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Abstract— For several years, the detection of gait has been 

popularly implemented using wearable sensors, especially in the 

sports and medical areas. They are unobtrusive devices which 

allow to monitor individuals without the need of any ambulatory 

technology. Despite the fact, the optimal location of the sensor 

remains uncertain and dependent on the type of measurement. 

Ear-worn sensors provide a tactical position, robust against 

movement, that might be significant for gait classification. The 

purpose of this paper is to demonstrate the accuracy and reliability 

of in-ear accelerometer sensor to perform gait classification, 

between the activities walking and running. The data was collected 

from fourteen participants using an in-ear sensor called ‘Cosinussº 

One’, which contains a three-dimensional accelerometer sensor. 

The main characteristics between these two activities were 

detected using 17 time domain features, as for instance the 

maximums and standard deviations of the 3-axes, and 3 different 

window sizes were evaluated: 3.75s, 2s and 1s. Support vector 

machine (SVM) and k-nearest neighbors (KNN) classifiers were 

implemented and later compared. The total number of features 

was reduced to 6 for SVM and 12 for KNN preserving the same 

results. An accuracy over 99% for both classifiers was achieved, 

outperforming most of the previous studies. 

 
Index Terms— accelerometer sensor, gait, human activity 

recognition, in-ear sensor, k-nearest neighbors, support vector 

machines, wearable sensors. 

 

I.   INTRODUCTION 

VER the last few years, medical and sport researchers have 

focused on human activity recognition (HAR), which 

enables the identification of daily life activities [1], [2]. This 

area is particularly useful in preventive fitness and medicine, 

due to its potential for analysis of sports performance and 

diagnosis of medical conditions [1], [3], [4]. This technology is 

nowadays still in an early research state, because of the large 

variety of activities, human characteristics and capture methods 

[2]. The detection of activities, such as walking or running, is 

effective in terms of making it possible to identify athletes’ 

performance in order to improve it, or in medicine, providing 

feedback to the caregiver (e.g. a doctor) about the behavior of 

the patient. A gait classification of these two basic human 
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activities is the foundation towards the prevention of injuries 

and monitoring of health conditions [3], [5]–[8]. 

The gold standard for gait analysis is stereophotogrammetry. 

Analysis of gait is carried out with multiple synchronized 

cameras and optical markers placed at reference points of the 

body [9]. Therefore, gait features from video sequences can be 

extracted [7], [8], [10], [11]. This system achieves high 

accuracy, but it is complex and expensive and needs specialized 

laboratories [3], [12], [13].  

As an alternative, it has become popular to perform gait 

detection with wearable sensors (WS) using tri-axial 

accelerometers [1], [10], [14], [15]. WS can give accurate and 

reliable results about people’s activities and behavior [2], [3], 

[7], [8], [16], [17]. The wearables are unobtrusive devices, 

which have a comfortable portability. Their form and weight 

permit users to acquire more autonomy. Moreover, they allow 

monitoring individuals during large periods of time and without 

space constraints, i.e. a specialized laboratory. Thus, they 

facilitate patients, which suffered from a heart attack or 

Parkinson’s disease, to recover from home [18]–[20]. 

Additionally, their widespread adoption has broken down the 

cost-prohibitive barriers that existed in the past [4], [5], [14], 

[15], [21], [22].  

Regarding WS placement a wide range of viable locations 

exist, and the most adequate one varies together with the 

measurement. Occasionally multiple sensors are used 

simultaneously, even though placing too many sensors can be 

heavy, uncomfortable and lead to errors [2], [5], [17]. 

According to the literature the most common positions for 

activity recognition are waist, arm, leg, chest, wrist, hip or ankle 

[2], [5], [16], [17]. 

  Nonetheless, ear-worn sensors are emerging as a promising 

future in activity recognition, for instance in detecting gait 

patterns [10], [23]–[26]. During motion the head is the steadiest 

part of the body and the least affected by the movement. The 

head stays steadier than the trunk [10], [27]. Atallah et al. in 

[10] noted that, for example in walking, the direction of the 

head’s movement is more representative of the body’s 

movement than the trunk. For this reason, the detected 

accelerations in the head are notably attenuated and more
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regular, providing better results and a more realistic human gait 

analysis [4], [8], [10], [27].  

Inertial sensors, such as accelerometers, are an important 

group inside WS and have been of great importance in 

monitoring of human activity. Accelerometers calculate the 

sum of inertial linear and gravitational accelerations along its 

sensitive axis [7], [28]. In the last years, single-, dual- and tri- 

axis accelerometers have allowed a recognition with high 

accuracy and low cost of daily life activities [5], [8], [14], [28]–

[31].  

The classification of gait can be accomplished implementing 

machine learning techniques to the accelerometer signal. 

Multiple data mining and pattern recognition techniques are 

used to reduce multi-dimensional data and identify patterns [5], 

[32], [33]. The support vector machine (SVM) and k-nearest 

neighbors (KNN) classifiers are popularly used for activity 

detection [1], [2], [10], [14], [25], [33].  

In previous works multiple sensors around the body have 

been repeatedly used in activity recognition, even though a 

single and light sensor has been proven to be more comfortable 

and easily accepted by the users [8], [16], [24]. Besides, most 

of the groundwork makes use of inertial accelerometer sensors, 

but only a minority focuses on ear-worn accelerometer sensors. 

Part of these studies aim to detect gait analysis and gait 

impairment using ear-worn sensors [8], [10], [16], [24]–[26], 

[30], [34]. The others concentrate in activity recognition, but 

they approach different methodologies. Atallah et. al. in [5] 

compare different sensor positions and validates the ear sensor. 

