the fluid flow, t̃S results from t̃F . Given the
local surface normal ñF , the local pressure value p̃ , and the local viscous
stress tensor τ̃, the tractions generated by the fluid flow can be computed
according to:

t̃F =−p̃ ñF + τ̃ñF (3.6)

In discrete form with non-matching meshes on the interface, a point-wise
fulfillment of (3.5) is impossible. Instead, the tractions have to be mapped
from the fluid to the structure domain and the dynamic equilibrium must
be approximated using, e.g., an energy conservative approach.

3 Kinematic equilibrium is not required as we neglect the effect of the displacement on
the fluid.
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This work adopts a conservative mapping as it is proposed by Farhat et
al. [62]. In the mentioned approach, tractions are mapped such that the
energy is conserved across the interface. Therefore, consider the nodal
forces defined as follows:

fF = M F tF (3.7)

fS = MS tS (3.8)

Herein, tF and tS represent the discrete global traction vectors. M F and
MS denote the mass matrices associated with both surface meshes on
ΓI . Given the displacement of the fluid and the structure domain on the
interface, uF and uS , the conservation of energy requires:

uT
F fF = uT

S fS on ΓI (3.9)

From the latter equation, one can derive a relation between the generated
forces in the fluid and the resulting forces on the structure. Therefore,
assume a generic linear map, with which we map displacements from the
structure to the fluid domain. Introducing the constant mapping matrix
H F S , it holds:

uF = H F S uS (3.10)

We obtain the external forces acting on the interface of the structure by
plugging (3.10) into (3.9) and rearranging the resulting equation:

fS = H T
F S fF on ΓI (3.11)

There exist various techniques in terms of how to construct H F S . Among
those, we, in this thesis, use the mortar method and the nearest element
interpolation. Refer to Wang et al. [63] for a summary of both techniques.

3.2 Multidisciplinary solution approach

The optimization problem in (3.1) requires an objective J to be minimal,
some constraints g i to be feasible, and the underlying governing equations
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R F and RS to be satisfied. The problem is multidisciplinary in terms of
the analysis, as it requires to analyze a fluid-structure interaction. Also, it
represents a multidisciplinary design optimization (MDO) problem, as it
contains response functions with different physics involved. So, coupled
solution strategies have to be applied to simulate the physical problem,
and techniques from MDO are required to find a solution for the overall
optimization problem.

Regarding the fluid-structure interaction, we assumed a one-way coupling.
To establish the corresponding interaction, we apply a Neumann-coupling
of forces, i.e., forces are transferred from the fluid to the structure, and
there applied as Neumann boundary conditions. Since we neglect the
reverse coupling of the displacements, no iterations are required to sat-
isfy the coupling condition. We apply a partitioned solution strategy to
exploit specialized disciplinary solvers. Time derivatives can be neglected
due to the initially assumed stationary conditions. We compute the fluid-
structure interaction in every optimization step, so that (3.1b) and (3.1c)
are always satisfied. That is, (3.1b) and (3.1c) are no explicit constraints to
be controlled by the optimization algorithm. This approach corresponds
to a multidisciplinary feasible optimization strategy, cf. Martins et al. [64].

We assume high-fidelity models for the single disciplines meaning their
solution is costly. A large number of function evaluations, like in zero-
order optimization algorithms, is therefore impossible. Instead, we ap-
ply gradient-based optimization. For this purpose, gradient or sensitivity
analysis is necessary. More precisely, sensitivity analysis is necessary in or-
der to determine the objective gradient d J /d s and the constraint gradients
d g i /d s.

In the present case, there is only one objective function, but the number of
stress constraints nσ may be large (in the order of the number of elements
in the structure model). Also, since Vertex Morphing is applied, the num-
ber of design variables is large (say up to several million design variables).
An optimization with many response functions and many design variables
is prohibitive. Therefore, we assume that stress constraints are either re-
stricted to very few dedicated evaluation points or aggregated to very few
compromise functions using relevant aggregation techniques. See, e.g.,
Lambe et al. [65] for an overview of such techniques. Under the previous
assumptions, we need to compute gradients of only a few response func-
tions with respect to many design variables. Therefore, we use the adjoint
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method to determine d J /d s and d g i /d s.

In the determination of the gradients, we must consider the coupling be-
tween the fluid and the structure. Thus, we require a coupled adjoint sen-
sitivity analysis. Like in the primal solution, we in the adjoint solution also
opt for a partitioned solution strategy. The goal is to utilize specialized
adjoint solvers in both physical domains and to avoid the computation
of cross-derivatives so that we can use the solvers in a black-box manner.
A coupled adjoint sensitivity analysis specialized for this purpose is de-
veloped in section 3.4. The sensitivity analysis follows a discrete adjoint
approach, i.e., equations are first discretized and then derived.

3.3 Parameterization

The optimization problem specified in section 3.1 requires the definition
of some design parameters, s, with which the shape of the structure is
controlled. Given the multidisciplinary setup, the parameterization is a
non-trivial task since not only the type of parameters must be specified,
but one must also consider that the design surface is linked to different
meshes. If the parameterization only acts on one mesh, shape updates
need to be consistently mapped to the other.

Herein, we use the Vertex Morphing Method to parameterize the shape.
The goal is to realize an optimization approach, which allows for a quick4

exploration of design potential at maximum design freedom 5. In doing so,
we assume that the two given meshes represent a fixed initial geometry.
Accordingly, we use Vertex Morphing to control geometry updates, cf.
section 2.2. So, the design parameters in our case are the displacement of
the control points,∆ŝ. In order to avoid clutter in the later derivations, we
keep referring to the set of design variables as s, knowing that:

s=∆ŝ (3.12)

Given two different discretizations of the design surface, one that corre-
sponds to the fluid domain, xD ,F , and one that corresponds to the structure
domain, xD ,S , this thesis suggests a custom variant of Vertex Morphing.

4 I.e., an explicit definition of parameters is not necessary.
5 I.e., there are as many parameters as degrees of freedom in the mesh.

41



3 Optimizing internal flows under stress constraints

This variant takes advantage of all extensions presented in chapter 2. The
resulting parameterization is customized to the present MDO problem in
terms of two aspects:

1. A common set of control points is introduced to simultaneously
control the geometry of the design surface in both physical models.

2. Control points are used to simultaneously control the geometry of
the design surface and the entire volume mesh of the structure.

Regarding the first aspect

Rather than specifying design variables that only act on one mesh and
mapping any geometry update to the other, we use Vertex Morphing to
control∆xD ,F and∆xD ,S simultaneously. By that, Vertex Morphing serves
two purposes: 1) it controls the shape, and 2) it replaces a separate map-
ping strategy. To use Vertex Morphing for both purposes, we apply the
extension described in section 2.4. That is, we introduce two separate map-
ping matrices, A F S and ASS , together with a common set of control points
ŝ. The displacement of the control points, ∆ŝ = s, represents the set of
design variables. Then we establish the following relation between s and
the geometry update in both domains:

∆xD ,S = ASS s (3.13a)

∆xD ,F = A F S s (3.13b)

Note herein that a displacement of the control points leads to an update
of the geometry in both domains. From section 2.4, we know that if the
mapping matrices are constructed based on the same filter settings, then
the underlying definition of the geometry or geometry update is consistent.
Since a consistent geometry update is essential in the shape optimization
of coupled problems, we use the same filter function and the same filter
radius to construct both A F S and ASS .

s in (3.13) implies a common discretization of the control field. For the
discretization of the control field, we require a dedicated mesh, ξ̂C . In
order to avoid extra modeling effort, we can reuse one of the given meshes
for this purpose. In this context, it is reasonable to use the coarser of both
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meshes as the latter determines the design freedom. Since in FSI problems,
the fluid mesh is typically finer than the structure mesh, we, in this work,
use the mesh of the structure for the discretization of the control field. That
is, x(0)D ,S = ξ̂C . Consequently, ASS in (3.13) represents a square and A F S a
rectangular matrix.

Regarding the second aspect

Instead of focusing only on the design surface, we use Vertex Morphing
also to control the entire volume mesh of the structure, xS . So, it holds:

∆xD ,S = ASS s → ∆xS = ASS s (3.14)

The approach corresponds to the simultaneous control of geometry and
mesh by Vertex Morphing, described in section 2.3. The advantages of the
selected approach are:

• No extra solver is needed to compute the mesh motion in the struc-
ture domain.

• Therefore, no additional contributions from such a solver need to
be considered in the sensitivity analysis.

• The smoothing properties of Vertex Morphing can be utilized to
maintain a valid structure mesh throughout the optimization.

The disadvantages of this approach are compiled in section 2.3. From the
discussions in this section, we know that the larger the filter radius, the less
relevant the disadvantages. In the context of this work, we assume only
large filter radii6 in favor of globally smooth shape changes. On this basis,
we may neglect the disadvantages and exploit the advantages mentioned
above.

Combination of both aspects

Combining both aspects above, we obtain the following parameterization:

6 Large compared to the dimensions of the structure domain.
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3 Optimizing internal flows under stress constraints

∆xS = ASS s (3.15a)

∆xD ,F = A F S s (3.15b)

Herein, ASS is a square mapping matrix with which a displacement of the
control points is translated into an update of the entire structure mesh.
Contrarily, A F S is a rectangular mapping matrix with which a displacement
of the control points is translated into a geometry update on the fluid side.
Since both matrices are constructed using the same filter function and filter
radius,∆xS and ∆xD ,F are consistent. By having two separate mapping
matrices, a displacement of the control points automatically leads to an
update of the geometry in both domains. A separate mapping of geometry
updates between the domains is omitted.

Note from (3.15a) that on structure side, s controls all mesh nodes (xS ),
whereas on fluid side, s only controls the geometry on the design surface
(xD ,F ). So, in the fluid domain, it is still necessary to adapt the volume mesh
by an extra mesh motion strategy. Technically it would be possible to use
Vertex Morphing to control both volume meshes simultaneously. How-
ever, since the fluid domain is typically highly refined, the construction
and storage of the corresponding mapping matrix can quickly become
prohibitive. For this reason, Vertex Morphing is only used to replace the
mesh motion in the structure domain.

In summary: The proposed parameterization strategy bases on a custom
variant of the Vertex Morphing Method and unifies three, actually sepa-
rate, aspects of the given multidisciplinary problem: control of the design
surface, mapping of shape (geometry) updates between the domains, and
the mesh motion on the structure side. Using this new strategy, we obtain
a parameterization that allows maximum design freedom without the ne-
cessity of an additional mapping of shape updates or a dedicated mesh
motion solver for the structure.

Figure 3.1 illustrates the combined approach at a generic but representa-
tive example.

Continuous update of the reference geometry

As explained in chapter 2, the geometry or geometry update in Vertex Mor-
phing is defined w.r.t. a reference configuration. So far, we implied that
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ΩF

ΩS

∆xD ,F

controls

controls
∆xSξ̂C | s

Figure 3.1: Illustration of the parameterization. Left:
Discretization of both domains representing the initial

configuration. Right: Control mesh (ξ̂C ) with which a set of control
points is defined whose displacement (s) causes a shape update in

the fluid domain (∆xD ,F ) and an update of the entire structure
mesh (∆xS ). There are as many control points as nodes in ξ̂C .

the reference configuration is fixed throughout the optimization (Total
Lagrangian approach) and given by the initial design domain (Γ (0)D or Ω(0)D ).
In practice, however, the reference configuration is often updated con-
tinuously, such that it always corresponds to the geometry from the last
optimization iteration (Updated Lagrangian approach). By that, one ac-
counts for shape changes in the filtering with a fixed filter radius r . Without
an update of the reference geometry, self-intruding surfaces may occur in
case of big shape changes, for example. In the present work, we follow this
common practice and continuously update the reference geometry in the
optimization examples.

Continuously updating the reference geometry means that the filtering and
the integration are done in the current configuration, whereas ΓD = ΓD (s).
Therefore, one has to consider the change in ΓD when computing d xD /d s
in the design sensitivity analysis, cf. (2.10). In the literature on Vertex Mor-
phing, the influence of a changing reference on d xD /d s is neglected so
far, cf. Bletzinger [8], Hojjat et al. [9], Bletzinger [10], and Najian Asl et al.
[14]. Indeed, this is reasonable under the assumption of small step sizes
and little changes in the geometry within one optimization iteration. We,

45



3 Optimizing internal flows under stress constraints

in this work, follow the aforementioned common practice. So, despite
continuously updating the reference geometry, we, in the optimization
examples later, assume small steps sizes and thus:

d xD

d s
≈
∂ xD

∂ s
= A (3.16)

3.4 Coupled sensitivity analysis

The optimization problem in (3.1) shall be solved by gradient-based shape
optimization. Therefore, shape gradients have to be computed for both the
objective J and the constraints g i , taking into account that the underlying
governing equations must be satisfied. To obtain the relevant gradients,
(coupled) adjoint sensitivity analysis is utilized. In this section, we derive
the corresponding sensitivity analysis.

The derivations follow a discrete approach. I.e., they are based on the
already discretized equations. Also, the resulting sensitivity analysis is
customized such that:

• no cross-derivatives have to be computed,

• a partitioned solution approach is possible in which specialized
single-disciplinary solvers can be used,

• no or just top-level adjustments have to be made to existing adjoint
solvers.

For this purpose, we adopt the idea presented in Najian Asl [26] and Najian
Asl et al. [27], where the authors describe a possibility to establish a par-
titioned adjoint sensitivity analysis for FSI problems without the need to
compute cross-derivatives. The two mentioned works focus on fully cou-
pled, fully nonlinear FSI problems. New in the present work is the rigorous
derivation of such a sensitivity analysis for a one-way coupled FSI problem
with a linear structure. The latter represents a variety of applications. The
resulting sensitivity analysis with all the above-listed characteristics is a
novelty in the field of MDO.
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3.4 Coupled sensitivity analysis

3.4.1 Formulation of the sensitivity analysis

To compute the derivatives of the response functions J and g i w.r.t. the de-
sign variables s, i.e., d J /d s and d g i /d s, coupled adjoint sensitivity analysis
is applied. In the following, we derive the corresponding formulation using
the Lagrange formalism. Since the subsequent derivations are identical for
J and g i , I is used as a placeholder that represents both response functions.

Given I and the requirements that the governing equations of the fluid

and the structure must be satisfied, i.e., R F
!= 0 and RS

!= 0, the following
Lagrange functional can be defined:

L = I +λT R F +µ
T RS (3.17)

Herein, λ and µ are arbitrary Lagrange multipliers associated with the
fluid and the structure domain, respectively. Due to their meaning in the
adjoint sensitivity analysis, the multipliers are referred to as the adjoint
state variables or simply the adjoint variables.

By formulating a Lagrange functional, the constraints coming from the
governing equations, i.e., (3.1b) and (3.1c), are eliminated from the set of
explicit constraints in the optimization problem. Instead, they are implic-
itly included in the formulation of the response functions. Note in this
context that, if the governing equations are satisfied, L = I . So the original
problem is not altered.

To solve the optimization problem, we need to find a design, where:

d L

d s
!= 0 (3.18)

The relevant gradient can be computed as follows:

d L

d s
=

d I

d s
+λT d R F

d s
+µT d RS

d s
. (3.19)

Expanding the previous equation by the individual total derivatives it
becomes:
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d L

d s
=
∂ I

∂ s
+
∂ I

∂w

d w

d s
+
∂ I

∂ u

d u

d s
+λT

�

∂ R F

∂ s
+
∂ R F

∂w

d w

d s
+
∂ R F

∂ u

d u

d s

�

+µT
�

∂ RS

∂ s
+
∂ RS

∂w

d w

d s
+
∂ RS

∂ u

d u

d s

�

(3.20)

Reordering the equation yields:

d L

d s
=
∂ I

∂ s
+λT ∂ R F

∂ s
+µT ∂ RS

∂ s
+
�

∂ I

∂w
+λT ∂ R F

∂w
+µT ∂ RS

∂w

�

d w

d s

+
�

∂ I

∂ u
+λT ∂ R F

∂ u
+µT ∂ RS

∂ u

�

d u

d s
(3.21)

The partial derivatives in the previous equation represent the explicit de-
pendencies of the response function and the governing equations on the
state and the design variables. Given a solution of the coupled problem,
i.e., a set of w and u that satisfies the governing equations, the partial
derivatives can be computed explicitly.

In contrast to that, the total derivatives d w/d s and d u/d s refer to existing
implicit dependencies. The computation of those requires a solution of
the coupled governing equations for each component of s, which quickly
becomes prohibitive. A possibility to avoid the costly computation of this
total derivatives is to determine the Lagrange multipliers in (3.21) such that
the multiplication terms in the brackets vanish identically. This approach
gives rise to the coupled adjoint equations or the coupled adjoint problem:

λT ∂ R F

∂w
+µT ∂ RS

∂w
=−

∂ I

∂w
(3.22a)

λT ∂ R F

∂ u
+µT ∂ RS

∂ u
=−

∂ I

∂ u
(3.22b)

Both equations in the adjoint problem depend on the complete set of
adjoint variables. So, similar to the original problem, the adjoint problem
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3.4 Coupled sensitivity analysis

is also coupled. Moreover, the adjoint problem builds upon the solution of
the original problem. Therefore, one typically refers to the original problem
as the primal problem and u and w as the primal variables.

Given a solution of the coupled adjoint equations, i.e., a set of λ and µ that
satisfies (3.22), the gradient of the Lagrangian can be computed using only,
comparatively cheap, explicit operations:

d L

d s
=
∂ I

∂ s
+λT ∂ R F

∂ s
+µT ∂ RS

∂ s
(3.23)

In this so-called adjoint approach, the cost of computing d L/d s is inde-
pendent of the number of variables. Instead, a coupled adjoint system has
to be solved for every response function I . In cases of only a few response
functions but many design variables, as in this work, the adjoint approach
is superior to other types of sensitivity analysis.In the following, the terms
in (3.23) are further specified.

Considering the governing equations of the structure in (3.3), the partial
derivative of the latter w.r.t. the design variables reads:

∂ RS

∂ s
=
∂

∂ s
(Ku− fS ) =

∂ Ku

∂ s
−
∂ fS

∂ s
(3.24)

The external forces acting on the structure, i.e. fS , originate from the fluid
domain and are determined by a force mapping along the interface, cf.
(3.11). Plugging the latter into (3.24) and then (3.24) into (3.23), we obtain:

d L

d s
=
∂ I

∂ s
+λT ∂ R F

∂ s
+µT ∂ Ku

∂ s
−µT ∂

∂ s
(H T

F S fF ) (3.25)

The mapping matrix, H T
F S , is constructed based on the two non-matching

meshes of the fluid and the structure alongside the common interface ΓI .
Since ΓI ⊂ ΓD , the mapping matrix is explicitly depending on the geometry
of the design surface and implicitly depending on the control points, so:

H = H
�

xD ,F (s), xD ,S (s)
�

(3.26)
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Given the dependency of the mapping matrix on the control points, we
can resolve (3.25) further using the product rule:

d L

d s
=
∂ I

∂ s
+λT ∂ R F

∂ s
+µT ∂ Ku

∂ s
−µT ∂ H T

F S

∂ s
fF −µT H T

F S

∂ fF

∂ s
(3.27)

Note herein that:

µT H T
F S =µ

T
F (3.28)

which is equivalent to:

H F Sµ=µF (3.29)

The previous equation represents a consistent map of the adjoint state
variables of the structure onto the boundary of the fluid alongside the
common interface ΓI . Plugging (3.28) into (3.27), we obtain:

d L

d s
=
∂ I

∂ s
+λT ∂ R F

∂ s
+µT ∂ Ku

∂ s
−µT ∂ H T

F S

∂ s
fF −µT

F

∂ fF

∂ s
(3.30)

The partial derivatives in the previous equation can be further specified
using the chain rule as follows:

∂ I

∂ s
=
∂ I

∂ xF

∂ xF

∂ xD ,F

∂ xD ,F

∂ s
+
∂ I

∂ xS

∂ xS

∂ xD ,S

∂ xD ,S

∂ s
(3.31)

∂ R F

∂ s
=
∂ R F

∂ xF

∂ xF

∂ xD ,F

∂ xD ,F

∂ s
(3.32)

∂ Ku

∂ s
=
∂ Ku

∂ xS

∂ xS

∂ xD ,S

∂ xD ,S

∂ s
(3.33)

∂ H T
F S

∂ s
=
∂ H T

F S

∂ xD ,F

∂ xD ,F

∂ s
+
∂ H T

F S

∂ xD ,S

∂ xD ,S

∂ s
(3.34)

∂ fF

∂ s
=
∂ fF

∂ xF

∂ xF

∂ xD ,F

∂ xD ,F

∂ s
(3.35)
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Herein, ∂ •/∂ x results from the explicit dependency of a term on the node
coordinates of a mesh. ∂ x/∂ xD results from the applied mesh-motion
strategy. The latter translates geometry updates on the design surface into
a motion of the entire volume mesh. ∂ xD /∂ s results from the dependency
of the geometry on the design surface on the displacement of the control
points.

Plugging (3.31) till (3.35) into (3.30), we get:

d L

d s
=
∂ I

∂ xS

∂ xS

∂ xD ,S

∂ xD ,S

∂ s
+
∂ I

∂ xF

∂ xF

∂ xD ,F

∂ xD ,F

∂ s
+λT ∂ R F

∂ xF

∂ xF

∂ xD ,F

∂ xD ,F

∂ s

+µT ∂ Ku

∂ xS

∂ xS

∂ xD ,S

∂ xD ,S

∂ s
−µT

�

∂ H T
F S

∂ xD ,F

∂ xD ,F

∂ s
+
∂ H T

F S

∂ xD ,S

∂ xD ,S

∂ s

�

fF

−µT
F

∂ fF

∂ xF

∂ xF

∂ xD ,F

∂ xD ,F

∂ s
(3.36)

Simplified and sorted into a fluid, a mapping and a structure part, the
sensitivity equation finally reads:

d L

d s
=
�

∂ I

∂ xF
−µT

F

∂ fF

∂ xF
+λT ∂ R F

∂ xF

�

∂ xF

∂ xD ,F

∂ xD ,F

∂ s

−µT

�

∂ H T
F S

∂ xD ,F

∂ xD ,F

∂ s
+
∂ H T

F S

∂ xD ,S

∂ xD ,S

∂ s

�

fF

+
�

∂ I

∂ xS
+µT ∂ Ku

∂ xS

�

∂ xS

∂ xD ,S

∂ xD ,S

∂ s

(3.37)

Given the above sensitivity equation and the corresponding coupled ad-
joint system, (3.22), one can determine the searched gradient by first solv-
ing (3.22) for the adjoint variables and then use the result to compute
d L/d s according to (3.37). In the following, this procedure is further cus-
tomized to the herein discussed multidisciplinary problem.

3.4.2 Customization for Vertex Morphing

In section 3.3, a parameterization based on Vertex Morphing was intro-
duced, which unifies the control of geometry and mesh. Given this pa-
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rameterization, the sensitivity equation in (3.37) can be customized as
follows.

First, since Vertex Morphing is used to control the entire structure mesh, a
displacement of the control points has an immediate effect on the entire
structure mesh. Consequently:

∂ xS

∂ xD ,S

∂ xD ,S

∂ s
=
∂ xS

∂ s
(3.38)

Second, considering that in general x = x(0) +∆x, one can derive from
(3.15a) and (3.15b) that:

∂ xD ,F

∂ s
= A F S (3.39)

∂ xS

∂ s
= ASS (3.40)

Finally, inserting (3.38), (3.39), and (3.40) in (3.37), we obtain the following
sensitivity equation:

d L

d s
=
�

∂ I

∂ xF
−µT

F

∂ fF

∂ xF
+λT ∂ R F

∂ xF

�

∂ xF

∂ xD ,F
A F S

−µT

�

∂ H T
F S

∂ xD ,F
A F S +

∂ H T
F S

∂ xD ,S

∂ xD ,S

∂ s

�

fF

+
�

∂ I

∂ xS
+µT ∂ Ku

∂ xS

�

ASS

(3.41)

Comparing the previous equation with the general sensitivity equation in
(3.37), one can see that there is no need anymore to compute ∂ xS/∂ xD ,S ,
i.e., the sensitivity contribution from a separate simulation of the mesh
motion. Instead, we use ASS to map sensitivities directly from the vol-
ume mesh to the control space. This characteristic greatly simplifies the
sensitivity analysis.

Note that the new parameterization strategy only affects the sensitivity
equation. It has no impact on the coupled adjoint system in (3.22).
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3.4 Coupled sensitivity analysis

3.4.3 Customization for one-way coupling

This work considers problems with a one-way coupled fluid-structure
interaction. Due to the one-way coupling, the fluid is not affected by the
structure state, so:

∂ R F

∂ u
= 0 (3.42)

Also, the fluid forces are independent of the state of the structure, i.e.:

∂ f f

∂ u
= 0 (3.43)

Consequently:

∂ fS

∂ u
=
∂ fS

∂ fF

∂ fF

∂ u
= 0 (3.44)

So, no follower loads are acting on the structure. Accordingly, it holds:

∂ RS

∂ u
=
∂ Ku

∂ u
−
∂ fS

∂ u
= K (3.45)

The previous relations allow for a simplification of the coupled adjoint
system. Plugging (3.42) and (3.45) into (3.22), the coupled adjoint system
reduces to:

λT ∂ R F

∂w
+µT ∂ RS

∂w
=−

∂ I

∂w
(3.46a)

µT K =−
∂ I

∂ u
(3.46b)

Note in (3.46) that, due to the one-way coupling in the primal domain, also
the adjoint problem is one-way coupled. I.e., (3.46a) depends on (3.46b),
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but not vice versa. Consequently, no iterations are necessary to solve the
adjoint problem.

In this context, it is striking that the coupling direction is reversed. I.e.,
the adjoint state of the fluid in (3.46a) depends on the adjoint state of the
structure in (3.46b). In the primal problem, by contrast, the state of the
structure depends on the state of the fluid.

Important to mention is that the governing equations of the structure are
self-adjoint since the stiffness matrix is symmetric (K T = K). Therefore,
(3.46b) can be solved by an analysis of the original structure for a new load
case given by −∂ I /∂ u.

Beyond the impact on the coupled adjoint system, there is no further influ-
ence of the one-way coupling on the overall sensitivity analysis. Especially,
it does not affect the sensitivity equation in (3.41).

3.4.4 Gradient of the objective function

In this work, we assume the objective function represents a characteristic
of the fluid, such as pressure loss, power loss, or similar quantities. In this
context, we assume that the objective function does not have an explicit
dependency on the structure state or mesh. Given those assumptions, the
coupled adjoint system and the sensitivity equation simplifies as follows.

If the objective function does not depend on the structure state or mesh,
it holds:

∂ I

∂ xS
= 0 (3.47)

∂ I

∂ u
= 0 (3.48)

According to (3.48), the coupled adjoint system in (3.46) reduces to:

λT ∂ R F

∂w
+µT ∂ RS

∂w
=−

∂ I

∂w
(3.49a)

µT K = 0 (3.49b)
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From (3.49b), it may be readily concluded that µ = 0. So, the coupled
adjoint problem reduces to an uncoupled adjoint fluid problem, which
can be solved independently of the structure:

λT ∂ R F

∂w
=−

∂ I

∂w
(3.50)

The sensitivity equation also reduces accordingly. Plugging (3.47) and
(3.48) in (3.41), we obtain the following sensitivity equation:

d L

d s
=
�

∂ I

∂ xF
+λT ∂ R F

∂ xF

�

∂ xF

∂ xD ,F
A F S (3.51)

The two boxes around the sensitivity equation and the adjoint system
above identify the final set of equations used to compute the derivative
of the objective function (I = J ) w.r.t. to the design variables (s) in the
present application.

Solution procedure

(3.50) and (3.51) together form a regular CFD adjoint sensitivity analysis.
Therein, the coupling completely vanished. Only an additional mapping
of the surface sensitivities to the control space using A F S is included.

The corresponding solution process to determine the searched sensitivity
information is outlined in the following. Note in this context, that the
adjoint sensitivity analysis requires the solution of the primal problem as
input:

1. Solve the adjoint fluid system in (3.50) for the adjoint fluid state λ.

2. Use λ in (3.51) to compute the raw surface sensitivities d L/d xF .

3. Determine the sensitivity contribution from the mesh motion in the
fluid domain, i.e., d xF /d xD ,F , and multiply it with the result from 2.
to obtain the complete surface sensitivities, d L/d xD ,F .

4. Map the surface sensitivities to the control space using the mapping
matrix from Vertex Morphing, i.e. A F S . Finally, one obtains d L/d s
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3 Optimizing internal flows under stress constraints

3.4.5 Gradient of the constraint function(s)

In this work, we assume that constraints are given in the form of allowable
stresses in the structure. In this case, the coupled adjoint system and the
sensitivity equation can be simplified as follows.

The stresses in the structure do not explicitly depend on the fluid mesh or
the fluid state, so:

∂ I

∂ xF
= 0 (3.52)

∂ I

∂w
= 0 (3.53)

By contrast, the governing equations of the structure depend on the state
variables of the fluid through the force mapping. Considering (3.3) and
(3.11), it holds:

∂ RS

∂w
=−

∂ fS

∂w
=−

∂ fS

∂ fF

∂ fF

∂w
=−H T

F S

∂ fF

∂w
(3.54)

Introducing (3.53) and (3.54) into (3.46) yields a custom variant of the
coupled adjoint system:

λT ∂ R F

∂w
−µT H T

F S

∂ fF

∂w
= 0 (3.55a)

µT K =−
∂ I

∂ u
(3.55b)

Rearranging the equations and using the relation in (3.28), we finally obtain
the following coupled adjoint system for the stress constraints:

λT ∂ R F

∂w
=µT

F

∂ fF

∂w
(3.56a)

µT K =−
∂ I

∂ u
(3.56b)
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3.4 Coupled sensitivity analysis

We recall thatµT
F results from a consistent map of the adjoint state variables

of the structure onto the boundary of the fluid alongside the common
interface ΓI , cf. section 3.4.1.

