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ABSTRACT

Compressive sensing theory can be used to analyze linear inverse problems with
constraint sets that are finite unions of subspaces. We show how the existing the-
ory can be modified and extended to accommodate infinite union-of-subspaces
constraints. These appear, for example, in models used for channel estimation in
mobile communication systems that describe the propagation behavior of electro-
magnetic waves. We provide analyses of several algorithms and discuss conditions
under which the reconstruction error can be quantified.
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ZUSAMMENFASSUNG

Die Theorie der komprimierten Erfassung kann zur Analyse linearer inverser Prob-
leme verwendet werden, deren Nebenbedingungen als endliche Vereinigungen lin-
earer Unterräume ausgedrückt werden können. Wir erweitern diese Theorie auf
Probleme, welche die Verwendung unendlich vieler Unterräume erfordern. Derar-
tige Nebenbedingungen finden Anwendung in der Kanalschätzung von Mobilfunk-
Kommunikationssystemen, in denen sie die Ausbreitung elektromagnetischer Wellen
zusammenfassen. Wir analysieren verschiedene Algorithmen und geben Bedin-
gungen, unter welchen der Rekonstruktionsfehler quantitativ bestimmt werden kann.
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I
INTRODUCTION

Compressive sensing is about non-adaptive data compression. Its theory provides
us with tools for minimum-redundancy (compressive) measurement design and its
methods are used to extract data from these measurements (this is more compli-
cated than with classical sampling). Data compression is about exploiting structure.
Structure needs to be exploited in all kinds of problems; not only those classically
associated with data compression.
One such problem is channel estimation in communication systems. When very
high frequencies and many antennas are used, structures are unveiled that were
previously hidden. For example, the channels between different antenna elements
are correlated; high sampling frequencies show that the temporal channel impulse
responses contain peaks and valleys. Such observations can be explained by physi-
cal channel models in which the channel, which is an object in a high-dimensional
space, can be described by a small set of parameters.
In this thesis, we consider measurements of the form

y = Ax+ e (1)

where x ∈ U is an element (representing the channel) of a low-dimensional subset
U of a high-dimensional Hilbert spaceH and shall be reconstructed from y, which
is an element of the measurement Hilbert space H′. The measurement operator
A : H → H′ is assumed linear and e ∈ H′ is measurement noise. If not much is
known about the noise or if e is Gaussian noise, the reconstruction problem is best
formulated as the least-squares problem

x̂ = arg min
x∈U

‖y −Ax‖2. (NLS)

This problem is nonlinear if U is nonlinear (not a linear subspace). For general
nonlinear sets U , problem (NLS) is a non-convex optimization problem and there
are no (efficient) methods to solve this problem. However, for certain classes of
nonlinear constraint sets, there are methods to solve (NLS). We are concerned
with constraint sets U that are unions of subspaces, that is, sets that can be written
as

U =
⋃
t∈T

St, St ⊂ H (low.-dim.) subspace for each t ∈ T. (2)

The set T is a parameter set and t is the parameter describing the subspace. For
such sets, which are still nonlinear, but also not completely arbitrary, there are effi-
cient methods that solve (NLS) provided that we can solve the best-approximation
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INFINITE UNIONS OF SUBSPACES

problem (here and in the following, PU (z) denotes the non-linear projection of z
onto U)

PU (z) = arg min
x∈U

‖z − x‖2 (3)

for general z ∈ H, which is presumably easier to solve than (NLS), and provided
that A is a good measurement operator.
A good measurement operator should not lose any information even when the di-
mension ofH′ is small compared to that ofH. Information is lost if the vector Ax
becomes as small as the noise e for some not-so-small x. A condition of the form
‖Ax‖ ≥ c‖x‖ for some not-too-small c is, thus, natural. A good measurement
operator should also be neutral. There should not be any x, x′ ∈ U of similar size
for which ‖Ax‖ � ‖Ax′‖ or vice versa.
The condition

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2 ∀x ∈ U , (RIP)

which has been introduced in [1], is called the restricted isometry condition and
ensures that A is a good measurement operator. If δ = δ(A, U) is small, then
A is said to have the restricted isometry property (RIP) with respect to U and
the smallest δ such that (RIP) is satisfied is called the restricted isometry constant
(RIC) of A.
This condition has become tremendously popular as it is a very natural condition
to demand of the measurement operator (as discussed above), but mostly for the
following two reasons: First, there are lots of measurement operators that achieve
a great level of dimensionality reduction and have the RIP. Second, the condition
appears naturally in the convergence analysis of many algorithms that attempt to
solve (NLS), making this problem one of the few instances of non-convex opti-
mization problems for which a global convergence analysis is possible.
The purpose of this thesis is to extend known results regarding RIP-matrix con-
struction and algorithm recovery analysis, which were mostly developed for finite
unions of subspaces, to arbitrary unions of subspaces where T may also be infinite.
In particular

• We derive versions of the iterative hard thresholding (IHT), hard threshold-
ing pursuit (HTP), and orthogonal matching pursuit (OMP) algorithms that
can be used with infinite unions of subspaces and provide convergence anal-
yses.

• We develop a restricted isometry theorem that shows how we can obtain
measurement operators that have the RIP even when there are infinitely many
subspaces.

• We give two examples for infinite unions of subspaces that are relevant
in communication systems – the DOA manifold and the 3GPP single-path
model – and discuss measurement matrix construction, worst-case recovery
conditions, and average-case simulation results.
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I INTRODUCTION

The thesis is organized as follows. Chapters II–IV comprise the expository part of
this thesis. While they do not contain any mathematical theorems, they are intended
to give a certain overview of the main ideas of compressive sensing, its relation
to parameter estimation, and the necessity for infinite union-of-subspaces models.
Chapter II contains background material on compressive sensing. In Chapter III,
we continue with a more detailed look at some unions of subspaces that appear
in channel estimation for mobile communication system. In Chapter IV, we in-
troduce several compressive-sensing algorithms and compare their performances
when applied to the channel estimation problem. We also discuss some issues with
small problem dimensions that are not covered by the theory we present in the later
chapters.

Chapters V–X contain many mathematical theorems that have the ultimate goal
of showing under what conditions the algorithms from Chapter IV find a good
solution of the channel estimation problem from Chapter III. We introduce approx-
imate projectors in Chapter V as we need these in Chapter VI to properly state
the recovery theorems for the recovery algorithms. We only give sketches of the
proofs and present some interesting consequences that can be derived from (RIP);
the complete proofs are only shown in the Appendix.

The remaining chapters VII–X are concerned with random constructions of the
measurement operator A in (1) that guarantee (RIP). In Chapter VII, we present
a theory based on covering numbers and so-called chaining arguments that is use-
ful to analyze suprema of random processes. This theory is far more general than
needed to show that a random matrix has the RIP, but this generality actually makes
the theory more accessible. A crucial ingredient for this theory is a point-wise con-
centration inequality, i.e., an inequality stating that for a random operator A, the
inequality (RIP) is satisfied with high probability for any given element x. We
show a principled approach for obtaining such an inequality in Chapter VIII. In
Chapter IX, we state the main RIP theorem, i.e., a theorem stating under what con-
ditions (RIP) holds simultaneously for all elements of a union of subspaces with
high probability, and we give some examples showing how this theorem can be ap-
plied to recover various results that were previously stated in the literature. Finally,
in Chapter X, we derive covering number estimates for two unions of subspaces
appearing in channel estimation and state RIP theorems for these particular unions
of subspaces. We give some concluding remarks in Chapter XI.

Some parts of this thesis have been or are in the process of being published in
conference proceedings and journals. The results regarding the low-rank approx-
imation of the single-cluster 3GPP covariance matrix can be found in [2]. The
algorithms, their convergence analyses, and the notion of approximate projectors
from Chapters IV–VI have been presented in similar form in [3–5]. The chaining-
based RIP theory from Chapters VII–IX can be found in [6]. The RIP condition
for the DOA manifold stated in Chapter X can also be found in [7].
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INFINITE UNIONS OF SUBSPACES

1—Notation

We use BE and ∂BE to denote the unit ball and unit sphere, respectively, in the
normed space E. The scalar product between elements x, y in a Hilbert space is
denoted 〈x, y〉. The cardinality of a finite set T is denoted as |T | and supp(x)
denotes the index set of the nonzero elements of vectors x ∈ Rn or x ∈ Cn. For
a map f : E → F , we write f (E) = {f (x), x ∈ E} ⊂ F . The expected value of
a random variable X is denoted as EX . The shorthand notation P[X ≷ ±u] ≤ c
summarizes the two inequalities P[X > u] ≤ c and P[X < −u] ≤ c so that
P[X > u and X < −u] ≤ 2c. The range of a linear operator A is denoted
as range(A) and the linear span of a set U is denoted as span(U). For example,
for two linear operators A,B : H → H′, the set span{range(A), range(B)} is the
smallest subspace inH′ that contains the ranges of both operators A and B.
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II
COMPRESSIVE SENSING

Compressive sensing has its roots in sparse signal processing. Sparse represen-
tations find applications in various areas of signal processing, such as compres-
sion, denoising, regularization of inverse problems, feature extraction, and so forth.
Within the field of time-frequency analysis, it was found that many signals occur-
ring in applications can be described succinctly as a superposition of only a few
time atoms and frequency atoms, i.e., they can be compressed. Specifically, signals
that are not sparse, i.e., compressible, in either the time domain or in the frequency
domain alone, admit a sparse representation in the union of these two incoherent
orthonormal bases. The goal is to find a representation of a signal y of the form

y =
M∑
i=1

αiui +
M∑
i=1

βivi (4)

with as few nonzero αi and βi as possible and where {ui : i = 1, . . . ,M} and
{vi : i = 1, . . . ,M} are two incoherent orthonormal bases in CM . This equation
can be written as

y = Ax =
[
U V

] [α
β

]
. (5)

As the least-squares solution to this problem does not yield the sparsest possible
solution, one cannot simply apply the pseudo-inverse of the matrix [U, V ] to find
the optimal coefficients α, β. On the other hand, picking the sparsest of all possible
combinations of basis coefficients is computationally intractable. It was found
in [8] that `1-minimization, i.e., solving the problem,

min
x
‖x‖1 s.t. y = Ax (L1)

is an efficient way to find a reasonably sparse solution to the representation prob-
lem. In subsequent papers, conditions on when (L1) yields a sparse solution were
given in terms of the coherence of the orthonormal bases [9]. The coherence µ of
two bases U and V is defined as

µ = max
i,j=1,...,M

|〈ui, vj〉| (6)

and describes the maximal linear dependence between basis vectors of different
bases. These results were first generalized to arbitrary numbers of bases [10, 11]
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INFINITE UNIONS OF SUBSPACES

and then to general matrices A [12, 13]. The coherence of a general matrix A ∈
Cm×M with columns ai is defined as

µ = max
i,j=1,...,M,i6=j

|〈ai, aj〉| (7)

which is no different from (6) where one can skip evaluating the scalar product
between vectors of the same orthonormal basis. It has, thus, become possible to use
the sparse-approximation framework to solve arbitrary systems of linear equations
under sparsity constraints and even if they are disturbed by noise [14, 15].
However, while the coherence of a matrix is a good proxy for predicting success
of a sparse-approximation algorithm if the matrix consists of several orthonormal
bases, it is an overly pessimistic proxy for general matrices. In fact, the recovery
conditions based on coherence, which usually state that (k − 1)µ must be small
to recover a k-sparse signal, are strictly stronger than the condition (RIP) with
U = Σk where

Σk = {x ∈ CM : | supp(x)| ≤ k}

is the set of vectors with at most k nonzero entries [1] (one can show that δ ≤
(k − 1)µ by using the Gersgorin circle theorem).
The RIC is a rescaled upper bound κ(A,Σk) of the condition number of all subma-
trices of A with only k columns: κ(A,Σk)2 = (1 + δ(A,Σk))(1− δ(A,Σk))−1 [16,
17]. The introduction of the RIP and, with it, the passage from pairs of bases to
general matrices A sparked a flurry of research into compressive sensing. Initially,
it has been found that the solution of (L1) is the correct sparse solution if (RIP)
holds and that surprisingly many matrices have the RIP [1,15,18]: Loosely speak-
ing, most random matrices have the RIP provided that the number of rows is larger
than ck logM , where M is the number of columns and c a constant independent
of k and M .
After the initial works [1, 15, 18], many results were published in which exact and
stable recovery of sparse or approximately sparse vectors is guaranteed if the RIC
is small enough. It is now known that `1-recovery, i.e., solving (L1), is successful
if δ(A,Σ2k) < 1/

√
2 [19]. On the other hand, `1-recovery can fail if δ(A,Σ2k) >

1/
√

2 [17].
In addition to `1-minimization, RIP-based recovery results were developed for a
multitude of other iterative and non-iterative algorithms that find the sparsest so-
lution to (1). These include orthogonal matching pursuit (OMP), which needs
δ(A,Σk+1) < 1/(1 +

√
k) [20], iterative hard thresholding (IHT) and hard thresh-

olding pursuit (HTP), which need δ(A,Σ3k) < 1/
√

3 [21, 22], and Compressed
Sampling Matching Pursuit (CoSaMP), which needs δ(A,Σ4k) < 0.478 [23].
To verify whether a given matrixA has the RIP for Σk is a difficult (NP-hard) prob-
lem by itself [24]. It can be solved, in general, only by calculating the maximal and
minimal singular values of all possible submatrices with k columns. Also, no de-
terministic constructions of matrices are known that satisfy a given RIC condition
for a fixed number of columns and with a minimal number of rows (i.e., as few
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II COMPRESSIVE SENSING

as is possible with random constructions). What is known is that partial Fourier
matrices can be used for recovering k-sparse vectors x ∈ CM with high probabil-
ity if M is large and if the number of rows is greater than ck logM where c is a
constant [18].
Besides Fourier matrices, some asymptotic results for certain random matrices
have been proved: if we simply construct matrices A out of identically distributed
Gaussian random variables, then such a matrix has the RIP with high probability
as soon as the number of rows is greater than ck logM , where c is some con-
stant [1, 15, 25]. These results have been generalized, for example, to random
matrices with Toeplitz structure [26], and to products of random matrices with ma-
trices that have the RIP [27].
Any given signal x ∈ Σk can be described perfectly by a vector of length 2k
containing the k nonzero values of x and its locations. To find this compressed
representation of any given x ∈ Σk, the vector x has to be known as one has
to find the nonzero entries of x among all of its entries. In contrast, the results
from compressed sensing suggest that one can also describe x by a vector y with
ck logM entries by applying a linear measurement operator A to x.
It has been found that in many practical applications, such linear measurement
operators can be realized in hardware in the analog domain. This is important if
the physical resources are limited and the number of measurements should be kept
small. Examples are pilot-based channel estimation where physical resources are
the number of channel accesses or medical imaging where the physical resources
are related to radiation dosages. In both cases, there is a tremendous interest in
keeping low the amount of physical resources needed to reconstruct the signal of
interest.