Pansiot et al. in [35] fusion an ear sensor together with a vision 

sensor and Atallah et.al in [36] combine an ear sensor with a 

wireless ambient sensor. Jarchi et al. in [37] detect transitions 

and classify activities using a singular spectrum analysis. Only 

Loh et al. [1] make a classification of different activities 

employing a head-worn accelerometer, but combining it with a 

barometer pressure sensor and GPS. Alternatively, this study 

develops a gait classification, of the activities walking and 

running, using only a single 3D commercial accelerometer in-

ear sensor, called Cosinussº One. 

 

II. METHODS 

A. In-Ear Sensor: Cosinussº One 

The wearable used for this study is a 3D accelerometer in-ear 

sensor called Cosinussº One (shown in Fig. 1). The device, 

developed by the German start-up Cosinuss GmbH, is used as 

a professional fitness tracker. The sensor has a size of 45 x 38 

x 18 mm and a weight of 6.5 grams. The sampling rate is fixed 

to 100 Hz. ºOne consists of a silicon sensor head with a 

thermoresistant sensor and an optical pulse oximeter unit, 

which are in contact with the skin inside the ear canal. The 

device is made up with 3 different sensors: an optical heart rate 

sensor (LED and photodiode), a resistance temperature sensor 

and a 3D-axis accelerometer. Accordingly, it measures body 

temperature, heart rate, heart rate variability and accelerometer 

data. The sensor head is available in three sizes (S, M, L), hence 

the device can be adapted to the different types of anatomical 

properties between children, adults and elderly. It is possible to 

wear for long periods of time, since it is stable and robust 

against movement. The wearable is connected via Bluetooth 

Low Energy with a smartphone application developed by the 

company. In the app it is possible to follow measurements and 

receive feedback. Afterwards, the data is sent to the cosinussº 

server where a full analysis is performed [38]. 

An accelerometer computes the sum of inertial linear and 

gravitational accelerations along its axes (x, y and z), which 

represent the 3 different directions during movement. For this 

device, y-axis corresponds to the vertical direction (positive 

down), x-axis to the anterior-posterior direction (positive back) 

and z-axis the medio-lateral direction (positive lateral) as 

shown in Fig. 2. The accelerometer measures proper 

acceleration whereby the measurements include effects of 

gravity [7], [39]. 

 
 Fig 1. Wearable sensor “Cosinussº One”. 

 

 

 

Fig 2. Acceleration directions for Cosinussº One. 

B. Subjects and Experimental Procedure 

A total of 14 subjects participated in the experiment. The 

participants agreed and signed a declaration of consent 

approved by the Department of Sports and Heath Sciences at 

Technical University of Munich (TUM). The requirements 

included healthy subjects between 18 and 50 years old, with no 

illness, chronical diseases, injures or spine operation in the last 

6 months. It was asked not to ingest alcohol or caffeine 24 hours 

before the test [40], [41]. The tests took place in the “Prevention 

and Performance Lab” of TUM. The lab conditions were 22 

degrees with an air humidity of 45 percent. 

The experiment consisted in 3 parts: pre-test, main-test and 

post-test. The participants executed the 3 tests on the same day, 

with a duration of approximately 1 hour. The measurement 

instruments in the pre-test were a h/p cosmos pulsar treadmill 

and a Sony camera. In main-test and post-test the wearable 

sensors, Cosinussº One, was used to collect the data.  
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Pre-test. This phase allowed to determine the transition speed 

of the participants. Each subject started walking on the 

treadmill with a speed of 4 km/h. Every minute the speed was 

increased 0.5 km/h, until the subject felt more comfortable 

running than walking. The same procedure was done 

backwards, from running to walking, with an initial speed of 9 

km/h. In order not to bias the results, the speed values were 

hidden from the subjects. 

Main-test. This phase evaluated walking and running at the 

transition speed previously obtained for each subject. The 

participants started walking for 2 minutes. When the 

investigator was giving a signal, they had to start running for 2 

more minutes. The shift of activities was executed 3 times, 

leaving a recording of 12 minutes. 

Post-test. This phase evaluated walking under the subject’s 

transition speed and running over their transition speed. After 5 

minutes break, the subjects walked at 3, 4 and 5 km/h for 2 

minutes each. Accordingly, they ran at 8, 9 and 10 km/h for 2 

minutes each.  

At the end of the experiment, the participants filled out a 

questionnaire which helped to extract information about the 

participants (sex, weight, height and age), their experience with 

other wearables (if they used before and if so, which ones) and 

their experience with the sensor (if they like it and if they would 

use it again). This information was important to contextualize 

the market and better understand the results. 

C. Data Management 

To access the data, it was necessary to connect the sensor via 

Bluetooth with the smartphone application. Afterwards, the raw 

data was ready to be downloaded from the internal server and 

edited. In the first place, the physical information of the 

participants, obtained in the questionnaire, was added in each 

file respectively. Later, the samples were labeled differentiating 

the phases where the subject walked, ran and the transition 

between the two activities. Walking was labeled as ‘0’, running 

as ‘1’ and the transition as ’99’.  Subsequently, the transition 

class, which last approximately 5 to 10 seconds, was eliminated 

as Benson et al. [33] obtaining a binary classification. 

D. Windows segmentation 

The data was segmented into smaller segments, called 

windows, which should contain minimum one gait cycle [33]. 

The ideal window size is an important parameter for a fast and 

accurate classification. Having small windows can improve the 

performance, but the computational cost is higher since the 

algorithm is triggered often. Long windows can include more 

than one activity and do not always increase the accuracy [2], 

[3], [33]. Atallah et al. [42] noted that for activities with 

repeating events such as walking on a treadmill, a window 

smaller than 1 minute is enough.  

Fixed-size sliding window (FSW), in which all the windows 

have the same fix length, is the most used in gait analysis 

detection [2], [33]. Overlapping means that a percentage of data 

from one window, will be found in the following one, 

smoothening the transition. This improve the capture of 

relevant information. It is common to use 50% overlapping [1]–

[3], [33], [43]. FSW with overlap is commonly used in medical 

research such as patient monitoring [43].  