The simplifications mentioned in the beginning of this section also im-
pact the sensitivity equation. Introducing (3.52) in (3.41), we obtain the
following reduced sensitivity equation:

d L

d s
=
�

−µT
F

∂ fF

∂ xF
+λT ∂ R F

∂ xF

�

∂ xF

∂ xD ,F
A F S

−µT

�

∂ H T
F S

∂ xD ,F
A F S +

∂ H T
F S

∂ xD ,S

∂ xD ,S

∂ s

�

fF

+
�

∂ I

∂ xS
+µT ∂ Ku

∂ xS

�

ASS

(3.57)

Note from (3.57) and (3.56) that stress constraints require a coupled ad-
joint sensitivity analysis. That is, the adjoint system represents a coupled
problem, and the sensitivity equation contains contributions from both do-
mains. Both properties reflect the fact that the stresses are a consequence of
the present fluid-structure interaction. The following subsection presents
a solution procedure, which considers the physical interaction in the sensi-
tivity analysis of the stress constraints. The procedure is based on existing
single-disciplinary solvers and does not require the computation of cross
derivatives. Instead, it relies on an exchange of boundary conditions.

Solution procedure

Looking closer at the final sensitivity equation and the coupled adjoint
system, we find that (3.56b) together with the last row of (3.57) form a
regular adjoint sensitivity analysis of the structure for the given response
function I :

µT K =−
∂ I

∂ u
d LS

d s
=
�

∂ I

∂ xS
+µT ∂ Ku

∂ xS

�

ASS

(3.58a)

(3.58b)
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3 Optimizing internal flows under stress constraints

That means, a part of the final sensitivity equation in (3.57) can be com-
puted by a separate adjoint sensitivity analysis of the structure according
to (3.58). We denote this part d LS/d s.

Furthermore, by combining (3.56a) with the first row in (3.57), and moving
the adjoint state vector of the structure inside the adjacent partial deriva-
tive, we obtain a regular adjoint sensitivity analysis of the fluid. In this
sensitivity analysis, the response function is not I , but an "auxiliary" func-
tional, I f , which depends on the fluid forces, fF , along the wet interface,
ΓI :

λT ∂ R F

∂w
=−

∂ I f

∂w
d LF

d s
=

�

∂ I f

∂ xF
+λT ∂ R F

∂ xF

�

∂ xF

∂ xD ,F
A F S

where

I f =−µT
F fF on ΓI

(3.59a)

(3.59b)

(3.59c)

The previous sensitivity analysis is similar to the sensitivity analysis for
a drag or a lift response. The only difference is that the fluid force is not
evaluated in a constant direction,i.e., in flow-direction for drag or per-
pendicular to it for lift, but in a locally varying direction defined by −µF .
That means, given µF from the solution of the adjoint structure and the
subsequent mapping of of it to the fluid domain, we can compute a part of
the sensitivity equation in (3.57) by a separate adjoint sensitivity analysis
of the fluid according to (3.59). We denote this part d LF /d s.

Considering (3.57) and the definition of d LF /d s and d LS/d s, we can com-
pute the complete sensitivity information as follows:

d L

d s
=

d LF

d s
−µT

�

∂ H T
F S

∂ xD ,F
A F S +

∂ H T
F S

∂ xD ,S

∂ xD ,S

∂ s

�

fF +
d LS

d s
(3.60)

The boxes above identify the complete set of equations with which we
can compute the gradient of the stress constraints, i.e., d g i /d s= dσi /d s.
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3.4 Coupled sensitivity analysis

Note that, by computing d L/d s instead of d g i /d s, the resulting gradient
information considers the coupling in the underlying physical problem.

Based on the previous observations, this thesis suggests the following
solution procedure for the gradient computation of the constraints.

1. Run a separate adjoint senstivity analysis of the structure accord-
ing to (3.58). The solution yields the adjoint state µ and the first
sensitivity contribution, d LS/d s.

2. Map µ on ΓI from the boundary of the structure to the boundary of
the fluid using (3.28) in order to obtain µF .

3. Use µF and compute the second sensitivity contribution, d LF /d s,
by a separate adjoint sensitivity analysis of the fluid for the specified
auxiliary force response, cf. (3.59). Therefore, one can reuse an exist-
ing adjoint solver that computes sensitivites for standard fluid forces
(e.g., drag). Only the force direction needs to be locally adjusted to
−µF . Depending on the implementation, or the underlying type of
differentiation (analytic vs. algorithmic), this adjustment requires
either no or just minimal insight into the given adjoint solver.

4. Compute the third gradient contribution from the force mapping as
required in (3.60).

5. Sum up d LF /d s, d LS/d s, and the contribution from the force map-
ping and finally obtain d L/d s.

Some concluding remarks about the solution procedure:

• The procedure avoids the computation of cross-derivatives. Instead,
the relevant terms are computed by another adjoint fluid analysis
based on an auxiliary force response. The idea of avoiding an explicit
computation of cross-derivatives by running another adjoint fluid
analysis with an auxiliary force response was already presented in
Najian Asl [26] in the context of general FSI problems. The idea was
adopted and customized to the present one-way coupling.

• The solution procedure is fully partitioned. I.e., specialized single-
disciplinary solvers can be used to compute the individual sensitivity
contributions.
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3 Optimizing internal flows under stress constraints

• The information flow in the adjoint analysis is reverse to the informa-
tion flow in the primal analysis. In the primal analysis, forces must be
mapped from the fluid to the structure, and the fluid is independent
of the structure. By contrast, in the adjoint analysis, the adjoint state
of the structure, µ, must be mapped from the structure to the fluid
domain, i.e., the structure acts independently of the fluid.

3.4.6 Single-disciplinary gradient terms

The derivations above showed that only single-disciplinary sensitivity anal-
yses are necessary to compute the (coupled) gradients in the solution of
the given MDO problem, cf. (3.50), (3.51), (3.58), (3.59), and (3.60). This
section elaborates on the actual computation of the single-disciplinary
sensitivities:

Objective gradient

We assumed that the objective function describes a characteristic of the in-
ternal flow, like pressure loss. And we saw that the corresponding gradient
can be computed independently of the state of the structure. Consequently,
any regular adjoint fluid solver can be used for the computation of the
objective gradient. In this work, the discrete adjoint solver of SU2 is used,
which relies on algorithmic differentiation (AD), cf. Albring et al. [66]. The
discrete adjoint solver of SU2 is chosen because:

• AD delivers consistent7 sensitivities and automatically incorporates
all parts of the fluid model. In particular, it takes into account the
turbulence modeling (i.e., there is no frozen turbulence assumption,
which may induce severe errors, Dwight et al. [67])

• The implemented sensitivity analysis is independent of the actual
formulation of the response function. I.e., it can be readily used
with new response functions (like the auxiliary force functional as
required for the sensitivity analysis of the stress constraints).

• It is publicly available, open-source, and may be freely used, see SU2
Developer Community [68].

7 i.e., exact within the discretization
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3.4 Coupled sensitivity analysis

• It relies on a shifted Lagrangian formulation, which exploits the fixed-
point structure of the fluid solver. By that, the adjoint solver inherits
the convergence properties of the primal solver. I.e., if the primal
solver converges, also the adjoint will.

SU2 computes sensitivities of the form d • /d xD ,F . That means:

• SU2 includes sensitivity information from the mesh motion in the
fluid domain (∂ xF /∂ xD ,F ).

• In the context of this work, the sensitives computed by SU2 still
need to be multiplied by the mapping matrix A F S in order to obtain
d • /d s.

Constraint gradient

In section 3.4.5, it was shown that the gradient of the stress constraints,
(3.60), includes three parts, which can be computed successively by an
adjoint sensitivity analysis of the structure, an adjoint sensitivity analysis
of the fluid, and an explicit evaluation of an explicit mapping term. In
the following, the computation of the three parts is further detailed. In
summary, we compute the three parts as follows:

d L

d s
=

d LF

d s
︸︷︷︸

AD
(SU2)

−µT

�

∂ H T
F S

∂ xD ,F
A F S +

∂ H T
F S

∂ xD ,S

∂ xD ,S

∂ s

�

fF

︸ ︷︷ ︸

neglected

+
d LS

d s
︸ ︷︷ ︸

Semi-analytic
(Kratos)

(3.61)

Part 1) The adjoint sensitivity analysis of the structure described in (3.58)
is realized using a semi-analytic approach. That is, the finite difference
method (FD) is applied to compute ∂ Ku/∂ xS in the otherwise analyti-
cally derived sensitivity problem. The most important advantage of this
approach is that it does not depend on the actual formulation of K . So
without changes, it applies to a wide range of problems. The main dis-
advantage is that FD introduces numerical errors, which, in some cases,
may even increase as the mesh is refined. See Bletzinger et al. [69] for a
discussion of this problem and a possible solution.
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3 Optimizing internal flows under stress constraints

Apart from ∂ Ku/∂ xS , we also compute ∂ I /∂ xS = ∂ σi /∂ xS by FD in order
to avoid a deep code intrusion. Contrarily, we determine ∂ I /∂ u= ∂ σi /∂ u
analytically, because in the present case, it can be obtained by a simple
evaluation of the stress tensor for a unit state of the structure, cf. appendix
A.1. An analytic computation of ∂ I /∂ u has the advantage that the right-
hand side of the adjoint equation is exact. So, also the solution of (3.58a),
meaning the adjoint state, will be numerically exact. By that, the accuracy
problem of FD is limited to the sensitivity equation, (3.58b).

The presented semi-analytic sensitivity analysis was implemented in the
open-source framework Kratos Multiphysics, see Kratos Developer Com-
munity [70]. Hence, it is publicly available and freely usable. The imple-
mentation allows computing sensitivities of the form d • /d xS . So:

• Kratos does not include sensitivity information from a separate mesh
motion, meaning Kratos does not compute ∂ xS/∂ xD ,S .

• The gradient still needs to be multiplied by the mapping matrix ASS

in order to obtain design sensitivities in the form d • /d s.

Part 2) The adjoint sensitivity analysis of the fluid, cf. (3.59), is realized
using the already mentioned discrete adjoint solver of SU2, which relies
on Algorithmic Differentiation.

Section 3.4.5 showed that (3.59) corresponds to a regular fluid sensitivity
analysis with only a modified scalar force functional. Therefore, a new
response function was added to SU2. The new response function is similar
to the given drag function but allows for a local definition of the force
direction. The necessary implementation effort is minor and locally limited
to the definition of the response function. There are no changes in the
actual adjoint solution process. Consequently, the adjoint solver can still
be used as a black box, and all its advantages can be fully exploited. Notable
advantages of the discrete adjoint solver in SU2 are the consistent gradient
calculation and the desirable convergence properties.

Regarding the convergence properties, it is important to mention, that
the developed coupled solution procedure has no impact on the shifted
Lagrangian formulation utilized in the discrete adjoint solver of SU2. The
reason is that, on the level of the solver, the only relevant change is the
definition of the response function, and the latter has no impact on the
shifted Lagrangian formulation.
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3.4 Coupled sensitivity analysis

Using the new response function, SU2 computes sensitivities of the form
d • /d xD ,F . So:

• The sensitivity analysis already contains information from the mesh
motion in the fluid domain, i.e., it contains ∂ xF /∂ xD ,F .

• The sensitivity information from SU2 still needs to be multiplied
by the mapping matrix A F S in order to obtain the required design
sensitivities, d • /d s.

Part 3) The third ingredient is the mapping term. In the scope of this work,
we neglect the mapping term. The main reason for this approach is that
the relevant mapping is realized using black-box tools. A derivation of
the mapping operation is therefore not readily possible. Neglecting the
mapping term, however, is not considered critical because of two reasons:

1. Its origin is purely numerical, and it has no physical meaning. In-
stead, it reflects a direct mesh dependency of the computed gradient.
So, by neglecting the mapping term, one assumes a sufficiently fine
interface discretization in both domains, or one intentionally ex-
cludes non-physical gradient contributions.

2. Since its origin is purely numerical, the contribution of the mapping
term is expected to be small compared to the physical contributions
from the adjoint sensitivity analysis of the fluid and the structure. If
this was not the case, then the accuracy of the underlying simulation
needs to be questioned first.

By neglecting the mapping term, we accept a slight inconsistency between
the actual and the computed gradient. Later results suggest that, in the
scope of Vertex Morphing and robust first-order algorithms, this inconsis-
tency is acceptable. A detailed investigation of the influence of the mapping
term is left to follow-up research.

3.4.7 Concluding remarks

In this section, we developed a sensitivity analysis for the coupled op-
timization problem described in (3.1). It was shown, that the objective
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3 Optimizing internal flows under stress constraints

gradient requires a single-disciplinary adjoint sensitivity analysis of only
the fluid, and the constraint gradients a coupled adjoint sensitivity analysis
involving both domains.

For the coupled adjoint sensitivity analysis, a strictly partitioned solution
procedure was suggested, which relies on the exchange of boundary condi-
tions, and the definition of an auxiliary force response function. By that, we
avoided the explicit computation of cross-derivatives so that no intrusion
into the individual adjoint solvers is required. As a result, we can exploit
specialized single-disciplinary solvers to perform the necessary coupled
sensitivity analysis.

Two different strategies were suggested for the two single-disciplinary
sensitivity analyses within the coupled sensitivity analysis of the constraint.
In the case of the fluid, AD is proposed. In the case of the structure, a semi-
analytic strategy is suggested. Both strategies do not include any model
assumptions, like a particular flow type or a specific element formulation.
The combination of both strategies enables a broad field of application for
the presented sensitivity analysis.

Regarding the actual definition of the constraint function(s), no specific
formulations were assumed, only specific dependencies on the given state
variables and meshes, see (3.52) and (3.53). So, the presented coupled sen-
sitivity analysis is equally valid for any response function, which satisfies
those properties.

3.5 Test cases

This section introduces two test cases with which the developed sensitivity
analysis shall be verified, and the optimization process shall be tested.
The section covers a two-dimensional test case, in which a fluid is guided
through a generic bend, and a three-dimensional test case, which repre-
sents a generic valve housing with an internal flow channel. The purpose
of the 2D test case is to verify the sensitivity analysis within a setup that is
simple to reproduce. The 3D test case shall demonstrate the applicability
of the complete optimization process in complex scenarios. Both test cases
are inspired by applications from the field of fluid guidance or pressurized
valve systems.
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Figure 3.2: Model setup of 2D test case.

3.5.1 2D test case

The first test case represents a generic 180◦ bend, see figure 3.2. Fluid enters
the bend at the inlet Γin with a prescribed velocity vin and it leaves the bend
at the outlet Γout under ambient pressure pout. In order to avoid negative
influences from the inlet or the outlet on the flow in the bend, the fluid
domain is extended far beyond the actual bend. Around the bend, the fluid
is bounded by a structure, whereas the structure is clamped on one side.
On the interface between both domains, ΓI , the fluid exerts forces on the
structure.

The fluid is considered to be viscous and incompressible. The correspond-
ing characteristics and relevant boundary conditions are specified in figure
3.2. We consider the pressure loss within the bend as the specific flow char-
acteristic (objective function J ) to be optimized (minimized). We deter-
mine the pressure loss in the bend by subtracting the total surface pressure
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at the outlet from the total surface pressure at the inlet. Defining ptot as
the local total pressure value, it holds:

J =

´
Γin

ptot dΓin´
Γin

dΓin
−

´
Γout

ptot dΓout´
Γout

dΓout
(3.62)

For the structure, we assume a linear elastic deformation with an isotropic
material behavior. Parameters that characterize the structure are compiled
in figure 3.2. The figure also specifies the support conditions (Dirichlet
boundary conditions). The external load vector acting on the structure
(the Neumann boundary condition) results from the coupling with the
fluid along ΓI . The emerging internal stresses are measured as von Mises
equivalent stresses at the Gauss points, cf. equation (A.1) and (A.2).

According to the present optimization problem, stresses are constrained
to a maximum value,σmax. In this 2D test case, the actual stress at a de-
fined evaluation point shall not increase compared to its initial value. So,
σmax corresponds to the initial stress at the selected evaluation point and
nσ = 1, meaning there is only one constraint. The evaluation point is iden-
tified as g (σ) in figure 3.2. The actual stress value at this evaluation point
is calculated as the mean stress of all Gauss points of the surrounding
element.

Despite the 2D scenario, the structure is modeled as a slightly extruded 3D
body, whereas motions in extrusion direction are locked ("plane strain").
By that, we avoid the application of a plate or shell formulation so that
the solution approach in this test case remains comparable to the three-
dimensional test case in the subsequent section. Figure 3.3 illustrates the
extrusion. The coupling between fluid and structure is only established
along the edges on one side of the structure.

The analyses of the two physical domains require dedicated meshes. Two
variants of the test case are introduced in this context: One variant where
the two meshes are matching on the interface. In the following, this variant
is referred to as "TCA." Furthermore, another variant, where the meshes
on the interface are non-matching, in the following called "TCB." The
latter requires a mapping of data between the individual meshes. For this
purpose, a nearest element interpolation is applied, cf. Wang et al. [63].
Figure 3.4 visualizes and compares the two cases around the symmetry
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Figure 3.3: Extruded structure in 2D test case. Fluid and
structure are colored in blue and grey, respectively.

line. It also provides some specifications of the individual meshes.

The inner and outer boundary of the bend corresponds to the design sur-
face. In the parameterization of the bend, we follow the extended Vertex
Morphing described in section 3.3. That is, we introduce a control field to
control the design surface in both domains and simultaneously the entire
volume mesh of the structure. The latter also provides the discretization
of the control field. Following this strategy, the number of design variables
amounts to three times the number of nodes in the mesh of structure, i.e.,
28 440 in TCA and 42 168 in TCB.

The filter radius in both cases is specified as r = 0.03m. Hence r is signifi-
cantly larger than the diameter of the bend (0.02m). Also, it spans across a
large portion of the design surface. By this choice, the two opposite walls
of the bend shall get a sense of each other’s sensitivities or motion. Also,
the optimizer shall prefer global shape changes rather than local updates.

3.5.2 3D test case

The second test case corresponds to a generic valve housing with an in-
ternal channel that guides a hydraulic fluid. Figure 3.5 illustrates the part
together with some characteristic dimensions. The figure also specifies ma-
terial quantities and locates boundary conditions. Fluid enters the block
at the inlet Γin with a prescribed velocity vin, and it leaves the block at the
outlet Γout under ambient pressure pout. To avoid negative influences from
both inlet and outlet, the simulation domain of the fluid is extended far
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Figure 3.4: Two variants of the 2D test case:1) with matching
meshes (top, "TCA"), 2) with non-matching meshes (bottom, TCB).

beyond the structure (not visible in the figure). On the interface between
both domains, ΓI , the fluid exerts forces on the structure. The forces, in
turn, cause internal stresses in the structure. The latter shall be controlled
in the optimization.

Some central characteristics of the test case are:

• It has a complex three-dimensional geometry with regions that must
not be modified, such as bolt holes or connection areas.

• It has a complex interior geometry with a narrow channel layout, i.e.,
geometric entities are close to each other, and thin walls form out
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Figure 3.5: Model setup of 3D test case.

locally. Thin walls are particularly challenging in the optimization
since there stresses may concentrate and easily exceed the threshold.
Also, shape updates can quickly lead to overlapping surfaces.

• Stress peaks are not limited to the surface that is in contact with the
fluid. They can also occur within the structure.
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The fluid is considered to be viscous and incompressible. Characteristics
of the fluid and relevant boundary conditions are specified in figure 3.5.
As already in the 2D test case, we assume pressure loss to be the specific
flow characteristic (objective function J ) to be optimized (minimized). As
in the 2D case, J is determined by subtracting the total surface pressure at
the outlet from the total surface pressure at the inlet, cf. (3.62).

For the structure, we assume a linear elastic deformation with an isotropic
material behavior. Parameters that characterize the structure are compiled
in figure 3.5. The whole part is clamped at five built-in bolt connections,
see Γfix in the previous figure. The loading of the structure solely results
from the coupling with the fluid along ΓI . The arising internal stresses are
measured as von Mises equivalent stresses at the Gauss points. The latter
must not exceed the allowed maximum value,σmax.σmax is defined as the
maximal stress in the initial design. So, we require that the stress level in
the optimal design does not increase compared to the original design.

To avoid the application of one stress constraint for each Gauss point,
we average stress values within a single element, assuming a sufficiently
fine discretization. Furthermore, a critical region is defined. Only stress
constraints from elements inside the critical region are considered as
relevant. The critical region comprises large parts of the structure around
the internal bend. It is visualized in figure 3.6. Stress constraints within
the critical region are aggregated using the Kreisselmeier–Steinhauser
(KS) function, cf. Kreisselmeier et al. [71] and Wrenn [72]. The KS function
produces a C 1-continuous envelope around the relevant constraints and
provides a conservative estimate of the included maximum value. Using
the KS-function, the effective number of constraints reduces to one. The
remaining constraint reads:

g (g i (s)) =KS(g i (s))< 0 (3.63)

whereas:

KS(g i (s)) =
1

ρ
ln

nσ
∑

i=1

e ρg i (s)/σmax (3.64)
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Figure 3.6: Elements of the critical region in the 3D test case.

In the previous equations, KS represents the estimated maximum con-
straint value (i.e., the value of the KS-function). g i represents the local
stress constraints from all elements within the critical domain. The aggre-
gated constraints in the KS-function are scaled by the predefined threshold
σmax to avoid high exponent values. ρ is a scalar multiplier that controls
the accuracy of the estimation. For an accurate estimation,ρmust be cho-
sen as large as possible. Too large values, however, will cause numerical
overflow. Given the scaled constraint values, the multiplier is chosen as
ρ = 50, which is considered to be a reasonable choice, cf. Wrenn [72] and
Martins et al. [73].

For the optimization, the gradient of the KS-function needs to be com-
puted. Generally, the computation corresponds to the gradient computa-
tion with a single stress constraint, cf. section 3.4.5. The only difference
in the present case is that one needs to consider additional contributions
from the local averaging of the stresses and the nesting of constraint func-
tions in (3.64). The additional contributions only affect the terms ∂ I /∂ u
and ∂ I /∂ xS and can be computed explicitly using the chain rule and sim-
ple arithmetic operations.

The meshes used to analyze the coupled problem are presented in figure
3.7. Note from the figure that both domains are discretized differently. Ac-
cordingly, the two surface grids along the interface do not match. Hence,
mapping is required to transfer data between the domains. For this pur-
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Figure 3.7: Discretization of fluid (blue) and structure domain
(grey) in the 3D test case.

pose, the Mortar Mapping Method is applied, cf. Wang et al. [63].

The design surface, in this case, includes the common interface ΓI and
some faces around the structure, which are not in contact with the fluid,
see figure 3.8. In the parameterization of the structure, we follow the ex-
tended Vertex Morphing described in section 3.3. That is, we introduce a
control field to control the design surface in both domains and simultane-
ously the entire volume mesh of the structure. The latter also provides the
discretization of the control field.
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Figure 3.8: Design surface in the 3D test case including the bend
(blue) and other surfaces of the structure (orange). Letters indicate

damping in the specified coordinate direction.

Generally, the design surface is free to move in any direction. However,
geometric constraints must be considered at the edges in order to maintain
a valid connection to the surrounding non-design domain. In this context,
we consider two types of edges: 1) edges that are located on the planar
outside of the structure and must only be modified in the corresponding
in-plane direction, and 2) edges that must not be modified at all. In figure
3.8, edges of the first type are tagged with each the prohibited coordinate
direction. All other edges are of the second type.

We integrate the geometric constraints directly into the parameterization
by damping shape updates around the edges. The damping follows the
approach explained in section 2.5. At fixed edges, the movement of nodes
is damped in all coordinate directions. At edges on the planar outside of the
structure, damping is applied in only the prohibited coordinate direction.
I.e., nodes may still move freely in the in-plane direction. At each edge, we
use a cosine damping function with an individual damping radius in the
order of the later specified filter radius, r .

As indicated before, Vertex Morphing takes control over the entire structure
mesh. Given the xS = 155 272 nodes, this approach gives rise to 3×155 272=
465 816 design variables. By controlling the entire structure mesh, we avoid
an additional simulation of the corresponding mesh motion. However,
in this approach, Vertex Morphing will also cause mesh updates on the
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3 Optimizing internal flows under stress constraints

Figure 3.9: Filter radius illustrated as sphere with radius r
(orange).

boundaries beyond the actual design surface. Given that those boundaries
must not change its shape, the mesh update has to be restricted there.
For this purpose, we apply damping. More precisely, at all planar faces
that are not part of the design surface, we damp the mesh motion in the
corresponding out-of-plane direction using a cosine-damping function
with an individual damping radius in the order of r .

The filter radius in this case is specified as r = 0.03m. Hence it is larger
than the diameter of the channel in the interior (0.02m), larger than the
thickness of the existing thin walls, and it spans over a big portion of the
entire structure, cf. figure 3.9. This choice serves several purposes:

• It allows that opposing points on the channel get a sense of each
other’s sensitivity values. Hence, we avoid local updates that have a
negative influence on the other side of the channel.

• It causes shape updates to be low-frequent so that we can expect a
globally smooth design.

• Since the filter radius is significantly larger than the smallest wall
thickness of the structure, it ensures that thin walls move as a whole.
That is, the large filter acts as an implicit thickness constraint. Such
a constraint is especially required around the big center hole, where
only a thin wall separates the fluid from the outside of the structure,
cf. figure 3.5.
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The possibility to establish an implicit thickness constraint through the
choice of r turns out to be very useful in practical applications because
the interior design of structures with internal flow often consists of many
cut-outs in a complex arrangement with only a little distance in-between.

3.6 Software framework

The multidisciplinary optimization process is realized by combining and
extending the capabilities of two open-source software packages: "Kratos
Multiphysics", Kratos Developer Community [70] and Dadvand et al. [74],
and "SU2", SU2 Developer Community [68] and Economon et al. [75].

Kratos is used to drive the optimization process, to control the FSI analysis,
and to organize the interdisciplinary communication. The latter comprises
the data exchange and the mapping of quantities between the different
meshes. As part of the optimization process, Kratos also includes the Vertex
Morphing Method. Furthermore, Kratos is used to simulate the structure
and to perform the corresponding sensitivity analysis.

SU2 is used to run all fluid simulations as well as the corresponding sen-
sitivity analyses. The fluid simulations employ the integrated solver for
incompressible fluid flows, refer to Economon [76] for details. The sensitiv-
ity analyses are based on the built-in discrete adjoint solver, refer to Albring
et al. [66] for details. Also, the built-in capabilities of SU2 are utilized to
morph the volume mesh in the fluid domain after every design update.

Both software packages have a strong focus on multiphysics. However,
the underlying numerical methods are different. SU2 mostly relies on the
finite volume method with unstructured grids, whereas Kratos follows a
general finite element approach.

3.7 Verification of the sensitivity analysis

In this section, the sensitivity analysis of the developed optimization pro-
cess is verified. The verification is performed for the 2D and 3D test case
and includes an investigation of the (single-disciplinary) objective and
the (coupled) constraint sensitivities. The verification is based on a com-
parison of the computed analytic sensitives to relevant reference values
at selected evaluation points. The verification is performed in the con-
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3 Optimizing internal flows under stress constraints

trol space, so the complete sensitivity vector, as used by the optimizer, is
evaluated. For the sensitivity verification, any damping is neglected.

In both test cases, the reference values are determined by a finite difference
(FD) approach, which computes first-order derivatives:

d I

d s
≈

I (s+∆s)− I (s)
∆s

=
d I

d s

FD

(3.65)

In the FD, we vary the perturbation,∆s, by several orders starting from a
large value, where approximation errors have to be expected and ending
at a small value, where round-off errors are dominant. Among the set of
determined values, we check for convergence, and if we find a plateau of
constant values, we choose the one value as reference, which is closest to
the value to be verified.

The reference values are then used to asses the quality of the computed sen-
sitivities, both in terms of magnitude and direction. Therefore, we employ
the following quality indicators:
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local deviation=
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The first quality indicator characterizes the total deviation of the analytic
to the reference gradient using the information from all evaluation points.
The deviation is expressed in percent relative to the reference value. The
second quality indicator evaluates the same deviation but locally at a spe-
cific evaluation point i based on the local gradient information d I /d si

and d I /d sFD
i .

3.7.1 2D case with matching and non-matching meshes

We first verify the proposed sensitivity analysis in 2D. For this purpose, the
2D test case from section 3.5.1 is utilized. We consider both variants of this
test case, i.e., TCA with the matching mesh and TCB with the non-matching
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ΓD ,1
ΓD ,2

ΓD ,3
ΓD ,4

1.8e+04

0

Von Mises stress [Pa]

g (σ)

Inner part

Outer part

Evaluation points: ΓD ,1 ∪ΓD ,2 . . .∪ΓD ,4

Figure 3.10: Boundaries in 2D test case at which sensitivities are
verified.

mesh. In both variants, we compute reference sensitivities using FD at all
nodes on the design surface ΓD at z = 0. We order the corresponding set
of evaluation points into four subsets corresponding to the four different
boundaries of the design surface, cf. figure 3.10. The arrows in the figure
indicate the order of evaluation points within a subset. The figure also
shows the initial stress state of the structure and the point at which the
stress constraint is evaluated, g (σ).

