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Abstract: The Kalman filter (KF) is widely applied in (ultra) rapid and (near) real-time ionosphere
modeling to meet the demand on ionosphere products required in many applications extending
from navigation and positioning to monitoring space weather events and naturals disasters.
The requirement of a prior definition of the stochastic models attached to the measurements and the
dynamic models of the KF is a drawback associated with its standard implementation since model
uncertainties can exhibit temporal variations or the time span of a given test data set would not
be large enough. Adaptive methods can mitigate these problems by tuning the stochastic model
parameters during the filter run-time. Accordingly, one of the primary objectives of our study is to
apply an adaptive KF based on variance component estimation to compute the global Vertical Total
Electron Content (VTEC) of the ionosphere by assimilating different ionospheric GNSS measurements.
Secondly, the derived VTEC representation is based on a series expansion in terms of compactly
supported B-spline functions. We highlight the morphological similarity of the spatial distributions
and the magnitudes between VTEC values and the corresponding estimated B-spline coefficients.
This similarity allows for deducing physical interpretations from the coefficients. In this context,
an empirical adaptive model to account for the dynamic model uncertainties, representing the
temporal variations of VTEC errors, is developed in this work according to the structure of B-spline
coefficients. For the validation, the differential slant total electron content (dSTEC) analysis and a
comparison with Jason-2/3 altimetry data are performed. Assessments show that the quality of the
VTEC products derived by the presented algorithm is in good agreement, or even more accurate,
with the products provided by IGS ionosphere analysis centers within the selected periods in 2015
and 2017. Furthermore, we show that the presented approach can be applied to different ionosphere
conditions ranging from very high to low solar activity without concerning time-variable model
uncertainties, including measurement error and process noise of the KF because the associated
covariance matrices are computed in a self-adaptive manner during run-time.

Keywords: ionosphere modeling; adaptive Kalman filter; variance component estimation;
B-splines; VTEC

1. Introduction

The selection of an appropriate parameter estimation strategy, which allows for handling
of the large data sets from various space geodetic observation techniques, e.g., the continuously
operating IGS network of GNSS receivers, is vital for (ultra) rapid and (near) real-time VTEC
modeling. Recursive filtering methods, e.g., the Kalman Filter [1] and the Ensemble Kalman Filter [2],
provide mathematical tools in terms of assimilating new data immediately once they are available [3,4].
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These conventional filters are generally extended by adaptive approaches to cope with time-varying
model uncertainties in many applications. In this sense, the focus of this paper is on the application
of the adaptive discrete Kalman Filter (KF) to ultra-rapid VTEC modeling based on B-splines.
The presented approach is a comprehensive extension to the study by Erdogan et al. [5] employing a
conventional KF.

The discrete Kalman filter (KF) relies on consecutively performed steps, namely the time update
and the measurement update; the former represents the propagation of the unknown parameters
with time and the latter step is responsible for the incorporation of new allocated measurements into
the filter [3]. A stochastic model attached to the deterministic models describes the corresponding
covariance matrices of process and measurement noise. The conventional KF is very sensitive to these
matrices which are required to be introduced beforehand. The common practice to manually define
the parameters of these matrices is to perform multiple tests by executing the filter for different values
of the parameters; for further details, we refer to Maybeck [6]. However, the data used in tests may not
be appropriate to define these matrices. Furthermore, the covariance matrices may change with time.
An inappropriate definition of these matrices can lead to an estimation of poor quality, or even worse,
the filter may diverge. A self-learning filter which is capable of adapting itself to changes during
run-time can cope with such situations [4]. Accordingly, several approaches, classified under the name
of adaptive modeling, were proposed after Kalman’s seminal study from 1960 to tune the parameters
in run-time for achieving optimal results and avoiding a filter divergence.

According to Hide et al. [7], the approaches for adaptive modeling can be categorized as
(1) covariance scaling, (2) multiple-model adaptive estimation (MMAE) and (3) stochastic modeling.
The first method means a simple and effective algorithm in which the predicted or process noise
covariance matrix of the KF is multiplied by a factor which can be deduced from the innovations
or the residuals of the filter [8–10]. The MMAE was introduced by Magill [11] and relies on the
combination of multiple outputs derived from multiple KF instances running in parallel with different
values of measurement and process noise parameters. High computational cost is the drawback
of the MMAE method. Furthermore, methods based on a stochastic modeling attempt to estimate
the overall covariance matrices using the innovation or residual sequences collected and stored at
previous steps of the filter, see e.g., [12]. This approach makes use of data sequences collected in a
time window of past epochs and suffer mostly from the fact that the size of innovations, residuals
or state vectors of the filter at the consecutive epochs can change over time [13]. Furthermore,
the method of variance component estimation (VCE), which goes back to the study by Helmert [14],
was extensively investigated using different types of estimators to obtain a realistic stochastic model of
measurement uncertainties in the sense of batch parameter estimation. We refer to, e.g., [15–18] and
references therein for a comprehensive review. In recent decades, many studies were carried out in an
attempt to incorporate the VCE approach into the KF to achieve a recursive and an adaptive estimator.
A VCE-based adaptive KF does not require the storage of data from previous epochs of the filter and
may be categorized as a covariance scaling approach. For example, Yang and Xu [13] introduced an
adaptive robust Kalman filter resisting to outliers as well as determining an adaptive factor using the
ratio of variance components between the measurements and the predicted state vector computed by
referring to the study by [19]. Hu et al. [9] developed an adaptive estimator derived from innovations.
Gao et al. [20] presented an adaptive KF based on the Helmert VCE method for the positioning and
the attitude determination by integrating measurements from the Multi-Constellation GNSS and
the Inertial Navigation System. Chang et al. [21] incorporated the least-squares VCE approach into
a KF to estimate the epoch differenced ionospheric delay for repairing cycle slips of GNSS signals.
In the framework of GNSS meteorology, Yang et al. [22] presented an adaptive KF algorithm to tune
the process noise in real time by inserting the least-squares VCE method into the filter to compute
precipitable water vapor content derived from estimated zenith tropospheric delays of GNSS signals.

VCE allows for the determination of proper weights for different types of observation groups
with varying model uncertainties, which can exhibit limited knowledge of noise characteristics [23].
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A covariance matrix of an observation type can generally be decomposed into two parts, namely a
known co-factor matrix and an unknown scaling factor, i.e., the variance component. The known matrix
refers to a weighting matrix determining the contributions of observations according to pre-defined
quality criteria. For instance, in this study it is defined according to the elevation angle of GNSS
observations. Run-time computations of the unknown variance components in a Kalman filter for
each observation group allows the implementation of a computationally efficient adaptive filtering
approach. When the VCE approach is chosen, it decreases the number of unknown parameters
compared to the stochastic modeling approach attempting to estimate an entire covariance matrix
which generally leads to a less stable filter implementation due to an increased number of unknowns as
well as lack of enough observations. In this paper, we use the VCE approach for the adaptive Kalman
filtering implementation to separately handle different observation groups. The estimation of variance
components for each type of observations acquired from GPS and GLONASS is iteratively carried
out and can be driven according to the Maximum-Likelihood method or Förstner’s iterative method,
see, e.g., [16,18,23–25].

Contrary to physical models, empirical models are mostly data driven approaches and do not
rely on physical equations and quantities. The selection of a proper empirical model which allows
analyzing local structures and deducing physical interpretations from the model parameters is crucial.
Ionosphere models relying on localized basis functions have been increasingly gaining popularity,
for instance, applications of B-spline functions [26–29] and Slepian functions [30]. The B-spline
representation of VTEC provides an empirical approximation for evaluating temporal and spatial
variations. Whereas the VTEC products provided by the Ionosphere Associated Analysis Centers
(IAAC) of the International GNSS Service (IGS) are mostly based on spherical harmonics (SH), i.e., basis
function of global support, DGFI-TUM aims at VTEC representations using series expansions in terms
of B-spline functions. B-splines are an appropriate mathematical tool for handling the heterogeneous
input data distribution including data gaps [31] due to their compact support. Moreover, they allow
the generation of a multi-scale signal analysis of VTEC [26,32–34] and can easily be extended for
multi-dimensional model definitions, e.g., for 3D/4D electron density modeling [27,35,36].