 

In this paper fixed size sliding windows of 3.75s, 2s and 1s 

were chosen to observe how the classifier respond to larger 

windows (such as 3.75s which include 8 run cycles) and smaller 

ones (such as 1s which include 2 run cycles). Also, an overlap 

of 50% was used for all the window sizes. 

E. Feature extraction 

The next step consisted in extracting information which 

describe the gait cycle and help to compare two given windows 

[2], [3]. This step is called, feature extraction. 

The magnitude of the accelerometer, or vector length, was 

calculated. This vector is a representation of the 3-axes and it is 

relevant for gait detection, since it is less sensible to the effects 

of sensor orientation [2].  

𝑝𝑟𝑜𝑝𝑒𝑟 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =  √𝑎𝑥
2  +  𝑎𝑦

2  +  𝑎𝑧
2 

where 𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧 are the accelerometer axis x, y and z. 

 

For each window a total of 17 features were calculated. The 

main features used for daily life activity recognition with 

accelerometer data, as defined in the previous works [1]–[3], 

[5], [33], [42]–[44], were selected. The chosen features belong 

to the time domain group, due to their low computational cost 

and high discriminatory ability [2]. To the list of features 

presented in the literature cross-correlation was added. With 

this feature we tried to measure the similarity between two axes. 

Table I shows a list of all the features extracted for this paper. 

 
 

TABLE I 

TIME DOMAIN FEATURES 

Maximum 3-axis 𝑚𝑎𝑥(𝑠1, 𝑠2, … 𝑠𝑛) 

Standard Deviation 3-axis 𝜎𝑠  =  √
1

𝑛
 ∑(𝑠1  − 𝜇𝑠)2

𝑛

𝑖 = 1

 

Maximum Vector Length 𝑚𝑎𝑥(𝑣1, 𝑣2, … 𝑣𝑛) 

Minimum Vector Length 𝑚𝑖𝑛(𝑣1, 𝑣2, … 𝑣𝑛) 

Mean Vector Length 𝜇𝑠  =  
1

𝑛
 ∑ 𝑣𝑖

𝑛

𝑖 = 𝑛

 

Signal Power ∑ 𝑣𝑖
2

𝑛

𝑖 = 𝑛

 

RMS Vector Length √
1

𝑛
 ∑ 𝑣𝑖

2

𝑛

𝑖 = 1

 

Pearson’s correlation XY, XZ and 

YZ. 

𝑐𝑜𝑣(𝑎, 𝑏)

𝜎𝑎𝜎𝑏

 

Cross-Correlation XY, XZ and 

YZ. 

∑ (𝑎𝑖  − 𝜇𝑎)(𝑏𝑖  − 𝜇𝑏) 𝑛
𝑖 = 1

√∑ (𝑎𝑖 − 𝜇𝑎)2𝑛
𝑖 = 1 ∑ (𝑏𝑖 − 𝜇𝑏)2𝑛

𝑖 = 1

 

List of implemented features [2], [3], [43] 

 

 

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on June 17,2020 at 07:22:58 UTC from IEEE Xplore.  Restrictions apply. 



1558-1748 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2020.3002589, IEEE Sensors
Journal

Sensors-32588-2020.R1                                                                                                                                                                      4 

 

F. Feature selection 

After calculating the features, their importance on the 

prediction of the classification was calculated. The so-called 

step, feature selection, chooses the most appropriate ones. Some 

features contain irrelevant information that affect the accuracy 

adding noise to the signal  [3], [5], [42]. 

Feature selection was carried out with recursive feature 

elimination with cross-validated selection of the best number of 

features (RFECV). The initial set of features is recursively 

reduced estimating the least important features, until a desired 

number of features is reached. The importance of the features is 

obtained from an external estimator that assigns weights to 

features (e.g. the coefficients of a linear model or through a 

features’ importance attribute). A ranking of features is 

returned, where 1 coincides with the best permutation. A 

minimum of 4 features was asked for the classification. KNN 

does not provide a prediction of coefficients or the features’ 

importance (see “Classifier implementation”), therefore a 

Linear Regression model was used to calculate the coefficients 

and approach the ranking of features. 

G. Classifier implementation 

Afterwards, two typical algorithms in pattern recognition 

were implemented: support vector machine (SVM) and k-

nearest neighbor (KNN). The groundwork shows that these 2 

classifiers are the most used for activity recognition, confirmed 

by Janidarmian et al. [2], who compared 293 classifiers in the 

study.  

The previous 17 features were used in the evaluation. For 

both classifiers, a scaling of data was performed. The models 

were tested with random split and stratified k-fold cross-

validation. The splitting proportion in percent between test and 

train were: [34,66], [50,50], [60,40] and [80,20]. For cross-

validation 10-fold and 5-fold were used. For SVM three types 

of kernel were evaluated: linear, polynomial and radial basis 

function (RBF) kernel. The three models shared a regularization 

parameter and a gamma parameter. 

 

Support Vector Machine Optimization 

Not always a perfect margin between classes can be found, 

hence a soft-margin SVM allow some of the training data points 

to be misclassified. Introducing slack variables, a trade-off 

between margin and training error can be perform. The 

parameter that regularizes this exchange is C, also called as 

regularization parameter. For low values of C, the 

misclassified data points have low influence on the margin and 

for high values these data points contribute strongly. Altering 

this value changes the decision boundary and the classification 

of the points [45], [46]. 

The gamma parameter (γ) determines the range (or spread) 

of the points which have more impact. High value of γ 

correspond to a small radius and therefore small and limited 

distance. Low values equal to large distances and many points 

are considered [46], [47].  

C and γ received the values of 1 and 0.001, respectively. The 

values were chosen following the SVM algorithm used in 

WEKA (University of Waikato, Hamilton, New Zealand). 

