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Abstract—This paper is dedicated to developing an online colli-
sion detection and identification scheme for human-collaborative
robots. The scheme is composed of a signal classifier and an online
diagnosor, which monitors the sensory signals of the robot system,
detects the occurrence of a physical human-robot interaction and
identifies its type within a short period. In the beginning, we
conduct an experiment to construct a data set that contains the
segmented physical interaction signals with ground truth. Then,
we develop the signal classifier on the data set with the paradigm
of supervised learning. To adapt the classifier to the online
application with requirements on response time, an auxiliary
online diagnosor is designed using Bayesian decision theory. The
diagnosor provides not only a collision identification result but
also a confidence index which represents the reliability of the
result. Compared to the previous works, the proposed scheme
ensures rapid and accurate collision detection and identification
even in the early stage of a physical interaction. As a result, safety

mechanisms can be triggered before further injuries are caused,
which is quite valuable and important towards a safe human-
robot collaboration. In the end, the proposed scheme is validated
on a robot manipulator and applied to a demonstration task with
collision reaction strategies. The experimental results reveal that
the collisions are detected and classified within 20 ms with an
overall accuracy of 99.6%, which confirms the applicability of
the scheme to collaborative robots in practice.

Note to Practitioners—This paper is intended to provide a novel
online collision event handling scheme for robots in industrial
environments. This scheme is designed to quickly and accurately
detect an accidental collision and distinguish it from the inten-

tional human-robot interaction. The method takes the raw signals
from external torque sensors and provides a collision diagnosis
result with a reliability index. The simple structure makes it
easy to be implemented as a regular fault monitoring routine for
collaborative robots. Different from the conventional methods, the
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proposed collision identification scheme in this paper especially
focuses on overcoming the following two challenges in practice:
firstly, to timely and accurately report a collision within its
early stage; secondly, to ensure a high identification accuracy in
a complicated environment, where ubiquitous disturbance and
noise are unneglectable. The experimental validation at the end
of this paper confirms its promising application value in human-
robot collaboration.

Index Terms—collision detection and identification, anomaly
monitoring, human-robot interaction, fault detection and isola-
tion, robot safety, supervised learning, collision event pipeline.

I. INTRODUCTION

S
AFETY is always a critical issue for human-robot col-

laborative tasks, especially when physical human-robot

interaction (pHRI) is demanded [1], [2]. Different types of

pHRI exert various impacts on humans. The intentional con-

tacts desired by the cooperative tasks, such as the human

teaching processes, are usually quite safe. On the contrary, the

accidental collisions, which may lead to unexpected injuries

or damages, are often dangerous to humans. As pointed out

by many surveys on the safety of human-robot collaboration

[1], [3], the accidental collisions are inevitable in pHRI and

should be carefully handled. Especially, the reaction strategy

for the accidental collisions should be distinguished from

the intentional contacts since they tend to cause opposite

consequences, which motivates the research on collision event

handling. In the literature, a typical collision event handling

pipeline usually contains two procedures, namely the pre-

collision and the post-collision ones [4], [5]. The development

of such a pipeline involves various topics, including collision

avoidance [6], [7], collision force estimation [8], [9], collision

detection and identification (CDI) [10], [11] and collision reac-

tion strategy design [12], [13]. These topics are corresponding

to different components in the pipeline.

This paper is specifically concerned with the CDI problem

of robot systems. As part of the post-collision procedure, it is

intended to monitor the sensory signals, detect the occurrence

of pHRI and identify whether it is an accidental collision or

an intentional contact. The results of CDI will be given to the

collision reaction procedures, where the corresponding safe

strategy is enabled to avoid further harms [5]. As claimed

in [5], accidental collisions and intentional contacts possess

distinguishable properties, which are reflected in the features

of the sensory signals. Considering this, one can formulate
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robot CDI as a multi-class classification problem, with col-

lision, contact, and free respectively denoting the accidental

collisions, intentional contacts and the nominal cases where

no pHRI occurs. Then, the main target of CDI becomes to

develop a pHRI signal classifier using a data set that contains

the pHRI waveform. In general, this proposes a classification

problem for time series.

For such a problem, expertise can be found in related work,

which will be discussed in detail in Sec. II. Generally, an im-

portant technique in the classification problem for time series

is the segmentation of raw signals, since classifiers can not

process series with infinite length. In a conventional paradigm

of classifier development, the raw signals are segmented before

predictions are conducted, even for the online applications.

In the context of CDI, the conventional solutions typically

design some detection logic, such as a signal threshold,

to approximately mark the starting instant of a pHRI, and

segment the online signals after observing the entire pHRI

waveform, before producing a prediction result using a trained

classier. As a result, an accurate prediction result can only be

produced when the pHRI almost vanishes. By almost we mean

that the pHRI waveform is contained in the signal segments as

much as a correct identification result can be produced. Such

a method, however, usually leads to a useless result in the

context of safe human-robot collaboration, since a collision or

a contact has already occurred and negative consequences may

have already been caused. Intuitively speaking, a prediction

result of the classifier does not really predict the occurrence

of a collision. The reason for this issue is that the signal values

in the future are not available for the segment at the current

time, due to the causality of online time-series.

Nevertheless, this is a significant issue for safe human-robot

collaboration, since A CDI scheme that can be practically

applied is expected to accurately report the pHRI in its early

stage, definitely before it vanishes, such that potential injuries

can be prevented in advance. Unfortunately, such a valuable

topic has attracted very little attention, probably due to the

following two challenges. Firstly, accurate prediction results

should be produced even when the segmented pHRI waveform

is incomplete. From a general perspective, this introduces

inconsistency between the distribution of the training data and

that of the predicted samples, if the classifier is developed

on the signal segments with complete pHRI waveform. This

indicates that the identification result in the early stage of

a pHRI is very likely to be incorrect. Secondly, an acci-

dental collision is usually referred to as an instantaneous

anomaly [14], which occurs unexpectedly and only lasts for a

short period of time. Thus, it is more difficult to be identified

than the other anomalies that are featured with low bandwidth

and steady changes [15], [16]. The main target of this paper

is to fill these gaps by proposing a novel online CDI scheme

that ensures both high accuracy and fast response.

The remaining content of this paper is organized as follows.