1—Compressive sensing in unions of subspaces

The question arises whether the theory developed within compressive sensing is
useful for other than sparse signals. The first example is the multiple measurement
vector (MMV) model, in which multiple systems of equations,

y` = Ax` + e`, ` = 1, . . . , Q, (8)

are given and where it is known that all unknown vectors x` exhibit exactly the
same sparsity structure. When formulating this problem as a single, big joint recov-
ery problem, the solution is known to have at most Q times k nonzero coefficients
and, in addition, these occur in groups of size Q. This additional block sparsity
information has been studied within the compressive sensing framework and led
to the introduction of the block restricted isometry constant [28]. The block RIC
(B-RIC) is defined just as the RIC with the set Σk of all k-sparse vectors replaced
by the set Bk of all k-block-sparse vectors. It is relatively straightforward to extend
results and algorithms for sparse recovery to block-sparse recovery [29, 30].
A further generalization was the introduction of model-based compressive sens-
ing [31]. The idea is to incorporate any structural prior information into the com-
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INFINITE UNIONS OF SUBSPACES

pressive-sensing-based reconstruction that can be expressed in terms of allowed
support sets. A modelMk ⊂ CN is a set of vectors that are k-sparse and whose
supports satisfy additional constraints. For example, one could require that be-
tween any two nonzero entries of the vector x there be at least some number of
zeros, i.e., a minimum separation constraint. One can then define the model-based
RIC (M-RIC) δ(A,Mk) of a matrix A as the smallest constant that satisfies (RIP)
for all vectors x inMk (instead of Σk).
In standard compressive sensing with sparse vectors, the constraint set Σk can be
written as

Σk =
⋃

I⊂{1,...,M},|I|=k

SI with SI =
{
x ∈ CM : supp(x) = I

}
. (9)

As each SI is a k-dimensional subspace, Σk is a union of subspaces. We can
write the sets of all block-sparse signals Bk and that of all signals with structured
sparsity also as (9) and simply restrict the allowed index sets I to more specific
subsets. Other examples of finite unions of subspaces are given as

Dk = DΣk =
{
x : x = Dz, z ∈ Σk

}
, (10)

for a dictionary matrixD. This is sometimes called signal-space compressive sens-
ing [32]. While this may appear to be a special case of the standard compressive
sensing problem with an effective sensing matrix AD, the two restricted isometry
conditions

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2 ∀x ∈ DΣk , (11)

which is sometimes called the D-RIP condition, and

(1− δ)‖z‖2 ≤ ‖ADz‖2 ≤ (1 + δ)‖z‖2 ∀z ∈ Σk (12)

differ drastically if D has coherent columns.
As in standard compressive sensing with sparse vectors, one cannot easily verify
whether a given matrix has the RIP. However, the probabilistic results for random
sensing matrices can be generalized to arbitrary unions of subspaces: A random
matrix with (sub-)Gaussian entries has the RIP with high probability if the number
of rows grows as the logarithm of the number of subspaces, which is consistent
with the standard sparsity case (where the number of subspaces is given by

(
M
k

)
≤

(eM/k)k) [21].
Compressive sensing algorithms that employ the hard thresholding operator Hk to
account for the sparsity constraint can be trivially extended to the general union-
of-subspaces setting. The key observation is that the hard thresholding operation
solves the best approximation problem

Hk(x) = arg min
x′∈Σk

‖x′ − x‖2. (13)

8



II COMPRESSIVE SENSING

Algorithms such as iterative hard thresholding (IHT), normalized IHT, hard thresh-
olding pursuit (HTP), and compressive sampling matching pursuit (CoSaMP) can
be generalized by simply replacing the set Σk in (13) with a general union of sub-
spaces. The caveat is that the best approximation problem, which has to be solved
repeatedly, may be much more difficult to solve than hard thresholding.
Greedy algorithms such as the orthogonal matching pursuit (OMP) can only be
used with general unions of subspaces if these exhibit similar hierarchical struc-
tures as sparse signals. Convex relaxation algorithms like `1-minimization have
not been studied under the viewpoint of reconstruction in general unions of sub-
spaces.

2—Infinite unions of subspaces and parameter estimation

Unions of subspaces also appear naturally in many parameter estimation problems
of the form

y = A

k∑
`=1

x`f (t`) + e (14)

where f : R → CM is a known, nonlinear function of an unknown parameter and
where A : CM → Cm is a linear measurement operator.
If we construct a dictionary matrix D out of columns f (sj) corresponding to a
finite set of grid points sj , j = 1, . . . , N , we can write (14) as the linear system of
equations y = ADz + e with the sparsity constraint z ∈ Σk. One can then use the
compressive sensing framework to solve this equation for z if AD has the standard
RIP and recover the parameters ti from the nonzero indices of z. However, if
a fine grid is used to obtain a high resolution, the columns of D may become
strongly correlated as f is typically a continuous function. The RIP-based theory
then provides an upper limit on the resolution under which recovery of the true
parameters can be guaranteed.
If, on the other hand, we are interested in recovering the signal x =

∑k
`=1 x`f (t`)

from y = Ax+e, an increase of the resolution, i.e., the coherence of the dictionary
matrixD, is not an issue as long as theD-RIP condition (11) is satisfied. However,
the condition m ≥ c log(number of subspaces) is problematic, because the number
of subspaces is given by

(
N
k

)
where N is the number of grid points. This number

grows to infinite as the resolution is increased.
Intuitively, if the D-RIP condition (11) is already satisfied for a very fine grid, i.e.,∥∥∥∑k

`=1x`f (t`)
∥∥∥2
≈
∥∥∥A∑k

`=1x`f (t`)
∥∥∥2

(15)

for t1, . . . , tk on-grid, and if t̃1, . . . , t̃k are off-grid, but close to the grid, then

x̃ =
k∑
`=1

x`f (t̃`) ≈
k∑
`=1

x`f (t`) (16)

9



INFINITE UNIONS OF SUBSPACES

and, by continuity of the linear operator A, also

Ax ≈ Ax̃ (17)

so that if the D-RIP condition is satisfied on a fine grid, then it is probably also
almost satisfied between grid points. To overcome these grid-related problems, we
introduce an infinite union of subspaces U = ∪t∈TSt where each St is a subspace
and where T is a (possibly infinite) parameter set. In this case, we can use, for
example, T = [1, 1]k and

St = range
(
f (t1), . . . , f (tk)

)
. (18)

As with the generalization from sparse signals to signals in finite unions of sub-
spaces, algorithms such as IHT can be generalized without problems as long as
one can calculate the best approximation operator [33]

PU (x) = arg min
z∈U

‖x− z‖. (19)
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III
CHANNEL ESTIMATION

In this chapter, we introduce examples of infinite unions of subspaces that occur
in multi-antenna communication systems (and also in radar systems). All models
use the steering vector of a uniform linear array (ULA) as a building block. The
steering vector

a(t) = 1√
M

[
1 exp(it) . . . exp(i(M − 1)t)

]T
, t ∈ [−π, π], (20)

describes the signal received at a ULA of M antennas with half-wavelength spac-
ing when a single planar wavefront impinges on the array from direction θ =
arcsin(t/π).

1—The DOA manifold

If, not one, but k harmonic signals impinge on a ULA of M antennas with half-
wavelength spacing, the receive signal can be written as the superposition

x =
k∑
`=1

α`a(t`) (21)

with α` ∈ C and t` = π sin(`th angle). The standard direction-of-arrival (DOA)
estimation problem is to recover the unknown angles from a disturbed version y =
x+ e of the receive signal x. The additive disturbance e ∈ CM is usually modeled
as Gaussian noise.
In addition to DOA estimation, this signal model is relevant for future mobile
communication systems, which use millimeter-wave frequencies and many an-
tennas [34]. There, it is commonly referred to as the geometric channel model
and motivated by a propagation behavior resembling that of light: electromagnetic
waves at millimeter-wave frequencies do not pass through walls or bend around
corners, but are rather reflected at objects [35, 36]. Thus, at least at the base sta-
tion, which is usually located at some exposed location with few nearby scatterers,
the channel can be modeled as the superposition of relatively few paths from dis-
tinct angular directions [34]. In contrast to DOA estimation where the goal is to
recover the angles, in channel estimation the goal is to recover x from its disturbed
measurements.
If we define the matrix V (t) = [a(t1) . . . a(tk)] ∈ CM×k and the vector α =
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INFINITE UNIONS OF SUBSPACES

[α1 . . . αk]T , we can write (21) as

x =
k∑
`=1

α`a(t`) = V (t)α. (22)

We call the set of all possible signals x, which is given by

Uk,M = U ′k,M , U ′k,M =
⋃

t∈[−π,π]k
range

(
V (t)

)
, (23)

the DOA manifold (we take the closure for reasons we discuss later). For each
t, the subspace range(V (t)) is (at most) k-dimensional while the ambient space
CM has M dimensions. Consequently, the DOA manifold is a collection of low-
dimensional subspaces in a high-dimensional ambient space.

2—3GPP and conditionally normal channel models

The geometric channel model from the previous section, in which the channel vec-
tor is described as a superposition of k steering vectors, assumes very high fre-
quencies, many antennas, and the lack of scattering objects close to the antennas.
The channel models proposed by the 3GPP are derived under less demanding as-
sumptions [37]. The point scatterers in the geometric model, which lead to the
equation

x =
k∑
`=1

α`a(t`), (24)

are replaced by clusters of infinitely many scatterers and an equation of the form

x =
k∑
`=1

∫ ∆`/2

−∆`/2
α`(τ )a(t` + τ )dτ. (25)

In (25), ∆` describes the angular spread of the `th cluster. The path gain α` is now
a function of the distance from the cluster center and is typically set as decreasing
with distance. In stochastic versions of these channel models, the path angles or
cluster centers t` are assumed to be uniformly distributed. The channel vectors, if
conditioned on the angles t`, are assumed to be complex-normal distributed with
mean zero. The covariance matrices of the channel vectors are then given as

Σ = ExxH = E
k∑

`,j=1

α`α
∗
ja(t`)a(tj)H

=
k∑

`,j=1

E[α`α∗j ]a(t`)a(tj)H =
k∑
`=1

σ2
`a(t`)a(t`)H (26)

12



III CHANNEL ESTIMATION

for the geometric model from the previous section and

Σ = ExxH = E
k∑

`,j=1

∫ ∆`/2

−∆`/2

∫ ∆j/2

−∆j/2
α`(τ )α∗j (τ

′)a(t` + τ )a(tj + τ ′)Hdτdτ ′

(27)

=
k∑

`,j=1

∫ ∆`/2

−∆`/2

∫ ∆j/2

−∆j/2
E
[
α`(τ )α∗j (τ

′)
]
a(t` + τ )a(tj + τ ′)Hdτdτ ′

(28)

=
k∑
`=1

∫ ∆`/2

−∆`/2
E
[
|α`(τ )|2

]
a(t` + τ )a(t` + τ )Hdτ (29)

for the 3GPP model. In both cases, we assumed independence between differ-
ent paths or cluster centers, E[α`αj] = 0 for ` 6= j, and, in the 3GPP model,
independence also between different sub-paths,

∫
Eα`(τ )α∗` (τ

′)a(t` + τ ′)dτ ′ =
E|α`(τ )|2a(t` + τ ).
Both models can be subsumed under the conditionally normal channel model

x | (t1, . . . , tk) ∼ NC(0,Σt) , Σt =
k∑
`=1

Σt` (30)

with
Σt` =

∫
g`(τ )a(t` + τ )a(t` + τ )Hdτ (31)

and with the angular power profile g`. In the geometric model, g`(t) = p`δ(t) is
given as the Dirac delta function (a point measure) and in the 3GPP models,

g`(τ ) = p` exp(−|τ |/∆`) (32)

is typically a Laplace density (the factors p` can be used to describe a nonuniform
power distribution between different clusters and the standard deviations ∆` are
often set to two or five degrees).1

For given path angles or cluster centers t, the channel vector x lies in the subspace
St = range(Σt) with probability one. In the geometric channel model where the co-
variance matrix is given as the sum of k rank-one matrices of the form a(t`)a(t`)H ,
the subspace St is k-dimensional and we recover the union-of-subspaces model
x ∈ U = ∪t∈TSt, where T is the set of all possible angle combinations.

1In this work, we parametrize the steering vectors by sin(angle) instead of the angle. Con-
sequently, the angular power profile is a function of the difference between sin(angle) and
sin(cluster center) instead of angle and cluster center as in the actual 3GPP channel models. This
represents a mild departure from the 3GPP models, which is not very severe if only cluster centers
between −60◦ and +60◦ are assumed. We do not attempt to quantify this additional approximation
error, because also the 3GPP models do not represent a ground truth, but are rather only approximate
models of reality.
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Figure 1: First 15 sorted eigenvalues of Σ0 for M = 64 antennas and ∆ = 2◦

In the 3GPP model, the covariance matrices Σt may be full rank and we do not gain
much from exploiting the union-of-subspaces structure, because the subspaces are
not low-dimensional. However, if g`(τ ) ≈ 0 for most τ , we can approximate
Σt by a low-rank covariance matrix and recover a structure with low-dimensional
subspaces: Let t` = 0 and let

[Σ]m,m+n = 1
M

∫
g(τ )[a(τ )]m[a∗(τ )]m+ndτ (33)

denote the entry in row m and column m + n of one of the summands in (30). If
we plug in expression (20) for the steering vectors, we obtain

[Σ]m,m+n = 1
M

∫
g(τ ) exp(−iπnτ )dτ (34)

= p`
M

∫
exp(−|τ |/∆− iπnτ )dτ = 2p`∆

M (1 + (∆nπ)2)
. (35)

The significant eigenvalues of this matrix are shown in Figure 1 for M = 64
antennas and for ∆ = 2◦. If ∆ is small, each summand in (30) can be approximated
by a low-rank covariance matrix Σ̃ (e.g., the eight strongest eigenvectors of Σ for
∆ = 2◦ and M = 64). As we show in Chapter X, for covariance matrices Σt

with t 6= 0, the eigenvalue distribution is the same as that of Σ0 (as we chose the
Laplacian to be a function of sin(angle) instead of the angle). Then, as for the
geometric model, the channel vector x lies approximately in a low-dimensional
subspace

St = span{range(Σ̃t1), . . . , range(Σ̃tk )} (36)

and the expected value of the squared approximation error is controlled by the
largest eigenvalue of the difference matrix

∑k
`=1(Σt` − Σ̃t`).

3—Spatio-temporal channel models

The channel models described in the previous sections are instances of spatial
channel models. They describe the correlation of the receive signals between dif-
ferent antennas recorded at the same time. In fact, we completely ignored any

14
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notion of time – the signal model based on steering vectors assumes a source emit-
ting a constant sine wave of infinite duration. Therefore, we ignored that paths
of different scatterers can have different delays. In communication systems, the
source changes the amplitude and phase of the sine wave every so many periods.
If the difference between the minimal and maximal possible path delays is larger
than the period at which the source changes its signal, the path delays become im-
portant. Whether this is the case depends on the rate at which the source changes
its signal – the communication bandwidth – and the propagation environment.
Let us consider a discrete-time signal model, i.e., after sampling at the Nyquist rate,
in which the minimal path delay is zero (after synchronization) and the maximal
path delay is Q − 1 samples. It is common to assume that the receive signal x
(at a single antenna) is given as the convolution of the transmit signal s ∈ CP
of duration P (the pilot) with the channel impulse response h ∈ CQ, which is a
vector of Q samples (called taps) with each entry corresponding to a path delay,
i.e., x = h ∗ s ∈ CQ+P−1.
In wideband systems, Q can be much larger than the number of propagation paths
and the resulting channel impulse response h contains many zeros [38]. If k is
the maximal number of paths constituting any given channel impulse response, we
have h ∈ Σk (k-sparse signals), i.e., a union-of-subspaces model. In addition to
millimeter-wave systems, long impulse responses with many zeros are also com-
mon in underwater communication systems [39, 40].
Things become interesting once we combine this temporal model with any of the
spatial models from the previous section. If the receive antenna array is not too
large, we can assume that the path delays between the source and each of the re-
ceive antennas is approximately the same (the additional propagation delay be-
tween the first and the last antenna of the receive array is assumed to be small
compared to the sampling rate fs, that is M/2� fc/fs where fc is the carrier fre-
quency). Consequently, if we let hj[n] denote the nth tap of the channel impulse re-
sponse between the source and the jth antenna and set h[n] = [h1[n] . . . hM [n]]T ,
we obtain h[n] ∈ U for each n = 0, . . . , Q − 1, and where U is any of the union
of subspaces from the previous section, e.g., the DOA manifold. In addition, the
sparsity constraint hj = [hj[0] . . . hj[Q− 1]] ∈ Σk, must hold for all antennas j
simultaneously (as the path delays are the same for all antennas, each hj must have
the same (temporal) support). The overall model is given as h ∈M with