Although, for the polynomial kernel, γ was equal to ‘scale’, the 

predefined value. This kernel has a third parameter called 

degree, here set to 3. 

K-Nearest Neighbor Optimization 

For KNN two models were tested: uniform and distance. The 

parameters used for both were: 1 neighbor, algorithm=auto and 

p=2. The parameter p defines the calculation of the distance 

between points as standard Euclidean distance. The parameter 

‘auto’ selects the most appropriate algorithm based on the 

values passed to the fit method. The possible algorithms are: 

BallTree, KDTree and brute force. 

H. Evaluation of Performance 

The main method for evaluation performance was accuracy, 

defined as the ratio of samples that are correctly predicted. 

However, sometimes it does not provide with enough 

information, thus the confusion matrix, precision, recall, f-

measure and Matthews Correlation Coefficient (MCC) were 

also calculated.  

III. RESULTS 

A. Subjects: Questionnaire Results 

Table 2 shows the average and standard deviation of the 

physical characteristics of the participants, among them 9 

women and 5 men.  

 
TABLE II 

PHYSICAL CHARACTERISTICS VALUES (MEAN ± SD) 

Age 24 ± 2.23 

Height 173.00 ± 8.42 cm 

Weight 66.00 ± 12.48 kg 

Results physical characteristics 

A total of 5 participants (35.71%) had previously used a 

wearable sensor for training control. All of them worn a fitness 

watch. Just one of the participants had problems fitting the 

sensor at the start. Cosinussº One received a rating of 1.75 on a 

scale of 1 (very good) to 6 (unsatisfactory). The lowest grade 

received was equal to 3.  

B. Data management 

Walking and running profiles are shown respectively in 

Figure 3 (10 cycles) and Figure 4 (11 cycles). In average, the 

gait cycles, calculated from peak to peak, last about 0.5s for 

walking and 0.4s for running. Generally running cycles are 

more regular, symmetric and short than walking cycles. 

However, the main difference is the flight phase, which occurs 

during running when none of the feet touches the ground. 

C. Window segmentation and feature selection 

The study achieved in any combination a classification 

accuracy superior to 99% using both SVM and KNN classifiers, 

different number of features (17, 12 and 6) and different 

window sizes (3.75s, 2s and 1s). Therefore, the classifier can be 

identified as robust and reliable. In Table 3 a summary of all the 

results is shown.  

The feature selection procedure allowed to reduce the initial 

number of 17 features. For the SVM classifier, it could be 

reduced to 9 features (in 3.75s windowing), 6 features (in 2s 

windowing) and 7 features (in 1s windowing). On the other 

hand, for the KNN the optimal minimum number was 12 

features for the different segmentations.
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Fig 3. Upper graph shows the 3D accelerometer data of a subject while 

walking. The green signal corresponds to x-axis accelerometer data, the blue 

to the y-axis and the yellow in the z-axis. Peaks are marked with black points. 

In the lower graph, the vector length of the same segment is represented in 

red. 

  
Fig 4. The graph shows the 3D accelerometer data and vector length of a 

subject while running. Peaks are marked with black points. Flight phase is 

detected between cycles, where the vector length’s acceleration varies around 

zero. 

 
TABLE III 

 SVM 17 Features SVM Reduced Features KNN 17 Features KNN 12 Features  

Test Split Linear Polynomial RBF Linear Polynomial RBF Uniform Distance Uniform Distance   

34% test 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% W
in

d
o

w
 3

.7
5

  

50% test 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

60% test 99.974% 99.948% 100% 100% 99.948% 100% 100% 100% 99.974% 99.974% 

80% test 99.980% 99.961% 100% 100% 99.961% 100% 100% 100% 100% 100% 

10-fold 100% 99.984% 100% 100% 99.984% 100% 100% 100% 99.984% 99.984% 

5-fold 100% 99.968% 100% 100% 99.968% 100% 100% 100% 99.984% 99.984% 

                 

34% test 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

W
in

d
o

w
 2

s  

50% test 100% 100% 99.983% 100% 100% 100% 100% 100% 100% 100% 

60% test 100% 99.986% 99.972% 100% 99.986% 99.972% 100% 100% 100% 100% 

80% test 100% 99.979% 99.979% 100% 99.979% 99.917% 100% 100% 100% 100% 

10-fold 100% 99.991% 99.983% 100% 99.991% 100% 100% 100% 100% 100% 

5-fold 100% 99.991% 99.983% 100% 99.991% 100% 100% 100% 100% 100% 

                 

34% test 100% 99.963% 99.951% 100% 99.975% 100% 100% 100% 100% 100% 

W
in

d
o

w
 1

s  

50% test 100% 99.975% 99.958% 100% 99.983% 100% 100% 100% 100% 100% 

60% test 100% 99.979% 99.958% 100% 99.986% 100% 100% 100% 100% 100% 

80% test 100% 99.979% 99.948% 100% 99.984% 99.922% 99.989% 99.989% 99.994% 99.994% 

10-fold 100% 99.995% 99.983% 100% 99.995% 99.991% 100% 100% 100% 100% 

5-fold 100% 99.987% 99.975% 100% 99.991% 99.991% 100% 100% 100% 100% 

 

Summary of accuracy results. The first column corresponds to the way the data was split. The second and third columns are the results of the support vector 
machine (SVM) for the linear, polynomial and radial basis function (RBF) kernel. Using 17 and a reduced number (9, 6 and 7) of features. The two followings 

ones are the results of the k-nearest neighbors (KNN) using 17 and 12 features.

It coincides for both classifiers that the results when the number 

of features is decreased are significantly better than using all the 

features and, also that the 3.75s segmentation achieves the 

worse results. 