Sec. II summarizes the related work and clarifies the main

contributions of this paper. Sec. III introduces the overall

structure of the scheme and the collection process of the pHRI

data set. The development of two important components of

the scheme, the signal classifier, and the online diagnosor, is

respectively presented in Sec. IV and Sec. V. In section VI,

the proposed CDI scheme is validated on a seven-degree-of-

freedom (DoF) KUKA robot. The decent performance of the

CDI scheme revealed by the experimental validation confirms

its applicability in practice. Finally, section VII concludes the

paper.

II. RELATED WORK

Conventionally, CDI for robot systems has been recognized

as an engineering-oriented problem and is mainly solved

by simple threshold logic or hypothesis testing based meth-

ods [11], [17], where the filter-based techniques are widely

applied [18]. More recent work tends to formulate CDI as a

classification problem for segmented time series. Similar work

can be found in relevant fields, such as speech recognition [19],

snoring identification [20], bird sound recognition [21] and

fault identification of mechatronic systems [22]–[24]. The

common ground of these applications is that the segmented

time series, either acoustic signals or sensory streams, are

expected to be classified as a certain type. In [25], the clas-

sification of time series is generally investigated by applying

various data sets. In [26], a deep neural network is constructed

to detect the system faulty status. In [27], various classifiers

are developed and tested using the recorded signal samples.

Similar work also includes [28], [29], where neural network

is constructed to monitor the grasping slippages and colliding

torques, and [30], [31], where SVM classifiers are developed

to detect external collisions. Based on the mentioned work,

a mature development framework for time series has been

well-formed. However, such a framework is confronted with

challenges when applied to CDI for robot systems with pHRI

tasks, since the prediction results are only available after the

collision vanishes or the entire pHRI waveform is segmented,

which has been explained in Sec. I. Therefore, these methods

are not suitable for human-robot collaboration with high

requirements on human safety.

As alternatives, probabilistic series-models, such as the

Hidden Markov Model (HMM) [32] and the Gaussian Mixture

Model (GMM) [33] are also applied to CDI by exploiting the

dependence properties of time series. In [34], an HMM is

developed to detect exceptional events in an object-alignment

robot task, where the measured torques and their derivatives

are used. The work in [35] also develops an HMM model to

realize a fault detection scheme for a feeding-assistant robot

using multi-sensor signals. In [36], probabilistic support vector

machine is used to detect online anomalies. Nevertheless, these

series models require artificially assigned prior knowledge

on the distributional dependence of the raw signals. In most

practical scenarios, such knowledge is challenging to acquire,

especially in a complicated environment where the distribution

of the disturbance and noise is not treated as Gaussian.

The main contribution of this paper is to develop an online

CDI scheme for safe human-robot collaboration. The major

advantage of this novel scheme over the conventional methods

is to produce fast and accurate CDI in the early stage of

pHRI. Apart from the identification result, it also provides

a confidence index to indicate how much the result can be
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trusted, which benefits the design of a flexible collision han-

dling pipeline in future work. Moreover, the scheme does not

require extra detection logic and any prior knowledge on the

dependence of pHRI signals. Therefore, no heuristic thresholds

or distribution assumptions are needed. Another contribution

of this paper is to provide a pHRI data set with manual labels

specifically for the CDI usage, which is still lacking in the

literature. Different from most of the previous work where the

torque sensors are installed on the end-effectors, the signal data

we used in this paper is from the torque sensors on the robot

joints, which can even detect pHRIs on robot links. On the

other hand, the data set contains more interfering signals due to

coupled mechanical vibrations and strong current noise on the

sensors, which leads to a larger challenge to the development

of the CDI scheme. From another perspective, however, our

work reflects the complicated conditions in practice, which

provides an outcome truly with application values.

III. THE SCHEME OVERVIEW AND DATA COLLECTION

In this section, we introduce the overall structure of the

proposed CDI scheme. To develop this scheme, we conducted

a data collection experiment with manual collisions and con-

tacts to construct a pHRI data set. The data comes from the

segmentation of the external torques that are measured by

shaft-mounted torque sensors installed on the robot joints.

A. Overview of the CDI Scheme

The general structure of the proposed online CDI scheme

and the development flowchart of each component are illus-

trated in Fig. 1. During an online execution, the CDI routine

takes the torque signal τ and segment it recurrently. Then,

the features extracted from the signal segment T are given

to the classifier which produces a prediction result r among

collision, contact and free. Based on a series of prediction

results, the online diagnosor offers a CDI diagnosis result C∗

and a confidence index I. In this framework, no heuristic

threshold values are needed to mark the occurrence time of

the pHRI.

Segmentor

Data collection

Segmentation

Labeling

Signal classifier

Feature extraction

Feature selection

Model validation

Model test

Online diagnosor

Accuracy analysis

Confidence index

Online algorithm

τ T r I, C∗

Fig. 1. The structural overview of the proposed online CDI scheme and the
corresponding development flowcharts, where τ is the measured torque signal,
T is the signal segment, r is the prediction result of the signal classifier, and
C∗, I are respectively the ultimate diagnosis result and its confidence index.

B. Data Collection

To construct the pHRI data set for the development of the

signal classifier, we conduct a collection experiment using a

seven DoF KUKA LWR4+ robot manipulator [37], which is

firmly mounted onto a fixed platform. During the experiment,

different types of physical interaction in various strengths and

directions is manually exerted on the robot end-effector by

seven subjects hired for this experiment, aiming to include

individual uncertainties in the collected data, so as to ensure

the generalization ability of the data set. In the experiment,

accidental collisions are created using a soft hammer with

fast hand speed and tough strength, whilst intentional contacts

are made by gloved hands with compliant forces. A spherical

plastic end-effector is specially designed to bear the contact

forces from arbitrary directions.

Note that the pHRI is exerted during the movement of

the robot, such that the measured signals contain drifts and

noise caused by the joint motions. It is worth mentioning that

the drifts and noise are also affected by the direction of the

joint motion. Considering this, we apply several different robot

trajectories that are assigned with the same starting position

but different ending positions, such that both positive and

negative motion directions are covered for each joint. The

trajectories are designed in the joint space and interpolated

by sinusoidal functions to ensure smooth motion. All these

experiment configurations are intended to ensure a represen-

tative data distribution, which is important to ensure a high

generalization ability to the classifier.

The motion of the robot is controlled by a trajectory tracking

program that implements a continuous reciprocating motion

of the manipulator between the starting position and each

ending position. The program also reads the measured torque

signals and records them as seven-dimensional time-series

with a sampling period of 1ms. During the motion of the

robot, one experimenter exerts an accidental collision or an

intentional contact on the end-effector. At the same time, the

other experimenter notes down the occurrence instant and the

type of the pHRI. To obtain a balanced data set between

collisions and contacts, we try to produce an equal amount

of samples for these two classes.

