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Abstract
Purpose Intraoperative optical coherence tomography (iOCT) was recently introduced as a new modality for ophthalmic
surgeries. It provides real-time cross-sectional information at a very high resolution. However, properly positioning the scan
location during surgery is cumbersome and time-consuming, as a surgeon needs both his hands for surgery. The goal of the
present study is to present a method to automatically position an iOCT scan on an anatomy of interest in the context of anterior
segment surgeries.
Methods First, a voice recognition algorithm using a context-free grammar is used to obtain the desired pose from the
surgeon. Then, the limbus circle is detected in the microscope image and the iOCT scan is placed accordingly in the X–Y
plane. Next, an iOCT sweep in Z direction is conducted and the scan is placed to centre the topmost structure. Finally, the
position is fine-tuned using semantic segmentation and a rule-based system.
Results The logic to position the scan location on various anatomies was evaluated on ex vivo porcine eyes (10 eyes for
corneal apex and 7 eyes for cornea, sclera and iris). The mean euclidean distances (± standard deviation) was 76.7 (± 59.2)
pixels and 0.298 (± 0.229)mm. The mean execution time (± standard deviation) in seconds for the four anatomies was 15
(± 1.2). The scans have a size of 1024 by 1024 pixels. The method was implemented on a Carl Zeiss OPMI LUMERA 700
with RESCAN 700.
Conclusion The present study introduces a method to fully automatically position an iOCT scanner. Providing the possibility
of changing the OCT scan location via voice commands removes the burden of manual device manipulation from surgeons.
This in turn allows them to keep their focus on the surgical task at hand and therefore increase the acceptance of iOCT in the
operating room.

Keywords Automatic positioning · Intraoperative optical coherence tomography · Computer-aided ophthalmic surgery

Introduction

Recently, intraoperative optical coherence tomography
(iOCT) has been introduced as a new modality to assist eye
surgeons during ophthalmic surgery. It provides real-time
cross-sectional information at the required high resolution.
Furthermore, iOCT is non-invasive and can be coupled with
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existing operating microscopes. This allows for safer treat-
ment and better outcomes for surgeries in both the anterior
and posterior segments of the eye. Several studies have
pointed out the potential clinical impact of iOCT for vari-
ous anterior segment surgeries, especially for glaucoma and
cornea surgeries [2,4]. Despite these possibilities, the accep-
tance of iOCT in current clinical practice remains low. One
of the reasons is the difficulty in interacting with the scanner
during procedures. The surgeon needs both his hands for the
surgery. Hence, the only options to interact with the scanner
are via foot control pedals or having an additional staff mem-
ber to operate the scanner from a control screen. The second
option would require additional staff in the operating room,
whereas the first option is cumbersome and results in a steep
learning curve.

Properly adjusting the acquisition position of a scanner
is the first step required in order to utilize it to its full
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potential during a surgery. It is also the first step required
for most algorithms in the domain of computer-aided inter-
ventions. However, it receives very little attention in the
literature. For some scanners, such as magnetic resonance
imaging or computed tomography, this is understandable as
their omnidirectional nature renders the problem superflu-
ous. For other domains, such as freehand ultrasound, this
problem is necessarily delegated to the operator. However,
even many robotic ultrasound applications require an initial
manual positioning. Automizing the positioning step would
enable a new generation of algorithmswith an unprecedented
level of autonomy. This can help make healthcare systems
more future-proof, as steps currently executed by additional
staff can be autonomously executed by an algorithm. In this
work, an automated positioning system is proposed for an
intraoperative optical coherence tomography device in the
context of the anterior segment (AS) of the eye. The sys-
tem not only positions the iOCT scan, but also focuses the
microscope on the desired location, to obtain the best image
quality.