By exploiting the advantages of B-splines, we show that the estimated B-spline coefficients
resemble the global VTEC structure in terms of shape and magnitude, which paves the way of assigning
a physical meaning to the B-spline coefficients. For instance, we found a very high correlation between
a time series of mean B-spline coefficients and corresponding mean VTEC values providing a valuable
indicator about temporal VTEC activity as well as space weather events. The physical interpretation
of the coefficients leads to extending the definition of the stochastic model attached to the dynamic
model, which is also called the prediction model of the KF. In this context, an exponential empirical
model taking the mean value of the B-spline coefficients and their relative variations into account is
introduced to define the uncertainty of the prediction model. Moreover, the compact support property
of the B-spline representation provides additional flexibility to locally tune the sensitivity of the filter
to observations without causing a global effect. This is unlikely for models making use of globally
defined basis functions e.g., spherical harmonics. The empirical model is extended to consider the
number of observations to keep the filter more sensitive to the observations at regions including very
high data density.

In summary, the main goal of the present study is to introduce an adaptive KF for VTEC modeling
using a B-splines series expansion. The measurement covariance matrices of the GNSS observations are
adaptively obtained using the VCE approach. We highlight structural similarities between the spatial
distributions of VTEC over the globe and the estimated B-spline coefficients that allow for deducing
physical interpretations from the coefficients. Accordingly, we introduce an adaptive empirical model
for the process noise covariance matrix of the B-spline coefficients regarding the temporal and spatial
variation of VTEC. The presented adaptive filtering approach can significantly reduce the efforts
to define or to set up the model uncertainties. Moreover, exploiting the localizing property of the
B-spline basis functions allows for tuning the filter sensitivity to observations in the vicinity of a
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point without causing a significant global effect, which means a huge advantage w.r.t. methods
relying on globally defined basis functions such as spherical harmonics. The approach is applied
to ultra-rapid VTEC modeling by assimilating carrier phase and pseudo-range observations from
GPS and GLONASS, which can be extended for additional GNSS constellations such as GALILEO or
measurement techniques such as the DORIS (Doppler Orbitography and Radiopositioning Integrated
by Satellite) technique. The presented adaptive algorithm was recently employed in [37] to generate
high-resolution VTEC maps of Europe by means of a series expansion in B-spline functions.

The paper is outlined as follows. The first section shows the B-spline representation for global
VTEC modeling and the definition of the selected coordinate system. In Section 3, the extraction of
ionosphere observations from raw hourly GNSS data is explained. Section 4 gives the background for
the sequential estimation algorithm using the adaptive KF. This section comprises the introduction of
the measurement and prediction models of the filter, the fundamentals of the adaptive Kalman filtering
using variance components, and the handling of the model constraints in the filter. Section 5 explains
the validation techniques, accuracy of the presented approach, and discussions. Finally, Section 6
provides the conclusion and future work.

2. Global VTEC Representation Based On B-Splines

In this study, the B-spline representation of the global VTEC distribution reads

VTEC(ϕ, λ, t) =
KJ1−1

∑
k1=0

KJ2−1

∑
k2=0

dJ1,J2
k1,k2

(t) N2
J1,k1

(ϕ) T3
J2,k2

(λ), (1)

where dJ1,J2
k1,k2

(t) are the time-dependent unknown B-spline coefficients, N2
J1,k1

(ϕ) are the polynomial
B-spline functions of degree 2 depending on the latitude ϕ, and T3

J2,k2
(λ) are the trigonometric B-splines

of order 3 depending on the longitude λ [26,31,32]. The geometrical positions of the two-dimensional
(2-D) basis functions N2

J1,k1
(ϕ) · T3

J2,k2
(λ) on the sphere are described by the values k1 and k2. KJ1

stands for the number of polynomial B-spline functions according to the associated level J1 and,
similarly, the number of trigonometric B-spline functions for the level J2 is given by KJ2 . Accordingly,
the numerical values of KJ1 for the level J1 and KJ2 for the level J2 are given as KJ1 = 2J1 + 2 and
KJ2 = 3 · 2J2 .

For the implementation of the B-spline functions, we refer to the approach introduced by [29] and
applied to ionosphere modeling by [26,31,34]. Compared to the global representation given by [28]
and employed e.g., by [5] for VTEC modeling, the advantage of the implemented approach is that the
continuity at the longitudinal boundaries are satisfied by definition. This leads to setting up a smaller
number of trigonometric B-spline functions and no additional constraints have to be formulated.
However, the global representation requires introducing constraints to handle the spherical geometry,
since the 2-D B-spline model represents a function defined on a sphere [28]. Two sets of constraint
equations, namely the pole equality and the pole continuity have to be taken into account.

The criteria which are considered to select the resolution levels J1 and J2 for the B-spline
representation in the Kalman filter implementation depend, e.g., on the distribution of the input
data, the computational burden and the desired level of smoothness [5]. Increasing the number of
basis functions leads to a B-spline definition enabling the representation of high resolution details on
VTEC maps, but the computational load of the Kalman filter increases in return. Contrarily, the levels
chosen too low can cause an undesired smoothing on VTEC variations, which may lead to a loss
of information.

A representation quality comparable to the IGS final products can be obtained by setting,
e.g., J1 = 4 and J2 = 3 which correspond to the maximum SH degrees of about 17 and 12 in latitude
and longitude, respectively [32]. These levels of resolution were employed by [5] in a Kalman filter
setting using B-spline basis functions. Considering an increasing number of IGS GNSS receiver sites,
providing hourly measurements with improved geographical distribution, the resolution level can be
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increased further. A higher resolution B-spline representation with level values J1 = 5 and J2 = 3 in
comparison to a spherical harmonic representation and the VTEC products of the IGS analysis centers
(CODE and UPC) were studied by [32]. By taking into account the trade-off between the resolution
level and the computational burden when running the filter in an operational mode, B-spline level
values of J1 = 5 and J2 = 3 were selected in this study.

Coordinate System

The Earth’s magnetic field plays a crucial role on dynamics, structure and formation of the
upper atmosphere and space weather phenomena such as ionospheric plasma motion, polar lights,
the electron density distribution and the equatorial ionization anomaly. A proper selection of the
coordinate system can become significant in terms of the strength of a dominating driver. For instance,
at the altitudes close to the Earth’s surface, the geomagnetic field is stronger than the magnetic
disturbances derived by solar winds, so that, a coordinate system aligned with the Earth’s magnetic
dipole axis would be more appropriate for ionospheric phenomena [38]. Solar magnetic coordinates,
which take into account the shift of the dipole axis from the Earth’s rotation axis, are usually adapted
for ionospheric electron content modeling (e.g., Mannucci et al. [39]). In opposite to this simple dipole
approximation, a better representation of the Earth’s magnetic field can be obtained by considering
the non-dipole features of the field which can show significant deviation from the center dipole
approximation at the ionospheric altitudes. Corrected geomagnetic coordinates [40,41], modified apex
coordinates and quasi-dipole (QD) coordinates [42] are some examples which come at the expense of,
e.g., a high computational load, complexity and non-orthogonality. For example, the apex coordinates
are employed in physics-based models simulating the thermospheric and ionospheric behavior,
such as the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) [43–45].
Among the ionosphere modeling community, the modified dip latitude (MODIP) coordinates [46],
which takes the Earth’s magnetic field into account to compute the latitude of a given point in terms of
the dip latitude, are also in use. Azpilicueta et al. [47] applied the MODIP coordinates to the VTEC
representation using spherical harmonics and declared a significant improvement in their solutions
compared to the VTEC solution obtained using geographic latitude.

Since the Sun is the primary driver of the photo-ionization process, it causes spatio-temporal
variations in the ionosphere. In VTEC modeling, keeping the VTEC structure aligned with the
position of the Sun leads to a Sun-fixed coordinate system definition. This mitigates the effect of
the Earth’s diurnal motion that leads to a much slower temporal variation of ionospheric VTEC
(see e.g., Mannucci et al. [39], Komjathy and Langley [48]).