C. Signal Segmentation and Sample Labeling

After collecting the raw pHRI signals, we conduct segmen-

tation to split the signals into segments with fixed-length. Let

us denote the width of the segments as l and the bias as b,
with the unit of ms. By bias we mean the time period between

the occurrence instant of a pHRI and the ending instant of the

segment, where we have 0 6 b 6 l. In general, l determines

how much signal information is included in the segments,

whilst b adjusts the proportion of the pHRI waveform in the

segment. If the ending instant of the segment represents the

current time, b denotes the period after the occurrence of the

corresponding pHRI. Therefore, the segmentation scheme is

well determined by the two parameters l and b. For the data

set, the segment bias is typically set as b = l, since the torque

values before the pHRIs are irrelevant to the classification.

The determination of segment width l is mainly based on the

engineering experience. Usually, it should be large enough to

contain sufficient information of the pHRI waveform. On the

other hand, an overlarge width may involve irrelevant signals

and lead to poor generalization ability.
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Fig. 2. The waveform of signals (external toques on 7 joints) respectively with classes of collision 2(a), contact 2(b) and free 2(c). The segmented partitions
are marked with colored areas, where b = l = 300 (ms).
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Fig. 3. The spectrum of signal segmetns (external toques on 7 joints) respectively with classes of collision 2(a), contact 2(b) and free 2(c) using FFT.

To determine the value of l, we inspect the waveform of the

pHRI signals presented in Fig. 2. We notice that the average

width of a contact is approximately 400ms, whilst that of a

collision is less than 200ms. This also applies to most of the

recorded pHRI signals. Therefore, we set the segment width as

l = 300(ms), as a balanced result. Then, we label the two types

of segment samples respectively as collision (Fig. 2(a)) and

contact (Fig. 2(b)). The segmented parts of the raw signals are

marked by colored areas in Fig. 2. During the segmentation,

invalid data due to storage damages or unrecognizable pHRI

waveforms are eliminated. As a result, we obtain 6718 colli-

sions and 7346 contacts, which is approximate to a balanced

radio 1:1. We also create signal segments without any pHRI

waveform and label them as free. However, the number of free

samples should not be equal to the other two classes since the

frequency of contact-less cases is usually higher than pHRI.

In practice, both collisions and contacts are positive instances

which will call the corresponding safety mechanism, whilst

frees are negative instances which do not trigger the safety

mechanism. Therefore, a reasonable idea would be to keep a

balance between the free samples and the summary of all pHRI

samples, i.e., a scale ratio 1:1:2 between collision, contact and

free. Therefore, we take the free segments respectively in the

front, rear and middle of the pHRI segments in the raw signals,

and finally obtain 13633 of them.

Until now, a data set containing the pHRI signal segments

is constructed. We randomly shuffle all the samples and split

them into a training set and a test set with the partition ratio

3:1. The training set will be applied to feature engineering and

model selection, whilst the test set will be used to evaluate the

trained model.

IV. DEVELOPMENT OF THE SIGNAL CLASSIFIER

In this section, we develop the signal classifier component in

the CDI scheme. As explained in Sec. II, we do not consider

the probabilistic series-models to avoid prior knowledge on

the distributional dependence of the raw signals. Additionally,

although the end-to-end learning mechanisms, such as the

convolutional neural network (CNN) and recurrent neural

network (RNN), have drawn much attention and made great

achievements in image recognition and model-free planning,

they still suffer from the lack of explainability and high depen-

dence on complex manually designed structures. Therefore,

in this paper, we develop the signal classifier based on the

paradigm of supervised learning, by which we assume that

the samples in the data set are independent of each other.

A. Feature Extraction

To form a feature set that benefits the signal classification,

we consider both the properties of pHRI signals and the

successful experience in previous work [27], [38]. From Fig. 2,

we can conclude that the waveform of collisions (Fig. 2(a)) has
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sharp shapes and fast amplitude changes, while the waveform

of contacts (Fig. 2(b)) changes more gently and lasts for a

longer time. We also investigate the spectrum of the signal

segments in Fig. 2 and shown it in Fig. 3. Compared to the free

sample, the collision and contact possess more components in

all frequency ranges. Especially, the collision shows a large

amplitude in the frequency interval 10 - 20 Hz, whist the con-

tact in 0 - 10 Hz. Therefore, distinguishable properties between

the two classes are found in both time-domain and frequency-

domain. Based on this, we initially extract 18 features in both

domains. Most of these features also have achieved success in

previous work [38].

1) Features in the time domain: The time domain features

are frequently used in the fields like signal processing and

pattern recognition [39], [40]. Since each sample is naturally a

segmented time series T = {τ1, τ2, · · · , τl}, the time-domain

features can be represented as the functions of T . Here, we

mainly select features that are concerned with the amplitude

changes of the signals. First of all, the 1st to 4th order statisti-

cal moments, namely the mean value Mτ , the variance Vτ , the

skewness Sτ and the kurtosis Kτ of samples T are applied to

depict the stochastic properties of the signal segment, where

Mτ = 1
l

∑l
i=1 τi, Kτ = 1

l V
−2
τ

∑l
i=1 (τi −Mτ )

4
− 3, Vτ =

1
l

∑l
i=1 (τi −Mτ )

2
and Sτ = 1

l V
− 3

2

τ
∑l

i=1 (τi −Mτ )
3
. The

median value m̃τ , the extreme range Rτ and the extreme

deviation Dτ of T are also used as supplementary, where

Rτ = maxi |τi| − mini |τi| and Dτ = maxi |τi| − Mτ , for

1 6 i 6 l. Additionally, we propose the energy increasing rate

EI = 1
2 lg(

∑n
i=[n/2] τ

2
i /

∑[n/2]
i=1 τ2i ) to represent the temporal

change of signal energy within a segment, where the ratio is

made between the squared signal sums within the two halves

of the segment. Here, [·] rounds a real number to integer.