M =
⋃

i1,...,ik∈{0,...,Q−1},ij 6=i` if j 6=`

U i1 ⊕ · · · ⊕ U ik (MA-UOS)

where
Uq = {h : h[n] = 0 if n 6= q and h[q] ∈ U} . (37)

From (37) it follows that each non-zero tap h[n] must lie in the spatial union of
subspaces U and from (MA-UOS) it follows that there may only be k nonzero
taps. It is not difficult to verify thatM is also a union of subspaces. We discuss
unions of subspaces of this particular form in more detail in Chapter V.
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4—Channel estimation with linear measurements

We have seen in the previous section that the per-antenna channel impulse re-
sponses can only be observed through their convolution with a pilot signal. This
can be described as a linear measurement. Similarly, in millimeter-wave systems
the spatial per-tap channel vector is not observed directly, but through some form
of linear measurement. This is because cost and power constraints render it likely
that not all antennas of the base station are connected to their own analog-to-digital
converters (ADCs). Instead, an analog network with, for example, phase shifters,
inverters, and combiners is used to connect the M antennas with m ADCs where
m is potentially much smaller than M .
Let us describe the complete spatio-temporal measurement equation for a block-
based communication system with a single-antenna transmitter and a receiver with
M antennas and m ADCs. If we denote by x[n] ∈ CM the noise-free (analog)
receive signal at the antennas at time instance n, then the signal at the output of the
analog network (the digital receive signal) is given by

y[n] = Ax[n] + e[n] ∈ Cm (38)

where A contains only zeros and constant-modulus entries (and is constant over
time). The noise e is added to the signal x only after application of the measure-
ment operator A, because the dominant noise sources are the ADCs (i.e., after the
signal propagated through the analog network).
The communication channel is estimated during a training phase in which a pilot
signal s = [s[0] . . . s[P − 1]] ∈ CP is transmitted that is known to the receiver.
If we insert the convolutional channel model x = h ∗ s, we obtain the linear mea-
surement equation

y[n] = A(h ∗ s)[n] + e[n], n = 0, . . . , Q+ P − 1 (39)

where Q is the length of the channel impulse response h. For white and spatially
uncorrelated Gaussian noise e of known variance, the maximum likelihood channel
estimate is obtained by solving

ĥML = arg min
h∈M

Q+P−1∑
n=0

‖y[n]−A(h ∗ s)[n]‖2 (40)

whereM is the union of subspaces given by (MA-UOS). This problem is of the
form (NLS) with the linear measurement operator h 7→ (A(h∗s)[n])n=0,...,Q+P−1.
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ALGORITHMS AND SIMULATION RESULTS

In this chapter, we generalize several algorithms that were developed for recover-
ing sparse signals from compressed measurements to infinite unions of subspaces.
These algorithms attempt to recover x ∈ U , where U is a union of subspaces,
from the compressed measurements y = Ax + e, where e is noise, by solving the
nonlinear least-squares problem

x̂ = arg min
x∈U

J(x) , J(x) = 1
2
‖y −Ax‖2. (41)

The nonlinear constraint x ∈ U renders this problem difficult. All algorithms
presented below generate a sequence of estimates xn and residuals rn = y−Axn.
Because the direction of steepest descent (the negative gradient) of J evaluated at
xn is given by ∇J(xn) : xn 7→ A∗rn = A∗Ay − A∗Axn + A∗e, the algorithms
presented below use the adjoint of A to manipulate the residual.

1—Random matrices and small problem dimensions

Roughly speaking, the performance of the algorithms we present below depends on
the RIP of the matrixA; the smaller the RIC, the better the results. The convergence
analysis, which we present in Chapter VI, shows that the worst-case error bound
can be described as a function of δ(A, U). We discussed in Chapter II that, for
a given matrix A, it is not easy to calculate δ(A, U) (NP-hard problem) and that
the only efficient known way to obtain a matrix A that probably has the RIP is by
means of random sampling. The following definitions introduce some of the most
common types of random matrices.

Definition 1 (Complex Gaussian and zero-inflated Steinhaus matrices). Let A ∈
Rm×M or A ∈ Cm×M be a random matrix with independent entries a`j , ` =
1, . . . ,m, j = 1, . . . ,M .

• If a`j ∼ N (0, 1/m) is normally distributed, then A is a Gaussian random
matrix.

• If a`j ∼ NC(0, 1/m) is complex-normally distributed, then A is a complex
Gaussian random matrix.

• If P[a`j =
√
c/m] = P[a`j = −

√
c/m] = 1/(2c) and P[a`j = 0] =

1 − 1/(2c) with 1 ≤ c ≤ 3, then A is a zero-inflated Rademacher random
matrix.
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• If a`j =
√
c/mb`j exp(iu`j) with u`j ∼ U[−π, π] uniformly distributed and

P[b`j = 1] = 1/c = 1−P[b`j = 0] with 1 ≤ c ≤ 2, thenA is a zero-inflated
Steinhaus random matrix.

In all cases, the scaling is such that E‖Ax‖2 = ‖x‖2. We analyze these matrices in
some more detail in Chapter VIII and we show in Chapter IX under what conditions
on m,M , and on the union of subspaces U they have the RIP. However, we will
find that m and M need to be rather large if we want to guarantee that A has the
RIP with high probability (in Chapter X we show some numbers that are relevant
for the channel estimation problem from Chapter III).
For small problem dimensions and some simple unions of subspaces (e.g., sparse
signals with small sparsity order), we can evaluate the restricted isometry constants
of random matrices by brute force. But before we show some exemplary results,
we discuss weighted norms and alternative formulations of the restricted isometry
property.
All of the algorithms we present below are formulated in an abstract Hilbert space
setting where A : H → H′ is a continuous linear operator between Hilbert spaces.
Here and in the following, all norms and scalar products are to be understood as the
standard norms in these Hilbert spaces; operator norms always refer to the canon-
ical strong operator norms. Of course, in all applications, we will then replace H
andH′ by some finite-dimensional spaces Cm and CM and, if we use the standard
Euclidean norm and matrix representations of A, everything works fine and we
can replace A∗ by the (hermitian) transpose matrix AH . However, we can also use
weighted norms in Cm or CM , i.e., for y ∈ Cm, we can use

‖y‖2
W = yHWy (42)

for a positive definite weighting matrix W ∈ Cm×m. The algorithms and cor-
responding theory remain completely unaffected except that we now need to be
careful not to replace the adjoint by the hermitian transpose as

〈Ax, y〉W = yHWAx = (AHWy)Hx = 〈x,AHWy〉CM . (43)

That is, if we use H = CM with standard Euclidean norm and H′ = Cm with the
W -weighted norm, we have to use A∗ = AHW instead of AH . For example, if we
use W = c(AAH)−1 for some c > 0, we obtain A∗ = AHW = cAH(AAH)−1 =
cA†, where A† is the Moore-Penrose pseudo-inverse of A. As

‖Ax‖2
W = xHAHWAx = cxHAH(AAH)−1Ax = c‖Prange(AH )x‖2, (44)

the restricted isometry condition becomes

(1− δ)‖x‖2 ≤ c‖Prange(AH )x‖2 ≤ (1 + δ)‖x‖2 (45)

if expressed in the standard (non-weighted) norms. If the random matrix A is
chosen in a way that range(AH) is uniformly distributed on the Grasmannian man-
ifold Gr(m,CM ) – the set of all m-dimensional subspaces in CM (or RM ) – then

18



IV ALGORITHMS AND SIMULATION RESULTS

10 15 20 25 30 35 40 45 50 55 60

0.4

0.6

0.8

1

m

δ

2-sparse signals

Steinhaus

Steinhaus†

zi-Steinhaus (c = 0.5)

zi-Steinhaus† (c = 0.5)
Normal

Normal†

10 15 20 25 30 35 40 45 50 55 60

0.4

0.6

0.8

1

m

δ

2-sparse signals (DFT basis)

Steinhaus

Steinhaus†

zi-Steinhaus (c = 0.5)

zi-Steinhaus† (c = 0.5)
Normal

Normal†

Figure 2: Mean value of the RIC for 2-sparse signals (above) and 2-sparse signals with
respect to a DFT dictionary (below) over 100 realizations of different random matrices A ∈
Cm×2m and for the weighting matrix W = I and W = 2(AAH)−1 (marked with †).

cE‖Prange(AH )x‖2 = ‖x‖2 if c = M/m (this is the case, for example, if A is a
(complex) Gaussian random matrix [41]), i.e., c = M/m is a good scaling for
W = c(AAH)−1.

Figure 2 and 3 show the different simulated restricted isometry constants for 2 and
3-sparse signals in the Euclidean basis and in the discrete Fourier transform (DFT)
basis when A is either a (zero-inflated) Steinhaus random matrix or a complex nor-
mal random matrix (we take the mean RIC from 100 realizations). The restricted
isometry constants with respect to the weighted norms are marked with the dagger
symbol †. For such small problem dimensions, the weighting matrix W leading to
the pseudo inverse for the adjoint operator is clearly a preferable choice in terms
of the RIC. One can also observe that non-zero-inflated Steinhaus random matrices
have an edge over Gaussian random matrices for standard sparse signals (for small
sparsity orders).
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Figure 3: Mean value of the RIC for 3-sparse signals (above) and 3-sparse signals with
respect to a DFT dictionary (below) over 100 realizations of different random matrices A ∈
Cm×2m and for the weighting matrix W = I and W = 2(AAH)−1 (marked with †).

2—Projected gradient descent

One of the simplest algorithms to solve a constrained optimization problem is the
projected gradient descent (PGD) method, which adds a projection step after the
gradient step and is implemented as

zn+1 = xn − µ∇J(xn) , (46)

xn+1 = PU (zn+1) = arg min
x∈U

‖x− zn+1‖ (47)

and initialized with x0 = 0 and with step size µ. A particularity of this compressive
sensing version of the algorithm is that the step size is usually fixed to µ = 1. This
unit step size is essential for the RIP-based convergence analysis in Chapter VI and
cannot simply be replaced by a smaller step size and more iterations as this may
prevent the algorithm from “jumping” from one subspace to the next. At the same
time, however, the convergence analysis is based on the assumption that the RIC
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Algorithm 1 Projected Gradient Descent (PGD)

1. Initialize x0 = 0

2. For n = 0, 1, . . . (until convergence criterion is satisfied):

i) zn+1 = xn +A∗(y −Axn)

ii) xn+1 = QU (zn+1)

of the matrix A is small and this is often not satisfied in practice, especially for
small problem dimensions (but this is difficult to detect as mentioned in Chapter II,
cf. [24]). In this case, a smaller step size is needed to ensure stability of the PGD
algorithm. A summary of the PGD algorithm with the best approximation PU re-
placed by an approximate projectorQU – we detail what that is in the next chapter
– is shown in Alg. 1.

3—Generalized hard thresholding pursuit

The projection step (47) of the projected gradient algorithm can be decomposed as

Sn+1 = arg min
S⊂U ,S subspace

‖zn+1 − PSzn+1‖ (48)

xn+1 = PSzn+1, (49)

where PS denotes the orthogonal projector onto the subspace S. That is, we first
find an optimal subspace and then project onto that subspace. The projected gra-
dient algorithm is very inefficient if the subspaces of subsequent iterates are the
same. We can speed up the projected gradient algorithm if we use the solution of
the subspace-constrained (and thus linear) least-squares problem

min
z∈S
‖y −Az‖2 (50)

instead of the projection of zn+1 onto S. As in the PGD algorithm, we can use
an approximate projector that returns an approximately optimal subspace (see next
chapter). The resulting algorithm is called generalized hard thresholding pursuit
(GHTP) and is described in Alg. 2.

4—Orthogonal matching pursuit

The orthogonal matching pursuit (OMP) algorithm is a greedy method that can be
used to solve (41) if the overall union of subspaces U can be decomposed into the
simpler unions of subspaces U1, . . . , UQ,

U =
⋃

i1,...,ik∈{1,...,Q},ij 6=i` if j 6=`

U i1 ⊕ · · · ⊕ U ik (51)
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Algorithm 2 Generalized Hard Thresholding Pursuit (GHTP)

1. Initialize x0 = 0

2. For n = 0, 1, . . . (until convergence criterion is satisfied):

i) zn+1 = zn +A∗(y −Azn)

ii) Sn+1 ≈ arg minS⊂U ,S subspace ‖zn+1 − PSzn+1‖2

iii) xn+1 = arg minx∈Sn+1
‖y −Ax‖2

Algorithm 3 Orthogonal Matching Pursuit

1. Initialize r0 = y,Λ0 = ∅

2. For n = 0, . . . , k − 1:

i) Λn+1 = Λn ∪ arg maxj 6∈Λn
‖PUj (A∗rn)‖2

ii) xn+1 = arg minx∈⊕i∈Λn+1 Ui
‖y −Ax‖2

iii) rn+1 = y −Axn+1

that are orthogonal to each other, U ` ⊥ U j for ` 6= j. The simplest case is when
all U ` are subspaces, e.g., U ` = span{e`} where e` are orthogonal basis vectors.
A more sophisticated example was provided in Chapter III where each U ` is a per-
block union of subspaces and the overall union of subspaces consists of signals that
have only k nonzero blocks.
For given observations y = Ax + e, the OMP algorithm attempts to construct the
optimal subspace S by successively adding subspaces S` from the simple unions
of subspaces U `. This is performed by correlating the current (at step n) residual
rn = y −Axn with all of the simple unions of subspaces, i.e. by calculating

corr` = ‖PU`
(A∗rn)‖2 (52)

for ` = 1, . . . , Q. The index `max that yields the maximal correlation is added to
the current set of indices, Λn+1 = Λn ∪ {`max} and the new residual is calculated
as rn+1 = y −Axn+1 where

xn+1 = arg min
x∈⊕i∈Λn+1 Ui

‖y −Ax‖2 (53)

solves a union-of-subspaces constrained least-squares problem that has one level
less complexity than the original problem: it is not necessary to determine the
correct combination of k unions U i1 , . . . , U ik out of

(
Q
k

)
possible combinations.
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Algorithm 4 Reduced-complexity Orthogonal Matching Pursuit

1. Initialize r0 = y,Λ0 = ∅

2. For n = 0, . . . , k − 1:

i) Λn+1 = Λn ∪ arg maxj 6∈Λn
‖PUj (A∗rn)‖2

ii) zn+1 = arg minx∈⊕i∈Λn+1 span{U i} ‖y −Ax‖
2

iii) xn+1 = P⊕i∈Λn+1 Ui(zn+1)

iv) rn+1 = y −Axn+1

5—Reduced-complexity orthogonal matching pursuit

The reduced-complexity OMP algorithm is a version of the OMP algorithm in
which the non-linear least-squares problem in step 2ii of Alg. 3 is replaced by a
much simpler linear least-squares problem. The union-of-subspaces constraint is
incorporated into the problem by projecting the solution of this linear least-squares
problem onto the union of subspaces. The drawback, as we see in Chapter VI,
is that a much stricter restricted isometry condition is necessary in order to prove
convergence of the method.