The sensitivity verification is performed for both the objective and the
constraint function. Figure 3.11 shows the analytic sensitivities of both
response functions, computed by the herein presented sensitivity analy-
sis. Figure 3.11(a) presents the results of the single-disciplinary sensitivity
analysis of the objective (pressure loss) and figure 3.11(b) the results of
the coupled sensitivity analysis of the constraint (stress value). From the
figures, one can see that both sensitivities happen to have similar magni-
tudes, but the direction is conflicting. So, an intuitive design suggestion
seems impossible. Instead, numerical optimization is required to find a
good compromise.

Note that the presented sensitivities are sensitivities in the control space
and not in the geometry space. So, the originally very discontinuous mesh
sensitivities of the form d • /x are already filtered once using Vertex Mor-
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0 9.8e+02
‖d J /d s‖

(a) Objective function

0 1.3e+03
‖d g /d s‖

(b) Constraint function

Figure 3.11: Analytic design sensitivities in 2D test case with
non-matching meshes (TCB).

phing and turned into design sensitivities of the form d • /d s. Therefore,
we can observe a smooth course of the sensitivities.

From a physical point of view, it is interesting to observe that the maximum
constraint sensitivities are not located directly around the stress evaluation
point, as could be expected, but on the opposite side of the channel. There
are also other significant hotspots at a considerable distance to the actual
evaluation point. Both observations indicate that the contribution from
the fluid, and hence the coupling, plays an essential role in the sensitivity
analysis of the structure.

In the following, we first verify the sensitivities using TCA. The results of
this sensitivity verification are compiled in figure 3.12. The figure includes
three graphs. The abscissa in every graph collects all evaluation points in
the order specified in figure 3.10. The first two graphs show the magnitude
of the local analytic and the local reference sensitivities in case of the
objective and the constraint function. We compute the magnitudes at
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3.7 Verification of the sensitivity analysis

every evaluation point i using the local norm ‖d I /d si ‖. The third graph
shows the local deviation of the analytic sensitivities from the reference
values, which also includes directional deviations. The local deviations are
calculated according to (3.67) at each evaluation point i .

In figures 3.12(a) and 3.12(b), we can see that the analytic sensitivities are
well matching the reference values at all evaluation points - both in case
of the objective and the constraint function. No significant outliers are
observable, and differences in magnitude only become visible on a small
scale.

Also, the computed local deviations show a good agreement between an-
alytic and reference sensitivities, see figure 3.12(c). The deviations are
mostly in the order of around 0.01−0.1% and sometimes even lower. At a
few locations, we observe peak deviations of around 2%. However, such
peaks only appear at spots where the sensitivity value is close to zero, so
that the division in (3.67) leads to relatively large percentages. Looking
instead at locations with a large sensitivity value, one finds that whenever
the sensitivity magnitude reaches a peak value, the deviation drops to a
local minimum in the order of 0.001−0.01%. This behavior indicates an
overall valid analytic sensitivity analysis.

The remaining deviations between reference and analytic sensitivities
in figure 3.12(c) can be traced back to errors in the simple finite differ-
ence approximation. Despite trying a broad range of perturbation sizes,
no constant plateau could be observed in the reference values. So, the
reference values themselves deviate from the correct sensitivity values
to some extend. The missing plateau in the reference values is probably
a consequence of the strong nonlinearity of the governing equations of
the fluid, which we analyze here by a simple first-order finite difference
approach.

Having evaluated the sensitives for the test case with matching meshes,
we conduct the same study for the test case with non-matching meshes
(TCB). This test case includes a mapping operation between the different
discretizations along ΓI . The mapping operation is only relevant in the
sensitivity analysis of the constraint but not the objective. The results of the
study are compiled in figure 3.13. The figure again includes three graphs.
The first two graphs compare the analytic with the reference sensitivities
regarding their magnitude. The third graph presents the complete local
deviations, calculated at each evaluation point i according to (3.67).
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Figure 3.12: Sensitivity verification using TCA.
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Figure 3.13: Sensitivity verification using TCB.
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Table 3.1: Total deviation of the analytic gradient from its
reference in the 2D test case according to (3.66).

Objective Constraint

matching meshes (TCA) 0.20% 0.02%

non-matching meshes (TCB) 0.24% 0.03%

The results in the figure essentially correspond to the results of TCA in
figure 3.12. That is, the analytic sensitivities locally correspond to their
reference quantities, both in terms of magnitude and direction. Especially
when comparing the deviations in figure 3.12(c) with those of figure 3.13(c),
no considerable differences can be observed. As far as the constraint is
concerned, this observation is remarkable as we neglected the mapping
contribution in the computation of the coupled gradient, cf. (3.61). So, it
seems that in this case, the mapping does not have a significant contribu-
tion to the coupled sensitivity analysis. This observation fits the general
expectation that mapping has only a negligible influence on the sensitivity
analysis in case of properly refined mehes, cf. section 3.4.6.

As in TCA, the remaining visible deviations in figure3.13(c) can be traced
back to errors in the simple finite difference approximation. Despite trying
a broad range of perturbation sizes, no constant plateau could be observed
for the individual reference values. So, the reference values themselves
deviate from the correct sensitivity values to some extend. The general
agreement of values in the presented results still suggests a valid analytic
sensitivity analysis.

The impression of a valid sensitivity analysis can also be quantitatively
confirmed. For this purpose, we evaluate the total deviation between the
complete analytic gradient vector, d I /d s, and the corresponding reference
vector, d I /d sFD, according to (3.66). Table 3.1 lists the results for TCA and
TCB. From the table, we can see that the differences are generally low.

Note in the table that TCB shows a slightly larger deviation for both re-
sponse functions compared to TCA. Since only the computation of the
constraint gradient involves a mapping operation, we may conclude that
the increased deviation in TCB is not caused by the neglected mapping
term in the coupled sensitivity analysis of the constraint, cf. (3.61). Instead,
it seems to be simply a consequence of the different meshes. Generally,

82



3.7 Verification of the sensitivity analysis

the results from TCA and TCB suggest that the mentioned mapping term
may be safely neglected in case of a sufficiently fine discretization.

From the results so far, we can conclude that:

• The sensitivities, especially those calculated by the proposed coupled
sensitivity analysis, are well conforming to the reference values. So
we consider them to be verified.

• Neglecting the mapping term in (3.61) seems to be a possible remedy
in case the term can not be computed for any reason.

Influence of the coupling

In the following, we investigate the influence of the coupling on the sen-
sitivity analysis of the stress constraint. In doing so, we only utilize TCB.
However, the findings are equally valid for TCA.

To investigate the influence of the coupling, we distinguish the two ma-
jor ingredients of the constraint gradient, i.e., the contribution from the
adjoint sensitivity analysis of the structure and the contribution of the
adjoint sensitivity analysis of the fluid, cf. (3.61). The complete constraint
gradient was denoted d L/d s = d g /d s and the two ingredients d LS/d s
and d LF /d s, respectively. Note that the fluid contribution is a direct con-
sequence of the coupling. So, its impact is a good measure for the relevance
of the coupling.

Figure 3.14 plots the two ingredients for all evaluation points and quantifies
their contribution. In the figure, the evaluation points are grouped into
two graphs: one covering the outer structure, where we evaluate the stress
constraint, and one covering the inner structure, which has no physical
link to the outer part. Figure 3.15 visualizes the two ingredients over the
entire structure and provides a qualitative impression of their differences.

In the graphs, the first striking observation is that both the structure and
the fluid have a significant contribution to the overall gradient of the stress
constraint. Concentrating on the outer part of the structure, for exam-
ple, we find that both contributions are balanced. At the inner part of the
structure, which has no link to the outer part where we evaluate the stress
constraint, the fluid contribution even dominates the overall gradient.
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Figure 3.14: Ingredients of d g /d s in TCB: d LF /d s represents
the contribution from the adjoint fluid analysis and d LS /d s from
the adjoint structure analysis. d LS /d si ·d g /d si shows whether at
evaluation point i both contributions point in the same direction.

Second, one can see that the contributions of the fluid and the structure
have different peak values at different locations. Peak values in the con-
tribution of the structure can only be observed in the outer part of the
structure around the stress evaluation point or its direct vicinity (see evalu-
ation point 290, 370, 645, and 716 or the relevant locations in figure 3.15(b)).
In contrast to that, the fluid contribution peaks at various locations around
the bend, even at locations that are remote to the actual stress evaluation
point (see, e.g., evaluation point 30 in the graph or the corresponding
location in figure 3.15(a)).
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0 1.3e+03
‖d LF /d s‖

(a) Contribution of the fluid.

0 1.3e+03
‖d LS /d s‖

(b) Contribution of the structure.

Figure 3.15: Visualization of the ingredients of d g /d s in TCB.

Observing different hot-spots for the two contributions is reasonable as
they track different physical phenomena: The sensitivity contribution of
the structure identifies areas, which are either directly affecting the local
stress value or which are indirectly influencing the overall load-carrying
capacity. In figure 3.15(b), for example, one observes large sensitivity values
around the supports and at the stress evaluation point. Those large values
indicate possible reinforcements towards a reduced stress value. In doing
so, however, the structural contribution neglects the variation of the fluid
forces.

The variation of the fluid forces is tracked by the second sensitivity con-
tribution, i.e., the contribution of the fluid. The latter originates from the
sensitivity analysis of the auxiliary force functional. This contribution iden-
tifies areas, which are relevant for the coupling forces and so the loading
of the structure. In this test case, there are many areas with a substantial
contribution of the fluid to the coupled sensitivities (see figures 3.14 and
3.15(a)). So, there are many areas where the fluid influences the stress
value in the specified evaluation point through the force coupling
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3 Optimizing internal flows under stress constraints

A dominant sensitivity contribution of the fluid means that design modifi-
cations, which change the structure’s loading through the fluid, influence
the considered stress value more than design modifications, which change
the structure’s load-carrying capacity. Vice versa, a dominant structure
contribution means that a direct reinforcement of the structure influences
the considered stress value more than a modification in the fluid guidance.

In general, we find that both ingredients are crucial in the sensitivity analy-
sis of the stress constraint. So, neglecting the contribution of the fluid8,
which corresponds to neglecting the coupling, would lead to a severe lack
of sensitivity information.

This lack of sensitivity information can become critical. In the present test
case, for example, the fluid contribution locally changes the direction of
the coupled sensitivity vector (d g /d s). In such a case, neglecting the fluid
contribution would lead to entirely wrong sensitivity information. Figure
3.14 highlights evaluation points that are critical in this context (blue area).
A point i is considered "critical" if locally d g /d s and d LS/d s point in
opposite direction, which means that the fluid contribution locally leads
to a change in sign. The figure shows that the contribution of the fluid is
decisive at many evaluation points. This observation again emphasizes the
relevance of the coupling in the sensitivity analysis of the stress constraint.

From the previous results, we conclude:

• The coupling has a significant influence on the sensitivities of the
stress constraint.

• Considering the coupling in the sensitivity analysis of the stress con-
straint is crucial. Neglecting the coupling would render the sensitivity
information useless.

3.7.2 3D case with non-matching meshes

In the following, we verify the proposed sensitivity analysis in 3D. For this
purpose, the 3D test case from section 3.5.2 is utilized. The sensitivities

8 Neglecting the contribution of the fluid corresponds to the assumption of constant
coupling forces. That means a CFD analysis still determines the loading of the structure.
However, its variation through a modification of the fluid boundary is neglected in the
sensitivity analysis.
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max(σ)→ g (σ)ΓD ,4ΓD ,2 ΓD ,3ΓD ,1

Figure 3.16: Points in the 3D test case where sensitives are
verified.

in the 3D test case are verified at selected evaluation points on the design
surface ΓD . Due to the computational costs of the primal solution, the
number of evaluation points is limited. So, a representative set must be
chosen. The set of chosen evaluation points is visualized in figure 3.16.
We order the complete set into four different subsets, ΓD ,1...4. The subsets
represent different parts of the structure, i.e., the interface in contact with
the fluid, the pipe circumference at a specific location, and two paths along
on the outer boundary with no contact to the fluid. The evaluation points
concentrate on the area around the maximal stress value in the initial
design. Figure 3.16 highlights the location of the maximum stress value.
For the sensitivity verification, we neglect the stress aggregation in this 3D
test case and only consider the stress value at the specified location in the
formulation of the constraint.

The results of the verification are presented in figure 3.17 and table 3.2. The
figure compares the analytic sensitivity values with their reference values
for both the objective and the constraint function. Therefore, the local
norm ‖d I /d si ‖ is calculated at each evaluation point i . The table presents
the total deviation of the analytic sensitivity vector from its reference vector
calculated according to (3.66).

In the figure, we can see that the sensitivity values are generally conform-
ing to their reference values both in case of the objective and the con-
straint function. Note that the distribution is well captured, only small local
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Figure 3.17: Sensitivity verification in the 3D test case.

Table 3.2: Total deviation of the analytic gradient from its
reference in the 3D test case according to (3.66)

Objective Constraint

non-matching mesh 2.35% 1.20%

changes in the magnitude are visible. One also finds that the constraint
sensitivity peaks at evaluation point 5 and 15. Those peaks are reason-
able as the corresponding points lay in the direct vicinity of the maximum
stress value. By contrast, the objective function shows a balanced level
of sensitivity values at all evaluation points. Only at a few locations, the
sensitivity vanishes identically.
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Note in this context, that the applied Vertex Morphing links the discrete
fluid boundary with the mesh of the structure within the filter radius r .
That is, evaluation points that lay within one filter radius around the fluid
boundary will influence the objective function and show a sensitivity value
larger than zero. Conversely, evaluation points that are further away will
not influence the objective function, and thus show a sensitivity value
of exactly zero. The points with the number 22 and 28 are such remote
evaluation points, for example. They represent the boundary points of
ΓD ,3, cf. figure 3.16.

Note in figure 3.17 that the analytic values are generally matching the
reference values, yet some small deviations are visible. The calculation
of the total deviation reveals errors in the range of 1. . .2%, see table 3.2.
Similar to the 2D test case, those errors can be traced back to errors in the
simple finite difference approximation. Despite trying a broad range of
perturbation sizes, no constant plateau could be observed for the individ-
ual reference values. So, the reference values themselves deviate from the
correct sensitivity values to some extend.

Nevertheless, note that the accuracy of both gradients is comparable. Given
that we computed the objective gradient entirely by a verified framework
based on algorithmic differentiation (SU2), from which we can expect high
numerical accuracy, we may also assume a high accuracy in the constraint
gradient. The latter suggests a proper coupled sensitivity analysis.

Since it was not possible to find highly accurate reference values, it was
also not possible to quantify the error arising from the neglected mapping
term in the computation of the constraint gradient, cf. (3.61). All we can
conclude from the presented results is that the error induced by neglect-
ing the mapping term must be lower than the 1.20% presented in table
3.2. However, this value is low enough to consider the mapping term as
uncritical.

Given that the total deviations are not negligible but small, and the remain-
ing error is inevitable due to the remaining inaccuracies in the reference
values, we consider the sensitivity analysis as verified in 3D. Worthwhile
to mention is that the optimization results later do not show any negative
impact of the remaining deviations in the sensitivity information.

In the following, we also investigate the influence of the coupling in the
sensitivity analysis of the constraint. To this end, the two relevant ingre-
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Figure 3.18: Ingredients of d g /d s in 3D test case: d LF /d s
represents the contribution from the adjoint fluid analysis and
d LS /d s from the adjoint structure analysis. d LS /d si ·d g /d si

shows whether at evaluation point i both contributions point in
the same direction.

dients of the constraint gradient are plotted in figure 3.18. Looking at
the figures, one can again observe significant contributions from both
domains. We especially see that the fluid contributions dominate over al-
most the entire region. So, in this 3D test case, design modifications, which
cause a variation of the coupling forces, have a stronger influence on the
stress constraint than design modifications that alter the structure’s load-
carrying capacity. Consequently, a plane reinforcement of the structure is
less effective than an improvement in the flow guidance.

From the results in figure 3.18, we find that d LF /d s makes up a significant
part of the constraint sensitivity. Knowing that d LF /d s is a direct conse-
quence of the coupling, it is clear that neglecting the coupling can lead to
severe errors in the constraint sensitivity. Figure 3.18 highlights evaluation
points that are critical in this context (blue area). A point i is considered
"critical" if locally d g /d s and d LS/d s point in opposite direction, which
means that the fluid contribution locally leads to a change in sign. As one
can see in the figure, the small set of evaluation points already contains
many points where such a change in sign can be observed. Consequently,
the coupling in the sensitivity analysis of the stress constraint is crucial in
this test case.
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Influence of the parameterization

Consider the figures 3.19 and 3.20. The figures present each for the ob-
jective and the constraint function the filtered sensitivity in the control
space, and the underlying mesh sensitivity in the geometry space. The
mapping between design and geometry space follows the extended Vertex
Morphing specified in (3.15). The figures show the following:

1) In both figures, one can observe a key feature of the underlying Vertex
Morphing Method, i.e., the raw and discontinuous mesh sensitivities are
filtered (regularized) such that they become smooth sensitivities in the
control space. The filter radius (r ) is clearly visible in this context. Note, for
example, how the irregular distribution of the objective sensitivity in figure
3.19(a) is transformed to a smooth sensitivity information in the control
space, see figure 3.19(b). According to our choice of design variables, the
smoothing affects all nodes of the structure mesh within the filter radius.
So, the design sensitivity includes not just information about the surface
nodes on the boundary of the channel, but also about the adjacent volume
nodes further inside the structure.

The smoothing is also visible in case of the constraint. Note, in this context,
the peak values of the two sensitivity contributions, see figures 3.20(a) and
3.20(b). The peak values in each figure are due to the local nature of the
stress constraint and indicate the point of maximal stress in the initial
design. After filtering, a significantly smoother sensitivity information is
obtained, see figure 3.20(c).

2) A key feature of the proposed variant of Vertex Morphing is, that it allows
combining discontinuous mesh sensitivities from differently discretized
domains to smooth sensitivity information in the common control space.
That is, it already includes the necessary mapping of sensitivities between
the individual domains. Consider, for example, figures 3.19(a) and 3.19(b).
Note that the mesh sensitivities in case of the objective function are not
just smoothed, but also mapped from the surface discretization of the
fluid to the volume discretization of the structure, which represents the
common control space. Both discretizations are not matching.

Or similarly in case of the constraint function, the two ingredients of
the constraint sensitivity are originally given for different non-matching
meshes, i.e. the fluid and the structure mesh, see figures 3.20(a) and 3.20(b).
Due to extended Vertex Morphing, those contributions are automatically

91



3 Optimizing internal flows under stress constraints
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(a) Sensitivity in geometry space.
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(b) Sensitivity in control space.

Figure 3.19: Sensitivity of the objective function in geometry and
control space, cf. (3.51). The structure is clipped for a view inside.
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(a) Contribution from the structure in geometry
space.
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(b) Contribution from the fluid in geometry space.
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(c) Complete sensitivity in control space

Figure 3.20: Sensitivity of the constraint function in control
space and its two ingredients in geometry space, cf. (3.58b),

(3.59b) and (3.60). The structure and the fluid is clipped for a view
inside.
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3 Optimizing internal flows under stress constraints

mapped from the individual simulation meshes on the volume mesh of the
control field in the common control space. In the control space, then, they
are combined to a complete (and smooth!) coupled sensitivity information,
see figure 3.20(c).

The previous observations show that the proposed variant of Vertex Morph-
ing takes over two tasks in the sensitivity analysis - two tasks that otherwise
would need to be integrated separately into the optimization process: 1)
the smoothing of sensitivities and 2) the mapping of sensitivities between
the individual domains. Furthermore, we saw that the custom Vertex Mor-
phing translates the different mesh sensitivities into a (smooth) sensitivity
information that covers the entire discretization of the structure, cf. fig-
ures 3.19(b) and 3.20(c). On this basis, it is possible to simultaneously
control the design surface in both domains as well as the whole mesh of
the structure.

3.8 Applications

In this section, we apply the developed multidisciplinary optimization
process to the previously introduced 3D test case. To put the corresponding
results in perspective, we first consider a single-disciplinary optimization
of only the fluid in the internal channel.

3.8.1 Single-disciplinary optimization

This section only considers the interior channel from the 3D test case, see
figure 3.22(a). We perform a single-disciplinary shape optimization based
on regular Vertex Morphing to optimize this geometry. In doing so, we
only consider pressure loss as the objective function. The filter radius is
adopted from the original test case, see 3.5.2. To drive the optimization,
we apply a simple steepest descent algorithm with an adaptive step size.
Geometric constraints are given in the form of a fixed connection to the
non-design domain at the inlet and outlet. Like in the multidisciplinary
case, the fixation and the transition to the non-design domain is realized
by damping geometry updates in the direct vicinity of the inlet and outlet.
The damping follows the approach described in 2.5. That is, the damping
is directly included in the parameterization so that no explicit geomet-
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Figure 3.21: History of the objective value in the
single-disciplinary optimization.

(a) Baseline design (b) Iteration 14 (c) Iteration 50

Figure 3.22: Shape change in the single-disciplinary
optimization.

ric constraints must be considered. The results of the single-disciplinary
optimization of the fluid are presented in figure 3.21 and 3.22.

From the history of the objective value, one can see that after 50 iterations,
the pressure loss in the bend is reduced by 19.7%. At this point, the op-
timization is not fully converged, but it reached the maximal number of
iterations. Nevertheless, we can see in the graph that shape changes in the
later course of the optimization only lead to slight improvements in the
objective value. Note, in this context, that after 14 iterations (28% of the
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3 Optimizing internal flows under stress constraints

overall iterations), 90% of the final improvement is already reached.

Such behavior is typical for a shape optimization based on Vertex Morph-
ing. The immense design freedom often allows for quick improvements
with only a few iterations. However, convergence is difficult to reach and
might take many iterations. The last aspect is also a consequence of the
simple optimization algorithm, which relies only on first-order gradient
information. Nevertheless, first-order algorithms are the primary choice
in Vertex Morphing, because of their robustness and the collected experi-
ence from many practical applications. A detailed investigation of more
advanced optimization algorithms in the context of Vertex Morphing is
missing to date.

Figure 3.22 shows how the shape of the channel evolves. Note from the
figure that significant shape changes are introduced, whereas an overall
smooth surface is maintained throughout the optimization. Note also that
the introduced geometry updates have a large characteristic length scale.
We intentionally triggered the latter by choosing a large filter radius a priori.
Finally, it is interesting to observe that the resulting shape is symmetric
even though we did not formulate an explicit constraint in this regard.

From the shape evolution, one can see that the optimizer increases the
diameter over big parts of the channel. As a consequence, the flow velocity
drops significantly, see figure 3.23. The reduced velocity, in combination
with the modified flow guidance, causes a significant reduction of energy
losses in the fluid. Figure 3.24 quantifies the relevant losses using the total
dissipation rate as described in Herwig et al. [77]. The total dissipation
rate is computed as the sum of the mean dissipation rate based on the
averaged flow field and the turbulent dissipation rate based on Menter’s
SST turbulence model. Both quantities cause a generation of entropy,
responsible for the loss of energy in the fluid. We assume an isothermal
flow in this context, so the influence of the temperature is neglected. Note
in figure 3.24 how the optimization successfully eliminates hot spots of
dissipation in the downstream direction. The overall reduced dissipation
is responsible for the lower pressure loss in the optimized design.

Noteworthy is that towards the outlet, the flow more and more becomes
laminar up to the point that almost no turbulence can be observed di-
rectly at the outlet. So, the optimizer minimized pressure loss by a smart
modification of the shape, which causes less dissipation. This result is a
consequence of the high design freedom, which allows us to explore such
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Figure 3.23: Velocity in the single-disciplinary optimization.
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Figure 3.24: Total dissipation rate in the single-disciplinary
optimization.
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Figure 3.25: Static pressure in the single-disciplinary
optimization.

potential in the first place.

In general, this example shows that Vertex Morphing may be successfully
applied to optimize internal flows. In the present thesis, however, we not
only want to consider the internal flow, but also the surrounding structure,
which is subject to stress constraints. In this example, the velocity drop in
the channel directly leads to an increase in the static pressure, see figure
3.25. An increasing static pressure, in turn, means a higher loading of the
structure and, consequently, higher internal stresses. So we find that, in this
case, a single-disciplinary optimization of only the fluid may quickly lead
to problematic stress values in the surrounding structure, which eventually
motivates the application of multidisciplinary optimization.

3.8.2 Multidisciplinary optimization

In this section, we apply the complete multidisciplinary optimization pro-
cess proposed in this thesis to the 3D test case from section 3.5.2. The goal
is to minimize the pressure loss of the interior fluid flow without increasing
the maximum internal stress in the structure compared to the original
design. The definition of the objective and the stress constraint is given
in (3.62) and (3.63). We employ stress aggregation, as explained in section

98



3.8 Applications

3.5.2, so that only one constraint function needs to be considered by the
optimization algorithm.

The complete optimization process is summarized in figure 3.26. The
figure shows the primal and adjoint analysis each of the objective and
the constraint function. The corresponding single disciplinary fluid and
structure solvers are denoted as "CFD" and "CSM" or "Adj. CFD" and "Adj.
CSM", respectively. As one can see in the figure, the primal fluid solver
is only called once, and its result is used for both the objective and the
constraint function. In contrast, the adjoint fluid solver is used two times,
once for the sensitivity analysis of the objective function (pressure loss)
and once to analyze the auxiliary force response in the sensitivity analysis
of the constraint. The figure also shows the existing coupling in case of the
constraint, including the mapping of relevant state variables. Apart from
the primal and adjoint analysis, the figure identifies the Vertex Morphing
Method within the overall process ("VM"). Finally, it presents the interface
to the optimizer, which drives the overall process based on the specified
optimization algorithm. The variables in the figure label exchange data.
All variables are introduced in section 3.4. Arrows indicate the direction in
which data is exchanged.

The figure shows some characteristics of the process that we already dis-
cussed earlier. For example:

• Computing the gradient of the objective (pressure loss) requires only
a single-disciplinary adjoint analysis. There is no coupling involved.

• The coupling direction in the adjoint analysis of the constraint is
just opposite to the coupling direction in the corresponding primal
analysis.

• The coupled adjoint analysis in case of the constraint relies on the
exchange of boundary conditions. The single-disciplinary adjoint
solvers are used as black-boxes.

• The computation of d g /d s includes contributions from an adjoint
fluid and an adjoint structure analysis. There is also a third con-
tribution from the mapping between the different grids. However,
for reasons specified earlier, this contribution is neglected, which is
indicated by the dashed lines.
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Figure 3.26: MDO process.

• In the herein presented variant of Vertex Morphing, we directly map
geometry updates and sensitivities from the different simulation
grids to the common discretization of the control field. So, no addi-
tional mapping of those quantities between the simulation grids is
required.

• Vertex Morphing in the herein proposed form replaces a separate
motion of the structure mesh. The fluid mesh must still be adapted
separately using a dedicated process step (mesh motion solver).

The figure also shows the interface to the optimizer. The optimizer obtains
gradient information from both the objective and the constraint. Accord-
ing to the specified algorithm, it then proposes an update of the design
variables. In this work, a variant of Rosen’s gradient projection method for
nonlinear constraints is applied, Rosen [78], Rosen [79], Haftka et al. [80].
So, a sequential unconstrained optimization is performed in the tangent
subspace of the active constraint. No line-search is performed. Instead,
we use a constant step size.

100
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The algorithm combines gradient projection with an additional correction
term. The projection avoids design updates in the direction of the infeasi-
ble domain, whereas the correction term forces the algorithm to restore
feasibility if necessary. The correction relies on the penalization of infeasi-
ble response values. Also, it is applied "on the fly." I.e., no sub-iterations
are performed to restore exact feasibility within every optimization iter-
ation. Instead, we allow the algorithm to restore feasibility over several
optimization iterations accepting that there may be infeasible intermedi-
ate designs. Gradient projection with constant step size is often used in
conjunction with the Vertex Morphing Method due to its simplicity and
robustness in practical problems, see Najian Asl et al. [14], for example.

The quantitative results of the multidisciplinary optimization are compiled
in figure 3.27. The figure shows the history of the objective and the con-
straint value. In the case of the constraint, the figure plots: 1) the value of
the KS-function, which represents the actual constraint value seen by the
optimizer, i.e., an estimate of the maximal stress in the critical region, and
2) the true maximal stress for comparison. The optimization history com-
prises 30 iterations, which corresponds to the specified maximal number
of iterations.

The figure shows that the optimization continuously improves the design
in terms of pressure loss. After 30 iterations then, an improvement of∼16%
is achieved. Throughout the optimization, the objective is strongly con-
flicting with the constraint. The latter continuously enters the infeasible
domain and must be significantly corrected by the optimizer. The rea-
son for the observable jumps into the infeasible domain is that the given
projection algorithm relies on the definition of an active set. If the given
constraint is inactive, a simple steepest descent step is performed, which
may cause a violation of the constraint again.

Comparing the values of the constraint, one finds that the true maximum
value among all aggregated stress constraints (Max(g i )) is significantly
lower than the estimated maximum from the KS-function (KS(g i )). The
difference is due to the inherent approximation error of the KS-function
with finite values of ρ. So, indeed the KS-function indicates a violation
of the stress constraints in most of the optimization iterations. However,
when looking at the original stress constraints (g i ), there are only a few iter-
ations, where the current design really exceeds the predefined stress limit.
Especially in iteration 30, the KS-function indicates an infeasible design.
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(b) Constraint value relative to the initial design and normalized by the maximum allowed stress, so in
black (KS(g i )−KS(g i )(0))/σmax and in blue (Max(g i )−Max(g i )(0))/σmax.