2) Features in the frequency domain: The frequency do-

main features are commonly applied to depict the spec-

tral profiles of signals [11], [41], which are mostly calcu-

lated by fast Fourier transformation (FFT). The FFT of a

signal sequence T includes a sampled frequency sequence

F = {f1, f2, · · · , fm} with the frequency sampling interval

fs/m, and the corresponding complex spectrum sequence

S = {S(f1), S(f2), · · · , S(fm)}. The length of the spectrum

sequence m is usually equal to l. The frequency domain

features used in this paper are mainly concerned with the

amplitudes and phase angles of the signal spectrum in dif-

ferent frequency intervals, such as the mean frequency f̄ , the

fundamental frequency f∗ and their corresponding spectral

amplitudes |S(f̄)|, |S(f∗)| and phase angles φ(f̄), φ(f∗),
where | · | : C → R and φ(·) : C → R respectively

denote the amplitudes and phase angles. The mean fre-

quency f̄ is defined as f̄ =
∑m

i=1 fi|S(fi)|/
∑m

i=1 |S(fi)|
and the fundamental frequency f∗ is the frequency point

such that S(f∗) is the spectrum summit. The crest fac-

tor Fcrest, the average signal energy Erms and the sub-

band energy ratio Efc
r are respectively defined as Fcrest =

|S(f∗)|/
√

1
m

∑m
i=1 |S(fi)|

2, Erms =
√

1
m

∑m
i=1 |S(fi)|

2,

Efc
r = 1

2 lg(
∑fs

fi=fc
|S(fi)|

2/
∑fc

fi=0 |S(fi)|
2 for fc =

10, 20Hz. These features are also widely used in [38], [39],

[42] to depict the energy properties of signals. The crest factor

Fcrest, also known as peak-to-average ratio, represents the

significance of the signal peak. The average energy Erms

denotes the average signal power level, and the sub-band

energy ratio Efc
r reflect the relative energy proportion on

the two sides of the sub-band frequency fc. Here, we define

two sub-band energy indexes. The corresponding sub-band

frequencies 10Hz and 20Hz are determined according to the

distinguishable spectral features of collisions and contacts.

In summary, we extract the following features X+ = {Mτ ,

Vτ , Sτ , Kτ , m̄τ , Rτ , Dτ , EI , f∗, |S(f∗)|, φ(f∗), f̄ , |S(f̄)|,
φ(f̄), Fcrest, Erms, E10

r , E20
r }, where X+ denotes a full

feature set. For brevity, we order these features and number

them from #1 to #18. Note that the signals have 7 dimensions

corresponding to the 7 robot joints. Therefore, in total 126

features are generated.

B. Feature Selection

To select the beneficial features for the classification, we use

the Spearman correlation analysis and the Relieff algorithm

to evaluate the 126 features in X+. The former inspects

the dependence between any two features, whilst the latter

calculates weights for the features which are recognized as

their importance to the classification. Features with high

dependence on the others or low importance are eliminated

after the analysis. Note that we only use the data in the training

set during the entire feature selection procedure.

1) dependence Analysis: High dependence among features

brings redundancy to the model training, which potentially

causes a poor generalization ability to the classifier. Therefore,

we analyze the Spearman correlation between the features to

investigate their dependence. The Spearman rank correlation

analysis is an efficient tool to describe the general monotonic

relationship between two stochastic variables, which applies

not only to linear dependence, but also the nonlinear cases.

Given the values of two features X = {X1, X2, · · · , Xm} and

Y = {Y1, Y2, · · · , Ym}, where m is the size of the data set, the

Spearman correlation coefficient ρX,Y is calculated by ρX,Y =
∑m

i=1 (xi − x̄) (yi − ȳ)/
√

∑m
i=1 (xi − x̄)

2 ∑m
i=1 (yi − ȳ)

2
,

where x = {x1, x2, · · · , xm} and y = {y1, y2, · · · , ym}
are the ranks of features X and Y , and ·̄ denotes the mean

value [43]. Ranging from -1 to 1, the coefficient ρX,Y depicts

the dependence between X and Y , of which the sign denotes

whether the relationship of the two variables are proportional

(when positive) or inversely proportional (when negative),

and the absolute value indicates the extent of dependence. We

apply the Spearman correlation analysis to all 126 features in

X+. The results are illustrated in Fig. 4 by colored matrices.

Fig. 4(a) displays the dependence between all 126 features

which are grouped by the joint numbers. Each square block

(surrounded by black dashed lines) on the diagonal represents

the self-feature- dependence of each joint, i.e., the dependence

between the features of the same joint. Meanwhile, the blocks

off the diagonal indicate the dependence among the features

of different joints. It is noticed that the the blocks on the

diagonal are highly similar to each other, which indicates that

the features on all robot joints possess similar self-dependence

properties. Therefore, it is reasonable to only investigate the
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(b) The spearman correlation between the 18 features on joint # 1.

Fig. 4. The Spearman correlation analysis of the features. Each micro square
block represents the correlation coefficients between the corresponding two
features, of which the values are marked by colors. Dark red indicates highly
positive dependence and dark blue means the opposite.

analysis result of a single joint and selected or eliminated the

features in batches in the unit of joint.

The correlation analysis of all 18 features on joint # 1,

which is corresponding the block in the down-left corner in

Fig. 4(a), is illustrated in Fig. 4(b). The results reveal that

features # 1 (Mτ ) and # 5 (m̄τ ) show high dependence, so do

features # 2 (Vτ ), # 6 (Rτ ), # 7 (Dτ ) and # 16 (Erms). Therefore,

these features are preferably considered to be eliminated from

X+, yet their importance to the classification still needs to be

considered.

2) Importance Analysis: After analyzing the dependence

of the features, we apply the Relieff algorithm to the 126

features in X+ to evaluate their importance. As a popular

feature engineering technique used in the previous work [38],

it provides a weight for each feature to depict its importance

to the classification, which is independent of the classifier

models. The predecessor of Relieff, known as Relief, is

originally proposed in [44] for binary classification problems.

Its main idea is to recursively and randomly select a sample

x from the data set and find out its closest samples with the

same and different labels (respectively referred as the near-hit

z+ and the near-miss z−). For the i-th feature of sample x,

xi, its weight wi is iteratively updated by the following law,

wi = wi −
(

xi − z+i
)2

+
(

xi − z+i
)2

,

where z+i and z−i are the i-th features of z+ and z−. The

weight wi depicts the reward (if wi is positive) or punishment

(if wi is negative) of the i-th feature to the classification, and a

larger wi indicates higher importance. Relieff is adapted from

Relief as the extension to multi-class problems [45].