In this study, in order to consider the effects of the magnetic field and the Sun on the formation of
VTEC structure, a solar magnetic coordinate system (GSM) (e.g., [49]) is used. The z-axis of the GSM
coordinates aligns with the centered dipole axis and points to the Northern Hemisphere. The x-axis
is defined such that the x-z plane contains the Sun–Earth line and the y-axis is perpendicular to the
Sun–Earth line.

3. GNSS Ionospheric Observables

Due to the dispersive characteristics of the ionosphere, electromagnetic signals transmitted by the
GNSS satellites are refracted while traveling through the medium. The rate of the ionospheric refraction
varies with respect to the frequencies of the transmitted signals. The geometry-free linear combination
of the code pseudo-ranges observations Ps

r, f1
and Ps

r, f2
as well as the carrier-phases observations Φs

r, f1
and Φs

r, f2
, acquired from GPS and GLONASS signals at the distinct carrier frequencies f1 and f2, lead to

the ionospheric observables

Ps
I,r = Ps

r, f2
− Ps

r, f1
= αs

r · STEC + br + bs + ePs
I,r

, (2a)

Ls
I,r = Φs

r, f1
−Φs

r, f2
= αs

r · STEC + Br + Bs + Bs
A,r + eLs

I,r
(2b)
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where Ps
I,r and Ls

I,r are the pseudo-range and the carrier-phase ionosphere combinations,
respectively [50]. Br and Bs refer to the receiver and the satellite inter-frequency biases (IFB) of
the carrier phase observations, br and bs are the pseudo-range IFB of the receiver and the satellite,
respectively, which are also commonly called differential code biases (DCB). The combined ambiguity
bias of the carrier-phase observations is denoted by Bs

A,r. The terms ePs
I,r

and eLs
I,r

stand for the
measurement errors. Furthermore, considering Ps

I,r and Ls
I,r are given in units of meters, αs

r is a

frequency-dependent factor defined as αs
r = 40.3 ( f 2

1− f 2
2 )

( f 2
1 f 2

2 )
1016.

The pseudo-range ionosphere combination (2a) is rather noisy but unambiguous. Although the
carrier-phase ionosphere combination is around two orders of magnitude more precise, it is biased
by an unknown integer number of cycles [50,51]. A widely common approach for mitigating the
ambiguity and exploiting the precision of the carrier-phase observation is the so-called leveling bias
computation [39,52]. The leveling bias Cs

r includes the IFBs and the carrier-phase ambiguity term.
It can be determined by the weighted averaging of the epoch-wise differencing of Ls

I,r and Ps
I,r and reads

Cs
r ≈

∑
i

wi

(
Ls

I,r,i − Ps
I,r,i

)
∑
i

wi
+ eCs

r

≈
〈

Br + Bs + Bs
A,r − br − bs

〉
w

(3)

where wi is the weight of the ith observation referring to the precision of the differenced observations
on a phase continuous arc (see e.g., [39]). The term eCs

r is the error of the leveling bias. The value for
the weight wi can be determined by taking into account, e.g., the elevation angle of the observations,
the receiver tracking modes and the signal power. Prior to the computation of the leveling bias, a two
step cycle slip detection method, which is composed of a double differences of ionospheric phase
observations and the Melbourne-Wübbena combination, is applied for the detection of jumps and the
construction of phase continuous arcs between receivers and satellite pairs [53–55].

Once the leveling bias is obtained, the leveled carrier-phase ionospheric observations L̃s
I,r along a

continuous arc are computed by

ys
r = L̃s

I,r = Ls
I,r − Cs

r

= αs
r · STEC + br + bs + eL̃s

I,r
(4)

where eL̃s
I,r

refer to the error of the leveled carrier-phase ionosphere combination which is dominated

by the error eCs
r of the leveling bias.

The accuracy and the precision of the leveling bias in Equation (3) depends on different factors
which are primarily measurement noise and multipath effects. The measurement noise on carrier-phase
measurements can be neglected, since those effects are much smaller compared to the ones on the
code measurements. Ciraolo et al. [50] showed that the multipath effect on code measurements is
a primary error source that cannot totally be removed in Equation (3) by the averaging procedure
and can vary for different receivers and antennas types. Besides, depending on the environmental
conditions around the receivers, the IFBs of code measurements can present intra-day variations that
violate the long term stability assumption on the IFBs, and consequently result in a systematic error in
the leveling bias.

To reduce the effects of the systematic errors, the following measures are considered in the
computation of the leveled carrier-phase observable:

• Observations with an elevation angle of less than 10◦ were rejected from the data to avoid
contributions from likely very noisy measurements.
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• Since the quality of the averaging procedure in Equation (3) relies on the length of a given
phase continuous arc [39], a minimum threshold of 30 min arc length is applied to mitigate the
pseudo-range noise.

• To mitigate the errors due to multi-path effects on pseudo-range measurements, which are
generally inversely proportional to the satellite elevation angle, only the observations with
elevation angles larger than 20◦ are included in the determination of the leveling bias (3).

• Moreover, an elevation dependent weighting function, e.g., wi = sin(ei), is introduced to leverage
the influence of more precise observations. ei means the elevation angle of the ith observation
along the arc.

• A pre-processing algorithm was developed for the recursive processing of GNSS data acquired
as hourly data blocks broadcasted, e.g., by the IGS global data centers. To reach a maximum
number of observations and a high pre-processing quality, data blocks with a moving window of
3 h length are considered. For instance, to apply the pre-processing procedures to a new acquired
data set between tk and tk + 1h, a data set with a window length of 3 h extending from tk − 2h to
tk + 1h is considered for a more accurate computation of the leveling bias.

Assuming that the code and carrier-phase ionosphere observations are uncorrelated throughout a
continuous arc, the variance of the leveled carrier-phase observations can be derived by applying the
law of error propagation to Equation (4). Consequently, the variance σ2

L̃s
I,r ,k

reads

σ2
L̃s

I,r ,k =



σ2
Ls

I,r

(WT−wk)
2

W2
T

+
σ2

Ls
I,r

W2
T

le
∑

l=lb
w2

l (1− δlk) +
σ2

Ps
I,r

W2
T

le
∑

l=lb
w2

l , if lb ≤ k ≤ le

σ2
Ls

I,r
+

σ2
Ls

I,r
W2

T

le
∑

l=lb
w2

l +
σ2

Ps
I,r

W2
T

le
∑

l=lb
w2

l , otherwise

(5)

where k = 1, . . . , N is the time index of the observations along an arc with a total number of N
observations. lb and le, respectively, refer to the beginning and the end points on the arc that bind
the data used for the determination of the leveling bias in Equation (3) and δlk is the Kronecker delta

symbol. Herein the total weight is WT =
le
∑

l=lb
wl . Following the Equations (2a) and (2b), the variances

σ2
Ps

I,r
and σ2

Ls
I,r

of pseudo-range and carrier phase ionosphere combinations approximately read σ2
Ps

I,r
≈

σ2
Ps

r, f1
+ σ2

Ps
r, f2

and σ2
Ls

I,r
≈ σ2

Φs
r, f1

+ σ2
Φs

r, f2
.

4. Adaptive Estimation of Global Ionospheric VTEC

4.1. Model Definition

The discrete linear system of equations describing a dynamical process is given by

βk = Fk βk−1 + wk−1 (6)

yk = Xk βk + ek (7)

where k is the time stamp, Fk is the transition matrix, βk the vector of the unknown parameters, yk
is the vector of the observations and Xk is the corresponding design matrix. The measurement error
vector ek and the vector of the process noise wk are normal distributed, i.e., wk ∼ N(0, Σw,k) and
ek ∼ N(0, Σy,k) and fulfill the assumptions

E[wk wT
l ] = Σw δkl , E[ek eT

l ] = Σy δkl (8)
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and
E[wk eT

l ] = 0 for all k, l (9)

The covariance matrices referring to the vectors ek and wk are automatically computed by the
introduced algorithms in a self-learning manner. Accordingly, the adaptive algorithm defining the
covariance matrix of the measurement error vector is explained in Section 4.4. The developed
time-varying adaptive model of the process noise covariance matrix for the ionospheric target
parameters is presented and discussed in Section 4.3.