Figure 3.27: History of the response values in the MDO.

However, the true maximum value among all the aggregated stress con-
straints is smaller than zero, meaning that stresses are below the threshold
everywhere in the critical region. So, design 30 is practically feasible.

Regarding the herein proposed (coupled) sensitivity analysis, the most
important observation in figure 3.27 is that the objective value overall
decreases, and after every violation of the constraint, the optimizer is able
to restore feasibility. Given the two heavily conflicting response functions,
such a result implies valid gradient information. So, also the optimization
results confirm the validity of the proposed (coupled) sensitivity analysis.

Striking in figure 3.27(a) is that the optimization is not yet fully converged.
However, after 30 iterations, the specified maximum number of iterations
is reached. The latter reflects the limited number of possible iterations
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due to the computational costs related to a single iteration9. Further con-
verging the problem would require to restart the process at iteration 30 or
to change the optimization algorithm. As changing the algorithm is the
preferred approach, but requires more investigations concerning the in-
cluded Vertex Morphing, further optimization is left to follow-up research.
Instead, this work focuses on the given 30 design iterations, which is suffi-
cient to demonstrate the possibilities of the proposed multidisciplinary
optimization process. Among the given designs, the best feasible design,
i.e., design 30, is further analyzed in the following.

Figure 3.28 visualizes the shapes changes in design 30. In the figure, one
can see that the structure is significantly modified. Striking in this con-
text is the large characteristic length-scale of the shape modification. This
characteristic is a result of the large filter radius in the proposed parame-
terization. Furthermore, we find that thin walls changed their shape as a
whole, meaning their thickness remained almost constant, and opposite
surfaces did not penetrate each other. Again, this characteristic is a result
of the large filter radius.

In figure 3.28, one can also see that the optimized shape is generally smooth.
Only in figure 3.28(b) at the two edges below and above the right bolt hole
we observe a minor jump in the geometric continuity. This jump happens
directly at the transition to the non-design domain and is due to the applied
damping. As already mentioned in section 2.5, damping interferes with the
smoothing in Vertex Morphing and may locally influence the geometric
continuity.

In this case, damping was applied to restrict certain geometry updates
on the edges of the design surface in favor of a proper transition between
design and non-design domain. In figure 3.28, one can see the successful
application of damping. Note in the figure, for example, the constant diam-
eter at the inlet and outlet of the channel or the strict in-plane movement
of the design surface on the structure’s planar outside.

Regarding the internal fluid flow, the result of the multidisciplinary opti-
mization is similar to the one in the single-disciplinary optimization of only
the channel. That is, the internal flow in design 30 shows a signification
reduced energy dissipation compared to the baseline design. As a result,
the pressure loss decreases - in this case, by ∼16%. The figures 3.29(a) and

9 Each iteration involves one primal and two adjoint RANS solutions.
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(a) Baseline design (sectional view) (b) Iteration 30 (sectional view)

(c) Baseline design (view inside) (d) Iteration 30 (view inside)

Figure 3.28: Shape change in the MDO.

3.29(b) visualize the effect using the total dissipation rate as described in
Herwig et al. [77]. As one can see in the figure, hot spots around the areas
with flow separation are almost completely eliminated.

Looking at the stresses in the structure, we can observe the conflicting
nature of the two given response functions, see figures 3.29(c) and 3.29(d).
Initially, there is just one spot with a critical stress value - on the boundary
of the channel, where the flow gets redirected for the first time. However,
during the optimization, the stress level continuously increases over big
parts of the structure. The optimized design, eventually, shows many lo-
cations where the stresses reach a critical value. At the same time, the
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Figure 3.29: Energy dissipation and stresses in the MDO.
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Inlet Outlet

Figure 3.30: Shape of the channel after single-disciplinary
(black mesh) and multi-discipinary optimization (blue surface).

region with the most critical values changed significantly. In the initial
design, the most critical stress values concentrate around a small spot on
the surface of the channel. After the optimization, we find them over a
large area on the structure’s outer face around the center hole. Despite
the drastic increase in the overall stress level, the individual stress values
nowhere exceed the specified threshold. So, as required by the specified
constraint, the maximum stress in the optimal design is not greater than
that in the initial design.

It is interesting to compare the results in this section with the results from
the single-disciplinary optimization of only the channel in the previous
section, cf. figure 3.30. Compared to the single-disciplinary optimization,
where the optimizer considerably increased the diameter of the channel in
favor of reduced flow velocities and hence an overall reduced energy dissi-
pation, the MDO leads to a significantly smaller increase in the diameter.
The reason is that an increasing diameter causes the flow to decelerate,
which in turn raises the static pressure within the channel. A higher static
pressure means a greater load on the structure, which quickly leads to a
violation of the stress constraint. The multidisciplinary optimization rec-
ognizes this interaction between the fluid and the structure, so it prevents
an arbitrary increase in the diameter. Instead, in the MDO, the pressure
loss is mostly optimized by improving the flow guidance. The necessity
to focus on the flow guidance in conjunction with the local nature of the
stress constraint finally leads to an unsymmetric design, see especially the
left half of the channel in figure 3.30.
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Note that the improvement in the MDO is lower than the improvement
in the single-disciplinary optimization (∼16% vs. ∼20%). However, only
in the MDO, the stress constraint is satisfied. The result is remarkable
given that a manual improvement of the design seems impossible with the
two heavily conflicting response functions - especially since an intuitive
increase in diameter quickly causes a violation of the stress constraint.

In the following, we further investigate the role of the herein presented pa-
rameterization based on Vertex Morphing. The proposed parameterization
inherits from the original Vertex Morphing the large design freedom, which
in this example allowed a significant optimization without violating the
constraint. However, unlike the original Vertex Morphing, the proposed
parameterization includes the simultaneous control of several meshes
over different domains. More precisely, with the proposed parameteriza-
tion, we simultaneously control the design surface in the fluid domain
as well as the entire volume mesh of the structure. So, an update of the
control points causes an immediate update of the mesh in both domains.
Figure 3.31 illustrates the effect. As an example, it shows the mesh updates
as obtained by the displacement of the control points, s, in design iteration
22.

Note in the figure that s leads to a consistent update of both (differently
discretized!) meshes. Also, the update of the structure mesh is not limited
to the design surface but also includes the entire volume mesh. So, an extra
mesh motion is not necessary anymore. In both meshes, the introduced
damping avoids prohibited motions on the non-design boundaries. In the
figure, we can see the damping effect from the vanishing mesh updates at
the inlet and outlet.

In figure 3.31, one can also see that the proposed variant of Vertex Mor-
phing leads to smooth mesh updates in both domains. Most striking in
this context is the smooth update of the volume mesh of the structure,
see figure 3.31(a). The latter is a result of the extended Vertex Morphing.
Because of smooth updates across the entire volume, the structure mesh
stays regular throughout the optimization.

In figure 3.31(a), one can also see that the mesh updates have a large char-
acteristic length-scale - significantly larger than the individual elements.
This characteristic length-scale is a result of the large filter radius. As a
consequence of the filtering with a large filter radius, small elements in the
mesh of the structure only experience little changes in their geometry and
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(a) Update of the structure mesh (sectional view with visible mesh).
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(b) Update of the design surface in the fluid domain (sectional view).

Figure 3.31: Update of the fluid and the structure mesh after a
displacement of the control points in design iteration 22.

practically move as a whole. By contrast, the bigger the element, the greater
its deformation. This observation reveals an important characteristic of
Vertex Morphing when it comes to the control of volume meshes: If the
filter radius is large compared to the average element size, then the filter-
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ing avoids a premature collapse of small elements. In other words, small
elements, which may quickly collapse when deformed, react "stiffer" to a
mesh update compared to large elements. This characteristic is desirable
and similarly implemented in established mesh morphing techniques, like,
for example, the pseudo-elastic approach, where the element size typically
scales the stiffness of the mesh locally.

Apart from the positive characteristics presented above, figure 3.31(a) also
reveals a disadvantage of Vertex Morphing when it comes to the control
of volume meshes: It only introduces mesh updates in areas which are
relevant for the given response functions (areas with high sensitivity val-
ues). Conversely, areas with vanishing sensitivities are not considered in
the mesh update. As demonstrated with an example in section 2.4, this
characteristic tends to generate local mesh updates instead of a global
mesh motion. In figure 3.31(a), this effect is visible by the slightly spotted
color distribution. Local mesh updates are not necessarily a problem, but
a global mesh motion most likely leads to a better overall mesh quality.

Figure 3.31 showed that a displacement of the control points leads to a
simultaneous mesh update in both the fluid and the structure domain.
An obvious question in this regard is whether the updates are consistent,
meaning the coupled boundaries do not drift apart. Due to the selected
parameterization, cf. section 3.3, the updates in the present MDO are
indeed consistent. The reason for this is that they are derived from a mesh-
independent description of the geometry, cf. section 2.4. Figure 3.32 proves
this claim qualitatively. The figure shows a superposition of the structure
mesh and the discrete fluid boundary. Both meshes are from design itera-
tion 30, i.e., the final design. As one can see from the fluctuating coloring,
both meshes are still overlapping, so all the introduced mesh updates were
consistent. The remaining deviations are deviations that already appear in
the baseline design. They are only due to the non-matching discretization
along ΓI .

From all the results, one can conclude:

• With the herein developed optimization approach, we found a de-
sign, which causes significantly reduced pressure loss but still satis-
fies the stress constraint.
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Figure 3.32: Sectional view of design 30 showing a superposition
of structure mesh (xS , grey) and fluid boundary (xD ,F , blue).

• The grid-based approach using the herein proposed variant of Vertex
Morphing allowed for a design exploration beyond intuition.

• The proposed parameterization can be used to control both coupled
and non-matching meshes simultaneously.

• The proposed parameterization successfully unifies the update of
shape and mesh in the structure domain.

110



C
H

A
P

T
E

R

4
B-REP MORPHING

The shape optimization in the previous chapter did intentionally not in-
volve any CAD. Instead, it should allow for a quick setup of the optimization
problem and provide maximal design freedom or high optimization po-
tential, respectively. Therefore, a grid-based parameterization based on
Vertex Morphing was applied. In grid-based shape optimization, the opti-
mal design is given as discrete free-form geometry, typically in the form of
a mesh with a corresponding displacement field (the overall shape change).
A practical realization of the optimized design, however, often requires a
CAD description. This chapter presents a method to convert the results
of a grid-based shape optimization into a CAD geometry. The method is
referred to as B-Rep morphing.

4.1 Basic idea and assumptions

The following data is assumed to be given:
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1. a surface discretization in the form of an unstructured mesh of finite
elements,

2. a displacement field defined on the mesh (representing a deforma-
tion from, e.g., a shape optimization process or any other simula-
tion).

3. an initial CAD model in the form of a B-Rep model based on NURBS.

Moreover, it is assumed that the initial CAD model matches the given finite
element mesh or can be sufficiently aligned otherwise. Having access to
an initial CAD model that matches the finite element mesh is a reasonable
assumption, as in many cases, the mesh is generated from such an initial
CAD model.

The central assumption in the list above is the assumption of an existing
CAD model. Given an initial CAD model, there is no need for a complete
reconstruction to convert the deformed finite element mesh into a CAD
geometry. Instead, the conversion may also be realized by adapting the
initial CAD model such that it matches the given displacement field of
the mesh. This approach has the advantage that it avoids a costly and
error-prone definition of a non-unique CAD topology. Also, it allows to
preserve design knowledge that is inherent to the original CAD model. So,
the basic idea in this work is to obtain a CAD geometry of the deformed
mesh by adapting an existing CAD model that belongs to the original mesh.
The adaption includes a deformation of the initial CAD model as well as
a model refinement, if necessary. The deformation of the CAD model is
realized by mapping the displacement field from the mesh onto the CAD
domain.

Practical CAD models typically include trimmed multi-patch surfaces.
Deforming such a model can lead to a degrading surface smoothness or a
loss of geometric continuity between the individual patches, especially in
case of substantial shape changes. Maintaining the original surface quality
is, however, crucial in many practical applications. Moreover, it is often
necessary to consider independent design requirements in order to make
the deformed CAD model usable further down the design process. In order
to meet these practical requirements, the underlying mapping problem is
systematically extended by additional objectives and constraints. Those
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extensions are an integral part of the method, as they make the method
interesting for practical applications.

The prerequisite for a successful deformation of the given CAD model is
that it has enough degrees of freedom to represent the intended deforma-
tion in the first place. Since this is not always the case, a refinement of
the model may be necessary. Such refinement can be done based on the
known displacement field. The latter can be analyzed to identify areas in
the CAD model, which have an insufficient degree of freedom. The nec-
essary refinement can then be realized either manually or using relevant
algorithms. This thesis suggests a combined process consisting of an initial
semi-automatic refinement of the CAD model and a subsequent mapping
of the displacement field, including the extensions mentioned above. The
combined process eventually defines what in this thesis is referred to as
B-Rep Morphing.

4.2 Fundamentals

This section provides a brief introduction into the topic of NURBS and
their topological arrangement using the concept of B-Rep modeling.

4.2.1 Curves and surfaces based on NURBS

NURBS (Non-Uniform Rational B-Splines) are parametric models used to
generate and describe curves and surfaces with defined continuity proper-
ties. This section provides all definitions required to follow the later course
of this thesis. For a detailed description of NURBS, as well as its differenti-
ation to other parameter models like classical B-Splines or Bézier curves,
the interested reader is referred to standard literature like Piegl et al. [81].

NURBS curves are defined by a set of control points Pi with each an associ-
ated weight wi and a corresponding B-Spline basis function Mi ,p of poly-
nomial order p . The basis functions depend on a parameter ξ. A NURBS
curve is divided into individual segments. The latter are defined by a set of
parametric coordinates, ξi , called the knots. The knots are collected in a
knot vector Ξ. Let Ri describe the NURBS basis functions, the complete
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description of a NURBS curve reads:

C=
n
∑

i=1

Mi ,p (ξ)wi Pi
∑n

j=1 M j ,p (ξ)w j

=
n
∑

i=1

Ri (ξ) Pi

(4.1a)

Ξ = [ξ1,ξ2, ...,ξnΞ ] (4.1b)

The knot vector determines where and how the control points affect the
curve. Its values are arranged in ascending order, and the spacing between
the individual knots can be non-uniform. Knot values appearing more
than once are called multiple knots. The intervals between two consecu-
tive, distinct knots are called nonzero knot spans dividing the curve into
individual segments. The relation between the number of knots, nΞ , the
number of control points, n , and the polynomial degree of the curve, p ,
must satisfy:

nΞ = n +p +1 (4.2)

In terms of continuity, the NURBS basis functions are C∞ continuous
within a knot span and C p−1 continuous across single knots. At knots
with multiplicity k , the continuity of the basis functions drops to C p−k .
Choosing knots with a multiplicity of p +1 forces the curve to interpolate
the corresponding control point in geometry space. In that case, the curve
may be readily split into two independent curve segments.

Analogously to a NURBS curve, a NURBS surface S is composed of a net
of n ×m weighted control points each associated with two B-Spline basis
functions of the order p and q , which in turn are depending on the param-
eters ξ and η, respectively. A NURBS surface is divided into rectangular
segments, which are defined by the knots in each parameter direction.
The knots are collected in the two knot vectors Ξ and H. The complete
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description of a NURBS surface (patch) reads:

S=
n
∑

i=1

m
∑

j=1

Mi ,p (ξ)M j ,q (η)wi j Pi j
∑n

k=1

∑m
l=1 Mk ,p (ξ)Ml ,q (η), wk l

=
n
∑

i=1

m
∑

j=1

Ri j (ξ,η) Pi j

(4.3a)

Ξ = [ξ1,ξ2, ...,ξnΞ ] (4.3b)

H= [η1,η2, ...,ηnη ] (4.3c)

Pi j represents the grid of control points. Ri j represents the corresponding
NURBS basis functions. The role of the knot vectors is analogous to the
case of a NURBS curve and described above. Given n control points in the
first parameter direction and m control points in the second, it holds:

nΞ = n +p +1 (4.4)

nη =m +q +1 (4.5)

Note from equation (4.1a) and (4.3a) that there are two spaces involved
in a CAD geometry based on NURBS: a Eucledian (geometry) space and a
parameter space. NURBS are essentially functions that map between these
spaces. E.g., NURBS surfaces map a two-dimensional parameter point to
a surface in three-dimensional space.

4.2.2 B-Rep models

A boundary representation (B-Rep) model is a hierarchical description of a
model by its boundaries. For example, a solid may be described as a closed
collection of faces, in which each face corresponds to a bounded region
on a NURBS patch. The boundary of a face is composed of edges. Edges
are again constructed by an ordered sequence of NURBS curves, which
themselves are bounded by a dedicated start and end vertex. Following
this logic, three main topological entities are identified:

1. Faces,
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T2

Svisible

S invisible

C

T1

T3

g3
g2

g1

∂ Svisible

ξ̃

ξ

η

∂ S invisible

Figure 4.1: Geometry description of a trimmed NURBS surface.

2. Edges,

3. Vertices.

In the context of this work, a face is a defined area on a rectangular NURBS
patch. The area is again bounded by trimming loops, which can be clas-
sified into inner loops (holes) and outer loops (borders). These loops are
constructed by an ordered network of (trimming) curves defined within
the parameter space of the underlying NURBS surface. They divide the
surface into a visible domain ("inside" the loops) and an invisible domain
("outside" the loops). NURBS surfaces defined by trimming curves are
referred to as "trimmed" surfaces. Figure 4.1 illustrates such a surface.

Trimming curves are determined through boolean or blending operations
on different geometric entities - for example, as the intersection of two
surfaces. In the context of NURBS surfaces, trimming curves are typically
also described with NURBS. The definition of such a trimming curve reads:

C̃(ξ̃) =
n
∑

i=1

Ri (ξ̃) P̃i (4.6)

•̃ denotes the parameter space of an underlying NURBS surface. As the
equation suggests, the curve is fully laying in the parameter space of a
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parent surface and includes an own parameter ξ̃. Mapping (4.6) to the
geometry space through (4.3a), one obtains the actual boundary of the
surface, cf. figure 4.1:

C(ξ̃) = S(ξ(ξ̃),η(ξ̃)) (4.7)

Tagging the boundary curve with additional information regarding its
connectivity to neighboring curves and surfaces, it eventually becomes
a topological (B-Rep) edge denoted as ∂ S. In this work, the concept of B-
Rep edges is heavily exploited to define geometric constraints on surface
boundaries, e.g., to control the continuity across individual faces in the
deformed CAD geometry. B-Rep edges coupled to several faces are herein
denoted as coupled edges.

A complete B-Rep model may be constructed as a collection of trimmed
(visible) faces, locally connected at their edges and globally arranged as
either volume or surface bodies. The latter may be again combined to
complete assemblies. This hierarchical structure allows the design of most
complex models following a process of divide and conquer. For more de-
tails on B-Rep models as described above, the interested reader is referred
to Breitenberger et al. [82] and Teschemacher et al. [83].

4.2.3 Displacement and orientation

The displacement of a NURBS surface ∆S is defined as the difference
between its reference (initial) configuration S (0)(ξ,η, P(0)) and its current
configuration S (ξ,η, P). Defining∆P =P−P(0), it holds:

∆S= S − S (0) =
n
∑

i=1

m
∑

j=1

Ri j (ξ,η)∆Pi j (4.8)

The orientation of a NURBS surface is described using differential geome-
try. In doing so, an orthogonal coordinate system is defined for each point
on the surface, whereas the corresponding base vectors are aligned to the
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surface’s parameter directions. The base vectors are derived as follows
(see figure 4.1 for a visualization):

g1 =
∂ S

∂ ξ
, g2 =

∂ S

∂ η
, g3 =

g1×g2


g1×g2





2

(4.9)

Similarly, the orientation along an edge of a NURBS surface is characterized
by an orthogonal coordinate system aligned to the parameter direction of
the underlying trimming curve. The base vectors spanning this coordinate
system are obtained as (cf. figure 4.1):

T̃2 =
∂ C

∂ ξ̃
= g1

∂ ξ

∂ ξ̃
+g2

∂ η

∂ ξ̃
, T̃3 = g1×g2, T̃1 = T̃2× T̃3 (4.10)

Ti =
T̃i



 T̃i





2

(4.11)

4.2.4 Geometric continuity

Practical CAD models often consist of multiple, up to thousands of indi-
vidual patches carrying trimmed faces arranged to complex geometries,
see GrabCAD Inc. [84] for impressions from a relevant online community.
In such a multi-patch model, the geometric continuity between the indi-
vidual faces is an important quality criterion. One distinguishes different
orders of geometric continuity. In this work, we focus on:

• G 0 or positional continuity (watertightness), and

• G 1 or tangential continuity.

Positional continuity is obtained, if two edges, ∂ SM and ∂ SS , from two
faces, S M and SS , coincide geometrically:

∂ SM = ∂ SS = ∂ S (4.12)

Tangential continuity is obtained when two adjacent surfaces do not only
share a common edge, but also a common tangent direction T1, cf. figure
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(a) G 0-continuity (b) G 1-continuity (c) G 2-continuity

Figure 4.2: Reflection pattern depending on the geometric
continuity.

4.1. As per definition T1 points away from the visible surface, tangential
continuity requires:

TM
1 =−TS

1 (4.13)

A practical method for assessing the geometric continuity in a CAD model
is to examine reflection lines on its surface. To this end, a pattern with
straight, parallel, black and white stripes (zebra pattern) is projected onto
the CAD surface, which itself is assumed to be a perfectly reflective object.
The corresponding reflection pattern is then calculated and directly visu-
alized on the surface. Depending on the continuity, the reflected stripes
show different gradients, eventually revealing continuity jumps, see figure
4.2 and 4.3. This type of surface analysis is available in many commercial
CAD tools. In the analog world, a similar technique is often used at the end
of a car’s assembly line to assess the surface quality of the exterior parts.

4.3 Numerical integration over surfaces and edges

B-Rep morphing requires the evaluation of integrals over NURBS surfaces
and B-Rep edges. Given a NURBS surface S or a B-Rep edge ∂ S, the relevant
integrals are of the form:
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(a) Rendered surface with highlighted edges.

(b) Reflection pattern with highlighted edges.

Figure 4.3: Qualitative evaluation of geometric continuity.
Despite looking smooth on both sides, the reflection pattern

reveals each a different continuity across the three edges.

|S|=
ˆ

S
dS (4.14)

|∂ S|=
ˆ
∂ S

d∂ S (4.15)

Integrating over NURBS surfaces and edges is a well-known task in the field
of isogeometric B-Rep analysis or immersed boundary methods in general.
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4.3 Numerical integration over surfaces and edges

Established approaches in the first case are described in Teschemacher et
al. [83], Breitenberger [85], and Hughes et al. [86]. An exemplary alternative,
developed in the context of the Finite Cell Method, is presented in Kudela
et al. [87]. In the present work, we focus on solutions from the field of
isogeometric B-Rep analysis.

4.3.1 Integration over NURBS surfaces

Consider a NURBS surface S with n faces (patches). The integral over such
a surface can be computed by integrating over the sub-faces in each patch
separately and then summing up the individual contributions:

|S|=
ˆ

S1
dS1+

ˆ
S2

dS2+ ...

ˆ
Sn

dSn (4.16)

In the integration of a sub-face, one needs to distinguish two cases : 1) the
face is untrimmed, 2) the face is trimmed.

Untrimmed faces

In the untrimmed case, a standard integration is applied as introduced
by Hughes et al. [86] in the context of isogeometric analysis. Accordingly,
the patch that belongs to sub-face Sk is clipped along its knot lines into m
quadrilateral elements, Ek :

ˆ
Sk

dSk =
ˆ

E1
dE1+

ˆ
E2

dE2+ ...

ˆ
Em

dEm (4.17)

The integral associated with each element is transformed to the Gaussian
domain G using the following relation:

ˆ
Ek

dEk =
ˆ
ξ

ˆ
η

J1dξdη=
ˆ
G

J1 J2dG (4.18)

Herein, J1 denotes the Jacobian of the mapping from geometry to parame-
ter space, and J2 the Jacobian of the mapping from parameter space to the
Gaussian domain. It holds:
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J1 =


g1×g2





2
(4.19)

and

J2 =
∂ ξ

∂ ξG

∂ η

∂ ηG
(4.20)

g1 and g2 are the local base vectors, cf. figure 4.1. ξG and ηG are the param-
eters of the Gaussian domain (ξG ∈ [−1, 1]×ηG ∈ [−1, 1]).

For each quadrilateral element, p +1 Gauss points are introduced in both
parameter directions, whereas p corresponds to the maximum polynomial
degree in the NURBS basis functions describing the underlying face. Each
Gauss point is associated with a weight wi . The integral within an element
is eventually computed as the sum of the contributions of all nG Gauss
points:

ˆ
Ek

dEk ≈
nG
∑

i=1

J1 J2wi (4.21)

Note that the clipping into individual elements is necessary because the
Gaussian quadrature approximates an integral using polynomial Ansatz-
functions. Consequently, it only delivers acceptable results within a region
that can be approximated by polynomials. NURBS functions are piecewise
rational polynomial functions, whereas the knot spans determine the indi-
vidual pieces. An exact integration using Gaussian quadrature is hence not
possible. However, assuming a polynomial form within each knot span
and integrating it separately with p + 1 Gauss points in each parameter
direction is an established best-practice. Figure 4.4 conceptually visual-
izes the clipping and the determination of the Gauss points in case of an
untrimmed face.

Trimmed faces

If a sub-face Sk is trimmed, then the corresponding patch is also clipped
along its knot lines into individual, quadrilateral elements. Unlike in the
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4.3 Numerical integration over surfaces and edges

(a) Untrimmed face (b) Clipping of domain (c) Introduction of Gauss points

Figure 4.4: Steps to determine Gauss points in case of an
untrimmed face (knot lines are drawn as dashed lines).

untrimmed case, however, the patches now have an invisible domain.
The latter must be excluded from the integration. In this context, one can
distinguish three different types of elements, cf. 4.5(a):

1. void,

2. full,

3. trimmed.

"Void" elements are entirely located in the invisible regime and can be
simply omitted in the integration. "Full" elements are fully visible and
can be integrated using the integration procedure for a single element, as
described in the previous section. For the integration over "trimmed" ele-
ments, the visible domain in the trimmed element is tesselated, and each
resulting triangle is integrated separately using Gaussian quadrature. The
approach for the integration of trimmed surfaces is adopted from Ober-
bichler [88, 89]. The five necessary steps of the approach are summarized
in the following, cf. figure 4.5.

1. Polygonalization of all boundaries,

2. Clipping of the parameter space,

3. Tessellation into quads & triangles,
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(a) Trimmed face with different
elements

(b) Polygonalization of bound-
aries

(c) Clipping

(d) Tessellation (e) Introduction of Gauss points
for quads and triangles

Figure 4.5: Steps to determine Gauss points for an untrimmed
face (knot lines are drawn as dashed lines).

4. Determination of Gauss points & weights,

5. Numerical solution.

Given the individual elements and the cloud of Gauss points, the integral
over a trimmed face is finally computed as described in (4.17) and (4.21).
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4.3 Numerical integration over surfaces and edges

4.3.2 Integration over B-Rep edges

Apart from the integration over NURBS surfaces, the present work also
requires to integrate along B-Rep edges. Two different types of edges are
considered in this context: coupling edges and free edges. Free edges
are edges that have no link to another face. Coupling edges are edges
along joined faces. In both cases, the integration is done following the
Gaussian quadrature introduced by Breitenberger [85] in the context of
isogeometric B-Rep analysis (IBRA). Analogous to the surface integration,
the basic approach is to divide the integration domain, i.e., an edge ∂ S,
into elements and integrate them separately:

|∂ S|=
ˆ

E1
dE1+

ˆ
E2

dE2+ ...

ˆ
En

dEn (4.22)

For a detailed explanation of the integration procedure and further back-
ground information, the reader is referred to sections 4.3, 5.3, and 5.4 in
Breitenberger [85] or section 5.4 in Breitenberger et al. [82]. The procedure
is summarized in the following.

The integration of B-Rep edges consists of three main steps:

1. Clipping

2. Determination of Gauss points & weights

3. Numerical solution

The first two steps differ depending on the type of the edge. Figure 4.6
explains the procedure in both cases conceptually.

Given an edge, which was clipped into individual elements, the integral
associated to each element is mapped to the Gaussian domain G according
to the following relation:

ˆ
Ek

dEk =
ˆ
ξ̃

J̃1dξ̃=
ˆ
G

J̃1 J̃2dG (4.23)

Herein ξ̃ denotes the curve parameter, J̃1 the Jacobian of the mapping
from geometry to the curve’s parameter space, and J̃2 the Jacobian of
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4 B-Rep morphing

(a) Free edge: First, the edge is clipped at all knot lines to form individual B-Rep elements (blue). Then
Gauss points are introduced separately for every element depending on the polynomial order of the un-
derlying curve (crosses).

(b) Coupled edge: First a master curve is selected (top curve). Then all intersections with the knot lines
on slave side are projected to the Master curve (orange points). These intersection together with all knot
intersections on master side serve as clipping points to form individual B-Rep elements (blue). Gauss
points are finally introduced for every element separately depending on the polynomial order of the un-
derlying curve (crosses).