On the training set, we calculate the weights, or importance

of all 126 features using Relieff and illustrate the results in

Fig. 5, grouping them respectively by the feature number (see

Fig. 5(a)) and joint number (see Fig. 5(b)). The results indicate

that the feature importance varies among both features and

joints. In Fig. 5(a), the feature # 2 (Dτ ) shows the lowest

importance (0.49), followed by # 4 (Kτ ), # 5 (m̄τ ), # 9 (f∗),

and # 13 (S|(f̄)|). In Fig. 5(b), the feature weights on joint

# 1, # 2 and # 4 are higher than the other joints.

Since the classifier is supposed to function in a online

scheme, we are quite concerned with the computational load

of the features. Therefore, we tend to form a small feature set,

while maintaining a decent classification accuracy. Consider-

ing both high dependence and low importance, we eliminate

features # 2 (Dτ ), # 4 (Kτ ) and # 5 (m̄τ ). Features # 6 (Rτ ) and

# 16 (Erms) are also eliminated due to their strong relationship

with # 7 (Dτ ), as well as # 18 (E20
r ) due to its redundancy to

# 17 (E10
r ). Additionally, we remove the features of the joints

# 3, # 5, # 6 and # 7 due to their low importance. Therefore,

we determine the feature set for the development of the signal

classifier as X ∗ = {Mτ , Sτ , Dτ , EI , f∗, |S(f∗)|, φ(f∗), f̄ ,

|S(f̄)|, φ(f̄), Fcrest, E10
r }1,2,4 which contains 36 features,

where the subscript denotes the joints. To evaluate X ∗, we also

define a minimum set X− = {Mτ , Sτ , Dτ , EI , f∗, |S(f∗)|,
φ(f∗), f̄ , |S(f̄)|, φ(f̄), Fcrest, E

10
r }1, which only includes 12

feature on joint # 2. We will evaluate the three feature sets X+,

X ∗ and X− and select the best when determining the classifier

models. Note that such development procedure is justified

since the entire feature selection process is independent from

the classification models.

C. Model Validation

After determining the feature sets X+, X ∗ and X−, we

are ready to select the model for the signal classifier. Since

a large number of models are used in the literature for the

classification of time series, enumerating all of them for the

best one is a tedious and unnecessary process. Instead, we

assign several popular models with representative properties

as candidates, and validate these candidate models using the

training set, before selecting the best one. In this paper, we

determine the candidate models based on three factors, namely

the pHRI signal properties, engineering experience in the

previous work and the values of models in practice. Thus,

four classifier models, namely a linear discriminant analysis

(LDA) model, a k-nearest neighbors (kNN) model, an SVM
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Fig. 5. The weights of the features obtained by Relieff algorithm.

model, and a feedforward neural network (FNN) model are

chosen as candidate models, due to their simple structures and

successful applications in the previous work [38]. These four

models are featured with various properties and essentially

cover most representative classifier structures. Specifically, the

LDA model is well known for its high efficiency and stable

performance, and is able to achieve high prediction accuracy

for the linearly classifiable data sets. The kNN model is sup-

ported by well-developed theoretical foundations and is easy

to be extended to a larger scale database in future work. The

SVM model shows the excellent ability of generalization. The

NN model, as a powerful and comprehensive approximator,

has strong adaptability and flexibility for various data sets. In

this paper, we only consider the NN model with one hidden

layer. Note that simple structures are always preferred in

practice since the reliability of the system tends to decrease

when the system becomes more complicated. To evaluate the

four classifier models on the training set with the feature sets

X+, X ∗ and X−, we use a ten-fold cross-validation method

and calculate the mean values of the ten validation scores

which are briefly referred to as score. We also apply a grid

search method to seek for the best hyper-parameters of the

models. The models and the corresponding grid values of their

hyper-parameters are shown in Tab. I.

TABLE I

HYPER-PARAMETERS FOR GRID-SEARCHING VALIDATION

Models Hyper-params Grid values

LDA solver ‘svd’, ‘lsqr’, ‘eigen’

kNN

k value 2, 3, · · · , 80

distance metrics
‘canberra’, ‘chebyshev’, ‘euclidean’,

‘manhattan’, ‘minkowski’

SVM
C value 10−3, 10−2.8, · · · , 103

kernel function ‘linear’, ‘rbf’, ‘sigmoid’

FNN
hidden neurons 2, 4, · · · , 100

activation function ‘identity’, ‘logistic’, ‘tanh’, ‘relu’

The four models and the corresponding hyper-parameter

values achieving the best scores in the validation are listed

in Tab. II, where the hyper-parameter values are in the same

order as the hyper-parameters in Tab. I. The validation scores

of the models trained with various feature sets are presented in

the score columns, X+, X ∗ and X−, respectively, which show

that all four models achieve satisfactory scores, with the FNN

model showing the highest (96.6%). Thus, we select FNN with

48 hidden-layer neurons, with ‘logistic’ activation function as

the model for the signal classifier of the CDI scheme. In the

meantime, the results also reveal that the scores using X ∗ are

close to that using the full feature set X+ for all models,

despite of slight decreases. On the contrary, the scores of the

minimum feature set X− drastically drop compared to X+

X ∗. Therefore, we determine X ∗ as the feature set to train

the FNN model, since it achieves similar scores to the full

feature set X+ with a greatly reduced number of features.

TABLE II

THE MODEL CONFIGURATIONS WITH BEST VALIDATION SCORES

Models Hyper-parameters score(X+) score(X ∗) score(X−)

LDA ‘svd’ 94.8% 92.4% 82.2%

kNN 5, ‘canberra’ 97.5% 96.3% 88.0%

SVM 63.1, ‘linear’ 97.3% 96.0% 86.4%

FNN 48, ‘logistic’ 96.8% 96.6% 89.7%

D. Model Test

After determining the model for the signal classifier (FNN,

48 hidden-layer neurons, ‘logistic’ activation function), we

train the model using all samples in the training set with

the feature set X ∗ and evaluate its prediction accuracy using

the test set. The tested accuracy score, 96.5%, is generally

comparable with the score 96.6% in the model validation in

Sec. IV-C, which indicates that the signal classifier possesses

a satisfactory ability of generalization. The confusion matrix
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of the test is presented in Fig. 6, where the prediction accuracy

for collisions, contacts and free respectively achieves as high

as 95.6%, 93.7% and 98.4%, showing a decent performance of

the classifier. Especially, the higher accuracy rate of collisions

than contacts reveals that the classifier is more sensitive to

accidental collisions, which is reasonable since collisions are

more dangerous to humans than contacts. The high accuracy

score for free means that the classifier hardly produces false-

positive results.
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Fig. 6. The confusion matrix in the test of the well trained FNN classifier.