By providing an automated positioning system based
on novel deep learning techniques and domain knowledge,
and by integrating said positioning system into a high-level
application logic using voice control, this paper attempts to
overcome the previously mentioned issues. It proposes an
intelligent iOCT assistant and therefore a novel interaction
paradigm for iOCT.The surgeon issues high-level commands
using his voice and the system, powered by artificial intel-
ligence algorithms executes these commands autonomously.
This is demonstrated for the example of AS surgeries, but it
can be easily extended to other ophthalmic surgery-related
applications. Themethodwas tested using aCarl ZeissOPMI
LUMERA 700with RESCAN 700 (Carl ZeissMeditec, Ger-
many). Experiments were carried out on ex vivo pig eyes.

Related work

A method [17] was proposed that deals with the positioning
problem from the augmented reality viewpoint. The method
helps a technician to properly place a C-arm by visualizing
the desired pose in a head-mounted display. However, in this
work the desired positions are not automatically computed,
but rather manually determined by a technician.

Assuming a proper initial pose, there have been several
works on positioning in the context of robotic ultrasound.
One study [15] emphasizes the general importance of proper
positioning in ultrasound-based applications. Li et al. pre-
sented a collaborative robotic ultrasound system with the
capability to track kidney stones during breathing [10].
Huang et al. use a depth camera to scan a local plane around
the scanning path and obtain the normal direction to set the
optimal probe orientation for a robotic ultrasound system [7].

A visual servoingmethodwas proposed to ideally position an
ultrasound probe in the in-plane direction in unknown and/or
changing environments based on an ultrasound confidence
map [1]. Göbl et al. used pre-operative computer tomogra-
phy scans to determine the best ultrasound probe position and
orientation to scan the liver through the rib cage [5].However,
they only calculate a position and do not actually carry out the
positioning task. A method conducting a fully autonomous
scan of the liver using a robotic ultrasound system was put
forward [11]. The method is, however, limited to one spe-
cific organ. A feasibility study was conducted in [6]. In this
work, desired scan trajectories were marked on a magnetic
resonance imaging scan, and then, a depth camera coupled
with an ultrasound to magnetic resonance imaging registra-
tion was used to guide a robot to move to the patient and
autonomously conduct the scans. However, the desired scan
trajectories still had to be selected manually.

The most popular network architecture for semantic seg-
mentation is the U-net architecture [12]. It still achieves
state-of-the-art performance for a wide variety of medical
segmentation tasks today [8]. It was also applied to segmen-
tation in the context of the AS of the eye [13]. The algorithm
from [13] is also used as underlying segmentation algorithm
for the present work.

Severalmethods for computer-aidedASsurgeryhavebeen
proposed. One method [14] proposes a complete augmented
reality guidance system for big-bubble deep anterior lamellar
keratoplasty (DALK) using iOCT. Another group developed
a robot [3] for DALK assistance.

Background knowledge

Optical coherence tomography

An iOCT scan S is a matrix with i rows and j columns. The
pixel at row i and column j is denoted as S[i, j]. Row i is
denoted as S[i, :] and column j as S[:, j]. The maximum
number of rows and columns are denoted as imax and jmax.

An entire scan S is called a B-scan. A B-scan consists of
several A-scans, namely the columns of S.

In this work, a spectral domain OCT is used. It acquires
A-scans by emitting laser beams of different wavelengths
towards the imaged tissue. The beams pass a semi-reflective
mirror, and half of the beams get sent towards the tissue,
whereas the other half is sent on a reference path. Both halves
rejoin at a detector, where a reconstruction is computed based
on the interference pattern. Then the laser emitter is moved
to acquire the next A-scan. The imaged depth is controlled
by modifying the length of the reference path, by moving
a mirror at its end using a so-called reference arm. This is
shown in Fig. 1.
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Fig. 1 Schematic overview over a spectral domain intraoperative opti-
cal coherence tomography device