Figure 4.6: Clipping and determination of Gauss points at a free
and a coupled B-Rep edge.

the mapping to the Gaussian domain. J̃1 is deformation dependent and
defined as:

J̃1 =


(g1 · t̃ξ+g2 · t̃η)




2
(4.24)

whereas t̃ξ and t̃η are components of the tangent vector of the boundary
curve in the two parameter directions of the underlying patch:

t̃ξ =
∂ ξ

∂ ξ̃
, t̃η =

∂ η

∂ ξ̃
(4.25)
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J̃2 is deformation independent. Let ξG be the parameter of the Gaussian
domain (ξG ∈ [−1, 1]), then it holds:

J̃2 =
∂ ξ̃

∂ ξG
(4.26)

Once the integral over an individual element is mapped into the Gaussian
domain, Gauss points are introduced and each assigned with a weight
wi . The integral over the element is then computed by summing up the
contributions of all nG Gauss points:

ˆ
Ek

dEk ≈
nG
∑

i=1

J̃1 J̃2wi (4.27)

4.4 Underlying mapping operation

B-Rep morphing is based on a mapping operation. In this section, the
underlying mapping is introduced, a solution approach is developed, and
details on the implementation are discussed. The mapping is finally tested
at a generic benchmark example.

4.4.1 Formulation of the mapping problem

Given the input specified in section 4.1, the goal is to map the displace-
ment field from the finite element mesh to the NURBS surface such that
the CAD model fits the deformed mesh. The displacement of a NURBS
surface is represented by∆S and is defined according to (4.8). The input
displacement of the finite element mesh is denoted∆Q and is defined as
follows:

∆Q=
nQ
∑

i=1

Ni∆ÒQ i (4.28)

Herein, nQ represents the number of discrete mesh nodes. Ni are standard
finite element basis functions and∆ÒQ i are the specified nodal displace-
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ments. If no finite element basis functions are prescribed, they are assumed
to be (bi)linear functions.

To realize the mapping, we follow a least-squares approach. Accordingly,
we seek for a displacement field ∆S with minimal deviation from the
prescribed displacement∆Q , whereas the deviation is measured using
the L2-norm. The corresponding optimization problem is in the following
referred to as the mapping problem:

min
∆P

Π(∆P)

Π(∆P) =
1

2

ˆ
S (0)

�

∆S(ξ,η,∆P)−∆Q
�

·
�

∆S(ξ,η,∆P)−∆Q
�

dS (0)

=
1

2

ˆ
S (0)
[∆S−∆Q] · [∆S−∆Q] dS (0)

(4.29)

Herein, the NURBS surface is chosen as integration domain due to its exact
description of the initial geometry. Important for later derivations is the
fact, that the integral is always evaluated at the initial geometry S (0) (Total
Lagrange approach). By that, the integration domain does not change
through a modification of the control points.

The mapping strategy described above corresponds to a mortar-based
mapping strategy as, e.g., used by Apostolatos et al. [90] and Apostolatos
[91] in the context of FSI. Important to note is that the mapping problem
represents an inverse problem and thus may require regularization. The
latter is discussed in section 4.5.

4.4.2 Solution of the mapping problem

Solving the mapping problem requires vanishing first order derivatives of
the functional in (4.29), i.e.:

dΠ

d∆P
!= 0 (4.30)

Since the problem is quadratic, this requirement yields a linear system
that could be solved using any linear solution technique. Still, we use a
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Newton-Raphson approach because some constraints, which we add later,
render the problem nonlinear. Following the Newton-Raphson method,
the solution of (4.30) is computed iteratively as:

∆Pn+1 =∆Pn +∆(∆P )n+1 (4.31)

∂ 2Π

∂ ∆P 2

�

�

�

�

n

∆(∆P )n+1 =−
∂ Π

∂ ∆P

�

�

�

�

n

(4.32)

(4.32) is in the following referred to as the mapping system. The system or
mapping matrix (left-hand side) and the residual vector (right-hand side)
are abbreviated by the letters A and b, respectively:

b=−
∂ Π

∂ ∆P
(4.33)

A=
∂ 2Π

∂ ∆P 2
(4.34)

For a better overview, an index notation including a short hand for the
partial derivative is introduced:

br =−
∂ Π

∂ ∆Pr
=−∂r (Π) (4.35)

Ar s =
∂ 2Π

∂ ∆Pr ∂ ∆Ps
= ∂ 2

r s (Π) (4.36)

Given the definition of the mapping problem in (4.29), the resulting con-
tributions to the mapping system are:

br =−∂r (Π) =
ˆ

S (0)
∂r (∆S ) · [∆S−∆Q] dS (0) (4.37)

Ar s = ∂
2

r s (Π) =
ˆ

S (0)
∂r (∆S ) · ∂s (∆S ) dS (0) (4.38)

For the numerical solution of the mapping problem, we adopt the finite
element approach from isogeometric analysis, cf. Hughes et al. [86]. Ac-
cordingly, the entire surface is discretized into individual elements, and
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a Gaussian quadrature is performed over each of those elements to com-
pute the local left- and right-hand side contributions. The elemental con-
tributions are eventually assembled to the global mapping system. The
discretization of a NURBS surface into elements and the corresponding
numerical integration follow the procedure described in section 4.3. Fol-
lowing this approach, the left- and right-hand side contributions of a single
element are computed as:

br =−
nG P
∑

i=1

J1 J2wi ∂r (∆S i ) · [∆S i −∆Q i ] (4.39)

Ar s =
nG P
∑

i=1

J1 J2wi ∂r (∆S i ) · ∂s (∆S i ) (4.40)

In the previous equation, the index i indicates a single Gauss point located
at parameter position

�

ξi ,ηi

�

. nG P represents the number of all Gauss
points in the element under consideration.∆S i represents the displace-
ment of the NURBS surface at the Gauss point. ∆Q i denotes the target
displacement which has to be assigned to each Gauss point S i . The as-
signment is realized by projecting the Gauss points onto the mesh and
interpolating the local displacement using the shape functions of the fi-
nite elements. The approach is further explained in the following section.
Important to note is that the assignment is only done once in the initial
configuration and then not altered during possible solution iterations.

Worthwhile to mention is that one could also think about solving the map-
ping problem using other immersed boundary or fictitious domain meth-
ods, like, e.g., presented in Rank et al. [92]. In this work, however, we will
not further elaborate on this option.

4.4.3 Nearest element interpolation

To set up the mapping system, (4.32), a local displacement of the input
mesh,∆Q i , has to be assigned to each introduced integration point, S i .
The assignment of displacements can be accomplished by projecting the
integration points onto the finite element mesh, then interpolating the
nodal displacements at the projected points using the finite element shape
functions, and finally assigning the interpolated values to the correspond-

130



4.4 Underlying mapping operation

S1

S4

S2

S3

∆Q1

∆Q4

∆Q2

∆Q3

Interpolation:∆Q i =
3
∑

j=1
Nj∆ÒQ j

:∆ÒQ j

Figure 4.7: Assignment of displacements to integration points
using nearest element interpolation.

ing integration points. The combination of projection, interpolation, and
subsequent assignment resembles another mapping step, where the dis-
placement field from the finite element mesh is mapped to the cloud
of integration points using nearest element interpolation, cf. Wang et al.
[63]. An implementation of this technique is freely available through the
open-source framework "Kratos Multiphysics" [70]. The mentioned im-
plementation is also used in the present work. The basic steps of a nearest
element interpolation are summarized in algorithm 4.1 and illustrated in
figure 4.7.

Algorithm 4.1: Nearest element interpolation

1 foreach Integration point S i on initial CAD surface S (0) do
2 Identify subset of elements around S i → set ;
3 Orthogonal projection of S i on all elements in

set→ distances ;
4 Choose nearest element according distances→ E ;
5 Interpolate∆Q at the projected point in E using its shape

functions N→∆Q i ;
6 Assign∆Q i to S i ;
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Within each iteration of the algorithm, a subset of possible nearest ele-
ments is determined first to avoid a projection of each integration point on
every element. This is done using an established tree-based search tech-
nique. The subsequent orthogonal projection assumes planar elements
and is computed explicitly using basic (linear) geometric operations. In
the case of non-planar elements, a local approximation plane is utilized.
The nearest element is determined based on the resulting distances. If the
projection on the nearest element lays outside the element, e.g., because
the projection relied on an approximation plane, then sub-routines are
applied to determine the closest point within the element. The overall
algorithm only employs efficient search techniques and basic geometric
operations, making it very robust also with most complicated models.

4.4.4 Example

In this section, the basic mapping operation shall be tested. For this pur-
pose, a test case is created, which is simple to reproduce, yet includes some
of the most challenging features to be expected from practical CAD models.
Figure 4.8 shows the corresponding setup. The test case is the following
denoted as "test case 1".

The benchmark geometry is a flat circular plate with rotationally symmetric
holes and cutouts, see figure 4.8(a). The corresponding CAD model is
constructed by 12 trimmed NURBS patches of different polynomial orders
(p = q = 3...5). Each patch is discretized by a grid of 17×17 knots leading
to a total of 3468 control points. The challenges with this model are the
multiple patches with non-matching borders, the existing trimming, and
the resulting coupling edges, which connect individual faces with different
parameterizations. Also, the B-Rep description of the model contains four
inner boundary loops representing the holes within the four large faces.
Figure 4.8(a) labels and locates some of the challenges.

From the NURBS surface, a finite element mesh was generated, which
includes 28257 nodes and 54064 linear triangles. For the mesh, a dis-
placement field is assumed which turns the originally flat plate into a
three-dimensional structure. The displacement is chosen not to affect the
symmetry of the model, yet to cause a significant, non-uniform change of
shape. The finite element mesh and the resulting deformation are illus-
trated in figure 4.8(b).

132



4.4 Underlying mapping operation
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(a) CAD model including several challenges: (1) inner loops, (2) multiple patches, (3) non-matching
patch borders, (4) non-matching parameterization, (5) coupled edges, (6) trimmed patches. Patch
boundaries are represented by thick and knot-lines by thin lines.
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(b) Mesh data: (1) initial mesh, (2) absolute displacement, (3) deformed mesh.

Figure 4.8: Test case 1

The goal in this test case is to deform the given CAD model such that it
matches the deformed finite element mesh. To reach this goal, we use the
previously introduced mapping and map the displacement field from the
mesh onto the CAD model. Therefore, we factorize the mapping system
from (4.32) and solve for the unknown displacement of the control points.
As the system is fully linear in this case, only one solution iteration is
required. The results of this test are compiled in figure 4.9.

Looking at the results and comparing them qualitatively to the input from
figure 4.8(b), one can see that the displacement field was successfully
mapped onto the NURBS surface. Accordingly, the deformed NURBS sur-
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(1)

(2) DISP [units]

20

0

40

Figure 4.9: Results of the mapping in test case 1: (1) deformed
NURBS surface, (2) mapped displacement field visualized on the

deformed NURBS surface.

Table 4.1: Quantification of the mapping error. i denotes the
index of a single Gauss point. Diameter of structure for reference:

�180 units.

quality indicator value

max
�

‖∆S i −∆Q i ‖2

�

[units] 2.32×10−1

mean
�

‖∆S i −∆Q i ‖2

�

[units] 3.47×10−2

face represents the deformed finite element mesh. A quantitative evalua-
tion of the mapping results confirms the visual impression of a successful
map. Table 4.1 presents the remaining differences between the input
displacement field∆Q and the mapped displacement field∆S . The indi-
vidual differences are evaluated at each Gauss point i after the mapping.
As one can see in the table, the differences are negligible compared to the
structure’s dimensions. This proves that the deformed CAD model well
matches the deformed mesh.

Figure 4.10 visualizes the Gauss points based on which the previous solu-
tion is computed. Note from the figure the very non-uniform distribution,
especially along trimming curves. This is because, within trimmed surface
elements, Gauss points are introduced based on a tessellation of the bound-
ary (cf. figure 4.5). Since the tessellation is done using standard approaches,
without considering the resulting integration points, one typically obtains
an accumulation of integration points along trimmed boundaries. While
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4.4 Underlying mapping operation

Figure 4.10: Visualization of Gauss points (black dots) around a
section of the structure.

this type of integration is very robust and straightforward, it may also lead
to unnecessary high computational costs in the factorization of the map-
ping system.

The size of the mapping system only depends on the number of unknown
control point displacements. In the case of trimmed models, only those
control points are relevant that affect the visible domain. All other points do
not contribute to the mapping system and may be readily excluded. In the
present case, for example, there are 3 468 control points, but only 1 876 of
them are relevant. So the number of unknowns amounts to 1 876×3= 5 628.

In the previous investigations, one could see that the mapping was suc-
cessful, and the deformed NURBS surface principally matches the input.
However, having a closer look at the surface and hiding all knot lines and
edges, one can observe striking geometric discontinuities along initially
coupled patch boundaries (see details in figure 4.11).

The geometric discontinuities originate from the discrete input data, which
can cause a slightly different displacement of two adjacent faces. More-
over, the individual NURBS patches are parameterized differently without
considering a later deformation. Therefore, they are by construction not
able to represent the prescribed displacement with the same quality. As
a consequence, small gaps and kinks appear. In general, gaps and kinks
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Figure 4.11: Geometric discontinuities (gaps and kinks) after
deforming the NURBS model.

are unavoidable in the deformation of a multi-patch CAD model unless
the parameterization of the individual patches matches in such a way
that a continuous representation of the deformation is possible (either by
construction or by chance).

Another critical aspect is the refinement of the NURBS model in compari-
son to the refinement of the mesh. In test case 1, the mesh has a high resolu-
tion and provides a smooth description of the input displacement or target
geometry. On the other hand, the NURBS model has significantly fewer
degrees of freedom yet enough to represent the prescribed displacement
adequately. However, there are also cases where such a non-matching
refinement leads to problematic results. Therefore, consider the case de-
picted in figure 4.12, which we in the following refer to as "test case 2".

Test case 2 contains the same structure with the same input displacement.
However, it combines a very coarse mesh with an overly refined NURBS
model. The NURBS model was refined through knot refinement such that
each of the twelve patches is discretized by 50x 50knots leading to a total
of 30000 control points. The model topology and all polynomial degrees
remain as before. The mesh was coarsened by regenerating a new mesh
with only 1 417 nodes and 2 362 elements. Applying the mapping operation
in this new setup, one obtains the results presented in figure 4.13.
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(1)

(2)

(3)

Figure 4.12: Test case 2: (1) initial finite element mesh, (2)
deformed mesh, (3) initial CAD model.
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Figure 4.13: Result of the mapping in test case 2: (1) deformed
NURBS surface (knot lines are hidden), (2) mapped displacement

field visualized on the deformed NURBS surface.

From the figure, one can see that the overall displacement is again suc-
cessfully mapped to the CAD domain. In this case, though, the coarse de-
scription of the finite element mesh in conjunction with the highly refined
NURBS model causes the mesh to become visible in the deformed NURBS
model (see the now occurring wrinkles on the surface). From a practical
perspective, the wrinkled surface renders the result completely useless.
Given the sparse input, such a result is all one can expect from a rigorous
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mapping. In order to still allow for a satisfying result, the mapping must
be enhanced. This motivates the application of smoothing techniques, as
introduced later.

From the previous investigations, one can summarize:

• With the presented mapping operation, a given CAD model can be
deformed such that it matches the displacement of a corresponding
finite element mesh.

• Without specific treatment, the deformed CAD model most probably
contains geometric discontinuities across coupled faces.

• The quality of the deformed CAD model heavily depends on the
discretization of both models, whereas discrepancies can lead to
severe surface defects.

• Note also that a successful mapping implies enough degrees of free-
dom in the CAD model. If this is not the case, further degrees of
freedom must be introduced.

In the remainder of this chapter, we more and more extend the basic
mapping operation to address the problems mentioned above and prepare
the method for an application with practical CAD models.

4.5 Regularization

The mapping presented in the previous section represents an inverse
problem, which may suffer from ill-conditioning. The practical impacts of
such an ill-conditioning are increased computation times, errors in the
solution, and results containing unbounded displacements of the control
points. In the best case, the corresponding quality losses are only minor,
and the displacement is still well captured in the deformed CAD model. In
the worst case, the deformed model is not acceptable at all.

The ill-conditioning originates from the trimming. Around trimmed edges,
there are control points that are far outside the visible domain but still have
a small influence on the latter, Weiss et al. [53]. Outside the visible domain,
though, there is no information about the mesh deformation so that the
displacement of the corresponding control points is just weakly defined.
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In those cases, the system matrix in (4.32) has minimal values on the main
diagonal, which leads to numerical instabilities. As a result, the mapping
gives rise to an unbounded displacement of the control points around
trimmed edges in the deformed CAD model. The problem is known as
flying nodes in IBRA, cf. Breitenberger et al. [82].

In order to overcome this problem, we extend the mapping system accord-
ing to the regularization proposed in Brujic et al. [93]. Herein, the authors
present an effective regularization technique in the context of NURBS
fitting. Due to the close relation of NURBS fitting and B-Rep morphing, we
adopt the underlying idea and adjust its formulation slightly to the case of
B-Rep morphing.

In Brujic et al. [93], the authors suggest an extension of the original fitting
problem by two additional criteria, which they callβ - andα-regularization:

1. β-regularization: minimizes the resulting displacement of the con-
trol points,

2. α-regularization: minimizes the distance between the control points
and the NURBS surface.

The first regularization explicitly limits the movement of the control points.
The effect of the second regularization is more subtle. According to the au-
thors, the "control points do approximate the surface and it seems natural
to keep them as close to the surface as possible." Practically, the second
regularization has a smoothing effect and hence provides a useful tool to
cure surface defects. Another positive side effect of the second regulariza-
tion is that any further (manual) modification of the surface is significantly
more straightforward since the control points have a more predictable
influence on the surface if they are close to it.

Both regularization methods are implemented by adding a quadratic
penalty term to the original objective function. In the context of B-Rep
morphing, the resulting compromise function reads:

Π =ΠM +Πα+Πβ =ΠM +αCα+βCβ (4.41)

In the previous equation,ΠM denotes the objective function of the original
mapping problem, cf. (4.29). Cα and Cβ are two penalty functions weighted
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by some associated penalty factors α and β . The individual penalty terms,
as well as their impact on the deformed CAD model, are further elaborated
in the following.

4.5.1 Beta-regularization

Following the idea of β-regularization, we add a penalty function to the
mapping problem in order to minimize the resulting control point dis-
placement. This approach corresponds to a Tikhonov or L2-regularization.
The additional term reads:

Πβ =βCβ =
β

2

n
∑

i=1

∆Pi ·∆Pi (4.42)

in which n denotes the total number of control points. The corresponding
left- and right-hand side contributions to the mapping system are obtained
by computing first and second order derivatives of the previous equation
w.r.t. the individual control point displacements:

br =−∂r

�

Πβ
�

=−β∆Pr (4.43)

Ar s = ∂r s

�

Πβ
�

=βδr s (4.44)

Herein,δr s denotes the Kronecker delta. So,β -regularization adds a single
value to the main diagonal of A. Examining the definition of A, cf. (4.40), it
can be seen that the unmodified system matrix only has positive entries.
That is, any β > 0 will render the system stable.

Concerning the solution process, β -regularization may be realized by sim-
ply adding the values from (4.43) and (4.44) to the already assembled left-
and right-hand side of the mapping system. The simple implementation
yet effective stabilization makes β-regularization the method of choice to
stabilize the mapping system.

However, the regularization also influences the original problem formula-
tion and will, depending on the choice of β , damp the results. To demon-
strate this effect, the regularization is applied to test case 1 from figure
4.8 with ascending values for β . The results are presented in table 4.2 and
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Table 4.2: The effect of β on the conditioning of the mapping
system.

β 0 10−9 10−6 10−5 10−4 10−1

cond(A) > 1026 ≈ 109 ≈ 106 ≈ 105 ≈ 104 9.3

‖∆P‖∞ ≈ 2×105 622.74 62.19 54.09 52.77 29.19

Figure 4.14(a) - 4.14(b) - 4.14(c) 4.14(d)

(a) β = 0 (b) β = 10−6

(c) β = 10−4 (d) β = 10−1

Figure 4.14: B-Rep morphing applied to the test case from figure
4.8 using β-regularization and different values for β . In each case,

the control points are shown for the blue patch, and the knot
density of the NURBS surface is indicated in two other patches.

figure 4.14. The table collects the maximum absolute displacement of the
control points in each case. It also shows each the condition number of the
mapping matrix. The latter is determined as the quotient of its maximum
and minimum singular value. Figure 4.14 visualizes the obtained CAD
geometry for selected values of β .
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From the figure, one can see that without regularization, the deformation
results in an unbounded movement of the control points around the trim-
med edges. From the table, one can see that this is a consequence of a
severe ill-conditioning of the system. Indeed, the displacement was still
successfully mapped to the NURBS surface in this case. Generally, how-
ever, the ill-conditioning may cause a complete failure of the mapping. In
any case, the control points’ unbounded motion is problematic because
further handling of the deformed CAD model may become impossible by
that. Therefore, β-regularization is inevitable.

β-regularization can successfully solve this problem. As one can see from
table 4.2, with increasing value for β , the conditioning of the system con-
tinuously improves. Simultaneously, the maximum absolute displacement
of the control points reduces from a value that is purely driven by numer-
ical errors down to a value range similar to the problem dimensions. As
a result, the control points do not show an unbounded movement but
remain tractable (compare figure 4.14(a) and 4.14(b)). Striking is that the
displacement quickly reaches acceptable values, whereas the condition
number just slowly improves.

The ill-conditioning is due to control points with only little influence on
the visible surface. The impact can be observed in figure 4.14(a). Herein,
one can see that only control points, which are beyond the trimmed border
of the highlighted surface, show an uncontrolled movement (the farther
away, the larger the displacement). Note that already a small value for β
seems enough to keep them under control, cf. figure 4.14(b).

From table 4.2, one also finds thatβ must neither be too small nor too high.
In the first case, the effect of the regularization is too little, and control
points may still show a critical displacement. Contrarily, a too strong penal-
ization of the displacements causes significant damping of the geometry.
The higher the values for β , the more the regularization causes such an
unwanted deviation from the actual target geometry (see figure 4.14(d)).

The penalization is most influential in areas where control points obtain
only marginal information from the mesh. This is the case around trimmed
boundaries. Consequently, the geometric deviations resulting from the
regularization are especially pronounced there. As a result, one may still
observe deviations around trimming edges, despite a small value of β and
an overall proper deformation of the CAD model, see figure 4.14(c). Of
course, this effect reduces with decreasing β . Nevertheless, because of the
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nature of the L2-regularization, it is observed to some extent for any β > 0.
Note in any case that the regularization tends to generate discontinuities
between adjacent surfaces, cf. figure 4.14(d).

The requirement to balance the penalty factor β naturally leads to the
question of how to estimate its value a priori. To enable a qualified estimate,
the authors of Brujic et al. [93] scale the penalty term before estimating
β . The scaling is chosen such that the values in (4.44) are comparable to
those in the original system matrix A. Based on the scaled values, they
choose β � 1.

The same approach is utilized in the present work but with a slightly differ-
ent scaling. Details on the applied scaling are elaborated in section 4.5.3.
Based on this scaling, a good first guess for β is a value in the range of 10−9

to 10−5.

4.5.2 Alpha-regularization

In Brujic et al. [93], the authors suggest combining β -regularization with a
further regularization, which they refer to as the α-regularization. In the
paper,α-regularization is introduced to smooth the NURBS surface and so
remedy surface oscillations coming from insufficient input data. Herein,
the α-regularization is adopted to avoid surface defects originating from
the trimming or the discrete nature of the mesh.

Following the idea of α-regularization, we add a penalty term to the map-
ping problem. Brujic et al. [93] found that keeping the control points close
to the surface has a smoothing effect when fitting NURBS geometries. Ac-
cordingly, the additional term penalizes the distance between the control
points and the NURBS surface. As a result, control points tend to stay close
to the surface or move towards it. The corresponding penalty term in the
context of B-Rep morphing reads:

Πα =αCα =
α

2

n
∑

i=1

�

Pi − S i (ξ
∗,η∗)

�

·
�

Pi − S i (ξ
∗,η∗)

�

(4.45)

The equation evaluates the sum of squared distances between n individual
control points Pi and their associated points on the surface S i . To deter-
mine the latter, we use the Greville abscissae. The Greville abscissae assign
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each control point a parameter location on the surface, (ξ∗,η∗), "at which
the control point exercises the most influence," Brujic et al. [93]. For more
information about the Greville abscissae, the interested reader is referred
to Farin [94].

As described in section 4.4.2, this work utilizes a finite-element-based
approach in the solution of the underlying mapping problem. In order
to include α-regularization into the solution process, point elements are
formulated and created for each S i . All point elements are added to the
overall list of elements and provided to the assembler to evaluate and add
their local left- and right-hand side contributions to the mapping system
in (4.32). The local contributions are obtained by computing first- and
second-order derivatives of (4.45) w.r.t the control point displacements.
Considering the definition of a surface point in (4.3a), the derivatives for
each point element are defined as follows:

br =−∂r (Πα) =−α [ I − ∂r (S i )] [Pi − S i ] (4.46)

Ar s = ∂r s (Πα) =α [ I − ∂r (S i )] · [ I − ∂s (S i )] (4.47)

Note that (4.47) may be singular so that the α-regularization alone not
necessarily stabilizes the mapping system. Therefore, we always use it in
combination with the β-regularization from the previous section.

In order to allow for a qualified choice ofα, the corresponding penalty term
is scaled as described in section 4.5.3.α is then chosen relative to the scaled
term. The effect of the α-regularization is illustrated in the following.

Consider the very fine mesh of test case 1 (see figure 4.8(b)), its displace-
ment field , and the highly refined CAD model of test case 2 (see figure
4.12). Given this combination from both test cases, the CAD model shall
be deformed such that it matches the deformed mesh. Therefore, B-Rep
morphing is applied, whereas β -regularization is included to improve the
system conditioning (β = 10−6). First, α-regularization is deactivated. The
corresponding results are presented in figure 4.15.

As can be seen from the figure, B-Rep morphing indeed leads to an over-
all meaningful update of the NURBS model, see figure 4.15(a). However,
having a closer look at the surface, one observes a striking local forma-
tion of wrinkles most noticeably around the trimmed edges. The wrinkles
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(a) Deformed CAD geometry.

(b) Detail view with partially visualized reflection pattern. (c) Untrimmed patch of the blue surface
(including knot lines and trimming curve).

Figure 4.15: Test case in which B-Rep morphing leads to
wrinkles due to sharp surface gradients around the trimmed edges.
The test case uses the mesh data from test case 1 (see figure 4.8(b))

and the CAD geometry from test case 2 (cf. figure 4.12).

are hardly visible at first glance, but become especially prominent when
looking at the central dome’s reflection pattern, see figure 4.15(b).

The wrinkles arise because of the high knot refinement of the individual
NURBS patches in conjunction with the specified β-regularization. The
high knot refinement causes in each patch a steep gradient between the
deformed surface in the visible domain and the undeformed surface in
the trimmed domain. Contrarily, the rectangular parameter grid in this
transition zone only provides a limited resolution of such a gradient, which
eventually induced wrinkles. Moreover,β -regularization damps the move-
ment of the control points in this transition zone so that it tends to amplify
the wrinkling. The problem becomes apparent when isolating a patch
from the overall geometry and removing its trimming, as done in figure
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4.15(c). Herein, one can see the sharp transition between the deformed
visible part of the patch and the undeformed part outside the trimming
curve.

The example reveals an actual problem in the deformation of highly trim-
med B-Rep models, i.e., data about the displacement is only given for the
visible area. In contrast, the invisible domain suffers from insufficient data
support. As a result, the deformed CAD model may show significant surface
defects around trimmed boundaries, which, in the worst case, can radiate
over large parts of the domain. An effective way to avoid such defects is to
enforce a gentle transition between the trimmed and the visible domain.
α-regularization provides a useful tool for this purpose.

To demonstrate the effect of α-regularization, we recompute the last test
case withα 6= 0. Figure 4.16 shows the effect of an increasingα on the patch
from figure 4.15(c). From the results, one can observe that the higherα, the
more the control points approximate the surface. This behavior improves
the transition between the deformed visible surface and the unchanged
trimmed domain. Interesting to see is that the adjustments coming from
the α-regularization mostly apply to the trimmed region where control
points tend to be further away from the surface. The general shape change
is still well captured in the visible area. The authors in Brujic et al. [93]
point out that α-regularization is most effective in areas with a sparse data
basis. The results in this section confirm this effect also for the area around
trimmed edges.

The complete CAD geometry, as it is obtained in the case ofα= 10−2, is pre-
sented in figure 4.17. As one can see in the figure, the input displacement
is well captured, much like before, without α-regularization. This time,
however, the wrinkles are completely suppressed, improving the overall
surface quality significantly. Therefore, compare the reflection patterns in
figure 4.17(b) and 4.15(b). Also, the layout of the control points improved
from a locally fluctuating pattern, cf. figure 4.16(a), to a globally smooth
and uniform one, cf. 4.16(c).

In the previous results, we saw that α-regularization mostly affects the
area around the trimmed boundaries. Whereas this feature is advanta-
geous to cure surface defects or improve the control point layout, it also
tends to amplify boundary discontinuities across coupled faces. This am-
plification is a characteristic which the α-regularization shares with the
β-regularization. Therefore, when applying either of the regularization
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(a) α= 0 (b) α= 10−4

(c) α= 10−2 (d) α= 1

Figure 4.16: Untrimmed patch from figure 4.15(c) when
applying α-regularization with different values for α.

techniques, particular attention must be paid to the surface continuity.

Note also that the effect of the α-regularization is not limited to trimmed
boundaries. It just has its most significant influence there. In fact, with
increasing values for α, the smoothing effect more and more extends to
the entire surface. Therefore, one can use α-regularization generally to
treat possible surface defects.