Observing in detail the SVM with 8 features (in 2s and 1s 

windows), it is noticeable that most of the outcomes in the 

polynomial kernel are higher for the 2s segmentation than the 

1s one. Diversely, in the RBF kernel it depends on the way the 

data is split. In train-test-split, the 1s segmentation obtains 

better results, but when the cross-validation is calculated, the 2s 

window obtain higher results (reaching a 100% accuracy). The 

KNN with 12 features achieves almost equal results for both 

windows. The only difference is found specifically when an 

80% of the data is designated to test. In the 1s window, the 

accuracy decreases to a 99.994%, value which is still 

considered very good. The confusion matrix in Table 4 shows 

that this accuracy corresponds to just 1 misclassification in the 

running data (19329). The ranking of features for the SVM with 

2s windows and the KNN with 1s windows is graphically 

illustrated in Figure 5. 

TABLE IV 

CONFUSION MATRIX PRECISION RECALL F1SCORE MCC 

 walk run    0.99 

walk 9691 0 1.00 1.00 1.00  

run 1 9637 1.00 1.00 1.00  

Evaluation of performance for the train-test split with 80% of the data 
assigned to test and using the KNN classifier with 12 features. Performed 

metrics used: confusion matrix, precision, recall, f-measure and MCC.
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Fig 5. Ranking of features for the 2 selected combinations: support vector 

machine (SVM) with 2s windowing and k-nearest neighbor (KNN) with 1s 
windowing. The best features have a score equal to 1. The features are 

maximums and standard deviations of the 3-axes, maximum, minimum and 

mean of the vector length, signal power, root mean square (rms), Pearson’s 
correlation between axes xy, xz, yz and cross-correlation of axes xy, xz, yz. 

IV. CONCLUSIONS 

The classification results achieve for any configuration an 

accuracy over 99%. Although, the best combination is 

considered the one which reach the best classifier performance 

with the smallest number of features. As a result, the 

composition of window size 2s with 6 features is chosen for 

SVM and window size 1s with 12 features for KNN. The 

window size 3.75s appears to include too much information, 

what increases the misclassification. It must be highlighted that 

the best 6 features in the SVM are also found in the KNN 

classification. Those features are the maximums of the axes y 

and z, the standards deviation of the axes y and z, and the cross-

correlation of the axes x-y and x-z. Essentially what those 

features do is climax the dissimilarities of the two activities, 

mainly measuring the primary differences between these axes’ 

signals, such as maximums and standards deviations. Possibly, 

these features would decrease performance if the sensor would 

be positioned somewhere less stable and more affected by the 

movement, since more noise would be added. It is noteworthy 

that the classification is carried out exclusively with time-

domain features to allow a low computation cost. The 

outstanding results confirm the ear as a strategic point for 

sensor positioning if gait classification is aimed.  

Considering robustness against overfitting and reliability, the 

cross-validation method is preferred over the train-test-split. 

Further consideration is the computational load, hence 5-fold 

cross-validation is chosen instead of 10-fold, since they 

basically obtained the same accuracy results.  

The activities walking and running are very similar and not 

always easily separable, nevertheless in this study the classifiers 

that operate more effectively were those which use a linear 

hyperplane, such as SVM with linear kernel and KNN. Also, a 

chance of overfitting is reduced by working with linear borders.  

Positioning the sensor in the ear offers more stable signals 

than other body locations ergo better results, proving the 

efficiency and effectiveness of the sensor location. The high 

performance of the classifiers demonstrates that an in-ear 

sensor, which nowadays are still rarely used for gait 

classification, can reach results at the level of measurements 

obtained around the body’s center of gravity and that the 

accelerations acquired in the head permit a reliable and well-

grounded gait detection. It is also proven that the gait 

classification can be performed with a high accuracy using just 

one single sensor in the ear, avoiding the discomfort of wearing 

multiple sensors around the body.  

In comparison with Loh et al. [1], the single study which 

classifies between activities, our classification reached values 

of f-measure equal to 100% for both activities, without using 

gyroscope and barometric pressure sensors’ measurements.  

Nonetheless, as with most studies, these results must be 

interpreted with caution and a few limitations should be borne 

in mind. Even though the obtained number of samples is large, 

the number of subjects is low and unbalanced (5 men and 9 

women). In addition, all the participants are healthy subjects 

and belong to the same age group around 24 years old. Another 

category of subject, such as elderly, obese subjects or patients 

with disabilities, might influence the results. The addition of 

these categories could allow to evaluate the effect of age, body 

mass index (BMI) or injury in the classification. A further 

extension of this study could be to analyze walking and running 

movements, identifying gait phases such as swing and stance 

phase or step length for healthy subjects. Subsequently, the 

study could proceed with the classification of pathological 

movements, such as gait abnormalities. 

In conclusion, this study achieved an accuracy higher than 

most of the previous literature, using a small number of features 

and with a single ear worn sensor. 

ACKNOWLEDGMENT 

The authors would like to thank all the students who 

participated in this study. 

REFERENCES 

[1] D. Loh, T. J. Lee, S. Zihajehzadeh, R. Hoskinson, and E. J. Park, 
“Fitness activity classification by using multiclass support vector 

machines on head-worn sensors,” Proc. Annu. Int. Conf. IEEE Eng. 

Med. Biol. Soc. EMBS, vol. 2015-Novem, pp. 502–505, 2015. 
[2] M. Janidarmian, A. R. Fekr, K. Radecka, and Z. Zilic, “A 

comprehensive analysis on wearable acceleration sensors in human 

activity recognition,” Sensors (Switzerland), vol. 17, no. 3, 2017. 
[3] Ó. D. Lara and M. A. Labrador, “A Survey on Human Activity 

Recognition using Wearable Sensors,” IEEE Commun. Surv. 
Tutorials, vol. 15, no. 3, pp. 63–66, 2013. 

[4] J.-H. Park, D.-G. Jang, J. Park, and S.-K. Youm, “Wearable Sensing 

of In-Ear Pressure for Heart Rate Monitoring with a Piezoelectric 

Sensor,” Sensors, vol. 15, no. 9, pp. 23402–23417, Sep. 2015. 