4.2. Measurement Model

The measurement equations following from Equation (4) are re-written as

yGPSs
r ,k = m(zs

r,k) ·VTECk +
c · 10−9

αs
r

(
br,GPS + bs

GPS

)
+ eGPS,k ,

yGLOs
r ,k = m(zs

r,k) ·VTECk +
c · 10−9

αs
r

(
br,GLO + bs

GLO

)
+ eGLO,k

(10)

where yGPSs
r ,k and yGLOs

r ,k are the leveled ionospheric observations in TECU at time stamp k for the
GPS and GLONASS constellations. The quantity STEC in Equation (4) at time tk is represented by the
so-called Single Layer Model (SLM) (see e.g., [56]) as STECk = m(zs

r,k) ·VTECk where m(·) stands for
the Modified Single Layer Mapping Function depending on the satellite elevation angle zs

r,k [56,57].
Moreover, VTECk at time tk is given by Equation (1). The values br,GPS, br,GLO and bs

GPS, bs
GLO stand

for the receiver and the satellite DCBs in nanosecond for GPS and GLONASS. The speed of light is
denoted as c in m/s.

The state vector βk of the linear models given by the Equations (6) and (7) consists of the sub-vector
dk = (dJ1,J2

k1,k2
(tk)) of the unknown B-spline coefficients dJ1,J2

k1,k2
(tk), the sub-vectors bGPS,k and bGLO,k

referring to the receiver DCBs and bGPS
k and bGLO

k standing for the satellite DCBs. Thus, the vectors βk
and yk read

βk =


dk

bGPS,k
bGPS

k
bGLO.k
bGLO

k

 , yk =

[
yGPS,k
yGLO,k

]
. (11)

Consequently, the design matrix Xk is given as

Xk =

[
XdGPS,k XbGPS,k XbGPS,k 0 0
XdGLO,k 0 0 XbGLO,k XbGLO,k

]
. (12)

Herein, XdGPS,k and XdGLO,k are the design sub-matrices of GPS and GLONASS observations in
connection with the vector dk of unknown B-spline coefficients. The design sub-matrices for the
GPS and GLONASS receiver DCBs are XbGPS,k and XbGLO,k. In the same way, the sub-matrices XbGPS,k
and XbGLO,k refer to the design matrices of the satellite DCBs.

Assuming the vectors yGPS,k, and yGLO,k are uncorrelated, the measurement covariance matrix
Σy,k consisting of the covariance matrices ΣyGPS ,k and ΣyGLO ,k for GPS and GLONASS reads

Σy,k =

[
ΣyGPS,k 0

0 ΣyGLO,k

]
. (13)

This study aims on the computation of the measurement covariance matrix Σy,k in run-time
by employing an appropriate adaptive estimation method. For problems with a large number of
unknowns and/or measurements, the computation of each component in the measurement covariance
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matrix results in very high complexity and computational burden. Additionally, an unstable filter
implementation would emerge due to a lack of a sufficient number of observations. To cope with these
problems, a common simplified approach is to assume that the covariance matrix is known up to a
scaling factor. Taking VCE into account, this factor can be handled as an unknown variance component.
Accordingly, the measurement covariance matrix Σyj ,k for each observation technique j ∈ {1, . . . , p}
with the associated variance component σ2

yj ,k
is expressed by (see [19] )

Σyj ,k = σ2
yj ,kP−1

yj ,k
(14)

where Pyj ,k is the appropriate weight matrix. Consequently, considering that y1 = yGPS, σ2
y1,k = σ2

yGPS ,k

and y2 = yGLO, σ2
y2,k = σ2

yGLO ,k, Equation (13) can be written as

Σy,k =

[
σ2

yGPS,kP−1
yGPS,k 0

0 σ2
yGLO,kP−1

yGLO,k

]
, (15)

where σ2
yGPS,k and σ2

yGLO,k are the unknown variance components for GPS and GLONASS. The matrices
PyGPS,k and PyGLO,k are given positive definite matrices which can be determined to ensure more
contributions from the precise observations by introducing high relative weights. In this sense,
the weight matrix can refer to numerous quality factors for GNSS observations, such as the satellite
elevation angle, the receiver-antenna configuration and the signal strength. A common and simple
strategy is to adapt an elevation-dependent weighting scheme for each individual observation.
Assuming that the observations are uncorrelated, the weight matrix Pyj ,k becomes a diagonal matrix
and its diagonal element pnn can be defined by

pnn =
1

σ2
L̃s

I,r ,k
(1 + sin2(zm))

(16)

where zm is the zenith angle of the mth measurement. The term σ2
L̃s

I,r ,k
refers to the prior observation

variance described by Equation (5).

4.3. Prediction Model

Since VTEC is a time varying phenomenon, a proper model is required to represent its propagation
between consecutive epochs tk−1 and tk in accordance with Equation (6).

In the current implementation of the approach, VTEC is represented in the GSM, and thus, leading
to slow temporal variations in the corresponding B-spline coefficients. Accordingly, a simple model
based on a random walk process is set to represent the temporal variations. Moreover, it should be
noted that the unknown system biases, precisely the GNSS DCBs are also quite stable over the course
of time, which allows the use of simple prediction models, too. Consequently, a random walk process
is introduced as a prediction model for these biases. The entire prediction model with Fk = I of the
state vector reads, therefore, following from Equation (6)

βk = βk−1 + wk (17)
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where wk is the process noise vector with the covariance matrix Σw,k defined as

Σw,k =



Σwd ,k 0 0 0 0
0 σ2

br,GPS
Im1 0 0 0

0 0 σ2
bs

GPS
Im2 0 0

0 0 0 σ2
br,GLO

Im3 0

0 0 0 0 σ2
bs

GLO
Im4

 (18)

where Σwd ,k is the diagonal matrix consisting of the components σ2
di ,k

with i = {1, . . . , KJ1 · KJ2}
corresponding to the variance of the random walk process for each B-spline coefficients. The quantities
σ2

br,GPS
, σ2

br,GLO
, σ2

bs
GPS

, and σ2
bs

GLO
are the variance components of the receiver and satellite DCBs for

GPS and GLONASS, respectively. Moreover, Iml with l = {1, . . . , 4} are identity matrices of different
sizes for each type of DCB. Process noise variances should be set properly, since these values effect
the filter performance. The improper selection of the process noise could lead to a divergence of
the filter. Moreover, the process noise plays an important role to tune the sensitivity of the filter
to the measurements. The higher the value of the process noise the more sensitive is the filter not
only to the measurements but also to, e.g., outliers and undetected biases in the measurements.
For instance, increasing the process noise results in larger values of the predicted covariance matrix
Σ−β,k in Equation (31) which leads to a relatively high weighting of the measurements.

Considering the changing environmental conditions, such as seasonal solar activity or solar
storms, the error of the prediction model for the B-spline coefficients is time dependent. Therefore,
each process noise variance component σ2

di ,k
of Σwd ,k in Equation (18) changes with time. The difficulty

in assigning a proper process noise to the B-spline coefficients arises from the fact that the coefficients
do not have a physical meaning. However, fortunately, the structure of B-spline coefficients resembles
the VTEC signal. For instance, VTEC maps derived from the IGS final GIM product for 17 March
2015 are illustrated in the top row of Figure 1 and the coefficients of the corresponding B-spline
representation are depicted in the bottom row. The coefficients are estimated by fitting the B-spline
model (1) to the VTEC values given on a regular grid obtained from the IGS product. The spatial
resolution of the grid is of 5◦ × 2.5◦ in longitude and latitude and the corresponding VTEC values
are given in an Earth-fixed geographic coordinate system. The similarity of the structures between
the VTEC values and the B-spline coefficients paves the way of deducing physical information from
B-spline coefficients.