To demonstrate this feature, consider again test case 2 from figure 4.12. In
this case, the coarse reference mesh caused a wrinkling in the deformed
CAD geometry, see figure 4.18(a). The wrinkles lead to an increased de-
viation of the control points from the surface. Hence α-regularization is
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(a) Deformed CAD geometry.

(b) Detail view with partially visualized reflection pattern. (c) Untrimmed patch of the blue surface
(including knots lines & trimming curve).

Figure 4.17: Rerun of test case from figure 4.15 with activated
α-regularization (α= 10−2).

expected to improve the surface quality.

In fact, rerunning the case with active regularization, whereasβ = 10−6 and
α= 5, the surface quality can be significantly improved, see figure 4.18(b).
Note that we assigned αwith a rather large value of bigger than one. This
value prioritizes the smoothing over the mapping requirements. Choosing
α to be just slightly above one prevents the smoothing from being overly
dominant so that the overall displacement field is still well captured in
the deformed CAD geometry1. Choosing a too high value causes the CAD
geometry to deviate from the input significantly.

At the end of this section one can conclude that α-regularization has two
effects:

1 Refer to section 4.5.3 regarding how to interpret the value of α.
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(a) α= 0 (Corresponds to fig. 4.13) (b) α= 5

Figure 4.18: Mapping of a displacement field from a coarse
finite element mesh to a highly resolved CAD geometry with and

without α-regularization.

1. It keeps the control points close to the surface, which generates a
practical control point layout and positively impacts the surface
quality around trimmed edges.

2. It allows for a general surface smoothing if any defects occur.

The first effect is already obtained with a relatively small value for α. The
second effect needs higher values, whereby the α-regularization also im-
pacts the mapping results. A general recommendation for its application
in B-Rep morphing is: First, try a solution with α� 1, say 10−2. Only if a
general surface smoothing is intended, raise the value toα> 1. Both values
are recommended based on the scaling introduced in section 4.5.3. In case
the CAD model only includes little or no trimming, α-regularization might
not be necessary at all.

4.5.3 Scaling of the regularization terms

Bothα- andβ - regularization introduce assumptions on the solution. Their
effect has to be balanced against the mapping requirements by a proper
choice of the penalty factors. To allow for a proper choice of the penalty fac-
tors, we require reference values. Therefore, the individual penalty terms,
Πα andΠβ , are scaled to the same dimension as the objective functional,
Πm . The same dimension means that, for α = β = 1, the values which a
regularization term adds to the mapping matrix are comparable to the
values within the mapping matrix:
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In the previous equations,
�

∂ 2ΠM /∂ ∆P 2
�

corresponds the initial mapping

matrix, A.
�

∂ 2Cα/∂ ∆P 2
�

and
�

∂ 2Cβ/∂ ∆P 2
�

are the contributions of the
regularization terms to the mapping matrix, without the influence of the
penalty factors. Both expressions can be computed according to (4.44)
and (4.47) for α=β = 1. Note that for a determination of the scaling factor,
one first needs to compute the contributions of the regularization terms
to the mapping matrix. Only then, the values can be scaled and added to
the mapping matrix.

Once the penalty terms are scaled, the penalty factors may be selected,
starting from a reference value of 1. A penalty factor of 0.1 then means,
for example, that the influence of the regularization on the solution is ten
times lower than the influence of the mapping requirements. In this case,
the latter would still be dominant. Vice versa, a penalty factor higher than 1
prioritizes the regularization compared to the mapping. Meaning, a value
higher than 1 can cause the deformed CAD model to deviate from the
prescribed displacement field significantly.

Note that the scaling is also necessary because the system matrix A involves
an integral, meaning it has different value ranges for different model dimen-
sions. In contrast, the β-regularization is invariant to the model dimen-
sions, and the α-regularization does not involve an integration. Clearly,
without any scaling, the penalty factors would be heavily case-dependent.
With scaling, though, the herein specified values for αmay serve as refer-
ence values.

4.6 Constraints

The previous sections introduced the underlying mapping operation in
B-Rep morphing. The operation relies on a least-squares approach, requir-
ing matching displacement fields in the CAD model and the mesh. Other
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than that, we did not consider any further constraints so far. However,
in practical CAD models involving multiple patches and trimming, con-
straints may quickly become a necessity. Two reasons for this necessity
are:

First: The pure mapping of the displacement field does not deliver the
desired surface quality in the deformed CAD model, especially in terms
of smoothness and continuity. In the case of multi-patch and trimmed
NURBS geometries, the requirement of preserving smooth and continuous
surfaces2 often has a high priority since otherwise, the CAD model would
be useless. Without specific quality constraints, the mapping operation
does not provide any handle over such requirements.

Second: The pure mapping of the displacement field may result in a de-
formed CAD model, which violates specific design requirements. For ex-
ample, in a CAD workflow, the designer might only use the deformed CAD
geometry if certain geometrical constraints are satisfied. Such a constraint
could be, e.g., a fixed model interface, which must not be altered. Using spe-
cific design constraints, we may locally sacrifice accuracy in the mapping
for the sake of a usable model.

This section introduces a way to include the mentioned types of constraints
into the original mapping problem. Also, some specific constraints are
discussed.

4.6.1 Treatment of constraints

In this thesis, we choose a simple penalty approach to introduce con-
straints to the mapping problem. In the context of constrained reverse
engineering, the penalty approach is an established and wide-spread tech-
nique, cf. Fisher [49] and Benko et al. [95], for example. Following this
approach, the original mapping problem is augmented by penalty terms,
which in the present case are formulated in an integral (weak) form:

2 at least a watertight surface
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Π =ΠM +
n
∑

j=1

ΠS , j +
m
∑

k=1

Π∂ S,k

=ΠM +
n
∑

j=1

pj CS, j +
m
∑

k=1

pk C∂ S,k

(4.50)

where:

CS =
ˆ

S
... dS, C∂ S =

ˆ
∂ S

... d∂ S (4.51)

Herein, surface constraints C S are distinguished from constraints over
edges of the B-Rep model, C∂ S. Each penalty function is assigned with a
separate penalty factor, p . It is possible to have several constraints over
different surfaces and edges, indicated by the summation over the indices
j and k , respectively.ΠM denotes the original mapping problem, (4.29).

The advantages of such an approach are:

1. There are no additional unknowns (no Lagrange multipliers),

2. the weak form allows a formulation of constraints over arbitrarily
trimmed surfaces and edges,

3. assuming the penalty term is non-negative (e.g., a quadratic func-
tional), it will not affect the system stability (β-regularization is still
enough for stabilization),

4. the penalty factors enable a relative weighting of the individual con-
straint so that its influence may be controlled.

Moreover, the resulting problem formulation is very similar to the prob-
lem formulation in IBRA, where the penalty approach is already applied
successfully in conjunction with multi-patch CAD models and trimmed
NURBS surfaces, cf. Breitenberger et al. [82]. In the context of IBRA, alter-
native techniques to apply constraints are discussed in Apostolatos et al.
[96].
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To integrate constraints into the solution of the mapping problem, we fol-
low the finite element approach introduced in section 4.4.2. Accordingly,
constrained surfaces and edges are discretized into elements, whereas
each element computes its contribution to the mapping system by numer-
ical integration. The local contributions are then assembled to the global
mapping system. The discretization of constrained surfaces and the corre-
sponding numerical integration follow the procedure described in section
4.3.1. In the case of constrained edges, the logic is described in section
4.3.2. The local left- and right-hand side contributions of constraints are
computed as follows:

br =

�

−∂r (ΠS )

−∂r (Π∂ S)
Ar s =

¨

∂ 2
r s (ΠS )

∂ 2
r s (Π∂ S)

(4.52)

Note that both surface and edge constraints are generally referring to the
same set of control points. That is because boundary or trimming curves,
which make up an edge, are embedded into the surface description, cf.
(4.7). Therefore, constraints over individual edges do not introduce any
additional unknowns.

Note also that the surface integral in (4.51) must not necessarily extend
over the entire surface of a patch. The surface integration presented in
section 4.3 allows considering any embedded area. The latter only has to be
bounded by a curve on the patch. Because of this freedom in the definition,
one can formulate constraints for an arbitrary part of a surface, cf. figure
4.19 for an illustration. Similarly, one can define constraints over arbitrary
lines along the surface in the CAD model. In both cases, the solution pro-
cess does not change due to the systematic treatment of constraints using
the finite element approach. The possibility to also include constraints
for embedded areas is a handy feature of B-Rep morphing in practical
applications.

A disadvantage of the penalty method is that a penalty factor has to be esti-
mated. By definition, the constraints may only be satisfied if their penalty
factors tend to infinity. However, for numerical reasons, a finite but suffi-
ciently high value has to be chosen. This calls for proper reference values.
Constraint scaling is applied to allow for a qualified estimate in this context.
In favor of a uniform systematic, the scaling is done analogously to the
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4 B-Rep morphing

Figure 4.19: Embedded area (blue) within a trimmed NURBS
surface.

scaling in the regularization, cf. section 4.5.3. That is, we scale additional
penalty terms from a surface or an edge constraint to the same dimension
as the objective functional, Πm . The same dimension means that, for a
penalty factor of p = 1, the values which a constraint adds to the mapping
matrix are comparable to the values within the mapping matrix:

ΠS = p









∂ 2ΠM

∂ ∆P 2









∞









∂ 2C S

∂ ∆P 2









−1

∞
C S (4.53)

Π∂ S = p
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∂ ∆P 2









∞









∂ 2C∂ S

∂ ∆P 2









−1

∞
C∂ S (4.54)

Herein,
�

∂ 2ΠM /∂ ∆P 2
�

= A and is computed according to (4.40). The com-

putation of


∂ 2C S/∂ ∆P 2




∞ and


∂ 2C∂ S/∂ ∆P 2




∞ depends on the def-
inition of the individual constraints. Some examples in this context are
described in the following sections.

After scaling, one can assume that the original least-squares objective and
the individual constraints are weighted approximately equally. On this
basis, one can choose a penalty factor according to the importance of
the associated constraint relative to the mapping requirements or other
constraints. For example, fulfilling a local design constraint may be more
important than an exact map in the same area, or patch continuity may
be more important than other design constraints. Assuming comparable
objective and constraint values, a good initial guess for penalty factors is
p = 103.
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Another aspect in the treatment of constraints concerns the computation
of the necessary first- and second-order derivatives, cf. (4.52). Depending
on the formulation of the constraint, an analytic computation of those
derivatives can be elaborate or tedious. Therefore, we utilize algorithmic
differentiation (AD) in the present work. One of the most significant ad-
vantages of AD is that one can compute derivatives without explicitly for-
mulating them.

The AD used in this work was developed by Oberbichler et al. [97] and
is based on hyper-dual numbers as described in Fike et al. [98] and Fike
[99]. The implementation is taken from Oberbichler [100]. It uses operator
overloading in C++ and allows the computation of numerically exact first-
and second-order derivatives. "Numerically exact" refers to the fact that
the method does not suffer from cancellation errors.

Oberbichler et al. [97] use AD for the element formulation based on energy
functionals in the context of a finite element approach. We in this work
adopt their idea of using AD on the element level. Accordingly, we do not
use AD to determine the derivatives of the global least-squares (mapping)
problem. Instead, we apply AD for some constraints locally within the
scope of an element to compute its left- and right-hand side contribution
to the mapping system. This hybrid approach allows exploiting the ad-
vantages of AD without modifying the general solution process. Also, the
computational overhead coming from AD remains small.

Finally, it is worthwhile to mention that the finite-element-based solution
approach used in this thesis allows for the systematic development of new
constraints. To include a new constraint, one only has to define a func-
tional and implement a new element type, which computes its local system
contributions as in (4.52). The general assembly and solution process re-
mains as is. If AD is used, the required derivatives can even be computed
without the need to formulate them explicitly. We found the combination
with AD to be very beneficial as it allows for rapid development and testing
of new constraints without spending much time getting derivatives, which
are required to include the constraint in the first place.

4.6.2 Coupling constraints

When applying B-Rep morphing to continuous trimmed multi-patch ge-
ometries, discontinuities have to be expected across patch borders since:
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Figure 4.20: Two trimmed and coupled NURBS patches.

1. adjacent NURBS patches can be parameterized differently,

2. the input finite element mesh is most probably not uniform, espe-
cially around coupled edges,

3. the previously introduced regularization strongly affects the surface
around trimmed edges.

As a possibility to maintain the continuity properties of the initial CAD
model as well as possible, this thesis suggests adding coupling constraints
to the mapping problem. In this context, we consider displacement and
rotation coupling. The corresponding constraints are adopted from Breit-
enberger et al. [82], where the authors use them for the mechanical analysis
on CAD models (IBRA).

Coupling constraints evaluate the continuity across a coupling edge. The
latter is assumed to connect two different, possibly trimmed patches. In
case several patches are attached to a single edge, we each form pairs of
two patches. Among the two coupled patches, one distinguishes a master
and a slave side, S M and SS . Accordingly, the edge is represented locally
by a master and a slave boundary curve, C M and CS . Both curves can be
trimming curves. Figure 4.20 illustrates two trimmed patches, which are
coupled.

Displacement coupling

To maintain positional continuity over a coupled edge, the displacement
of the master patch has to match the displacement of the slave patch over
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the entire coupling edge ∂ S, cf. figure 4.20. Following the penalty approach
introduced in section 4.6.1, the corresponding penalty term reads:

Πdisp =
pdisp

2

ˆ
∂ S(0)

�

∆S M −∆SS
�

·
�

∆S M −∆SS
�

d∂ S(0) (4.55)

where pdisp represents a dedicated penalty factor. The integration is always
done over the initial configuration of the coupling edge, ∂ S(0), so that no
variation of the integration domain has to be considered later. The integra-
tion domain locally corresponds to C M . Deriving (4.55) w.r.t. the control
point displacements yields the left- and right-hand side contributions to
the mapping system. Considering the definition of a displacement field
over a NURBS surface, see (4.8), the contributions are:

br =−∂r (Πdisp)

=−pdisp

ˆ
∂ S(0)

�

∂r (∆S M )− ∂r (∆SS )
�

·
�

∆S M −∆SS
�

d∂ S(0)
(4.56)

and

Ar s = ∂
2

r s (Πdisp)

= pdisp

ˆ
∂ S(0)

�

∂r (∆S M )− ∂r (∆SS )
�

·
�

∂s (∆S M )− ∂s (∆SS )
�

d∂ S(0)

(4.57)

Rotation coupling

If also the tangential continuity must be preserved, one can also couple
the rotation of the master and the slave patch along the edge. The rotation
of a patch at the edge is measured as the angular change of its local normal
vector T3 around its local tangent vector T2 (cf. figure 4.20):

ωT2
= arcsin (ω · T2) (4.58)
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Hereinω is the rotation vector defined as follows (small letters indicate
the deformed configuration):

ω= T3× (t3− T3) (4.59)

A coupling of rotations is obtained by enforcing a minimal difference
between ωT2

on the master and the slave side. To obtain comparable
rotations, T2 = T M

2 is chosen as common tangent vector 3. Following the
penalty approach introduced in section 4.6.1, the corresponding penalty
term reads:

Πrot =
prot

2

ˆ
∂ S(0)

�

ωM
T2
−ωS

T2

�

·
�

ωM
T2
−ωS

T2

�

d∂ S(0) (4.60)

The integration domain is the same as for the displacement coupling.
Deriving the previous equation w.r.t. the individual control point displace-
ments, one obtains the corresponding left- and right-hand side contribu-
tions to the mapping system:

br =−∂r (Πrot)

=−prot

ˆ
∂ S(0)

�

∂r (ω
M
T2
)− ∂r (ω

S
T2
)
�

·
�

ωM
T2
−ωS

T2

�

d∂ S(0)
(4.61)

Ar s = ∂
2

r s (Πrot)

= prot

ˆ
∂ S(0)

�

∂r (ω
M
T2
)− ∂r (ω

S
T2
)
�

·
�

∂s (ω
M
T2
)− ∂s (ω

S
T2
)
�

+
�

∂ 2
r s (ω

M
T2
)− ∂ 2

r s (ω
S
T2
)
�

·
�

ωM
T2
−ωS

T2

�

d∂ S(0)

(4.62)

The computations in (4.61) and (4.62) requires first and second-order
derivatives ofωT2

. Their analytic derivation can be found in Breitenberger

3 This is different to the formulation in Breitenberger et al. [82]. In that, the rotation is
determined separately around the tangent vectors T S

2 and T M
2 . However, the latter requires

a case distinction regarding the orientations of both vectors
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et al. [82]. Rather than an analytic computation, however, algorithmic
differentiation is applied to determine the elemental system contributions
because an analytic computation of A i requires second-order derivatives
of the local coordinate system, which were not accessible.

Important characteristics to be considered in the context of rotation cou-
pling are:

• The rotation coupling renders the mapping problem nonlinear as A
is not constant anymore.

• Because (4.58) includes the arcsin, rotations must not exceed 90◦.

• The rotation coupling tends to maintain the relative orientation of
two adjacent faces so that G 1-continuous transitions tend to stay
G 1-continuous. Conversely, no higher continuity can be expected
at kinks in the original geometry. Instead, the original kinks tend to
be preserved. This is a very welcome feature as it allows us to keep a
defined angle between adjacent faces so that, e.g., rectangular edges
remain rectangular.

Effect of coupling constraints

In the following, we investigate the effect of coupling constraints. For this
purpose, B-Rep morphing is applied to test case 1 from figure 4.8. Unlike
in the original case, though, both α- and β-regularization are activated to
keep the problem well-conditioned (α= 10−3, β = 10−6).

Without any coupling constraints, B-Rep morphing results in a CAD geom-
etry, which overall captures the displacement of the finite element mesh,
but locally shows significant geometric discontinuities, cf. figures 4.9 and
4.11. These discontinuities render the deformed CAD model unusable and
must be avoided. Figure 4.21 quantifies the discontinuities by evaluating
(∆S M −∆SS ) and (ωM

T2
−ωS

T2
) around a representative internal coupling

edge ranging 360◦ around the central dome (highlighted in the figure).
The deviations are measured at the Gauss points of the later introduced
coupling constraints so that the results are comparable.

As the figure suggests, if no coupling is applied, there are positional de-
viations of larger than 0.1 units. Compared to the radius of the circular
geometry (90 units), this value seems small. However, 0.1 units are well
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Figure 4.21: Influence of displacement coupling on positional
and rotational deviation of adjacent faces around an internal edge

(orange).

above the herein specified drawing tolerance (0.001 units) and hence cause
a striking gap. As a consequence, the faces cannot be joined in the given
CAD system without adjusting the tolerance. The rotational deviation
is even more severe. Here, one observes differences of up to almost 3◦,
whereas peaks appear around corners of the trimmed patches. 3◦ is high
enough to cause an apparent kink in the model, cf. figure 4.11.

Introducing displacement coupling according to (4.55) and specifying a
penalty factor of pdisp = 103 after scaling the corresponding penalty term
according (4.54), we can improve the positional deviation significantly,
cf. figure 4.21. However, from the figure, it is also clear that displacement
coupling alone is not enough to preserve the original G 1-continuity in the
deformed CAD model. Rotational deviations remain. The graph shows
that they are even amplified due to the modifications introduced by the
displacement coupling. In order to preserve the original G 1-continuity,
rotation coupling must be added.

Figure 4.22 compiles the results of B-Rep morphing after adding rotation
coupling. Similarly as above the penalty term associated to the rotation
coupling is scaled following the systematic in (4.54) and the corresponding
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Figure 4.22: Positional and rotational deviation of adjacent
faces around an internal edge (orange) with activated

displacement and rotation coupling.

penalty factor is specified as prot = 103. The deviations are measured at the
Gauss points of the coupling constraints. The results in the figure show that
after three solution iterations, both the positional and rotational deviations
drop by several orders. Especially the rotational deviation is now not more
than 0.01◦, so that apart from the watertight surface also G 1-continuity is
maintained within practical limits.

An important insight from figure 4.22 is that rotation coupling is already
effective in the first solution iteration. Meaning, no nonlinear solution iter-
ation is necessary to maintain the original G 1-continuity within practical
limits. The results from the third iteration show even higher maximum
values, despite the residual in the solution continuously decrease. The
reason for this behavior is two-fold and generally valid for all cases:

• The coupling is defined in an integral (weak) form over the B-Rep
edge. That is, there is no control over peak values.

• The nonlinearity is due to the difference in the local rotation on both
sides (ωM

T2
−ωS

T2
), cf. (4.62). This difference by definition is zero in the

beginning and, if rotation coupling is applied, remains very small in
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subsequent iterations. Consequently, a nonlinear solution iteration
is often not necessary.

The quantitative improvement through the active coupling constraints
can also be qualitatively observed in the deformed CAD geometry, see
figure 4.23. The figure shows a flawless deformation in the CAD model.
Note specifically that the surface quality is so good that one cannot identify
the individual patches anymore. The corresponding reflection pattern in
figure 4.23(b) confirms the high surface quality. It only shows continuous
reflection stripes indicating a higher-order surface continuity 4. Both fig-
ures emphasize the positive effect and the need for coupling constraints
when fitting a multi-patch trimmed CAD model to a prescribed displace-
ment field.

Note that we achieved a high surface quality in this example even though
the individual patches have different parameterizations. In general, differ-
ent parameterizations between patches may exclude a continuous surface
in the deformed CAD model. In any case, coupling constraints are useful
to preserve the surface continuity as much as possible.

4.6.3 Fixation constraints

CAD surfaces to be fitted to a simulated displacement field are often part of
a model assembly and therefore include interfaces (edges and surface tran-
sitions) that are predefined or must not change. When B-Rep morphing
leads to a deviation of such specifications, we must fix the correspond-
ing edges explicitly. This section introduces a constraint that enables the
fixation of displacements or surface normals along arbitrary edges.

Following the chosen penalty approach, a specific displacement field d∆S
can be enforced at any edge ∂ S by penalizing deviations of the actual
displacement field to the target set. In weak form, the resulting penalty
term reads:

Πfix,disp =
pfix,disp

2

ˆ
∂ S(0)

�

∆S−d∆S
�

·
�

∆S−d∆S
�

d∂ S(0) (4.63)

4 Refer to section 4.2.4 for details on the evaluation of the surface continuity.
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(a) Deformed CAD geometry.

(b) Resulting surface qualty (visualized as reflection patter).

Figure 4.23: B-Rep morphing with coupling constraints.

Note that the integration is done over the edge’s fixed initial configuration,
∂ S(0). Hence, a variation of the integration domain is avoided.

A certain orientation of the surface normal along the edge is reached if
locally the tangent vectors of the actual surface lie within the plane spanned
by the predefined normal vector. Mathematically this requires vanishing
scalar products between the targeted surface normal t̂3 and each tangent
vector in the current configuration, t1 and t2

5. Weakly formulated, the
corresponding penalty term reads:

5 Small letters indicate the current configuration. Refer to figure 4.1 for a visualization
of the individual vectors.
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Πfix,norm =
pfix,norm

2

ˆ
∂ S(0)

�

t1 · t̂3

�2
+
�

t2 · t̂3

�2
d∂ S(0) (4.64)

The contributions of both of the above fixation constraints to the map-
ping system are obtained by deriving the individual penalty terms w.r.t.
to the control point displacements. For the fixed displacement field, the
derivation of (4.63) yields:

br =−∂r (Πfix,disp)

=−pfix,disp

ˆ
∂ S(0)
∂r (∆S ) ·

�

∆S−d∆S
�

d∂ S(0)
(4.65)

Ar s = ∂r s (Πfix,disp)

= pfix,disp

ˆ
∂ S(0)
∂r (∆S ) · ∂s (∆S ) d∂ S(0)

(4.66)

And for the fixed surface normal, deriving (4.64) w.r.t.∆P results in:

br =−∂r (Πfix,norm)

=−pfix,norm

ˆ
∂ S(0)

�

∂r (t1) · t̂3

�

·
�

t1 · t̂3

�

+
�

∂r (t2) · t̂3

�

·
�

t2 · t̂3

�

d∂ S(0)

(4.67)

Ar s = ∂r s (Πfix,norm)

= pfix,norm

ˆ
∂ S(0)

�

∂r (t1) · t̂3

�

·
�

∂s (t1) · t̂3

�

+
�

∂r (t2) · t̂3

�

·
�

∂s (t2) · t̂3

�

d∂ S(0)

(4.68)

Note that (4.68) is constant since ∂r (ti ) = const. Consequently, the con-
straint does not render the problem nonlinear. Also, (4.68) does not contain
second-order derivatives as ∂r s (ti ) = 0.
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To allow for a qualified initial guess of the penalty factors, the penalty terms
in (4.63) and (4.64) are scaled according to (4.54) before assembling their
contributions to the global mapping system.

The following example demonstrates the two constraints. Consider again
test case 1 from figure 4.8. We apply B-Rep morphing to deform the CAD
model according to the prescribed displacement. Coupling constraints
are specified to preserve the positional and rotational continuity across
patch borders (pdisp = 103,prot = 103 ) and regularization is activated for a
better system conditioning (α= 10−1, β = 10−6). The value for α is inten-
tionally chosen rather high in order to trigger deviations from the target
displacement and subsequently show the effect of the fixation constraints.

Applying B-Rep morphing with the settings above, we obtain an overall
good CAD description of the deformed finite element mesh, see figure
4.24 a). However, as expected, due to the rather high value for α, the outer
edges of the geometry are less distinct, and a close-up on the innermost
ring reveals clear deviations from the given target height (= 40 units).

Assuming that it is important to capture the deformation at the innermost
ring correctly, a displacement constraint is introduced enforcing d∆S = 40
at the corresponding boundary. Indeed, rerunning the case with activated
displacement constraint and a corresponding penalty factor of pfix,disp =
103, we can successfully remedy the previous deviations, as figure shows
4.24 b).

To showcase a constraint on the surface normal, assume that some design
criterion requires the surface normal at the innermost ring to stay vertical.
To enforce such a design, we explicitly constraint the geometry to have
t̂3 = [0, 0, 1]T along the relevant edge. Rerunning the case with a displace-
ment constraint and additionally an activated constraint on the surface
normal ( pfix,disp = 104, pfix,norm = 104), one obtains the geometry depicted
in figure 4.24 c). As one can see qualitatively from the figure, both con-
straints are successfully satisfied, whereas the remaining CAD geometry
still corresponds to a best-fit of the deformed finite element mesh.

It is important to realize that both constraints may not just be used to
enforce a certain displacement or normal orientation, but also to prevent
a modification of the latter during B-Rep morphing. Such a fixation is
obtained by choosing d∆S = 0 and t̂3 = T3. This feature is particularly
relevant in bigger CAD assemblies, where it is of utmost importance not
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Figure 4.24: B-Rep morphing: a) without fixed boundaries, b)
with fixed displacement at the innermost ring, c) with fixed

displacement and surface normal at the innermost ring.

to alter interfaces to the remaining model.

In this scenario, we artificially provoked deviations on the boundary of
the structure for demonstration purposes. However, practical applica-
tions show that such deviations frequently appear, as the underlying least-
squares formulation does not guarantee a point-wise matching displace-
ment field. Often the resulting deviations are negligible. Sometimes, how-
ever, they have to be controlled explicitly to maintain a defined interface.
In such cases, the fixation constraints offer the possibility to reduce the
deviation down to a minimum.

Finally, we note that the fixation constraint is not limited to edges. It is also
possible to fix entire areas of the surface. The extension of (4.63) and (4.64)
to areas of the surface is straightforward and mainly includes a change of
the integration domain. In such a case, the discretization of the domain
and the numerical integration follow the procedure described in section
4.3.1.
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4.7 Surface smoothing

Apart from an ill-conditioning due to the involved trimming, B-Rep mor-
phing also suffers from discrepancies in the description of the origin and
the target geometry. The origin geometry is a discrete finite element mesh,
whereas the target geometry is a continuous NURBS model with different
degrees of freedom. This discrepancy naturally leads to an information
gap, which can cause unwanted wrinkling in the deformed CAD model.
The α-regularization presented in section 4.5.2 already provides a tool to
smooth such surface defects. However, surface smoothing using the α-
regularization is also limited, as minimizing the distances between control
points and the associated NURBS faces not necessarily leads to a globally
smooth surface. Control points may be locally close to the surface, while
the overall surface still shows wrinkles.

An alternative way to enforce a smooth design is to add mechanical stiff-
ness to problematic NURBS faces. Therefore, one can introduce an addi-
tional regularization (fairness) term based on the internal energy of a thin
plate. Such an approach is a well-established practice in reverse engineer-
ing. See, e.g., Eck et al. [44], Greco et al. [50], Weiss et al. [53], and Greiner
[101]. Herein, we adopt this approach as a means to suppress wrinkling,
if necessary. We also combine it with α- and β-regularization to enforce
numerical stability and achieve a practical layout of the control points.

We realize the additional smoothing by modeling the trimmed (visible)
surface of the CAD model6 as shell and penalizing the strain energy that
results from the deformation of this shell during the morphing process.
Therefore, the objective function of the already regularized mapping prob-
lem, (4.41), is extended by another regularization term,Πγ. As a result, we
obtain the following compromise function:

Π =ΠM +Πα+Πβ +Πγ
=ΠM +αCα+βCβ +γWin

(4.69)

In the previous equation, Win represents the strain or internal energy of the
shell and γ the associated penalty factor. Note that minimizing (4.69) cor-
responds to a Pareto problem, in which α, β , and γ define the application-

6 or just parts of it to reduce computational costs / avoid an unwanted global influence
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4 B-Rep morphing

specific weighting of the regularization terms. We compute Win using isoge-
ometric analysis (IGA) based on the Kirchhoff-Love (KL) shell formulation7.
Accordingly it holds:

Πγ = γWin = γ
ˆ

S (0)
[n : ε+m :κ] dS (0) (4.70)

In the previous equation, n and m are the stress resultants from the forces
and moments, respectively. ε denotes the membrane strains and κ the
change in curvature. S (0) represents the surface to be modeled as a shell in
its initial configuration. S (0) can comprise the entire surface or just parts
of it.