[5] L. Atallah, B. Lo, R. King, and G. Z. Yang, “Sensor placement for 

activity detection using wearable accelerometers,” 2010 Int. Conf. 
Body Sens. Networks, BSN 2010, pp. 24–29, 2010. 

[6] M. Oner, J. A. Pulcifer-Stump, P. Seeling, and T. Kaya, “Towards the 

run and walk activity classification through step detection - An 
android application,” in 2012 Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society, 2012, pp. 1980–

1983. 
[7] W. Tao, T. Liu, R. Zheng, and H. Feng, “Gait Analysis Using 

Wearable Sensors,” Sensors, vol. 12, no. 2, pp. 2255–2283, Feb. 

2012.

0

5

10

R
an

k
in

g
 s

co
re

s 
[1

 =
 b

es
t]

Feature Ranking: SVM window 2s

0

2

4

6

R
an

k
in

g
 s

co
re

s 
[1

 =
 b

es
t]

Feature Ranking: KNN window 1s

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on June 17,2020 at 07:22:58 UTC from IEEE Xplore.  Restrictions apply. 



1558-1748 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2020.3002589, IEEE Sensors
Journal

Sensors-32588-2020.R1  7 

 

 

[8] T.-H. Hwang, J. Reh, A. O. Effenberg, and H. Blume, “Real-Time 
Gait Analysis Using a Single Head-Worn Inertial Measurement 

Unit,” IEEE Trans. Consum. Electron., vol. 64, no. 2, pp. 240–248, 

May 2018. 

[9] A. Cappozzo, U. Della Croce, A. Leardini, and L. Chiari, “Human 

movement analysis using stereophotogrammetry: Part 1: theoretical 

background,” Gait Posture, vol. 21, no. 2, pp. 186–196, Feb. 2005. 
[10] L. Atallah, B. Lo, G. Z. Yang, and O. Aziz, “Detecting walking gait 

impairment with an ear-worn sensor,” IEEE, pp. 175–180, 2009. 

[11] G. Guerra-Filho, “Optical motion capture: Theory and 
implementation,” J. Theor. Appl. Informatics, vol. 12, pp. 61--89, 

2005. 

[12] R. Baker, “Gait analysis methods in rehabilitation,” J 
NeuroEngineering Rehabil, vol. 3, no. 1, p. 4, 2006. 

[13] P. Eichelberger et al., “Analysis of accuracy in optical motion capture 

– A protocol for laboratory setup evaluation,” J. Biomech., vol. 49, 
no. 10, pp. 2085–2088, Jul. 2016. 

[14] C. A. Clermont, L. C. Benson, S. T. Osis, D. Kobsar, and R. Ferber, 

“Running patterns for male and female competitive and recreational 
runners based on accelerometer data,” J. Sports Sci., vol. 37, no. 2, 

pp. 204–211, Jan. 2019. 

[15] D. Quintero, D. J. Lambert, D. J. Villarreal, and R. D. Gregg, “Real-

Time continuous gait phase and speed estimation from a single 

sensor,” 1st Annu. IEEE Conf. Control Technol. Appl. CCTA 2017, 

vol. 2017-Janua, pp. 847–852, 2017. 
[16] D. Jarchi, B. Lo, C. Wong, E. Ieong, D. Nathwani, and G. Z. Yang, 

“Gait Analysis from a Single Ear-Worn Sensor: Reliability and 
Clinical Evaluation for Orthopaedic Patients,” IEEE Trans. Neural 

Syst. Rehabil. Eng., vol. 24, no. 8, pp. 882–892, 2016. 

[17] F. Attal, S. Mohammed, M. Dedabrishvili, F. Chamroukhi, L. 
Oukhellou, and Y. Amirat, “Physical human activity recognition 

using wearable sensors,” Sensors, vol. 15, no. 12, pp. 31314–31338, 

2015. 
[18] S. C. Mukhopadhyay, “Wearable Sensors for Human Activity 

Monitoring: A Review,” IEEE Sens. J., vol. 15, no. 3, pp. 1321–1330, 

Mar. 2015. 
[19] S. V. Perumal and R. Sankar, “Gait and tremor assessment for 

patients with Parkinson’s disease using wearable sensors,” ICT 

Express, vol. 2, no. 4, pp. 168–174, Dec. 2016. 
[20] A. R. Anwary, H. Yu, and M. Vassallo, “An Automatic gait feature 

extraction method for identifying gait asymmetry using wearable 

sensors,” Sensors (Switzerland), vol. 18, no. 2, Feb. 2018. 
[21] P. Bonato, “Wearable Sensors / Systems and Their Impact on 

Biomedical Engineering: An Overview from the Guest Editor,” IEEE 

Eng. Med. Biol. Mag., no. June, 2003. 
[22] B. Najafi, T. Khan, and J. Wrobel, “Laboratory in a box: Wearable 

sensors and its advantages for gait analysis,” in Proceedings of the 

Annual International Conference of the IEEE Engineering in 
Medicine and Biology Society, EMBS, 2011. 

[23] B. Lo, L. Atallah, O. Aziz, M. El Elhew, A. Darzi, and G. Yang, 

“Real-Time Pervasive Monitoring for Postoperative Care Real-Time 
Pervasive Monitoring for Postoperative Care,” no. May 2014, 2007. 

[24] D. Jarchi, C. Wong, R. M. Kwasnicki, B. Heller, G. A. Tew, and G. 

Z. Yang, “Gait parameter estimation from a miniaturized ear-worn 
sensor using singular spectrum analysis and longest common 

subsequence,” IEEE Trans. Biomed. Eng., vol. 61, no. 4, pp. 1261–

1273, 2014. 
[25] L. Atallah et al., “Validation of an ear-worn sensor for gait 

monitoring using a force-plate instrumented treadmill,” Gait Posture, 

vol. 35, no. 4, pp. 674–676, Apr. 2011. 