V. DESIGN OF THE ONLINE DIAGNOSOR

Although the signal classifier shows high accuracy for

samples with complete pHRI waveform, the same performance

is not likely to be ensured in the early stage of a pHRI in online

applications, since the segmented waveform is incomplete.

As discussed in Sec. I, the main reason is the distribution

inconsistency between the training set and the segmented

online signals, such that a single prediction result of the

classifier does not guarantee a reliable CDI before the pHRI

vanishes. To resolve this issue, we design an additional online

diagnosor for the CDI scheme to produce online decisions

based on a series of prediction results, which is proven to be

more reliable than using a single result.

A. Prediction Analysis of Incomplete pHRI Waveform

As the first step of designing the online diagnosor, we

investigate the prediction accuracy of the signal classifier for

signal samples with incomplete pHRI waveform. We create

several test sets from the raw signals with various b values

which represent the segmented online signals with different

proportion of pHRI waveform, and use them to evaluate the

prediction accuracy of the signal classifier. Note that all the test

sets are of the same size as the one in Sec. IV-D. The accuracy

scores with different b values are illustrated in Fig. 7.

As a general tendency, the prediction accuracy increases

when the segment bias b becomes larger. An intuitive expla-

nation is that more useful information on the pHRI waveform

naturally leads to higher accuracy scores. Within the interval

b 6 50, the prediction accuracy is lower than 77.3%, which

indicates that a prediction result within 50ms after the pHRI

is very likely to be incorrect. In contrast, when b > 200,

the accuracy is higher than 93.0%, which reveals that an

accurate result is only possible after 200 ms. Apparently, a

single prediction result of the signal classifier does not offer

a reliable CDI decision in the early stage of pHRI.
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Fig. 7. The accuracy scores of the signal classifier when predicting samples
with various b values.

B. Diagnosis Using Confidence Indexes

Our solution to this problem is to extend the decision

horizon, such that the CDI result C∗ is produced based on a

series of successive prediction results. Moreover, a quantified

metric is need to depict the reliability of the CDI result. Let

us assume that the pHRI occurs at time t0. At a certain time

instant t1 = t0+b, a segmented torque signal T1 is given to the

signal classifier which then reports a prediction r1. The value

of the prediction result r1 can be −1, 0 or 1 which corresponds

to collision, contact and free. Here, r1 is not directly used

to make the decision C∗. Instead, we postpone s sampling

intervals until we obtain s signal segments T1, T2, · · · , Ts and

a series of prediction results R = {r1, r2, · · · , rs}. Here, we

refer to R as an observation series with the window size s.

According to the Bayesian decision theory, the posterior prob-

ability of the class C = {−1, 0, 1} based on the observation

series R with parameter b reads

p(C|R, b) =
p(C|b)p(R|C, b)

p(R|b)
, (1)

where p(C|b) is the prior knowledge of proportions of the data

set, p(R|C, b) is the likelihood of class C and p(R|b) is the

evidence that adjusts the weight of the posterior probabilities,

where p(R|b) =
∑

C p(C|b)p(R|C, b). As mentioned in the

beginning of Sec. IV, the signal segments T1, T2, · · · , Ts are

independent from each other, so are the prediction results

r1, r2, · · · , rs. Therefore, the likelihood p(R|C, b) can be

calculated by the following product

p(R|C, b) =

s
∏

j=1

p(rj |C, bj), (2)
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where for each rj , j = 1, 2, · · · , s, p(rj |C, bj) represents the

likelihood of a single prediction result rj with given pHRI

class C. The parameter bj is the bias of segment Tj , reflecting

a hidden condition that rj is the j-th element of R. The

likelihood p(rj |C, bj) depicts the probability that the classifier

predicts a sample labeled C as rj , which depends on the

capability of the classifier.

Here, the posterior probability p(C|R, b) serves as a con-

fidence index for decision C given observation series R. It

indicates the belief on the classifier to produce an accurate

diagnosis result within bms after the occurrence of the pHRI.

A larger value of p(C|R, b) corresponds to a more trustful de-

cision C. Therefore, the decision law for the online diagnosor

can be designed as

C∗ = i, if p(C [i]|R, b) = max
C

p(C|R, b), i = −1, 0, 1, (3)

where C∗ is the diagnosis result (C∗ = −1 for contacts, C∗ =
1 for collisions and C∗ = 0 for free) and C [i] represents the

event C = i for brevity. The confidence index for decision C∗

is IC∗

R = p(C∗|R, b).
To calculate the posterior probabilities, the likelihoods

p(rj |C, bj) for all rj = {−1, 0, 1} and C = {−1, 0, 1} can

be approximated by experimental methods similar to that in

Sec. V-A. The difference is that the calculation of the likeli-

hoods requires the values in the confusion matrices, rather than

the overall accuracy scores. Such approximation is justified

by the large number principle. The observation window size

s can be determined accordingly. A wider window leads to a

higher resolution of the confidence index and provides more

flexibility to the collision handling pipeline, which on the other

hand, involves more computational load. Note that the value

b, as a parameter to be assigned, represents a conservative

estimation, rather than the true diagnosis delay. A reliable CDI

diagnosis is guaranteed in the early stage of a pHRI, as long

as a high confidence index is obtained for even small values of

b. Therefore, in the practical design of the CDI scheme, b can

be heuristically determined as a reference reaction time. By

designing the decision law (3) with the confidence index I,

the collision handling pipeline can be implemented in a more

flexible manner.

C. A Fast Online Diagnosis Algorithm

The decision law in (3) requires the calculation of the

posterior probabilities for every observation series R, which is

not suitable for online applications due to the large computa-

tional load. Here, we propose a fast online diagnosis algorithm

(as Algorithm 1) that only involves simple comparison logic

but ensures high reliability. In the algorithm, the observation

window size is set as s = 5. The main routine of the algorithm

is to compare the observation R with two reference events

R4
l and R2

t , where R4
l means that at least 4 collisions are

observed in R, and R2
t represents at least 2 contacts are

witnessed. To evaluate the reliability of Algorithm 1, we cal-

culate its posterior probabilities, p(C [1]|R4
l , b), p(C

[1]|R2
t , b)

and p(C [1]|Rf , b) with b = 50, where Rf denotes R4
l ∨R2

t ,

i.e., neither a collision nor a contact occurs. Here, ∨ denotes

the union of two events and (·) represents the compliment

of a event. Therefore, the posterior p(C [1]|R4
l , b) represents

the confidence index of Algorithm 1 when making a decision

C = 1 given R ∈ R2
l , p(C [1]|R4

l , b) is for decision C = −1
with R2

t , and the else is depicted by p(C [0]|Rf , b) which

describes the reliability of the algorithm in free cases.