6—Simulations for pilot-based channel estimation

Recall the measurement equation for channel estimation from Chapter III,

y[n] = A(h ∗ s)[n] + e[n], n = 0, . . . , Q+ P − 1. (54)

If we let AL = A denote the spatial measurement matrix and

AR =

s[0] . . . s[P − 1]
. . . . . .

s[0] s[P − 1]

 ∈ CQ×Q+P−1 (55)

the convolution matrix for the temporal measurements and if Y = [y[0] . . . y[Q+
P −1]], E = [e[0] . . . e[Q+P −1]], H = [h[0] . . . h[Q−1]], we can write (54)
as

Y = ALHAR + E ∈ Cm×P+Q−1. (56)

The columns of Y correspond to samples from different times. The columns of the
channel matrix H must belong to a spatial union of subspaces U and the temporal
sparsity constraint demands that H may have at most k nonzero columns.
Below, we show simulation results for the two examples of the spatial unions from
Chapter III for a receive array with M = 64 antennas and m = 32 ADCs. We use
the geometric channel model with three paths per tap and k = 3 out of Q = 48
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nonzero taps and the 3GPP model with a single cluster per tap and a standard
deviation of two degrees and a low-rank approximation of the (per-tap) covariance
matrix of rank eight (cf. Figure 1). The pilot length is set to P = 16 and we use
independent Steinhaus random variables for s[p], p = 0, . . . , P − 1 (without zero
inflation, cf. Chapter VIII). For the spatial measurement matrix AL, we also use a
matrix composed of independent Steinhaus random variables, but with p = 0.5 so
that approximately 50 per cent of the entries are zeros.
The per-block union-of-subspace problems are solved by using the Root-MUSIC
algorithm [42] in the geometric model and by an exhaustive grid search in the 3GPP
model (in the latter case, we need to find the optimal t in the interval [−π, π]). As
a baseline for the comparison, we use the standard OMP algorithm with a four-
times oversampled DFT dictionary for the spatial union of subspaces and a total
sparsity order of nine for the geometric model (three per-tap paths times three
non-zero taps) and 24 for the 3GPP model (approximation order eight times three
non-zero taps). The generalized hard thresholding pursuit uses ten iterations and a
unit step size. For the projected gradient algorithm, we use µ = 0.25 (otherwise,
the algorithm is unstable) and 20 iterations. The algorithms marked with † use the
pseudo inverses of AL and AR instead of the hermitian transposes.
Figure 4 shows the mean squared estimation error ‖H − Ĥ‖2

F for different signal-
to-noise ratios (SNRs) where H is normalized such that E‖H‖2

F ≈ 1 and SNR =
1/E‖E‖2

F (Frobenius norms). The results are averaged over ten realizations for the
sensing matrices AL and AR and 50 channel realizations for each pair of sensing
matrices. For these examples, the reduced-complexity OMP algorithm showed a
very poor performance and we did not attempt to implement the OMP algorithm
(Alg. 3).
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Figure 4: MSE for the geometric channel model (above) and the single-cluster 3GPP chan-
nel model (below) for different SNRs of the Root-MUSIC generalized HTP and PGD algo-
rithms compared to the OMP algorithm with a four times oversampled DFT dictionary.

25





V
APPROXIMATE PROJECTORS

Let U = ∪t∈TSt be a closed union of subspaces in a Hilbert spaceH. It is not hard
to verify that the best-approximation operator

PU (x) = arg min
z∈U

‖x− z‖2 (57)

is given by
PU (x) = Ptx, t = arg min

t∈T
‖x− Ptx‖2 (58)

where Pt is the orthogonal projector onto St. The main difficulty with calculating
PU (x) is to find the parameter t of the subspace St that best describes x. Even if
the correct local minimum of this nonlinear optimization problem is found, there is
an ultimate limit on the numerical precision by which t can be known. If, instead
of t, we use an approximate value tε with |t− tε| ≤ ε, we obtain the map

QU (x) = Ptεx (59)

which differs from PU . This is the motivation for the notion of approximate pro-
jectors, which we introduce in Section 1. In Section 2, we show how to obtain
approximate projectors in compound unions of subspaces of the form (MA-UOS)
from approximate per-block projectors.

1—Notions of approximate projectors

Let us call a function P : H → U , which maps x onto its best approximation
in U , an optimal projector. For all but the most simple constraint sets U , the
calculation of the optimal projector P(x) is hard. In fact, if the set U is not closed,
an optimal projector does not even exist. Thus, in view of an efficient and practical
implementation of any algorithm that relies on computing P , it is of great interest
to relax the conditions on P such that P(x) can be computed in less time.
A function P ′ : H → U that only satisfies P ′(x) = x for x ∈ U and P ′(x) ∈ U
for any x ∈ H is called a projector; the element P ′(x) is not required to be the best
approximation of x in U . This notion of projector has been used in the context of
the PGD algorithm in [33] along with the requirement ‖x−P ′(x)‖ ≤ ‖x−xU‖+ε
for all xU ∈ U and x ∈ H and a small constant ε > 01. As pointed out in [32],

1In this chapter, we often use a requirement such as ‖x − P ′(x)‖ ≤ ‖x − xU‖ + ε for all
xU ∈ U , which should be thought of as ‖x − P ′(x)‖ ≤ ‖x − P(x)‖ + ε. The reason for using
the more complicated formulation with the “∀x ∈ U”-part is that we do not need to state that U is a
closed set every time we use P(x) (this map is only well-defined if U is closed).
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this relaxation guarantees that the PGD algorithm can be implemented, because
such a map P ′ always exists. In [32, 43, 44] this absolute error requirement was
replaced by the relative error requirement ‖x − P ′(x)‖ ≤ (1 + ε)‖x − xU‖ for
all xU ∈ U , x ∈ H. Allowing for such a relative error opens up the possibility
to use very efficient algorithms for computing P ′(x) for certain constraint sets U ,
e.g., when U is a finite union of sparse vectors with graph-structured sparsity [45].
In this work, we use approximate projectors satisfying2

‖x−Q(x)‖2 ≤ ‖x− Ptx‖2 + ε2‖Ptx‖2 (60)

for all t ∈ T , where Pt is the orthogonal projector onto St. This is particularly
useful in the infinite-union-of-subspaces model. In such a setting, it is natural to
implement Q by first finding an (almost) optimal subspace St and then calculating
the orthogonal projector Pt onto St. In contrast to the works [32,33,43,44],Q(x) =
x for x ∈ U is not needed. Although this seems a natural requirement, it demands
that the first approximation problem – finding the optimal parameter t – be solved
exactly whenever x ∈ U . By allowing for an inexact estimation of the parameter
t, we open up the possibility to use a wider variety of algorithms for subspace
estimation.

Definition 2 (ε-approximate projector). A map Q : H → U is an ε-approximate
projector onto U if for all x ∈ H and t ∈ T , there is s ∈ T such that

‖x−Q(x)‖2 ≤ ‖x− Ptx‖2 + ε2‖Ps,tx‖2 (61)

where Ps,t denotes the orthogonal projector onto span{St, Ss}.

This condition is only meaningful for ε < 1. The condition (61) is slightly weaker
than the simpler condition (60). The additional parameter s allows for some more
flexibility when designing the approximate projector. If Q(x) is implemented as
the orthogonal projection Q(x) = Ptq(x)x, where tq(x) depends on x, then (60) is
equivalent to

‖Ptq(x)x‖2 ≥ (1− ε2) sup
t∈T
‖Ptx‖2 (62)

which can be seen by adding ‖Ptx‖2 + ‖Ptq(x)x‖2 to (60). Thus, an approximate
solution in the sense (62) of the optimization problem supt∈T ‖Ptx‖2 yields an
ε-approximate projector.
In the context of model-based compressive sensing and, more recently, general
unions of subspaces, convergence of the projected gradient algorithm was shown
with non-optimal projectors Q that satisfy

‖x−Q(x)‖ ≤ cT ‖x− Ptx‖ ∀t ∈ T (63)

‖Q(x)‖ ≥ cH‖Ptx‖ ∀t ∈ T (64)

2In [32, 43, 44], what we call projectors are called approximate projectors and what we call
optimal projectors are called projectors.
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for some cT ≥ 1 and 0 < cH ≤ 1 (if the same map Q is used for both, the head
and tail approximations) [43, 44]. Condition (64) is the same as (62), thus, in the
terminology of [43,44], an ε-approximate projector is a head approximation oracle.
In a different line of works [32], compressive sensing algorithms were used with
projectors that satisfy

‖x−Q(x)‖ ≤ (1 + ε1)‖x− Ptx‖ ∀t ∈ T (65)

‖x−Q(x)‖ ≤ ‖x− Ptx‖+ ε2‖Ptx‖ ∀t ∈ T . (66)

The second condition is similar to (60) and the first condition, again, requiresQ to
be a projector.
The authors of [46] and of [47] consider maps that are not required to be projectors.
The maps used in [46] are approximate projectors in the sense of Definition 2, but
are required to be of a very specific form that is only compatible with certain group
sparsity models. The maps proposed in [47] are also not required to be projectors
onto the constraint set U and the results apply to constraint sets that are more
general than unions of subspaces. In the union of subspaces setting, their map Q
has to be of the form Q = q ◦ p where p is a linear map. For the purpose of
comparison, we can choose p as the identity map. In that case, the mapQ needs to
fulfill

‖P(x)−Q(x)‖ ≤ ε′‖x‖ (67)

which is alternative to (60). Furthermore, the map Q is required to be an optimal
projector onto a set U ′, which may be different from U . The definition of an ε-
approximate projector we use does not impose such a structural constraint.

2—Approximate projectors in compound models

In Chapter III, we encountered the union of subspaces

M =
⋃

i1,...,ik∈{1,...,Q},ij 6=i` if j 6=`

U i1 ⊕ · · · ⊕ U ik (68)

where U ` are (per-block) unions of subspaces with span{U `} ⊥ span{U j} for
` 6= j. We can writeM as the intersection of two unions of subspaces as follows:
LetH = H1⊕ · · ·⊕HQ withH` = span{U `}, ` = 1, . . . , Q and let P` denote the
orthogonal projector ontoH`. Define

Bk = {x ∈ H : | bsupp(x)| ≤ k} (69)

where
bsupp(x) = {` ∈ {1, . . . , Q} : P`x 6= 0} (70)

denotes the block support of x – the indices corresponding to subspaces H` in
which x is not zero. The constraint x ∈ Bk specifies that x should have “energy”
in no more than k of the subspacesH`. Also define

U = U1 ⊕ · · · ⊕ UQ. (71)

29



INFINITE UNIONS OF SUBSPACES

The constraint x ∈ U specifies that each “block” P`x of x should lie in the (per-
block) union of subspaces U `. Accordingly, U is given as the intersection

M = Bk ∩ U . (72)

The following result shows that an approximate projector ontoM is obtained by
concatenating per-block approximate projectors with the block-thresholding oper-
ation.

Lemma 3 (Approximate projectors). With the notation from above, let P : H →
Bk denote the block-thresholding operator (the optimal projector onto Bk) and
let Q` : H` → U ` be ε-approximate projectors onto U `. Set Q : H → U , x 7→∑Q

`=1Q`(P`x). Then P ◦ Q is an ε-approximate projector ontoM.

Proof. We need to show that for each subspace S ⊂ Bk ∩ U there is a subspace
S′ ⊂ Bk ∩ U such that

‖x− P ◦ Q(x)‖2 ≤ ‖x− PSx‖2 + ε2‖PS,S′x‖2 (73)

where PS,S′ denotes the orthogonal projector onto span{S, S′}. Any S ⊂ Bk ∩ U
is of the form S = ⊕`∈IS` with I ⊂ {1, . . . , Q}, |I| = k and S` ⊂ U `. By the
sub-optimality of Q`, for each `, there is another subspace S′` ⊂ U ` with

‖P`x−Q`(P`x)‖2 ≤ ‖P`x− PS`
x‖2 + ε2‖PS`,S

′
`
x‖2. (74)

We set S′ = ⊕`∈IS′`. Next, as the block-thresholding operator P satisfies

‖x− P(x)‖2 ≤
∑
`6∈I
‖P`x‖2 =

∥∥x−∑`∈IP`x
∥∥2 (75)

we use Q`(x) ∈ H` so that (73) is satisfied because of

‖x− P ◦ Q(x)‖2 =
∥∥∥x− P (∑Q

`=1Q`(P`x)
)∥∥∥2

(76)

≤
∥∥x−∑`∈IQ`(P`x)

∥∥2 (77)

=
∑
6̀∈I
‖P`x‖2 +

∑
`∈I
‖P`x−Q`(P`x)‖2 (78)

≤
∑
6̀∈I
‖P`x‖2 +

∑
`∈I
‖P`x− PS`

x‖2 + ε2‖PS`,S
′
`
x‖2 (79)

= ‖x− PSx‖2 + ε2‖PS,S′x‖2. (80)

Example 1 (Channel estimation). Let M = Bk ∩ U with U given by (71) and
each U ` corresponding to the DOA manifold (23). This union of subspaces ap-
pears in the channel estimation problem. An optimal projector ontoM is obtained
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by first optimally projecting each block P`x onto U ` and then applying a block-
thresholding operation (zeroing all except the k blocks for which ‖P`PU`

(x)‖ is
largest. While the block-thresholding is a simple operation that consists only of
calculating and sorting the block norms, the per-block projections require solv-
ing DOA problems. In a practical implementation of an algorithm, the per-block
approximate projector can be implemented, for example, by variants of the MU-
SIC or ESPRIT algorithms [48, 49]. The resulting algorithms are combinations
of compressive sensing algorithms (block thresholding) with arbitrary other algo-
rithms that calculate the per-block projections (cf. model-aware compressive sens-
ing [3, 50]). The “coherence limit” encountered when using standard compressive
sensing methods with an oversampled DFT dictionary (see, e.g., [51]) is circum-
vented by the use of arbitrary algorithms for the per-block projections that do not
necessarily suffer (as much) from too closely spaced angles (this is corroborated
by the simulation results shown in Chapter IV where we used the Root-MUSIC
algorithm for the per-block projections).
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VI
RECOVERY GUARANTEES

Having introduced compressive sensing terminology and the notion of approxi-
mate projectors, we can proceed to analyzing the convergence properties of the
algorithms presented in Chapter IV. While the proofs are not particularly interest-
ing and at times lengthy (and therefore shown in the appendix), they build on the
restricted isometry calculus we present in Sect. 1 and which is interesting in its
own right.

1—Restricted isometry calculus

Let A : H → H′ be a continuous linear operator between general Hilbert spaces
H,H′. For the following statements, we assume that A has the RIP with RIC
δ = δ(A, U) < 1 with respect to a union of subspaces U ⊂ H .

Lemma 4. For any subspace S ⊂ U , we have ‖PS − PSA∗APS‖ ≤ δ .

Proof. Because PSx ∈ U for all x ∈ H, it follows from

(1− δ)‖PSx‖2 ≤ ‖APSx‖2 ≤ (1 + δ)‖PSx‖2 (81)

that for all x ∈ H, we have

|〈(PS − PSA∗APS)x, x〉| = | ‖PSx‖2 − ‖APSx‖2 | ≤ δ‖PSx‖2 ≤ δ‖x‖2 . (82)

The operator PS − PSA
∗APS is self-adjoint and, thus, its operator norm can be

calculated as

‖PS − PSA∗APS‖ = sup
x∈H, ‖x‖=1

|〈(PS − PSA∗APS)x, x〉| ≤ δ (83)

which shows the assertion.

Lemma 5. For any two subspaces S, T ⊂ U with span{S, T} ⊂ U and S ⊥ T ,
we have

‖PS(I −A∗A)PT ‖ = ‖PSA∗APT ‖ ≤ δ. (84)
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Proof. Let W = span{S, T} ⊂ U so that PS = PWPS and PT = PWPT . Be-
cause W ⊂ U and 〈PSx, PT y〉 = 0 for x, y ∈ H, we obtain

‖PSA∗APT ‖ = sup
‖x‖=‖y‖=1

|〈PSx, PSA∗APT y〉| (85)

= sup
‖x‖=‖y‖=1

|〈PSx, PSA∗APT y〉 − 〈PSx, PT y〉| (86)

= sup
‖x‖=‖y‖=1

|〈PSx, PWA∗APWPT y〉 − 〈PSx, PWPT y〉| (87)

= sup
‖x‖=‖y‖=1

|〈PSx, PW (I −A∗A)PWPT y〉| ≤ δ (88)

where the inequality follows from Lemma 4.

Lemma 6. For any subspace S ⊂ U , we have ‖PSA∗‖ ≤
√

1 + δ.

Proof. Using ‖x‖ = supv∈H:‖v‖=1 |〈v, x〉| and noting that PSv ∈ U , we obtain

‖PSA∗e‖ = sup
v∈H:‖v‖=1

|〈v, PSA∗e〉| (89)

= sup
v∈H:‖v‖=1

|〈APSv, e〉| (90)

≤ sup
v∈H:‖v‖=1

‖APSv‖‖e‖ ≤
√

1 + δ‖e‖ (91)

which shows that ‖PSA∗‖ ≤
√

1 + δ.