The following conventions are used throughout the paper.
The top left pixel of a B-scan is the origin in pixel space,
with indices increasing towards the bottom right corner. The
plane orthogonal to the row direction is denoted as X–Y
plane, whereas the row direction is denoted as Z direction.
The direction towards decreasing column indices is denoted
as left direction, whereas the direction towards increas-
ing column indices is denoted as right direction. Similar,
the direction towards increasing row indices is denoted as
top direction, whereas the direction towards decreasing row
indices is denoted as bottom direction. iOCT scans contain
a large amount of speckle noise due to forward and back-
ward scattering of the laser directed towards the anatomy.
Currently available iOCT devices are integrated into surgical
microscopes, as both devices can share the same optical path.
By default, the two devices are calibrated together, allowing
to compute locations in X–Y plane based on the microscope
image and position the iOCT accordingly. An iOCT has four
programmatically controllable degrees of freedom. These are
three translation directions and the rotation around Z direc-
tion.

Anterior segment anatomy

The AS consists of three main anatomies: the sclera, the iris
and the cornea. The iris acts as an aperture for the lens. The

cornea, besides refracting light, acts as a transparent shield
for the iris and lens. The highest point of the cornea is called
the corneal apex. The sclera is the white, outer protective
layer of the eye. The border between the cornea and the sclera
is called the limbus. Due to its shape, it is also called limbus
circle. The part of the cornea close to the limbus is called the
peripheral cornea, whereas the centre of the cornea is called
the central cornea. The area enclosed by iris and cornea is
called the anterior chamber. The anatomical relation between
the three anatomies is depicted in Fig. 3a.

Clinically relevant poses

There are a number of clinically relevant positions in the
AS. For DALK, an incision into the peripheral cornea is
made with a needle. Then, a tunnel is created by pushing
the needle towards the central cornea. As soon as the needle
reaches a suitable point, air is injected. iOCT allows to mon-
itor the current depth of the needle in the cornea, to ensure
proper treatment. Therefore, two positions are of interest:
the peripheral cornea and the central cornea. The central
cornea can be approximated by the corneal apex. For cataract
surgery, an incision is made close to the limbus to enter the
anterior chamber. Therefore, the limbus is one pose of inter-
est. Many glaucoma treatments, such as trabeculectomy or
canaloplasty, require operating at the intersection of iris and
sclera. For example during trabeculectomy, a tunnel-shaped
implant is implanted between the iris and the sclera. In order
to proper place the implant and asses its position, positioning
on the sclera and the iris is of interest.

The proposed method consists of three main steps, which
are described below. The desired pose is input via voice com-
mands. Then, the approximate location in the X–Y plane is
determined by detecting the limbus circle in the microscope
image. Next, the reference arm of the iOCT is positioned
such that the first anatomical structure at the current X–Y
location is in the middle of the B-scan. Next, the position is
fine-tuned using a rule-based system and a semantic segmen-
tation of the AS. An overview over all the steps involved is
given in Fig. 2.

Voice commands

The surgeon needs both his hands for surgery. Therefore,
voice commands are used to obtain the desired pose from
him.

The positioning system is able to focus on five anatomies,
namely iris, sclera, cornea and apex of the cornea and limbus.
The lens was not included, since the systemwas evaluated on
ex vivo pig eyes, where the lens is not properly visible. The
apex of the cornea is uniquely defined. All other anatomies
span around the entire limbus circle, and hence, there is a
multitude of scan locations displaying the target anatomy.
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Fig. 2 Overview over the proposed method

Fig. 3 a Anatomy of the anterior segment as seen with an iOCT. This
image shows multiple scans compounded together for a larger field of
view. The central cornea is not visible. The scans were obtained from
an ex vivo pig eye; hence, the lens is not properly visible. The con-
trast of the displayed iOCT image was increased for better visibility. b

Schematic drawing of the virtual clock superimposed onto the limbus
circle. For visualization purposes, only 3, 6, 9 and 12 o’clock are shown.
The turquoise arrow indicates the position of the iOCT scan. Hence, the
iOCT is placed at 3 o’clock in the image. The image shows an ex vivo
pig eye

From a surgical point of view, these positions are equivalent.
However, surgeons have their own preference, as to which
side of the limbus theyoperate on.Therefore, a virtual clock is
superimposed onto the limbus circle. Then a position consists
of an anatomy and the position on that virtual clock (e.g. 3
o’clock iris). This is shown in Fig. 3b.