Algorithm 1 The Fast Online Diagnosor

Input: R = {r1, r2, r3, r4, r5}
Output: C∗

1: if R ∈ R4
cls then

2: C∗ = 1;

3: else if R ∈ R2
ctc then

4: C∗ = −1;

5: else

6: C∗ = 0;

7: end if

To calculate the posteriors, we firstly use (2) to calculate

the following likelihoods,

p(R4
l |C

i, b
[50]
j ) =

∑

R∈R4

l

s
∏

j=1

p(rj |C
i, b

[50+j]
j ), i = [1], [1],

p(R2
t |C

i, b
[50]
j ) =

∑

R∈R2
t

s
∏

j=1

p(rj |C
i, b

[50+j]
j ), i = [−1], [−1],

p(Rf |C
i, b

[50]
j ) =

∑

R∈Rf

s
∏

j=1

p(rj |C
i, b

[50+j]
j ), i = [0], [0],

where b[50] means b = 50 and C [1] denotes the event that

C 6= 1, i.e., C [1] = C [−1] ∨C [0], while similar is C [−1]. Such

a compact form is for the purpose of brevity. We assume that

p(rj |C
[1], b

[50+j]
j ) ≈ p(rj |C

[1], b
[50]
j ), for all j = 1, 2, · · · , 5,

considering a high sampling rate of the system. Therefore, the

likelihoods are calculated by follows,

p(R4
l |C

i) = p(r[1]|Ci)5 + 5p(r[1]|Ci)4p(r[1]|Ci), (4a)

p(R2
t |C

i)=1−p(r[−1]|Ci)5−5p(r[−1]|Ci)4p(r[−1]|Ci), (4b)

p(Rf |C
i) = p(r[0]|Ci)5 + 5p(r[0]|Ci)4p(r[1]|Ci)

+10p(r[0]|Ci)3p(r[1]|Ci)2+10p(r[0]|Ci)2p(r[1]|Ci)3

+5p(r[−1]|Ci)×
(

p(r[0]|Ci)4+4p(r[0]|Ci)3p(r[1]|Ci)

+6p(r[0]|Ci)2p(r[1]|Ci)2+4p(r[0]|Ci)p(r[1]|Ci)3
)

,

(4c)

respectively for i = [1], [1], i = [−1], [−1] and i = [0], [0],
where b[50] and the subscript j for rj are omitted for brevity.

Similar to above, we use r[1] and r[1] to represent r = 1 and

r 6= 1. To obtain the values of the single-prediction likelihoods

on the right sides of (4), we evaluate the signal classifier using

the test set with b = 50 (ms) and calculate the confusion

matrix which is decomposed to three matrices in Tab. III,

respectively for the calculation of (4a), (4b) and (4c). The

rows of Tab. III C [i], i = −1, 0, 1 represent the ground truth,

whilst the columns r[i] denote the predicted classes. In each

block, both the number of samples and the accurate scores are

presented, which explicitly corresponds to the values of the
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TABLE III

THE CONFUSION MATRICES OF SIGNAL CLASSIFIER WITH TEST SET b = 50MS

p(r|C) r[1] r[1] p(r|C) r[−1] r[−1] p(r|C) r[0] r[−1] r[1]

C[1] 1207 (72.5%) 458 (27.5%) C[−1] 593 (31.9%) 1268 (68.1%) C[0] 3376 (99.4%) 20 (5.89%) 3 (0.09%)

C[1] 13 (0.25%) 5247 (99.7%) C[−1] 419 (8.27%) 4645 (91.8%) C[0] 1317 (37.4%) 992 (28.2%) 1217 (34.6%)

likelihoods p(r|C). For example, the value of p(r[1]|C [1]) is

approximated as 0.73 corresponding to the value in C [1], r[1].
Checking the values in Tab. III and using (4), we calculate

the values of the likelihoods as

p(R4
l |C

[1]) = 0.87, p(R4
l |C

[1]) = 9.80× 10−5,

p(R2
t |C

[−1]) = 0.51, p(R2
t |C

[−1]) = 6.74× 10−2,

p(Rf |C
[0]) = 0.99, p(Rf |C

[0]) = 0.52,

Here, we set the prior probabilities as p(C [0]) = 0.5,

p(C [1]) = p(C [−1]) = 0.25, according to the proportion of

samples in the data set. Therefore, according to the Bayes law

in (2), we calculate the confidence indexes for Algorithm 1 as

follows,

p(C [1]|R4
l ) =

p(C [1])p(R4
l |C

[1])
∑[1]

i=[1] p(C
i)p(R4

l |C
i)
,

p(C [−1]|R2
t ) =

p(C [−1])p(R2
t |C

[−1])
∑[−1]

i=[−1] p(C
i)p(R2

t |C
i)
,

p(C [0]|Rf ) =
p(C [0])p(Rf |C

[0])
∑[0]

i=[0] p(C
i)p(Rf |Ci)

,

which leads to p(C [1]|R4
l ) = 0.99, p(C [−1]|R2

t ) = 0.72 and

p(C [0]|Rf ) = 0.66.

The results of the posterior probabilities indicate that Algo-

rithm 1 produces high confidence on its diagnosis for collisions

(I1
R = 0.99) and contacts (I−1

R
= 0.72) with given observa-

tion series R. A larger value of p(C [1]|R4
l ) than p(C [−1]|R2

t )
means that the diagnosor is more sensitive to collisions than

contacts. The confidence index I0
R = 0.66 for free reveals that

the diagnosor is also trustful for avoiding false detection. Due

to the fact that p(C [1]|R4
l ) = maxC p(C|R4

l ), p(C
[−1]|R2

t ) =
maxC p(C|R2

t ) and p(C [0]|Rf ) = maxC p(C|Rf ), Algo-

rithm 1 is consistent with the decision law in (3). Therefore,

the confidence index I can be explicitly obtained without

calculation, which leads to a faster and easier implementation

for online applications.

D. Comparison with the Single Prediction

To justify the advantage of the online diagnosor using

observation series instead of a single prediction result, we also

calculate the confidence indexes for the latter for comparison.

The confidence index for class Ci, with a single observation

ri, is calculated by

p(Ci|ri) =
p(Ci)p(ri|Ci)

∑i
k=i p(C

k)p(rk|Ck)
, i = [−1], [0], [1].