Figure 1. The panels in the top row show the VTEC maps from IGS final GIMs drawn in an Earth-fixed
coordinate system at 02:00, 08:00, 14:00 and 20:00 UTC for 17 March 2015. The corresponding maps of
estimated B-spline coefficients for each of the VTEC maps are illustrated in the bottom row; the B-spline
coefficients dJ1,J2

k1,k2
(tk) refer to resolution levels; J1 = 5 and J2 = 3 for latitude and longitude, respectively.

In this regard, the mean VTEC value at a given time provides an appropriate indicator representing
the overall VTEC activity sensitive to seasonal, monthly and daily variations (see e.g., [56]). Moreover,
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abnormal variations due to high solar activities can be detected from the mean VTEC value
(see e.g., [58] in case of coronal mass ejections). The global mean VTEC values of the IGS final
GIMs during the year 2015 with a temporal sampling of 2 h are plotted (red dots) in Figure 2. In the
same figure, the corresponding mean values of the B-spline coefficients are illustrated by blue dots.
There is a very high correlation between the mean VTEC values and the corresponding mean B-spline
coefficients, namely ρ = 0.999.

In the general case, the variance of a random walk process can be defined as

σ2
di ,k = q̇di ,k · ∆t (19)

where ∆t is the length of the time step between two consecutive epochs (i.e., ∆t = tk − tk−1) and q̇k
is the variance rate referring to the change of the variance with time [39,59]. Considering that the
B-spline coefficients resemble the structure of the VTEC signal, the variance rate q̇di ,k of the process
noise σ2

di ,k
for the coefficient di,k is defined by the product

q̇di ,k = C0,k · C1,di,k
· C2,di,k

. (20)

Figure 2. Correlation analysis of global mean values of VTEC maps and B-spline coefficients; the mean
values of the IGS VTEC maps computed with a 2 h temporal resolution during the year 2015 (red dots)
as well as the mean values of estimated B-spline coefficients maps (blue dots).

The coefficient C0,k is given as
C0,k = ms · d̄k (21)

where ms is a constant value determined experimentally. The mean absolute value d̄k of the absolute
value of the B-spline coefficients for global VTEC modeling is given as

d̄k =
1

K1K2

K1−1

∑
k1=0

K2−1

∑
k2=0
|dJ1,J2

k1,k2
(tk)| . (22)

C1,di,k
and C2,di,k

are coefficients to tune the filter sensitivity according to spatial variations of the
B-spline coefficients and data distribution. The model error of the random walk approach for a
B-spline coefficient is proportional to the ionospheric activity, since the higher the VTEC values,
the larger the associated B-spline coefficients as well as the higher is the ionospheric activity. In this
context, the coefficients C1,di,k

are introduced to represent the relative variations of the process noise in
magnitude between the B-spline coefficients. The coefficients C1,di,k

are defined by using an exponential
empirical model as

C1,di,k
= 1 + e

(
1− d̄k
|di,k |

)
(23)
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where the e-function allows the generation of bounded values approaching to a limit value. From the
Equations (19), (20) and (23), a relatively high process noise is assigned to a coefficient which has a
large absolute value. Additionally, a further control on the filter behavior with respect to the data
distribution can locally be accomplished using the B-spline representation. The sensitivity of the
filter to ionosphere observations can be tuned regionally. For instance, the European and the North
American regions have a very dense data distribution. By a proper setting of the process noise of the
B-spline coefficients corresponding to these regions, the filter can be forced to be more sensitive to
these observations without causing a global effect. To this end, the coefficient C2,di,k

is introduced and
defined by

C2,di,k
= e

(
mw ·

Ndi ,k
Ndtotal ,k

)
(24)

where mw is a constant value determined experimentally. The term Ndi ,k stands for the number
of measurements supporting the B-spline coefficient di and it can be obtained, e.g., by counting
the total number of non-zero elements through the corresponding column of the design matrix in
Equation (12). Furthermore, the term Ndtotal ,k is the total number of observations at the epoch tk.
Exemplary illustrations for the maps of the coefficients, C1,di ,k and C2,di ,k with C0,k = 0.0006 are shown
in Figure 3 referring to the time epoch 12:00 UTC, 17 March 2015 (see Section 5.3.1 for the corresponding
VTEC map).

The process noise variance components σ2
br,GPS

, σ2
br,GLO

, σ2
bs

GPS
, and σ2

bs
GLO

for the DCBs in the
Equation (18) are set to constant values defined as

σ2
br,GPS

= Cbr,GPS
, σ2

br,GLO
= Cbr,GLO

,

σ2
bs

GPS
= Cbs

GPS
, σ2

bs
GLO

= Cbs
GLO

(25)

where the constants Cbr,GPS
, Cbr,GLO

, Cbs
GPS

and Cbs
GLO

are defined by conducting tests.

Figure 3. Exemplary process noise parameters; (a) Distribution of the B-spline coefficients on 17 March
2015, 12:00 UTC, and the maps of the corresponding process noise parameters for the coefficients C1,di ,k
(b) and C2,di ,k (c).

4.4. Adaptive Filtering Using Method of Variance-Components (VC) Estimation

Kalman [1] proposed a recursive solution to the problem defined in the Equations (6) and (7).
Following this pioneering study, various authors have re-interpreted the filtering problem from
different perspectives leading to the same set of KF equations, for instance, the maximum likelihood
estimation [60], as a sub-class of the Bayesian estimation [61] and the minimum variance estimation
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(e.g., Jazwinski [62]). The prediction and correction equations that are solutions of the filtering
problem read

β−k = Fk β̂k−1 , (26)

Σ−β,k = Fk Σ̂β,k−1 FT
k + Σw,k , (27)

β̂k = β−k + Kk (yk − Xk β−k ) , (28)

Σ̂β,k = (I−Kk Xk)Σ−β,k , (29)

Kk = Σ−β,k XT
k (Xk Σ−β,k XT

k + Σy,k)
−1 (30)

where Kk is the gain matrix and the index “·−” refers to “predicted” whereas “ ·̂ “ stands for
“estimated” [3,59,62]. The Equations (28) and (29) of the measurement update step can be re-written as

β̂k = Σ̂β,k · (XT
k Σ−1

y,k yk + (Σ−β,k)
−1 β−k ) , (31)

Σ̂β,k =
(

XT
k Σ−1

y,k Xk + (Σ−β,k)
−1
)−1

(32)

by taking into account the matrix identities D−1C(A− BD−1C)−1 = (D−CA−1B)−1CA−1 and (A−
BD−1C)−1 = A−1 + A−1B(D− CA−1B)−1CA−1 (see e.g., Koch [17], Koch [18] and Jazwinski [62]).
Observations from different techniques generally exhibit different characteristics in terms of precision
and accuracy. Therefore, the determination of the measurement covariance matrix should be handled
carefully to provide a reliable estimation of the unknown parameters. Assuming that intra-technique
observations are uncorrelated, Equation (7) can be partitioned into blocks for each of the related
techniques (see e.g., [23,26]). This leads to the solution

β̂k = Σ̂β,k ·
(

p

∑
j=1

XT
yj ,k Σ−1

yj ,k
yyj ,k

+ (Σ−β,k)
−1 β−k

)
(33)

with

Σ̂β,k =

(
p

∑
j=1

XT
yj ,k Σ−1

yj ,k
Xyj ,k + (Σ−β,k)

−1

)−1

(34)

where each group of observation vector yyj ,k
(GPS and GLONASS observations in this study) is defined

by the index j ∈ {1, . . . , p}. Each covariance matrix Σyj ,k of observations of the group j is replaced by
the expression given in Equation (14) to estimate the associated variance components. Accordingly,
the overall set of adaptive filtering equations is given by

β̂k = Σ̂β,k ·

 p

∑
j=1

1
σ2

yj ,k
XT

yj ,k Pyj ,k yyj ,k
+ (Σ−β,k)

−1 β−k

 (35)

with

Σ̂β,k =

 p

∑
j=1

1
σ2

yj ,k
XT

yj ,k Pyj ,k Xyj ,k + (Σ−β,k)
−1

−1

. (36)

Herein the unknown variance component σ2
yj ,k

for each group j is determined via VCE as

σ̂2
yj ,k =

êT
yj ,kPyj ,k êyj ,k

ryj ,k
(37)
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where êyj ,k = yj,k − Xyj,k
β̂k is the residual vector for the observation group j and ryj ,k is the

corresponding partial redundancy defined as

ryj ,k = nj − trace
(

Nyj ,k N−1
k

)
(38)

where Nk is the overall normal equation matrix, i.e., N−1
k = Σ̂β,k and nj is the total number of

observations of group j. The normal equation matrix Nyj ,k for the observation group j is given by

Nyj ,k =
1

σ̂2
yj ,k

XT
yj ,ks Pyj ,k Xyj ,k . (39)

An iterative estimation of the unknown variance components σ2
yj ,k

is carried out until a point

of convergence is reached. The iteration starts from the approximate values σ2,o
yj ,k

of the variance
components. The estimated variance components at the previous epoch tk−1 of the filter are used as
initial values at the current epoch tk, i.e., σ2,o

yj ,k
= σ̂2

yj ,k−1. At each iteration step, the Equations (35)–(37)
are re-executed for the updated values of the variance components.