[26] L. Atallah, A. Wiik, B. Lo, J. P. Cobb, A. A. Amis, and G. Z. Yang, 

“Gait asymmetry detection in older adults using a light ear-worn 

sensor,” Physiol. Meas., vol. 35, no. 5, May 2014. 
[27] J. J. Kavanagh, S. Morrison, and R. S. Barrett, “Coordination of head 

and trunk accelerations during walking,” Eur. J. Appl. Physiol., vol. 

94, no. 4, pp. 468–475, 2005. 
[28] V. Camomilla, E. Bergamini, S. Fantozzi, and G. Vannozzi, “Trends 

supporting the in-field use of wearable inertial sensors for sport 

performance evaluation: A systematic review,” Sensors 
(Switzerland), vol. 18, no. 3, 2018. 

[29] M. Ermes, J. Pärkkä, J. Mäntyjärvi, and I. Korhonen, “Detection of 

daily activities and sports with wearable sensors in controlled and 
uncontrolled conditions,” IEEE Trans. Inf. Technol. Biomed., 2008. 

[30] L. Li, L. Atallah, B. Lo, and G. Z. Yang, “Feature extraction from 

ear-worn sensor data for gait analysis,” 2014 IEEE-EMBS Int. Conf. 

Biomed. Heal. Informatics, BHI 2014, pp. 560–563, 2014. 
[31] S. Sprager and M. Juric, “Inertial Sensor-Based Gait Recognition: A 

Review,” Sensors, vol. 15, no. 9, pp. 22089–22127, Sep. 2015. 

[32] R. Ferber, S. T. Osis, J. L. Hicks, and S. L. Delp, “Gait biomechanics 

in the era of data science,” J. Biomech., vol. 49, no. 16, pp. 3759–

3761, 2016. 

[33] L. C. Benson, C. A. Clermont, S. T. Osis, D. Kobsar, and R. Ferber, 
“Classifying running speed conditions using a single wearable sensor: 

Optimal segmentation and feature extraction methods,” J. Biomech., 

vol. 71, pp. 94–99, Apr. 2018. 
[34] L. Atallah, O. Aziz, E. Gray, B. Lo, and G.-Z. Yang, “An Ear-Worn 

Sensor for the Detection of Gait Impairment After Abdominal 

Surgery,” Surg. Innov., vol. 20, May 2012. 
[35] J. Pansiot, D. Stoyanov, D. McIlwraith, B. Lo, and G. Yang, Ambient 

and Wearable Sensor Fusion for Activity Recognition in Healthcare 

Monitoring Systems, vol. 13. 2007. 
[36] L. Atallah, B. Lo, R. Ali, R. King, and G. Yang, “Real-Time Activity 

Classification Using Ambient and Wearable Sensors,” IEEE Trans. 

Inf. Technol. Biomed., vol. 13, no. 6, pp. 1031–1039, 2009. 
[37] D. Jarchi, L. Atallah, and G. Yang, “Transition Detection and 

Activity Classification from Wearable Sensors Using Singular 

Spectrum Analysis,” in 2012 Ninth International Conference on 

Wearable and Implantable Body Sensor Networks, 2012, pp. 136–

141. 

[38] Cosinuss GmbH, “Cosinuss In-Ear Sensor,” 2019. 
[39] S. Buddies, “Accelerometer Technical Note,” pp. 2–7, 2020. 

[40] P. Avogadro, A. Dolenec, and A. Belli, “Changes in mechanical work 
during severe exhausting running,” Eur. J. Appl. Physiol., vol. 90, no. 

1–2, pp. 165–170, Sep. 2003. 

[41] L. D. Wilkin, A. Cheryl, and B. L. Haddock, “Energy expenditure 
comparison between walking and running in average fitness 

individuals,” Journal of Strength and Conditioning Research. 2012. 

[42] L. Atallah, J. J. H. Leong, B. Lo, and G.-Z. Yang, “Energy 
Expenditure Prediction Using a Miniaturized Ear-Worn Sensor,” 

Med. Sci. Sport. Exerc., vol. 43, no. 7, pp. 1369–1377, Jul. 2011. 

[43] S. Bersch, D. Azzi, R. Khusainov, I. Achumba, and J. Ries, “Sensor 
Data Acquisition and Processing Parameters for Human Activity 

Classification,” Sensors, vol. 14, no. 3, pp. 4239–4270, Mar. 2014. 

[44] I. Farkas and E. Doran, “ACTIVITY RECOGNITION FROM 
ACCELERATION DATA COLLECTED WITH A TRI-AXIAL 

ACCELEROMETER,” ACTA Tech. NAPOCENSIS Electron. 

Telecommun., vol. 52, no. 2, pp. 38–43, 2011. 
[45] C. M. Bishop, Machine Learning and Pattern Recoginiton. 2007. 

[46] A. C. Müller and S. Guido, Introduction to machine learning with 

Python. 2016. 
[47] D.-I. M. Dorr, Pattern Recognition Lecture Notes in Computer 

Science. 2018. 

 
 

 

 
Clara Piris Burgos holds a bachelor in 

Audiovisual Systems Engineering from the 

Universitat Pompeu Fabra de Barcelona (UPF). 
After an international exchange at the Technische 

Universität München (TUM), she started an 

internship in the company Cosinuss GmbH in 
Munich. She wrote her final degree work in the 

company with the supervision of the UPF. Her 

bachelor thesis was awarded as one of the best 

bachelor projects of her degree. 

 

 
 

 

Lea Gärtner holds a bachelor in Scientific 
Principles of Sports from the Technische 

Universität München (TUM) and a master in 

Diagnostics and Training from the same 
university. One year later she started the MSc in 

Ergonomics – Human Factors Engineering. She 

performed her master thesis in the company 
Cosinuss GmbH. She is currently working as a 

test engineer in AKKA DSO GmbH. 