Checking the likelihoods in Tab. III, we obtain

p(C [−1]|r[−1])= 0.57, p(C [0]|r[0])= 0.75, p(C [1]|r[1])= 0.99.

The results show that such a scheme ensures a low reliability

on identifying contacts (0.57), i.e., the diagnosor is sensitive

to collisions but quite dull to contacts, which shows a inferior

performance than Algorithm 1.

VI. EXPERIMENTAL VALIDATION

In this section, we evaluate the performance of the proposed

CDI scheme in terms of both the identification accuracy and

the responsiveness by applying it to an online validation on the

recorded raw signals. These signals contain 242 collisions and

225 contacts and have never been used during the development

of the signal classifier. The torque signal is sequentially

sampled at the rate of 1 kHz and recursively segmented as

new samples for the signal classifier. The online diagnosor

is equipped with the fast online diagnosor in Algorithm 1

to provide online diagnosis. Note that the evaluation method

and metrics in this experiment are different from the model

test in Sec. IV-D. For the classifier development, the accuracy

scores are calculated based on the number of signal segments

containing the pHRI waveform, while in a human-robot col-

laboration, a CDI scheme focuses more on the number of

correctly identified collisions or contacts. The main difference

is that the pHRI, in an online application, usually produces

several segments with various b values, corresponding to the

signals segmented in different sampling instants. Therefore, for

the experimental validation, we must clarify that we evaluate

the performance of the CDI scheme with respect to the entire

pHRI, rather than its segments. We recognize that the pHRI is

accurately identified, if the scheme proposes a correct diagnose

before it vanishes.

During the experiment, 240 out of 242 collisions and all

225 interactions are correctly identified, with 2 collisions

misclassified as 1 contact and 1 free, achieving an overall

accuracy 99.6%. Some identification instances are shown in

Fig. 8, which illustrates the accuracy and responsiveness of

the scheme. It is noticed that most of the diagnosis results

are correctly produced in the early stages of the pHRI, which

confirms the high accuracy of the online CDI scheme. The

fast response of the scheme is also clearly reflected in Fig. 9

with both instances of a collision and a contact. The two pHRI

are all correctly identified within 20ms after their occurrence,

which confirms the responsiveness of the scheme.

To demonstrate the applicability of the proposed online CDI

scheme in a practical task, we implement it on the Kuka

LWR4+ robot platform (as shown in Fig. 10) together with

a collision reaction routine. The task is intended to surveil
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(a) The CDI diagnosis of collisions. The red solid lines are the raw signals,
the black dot lines are the occurrence instants of the collisions and the grey
regions represent the time intants when collisions are detected and identified.
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(b) The CDI diagnosis of contacts. The red solid lines are the raw signals,
the black dot lines are the occurrence instants of the contacts, and the blue
regions represent the time intants when contacts are detected and identified.

Fig. 8. The experiment results of the online CDI scheme respectively for
collisions and contacts.
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(a) The CDI diagnosis of a collision. The red solid lines are the raw signals,
the black dot lines are the occurrence instants of the collisions and the grey
regions represent the time intants when collisions are detected and identified.
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(b) The CDI diagnosis of a contact. The red solid lines are the raw signals,
the black dot lines are the occurrence instants of the contacts, and the blue
regions represent the time intants when contacts are detected and identified.

Fig. 9. The diagnosis results of a collision and a contact.

the external torques on the robot joints, detect any pHRI

and activate the corresponding reaction strategies. During a

robot task routine, if a collision is detected (as Fig. 10(a)), an

emergency stop is triggered and the robot holds on the current

position until the safety alarm is deactivated (as Fig. 10(b)).

If a contact is detected (as Fig. 10(c)), the robot enables its

gravity compensation mode such that the human can conduct

active guidance on the robot (as Fig. 10(d)).

(a) A collision is exerted. (b) An emergency stop.

(c) An interaction is exerted. (d) The guidance mode.

Fig. 10. The application demonstration of the online CDI diagnoser to
the KUKA manipulator platform. The CDI scheme identifies collisions and
interactions, such that different reaction routines are activated.

During the operation of the robot, the CDI scheme correctly

detects and identifies most of the pHRI and enables the cor-

responding reaction procedure, although some week contacts

and collisions fail to be detected. When the robot is smoothly

moving, the false diagnosis of collisions and contacts is hardly

witnessed. Nevertheless, a false diagnosis occurs when the

robot motion shows large vibrations due to fierce motion or

bad controller design. Therefore, a smooth functioning condi-

tion is still necessary. As for the responsiveness, the diagnosis

delay is basically not obviously perceivable experimenters,

which is acceptable in a typical human-robot collaborative

task. Therefore, the demonstration confirms the performance

of the proposed CDI and indicates its applicability to human-

robot collaboration tasks in practice.

VII. CONCLUSION

In this paper, we develop a novel online CDI scheme for

robot manipulators using supervised learning and the Bayesian

decision theory. During the data collection process, we try

to cover various execution conditions of the robot to ensure

a representative data set. After carefully investigating the

properties of the pHRI signals, we extract and select the

features by analyzing their dependence and importance. As

a result, the signal classifier presents excellent predictability

and generalization ability. Based on this, we propose a fast
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and simply implementable online diagnosor with a quantified

confidence index to depict the reliability of the diagnosis result

based on the Bayesian decision theory. Examined by both

theoretical analysis and experimental validation, the proposed

CDI scheme shows a promising value to improve the safety

of human-robot collaboration systems.

In general, our work in this paper has achieved the target

raised in the beginning, i.e., to rapidly and correctly detect

and identify collisions in their early stages. As a result, a

collision is predicted before it vanishes, such that further

damages or injuries can be avoided. The common ground of

our work and the probabilistic-series-model-based methods is

to make a decision using the observation series. Nevertheless,

the proposed CDI scheme in this paper is more suitable to

be widely applied in practice since it does not require prior

knowledge of the signal dependence and assumptions on the

data distribution.

It should be noted that the development of the CDI scheme,

including the procedures of the data collection, feature engi-

neering, and the model training, is conducted on a specific

robot platform. Thus, the applicability of the developed CDI

scheme to different platforms needs further investigations,

which motivates our future work on the adaptation of the

CDI scheme to a wider range of platforms. Another interesting

topic is to compensate the effects of the varying robot loads,

which can be solved by dynamic-model-based disturbance

estimation methods [9]. To investigate the influence of the

individual uncertainties on the classification accuracy, we will

also collect collision data with more experiment subjects in

future work.
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