4.5. Constrained Filtering

Numerous ways to incorporate constraints into the KF have been studied. For a comprehensive
review the reader is referred to [63] and references therein. Here, the focus is on perfect measurements
and the estimate projection methods. The main distinction between the two methods is that the former
one is performed during the measurement update step of the filter whereas the second method uses the
constraints following the measurement update step. The estimate projection method was employed
by [5] in the context of ionosphere VTEC modeling relying on a standard KF implementation referring
to the Equations (28) and (29). Contrarily, in this study, the “perfect measurement” method is carried
out to ensure a more stable KF implementation.

Although the alternative implementation of KF given by the Equations (35) and (36) offers a
faster execution time and a lower memory consumption via the normal equation representation
for large problems, i.e., for a design matrix Xmn with m � n, the filter becomes more vulnerable
to numerical problems such as ill-conditioning and rank deficiency. For instance, data gaps and
an inhomogeneous GNSS data distribution result in unobserved unknown parameters. Moreover,
the observation equations have a linear dependency problem due to the terms including satellite DCBs.
However, the perfect measurement method increases the numerical stability of the filter, since the
method considers the constraints as additional information exploited during the measurement update
step of the filter. It threats constraints as fictitious observations and augments the measurement
model as

yaug,k = Xaug,k βk + eaug,k (40)

where the augmented measurement vector, the design matrix and the error vector are, respectively,
given by

yaug,k =

[
yk

yc,k

]
, Xaug,k =

[
Xk

Xyc ,k

]
, eaug,k =

[
ek
0

]
; (41)

the new augmented measurement covariance matrix reads

Σyaug,k =

[
Σy,k 0

0 Σyc,k

]
(42)

where Σyc,k is a zero matrix by definition, since the constraints are handled as perfect measurements.
However, in order to avoid singularity in practice, Σyc,k is generally replaced by a matrix of very small
numbers, i.e., Σyc ,k = σ2

c I [64]. In this study, σ2
c is set to 10−8 which is defined as small as possible
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by considering the computational precision. The equality constraint equations can be handled in
the measurement model described by the Equations (35) and (36) via considering them as a block
of measurements with a known covariance matrix (see, e.g., [17,65]). In the scope of this study,
the constraint equations introduced for preserving the spherical geometry read

Xcd ,k dk = 0 (43)

where Xcd ,k is a known matrix [28]. Furthermore, a zero mean constraint, which is usually adapted in
the parameter estimation methods employed by the IAACs, is introduced for the DCBs to vanish the
linear dependency in the observation equations. It is given as

XcbGPS ,kbGPS
k = 0

XcbGLO,k
bGLO

k = 0
(44)

where XcbGPS ,k and XcbGLO ,k are known matrices. A simplified notation for a general definition of the
equality constrained equations is defined as

Xyc ,k βk = yc,k . (45)

From the Equations (43) and (44) the design matrix Xyc ,k of the constraint equations for the current
problem reads

Xyc ,k =

Xcd ,k 0 0 0 0
0 0 XcbGPS ,k 0 0
0 0 0 0 XcbGLO ,k

 (46)

and the vector yc,k is given by yc,k = 0.

5. Results and Discussions

5.1. Filter Settings

Analysis centers rely on different sets of GNSS stations selected according to the requirements for
their modeling approaches and the chosen performance criteria. In the presented approach, the list of
available GNSS stations is downloaded and updated every hour. The selected stations are mostly from
the IGS network, which is extended by a few additional stations from the UNAVCO and the EUREF
network to obtain a better geographical coverage.

Data from the GNSS receivers is based on the hourly data blocks provided from GNSS data centers
with a latency of about 1 h. The temporal sampling of the GNSS data is mostly 30 s or less. This allows
for running the filter theoretically with a step size of 30 s. However, high temporal sampling of the
filter results in an increased computational burden and a storage requirement, which can lead to
difficulties for efficiently managing the resources when the model runs in operational mode. Moreover,
VTEC varies slowly in time in a Sun-fixed coordinate system during low and moderate ionospheric
activity. However, a very long filter step size should also be avoided since the filter prediction error
generally grows in line with the filter step size. Accordingly, the filter step size is set to 5 min by taking
the computational load and the Kalman Filter prediction error into account. The estimated target
parameters, related auxiliary data, and the VTEC products generated from the estimated parameters
are stored every 10 min by considering the storage requirements.

The convergence rate of the filter depends on the accuracy of the initial values of the unknown
ionospheric target parameters, their initial covariance matrix and the size of the filter state vector.
The initial values of the B-spline coefficients are computed using the IGS analysis center products to
decrease the convergence rate. The analysis of the estimated covariance matrices and the residuals
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over time shows that the filter state vector is stabilized around 1 h (12 epochs with a filter step size of
5 min) after the initialization of the filter.

5.2. Validation Methods and Data Sets

The quality of the VTEC products derived by executing the developed adaptive filtering approach
is assessed using (1) the dSTEC analysis and (2) altimeter VTEC comparisons. The dSTEC analysis
is a very precise and appropriate method for the validation of VTEC products on areas including
GNSS receivers. The method has been widely preferred for assessments of ionospheric product quality,
for example, see [66–69].

The comparison of the results with altimeter data acquired from the Jason-2/3 missions allows for
a validation of the VTEC maps over oceans. Although the VTEC values obtained from the altimetry
missions are noisy and biased, the method provides an appropriate external validation approach
for qualifying VTEC values over the oceans, and it is one of the fundamental approaches for the
comparison of VTEC products provided by the IGS analysis centers, see e.g., [70,71].

The VTEC products in IONEX format with the labels “igsg”, “uqrg”, “esag”, “jplg” and “codg”
provided by the IAACs, which are respectively IGS, UPC, ESA, JPL and CODE, are used for the
validation of the results. The VTEC maps of IGS, ESA and JPL refer to their final products with a
temporal sampling of 2 h, whereas the product of CODE has a sampling interval of 1 h. Although UPC
has final VTEC products, we consider their rapid solution labeled “uqrg” which has a very high
accuracy and a temporal resolution of 15 min and is one of the best products within the IGS analysis
centers (see, e.g., [70]). The estimated VTEC maps generated using the developed method will be
labeled “othg” in the remainder of the paper. The letters “o”, “t”, “h” and “g” stands for the following
expressions; project "O"PTIMAP, temporal resolution of 10 (“t”en) minutes, “h”igh resolution with
J1 = 5, J2 = 3 and “G”lobal VTEC Maps, respectively. For further information on product generation
at different resolution levels and the corresponding label definitions, we refer to [32,37].

Two data sets referring to different time intervals are selected for the VTEC product generation and
validation. The first data set comprises GNSS data collected during a considerably high ionospheric
activity between 10 February 2015 and 20 April 2015 including the St. Patrick geomagnetic storm
of 17 March 2015. The second set consists of data obtained between 10 August 2017 and 20 October
2017 which show a lower ionosphere activity compared to the data set of 2015 but includes powerful
solar flares and two consecutive Coronal Mass Ejection arrivals disturbing the Earth’s ionosphere
significantly during 6–10 September 2017.