This structure is encoded using the following context-free
grammar:

<Anatomy> = i r i s | cornea | sclera | limbus
<Position> = (one | two | three | four | five |

six | seven | eight | nine | ten |
eleven | twelve) o’clock

<Commands> = Move to the (<Position> <Anatomy> |
apex of cornea)

where | means or and <> is used to define a keyword. The
voice recognition was implemented using Microsoft Speech
API version 4.5.1

1 Microsoft Corporation, Redmond, Washington, USA.

Limbus tracking

The first step of the positioning algorithm is to place the
iOCT scan at the approximately correct location in the X–Y
plane. The microscope image of the operating microscope
is used to find the desired location along the limbus cir-
cle. A proprietary limbus tracking algorithm2 is used to
find the limbus circle in the microscope image. If the lim-
bus circle is not visible, the positioning is terminated, as
this indicates that the AS is not imaged. Else, the lim-
bus circle is divided into clock segments as described in
“Voice commands” section. Then, if the target anatomy
is not the apex of the cornea, the iOCT scan is placed
on the corresponding segments. The scan is placed such
that the middle of the B-scan is at the limbus circle with
the right direction pointing towards the limbus centre. If
the target anatomy is the apex of the cornea, the scan
location marker is placed at the centre of the limbus cir-
cle.

2 Carl Zeiss Meditec, Germany.
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Fig. 4 Overview over the algorithm to extract the first row containing structure in the entire OCT reference arm range

Finding the appropriate location in Z direction

The next step is to find the topmost anatomical structure A1

located at the current X–Y position of the iOCT scan and then
subsequently position the reference arm such that A1 appears
in the middle row of the resulting B-scan. An overview over
the method is depicted in Fig. 4.

First, a compounded frame Fc is created by conducting a
sweep over the entire reference arm range of the iOCT device
and compounding the individual frames in Z direction. In
case of an overlap, the overlapped regions are averaged. The
goal is to find the topmost row i ′ of Fc which images a part
of A1.

Since not necessarily all columns of i ′ contain a structure,
Fc is partitioned into three equal sized parts F

q
c , q = 1, 2, 3,

where Fq
c = Fc[:, (q−1)·( jmax/3) : q·( jmax/3)]. Then, each

Fq
c is reduced to one value per row, namely themean intensity

for that row Fq
c [i, 0] = mean(Fq

c [i, :]), i = 0 . . . imax, q =
1, 2, 3. A new frame F ′

c with one column is created where
F ′
c[i, 0] = max(F1

c [i, 0], F2
c [i, 0], F3

c [i, 0]), i = 0 . . . imax.
Next, Otsu’s thresholding method [9] is applied to F ′

c.
Then i ′ is assumed to be the first row of F ′

c whose value is
above the Otsu threshold.

i ′ = arg mini F
′
c[i, 0], subject to F ′

c[i, 0] ≥ threshotsu (1)

where threshotsu is the threshold returned by Otsu’s method.
Otsu’s method assumes that the pixel intensities are gener-
ated by two distribution: one belonging to background (i.e.
noise) and the other one to foreground (i.e. anatomy). The
Otsu threshold is then the threshold that achieves the best
separation of the two distributions. In iOCT scans, anatom-
ical structures have higher intensity than noise, and hence,
the class corresponding to intensities above the Otsu thresh-
old is assumed to contain anatomical structures. If the largest
intensity in F ′

c is lower than an empirically determined value
of 39, then no structure can be found for the entire reference
arm range. In this case, the algorithm returns without finding
a result and the positioning is terminated.