The KL theory distinguishes between a membrane action related to the
strains and a bending action related to the change in curvature, cf. (4.70).
In the context of B-Rep morphing, the membrane action shall avoid an
uncontrolled stretching or compression of the surface. In contrast, the
bending action shall keep the surface smooth by avoiding possible wrinkles
(through a penalization of bending and twisting moments arising from a
change in curvature).

n and m depend on the thickness of the shell, t , as well as its material
parameters. For our purpose, a unit thickness of t = 1 and an isotropic
material with a Poisson’s ratio of ν = 0 is assumed. The only remaining
material parameter is the Young’s modulus, E . Concerning the latter, it
holds:

n∼ E and m∼ E (4.71)

From (4.71) and (4.70), one can see that γ and E have the same effect on
Πγ. That is, increasing the penalty factor corresponds to a stiffening of the
shell, which in turn results in a smoother surface. We set E = 1 so that the
penalty factor is the only parameter to control the stiffness.

In order to facilitate a qualified choice of γ, (4.70) is scaled relative to the
original mapping requirements. The scaling is realized analogously to all

7 Refer to Kiendl et al. [102] for details on the isogeometric analysis of shells based on
the KL shell formulation.
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4.7 Surface smoothing

the other extensions so far. That is,Πγ is scaled to the same dimension as
the objective functional,Πm . The same dimension means that, for γ= 1,
the values which the regularization term adds to the mapping matrix are
comparable to the values within the mapping matrix:

Πγ = γ









∂ 2ΠM

∂ ∆P 2









∞









∂ 2Win

∂ ∆P 2









−1

∞
Win (4.72)

Given the scaled regularization term, a good initial choice of the penalty
factor is γ = 102. The latter prioritizes a smooth shape over an accurate
mapping in all areas that are covered by the shell.

To integrate the additional smoothing into the numerical solution, we
follow the finite element approach introduced in section 4.4.2. Accord-
ingly, the surface to be modeled as shell, S (0), is discretized into elements,
whereas each element computes its contribution to the mapping system
separately by numerical integration. The local contributions are then as-
sembled to the global mapping system. The discretization of S (0) into ele-
ments and the corresponding numerical integration follow the procedure
described in section 4.3.1. The local left- and right-hand side contributions
are computed by deriving (4.70) w.r.t. the control point displacements.
Since we are only interested in a stiffening of the surface and not a physi-
cally correct behavior, we neglect the nonlinear-terms and so assume a
geometrically linear analysis of the shell. The relevant system contributions
are:

br =−∂r (Πγ) =−γ
ˆ

S (0)
[n : ∂r (ε) +m : ∂r (κ)] dS (0) (4.73)

Ar s = ∂r s (Πγ) = γ
ˆ

S (0)
[∂s (n) : ∂r (ε) + ∂s (m) : ∂r (κ)] dS (0) (4.74)

In the scope of this work, we compute both system contributions by ap-
plying AD to (4.70) at element level. Note that the computation of both
terms corresponds to the computation of the stiffness matrix and residual
vector in an isogeometric shell analysis. Therefore, the interested reader is
referred to Kiendl et al. [102] for a complete analytic derivation of (4.73)
and (4.74).
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4 B-Rep morphing

(1)

(2)

(3)

(4)

Figure 4.25: Test case 3: (1) initial mesh, (2) target displacement,
(3) CAD geometry with heavy local knot refinement (stripes).

Surfaces treated by shell-based smoothing are highlighted in (4).

Effect of surface smoothing

The effect of the introduced surface smoothing is demonstrated in the
following. Consider "test case 3" depicted in figure 4.25. Herein, the finite
element mesh, the displacement field, and the CAD geometry are adopted
from test case 1, cf. figure 4.8. The only difference to the original test case
is that the CAD geometry includes a heavy local knot refinement in four of
the twelve patches. The goal is to obtain a quality NURBS description of
the deformed finite element mesh starting from the refined CAD geometry.
Therefore, B-Rep morphing is applied including a basic regularization
(α= 10−3,β = 10−6) and coupling constraints (pdisp = prot = 104).

Without any further treatment, B-Rep morphing is not able to deliver sat-
isfying results. Indeed the displacement mapping leads to well-matching
geometries and the specified coupling constraints to a continuous surface.
Nevertheless, in the refined region, the high aspect ratio of the knot spans
causes a clear wrinkling, see figure 4.26(a). Running a parameter study, one
finds that this wrinkling cannot be cured by increasingα and exploiting the
associated smoothing effect. Instead, forcing the control points to move
closer to the surface amplifies the surface defects in this case.

In order to cure the defects, we smooth the critical area using the shell-
based technique presented above. For this purpose, we model all four
refined faces as shells while the rest of the domain stays untouched. Such
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4.7 Surface smoothing

(a) Without additional smoothing.

(b) With shell-based smoothing.

Figure 4.26: B-Rep morphing applied to a case with heavy local
knot refinement. The reflection pattern is visualized for a single

face highlighting the quality difference.

a selective constraint avoids an unnecessarily global impact and may save
computational resources. Both aspects are especially relevant in bigger
setups with up to thousands of patches.

Figure 4.26(b) shows the result of B-Rep morphing with active surface
smoothing and a penalty factor of γ = 102. From the figure, one can see
that the stiffening successfully suppresses the wrinkles up to the point
that almost no influence of the refinement is visible anymore. As a result,
one obtains an overall smooth design. Still, the input displacement is well
captured. We can also verify this quantitatively. Therefore compare the
mean and maximal deviation between actual and target displacement
in table 4.3. The deviations are measured at all Gauss points in the de-
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4 B-Rep morphing

Table 4.3: Quality indicators evaluated at the deformed CAD
model of test case 2 & 3. i denotes the index of a single Gauss

point. Initial diameter of the shell:�180 units.

quality indicator evaluates test case 3 test case 2

max
�

‖∆S i −∆Q i ‖2

�

[units] mapping 0.30 1.02

max
�

∆S M
i −∆SS

i





2

�

[units] coupling 7.80×10−3 1.68×10−2

max
�

ωM
T2 ,i −ω

S
T2 ,i

�

[deg] coupling 1.10×10−2 1.75×10−2

mean
�

‖∆S i −∆Q i ‖2

�

[units] mapping 4.68×10−2 8.04×10−2

mean
�

∆S M
i −∆SS

i





2

�

[units] coupling 1.37×10−4 6.20×10−5

mean
�

ωM
T2 ,i −ω

S
T2 ,i

�

[deg] coupling 2.40×10−3 3.16×10−3

formed CAD geometry. The table also shows an evaluation of the coupling
constraints at all Gauss points along the coupled edges. The coupling con-
straints quantify positional and rotational deviations across patch borders
and, by that, the surface continuity. Note from the table’s values that the
coupling constraints lead to a high surface continuity in this case.

Apart from models with heavy local knot refinement, shell-based smooth-
ing is versatile in all cases where the discrete nature of the input mesh
induces wrinkles in the deformed CAD model. We already discussed this
scenario in test case 2, cf. figure 4.12. In this case, the discrepancy between
the two geometry descriptions led to severe surface distortions, cf. fig-
ure 4.13. A possibility to still get a fair design in this test case is to apply
shell-based smoothing over the entire surface. Figure 4.27 presents the
corresponding results for a penalty factor of γ= 50. The factor was found
by a parameter study starting from the recommendation given above. Un-
like in the original test case, α- and β-regularization are also activated
for a better control point layout (α= 10−3,β = 10−6). Moreover, coupling
constraints are included to obtain a continuous surface in the deformed
CAD model (pdisp = prot = 104).

The result in figure 4.27(a) shows a smooth design with an acceptable
error in the mapping. The corresponding mean and maximum deviation
from the target displacement are compiled in table 4.3. The quality of
the deformed CAD model is remarkable, considering the unusable design
obtained without additional smoothing (see figure 4.27(b)). Thus, we find
that shell-based smoothing can be used to enforce a feasible design when
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4.7 Surface smoothing

(a) Result of B-Rep morphing (left: target displacement, right: de-
formed CAD geometry).

(b) Surface quality without addi-
tional smoothing.

(c) Surface quality with shell-
based smoothing.

Figure 4.27: B-Rep morphing applied to test case 2 with
additional shell-based smoothing.

the raw input would cause wrinkling.

Noteworthy in this test case is also the resulting surface quality, which we
can assess using the reflection pattern in figure 4.27(c). Striking in this fig-
ure is the smooth gradient of the individual stripes and the invisible patch
borders. These characteristics indicate a smooth design with a continuous
surface. Due to the coupling constraints, the maximal positional and rota-
tional deviations across all the patch borders are small (see table 4.3). The
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4 B-Rep morphing

(a) γ= 10−1 (b) γ= 50 (c) γ= 104

Figure 4.28: Effect of γ in shell-based smoothing.

mean deviations are still much smaller. This result and the result from test
case 3 show that we can readily combine the shell-based smoothing with
the earlier introduced coupling constraints.

In general, a successful shell-based smoothing depends on the choice of
the penalty factor γ. Figure 4.28 demonstrates the effect of the penalty
factor. Herein, we compute again test case 2 with different values for γ. In
the figure, one can see that a too high value for the penalty factor results in
clear deviations from the target displacement as the model behaves overly
stiff. Contrarily, a too low value does not generate the intended smoothing
effect. Only a balanced value results in a design, which is smooth and
adequately captures the target displacement.

Finally, it is worth noting that B-Rep morphing with shell-based smoothing
may be interpreted as a forming process, where a shell with a dedicated
stiffness is pressed into a mold, which is defined by the deformed finite
element mesh. The stiffer the shell, the higher the mechanical resistance
against the formation of details or wrinkles.

4.8 Geometry refinement

Mapping a displacement field onto a NURBS surface implies that the
NURBS geometry has enough degrees of freedom to represent the tar-
get displacement in the first place. If not, it has to be enriched accordingly.
Therefore, refinement strategies are necessary.
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4.8 Geometry refinement

One distinguishes two basic strategies to refine NURBS: degree elevation
and knot insertion Piegl et al. [81]. Both strategies increase the number of
control points and thus the geometric freedom. Still, they are not changing
the initial shape of the geometry. Both strategies can also be combined.

In IBRA, an established strategy is to combine an initial degree elevation
with a subsequent knot-refinement. The sequence of both steps is impor-
tant and does not commute. It guarantees a defined continuity of the basis
functions across individual knots (required for structural analysis with
IBRA). The entire process is referred to as k-refinement, cf. Hughes et al.
[86].

Due to the close relation of the herein proposed B-Rep morphing to IBRA,
we adopt k-refinement to refine NURBS geometries if necessary. In the
included degree elevation and knot insertion, we follow the relevant algo-
rithms from Piegl et al. [81]. Regarding the knot refinement, we implement
it such that the user defines a maximum element size hmax in geometry
space. The algorithm then inserts knots uniformly so that the resulting
grid of nonzero knot spans only features rectangles with a maximum width
of hmax measured at their center.

Figure 4.29 illustrates the adopted k-refinement for the test case from
section 4.4.4. Model setup and target displacement are as specified in
figure 4.8. The CAD model is assumed to be significantly coarser than the
original one. The coarse model includes 12 patches with each 3×3 control
points, a grid of 1×1 nonzero knot spans and it holds p = q = 2. We use
coupling constraints to preserve the geometric continuity (pdisp = prot =
103) and apply a basic regularization for a better conditioning of the system
(α= γ= 0,β = 10−6).

As one can see in the figure, the coarse CAD model does not properly repre-
sent the target displacement after deformation. Instead, the low resolution
in the grid of nonzero knots and the low polynomial order limit the defor-
mation to a parabolic shape. After an elevation of the polynomial degrees
to p = q = 3, we can already capture the global trend, but details are still
not resolved. Only a subsequent knot refinement with hmax = 5 eventually
yields a satisfying deformation, see figure. The process demonstrates a
best-practice, which the author suggests for geometric refinement in the
context of B-Rep morphing: First, one increases the polynomial order to a
necessary but preferably low value (say p = q = 3). Then one applies knot
refinement until the model has enough degrees of freedom to represent
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4 B-Rep morphing

(a) Coarse model.

(b) After subsequent degree elevation to p = q = 3.

(c) After subsequent knot refinement of case (b), hmax = 5.

Figure 4.29: Geometry refinement and its effect on the
morphing result. Left: initial CAD geometry with highlighted

edges, knot-lines and control points (the latter only for the blue
domain), right: deformed CAD geometry.

the target displacement.

Following this approach, the necessary refinement, more precisely hmax,
has to be estimated by the user. A qualified guess is possible from an
observation of the displacement in the mesh. In the special case, where the
displacement corresponds to a shape update obtained by Vertex Morphing,
it is possible to quantify a good estimate of the element size. In Vertex

176
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Morphing, the smallest geometric details are determined by the filter radius
r . Moreover, for typical filter functions, the shape updates are taking the
form of B-Spline surfaces, e.g., bi-cubic B-Spline surfaces for linear filter
functions. So, assuming for the given NURBS patches a polynomial degree
of at least p = q = 3, a good initial selection for the maximal element size
is r ≤ hmax ≤ 2r .

In this work, the geometric refinement is performed solely according to
the semi-automatic procedure described above. So, the refinement still
requires manual input by the user. It is, however, also possible to further
automatize this step. Two ideas towards a more automatic and adaptive
refinement are outlined in the following:

A straightforward yet rather expensive strategy could be based on an a
posteriori comparison of the mapping results against the input. In this
approach, B-Rep morphing is first applied to the unrefined CAD model.
The resulting deformation is then compared to the input from the mesh,
and a local refinement is triggered if the errors are too high. Then the de-
formation is computed again. The process is repeated until the deformed
CAD model is acceptable in terms of specified error measures. An advan-
tage of this strategy is that the user directly specifies error measures rather
than estimating the resulting deviations implicitly by some refinement
parameters.

A more efficient strategy would be to quantify the shape change in the
given mesh a priori and draw conclusions on the necessary refinement
before applying B-Rep morphing. Such an approach requires a criterion to
decide locally whether or not a refinement is necessary. Once hot-spots are
identified, an adaptive refinement of the NURBS surface may be triggered.

Both strategies may be the subject of further research.

4.9 Case studies

In the following, B-Rep morphing is tested in different application exam-
ples, showcasing its capabilities. Another example, which involves a racing
car, is briefly presented in the appendix (A.2).
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∂ Sfix

∂ Sfix

∂ Sdisp,rot

(a) Initial CAD model of the valve housing with internal
channel.

|DISP| [units]

0.012

0

(b) Design of the channel as proposed by the
shape optimization in section 3.8.1.

Figure 4.30: Discrete geometry of the shape-optimized channel
to be converted into a CAD geometry.

4.9.1 Shape-optimized channel of a valve housing

First, B-Rep morphing is used to obtain a CAD description of the shape-
optimized channel from section 3.8.1. The focus here is on the quality
of the resulting CAD geometry as well as the practical application of B-
Rep morphing. The optimized discrete geometry, as obtained from the
grid-based shape optimization, are shown in figure 4.30(b). The channel is
part of a valve housing. The initial CAD model of the housing is presented
in figure 4.30(a)8. Since the optimization only affected the channel, we
first focus on this part of the CAD model. Some general data for both the
surface mesh and the CAD model of the channel are compiled in table 4.4.

Given this setup, the goal is now to deform the CAD model of the channel
such that it matches the deformation of the surface mesh in the optimiza-

8 For demonstration purposes, the large hole in the center was removed compared to
the original model introduced in figure 3.5.
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Table 4.4: Details on the initial CAD model (not refined) and the
surface mesh of the channel.

CAD model (NURBS-based) mesh

# patches degrees trimming # control points # nodes # elements

20 1−3 yes 1 236 19 008 18 912

Table 4.5: Settings for B-Rep morphing in case of the channel.

α β pdisp prot pfix,disp pfix,norm γ

10−5 10−8 103 102 103 103 0

tion. Therefore, we extract the channel geometry from the CAD model,
then apply B-Rep morphing, and eventually insert the new geometry back
into the overall CAD model again.

Given that we treat the channel separately, we must take special care not
to alter the interface to the surrounding model, ∂ Sfix. Therefore, fixation
constraints are introduced at the interface, cf. figure 4.30(a). More precisely,
at ∂ Sfix, we force the displacement to zero and fix the surface normal to its
initial orientation. Both constraints prioritize a matching interface over
any other shape modifications. They ensure that we can readily merge the
modified channel geometry with the overall model afterwards. Coupling
constraints are included along internal edges of the channel to preserve
the initial G 0- and G 1- continuity as much as possible. Having a defined
surface orientation at the inlet and outlet as well as a continuous surface
in between is of particular importance in this case as it directly affects
the flow guidance. We activate regularization to improve the problem
conditioning and layout of the control points. The choice of the relevant
penalty factors is summarized in table 4.5. The individual penalty factors
were either determined based on experience with other applications or
based on a systematic parameter study starting from the recommended
initial values.

From an observation of the initial CAD model, it is clear that the initial
model is too coarse to represent the intended shape modification accu-
rately. Hence refinement as introduced in section 4.8 is applied. Accord-
ingly, we first raise all polynomial degrees to p = q = 3 and then perform
a knot-refinement. The latter requires the definition of the maximum el-
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(a) Unrefined

(b) Refined

Figure 4.31: Comparison of the CAD model of the channel
before and after refinement.

Table 4.6: Problem size after refinement in case of the channel.

# control points # unknowns # elements

5 264 15 792 7 532

ement size hmax. Following the ideas discussed in section 4.8, we choose
hmax = 0.05. Figure 4.31(b) illustrates the refined CAD geometry.

The resulting size of the underlying mapping problem is summarized in ta-
ble 4.6. The latter includes the number of control points of the refined CAD
model, the number of unknown control point displacements, and the num-
ber of all finite elements9 that arise from the mapping, the regularization,
and the constraints.

9 Not to be mistaken with the finite elements from the input mesh.
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(a) Deformed surface (knots & edges are hidden). (b) Corresponding reflection pattern.

Figure 4.32: Deformed CAD model of the channel obtained by
B-Rep morphing.

Applying B-Rep morphing with two solution iterations using the setup
introduced above, we obtain a quality CAD description of the optimized
channel (see the rendering in figure 4.32(a) and compare it to the input in
figure 4.30(b)). From a qualitative perspective, all apparent shape changes
are well captured, and a continuous and smooth surface is obtained despite
the complicated free-form modifications. An inspection of the reflection
pattern qualitatively confirms this impression, cf. figure 4.32(b). Note in
the figure that the reflection pattern shows a surface continuity of at least
G 1. A G 1-continuous transition can be, e.g., observed from the kink in the
stripes where the bend starts and ends. Apart from that, the individual
patches are not visible in this view.

The qualitative impression can also be quantitatively confirmed. Table
4.7 presents a set of quality indicators, which evaluate the result in terms
of the mapping, the coupling, and the fixation constraints. To evaluate
the mapping, we measure the locally remaining deviation between the
prescribed displacement of the mesh and the actual displacement of the
deformed CAD surface. To evaluate the coupling, we measure the differ-
ence of the displacement and rotation of the master and the slave surface
along all coupling edges. To evaluate the fixation, we locally measure the
displacement of the relevant boundary and the rotational deviation of the
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Table 4.7: Quality indicators evaluated at the deformed channel
geometry - with and without active constraints. i denotes the
index of a single Gauss point. Initial diameter of the channel:

�2×10−2 units.

quality indicator evaluates with constraints no constraints

max
�

‖∆S i −∆Q i ‖2

�

[units] mapping 1.23×10−5 1.19×10−5
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�

∆S M
i −∆SS

i
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ωM
T2 ,i −ω

S
T2 ,i

�

[deg] coupling 1.14×10−2 1.57
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‖∆S i −0‖2

�

[units] fixation 4.83×10−10 5.39×10−6
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∠(t3,i , T3,i )
�

[deg] fixation 2.16×10−5 0.16

mean
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mean
�

ωM
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[deg] coupling 6.95×10−4 0.25

mean
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‖∆S i −0‖2

�

[units] fixation 1.40×10−10 1.74×10−6

mean
�

∠(t3,i , T3,i )
�

[deg] fixation 6.26×10−6 0.12

new surface normal relative to the original surface normal. We compute
all values in the deformed CAD geometry at the relevant Gauss points de-
noted by the index i . To highlight the effect of the constraints, we likewise
consider the case where all constraints are deactivated. The corresponding
values are also summarized in table 4.7. Looking at the values in the table,
one can observe the following:

1. The deformed CAD model is very close to the target geometry (The
maximum deviation resulting from the mapping is three orders be-
low the channel’s initial diameter, the mean deviation even four).

2. Activating the constraints improves the surface quality at the cou-
pled and fixed boundaries significantly. The maximal values for all
deviations drop at least by two orders, the mean values even more.
Especially important in conjunction with a fluid is that the rotational
deviations at coupling edges are minimal, which gives rise to an
overall continuous surface. Also, we preserved the surface normal at
the inlet and outlet (fixed boundary), which is essential for the flow
guidance.

182



4.9 Case studies

Figure 4.33: CAD description of the optimized channel inserted
back into the overall model.

3. From the quality measures, it seems that one obtains an already
acceptable result without constraints. However, considering the pur-
pose of the given part, which is to guide a fluid flow, any artificial
kink must be avoided, and a smooth surface is of utmost importance.
In this context, the rotational deviations in the unconstrained case
are considerable.

4. With or without constraints, the resulting mapping error is compa-
rably low. So, the constraints do not have a negative influence on
the overall deformation.

Having obtained a CAD description of the optimized channel, we can insert
the result back into the overall model (see figure 4.33). Due to the fixed
interface, the part perfectly fits into the model without any post-processing.

In the example above, we only considered the channel, which is charac-
terized by a single open surface. B-Rep morphing is, however, equally
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(a) Initial CAD model. (b) Mesh with optimized shape and corresponding
displacement field (edges are hidden).

Figure 4.34: Discrete geometry of the shape-optimized valve
housing to be converted into a CAD model.

Table 4.8: Details on the initial CAD model (not refined) and the
mesh in case of the valve housing.

CAD model (NURBS-based) mesh

# patches degrees trimming # control points # elements # nodes

66 1−3 yes 2 160 155 272 813 142

applicable to general B-Rep models, which also includes surfaces that de-
fine a volume. To demonstrate this capability, consider the results of the
coupled optimization of the entire valve housing as presented in section
3.8.2. The optimized design, given as mesh with displacement field, is de-
picted in figure 4.34(b). The CAD model of the original design is shown in
figure 4.34(a). Details on both the CAD model and the mesh are compiled
in table 4.8.

We can obtain a CAD description of the optimized housing design by
refining the initial CAD model and applying B-Rep morphing with active
regularization and constraints. The mapped displacement is visualized
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|DISP| [units]
0.008610

(a) Mapped displacement field visualized on de-
formed CAD model.

(b) Deformed CAD model (iso view).

(c) Side view of CAD geometry before (left) and after the deformation (right)

Figure 4.35: Results of B-Rep morphing in case of the valve
housing (The knot lines in figure 4.35(b) and 4.35(c) visualize the

refinement).

on the deformed CAD model in figure 4.35(a). Comparing the mapped
displacements to the prescribed displacements in the mesh, we can see
that the results are well-matching. The corresponding deformation of
the CAD model is presented in figure 4.35(b) and 4.35(c). Note herein the
significant shape changes which resemble the optimized discrete geometry
in figure 3.28.

185



4 B-Rep morphing

4.9.2 Sheet metal part with optimized bead pattern

In this section, a NURBS-based CAD model of a sheet metal part shall be
adapted to match the result of a bead optimization. In doing so, we set a
particular focus on the combination of constraints and surface smoothing.
The structure of interest represents a part of a car door and is shown in
figure 4.36(a) (blue area).

For the highlighted part, a bead optimization was performed. The bead
optimization was based on Vertex Morphing and operated directly on
the finite element mesh used for the numerical analysis of the car door.
The objective was to maximize the first three eigenfrequencies for a given
set of support conditions. To this end, the three eigenfrequencies were
combined to a single compromise function. A maximum bead height of 7.5
units was specified. The modified finite element mesh together with the
resulting shape update is depicted in figure 4.36(b). The new shape yields
an approximately 30% increased objective value and performs significantly
better than the original design.

The bead pattern arises from a complex shape update with detailed ge-
ometric features and beads forming out on both sides of the structure.
See figure 4.37 for a close-up on the bead pattern. Note from the close-up
that some boundaries do not show any displacement. Those boundaries
represent the interface to the surrounding model of the car door. Accord-
ingly, they were fixed in the optimization. The goal is to reproduce a CAD
description of the new bead pattern while ensuring a matching interface
to the surrounding assembly.

The departure point is the displacement field from the finite element mesh,
which shall be mapped to the initial CAD model using B-Rep morphing
with relevant constraints. A particular challenge in this example is that
the CAD model consists of multiple patches with heavily trimmed and
sometimes minimal surfaces. If we do not want to change the CAD model’s
topology, we have to use this patchwork of surfaces to reproduce the de-
tailed and continuous bead pattern.

Remember that for B-Rep morphing, integration points have to be pro-
jected from the CAD domain onto the finite element mesh to evaluate
the local displacement field. So, a finite element mesh is required for the
entire CAD surface to be modified. In turn, the finite element mesh may
span a much larger domain without consequences on the B-Rep morphing.
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(3)

(1)

(2)

(4)

(a) Initial CAD model: (1) Knot lines, (2) free edges, (3) coupling edges, (4) fixed edges.

DISP [units]

7.5

0

(b) Finite element mesh with visualized shape update (displacement field).

Figure 4.36: CAD model of a part of a car door and
corresponding results from a bead optimization using Vertex

Morphing.
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Figure 4.37: Close up of result from bead optimization.

Table 4.9: Details on the initial CAD model (not refined) and the
finite element mesh in case of the sheet metal part.

CAD model (NURBS-based) mesh

# patches degrees trimming # control points # elements # nodes

40 1−3 yes 1 488 158 136 81 061

Consequently, we do not need to cut the car door’s finite element mesh to
only the optimized area, but we can use the full mesh as is. This feature fa-
cilitates the practical application of B-Rep morphing significantly. Details
on the finite element mesh and the initial CAD model (only the domain
subjected to optimization) are summarized in table 4.9.

Before applying B-Rep morphing, the original CAD model must be refined
first. The refinement is done according to the method described in section
4.8. We choose a maximal element size of hmax = 4 units and a target degree
of p = q = 3. The refined CAD model is presented in figure 4.38.

We introduce coupling constraints (rotation and displacement) at all inter-
nal edges to preserve the surface continuity as much as possible. Moreover,
we include fixation constraints (only displacement) to suppress any de-
formation of the edges that interface to the surrounding assembly. The
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Figure 4.38: Refined CAD model of the sheet metal part.

fixation ensures that we can readily reinsert the modified CAD model into
the car door’s overall model. Indeed, the finite element mesh already in-
dicates zero displacements exactly on these edges, as this condition was
already included in the optimization. However, due to the nature of the
present least-squares method, deviations may still appear depending on
the CAD model’s refinement. In any case, the fixation constraints prioritize
the fixed boundary over the mapping requirements. Edges that are not
connected to the remaining car door are left free. Figure 4.36(a) indicates
the different types of edges.

Additional to the previous constraints, we applyβ -regularization to control
the problem conditioning. As shown later, this case suffers from wrinkles in
the resulting CAD geometry and therefore requires surface smoothing. In
order to prevent this wrinkling, we make use ofα-regularization or stiffness-
based smoothing. The problem size resulting from the refinement and the
introduction of the previous constraints is summarized in table 4.10.

The relevant penalty factors and weights are specified in table 4.11. The
values were obtained through a systematic parameter study starting from
the recommendations given in the relevant sections above. Note in the
table that there are two factors for α and γ. Both refer to different test
cases later. Also worth emphasizing is that in this section, almost all of
the previously introduced element types come together, highlighting the
flexibility of the proposed B-Rep morphing.
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Table 4.10: B-Rep morphing applied to the sheet metal part:
Problem size after refinement in case of (1) no α-regularization or
stiffness-based smoothing, (2) active α-regularization, (3) active

stiffness-based smoothing.

# control points 18 379

# unknowns case(1) 31 599

# unknowns case(2) 55 137

# unknowns case(3) 31 599

# elements case (1) 9 685

# elements case (2) 28 064

# elements case (3) 16 066

Table 4.11: Settings for B-Rep morphing in case of the sheet
metal part.

α β pdisp prot pfix,disp pfix,norm γ

0 or 5 10−8 103 104 103 - 0 or 500

Figure 4.39 visualizes the different elements, which result from the for-
mulation of the mapping problem. The latter gives an impression of the
finite element approach used in this thesis. Note from the figure that all
elements, except the point elements from the α-regularization, lay inside
the trimmed domain. In contrast to that,α-regularization affects the entire
patches, leading to point elements outside the trimmed domain. In the
figure, those elements reveal the trimming within the single patches. Note
in this context that α-regularization always includes all control points in
the problem formulation. If it is not applied, only those control points are
relevant that affect the visible surface. The problem size differs accordingly.