2—Projected gradient descent

The following theorem shows convergence of the inexact projected gradient al-
gorithm when used with ε-approximate projectors. We do not require x ∈ U but
rather allow for a modeling error x−x∗ where x∗ ∈ U can be chosen as x∗ = P(x)
in case the projection exists. Let Uq := {

∑q
i=1 xi : xi ∈ U} and let δq = δ(A, Uq)

denote the restricted isometry constants with respect to the qth order union of sub-
spaces Uq.

Theorem 7. Let y = Ax+ e with x ∈ H, a bounded linear operator A : H → H′
that has the RIP with respect to U , and a disturbance e ∈ H′. Let Q : H → U be
an ε-approximate projector for U with ε ≤ 1 and define the constants

c1 = (2 + cε) δ3, c2 = (2 + cε)
√

1 + δ2, c = 1
1 +
√

2
. (92)

If the sequence xn is generated according to the inexact projected gradient algo-
rithm (Algorithm 1),

zn = xn−1 +A∗(y −Axn−1) (93)

xn = Q(zn) (94)
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with x0 = 0, then for each x∗ ∈ U , we have

‖xn − x‖ ≤ ‖x− x∗‖+ cn1 ‖x∗‖+ 1− cn1
1− c1

(
c2
(
‖e‖+ ‖A(x− x∗)‖

)
+ ε‖x∗‖

)
.

(95)

If c1 < 1, which translates into the condition δ <
(
2+ε/(1+

√
2)
)−1, the sequence

of residuals is bounded. If ε = 0, i.e., if the projection is optimal, we recover the
condition δ < 1/2. Finally, if, in addition, ‖e‖ = 0 and x∗ = x, the sequence xn
converges towards x.
The full proof, which we show in Appendix 2, is based on the following argu-
mentation: If the projection step was not necessary and if e = 0, i.e., if xn+1 =
xn +A∗(y −Axn), we would obtain the discrete dynamical system

xn+1 − x∗ = (I −A∗A)(xn − x∗) (96)

after subtracting x∗ from both sides and inserting y = Ax∗. The estimation error
xn+1−x∗ converges to zero if all eigenvalues of I−A∗A are inside the unit circle,
i.e., if the eigenvalues of (the non-negative matrix) A∗A are larger than zero and
smaller than two. As I − A∗A is only applied to vectors xn − x∗, where both
x∗ and xn are elements of U , it is enough to verify this eigenvalue property for
such vectors, hence, the restricted isometry (eigenvalue) requirement. Finally, the
projection is incorporated through the triangle inequality ‖xn−x∗‖ ≤ ‖xn−zn‖+
‖zn − x∗‖ ≤ 2‖zn − x∗‖ where the last step follows from the best-approximation
property (‖xn−zn‖ is minimal, therefore smaller than ‖x∗−zn‖). This inequality
is responsible for the factor two in front of I − A∗A and the requirement that the
(restricted) eigenvalues of A∗A are between 1/2 and 3/2.
The result is non-trivial as soon as ε < 1− c1 ≈ 1− 2δ3. Furthermore, if x = x∗
for some x∗ ∈ U , we obtain

‖xn − x‖ ≤ cn1 ‖x‖+ 1− cn1
1− c1

(
c2‖e‖+ ε‖x‖

)
. (97)

However, even if x ∈ U , a tighter bound may be achieved by choosing x∗ = αx
for some α < 1, especially if one intends an early termination of the algorithm.
If we use an optimal projector (ε = 0), Theorem 7 is comparable to the following
symmetric reformulation of [33, Theorem 2].

Theorem 8 (Theorem 2 in [33]). If δ2 < 1/5 and if y = Ax + e, the projected
gradient algorithm with step size µ = 5/6, which is given by

zn+1 = xn + µA∗(y −Axn) (98)

xn+1 = PU (zn+1) (99)

yields a sequence xn with

‖xn − x‖2 ≤ cn1 ‖x‖2 + 1− cn1
1− c1

c2‖e‖2 (100)
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where

c1 = 2(1 + 5δ2)
5(1− δ2)

and c2 = 4
1− δ2

. (101)

Proof. This follows from Theorem 2 in [33] if we set β = 1+δ2 and α = 1−δ2. If
δ2 < 1/5, then µ = 5/6 is a valid step size, because β < 6/5 = µ−1 < 3(1−δ2)

2 =
3α
2 as 3(1−δ2)/2 > 6/5. We assume that U is a closed union of subspaces and that

we can compute exact projections, i.e., ε = 0. Using recursion in [33, Eq. (20)],
we obtain (with xA = x and eA = e and c2 = 4/α and c1 = 2(µα)−1 − 2)

‖x− xn‖2 ≤
(

2
(

1
µα
− 1
))n
‖x‖2 + c2(1− cn1 )

1− c1
‖e‖2. (102)

The constant c1 is given as

c1 = 2
(

1
µα
− 1
)

= 2
(

6
5(1− δ2)

− 1
)

= 2
(

6− 5 + 5δ2

5(1− δ2)

)
= 2(1 + 5δ2)

5(1− δ2)
.

(103)

Finally, the AM-IHT algorithm proposed in [43] converges if

(1 + cT )
(
δ3 +

√
1− (cH (1− δ3)− δ3)2

)
< 1 (104)

and where cH and cT are the approximation constants of the head and tail approx-
imation oracles, respectively, as defined in (63) and (64) in Chapter V. As cT ≥ 1
and because the square-root term is positive, it is necessary that δ3 < 1/2. Be-
cause (cH (1 − δ3) − δ3)2 ≤ c2

H (1 − δ3)2 for cH ≥ 1/2 and δ3 ≤ 1/2, we can
recover the condition ε < 1− 2δ3, which mirrors the condition on ε in Theorem 7.
Thus, in both cases the range of admissible values for ε is comparable. In contrast
to the result in Theorem 7, the fixed point of the AM-IHT algorithm does not ex-
hibit the remaining approximation error (1 − c1)−1ε‖x‖ thanks to the projection
condition (63).

3—Generalized hard thresholding pursuit

For the generalized hard thresholding algorithm, we can show the following re-
sult. As in the previous section, we define Uq := {

∑q
i=1 xi : xi ∈ U} and let

δq = δ(A, Uq) denote the restricted isometry constants with respect to the qth or-
der union of subspaces Uq. This theorem is a generalization of the result for finite
unions of subspaces stated in [52].

Theorem 9. Let y = Ax+ e with x ∈ H, a bounded linear operator A : H → H′
that has the RIP with respect to U , and a disturbance e ∈ H′. Let Q : H → U be
an ε-approximate projector for U with ε ≤ 1 and define the constants

c1 = (2 + cε)δ3

1− cδ2
, c2 = (2 + cε+ c)

√
1 + δ2

1− cδ2
, c3 = 1

1− cδ2
, c = 1

1 +
√

2
.

(105)
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If δ3 < 1/3 and if the sequence xn is generated according to the generalized hard
thresholding pursuit (Algorithm 2) with x0 = 0, then for each x∗ ∈ U

‖xn − x‖ ≤ ‖x− x∗‖+ cn1 ‖x∗‖+ 1− cn1
1− c1

(
c2‖e‖+ c2‖A(x− x∗)‖+ εc3‖x∗‖

)
.

The proof is shown in Appendix 3. We observe the similarity of the error after
n iterations with that for the PGD algorithm in Theorem 7. One can see that the
constants defining the convergence speed are strictly worse for the GHTP algorithm
(due to the factor 1/(1 − cδ2)). However, we saw in Chapter IV that this does not
prevent the GHTP algorithm from outperforming the PGD algorithm.

4—Orthogonal matching pursuit

The simplest version of a union of subspaces of the form (51) is

U =
⋃

i1,...,ik∈{1,...,Q},ij 6=i` if j 6=`

Hi1 ⊕ · · · ⊕ Hik (106)

where the componentsH` are subspaces. Such an extension of the OMP algorithm
has been presented in [29]: Let the vector x ∈ CQN be given as

x = vec(x1 . . . xQ) , x` ∈ CN for ` = 1, . . . , Q

and let bsupp(x) denote the block support of x, that is, the block indices of its
nonzero components (blocks) x`. We define the set of block-sparse signals with
sparsity order k as

Bk := {x ∈ CQN : | bsupp(x)| ≤ k} .

As for sparse signals, one can show that if x ∈ Bk, then a block-version of the
OMP algorithm (Alg. 3 with this particular union of subspaces) recovers x exactly
if δ(A,Bk) < (

√
k + 1)−1 (by using the proof technique from [20]). Because

Bk ⊂ ΣkN , we have δ(A,Bk) ≤ δ(A,ΣkN ). Thus, the condition for the block-
OMP algorithm is weaker than the condition δ(A,ΣkN ) < (

√
kN + 1)−1, which

would apply if one tried to recover all entries of x individually [20].
The following theorem shows that this condition can be weakened further if more
structure is known about the blocks x` and if this knowledge is exploited in the
OMP algorithm.

Theorem 10 (Orthogonal matching pursuit). Assume that y = Ax with x ∈ Bk∩U
where U is given by U = U1 ⊕ · · · ⊕ UQ and where U ` are unions of subspaces
with span{U `} ⊥ span{U j} for j 6= `. If

δ(A,Bk+1 ∩ U2) <
1√

6 +
√
k − 1

then the OMP algorithm (Algorithm 3) recovers x exactly after k iterations.
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The proof, which we show in Appendix 4, is considerably more difficult for the
case where the sets U ` are not subspaces. A, by now, classical argumentation in
the proof is to only show that a correct index is chosen during the first iteration
of the OMP algorithm and to guarantee that this index will not be chosen again
in any of the following iterations. Assume that U ` = H` are subspaces and that
x∗ ∈ H1 ⊕ · · · ⊕ Hk. It follows that

r1 = y ∈ span{range(APH1), . . . , range(APHk
)}. (107)

The first index is chosen by correlating the residual r1 with all of the subspaces
H1, . . . ,HQ and choosing the one that yields the maximal correlation. If a correct
index is chosen in the first iteration, e.g., the first index, the residual r2 at the second
iteration of the OMP algorithm is given as y−Ax1 where x1 ∈ H1. Consequently,
we still have r2 ∈ span{range(APH1), . . . , range(APHk

)} and the condition about
whether the OMP algorithm chooses another correct index ` ∈ {1, . . . , k} is the
same as in the first iteration. However, we have to ensure that the next index is not
the same index as the one chosen in the previous iteration. This is ensured by the
orthogonal projection step in the OMP algorithm. The correlation of rn with any
of the previously chosen subspaces APH1 , . . . , APHn−1 is zero and, therefore, not
maximal. Thus, a correct index is found that has not been chosen before.
This step is problematic if the sets U ` are not subspaces but unions of subspaces.
We have

r1 = y ∈ span{range(APS∗,1), . . . , range(APS∗,k )} (108)

at the first iteration (where S∗,1 denotes the correct subspace for the first index etc.).
Then, even if the OMP algorithm chooses a correct index, say the first one, it does
not necessarily choose the correct subspace S∗,1 but another subspaces S1 6= S∗,1
so that

r2 ∈ span{range(APS∗,1), . . . , range(APS∗,k ), range(APS1)}, (109)

i.e., the situation in the second iteration differs from that in the first iteration.

5—Reduced-complexity orthogonal matching pursuit

The following theorem shows under what conditions the reduced-complexity OMP
algorithm successfully recovers original signal.

Theorem 11 (Reduced Complexity MA-OMP). Assume that y = Ax with x ∈
Bk ∩ U . Let δ = δ(A,Bk+1 ∩ U2) and δ′ = δ(A,Bk). If

δ <
1

1 + u+
√

(k − 1)(1 + u2)
with u = 2

√
δ + δ′

1− δ′

then the reduced-complexity OMP algorithm (Algorithm 4) recovers x exactly after
k iterations. This condition is implied, for example, by the two conditions

δ′ ≤ 3
4

and δ ≤ 1
5 + 4

√
k − 1

. (110)
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This condition is considerably more difficult to satisfy than the one stated in Theo-
rem 10, but the algorithm is much easier to implement. The proof, which we show
in Appendix 5, is similar to that of the OMP algorithm.
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Now that we have seen how useful the restricted isometry property is, we discuss
how to obtain sensing matrices that have this property. There are several ways to
proceed: First, one could guess a matrix and verify whether it has the RIP, but
this has been shown to be quite difficult for non-trivial problems. More precisely,
for sparse signals, the verification part of this problem is NP-hard [53,54]. Second,
there are cases where a deterministic construction of matrices is possible, for exam-
ple, by using equi-angular tight frames when U consists of sparse signals [55, 56].
However, deterministic constructions encounter the square-root bottleneck (or al-
most, cf. [57]) and appear to be more difficult to use than random constructions,
which is the third way to obtain RIP-matrices.
Let us assume that we have access to some random matrix generator for which the
probabilistic point-wise RIP holds:

P
[
(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2] ≥ 1− 2f (δ). (P-RIP)

The probability is with respect to the distribution of the random matrix A and f is
an upper bound for the probability that any random draw of the matrix A distorts
a given vector x by more than δ. By far the most important example of such
matrices are Gaussian random matrices A ∈ Rm×M where each element of A
is independently drawn from the normal distribution with variance 1/m, [A]ij ∼
N (0, 1/m). As we discuss in the next chapter, for such matrices (P-RIP) holds
with

− log f (δ) = m(δ − log(1 + δ))/2. (111)

Importantly, the number of rows m of the matrix A appears as a linear factor in the
exponent. This is a manifestation of the concentration of measure phenomenon:
as we increase m, the probability that ‖Ax‖ ≈ ‖x‖ goes to one exponentially
fast. This probability increases even fast enough that we can use the (crude) union
bound to show a version of (P-RIP) which holds simultaneously for many vectors
x. This is the main idea behind the probabilistic constructions of RIP matrices.
A second thing to notice is that, in this example, f is log-concave as a function of δ,
i.e., log f is concave. This property is strongly linked to so-called sub-exponential
random variables and we discuss this relation in the next chapter. Log-concavity of
the function f is not a prerequisite to derive a uniform version of the probabilistic
RIP, i.e., an inequality of the form

P
[
∀x ∈ U : (1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2] ≥ 1− fU (δ) (112)
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with some function fU depending on f and U . However, the stronger f decays as
a function of δ – log-concavity means ultra-fast decay – the better the bound fU
becomes.
To show an inequality of the form (112), we first show that (P-RIP) holds for a
representative (finite) sample Uε ⊂ U and then verify that nothing bad happens
between sample points. The first part is readily shown by using a union-bound ar-
gument for an ε-cover of the intersection of U with the unit sphere. The second part
is simple as well (in the light of the right argument) if U is given as a finite union of
subspaces [25]. However, for general sets U , this second step is considerably more
difficult and usually relies on sequences of finite subsets of U – a process known
as chaining. Thus, before we can show our major RIP-theorem (Theorem 28), we
need to introduce the chaining technique.
In this chapter, we show how this technique can be used to prove a general con-
centration theorem (Theorem 20) for random processes in metric spaces with ge-
ometrically regular index sets. This theorem is much more general than the RIP
Theorem, which we derive as a corollary of this theorem in Chapter IX.
We start this chapter with a discussion of ε-covers in metric spaces and the notion
of geometric regularity, which describes the growth rate of the ε-covers as ε de-
creases (Sect. 1). Geometrically regular spaces are abundant and we give several
examples in Sect. 2. In Sect. 3, we introduce the chaining technique and derive
two tail bounds in very general settings. These bounds are almost trivial, but they
contain the essence of the chaining technique. In Sect. 4, we present Theorem 20,
a version of the general chaining theorem where we make a very severe restric-
tion regarding the optimality of the bounds: we use ε-covers to construct chaining
sequences. This is the only way that we are aware of by which the bounds that
appear in the theorem can be evaluated. We briefly discuss a possible generaliza-
tion of Thm. 20 to non-isotropic distributions in Sect. 5 and resolve the remaining
degree of freedom in Theorem 20 – the approximation speed – in Sect. 6 by giving
two possible approximation sequences. Finally, in Sect. 7, we discuss the relation
of our results with so-called generic chaining theorems.