Finally, the microscope head is moved such that i ′ is as
close to the middle of the reference arm range as possible

and the reference arm is subsequently moved, such that i ′
is in the middle of the resulting B-scan. Since the middle
of the reference arm range is where the optical focus of the
microscope lies, this results in the A1 being in optical focus.
Furthermore, the iOCT imagequality is betterwhen in optical
focus.

Anterior segment segmentation

After finding the appropriate location in Z direction, the
iOCT device is positioned at this location. In order to fine-
tune the position, a semantic segmentation of the iOCT
B-scan is employed. This is based on a previous work [13].
The network architecture is a slight modification of the U-net
architecture [12]. The input is an iOCT scan of the AS. The
output are probability maps for four classes: cornea, sclera,
iris and noise. The input scans are resized to a size of 384 by
384 pixels. The method was developed on ex vivo pig eyes.

Rule-based positioning

The final step of the method is a rule-based positioning
logic to fine-tune the current location. The positioning logic
receives as input the output of the AS segmentation for the
classes iris, sclera and cornea. The probability maps are
thresholded such that probabilities above 0.5 are mapped to
one (anatomy) and probabilities below are mapped to zero
(no anatomy). The output is an offset to the scan location
and the reference arm. The logic is Markovian. Three steps
are executed, until the final position is reached. Two differ-
ent algorithms are executed, depending on whether the target
anatomy is the apex of the cornea or not.

Apex of cornea

The goal is to reach the topmost point of the cornea. First, the
scan pattern is changed from single line to cross (i.e. two per-
pendicular scans who intersect in the middle of the B-scan).
The topmost point of the cornea in the corresponding seg-
mentation mask is obtained. Then, the scan location marker

123



786 International Journal of Computer Assisted Radiology and Surgery (2020) 15:781–789

Fig. 5 Overview over the rule-based positioning logic if the target is
not the apex of cornea. First, the iOCT scan is segmented (a). Then a
pre-processing step is applied to extract the centroid of theCSclera (green
point), the CIris(bluepoint) and topCornea, bottomCornea, leftCornea and

rightCornea (b). Next, the position is classified into one of the six classes,
based on the extracted features (c). Finally, a displacement depending on
the class and target anatomy is looked up. The contrast of the displayed
iOCT images was increased for better visibility

is moved such that the point is in the middle of the resulting
B-scan. Furthermore, the reference arm is moved such that
this point is at the top third of the resulting B-scan. The next
acquired B-scan will be the other scan from the cross pattern.

Other anatomies

There are three steps involved. First, a pre-processing step
is applied on the segmentation masks to extract the necessary
features. Then, the current position is classified into one of
the six classes, based on the previously extracted features.
Finally, a displacement is retrieved based on the class and
the target anatomy.
Pre-processing The goal of the pre-processing step is to
extract meaningful quantities from the segmentation masks
for subsequent classification.
First, a contour extraction mechanism [16] is applied to the
segmentation masks of the iris and sclera. The centroid of
the extracted contours are computed and denoted asCIris and
CSclera, respectively. If no contour is found, the correspond-
ing values are set to (−1,−1).
Second, the extent of the cornea mask is detected. There-
fore, the topmost and bottommost rows and leftmost and
rightmost columns containing a cornea denoted as topCornea,
bottomCornea, leftCornea and rightCornea, respectively. Due to
the positioning on the limbus, leftCornea is the column farthest
away from the limbus centre. The quantities are extracted as
follows. First, a vector r is built. r [i] is one, if I [i, :] con-
tains more than eight pixels predicted to be cornea and zero
else. I refers to the iOCT B-scan. Then r is partitioned into
groups of five successive rows, starting from top. topCornea

is assumed to be the middle row of the first group starting
from top that has at least one nonzero entry in r . If no such
group is found, then topCornea is set to −1. If topCornea is set
to −1, then bottomCornea, leftCornea and rightCornea are also
set to −1.