5.3. Comparisons to IGS and IAACs

5.3.1. dSTEC Analysis

The results of the dSTEC analysis are shown in Figure 4 to reveal the performance of the products
according to the varying VTEC activity in different geographical regions. The geographical distribution
of the selected GNSS receivers is illustrated in the panel (a) of Figure 4. The stations used for validation
were selected amongst those which exist in both the 2015 and the 2017 time periods. Moreover,
we searched in all VTEC products of the analysis centers for a set of geographically well-distributed
common stations. Next, we selected GNSS stations either used by all IAACs or are in a very close
distance to a used one. The mean RMS values of the dSTEC variations covering the test periods are
separately computed for each of the sites and the analysis centers and depicted in the panels (b) and
(c) of Figure 4 corresponding to the data sets of 2015 and 2017, respectively. The numbers within the
brackets given in the legends show the average values of the RMS deviations computed from all GPS
receivers for each analysis center; for further information on the computations, we refer to [5].

The average RMS values of “othg” for 2015 and 2017 are 1.62 and 0.85 for the dSTEC analysis,
respectively, whereas the RMS values of the IAACs are varying between 1.64 and 2.33 TECU for 2015
and 0.74 and 1.17 TECU for 2017. The RMS values indicate that the quality of the VTEC product “othg”
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is consistent with those from the other analysis centers. In particular, the average RMS values of “othg”
are in very close agreement with the values of “uqrg” product which has a high temporal resolution.

Figure 4. RMS values from the dSTEC analysis at the GNSS stations depicted in panel (a). The results
refer to the data sets covering the days between (b) DOY 41 and DOY 110 of year 2015 and (c) DOY 222
and DOY 293 of year 2017. The label “othg” stands for the presented approach.

The RMS values of the dSTEC deviations are considerably larger for the GNSS receivers located
around the geomagnetic equator as expected since those regions suffer from poor data coverage as well
as magnitudes of VTEC variations which are very large at regions close to the geomagnetic equator.
Furthermore, the average RMS values for the 2015 data set are almost 2 times larger than for the data
set of 2017. The RMS values clearly reveal the quality degradation of the VTEC products in response
to the higher ionosphere activity. For instance, “othg” has an RMS value of 1.62 TECU for the data set
of 2015 whereas the value drops to 0.85 TECU in 2017. In addition to the high ionospheric activity,
the impact of the geomagnetic storm on 17 March 2015, on VTEC variations can be seen in Figure 5.
The maps cover the days 16–18 March 2015. For instance, VTEC reaches peak values at 18:00 UTC on
17 September compared to the VTEC values at the same time the day before and the day after.
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Figure 5. Global VTEC maps with six hours sampling interval generated by the approach presented in
this study: (a) 16 March 2015, the day before the main phase of the St. Patrick storm (b) 17 March 2015,
the St. Patrick storm day and (c) 18 March 2015, the day after the main phase of the St. Patrick storm.

5.3.2. Altimetry Comparisons

The VTEC measurements acquired from the Jason-2 and Jason-3 missions equipped with dual
frequency altimeters were used to assess the quality of the “othg” solution in comparison with the
products of the other analysis centers. Prior to the performing analysis, the VTEC data from the
altimeter missions were pre-processed to remove outliers and to reduce noise by applying filtering
and smoothing steps. Furthermore, VTEC maps of the analysis centers were interpolated to obtain
VTEC values at points of altimeter observations as explained by [5]. In the comparisons, data from
Jason-2 were used to evaluate the data set of 2015 whereas VTEC data from the Jason-3 mission was
considered for the year 2017.

The RMS deviations with respect to altimeter VTEC values are shown in the panels (a) and (b) of
Figure 6 for the data sets of 2015 and 2017, respectively. The RMS values of the analysis centers range
from 4.4 to 6.7 TECU for the year of 2015 and from 3.3 to 4.5 TECU in 2017. The RMS values of “othg”
solution for the corresponding data sets have values 5.3 and 3.7 TECU. These RMS values are in line
with the results of the other analysis centers. In panel (b), significant increases in the values of RMS
deviations covering DOY 249–251 of September 2017 clearly show the effect of space weather events,
including CMEs and powerful solar flares.
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Figure 6. Comparison of DGFI-TUM’s VTEC values with the IAAC solutions in terms of RMS
deviations. The daily RMS deviations are shown in (a) for the data sets of 2015 and in (b) for the
year of 2017. (a) includes comparisons with respect to the altimeter VTEC data from the Jason-2
mission whereas (b) refers to the data from the Jason-3 mission. The label “othg” stands for the
presented approach.

5.4. Evaluation of the Proposed Approach

This section is devoted to scrutinizing individual contributions of each developed method,
including the VCE-based adaptation and the process noise definition, to the performance of the overall
KF algorithm. The data set of 2015, which comes with challenging ionosphere conditions, is considered
in the evaluations. Several test cases with different filter settings, summarized in Table 1, were designed
and the KF was carried out for each case to reveal the model performance. The test case with the label
“othg” in Table 1 refers to the final version of the presented adaptive approach.

Table 1. Test cases with different KF settings used in the model evaluations.

Product
Label VCE Process Noise

Model
Test

Definition
Product Quality

(in TECU)

othg Enabled Enabled presented approach
RMSdSTEC,OTHG = 1.62,

RMSALT,OTHG = 5.3

TC1 Disabled Disabled

σ2
yGPS,k = σ2

yGPS,NOM
,

σ2
yGLO

= σ2
yGLO,NOM

,

σ2
di ,k

= σ2
dNOM

RMSdSTEC,TC1 = 1.66,
RMSALT,TC1 = 5.4

TC2 Disabled Enabled

σ2
yGPS,k = σ2

yGPS,NOM
,

σ2
yGLO,k = σ2

yGLO,NOM
,

PyGPS,k = PyGLO,k = I
RMSdSTEC,TC2 = 1.94,

RMSALT,TC2 = 5.9

TC3 Disabled Enabled

σ2
yGPS,k = σ2

yGLO,NOM
,

σ2
yGLO,k = σ2

yGLO,NOM

RMSdSTEC,TC3 = 1.75,
RMSALT,TC3 = 5.5

TC4 Enabled Disabled σ2
di ,k

= σ2
dNOM

RMSdSTEC,TC4 = 1.69,
RMSALT,TC4 = 5.4

TC5 Enabled Enabled C1,k = C2,k = 1 in Equation (20)
RMSdSTEC,TC5 = 1.76,

RMSALT,TC5 = 5.6
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Firstly, one drawback of the standard KF is the requirement for the prior knowledge of the
process noise and the measurement error covariance matrices. In common practice, these matrices
are defined by conducting multiple test runs of the filter with different candidate values of the
variances defining the covariance matrices. To simulate this situation, the nominal values σ2

yGPS,NOM
,

σ2
yGLO,NOM

for the corresponding variance components in Equation (15) and the constant nominal
value σ2

dNOM
for the process noise variance of the B-spline coefficients in Equation (19) were manually

selected. As it is expected, the results of the altimetry and the dSTEC comparisons for the products
derived by the proposed approach with label “othg” and the nominal solution, labeled “TC1” in
Table 1, are approximately in line. The RMS values for the altimetry and the dSTEC comparisons
of the nominal solution are respectively RMSALT,TC1 = 5.4 and RMSdSTEC,TC1 = 1.66 TECU. These
results show that the “othg” solution exhibits about 2% better performance compared to the nominal
solution “TC1”. The manual computation procedure, which is what the nominal solution relies on,
is time-consuming since it requires executing the filter multiple times to find out the optimal values
defining the measurement and process noise covariance matrices. Moreover, it is not guaranteed that
the nominal values are valid for any given time since they are computed using a small data set in
2015. However, the presented approach “othg” takes the variances into account in an adaptive way by
computing them during the filter run-time. This assures that the values of the variances are always
up-to date and sensitive to the changes in errors of GNSS measurements as well as temporal ionospheric
variations. For example, the nominal values of the GPS and GLONASS variance components computed
using the data set of 2015 are approximately two times larger than the ones computed using the data
set of 2017. The data set of 2015 includes considerably larger VTEC variations in magnitude due to
high VTEC activity which can significantly degrade the quality of GNSS measurements. The adaptive
filter approach successfully handles this issue by assigning larger values to the error covariance matrix
of GNSS measurements for the data set of 2015 compared to those computed for the data set of 2017.