1—Geometric regularity

The chaining technique needs successive approximations of an uncountable index
set by finite sets. In this work, we use sequences of ε-covers for these approxima-
tions and, hence, covering numbers to quantify the complexity of the index set.

Definition 12 (ε-sequences, ε-covers, ε-covering number). Let (T, d) be a metric
space. A sequence of maps (πε)ε>0, πε : T → T , is called an ε-sequence of T , if
d(πε(t), t) ≤ ε for all t ∈ T , ε > 0. The set Tε = πε(T ) is called an ε-cover of T .
A function π : R → R with |πε(T )| ≤ π(ε) for all ε > 0 is called an upper bound
of π. Finally,

N (T, d, ε) = inf
π ε-sequence

|πε(T )| (113)
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is called the ε-covering number of (T, d).

We will require that the covering numbers of T are finite. Such spaces are called
totally bounded. We need some control about the growth rate of the covering num-
bers as ε tends to zero. A notion of growth rate that has been used in this context
(cf. [58]) is the upper box-counting dimension, which is defined as

dimu(T ) = lim sup
ε→0

log(N (T, d, ε))
log(1/ε)

. (114)

It is not difficult to see that sets with finite upper box-counting dimension are ex-
actly those sets for which we can find a k-regular ε-sequence (a similar notion of
regularity has also been used in [59] and [60, Definition 5.1]):

Definition 13 (k-regular ε-sequences, functions, and spaces). Let k > 0, ε′ > 0. A
function g : R→ R is called k-regular if

g(ε) ≤ (ε′/ε)kg(ε′) ∀ε > 0. (115)

An ε-sequence π of a metric space (T, d) is k-regular if there is a k-regular upper
bound π of π. A metric space (T, d) is k-regular if there exists a k-regular ε-
sequence of T .

2—Examples of geometrically regular spaces

Euclidean balls are standard examples for geometrically regular spaces (cf., e.g., [23,
App. C.2] and [61, Lemma 5.2]).

Example 2 (Euclidean balls and spheres are regular). Let d denote the Euclidean
distance in Rk or Ck. The covering numbers of the metric spaces (BRk , d) and
(∂BRk , d) are bounded by (2+ε)k/εk. Similarly, the covering numbers of (BCk , d)
and (∂BCk , d) are bounded by g(ε) = (2 + ε)2k/ε2k. Note that ε-covers are sub-
sets of the respective metric spaces, i.e., elements of ε-covers of spheres have unit
norm!

Example 3 (Real sparse signals). Let d denote the Euclidean distance and Σk =
{x ∈ RM : | supp(x)| ≤ k} the set of k-sparse signals in RM . We obtain an
ε-cover of C = Σk ∩ ∂BRM by taking the union of

(
M
k

)
≤ (eM/k)k covers of

k-dimensional unit spheres, each of which has cardinality less than (2 + ε)k/εk.
Consequently, there is an ε-sequence π of C with upper bound π(ε) = (eM/k)k(2+
ε)k/εk. Furthermore, by construction the set of differences {x − πε(x), x ∈ Σk}
also contains k-sparse vectors (we approximate k-sparse vectors by k-sparse vec-
tors with the same support).

Example 4 (Complex sparse signals). If Σk ⊂ CM consists of complex signals and
if d is still the Euclidean distance, we can proceed as for real sparse signals except
that each ε-cover of the k-dimensional complex unit ball requires (2 + ε)2k/ε2k
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Geometrically regular space bound of the covering number

Real sparse signals Σk ⊂ RM (eM/k)k(2 + ε)k/εk

Complex sparse signals Σk ⊂ CM (eM/k)k(2 + ε)2k/ε2k

Finite union of real k-dim. subspaces #subspaces× (2 + ε)k/εk

Finite union of complex k-dim. subspaces #subspaces× (2 + ε)2k/ε2k

Rank-k matrices in Rn1×n2 (9/ε)k(n1+n2+1)

Lipschitz union of k-dim. real subspaces (16L)k/ε2k

Lipschitz union of k-dim. complex subspaces (56L)k/ε3k

Table VII.1: Covering number estimates.

points. Thus, there is an ε-sequence π of C = Σk ∩ ∂BRM with upper bound
π(ε) = (eM/k)k(2 + ε)2k/ε2k and the set {x − πε(x), x ∈ Σk} also contains k-
sparse vectors (we approximate k-sparse vectors by k-sparse vectors with the same
support).

Example 5 (Finite unions of subspaces). If U = ∪t∈TSt ⊂ RM (or CM ) is a
finite union of subspaces with dim(St) = k for all t, we can proceed just as for
sparse signals and construct separate ε-covers for each subspace. Consequently,
there is an ε-sequence π of the set C = U ∩ ∂BRM (or ∂BCM ) with upper bound
π(ε) = |T |(2 + ε)k

′
/εk

′
with k′ = k for real subspaces and k′ = 2k for complex

subspaces. Elements of the set {x− π(x) : x ∈ C} are also elements of U .

Example 6 (Low-rank matrices [62, Lemma 3.1]). The covering number of the set
of unit-norm matrices (Frobenius norm and associated metric) in Rn1×n2 with rank
at most k is bounded by (9/ε)k(n1+n2+1).

Some more work is required to bound the covering numbers in infinite unions of
subspaces.

Theorem 14 (Covering infinite unions of subspaces). Let T be a set and U =
∪t∈TSt a union of k-dimensional subspaces St ⊂ H of a Hilbert space H with
orthogonal projectors Pt onto St. Assume that the metric space (T, dF) is totally
bounded with respect to the Finsler metric

dF(s, t) = ‖Ps − Pt‖ (116)

which measures the distance of two subspaces as the operator-norm difference of
their orthogonal projectors. If gT is an upper bound for the covering numbers of
T in this metric, then the covering number of C = U ∩ ∂BH with respect to the
Hilbert space metric is bounded by

g(ε) = inf
εT ,εH>0

gT (εT )(2 + εH)k
′
/εk

′
H (117)

s.t. ε2
H + ε2

T + (1− (1− ε2
T )1/2)2 ≤ ε2. (118)

where k′ = k ifH is a real Hilbert space and k′ = 2k ifH is complex.
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Proof. We construct an ε-cover of C as follows: We first choose an εT -cover Tf of
T of cardinality gT (εT ) and then set

Cf = ∂BH ∩
⋃
t∈Tf

St. (119)

As Tf is finite, there is an εH-cover Wf of Cf with (cf. Example 5)

|Wf| ≤ gT (εT )(2 + εH)k
′
/εk

′
H. (120)

Let us see how well we can approximate elements in C by elements in Wf. For any
x ∈ C, there is t0 ∈ T such that x = Pt0x and we can find t ∈ Tf such that

‖x− Ptx‖ = ‖(Pt0 − Pt)x‖ ≤ ‖Pt0 − Pt‖‖x‖ = dF(t0, t) ≤ εT . (121)

Let z ∈ Wf, z ∈ St, be the best approximating point of Ptx. By orthogonality, we
obtain

‖x− z‖2 ≤ ε2
T + ‖z − Ptx‖2. (122)

As Ptx is not necessarily on the unit sphere, we do not simply have ‖z − Ptx‖ ≤
εH. However, if we let xt = Ptx, we find that as ‖x− xt‖ ≤ εT and ‖x‖ = 1, we
must have

‖xt‖2 = ‖x‖2 − ‖x− Ptx‖2 ≥ 1− ε2
T (123)

so that xt is inside the unit ball and very close to the unit sphere: Let y = xt/‖xt‖ ∈
Cf, then

‖xt/‖xt‖ − xt‖ = 1− ‖xt‖ ≤ 1− (1− ε2
T )1/2. (124)

Next, note that any element z ∈ BH must satisfy

Re〈z − y, y〉 ≤ 0 (125)

because 1 ≥ ‖z‖2 ≥ |〈z, y〉|2 = |〈y + z − y, y〉|2 ≥ (1 + Re〈z − y, y〉)2. Conse-
quently, if z ∈Wf ⊂ BH approximates y with ‖z − y‖ ≤ εH, we obtain

‖z − xt‖2 = ‖z − y‖2 + ‖y − xt‖2 + 2 Re〈z − y, y − xt〉 (126)

= ‖z − y‖2 + ‖y − xt‖2 + 2 Re〈z − y, (1− ‖xt‖)y〉 (127)

≤ ‖z − y‖2 + ‖y − xt‖2 (128)

≤ ε2
H +

(
1− (1− ε2

T )1/2
)2

(129)

as y − xt = (1− ‖xt‖)y with 1− ‖xt‖ ≥ 0. In summary, ‖x− z‖2 ≤ ε2
T + ε2

H +
(1− (1− ε2

T )1/2)2.
We can now use those εT and εH that yield an ε-cover for a given ε and minimize
the cardinality of that cover. As we can always replace g(ε) by the closest integer
n ≤ g(ε), which is a right-continuous operation, we can even take the infimum.
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Corollary 15 (Lipschitz union of subspaces). Let T ⊂ BRk and U = ∪t∈TSt a
union of k-dimensional subspaces St ⊂ H of a Hilbert spaceH as in the previous
theorem. Assume that Pt is Lipschitz-continuous with constant L ≥ 1:

‖Pt − Ps‖2 ≤ L2
k∑

n=1

(tn − sn)2. (130)

Then, for ε ≤ 1, the covering number of C = U ∩ ∂BH is bounded by

g(ε) =
{

(16L)k/ε2k, ifH is a real Hilbert space,
(56L)k/ε3k, ifH is a complex Hilbert space.

(131)

Proof. First, we note that it follows from ‖Pt−Ps‖ ≤ Ld(t, s) that any ε/L-cover
of BRk with respect to the Euclidean distance is an ε-cover of BRk with respect to
the Finsler distance. Consequently, we can find an εT -cover of BRk with respect
to the Finsler metric of size less than g(εT ) = Lk(2 + εT /L)k/εkT .

1. Real case: Let k′ = k and select εH = 3ε/4 and εT = 3ε/5. In this case,
ε2
H+ε2

T + (1− (1−ε2
T )1/2)2 ≤ ε2 and the size of the whole cover is bounded

by g(ε) with

k
√
g(ε) = L(2 + εH)(2 + εT /L)

εHεT
≤ 16L

ε2 . (132)

2. Complex case: Let k′ = 2k and select εH = 4ε/5 and εT = 4ε/7. This
choice also satisfies ε2

H + ε2
T + (1 − (1 − ε2

T )1/2)2 ≤ ε2 and the size of the
whole cover is bounded by g(ε) with

k
√
g(ε) = L(2 + εH)2(2 + εT /L)

ε2
HεT

≤ 56L
ε3 . (133)

The results from this section are summarized in Table VII.1. Note that for such
“Lipschitz unions of subspaces”, the Lipschitz constant L essentially takes the role
of the ambient dimension M .

3—Chaining in topological spaces

In this section, we consider collections of uncountably many random variables
X = (Xt)t∈T with values in a metric spaceE and indices in a separable topological
space T . We will later apply the results to the process (Ax)x∈C , i.e., the index set T
will be identified with the intersection of a union of subspaces with the unit sphere
and t with a unit norm vector x in C.
We assume that T is a separable topological space. This allows us to reason about
continuity of the processX and to approximateXt by a sequenceXtn with tn → t.
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These two properties are essential for analyzing the path functionals supt∈T ‖Xt‖.
The quantitative results derived in the subsequent sections then all apply to situa-
tions where T is a totally bounded metric space (e.g., sparse vectors with unit norm
in RM ).
To understand any of the results and proofs presented here, none of the advanced
concepts regarding the theory of stochastic processes are required. However, a
minor disclaimer is in order: Events of the form supt∈T ‖Xt‖ > u for some u ∈ R
are not necessarily measurable. There are several ways around this problem. The
first way, which is found in chaining-related literature, e.g., [60, 63], is to define

P̃
[

sup
t∈T
‖Xt‖ > u

]
:= sup

Tf⊂T, Tf finite
P

[
sup
t∈Tf
‖Xt‖ > u

]
(134)

as the lattice supremum. Second, we could restrict our attention to random vari-
ables with almost surely continuous paths (which is something we require anyway).
In this case, it is possible to show that events involving path functionals are measur-
able if conditioned on the event that X is continuous (see Appendix 6). Finally, we
could use the canonical extension of the probability measure P to an outer measure
P̃ on all subsets of Ω (the probability space). That is, if the event supt∈T ‖Xt‖ > u
is contained in some measurable event B ⊂ Ω, then P̃[supt∈T ‖Xt‖ > u] ≤ P[B].
As the chaining technique is all about finding a countable sequence of events that
contain {supt∈T ‖Xt‖ > 0}, this last interpretation is a very natural one.
The main ingredient of the chaining technique is a method to provide an approxi-
mating sequence s ∈ TN0 , sn ∈ T, n ≥ 0, with sn → t for any given point t ∈ T .
We introduce the following definition:

Definition 16 (Chaining set). Let T be a separable topological space, letA ⊂ TN0

be a subset of all sequences in T , and let A(t) ⊂ A be such that t = limn→∞ sn
for each s ∈ A(t). We say that A is a chaining set if for each t ∈ T , A(t) is
nonempty.

Different versions of chaining differ in terms of how the set A is chosen.
In the following, we will always assume that T is a separable topological space, that
A ⊂ TN0 is a chaining set, and that X = (Xt)t∈T is a random process with almost
surely continuous paths. Furthermore, we assume that u = (un)n≥1, un : T ×T →
R is a sequence of functions, which we call deviation sequence.

Definition 17 (βu-functional). For a given deviation sequence u and chaining set
A in T , we define

βu(T,A) = sup
t∈T

inf
s∈A(t)

∑
n≥1

un(sn, sn−1). (135)

The first theorem shows how we can decompose the supremum event into a union
of more structured events.
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Theorem 18 (Tail bound via chaining). For any given chaining setA and deviation
sequence u, we have

P

[
sup
t∈T

inf
s∈A(t)

d(Xt, Xs0) > βu(T,A)

]
≤
∑
n≥1

P
[
∃s ∈ A : d(Xsn , Xsn−1) > un(sn, sn−1)

]
. (136)

Remark 1. The right-hand-side of (136) is easier to handle than the left-hand-side
if, for each n, there are only countably or even finitely many possible combinations
of sn and sn−1.

Proof. Define the events

Xn =
{
∃s ∈ A : d(Xsn , Xsn−1) > un(sn, sn−1)

}
(137)

X = {X is not continuous} ∪
⋃
n≥1

Xn. (138)

A union bound yields P[X ] ≤
∑

n≥1 P[Xn] for the probability of X . We show that
if ω ∈ X c and if we let x(t) = Xt(ω), we have

sup
t∈T

inf
s∈A(t)

d(x(t), x(t0)) ≤ βu(T,A). (139)

Let s ∈ A(t) and repeatedly use the triangle inequality and the continuity of x to
get

d(x(t), x(s0)) ≤
∑
n≥1

d(x(sn), x(sn−1)) (140)

as sn → t. Because ω ∈ X c, we have d(x(sn), x(sn−1)) ≤ un(sn, sn−1) so that

d(x(t), x(s0)) ≤
∑
n=1

un(sn, sn−1). (141)

Finally, as t and the sequence s ∈ A(t) was arbitrary, we can take the infimum and
then the supremum on both sides,

sup
t∈T

inf
s∈A(t)

d(x(t), x(s0)) ≤ sup
t∈T

inf
s∈A(t)

∑
n≥1

un(sn, sn−1) = βu(T,A). (142)

Theorem 19 (Concentration via chaining). Let X = (Xt)t∈T have values in a
normed space. Let p ≥ 1 and let δ0 ≥ 0. Let

P0 := P
[
∃s ∈ A : |‖Xs0‖p − 1| > δ0

]
, (143)

Pn := P
[
∃s ∈ A : ‖Xsn −Xsn−1‖ > un(sn, sn−1)

]
. (144)
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Then

P
[

sup
t∈T
|‖Xt‖p − 1| > δ

]
≤
∑
n≥0

Pn. (145)

with δ =
(

p
√

1 + δ0 + βu(T,A)
)p − 1.