Else, bottomCornea is assumed to be the middle of the first
group after the group belonging to topCornea for which the
sum of nonzero entries in ri for the current group and the
previous group is less than five. If no such entry is detected,
then bottomCornea is assigned to the last row of the scan.

leftCornea is the leftmost A-scan containing more than five
pixels predicted to be cornea. If no such A-scan exists, then
leftCornea and rightCornea are set to −1.

rightCornea is the rightmost A-scan containing more than
five pixels predicted to be cornea.

The partitioning in groups of five is done due to errors
in the segmentation for low-quality iOCT scans. In this case,
the segmentation yields holes in the predicted cornea. Reduc-
ing the granularity of the pre-processing allows for greater
robustness against these holes.

Position classification The multitude of potential posi-
tions is represented by six representative classes. Examples
of these are shown in Fig. 5c. The following set of rules is
used to classify the current position into one of the six classes.

– Position 1: CIris �= (−1,−1) and CSclera = (−1,−1)

– Position 2: CSclera �= (−1,−1) and CIris = (−1,−1)

– Position 3: bottomCornea < 0.9 · imax

123



International Journal of Computer Assisted Radiology and Surgery (2020) 15:781–789 787

Fig. 6 Displacements depending on the target anatomy and the result
of the position classification. The displacements are represented by a
vector (i, j), where i is the displacement in row direction and j is the
displacement in column direction. All units are in pixels. The coloured

rectangles in the first row indicate in which order the rules for the posi-
tion classification are evaluated depending on the target anatomy. The
different colours represent the different target anatomies: blue for iris,
green for sclera, orange for limbus and purple for cornea

– Position 4: topCornea > 0.8 · imax and bottomCornea ≤
0.9 · imax

– Position 5: leftCornea > 0.5 · jmax and topCornea ≤
0.8 and bottomCornea ≤ 0.9 · imax

– Position 6: leftCornea < 0.1 · jmax and topCornea ≤
0.8 and bottomCornea ≤ 0.9 · imax

The rules are not exclusive. Hence, they are checked in dif-
ferent orders depending on the target anatomy. The position
is classified according to the first rule that evaluates posi-
tively. The evaluation order depending on the target anatomy
is shown in Fig. 6.

Displacements The final step of the positioning logic is to
look up and execute the displacements corresponding to the
position class and the target anatomy. If none of the rules was
evaluated positively, then a random displacement is returned.
The displacements are shown in Fig. 6. The displacements
are computed in pixel units. Then, they are transformed into
millimetres and applied as an offset to the program control-
ling the iOCT.

Results

The method was evaluated on ex vivo pig eyes. The logic for
moving to the apex of the cornea was evaluated on ten pig
eyes, whereas the logic to position on the other anatomies
was evaluated using seven pig eyes. The starting point was
a random location. Before randomly positioning the scan,
the microscope head was moved such that the anatomy of
interest was in the range of the scanner.

Ground truths were manually obtained by labelling the
apex of the cornea A′

Cornea, and segmenting iris, cornea
and sclera. Then, the centroids C ′

Iris, C
′
Cornea, C

′
Sclera of the

ground-truth segmentation masks were calculated. Further-
more, the limbus was manually marked as the line dividing
cornea and sclera. Segmentations were done on the final B-
scan. The B-scans have a size of 1024 by 1024 pixels and
cover 2.8mm in Z and 5mm in the X direction.