Adaptive filters generally allow flexible updates of the underlying model parameters. For instance,
in case that the computation of the weight matrices in Equation (15) defined by (16) is replaced by
another model, the corresponding value of the nominal variances have to be re-computed in a standard
KF. However, the adaptive filtering approach does not require such a time consuming effort. The effect
of an inappropriate variance definition to the filter performance is simulated in the test scenario labeled
“TC2” in Table 1. The weight matrices PyGPS,k and PyGLO,k in Equation (15) were set to identity matrices
but the nominal values of the corresponding variance components are kept as they were computed
in “TC1”. The RMS values for the altimetry and dSTEC comparisons for the test case “TC2” are
RMSALT,TC2 = 5.9 TECU and RMSdSTEC,TC2 = 1.94 TECU. The values respectively exhibit about 11%
and 17% performance degradation compared to those of the “othg”.

To compute ionosphere target parameters reliably, data sets from different sources (e.g., GPS and
GLONASS in this study) are required to be handled carefully by means of an appropriate selection
of relative weights. The presented adaptive approach deals with this issue by computing different
variance components for the observations from each of the constellations. The test case labeled “TC3”
is designed to show a performance degradation in case of improper assignment of weights to the
observation groups. A unique value, σ2

yGLO,NOM
obtained from the test case “TC1”, was assigned

to the variance components of GPS and GLONASS observations to conduct the simulation labeled
“TC3” in Table 1. The RMS values for the altimetry and dSTEC comparisons for the test case are
RMSALT,TC3 = 5.5 TECU and RMSdSTEC,TC3 = 1.75 TECU. The RMS values show about 4% and 8%
performance degradation compared to the corresponding RMS values of the “othg” solution.

The final evaluations are dedicated to assess the effectiveness of the process noise definition given
by the Equations (19) and (20) for the B-spline coefficients. In this context, the test case labeled “TC4”
in Table 1 is considered. The test scenario refers to the constant nominal value σ2

dNOM
definition for the

process noise variances of the B-spline coefficients. The RMS values of the dSTEC analysis and the
altimetry comparisons for the test case are illustrated in the panels (a) and (b) of Figure 7, respectively.
The average RMS values shown in the legend of the figure refer to RMSdSTEC,TC4 = 1.69 TECU and
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RMSALT,TC4 = 5.4 TECU for the test case “TC4”. The RMS values exhibit about 4% and 2% performance
degradation compared to those of the “othg” solution. The RMS values of the dSTEC analysis at the
test stations depicted in Figure 7a clearly show that the “othg” solution relying on the signal and
data-adaptive process noise definition outperforms the nominal solution over the continental area.
A closer look at the RMS values of the dSTEC analysis reveals that the improvements are considerably
larger for the receivers at the sites NIUM, KOKB, BOGT, YKRO, COCO, GUAM which are located
at low latitudes closer to the geomagnetic equator. These regions generally exhibit very high VTEC
activity during the day due to the Equatorial Ionization Anomaly (EIA). The daily RMS values of the
altimetry analysis illustrated in Figure 7b indicate that the “othg” solution performs slightly better
than the nominal solution for the entire test period of 2015 over oceanic areas. Notable differences
between the RMS values of the two solutions can be observed for the days ranging from DOY-72 to
DOY-76, which are characterized by very high VTEC activity. During these days, especially the Saint
Patrick storm day (DOY-76), the “othg” solution significantly outperforms the nominal solution.

Furthermore, in order to test the sub-parameters of the empirical model defining the process noise
variances, a test run of the filter, which is labeled “TC5” in Table 1, was conducted by only considering
the C0,k coefficient in Equation (20). The coefficients C1,k and C2,k are set to 1, which means omitting the
assumption that the temporal uncertainties of the B-spline coefficients are correlated to their relative
variations. The RMS values for the altimetry and dSTEC comparisons are RMSALT,TC5 = 5.6 TECU
and RMSdSTEC,TC5 = 1.76 TECU, where the values show about 6% and 9% performance degradation,
respectively, compared to the RMS values of the “othg” solution. Considering that the process noise
variance behaves like a weighting factor, the results indicate that the performance of the estimator is
significantly sensitive to the relative variations of the B-spline coefficients, which are effectively taken
into account by the “othg” solution.

Figure 7. Comparison of “othg” and “TC4” solutions in terms of RMS deviations; (a) RMS values from
the dSTEC analysis at the GNSS stations depicted in panel (a) of Figure 4; (b) daily RMS deviations
with respect to the altimeter VTEC data from the Jason-2 mission. The results refer to the data set
covering the days between DOY 42 and DOY 110 of year 2015.
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6. Conclusions

Adaptive approaches allowing for tuning of model uncertainties in run-time are introduced into
the Kalman Filter for global VTEC modeling relying on the B-spline representation. The representation
of the global VTEC signal using a series expansion of B-spline functions allows proper handling of
regional signal variations as well as the heterogeneous data distribution. Incorporating B-splines
into a recursive filter results in a very powerful data assimilation framework for ultra-rapid and
(near)real-time VTEC modeling. In this regard, the study by [5], which includes the basic recursive
algorithms for VTEC product generation using B-splines, was comprehensively extended for adaptive
estimation of the unknown ionospheric target parameters.

The adaptive algorithm, incorporated into the KF implementation, makes use of the VCE
estimation approach to tune the quality of GPS and GLONASS observations by estimating
proper scaling factors (variance components) for each type of observation group during the filter
run-time. The adaptive KF approach leads to the construction of the measurement covariance
matrix automatically, whereas the standard KF requires manually conducting multiple tests for the
identification of the covariance matrix. The equality constraint equations, which are introduced
to preserve the spherical geometry of the global VTEC distribution and DCB related restrictions,
were inserted into the filter by considering the constraints as perfect measurements.

We also showed that there are very high morphological similarities between the global VTEC
distribution and the corresponding B-spline coefficients, which allows deducing physical interpretation
directly from the magnitude and the distribution of B-spline coefficients. By exploiting this advantage
of the B-spline representation, an empirical model to define the process noise of the filter was developed.
The process noise represents the uncertainty of the KF time update (prediction) step; therefore, it plays
an essential role in the performance of the filter. In this way, value of the process noise for each
coefficient is tuned in an adaptive manner during the course of time according to the structure of the
B-spline coefficients.

Furthermore, the hourly block of raw measurements acquired from GPS and GLONASS receivers
are provided by IGS’s data centers with a latency of 1 h. The ionosphere measurements are obtained
from the combination of raw GNSS pseudorange and carrier-phase measurements by applying the
method of geometry-free linear combinations.

The performance of the implemented algorithms on VTEC modeling is verified by carrying out
the dSTEC analysis and altimetry VTEC comparisons, which shows the generated VTEC products are
consistent and in good agreement with the products of the other analysis centers.

The proposed adaptive KF is applied to groups of measurements from the GPS and GLONASS
constellations. The approach as well as the data pre-processing module will be extended in the near
future to handle the additional constellations, including, e.g., GALILEO and BeiDou. VTEC maps
with label “othg”, derived using the presented approach, are referred to as ultra-rapid products due
to latency in the acquisition of GNSS hourly data from the IGS data centers. However, the adaptive
filtering algorithm can be directly used in a real-time modeling study. Therefore, the modeling
approach including the data pre-processing will be extended to compute real-time global VTEC as
a further step. Moreover, the VCE approach was applied to the measurement covariance matrix.
Further studies will be conducted to extend the algorithm for self-tuning of the predicted covariance
matrix of the unknown state vector in the sense of VCE.
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