Proof. Define the events

Xsup =
{

sup
t∈T

inf
s∈A(t)

d(Xt, Xs0) > βu(T,A)

}
(146)

X0 = {∃s ∈ A : |‖Xs0‖p − 1| > δ0} (147)

and note that a combination of a union bound and the result from Theorem 18
yields P

[
Xsup ∪ X0

]
≤
∑

n≥0 Pn. Let ω ∈ (Xsup ∪ X0)c and set x(t) = Xt(ω). In
this case, we can use the triangle inequality to show

‖x(t)‖ ≤ inf
s∈A(t)

(
‖x(s0)‖+ ‖x(t)− x(s0)‖

)
(148)

≤ sup
s∈A(t)

‖x(s0)‖+ inf
s∈A(t)

‖x(t)− x(s0)‖ (149)

≤ p
√

1 + δ0 + βu(T,A). (150)

Similarly

‖x(t)‖ ≥ sup
s∈A(t)

(
‖x(s0)‖ − ‖x(t)− x(s0)‖

)
(151)

≥ inf
s∈A(t)

‖x(s0)‖ − inf
s∈A(t)

‖x(t)− x(s0)‖ (152)

≥ p
√

1− δ0 − βu(T,A). (153)

By concavity of the pth root, we have(
p
√

1 + δ0 + βu(T,A)
)p
− 1 ≥ 1−

(
p
√

1− δ0 − βu(T,A)
)p
, (154)

so that the event {supt∈T |‖Xt‖p − 1| >
(

p
√

1 + δ0 + βu(T,A)
)p} must be con-

tained in Xsup ∪ X0.

The key to obtaining useful bounds from Theorem 19 is to construct suitable chains
together with the deviation sequence un that give a small value for the probabil-
ity bound. This is quite obviously a very difficult problem with many degrees of
freedom, not least because the summation involves the topology of the set T .

4—Concentration and covering numbers

Let (T, d) be a separable metric space. The following theorem is a version of
Theorem 19 where we restrict the admissible sequences to such sequencesAwhere
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the set {sn : s ∈ A} is an εn-cover of T for each n. This restriction leads to results
that are not necessarily optimal for all metric spaces (T, d). However, as shown in
Chapter IX, the resulting bounds are better than the best known bounds in some
important special cases.

Theorem 20 (Concentration with ε-covers). Let (T, d) be a metric space for which
π is a k-regular ε-sequence with upper bound π. Let p ≥ 1, δ > 0 and let (δn)n≥0,
(εn)n≥0 be sequences satisfying

p
√

1 + δ0 +
∑
n≥1

εn−1
p
√

1 + δn ≤ p
√

1 + δ. (155)

Set
∆ = {(t, πε(t)) : t ∈ T, 0 < ε ≤ ε0} (156)

and let let X = (Xt)t∈T be an almost surely continuous process with values in a
normed space that satisfies

P[‖Xt‖p − 1 ≷ ±u] ≤ f (u) ∀t ∈ T and (157)

P[‖Xt −Xs‖p > (1 + u)d(s, t)p] ≤ f (u) ∀(s, t) ∈ ∆ (158)

for some monotonically decreasing function f . Then

P
[

sup
t∈T
|‖Xt‖p − 1| > δ

]
≤ 2π(ε0)f (δ0) +

∑
n≥1

π(εn)f (δn). (159)

Proof. We write πn = πεn and Tn = πn(T ). For a given t ∈ T , we can construct
a sequence as sn = πn+1(t). Hence, by requiring sn ∈ Tn for all s ∈ Ã(t), t ∈ T ,
we obtain a chaining set Ã. However, for each s̃ ∈ Ã(t) and each n > 0, we
can also find a sequence s ∈ Ã(t) for which sn−1 = πn(sn) (the convergence
sn → t is not affected). Consequently, there must be some s ∈ Ã(t) for which
sn−1 = πn−1(sn) for all n ∈ N. Thus, we can restrict Ã to the set A that consists
only of sequences s satisfying sn−1 = πn−1(sn) for all n > 0. This restriction
imposes a tree-structure (multiple disjoint trees if |T0| > 1) on the chaining set and
lets us use a union bound over less arguments below.
Next, let un(sn, sn−1) = p

√
1 + δnd(sn, sn−1). For n ≥ 1, a union bound over all

possible combinations of sn and sn−1 (there are only |Tn| combinations) yields

Pn = P
[
∃s ∈ A : ‖Xsn −Xsn−1‖ > un(sn, sn−1)

]
(160)

= P
[
∃s ∈ A : ‖Xsn −Xsn−1‖p > d(sn, sn−1)p(1 + δn)

]
(161)

≤ |Tn|f (δn) ≤ π(εn)f (δn) (162)

as (sn, sn−1) ∈ ∆. For n = 0, a union bound yields

P0 = P
[
∃s ∈ A : |‖Xs0‖p − 1| > δ0}

]
≤ 2|T0|f (δ0). (163)

We can thus apply Theorem 19 and note that

βu(A) = sup
t∈T

inf
s∈A(t)

∑
n≥1

p
√

1 + δnd(sn, sn−1) ≤
∑
n≥1

p
√

1 + δnεn−1. (164)
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5—Non-isotropic distributions

A key ingredient of Theorem 20 is the isotropic bound

P[‖Xt −Xs‖p > (1 + u)d(s, t)p] ≤ f (u) ∀(s, t) ∈ ∆ (165)

where f is independent of t and s. For non-isotropic distributions, where f depends
on s and t, we could still obtain a uniform bound by taking the worst possible
combination of elements s and t. However, this leads to sub-optimal results as
visible in Ch. IX, Sect. 3, where we use the inequality ‖x‖1 ≤

√
k‖x‖2 for k-

sparse vectors from Example 11. A similar difficulty arises with matrices with sub-
exponential entries where bounds depend on ‖x‖∞ (cf. [64]). While it is possible,
in principle, to use Theorem 19 even for non-isotropic distributions, the choice of
suitable chaining sets is much more difficult.

6—Chaining set construction

We give two examples of functions f for which we can find sequences εn, δn that
lead to simple expressions for the probability bounds in Theorem 20. The first
one exploits an inequality that holds for log-concave functions and we attempt to
calculate a nearly optimal constant for ε0 and for this reason the proof is rather
technical. The second result applies to functions f (u) = σω(u)−q with a convex
function ω, for example f (u) = (1 + u)−q. Such functions occur when analyzing
concentration-of-measure phenomena for “power-law” or “Cauchy-type” distribu-
tions (cf., e.g., [65]).

Lemma 21 (Log-concave concentration in regular spaces). Let g be a k-regular
growth function and f a log-concave function with f (0) = 1. Let p ≥ 1, δ >
0, α ∈ [0.5, 1). Set δ0 = αδ and

ε0 = (1− α)δ

p p
√

2p−1(1 + 2α)
and N0 = ε0

k
√
g(ε0). (166)

If δ ≤ 1−1/N0 and g(ε0)f (δ0) ≤ 1/2, there is a double sequence (δn, εn)n≥1 with∑
n≥1

g(εn)f (δn) ≤ g(ε0)f (αδ) (167)

and
p
√

1 + δ0 +
∑
n≥1

εn−1
p
√

1 + δn ≤ p
√

1 + δ. (168)

The range for δ is large if N0 is large. For example, for k-sparse signals in RM we
have N0 = ε0

k
√
g(ε0) ≥ 2eM/k. The proof is shown in Appendix 10.

51



INFINITE UNIONS OF SUBSPACES

Lemma 22 (Cauchy-type concentration in regular spaces). Let g be a k-regular
growth function and f (u) = ω(u)−q where q > 1 + k/p, p ≥ 1, and where ω is a
monotonically increasing convex function with ω(0) ≥ 0. Let α, δ ∈ (0, 1) and set
δ0 = αδ and

ε0 = (1− α)δ
2p (1 + ζ)

, ζ = 21+1/k+1/p
(

ω(αδ)
ω(1)− ω(0)

)q/k
. (169)

Then, there is a double sequence (δn, εn)n≥1 with∑
n≥1

g(εn)f (δn) ≤ g(ε0)f (αδ) (170)

and
p
√

1 + δ0 +
∑
n≥1

εn−1
p
√

1 + δn ≤ p
√

1 + δ. (171)

The proof is shown in Appendix 11.

7—Relation to the generic chaining

Instead of using chaining sets A where Tn = {sn : s ∈ A} are εn-covers, we can
use arbitrary other restrictions. In the generic chaining literature, the sets Tn have
to satisfy |Tn| ≤ 22n but are otherwise arbitrary. Let C ⊂ E ∩ ∂BE be a subset
of unit-norm vectors in a metric space E and let T consist of sequences of subsets
C = (Cn)n≥0 with Cn ⊂ C and |Cn| ≤ 22n . Furthermore, assume that for each
C ∈ T and each x ∈ C, we can find a sequence xn with xn ∈ Cn and xn → x.
Then

AC = {(xn)n≥0 : xn ∈ Cn∀n} (172)

is a chaining set for C.
The following corollary of Theorem 19 is similar to Theorem 4.8 in [60]. Note
that we use the process (‖Ax‖p)x∈C instead of (Ax)x∈C as in Theorem 20. As
a result, we need the inequality (174) with the difference outside of the norm,
which does not immediately follow from (173) (see also [58] and Assumption 2 in
Ch. IX, Sect. 6). The conditions (173) and (174) are also known as ψα-continuity
conditions (cf. [66]).

Theorem 23 (Generic chaining version of Theorem 1). Let E,F be finite-dimen-
sional normed spaces, A : E → F a random linear operator, C ⊂ E ∩ ∂BE a
subset of the unit sphere in E. Let p ≥ 1, δ ∈ (0, 1), α > 0, and assume that the
random operator A satisfies

P
[
‖Ax‖p − 1 ≷ ±u

]
≤ exp(−cuα) ∀x ∈ C (173)

and
P
[
|‖Ax‖p − ‖Ay‖p| > u

]
≤ 2 exp(−cuα) ∀x, y ∈ C (174)
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for some c > 0. Then,

P
[

sup
x∈C
|‖Ax‖p − 1| > δ

]
≤
∑
n≥0

22n+1
exp(−c2nuα) (175)

with
δ =

(
p
√

1 + u+ 2uγα(C)
)p
− 1 (176)

and
γα(C) = inf

C∈T
sup
x∈C

∑
n≥0

2n/αd(x,Cn). (177)

Proof. LetC = (Cn)n≥0 ∈ T . We apply Theorem 19 as follows (note that ‖Axn‖p
takes the role ofXsn). First, we set δ0 = u and note that as |C0| = 2, a union bound
yields

P0 = P
[
∃x ∈ C0 : |‖Ax‖p − 1| > u

]
≤ 4 exp(−muα) = f0(u). (178)

Let un(s) = u2n/αd(xn, xn−1). We use another union bound over all combinations
of elements in Cn and Cn−1 to get

Pn = P
[
∃x ∈ Cn, y ∈ Cn−1 : |‖Ax‖p − ‖Ay‖p‖ > u2n/αd(x, y)

]
(179)

≤ 2|Tn||Tn−1| exp(−c2nuα) (180)

≤ 22n+1
exp(−c2nuα) = fn(u). (181)

An application of Theorem 19 results in

P
[

sup
x∈C
|‖Ax‖p − 1| >

(
p
√

1 + u+ βu(AC)
)p
− 1
]

≤
∑
n≥0

fn(u) =
∑
n≥0

22n+1
exp(−c2nuα). (182)

Finally, as the sequence (Cn)n≥0 was arbitrary, we optimize over chaining sets to
obtain

inf
C∈T

βu(AC) = inf
C∈T

sup
x∈C

inf
y∈C(x)

∑
n≥1

u2n/αd(yn, yn−1) (183)

≤ 2u inf
C∈T

sup
x∈C

∑
n≥0

2n/αd(x,Cn) (184)

= 2uγα(C) (185)

where we used

d(yn, yn−1) ≤ d(yn, x) + d(yn−1, x) ≤ d(x,Cn) + d(x,Cn−1). (186)
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It is possible to use Dudley’s bound, γ2
2 (T ) . logN (T, d, ε0) to derive a version

of Theorem 20 from Theorem 23. On the other hand, it is shown in [63] that it is
possible to construct sets T and metrics d for which γ2

2 (T ) is genuinely smaller than
logN (T, d, ε0). Hence, it is not possible to derive Theorem 23 from Theorem 20.
Nevertheless, for metric spaces T where no better estimate of γα(T ) is available
than a covering number estimate, Theorem 20 provides much tighter bounds than
Theorem 23.
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VIII
OVERVIEW OF DISTRIBUTIONS WITH LOG-CONCAVE TAILS

In this chapter, we present an overview of inequalities of the form (P-RIP) for some
common constructions of random matrices. These are derived from the convex
conjugate of the cumulant generating function (CGF) of a random variable (RV).
The CGF of a real-valued RV X is defined as

Ψ(λ) = logE exp(λX). (187)

If Ψ(λ) is non-trivial in a neighborhood of zero, Ψ(λ) <∞ for λ ∈ [−ε, ε], thenX
is called a subexponential RV and it is possible to derive a multitude of qualitative
results regarding its concentration and tail decay based on this property alone [67].
For many common distributions, we not only know that the CGF Ψ is finite, but
we can also calculate its values numerically. This extra information can be used to
derive quantitative concentration and tail decay results.
To derive these bounds, we use the convex conjugate function of the CGF, which
is strongly related to the exponential Markov inequality (the Chernoff bound) and
its usefulness for deriving tail bounds has been recognized in the literature. In par-
ticular, the convex conjugate of the CGF is used as a rate function in the theory of
large deviations (e.g., Cramér’s theorem and its consequences such as Hoeffding’s
inequality, cf. [23, 68, 69]).
It is well known that the CGF Ψ is a convex function that is infinitely differentiable
with Ψ(0) = 0 and d

dλΨ(λ)|λ=0 = EX .

Definition 24 (Rate function). Let cX be a (not necessarily convex) upper bound
of the CGF ΨX of a RV X . The convex conjugate function of cX is defined as

c∗X (µ) = sup
λ≥0

µλ− cX (λ). (188)

In the following, we call c∗X a rate function of X and remark that c∗X is always
convex.

Lemma 25. LetX1, . . . , Xm be independent RVs with common CGF upper bounds
cX and let Z = m−1∑m

n=1 Xn. Then c∗Z(µ) = mc∗X (µ).

We recall Cramér’s Theorem:

Theorem 26 (Cramér’s Theorem). Let X be a RV with rate function c∗X . Then
P[X > µ] ≤ exp

(
−c∗X (µ)

)
.

The following lemma is a version of Bennet’s inequality (see, e.g., [70, Theorem
2.9]).

55



INFINITE UNIONS OF SUBSPACES

Distribution − log f (u)

real Gaussian or zero-inflated Rademacher m(u− log(1 + u))/2
complex Gaussian or zero-inflated Steinhaus m(u− log(1 + u))
Bernoulli subsampling of unitary matrix pbM/(kc∞)c((1 + u) log(1 + u)− u)

Table VIII.1: Point-wise log-concave tail bounds for some random matrices.