The euclidean distance between C ′
Iris, C

′
Cornea, C

′
Sclera,

A′
Cornea and the middle of the scan is depicted in Fig. 7. As

can be seen, the distance for sclera and cornea are higher than
those for iris and apex. This is because for cornea, the posi-
tion is not optimized by centring the centroid, but rather based
on the topCornea, leftCornea, rightCornea and bottomCornea. The
error for the sclera is a higher, due to its large extent. The
sclera is reasonably centred after three steps of the fine-
tuning. However, during each step more parts of the sclera
become visible, and hence, the centroid’s location is contin-
uously changing. For the limbus, it is difficult to give a single
desired location. Hence, no euclidean error was computed.
Instead, it was only evaluated whether the limbus line was
in the desired region of the image. Positioning on the limbus
is important to prepare an access to the anterior chamber.
Therefore, the limbus needs to be in the bottom half of the
scan. Furthermore, in order to see the tool approaching, it is
necessary that the limbus is located at the right 80% of the
scan. This was true for each test case.

The execution time of the positioning logic is shown in
Fig. 8. With an average of 15s, the execution time is the
biggest downside of the proposed method.

Discussion

This paper presented an automated positioning framework
for iOCT in the context of AS surgeries. The framework
encodes desired poses in a context-free grammar to allow for
a natural voice interface. Then, classic computer vision tech-
niques are utilized to find an approximate position. Finally,

123



788 International Journal of Computer Assisted Radiology and Surgery (2020) 15:781–789

Fig. 7 Euclidean distance between the scan location marker returned
by the algorithm and the desired scan location marker position in pixels
(a) and millimetres (b) for iris, sclera, cornea and apex of cornea. The

slight differences in the relative heights between a and b are due to the
anisotropic resolution of the iOCT scans

Fig. 8 Execution time in
seconds for the positioning logic

a rule-based system operating on the output of a semantic
segmentation is used to obtain the final position.

The method can be plugged before existing algorithms,
allowing for a new level of autonomy. Furthermore, the
proposed paradigmof combining voice recognitionwith con-
textual artificial intelligence has the potential to improve the
acceptance of iOCT in clinical practice. The main downside
of the proposed method is the execution time. With an aver-
age of 15s, it is too high for constant use throughout a surgery.
However, it is still acceptable for initial positioning during
the start of a surgery and occasional repositioning during new
phases of a surgery.

A considerable portion of the long execution time is due to
the limitation in speed of stepper motors in the system. These
motors are responsible for themovement of the reference arm
and the microscope head in current microscopes equipped
with OCT. Since the movement of these stepper motors are
not synchronized with the internal interferometer, acquiring
OCT B-scans while the reference arm is moving introduces

artefacts that affect computer vision algorithms negatively.
In order to guarantee artefact-free frames, the next scan after
a completed motion needs to be skipped, effectively halving
the frame rate. During the initial search to find the approx-
imate Z location, a large frame is assembled covering the
entire 35 mm range of the reference arm. This requires con-
stant starting and stopping of themotors and skipping frames.
The motor movements associated with this phase alone take
between 5.2 and 6.5s depending on the starting position. The
movement required to place a detected structure in the opti-
cal focus takes up to 3.8s. Hence, an applicable solution to
reduce the execution time is to use fastermotors or alternative
optics. Several algorithmic improvements can also be incor-
porated to reduce the required mechanical movements. One
solution is to limit the search range when looking for an ini-
tial Z location. The initial execution of the method could be
done using the full reference arm range, whereas subsequent
executions could use a reduced range as the scanner would
already be approximately positioned. Another solution is to
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change the logic for finding an approximate Z position. The
current logic builds a large frame covering the entire ref-
erence arm range and then finds a location in this frame.
Alternatively, a method could be developed that works frame
by frame.As soon as a structure is found, themethod is termi-
nated and that structure is used in subsequent computations.
The method was only evaluated on pig eyes; however, the
anatomy of pig eyes and human eyes is very similar. Future
work could include extending the proposed method to other
modalities, such as robotic ultrasound.

To conclude, the present approach releases eye surgeons
from the burden of manually positioning the iOCT scanner,
thereby allowing them to placemore focus onmore important
aspects of their surgeries.
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