Based on the settings specified above, we apply B-Rep morphing to map
the displacement field from the finite element mesh to the CAD model.
Figure 4.40(b) shows the results for the case of α= γ= 0. When comparing
the mapped displacement field to the input in figure 4.40(a), we observe a
good qualitative agreement. However, looking at the deformed CAD model,
a close-up is presented in figure 4.41(a), one finds that clear wrinkles form
out. The wrinkles destroy the initially high surface quality.
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Figure 4.39: Different types of elements in case of the sheet
metal part: from the mapping requirements (grey), the coupling

constraints (orange), the fixation constraints (blue), and the
α-regularization (black). Elements from the stiffness-based

smoothing coincide with the mapping elements (grey).

The reason for these wrinkles is twofold. First, the refinement of the CAD
model, which is necessary to reproduce the local beads in the first place,
causes the discretization of the input mesh to become visible in the result.
Second, there are control points at the trimmed boundaries that only have
little effect on the visible surface and hence show an uncontrolled move-
ment. The latter leads to abrupt surface changes in the transition from the
visible to the invisible domain. As a result, the rectangular parameter grids
of the NURBS surfaces induce wrinkles. The effect was already investigated
in section 4.5.2. Figure 4.41(a) visualizes the control points for selected
patches which clearly shows the uncontrolled movement. Earlier in this
thesis, we introduced α-regularization and the stiffness-based smoothing
to deal with such wrinkling. Their impact, in this case, is presented in the
following.

Rerunning the case with α = 5, the mapped displacement field hardly
changes compared to the case without α-regularization, cf. figures 4.40(c)
and 4.40(b). Only a closer look reveals minor local differences (see, e.g.,
the peak values at the lowermost beads in the figure). In contrast to that,
the surface quality of the deformed CAD model improved substantially,
cf. figure 4.41(b). The improved quality is reached by moving the control
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(a) Input from finite element mesh.
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(b) Result with α= 0,γ= 0.
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(c) Result with α= 5,γ= 0.
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(d) Result with α= 0,γ= 500.

Figure 4.40: Mapped displacement field in case of the sheet
metal part. The result is shown for different settings on the

deformed CAD geometry.

points closer to the deformed CAD surface, which smooths the latter. Also,
a much more practical layout of the control points is obtained (see figure).
Note that the influence of the regularization on the solution of the map-
ping system was chosen to be significantly lower than the influence of the
coupling constraints (pdisp, prot >>α). This choice ensures that, despite the
modified control point movement, G 1-continuity is preserved as much as
possible along the internal edges.

As an alternative to theα-regularization, we, in the following, rerun the case
with active stiffness-based smoothing (γ= 500). In doing so, the whole sur-
face is modeled as a shell since the entire structure suffers from wrinkling.
Rerunning the case with these settings, we find that the mapped displace-
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(a) α= 0,γ= 0

(b) α= 5,γ= 0

(c) α= 0,γ= 500

Figure 4.41: Section of the deformed CAD model in case of the
sheet metal part. The result is shown for different settings. Control

points are visible for selected patches.
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4 B-Rep morphing

ment field hardly differs from the one obtained without any smoothing,
cf. figures 4.40(d) and 4.40(b). However, the surface quality improved sub-
stantially, see figure 4.41(c). In this case, the smoothing originates from
the underlying shell formulation, which tends to minimize shape mod-
ifications that lead to a high bending moment (like wrinkles). Note that
stiffness-based smoothing does not directly affect the control points. So
unlike with the α-regularization, there might still be control points with
an unwanted movement in the vicinity of trimmed boundaries, cf. figure
4.41(c).

In both cases, the smoothing causes a slight local deviation of the deformed
CAD geometry from the input. The deviation is visualized for an isolated
section of the structure in figure 4.42. The figure shows an overlay of the de-
formed finite element mesh (input) and the resulting CAD geometry after
B-Rep morphing using different settings. Comparing the individual cases,
one can see that smoothing always leads to a less accurate map, especially
in regions with big curvature changes. In those regions, both techniques
prioritize a smooth transition over the actual mapping requirements. How-
ever, given that an unconstrained mapping of the displacement field causes
wrinkles, it is reasonable to allow deviations in favor of a practical design.
Generally, though, the smoothing effect has to be balanced against the
required accuracy of the map.

The previous investigations showed that both α-regularization and the
stiffness-based smoothing successfully suppress the wrinkles in this case.
As a result, one obtains a quality CAD model of the bead-optimized struc-
ture. Differences are observed in the quality of the surface and the resulting
layout of the control points. Striking in figure 4.41(b) is that with active α-
regularization, some of the coupling edges are visible in the deformed CAD
model (arrows in the figure). This observation makes sense as the included
rotation coupling at best preserves tangential continuity across coupling
edges. Compared to that, it is striking that in the case of stiffness-based
smoothing, the internal edges are entirely invisible, indicating a much
better surface quality. The reason for this is not yet thoroughly understood.
However, it is assumed that this behavior is a consequence of the chosen
shell formulation in the stiffness-based smoothing.

An overall best design is obtained when activating both α-regularization
with a small penalty factor of α= 10−3 and stiffness-based smoothing with
γ= 500. The result, for the most part, corresponds to the case with only
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(1)

(3)

(2)

Figure 4.42: Deviations of the deformed CAD geometry (grey)
from the deformed finite element mesh (blue) due to smoothing:
(1) α= 0,γ= 0 (no smoothing), (2) α= 5, γ= 0 (3) α= 0, γ= 500.

stiffness-based smoothing. Unlike in the latter case, however, the small
value for α ensures a practical layout of the control points with smooth
transitions between the visible and trimmed domain and without uncon-
trolled outliers. Hence, one obtains a design, which has a smooth surface,
reproduces the deformed finite element mesh sufficiently and contains a
practical layout of the control points.

The overall best design can be finally inserted back into the complete
model assembly in place of the old part (see figure 4.43). Since we fixed
the interfaces by constraints, a gapless replacement is possible without
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any post-processing. As a result, we obtain a quality CAD model of the
entire sheet metal part. Figure 4.43(b) highlights the quality of the new
design. The figure shows the new design’s reflection pattern, together
with the control points of some selected patches. Note that no kinks or
internal edges are visible along the surface, which indicates a continuous
geometry and results from the coupling constraints. Note also that the
control points follow a regular distribution close to the underlying surface,
which is advantageous for further steps in the design process.

From the investigations in this section, one can conclude:

• B-Rep morphing allows us to seamlessly integrate the result of any
CAD-free shape optimization into a computer-aided design process.
This feature is handy if one wants to exploit the advantages of grid-
based shape optimization but needs to deliver a CAD description
of the final design. It also provides the possibility for a CAD model
if a CAD-free shape optimization is the only option because the
definition of an adequate CAD parametric is challenging or even
impossible. In this context, note that it would be troublesome to
come up with a CAD parametric for the sheet metal part, allowing
similar optimization results - especially a priori, so not knowing the
presented results.

• With B-Rep morphing, it is possible to obtain quality CAD models
even with highly trimmed multi-patch surfaces onto which an intri-
cate free-form pattern shall be mapped.

• All regularization terms and constraints may be successfully com-
bined as needed by merely choosing the corresponding weights and
penalty factors.

• The choice of the weights and penalty factors typically requires a
parameter study and, depending on the case, may become a tedious
balancing act. At the same time, there is no guarantee that an ac-
ceptable solution is possible for any selection.

At the end of this section, two more remarks:
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(a) Seamless integration of optimized part into the original CAD model.

(b) Resulting surface quality (overall reflection pattern and control points for
selected patches).

Figure 4.43: Result of B-Rep morphing in case of the sheet metal
part (α= 10−3, γ= 500).
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Remark 1

In this section, we used α-regularization and stiffness-based smoothing to
smooth the deformed CAD geometry. Note, however, that we may realize a
similar smoothing by playing with the degrees of freedom (the refinement)
of the CAD model, e.g., by choosing a coarser knot refinement or lower
polynomial degrees. Mapping from a rather fine finite element mesh onto
a CAD geometry with only reduced degrees of freedom would naturally
smooth the displacement field. Such an approach is problematic, though,
because:

• Varying the knot refinement and the polynomial degrees to obtain
proper smoothing is much more complicated than just choosing a
factor α or γ.

• Reducing the degrees of freedom in the CAD model is limited be-
cause enough freedom must be left to represent the input deforma-
tion in the first place.

• The input CAD model might already be refined such that a coarsen-
ing would change the underlying geometry.

Surface smoothing by variation of the refinement is hence not further
considered in this work.

Remark 2

When performing a smoothing and accepting a deviation from the input,
it remains the question of how the deviations influence the optimization
results. In the presented case, for α = 10−3 and γ = 500, the impact on
the objective value is negligible as the overall layout of the bead pattern
did not change. In general, though, the impact of smoothing on the opti-
mization results strongly depends on the robustness of the optimal design,
meaning how sensitive the objective function reacts to modifications in
the geometry.

4.9.3 Deformed car door

In this section, we consider a CAD model representing the interior sheet
metal structure of a car door (see figure 4.44). In addition to the CAD
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Table 4.12: Details on the initial CAD model (not refined) and
the finite element mesh in case of the car door.

CAD model (NURBS-based) mesh

# patches degrees trimming # control points # elements # nodes

851 1−5 yes 17 308 158 136 81 061

model, we are also given the corresponding finite element mesh used for
structural analysis. On the finite element mesh, a displacement field is
specified, see figure 4.45(a). The displacement itself represents a simple
stretching and bending of the structure starting from the bottom left and
becoming more and more pronounced up to the top right. The goal is
to map this displacement field from the finite element mesh to the CAD
model using B-Rep morphing so that a CAD description of the deformed
structure is available.

Unlike the previous cases, the displacement field does not stem from an
optimization but is chosen artificially. Its pattern is inspired by patterns
that appear in deep-drawing simulation, where CAD models often need to
be updated based on the analyzed spring-back. The case shall demonstrate
that B-Rep morphing may be useful in various application cases.

A particular challenge with this model is its complexity. It includes almost a
thousand fully trimmed patches that comprise both local details and global
free-form areas. Other problematic properties are: the included trimming
sometimes leads to overly small surface segments, geometric features often
involve complex surface joins, the parameterization between individual
patches is not matching, and there are chamfers as well as various holes
and cutouts (inner loops). Refer to figure 4.44 for impressions.

Table 4.12 provides some details on the CAD model and the finite element
mesh.

In the following, we apply B-Rep morphing to update the original CAD
model such that it matches the deformed finite element mesh. As the
displacement causes a comparatively global shape update, no knot refine-
ment of the CAD model is necessary. Instead, the polynomial degrees of
all patches are consistently elevated to p = q = 5. Coupling constraints are
introduced at all internal edges to maintain the original surface continuity
as much as possible. Regularization is activated to control the problem
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4 B-Rep morphing

(a) Overall structure. (b) Detail showing problematic trims (blue sur-
face) and structural details.

(c) Detail showing overly small surfaces (blue) and
free-form areas.

(d) Detail showing complex surface joins.

Figure 4.44: CAD geometry of interior sheet metal structure of a
car door. Edges are visible, knot lines are hidden.
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|DISP| [units]

260

49

(a) Input from the finite element mesh (the
mesh is hidden to avoid clutter).

|DISP| [units]

260

49

(b) Mapped displacement field visualized on
the deformed CAD model (surfaces edges are
visible, knot lines are hidden).

Figure 4.45: Displacement field as given by the finite element
mesh and as obtained after B-Rep morphing. As a reference, the

overall height of the structure is ≈ 730 units.

Table 4.13: Settings for B-Rep morphing in case of the car door.

α β pdisp prot pfix,disp pfix,norm γ

10−6 10−10 103 104 - - -

conditioning and to obtain a beneficial layout of the control points. All
relevant penalty factors are found by a parameter study starting from the
recommendations given in this thesis. The final choice is summarized in
table 4.13.

Table 4.14 specifies the resulting problem size. The table states the overall
number of control points, the resulting number of unknowns, and all ele-
ments generated through the mapping requirements, the regularization,
and the coupling constraints.
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Table 4.14: Problem size after degree elevation in case of the car
door.

# control points # unknowns # elements

37 425 112 275 45 507

Based on the setup described above, we apply B-Rep morphing to obtain a
CAD model that matches the input displacement. Figure 4.45(b) presents
the result of the displacement mapping. Comparing this result to the input
from the finite element mesh in figure 4.45(a), one can observe an excellent
agreement, which qualitatively proves a successful map. The resulting
deformation of the CAD model is presented in figure 4.46(a). Herein, one
can observe that the model undergoes a significant deformation consisting
of a global stretching and bending. This deformation corresponds to the
input from the finite element mesh. When overlaying the deformed CAD
geometry with the deformed finite element mesh, it becomes obvious that
they perfectly match (see the clipped view in figure 4.46(b)).

Despite the large deformation, both pictures do not show any visible de-
fects at first glance, which indicates that the original surface quality is
preserved. Investigating further on some geometric details, see figure 4.47,
one finds that the resulting geometry practically adopts the quality from
the initial design. Figure 4.47(a), for example, presents a watertight model
with smooth surfaces. Moreover, figure 4.47(b) shows that structural fea-
tures, such as chamfers, holes, or other design elements, are well preserved.
Also, the complex surface joins are not generating problems so that they
are invisible when not highlighting the coupling edges.

Neglecting the deformation and only concentrating on the geometry itself,
the deformed CAD model can hardly be distinguished from the original
one, highlighting the quality of the result. Only at a few spots one ob-
serves wrinkling induced by a locally overestimated penalty factor in the
coupling constraints. The by far most pronounced wrinkles are shown in
figure 4.47(c). Such a visible defect is typically not acceptable and would
require further parameter studies or a locally varying definition of the
penalty factor. Both might become difficult, if not impossible, in such a
complex model. The search for a finely tuned set of penalty factors is a
clear disadvantage of B-Rep morphing in its current form. However, this
disadvantage is not necessarily a problem because instead of a tedious
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(a) Deformed CAD model vs. original model (transparent). (b) Overlay of deformed mesh (blue) &
the deformed CAD model (grey / black)
clipped in the middle of the structure.

Figure 4.46: Resulting CAD model after applying B-Rep
morphing in case of the car door.

parameter study, one could also fix local defects manually. Given the gener-
ally well-matching result, such a local fix is simple and quickly done using
standard features in any CAD software. Figure 4.47(d) shows the result of
such a quick fix in the case of the car door. In the figure, blue indicates
the area where affected surfaces were deleted and recreated based on the
surrounding edges.

From all the results discussed above, one can conclude:

• B-Rep morphing may be successfully applied to most complex CAD
models.
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(a) Detail showing a watertight and smooth sur-
face.

(b) Detail showing the preservation of geometric
features.

(c) Detail showing a visible defect. (d) Manual fix of the visible defect.

Figure 4.47: Details of deformed CAD geometry after B-Rep
morphing in case of the car door.

• B-Rep morphing is not limited to an optimization setting but is also
useful in other applications.

Remark

The application of B-Rep morphing to many more practical CAD models
like in this section revealed the following versatile characteristics:

B-Rep morphing paired with coupling constraints preserves the original
surface quality as much as possible. Meaning, e.g., if the original surface is
watertight, the deformed CAD model also tends to be watertight. Contrar-
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ily, it is irrelevant for the method if the original model is a "dirty" model
with badly closed surfaces or gaps. If there are gaps, the corresponding
edges appear as regular edges in the CAD model instead of coupling edges.
That is, they are ignored in the formulation of coupling constraints. As
a result, the deformed CAD model will indeed contain gaps in the same
places. Nevertheless, an overall successful deformation of the CAD model
is possible.

Also, B-Rep morphing is not sensitive w.r.t. overlapping surfaces. That is,
if single faces in the CAD model are partly or entirely overlapping, they
will be all updated consistently. A consistent update is possible because
integration points are generated for every face in the model individually
and then assigned with the corresponding displacement in the finite ele-
ment mesh. If two faces share a common domain over the finite element
mesh, their integration points receive the same update information. As a
result, there will still be an overlap in the deformed CAD model, but the
overlapping surfaces will likewise approximate the displacement.

Both of the above characteristics greatly add to the robustness of B-Rep
morphing when dealing with practical or even "dirty" CAD models.
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5
CONCLUSIONS

This thesis presented a method for the grid-based multidisciplinary shape
optimization of structures with internal flow and a method to translate
optimization results from a grid-based shape optimization back into a
CAD model. The thesis included two main parts. The first part covered the
optimization, the second part the integration into CAD.

In the first part, we first prepared Vertex Morphing for an application
in MDO. Therefore, we extended the formulation of Vertex Morphing to
enable the control of volume meshes and the simultaneous control of mul-
tiple meshes. A central characteristic of the extended formulation is that it
enables a consistent parameterization across multiple non-matching grids.
Consistent means that the individual grids follow a consistent description
of the underlying geometry and coupled boundaries do not drift apart. This
characteristic refutes a widespread assumption that grid-based parame-
terization was not suited for MDO because of the inherent inconsistency
with multiple grids.

In the presented MDO, Vertex Morphing took over three typically sep-
arate tasks: the control of the shape, the adaption of the volume mesh
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of the structure, and the mapping of shape updates or sensitivities be-
tween the physical domains. In doing so, the parameterization required
no explicit modeling. Instead, it was entirely based on existing meshes and
solely relied on a filter radius definition. Generally, Vertex Morphing in
the extended form enables a rapid setup of multidisciplinary optimization
problems.

Using Vertex Morphing to control volume meshes represents a novelty in
literature. In the discussed MDO, we used Vertex Morphing to avoid an
extra morphing of the volume mesh of the structure as well as the corre-
sponding sensitivity analysis. The results showed that Vertex Morphing
can successfully replace a separate mesh motion strategy. However, more
thorough testing is required to evaluate the resulting mesh quality com-
pared to dedicated mesh motion strategies. Nevertheless, we saw that
Vertex Morphing is suitable for the control of volume meshes.

Based on the extended Vertex Morphing, we developed a method for grid-
based shape optimization of structures with internal flow. The multidisci-
plinary method allows an optimization of the flow, for example, in terms
of pressure loss, while considering stress constraints from the surrounding
structure. In doing so, the method considers a one-way fluid-structure
interaction. Moreover, it exploits the advantages of Vertex Morphing, i.e.,
quick setup of the optimization problem and high optimization potential.

As an integral part of the method, this thesis introduced a custom sen-
sitivity analysis. The sensitivity analysis relies on a coupled adjoint ap-
proach and follows a partitioned solution strategy. We customized it to
the present one-way coupling such that it does not need a computation of
cross-derivatives. Instead, it requires the adjoint analysis of an auxiliary
force functional. As a result, established single-disciplinary adjoint solvers
can be used to realize the coupled sensitivity analysis. The latter is a central
characteristic of the suggested sensitivity analysis and greatly simplifies its
practical application. Another central characteristic is that it was derived
independently of the actual formulation of the objective or the constraint.
We only assumed specific dependencies on the given state variables and
meshes, see (3.47), (3.48), (3.52) and (3.53). Therefore, the presented opti-
mization method applies equally to any other set of response functions
with the same properties.

We verified the sensitivity analysis with a 2D and a 3D test case. The values
matched the reference values calculated by finite differences. In some
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cases, we observed minor deviations. They were traced back to the in-
herent approximation errors in the reference values and an intentionally
neglected contribution from the force mapping.

Regarding the impact of the physical coupling on the sensitivity analysis,
we saw that neglecting the coupling may considerably alter the sensitiv-
ity information. There is a high probability that the resulting deviation
will render the sensitivity information useless. The actual influence is
case-dependent and determined by the pressure level and the material
characteristics of the structure. Therefore, one must carefully examine in
the individual case whether the coupling is negligible in order to avoid
critical errors.

We tested the overall optimization process on a valve housing with internal
flow. The loading of the housing only originated from the interaction with
the internal flow. The objective was to minimize the pressure loss in the
flow without increasing the stress level in the surrounding structure. With
the proposed method, we could find a feasible design with some 16%
reduced pressure loss. The improvement is remarkable, considering that
the two response functions were strongly conflicting and considering that
we did not spend any effort on developing a specific parameterization. The
results show that the overall method may be useful for the rapid design
optimization of structures with internal flow.

The second part of this thesis covered the development of B-Rep mor-
phing, i.e., a method to deform an existing CAD model to match the re-
sults of a simulated deformation (shape change). The method relies on a
mapping operation that maps a displacement field from a mesh onto a
corresponding CAD model. We extended this mapping operation using
several constraints and regularization techniques to account for problems
in conjunction with practical CAD models.

Two types of constraints were introduced, coupling constraints and design
constraints. Coupling constraints were used to avoid a deterioration of the
geometric continuity when deforming the CAD model. They showed to be
essential in case of significant shape changes or if the model contains multi-
patch surfaces or trimming. Design constraints were introduced to enable
the enforcement of independent design requirements. The consideration
of both types of constraints is a crucial feature of B-Rep morphing.
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Regularization was included to improve the problem conditioning as well
as the solution quality. A combination of two different techniques was
applied. From a practical perspective, the combined approach avoids
an unbounded motion of the control points and keeps them as close to
the design surface as possible. We could see that these characteristics
improve the surface smoothness and facilitate the handling of the CAD
model downstream the design process, particularly in trimmed multi-
patch models.

Besides the already mentioned regularization, we extended B-Rep mor-
phing by an optional surface smoothing based on thin shell theory. This
stiffness-based smoothing represents an effective means to suppress wrin-
kling. Wrinkling may occur if individual NURBS patches are highly refined
or due to the inherent discrepancy between the geometry description in a
mesh and a CAD model. The stiffness-based smoothing is especially useful
whenever the other regularization techniques do not deliver an acceptable
result. Examples showed that the combination of stiffness-based smooth-
ing and coupling constraints enables a smoothing of the surface without
scarifying the geometric continuity between individual patches.

Independent of the constraints, we identified a proper refinement of the
CAD model as an essential prerequisite to match a simulated displace-
ment. To obtain a proper refinement, we herein used a semi-automatic
refinement strategy, which leads to a uniform distribution of knots. The ap-
proach showed to be easily applicable and handy. Nevertheless, it requires
manual input and tends to generate an overrefined model. Established
techniques from CAD may be used to automatize this step further or to
make it more adaptive.

The thesis demonstrated the capabilities of B-Rep morphing in various
examples. The results in all cases showed a good agreement between the
deformed CAD model and the deformed mesh. One could see that the con-
strained mapping in conjunction with a proper refinement of the original
CAD model leads to quality NURBS surfaces even with substantial shape
changes. Moreover, we found that smoothing, regularization, and different
constraints might be combined as required to obtain a usable CAD model.

The examples also revealed a still existing limitation of B-Rep morphing.
Currently, the application of constraints and regularization requires a man-
ual selection of penalty or weighting factors. Indeed, recommendations are
given in either case, and the results are convincing once proper factors are
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identified. However, the necessary parameter study may become trouble-
some. Follow-up research should investigate strategies to avoid manual
parameter selection. Nevertheless, the application of B-Rep morphing
in the example of a car door demonstrated that the presented method is
mature enough to be used with most complex CAD models.

With B-Rep morphing, it is possible to convert the result of a grid-based
shape optimization into a CAD model. Thus, the method allows the seam-
less integration of Vertex Morphing, or any other grid-based shape opti-
mization, into a CAD workflow. That also means, with B-Rep morphing, it
is no longer necessary to use a CAD parametric for shape optimization just
because one requires a CAD description of the final design. Instead, one
can now test alternative parameterization strategies and still get a CAD
model of the final design.

Finally, it is worth noting that, even though B-Rep morphing was developed
with optimization in mind, it does not include any specific assumption in
this regard. One can apply the method in any case where a simulated defor-
mation must be transferred to an existing CAD model. This characteristic
opens the door for a broad field of applications.
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FURTHER DERIVATIONS AND EXAMPLES

A.1 Partial derivative of the von Mises stress w.r.t. the
state variables of the structure

Let us assume a structure with the state variables u. This section presents
an approach to analytically compute ∂ σv /∂ u, whereasσv represents the
equivalent von Mises stress corresponding to a general stress state σ.

In the finite element method, the general stress state of a structure is com-
puted in a post-processing step using the material matrix D , the shape
function derivatives B and the state variables u. We assume that the mate-
rial matrix does not depend on u. In Voigt notation, the relation reads:

σ =
�

σx ,σy ,σz ,τx y ,τx z ,τy z

�T
= D Bu (A.1)

Based on σ, the equivalent von Mises stress is computed as follows:
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σv =
q

σ2
x +σ2

y +σ2
z −σxσy −σxσz −σyσz +3(τ2

x y +τ2
x z +τ2

y z )

σv =
Æ

f (σ)
(A.2)

Deriving (A.2) w.r.t. a state variable ui , we obtain:

∂ σv

∂ ui
=

�

∂ σx

∂ ui
2σx + . . .−

�

∂ σx

∂ ui
σy +

∂ σy

∂ ui
σx

�

− . . .

+
∂ τx y

∂ ui
6τx y + . . .

�

1

2
p

f (σ)

(A.3)

From a derivation of (A.1) w.r.t. ui , we find that all partial derivatives in
(A.3) can be computed analytically and in a single operation by evaluating
(A.1) for a unit state, in which u contains a 1 at the position of ui and zeros
elsewhere. Assuming this unit state, an evaluation of (A.1) will not deliver
the actual stresses, but the searched partial derivatives, ∂ σ/∂ ui . In doing
so, no extra implementation is necessary to compute ∂ σ/∂ ui . Instead,
one only needs to call the stress evaluation routine with a modified state
variable as input.

Having computed ∂ σ/∂ ui analytically, we can compute ∂ σv /∂ ui accord-
ing to (A.3). In doing so, we again use the actual stress state. Computing
(A.3) for all ui in u, one finally obtains ∂ σv /∂ u.

Note, that the derivation presented above holds for all materials that obey
Hook’s law and where D 6= D (u).

A.2 B-Rep morphing applied to a racing car

Without going into detail, this section shows another application example
of B-Rep morphing. The example considers a racing car whose chassis was
shape optimized using Vertex Morphing. The CAD model of the racing
car is visualized in figure A.1. In the figure, the part of the chassis, which
was optimized, is highlighted in orange. The optimized part belongs to the
car’s air guidance.
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Figure A.1: CAD model of a racing car.

The optimized part of the chassis is presented in figure A.2. The corre-
sponding section of the CAD model consists of 66 trimmed surfaces with
each a different parameterization (visible by the non-matching knot-lines
in the figure). The individual surfaces are joined along the internal edges
so that the model is watertight. Moreover, there are many internal edges
where the surface must satisfy at least G 1-continuity.

Based on the CAD model, a mesh was derived for the numerical simulation.
The grid-based shape optimization caused this mesh to deform. Figure A.2
shows the surface mesh after the shape optimization. The original mesh
matches the original geometry of the chassis. The deformation (shape
change) of the mesh is given as a displacement field defined over the origi-
nal mesh. The shown surface mesh consists of around 32284 nodes and
63 307 triangles. As one can see in the figure, the optimization introduces
significant shape changes.
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Figure A.2: Shape optimized part of the chassis. Left: CAD model
of the relevant part (thick lines indicate edges, thin lines the knots).
Right: Corresponding surface mesh with simulated shape change.

The shape optimization was based on Vertex Morphing. So, the optimiza-
tion results are given as a surface mesh with an associated displacement
field. The goal is now to transfer this optimization result back into the given
CAD model so that, eventually, we obtain a CAD model of the optimized
design. Therefore we use B-Rep morphing.

In the morphing, we only consider the chassis part, which is subject to
shape changes (see figure A.2). Accordingly, we extract the relevant faces of
interest from the overall CAD model, map the optimization results from the
mesh onto the extracted section, and finally, reinsert the adapted section
into the overall model.

To preserve the surface quality as much as possible, we add coupling con-
straints at all internal edges. Moreover, to ensure that the result seamlessly
fits into the overall model, we use fixation constraints and suppress any
deformation at all outer edges interfacing with the surrounding car. Both
constraints are indicated in figure A.2. We apply α- and β-regularization
to improve the problem conditioning and obtain a practical layout of the
control points. To properly represent the new shape in the first place, we
refine the given CAD model using the herein presented semi-automatic re-
finement strategy. The result of B-Rep morphing with the specified settings
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Figure A.3: Results of B-Rep morphing. Left: refined CAD model
deformed by B-Rep morphing. Right: Superposition of the
deformed CAD model (blue) and the input mesh from the

grid-based shape optimization (grey).

is presented in figure A.3.

Note from the result that the CAD model was significantly deformed. As can
be seen from the right side of figure A.3, this deformation well matches the
input from the grid-based shape optimization. Looking closer at the results,
one can also see that there are no gaps, and the surface remains smooth
in areas that were already smooth before. This result is a consequence of
the specified coupling constraints. Overall, the figure shows that B-Rep
morphing allowed a successful conversion of the optimization results to a
NURBS-based CAD model.

Given a CAD description of the optimized part, we can reinsert it in the
overall racing car model. The result is shown in the figures A.4 and A.5.
Since we used fixation constraints, the new design integrates seamlessly
into the overall model. As a result, we can readily join all faces describing
the car’s chassis to a single surface.

The results in this section show that B-Rep morphing allows the seam-
less integration of Vertex Morphing (or any grid-based shape optimiza-
tion) into a CAD process. Note that Vertex Morphing allows setting up
a shape optimization problem quickly, and B-Rep morphing replaces a
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(a) Detail view

(b) Back view

Figure A.4: Reinserted model section with optimized geometry.
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Figure A.5: CAD model of a racing car with shape-optimized
chassis.

costly manual conversion of the optimization results into a CAD model.
So, combining both methods, one can realize a rapid optimization-driven
and CAD-integrated design process.
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