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on June 17,2020 at 07:22:58 UTC from IEEE Xplore.  Restrictions apply. 



1558-1748 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2020.3002589, IEEE Sensors
Journal

Sensors-32588-2020.R1  8 

 

 

Dr. Miguel A. González Ballester holds a 
computer science degree from Universitat Jaume 

I, Spain (1996) and a doctoral degree from the 

University of Oxford, UK (2000). His doctorate, 

under supervision of Sir Michael Brady and Prof. 

Andrew Zisserman, focused on the analysis of 

brain MRI data for multiple sclerosis and 
schizophrenia. He was awarded the prestigious 

Toshiba Research Fellowship and moved to 

Japan to work for two years as a senior researcher 
at Toshiba Medical Systems, where he developed novel, patented systems for 

MRI parallel imaging. In late 2001 he obtained a faculty position at INRIA 

(Sophia Antipolis, France), where he led research projects on medical image 
analysis and mathematical modelling. In 2004 he joined the University of Bern 

(Switzerland), as head of the medical image analysis group, and later became 

head of the surgical technology division at the Faculty of Medicine. From 2008 
until September 2013 he oversaw the Research Department of the company 

Alma IT Systems in Barcelona (Spain), where he led the development of a new 

generation of computer tools for diagnosis and surgical planning. In October 
2013 he was awarded an ICREA Senior Research Professorship and joined the 

Department of Information and Communication Technologies at Universitat 

Pompeu Fabra in Barcelona, where he leads the Barcelona Center for New 

Medical Technologies (BCN MedTech, 60+ staff).  

 

 
 

 
Dr. Jérôme Noailly holds a bachelor in Physical 

Chemistry and an engineer’s degree in Material 

Engineering. He started his PhD in late 2002 at 
the Universitat Politècnica de Catalunya (UPC), 

where he explored the lumbar spine 

biomechanics through nonlinear finite element 
modelling. From 2007 to 2011, Jérôme focused 

on soft tissue and multiphysics modelling as a 

Marie Sklodowska-Curie postdoctoral fellow, at 
the AO Foundation and the Eindhoven 

University of Technology, and at the Institute for Bioengineering of Catalonia 

(IBEC). In 2012, he became the principal investigator (PI) of the group of 
Biomechanics and Mechanobiology at IBEC and started to extend his research 

to systems biology. He eventually moved to UPF, where he is leading the 

Biomechanics & Mechanobiology research area of the BCN MedTech research 
unit. His team focusses on the multiscale exploration of load-bearing organs, 

tissues and cellular systems of the human body, from motion analysis to 

biological regulation. 
 

 

 
 

Dr. phil. Fabian Stöcker holds a diploma in 

sports sciences from the Technische Universität 
München (TUM). The topic of his diploma’s 

thesis was “Vibration training: Changing of 

strength and coordination parameters through two 
different training forms”. Afterwards in 2016 he 

got promoted to philosophy doctor. His topic of 

dissertation was “Muscle oxygen availability in 
response to exercise: influence of intensity and 

duration”.  From 2011 to 2012 he worked in the 

GeWoS-Project (Gesund Wohnen mit Stil) from the department of Preventive 

Pediatrics. From 2012 to 2015 he was part of the scientific staff at the chair for 

Training Science Diagnostics (Trainingwissenschaftliche Diagnostik). Since 

2011 he is part of the Department for Sports and Health Sciences at TUM and 
head of the teaching and learning laboratory.  

 

 

 

 

Dr. Martin Schönfelder hold a master’s degree 
(Staatsexamen) in Biology and Sports at the 

Heidelberg University. In 2000 he started his PhD 

(magna cum laude) in Molecular Physiology, 

with the topic “Gene expression analysis in 

invitro maturated bovine oocytes) at the 

Technische Universität München (TUM). From 
2004 to 2012 he worked in the Lecturer in Sport 

Physiology at TUM. In 2015 he worked in the 

Research Professorship Paracelsus Private 
University in Salzburg, Austria. Afterwards he was head of the laboratory of 

Neuropathology at TUM. Since 2016 he is a Senior lecturer and head of 

laboratory of the department of Exercise Biology at TUM.  
 

 

 
 

 

Dr. rer. nat. Tim Adams holds a diploma in 
Physics from the Technische Universität 

München (TUM) with the areas of focus 

magnetism, spintronics and astrophysics. He also 

has a PhD at the chair of strongly correlated 

electron systems from TUM. His doctorate topic 

was “Neutron Scattering on the Skyrmion Lattice 
in Chiral Magnets”. From 2004 to 2009 he was a 

working student at Sysberry GmbH with the 
position of software development and IT-

administration. From 2008 to 2011 he was honorary project lead and board of 

management in the European Juggling Convention 2011. Since 2015 he is the 
leader of the Software team in Cosinuss GmbH.  

 

 
 

 

Dr. Simone Tassani holds a Master and PhD 
Doctorate from the Alma Mater Studiorum – 

University of Bologna (Italy) in bioengineering 

and biomechanics with specialization in 
trabecular bone microstructure, its mechanical 

behaviour and remodelling in pathologies like 

osteoarthritis and osteoporosis. He was awarded 
with a Marie- Curie Intra-European Individual 

fellowship in 2010 and he moved to Greece where 

he worked on the biomechanical analysis of bone 
trabecular structure, through the development of image processing tools for the 

identification and classification of trabecular bone fracture through the use of 

machine learning techniques. He was incorporated to UPF with a Beatriu de 
Pinós (Marie Curie COFUND) grant in 2014, where he is manager of the 

Motion Capture laboratory and he is exploring the influence of gait and posture 

over musculoskeletal diseases.  

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on June 17,2020 at 07:22:58 UTC from IEEE Xplore.  Restrictions apply. 