Lemma 27. Let X be a random variable with EX = 0,EX2 = σ2, and X ≤ 1
almost surely. Then

ΨX (λ) ≤ log
(
1 + σ2(exp(λ)− λ− 1)

)
. (189)

If we denote the element in row m, column i, of A by ami, we can write

‖Ax‖2 − 1 = 1
m

m∑
n=1

(Zm − 1), (190)

Zm =
M∑
i=1

|
√
mamixi|2. (191)

In the following examples, we use Lemmas 25 and 27 and Theorem 26 to show a
bound of the form (P-RIP) as follows. First, we provide a CGF or an upper bound
and corresponding rate function for a single term of the sum in (190). We then use
Lemma 27 to show that Ψ−(Z−1)(λ) ≤ ΨZ−1(λ) (or the upper bound), from which
c∗−(Z−1)(λ) ≥ c∗Z−1(λ) follows. That is, we can use the same bound for the left tails
as we use for the right tails. Finally, the concentration results follow by combining
Lemma 25 and Theorem 26.
The bounds from Examples 7–11 are summarized in Table VIII.1.

Example 7 (Gaussian). Let X1, . . . , XM be independent Gaussian RVs with unit
variance and let Z = |

∑M
i=1 Xibi|2 for some b ∈ RM with ‖b‖ = 1. Then

ΨZ(λ) = −0.5 log(1− 2λ) , λ < 1/2 (192)

and the rate function for the centered version

c∗Z−1(µ) = 0.5(µ− log(1 + µ)), µ ≥ 0 (193)

is a lower bound for c∗−(Z−1).

Example 8 (Complex Gaussian). Let X1, . . . , XM be independent complex Gaus-
sian RVs, Xi ∼ NC(0, 1), and let Z = |

∑M
i=1 Xibi|2 for some b ∈ CM with

‖b‖ = 1. Then

ΨZ(λ) = logE
[
exp(λZ)

]
= − log(1− λ) , λ < 1. (194)
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The rate function of Z − 1 is given by

c∗Z−1(µ) = µ− log(1 + µ), µ ≥ 0 (195)

and is a lower bound for c∗−(Z−1).

Example 9 (Database-friendly projections [71]). LetXi denote zero-inflated inde-
pendent Rademacher random variables, P[Xi =

√
c] = P[Xi = −

√
c] = 1/(2c)

and P[Xi = 0] = 1−1/c for 1 ≤ c ≤ 3. Let Z = (
∑M

i=1 Xibi)2 for some b ∈ RM ,
‖b‖ = 1. We show in Appendix 7 that ΨZ−1(λ) and Ψ−(Z−1)(λ) can be bounded
by

− λ− 0.5 log(1− 2λ), 0 ≤ λ < 1/2, (196)

i.e., we can use the same rate function as for Gaussian RVs.

Example 10 (Database-friendly complex projections). Let Xi ∈ C be a sequence
of zero-inflated normalized Steinhaus random variables, that is,

Xn =
√
cBn exp(iUn), (197)

Un ∼ U[−π,π] (uniform distribution), (198)

P[Bn = 1] = 1/c, P[Bn = 0] = 1− 1/c, (199)

where all Un and Bn are independent and 1 ≤ c ≤ 2. Let Z =
∣∣∣∑M

n=1 Xnbn

∣∣∣2 for

some b ∈ CM , ‖b‖ = 1. We show in Appendix 8 that ΨZ−1(λ) and Ψ−(Z−1)(λ)
can be bounded by

− λ− log(1− λ), 0 ≤ λ < 1 (200)

and that, consequently, Z has the same rate function as a complex Gaussian RV.

Example 11 (Structured sampling matrices). Let K = R or K = C and let
u1, . . . , uM ∈ KM be an orthonormal basis with maxn ‖un‖2

∞ ≤ c∞/M . Let
Xn = Bn|〈x, un〉|2/p for some x ∈ KM with | supp(x)| ≤ k, ‖x‖ = 1, and where
Bn are independent Bernoulli RVs with P[Bn = 1] = p. We have (with q = 1−p)

Ψn(λ) = logE exp(λXn) = log(q + p exp(λ|〈x, un〉|2/p)) (201)

and, for Z =
∑M

n=1 Xn, by independence of the Bn,

ΨZ(λ) =
M∑
n=1

log(q + p exp(λ|〈x, un〉|2/p)). (202)

The normalization is chosen such that EZ = 1. We show in Appendix 9 that

ΨZ−1(λ) ≤ pMeff

(
exp

(
λ

pMeff

)
− 1− λ

pMeff

)
(203)
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with
Meff = bM/(kc∞)c (204)

and rate function

c∗Z−1(µ) = pMeff ((1 + µ) log(1 + µ)− µ) (205)

which is also a lower bound for c∗−(Z−1).
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IX
THE RIP IN UNIONS OF SUBSPACES

In this chapter, we state our main restricted isometry theorem and show how it can
be used to recover or improve known results for sparse signals, low-rank matrices,
and Lipschitz unions of subspaces when measured with various types of random
matrices. Even though we do not exploit any special structure of the set C and
only exploit log-concavity of the function f , we obtain results that are competitive
or surpass known results in terms of the constants involved. Two such special
structures are sparse signals and low-rank matrices. In the case of sparse signals,
the set C is given as the intersection of finitely many subspaces with the unit sphere.
In [23, 25] this fact is exploited to reason about the operator norm between points
of the ε-covers. In particular, a chaining argument is not necessary. Similarly
for rank-k matrices, it is exploited in [62] that any sum X1 + X2 of two rank-k
matrices can also be written as the sum of two other rank-k matrices X ′1, X

′
2 with

‖X ′1‖ + ‖X ′2‖ ≤
√

2‖X1 + X2‖. Also in this case, a chaining argument is not
necessary.

Theorem 28 (RIP in geometrically regular spaces). LetE,F be finite-dimensional
normed spaces, A : E → F a random linear operator, C ⊂ E ∩ ∂BE a k-regular
subset of the unit sphere in E. Let π be an ε-sequence of C with upper bound π
and set

∆ =
{

x− πε(x)
‖x− πε(x)‖

, x ∈ C, 0 < ε ≤ ε0

}
(206)

where ε0 is defined below. Let δ ∈ (0, 1), α ∈ (0, 1), and assume that the random
operator A satisfies

P
[
‖Ax‖2 − 1 ≷ ±u

]
≤ f (u) ∀x ∈ C ∪∆. (207)

i) If f is monotonically decreasing and log-concave with f (0) = 1, let

ε0 = (1− α)δ√
8(1 + 2α)

and N0 = ε0
k
√
π(ε0). (208)

and assume that δ ≤ 1− 1/N0 and α ≥ 1/2.

ii) If f (u) = ω(u)−q with a monotonically increasing convex function ω with
ω(0) > 0 and q > 1 + 3k/2, set

ε0 = (1− α)δ
4 (1 + ζ)

, ζ = 21/k+3/2
(

ω(αδ)
ω(1)− ω(0)

)q/k
. (209)
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Then,

P
[

sup
x∈C
|‖Ax‖2 − 1| > δ

]
≤ 3π(ε0)f (αδ). (210)

Equivalently, if
− log f (αδ) ≥ logπ(ε0) + log(3/ξ) (211)

then A has the RIC δ with probability at least 1− ξ.

Proof. This theorem follows directly from Theorem 20 combined with the se-
quences found in Lemma 21 or Lemma 22 where we note that we can assume
g(ε0)f (αδ) ≤ 1/3 ≤ 1/2 as otherwise the probability bound is trivial. The ran-
dom process is given by Xt = At for t ∈ C. As A is a linear operator between
finite-dimensional spaces, X is almost surely continuous. Furthermore, we have

P
[
‖Ax−Ax′‖2 > (1 + u)‖x− x′‖2] = P

[∥∥∥∥A(x− x′)
‖x− x′‖

∥∥∥∥2

− 1 > u

]
≤ f (u)

(212)
for (x, x′) ∈ ∆ so that the property (207) implies (157) and (158).

To establish a recovery result, we always proceed as follows: We first fix a sensing
matrix that satisfies the tail and concentration conditions for a given set C. Next,
we fix α such that the result compares as best possible with some known result.
We then select ε0 slightly smaller than required by Theorem 28 to simplify the
expressions and finally use the covering number estimates of the set C to establish
the result.

1—Gaussian or Rademacher matrices and sparse signals

LetM ≥ k and let C = Σk∩∂BRM denote real k-sparse signals with unit norm for
which there are ε-covers with size less than g(ε) = (eM/k)k(2 + ε)k/εk (see Ta-
ble VII.1). If the random matrix A ∈ Rm×M has iid. Gaussian or Rademacher en-
tries with variance 1/m, the concentration inequality (207) holds with log f (u) =
−mω(u) and ω(u) = (u− log(1 + u))/2 (see Table VIII.1).
Let α = 9/10 and ε0 = 2δ/95 so that (2+ε0)/ε0 ≤ 96/δ. Theorem 28 then shows
that A has the RIP with constant δ with probability at least 1− ξ if

mω(0.9δ) ≥ k log
(

96eM
δk

)
+ log(3/ξ) (213)

and if δ ≤ 1− k/(2eM ). If we plug in ω, we obtain the condition

m ≥ k log(96/δ) + k log(eM/k) + log(3/ξ)
(0.9δ − log(1 + 0.9δ)) /2

. (214)
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For Rademacher matrices, we get an improvement by a factor two (approximately)
over the condition [23, Theorem 9.11],1

m ≥ 8δ−2 (9k + 2k log(M/k) + 2 log(2/ξ)
)
. (215)

For Gaussian matrices, we compare with the condition [23, Theorem 9.27]2,

m ≥

(√
2 +

√
1/ log(eM/k)

)2 (
k log(eM/k) + log(2/ξ)

)
δ + 2− 2

√
1 + δ

. (216)

One can verify that for δ ≥ 0.1,M ≥ 10k, condition (214) improves upon (216) (in
the asymptotic regimeM/k →∞, the factor is roughly 1.65). Consequently, (214)
provides the best conditions for these kinds of matrices that we are aware of.

2—Sub-Gaussian matrices and sparse signals

Let C be as in Sect. 1. If the random matrix A ∈ Rm×M has independent sub-
Gaussian rows a with E|〈a, x〉|2 = 1/m for each x with ‖x‖ = 1 with common
sub-Gaussian parameter c̃, i.e., E exp(λ〈a, x〉) ≤ exp(c̃λ2) for each x with ‖x‖ =
1, λ ∈ R (cf. [23, Def. 9.4]), then the concentration inequality (206) holds for
some monotonically decreasing and log-concave function f that satisfies f (u) ≤
exp(−mcu2) for u < 1 with c depending on c̃ (cf. [23, Lemma 9.8]).
Let α =

√
3/4 and ε0 = δ/35 so that (2+ε0)/ε0 ≤ 71/δ. Theorem 28 then shows

that A has the RIP with constant δ with probability at least 1− ξ if

m ≥ 4
(
k log

(
(71eM )/(kδ)

)
+ log(3/ξ)

)
/ (3cδ2). (217)

If we use 2 log(71e) ≤ 11, we obtain

m ≥ 2
(
11k + 2k log

(
M/(kδ)

)
+ 2 log(3/ξ)

)
/ (3cδ2) (218)

which is slightly worse (about a factor 1.5 for δ ≥ 0.1 and M/k ≥ 10) than the
condition in [23, Theorem 9.11],

m ≥ 2
(
9k + 2k log(M/k) + 2 log(2/ξ)

)
/ (3cδ2). (219)

1For real Gaussian or Rademacher matrices, we can achieve C = 8 in [23, Theorem 9.11] as
C = 2/(3c̃) with c̃ such that

P
[
|‖Ax‖2 − 1‖ > u

]
≤ 2 exp(−mc̃u2).

If we use the bound P[. . .] ≤ 2 exp(−mω(u)) with ω(u) = 0.5(u − log(1 + u)), we can derive the
factor c̃ from the expansion

ω(u) = 0.5 (u− log(1 + u)) ≥ u2/4− u3/6 ≥ u2/12 for u ≤ 1

so that we can use c̃ = 1/12 and 2/(3c̃) = 8.
2We substituted η in the original formulation using Eq. (9.48) in [23, Theorem 9.27].
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3—Structured matrices and sparse signals

Let C = Σk ∩ ∂BKM denote k-sparse signals with unit norm in K = R or K = C.
If A is a unitary matrix with ‖A‖2

∞ ≤ c∞/M and rows selected according to a
Bernoulli distribution with parameter pb, the concentration inequality (207) holds
with f (u) = exp(−pbMeff((1 + u) log(1 + u) − u)) for each x ∈ C where Meff =
bM/(kc∞)c (see Table VIII.1). As we can construct ε-covers for sparse signals for
which the differences x−πε(x) are also k-sparse, we have ∆ ⊂ C and it is sufficient
that the concentration inequality (206) holds for x ∈ C to use Theorem 28.
We use ε0 = (1 − α)δ/5, which is slightly smaller than the value in Theorem 28,
and for which (2 + ε0)/ε0 ≤ 11/(δ(1−α)). Theorem 28 then shows that A has the
RIP with constant δ with probability at least 1− ξ if

pbMeff ≥
k(κ log(11/(δ(1− α))) + log(eM/k)) + log(3/ξ)

(1 + αδ) log(1 + αδ)− αδ
. (220)

If M/k is an integer and if c∞ = 1 (for example, if A contains discrete Fourier
transform vectors), we obtain the condition

pbM ≥
k2(2.4κ+ log(eM/k) + log(δ(1− α))) + k log(3/ξ)

(1 + αδ) log(1 + αδ)− αδ
(221)

where κ = 1 if K = R and κ = 2 if K = C. The term pbM is the expected
number of rows of A. The bound is a factor ck/ log2(k) away from the best known
results [72]

E# rows ≥ Ck log2(k) logM, (222)

but is useful for finite values of k andM (c, C > 0 are some constants independent
of k and M , see also [73, 74]).

4—Low-rank matrices with Gaussian measurements

Let U ⊂ Rn1×n2 denote the set of all matrices with rank at most k equipped with
the Frobenius norm ‖X‖F =

√
tr(XTX). Assume that the random linear operator

A : Rn1×n2 → Rm satisfies

P
[
‖A(X)‖2

2 − ‖X‖2
F ≶ ±u

]
≤ f (u) (223)

for each X ∈ U with ‖X‖F = 1 and some log-concave and monotonically de-
creasing function f with f (0) = 1. If (A(X))i =

∑
pq aipq[X]pq where [X]pq is

the element in row p and column q of X with appropriately scaled iid. Gaussian
entries aipq, this is the case with f (u) = exp(−m(u − log(1 + u))/2) (see Ex-
ample 7 and also [62]). As the set of unit-norm rank-k matrices is geometrically
regular with π(ε) = (9/ε)r and r = (n1 + n2 + 1)k (see Table VII.1), we can use
Theorem 28 with ε0 = δ(1− α)/5 to obtain

P
[

sup
X∈U

∣∣∣‖A(X)‖2
2 − ‖X‖2

F

∣∣∣ > δ

]
≤ 3

(
45

δ(1− α)

)k(n1+n2+1)

f (αδ). (224)

This is a quantitative version of Theorem 2.3 in [62].
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5—Lipschitz unions of subspaces

Let U = ∪t∈TSt ⊂ H denote a Lipschitz union of complex subspaces, that is,
dim(St) = k for each t and

‖Pt − Ps‖2 ≤ L2
k∑

n=1

(tn − sn)2 (225)

and T ⊂ BRk . Let A : H → Cm be a random operator that fulfills the concentra-
tion inequality (207) for a monotonically decreasing and log-concave function f .
Then, we can use Theorem 28 with α = 9/10, ε0 = δ/48 to find that A has the
RIP with constant δ with probability at least 1− ξ if

m ≥ k log(56L) + 3k log(48/δ) + log(3/ξ)
− log f (9δ/10)

. (226)

6—Sets with low covering dimension

The authors of [58] also present a chaining-based proof to show that a matrixA has
the RIP for a subset of the unit sphere C ⊂ ∂BE . For conciseness, we only consider
2-norms and the isotropic case where E‖Ax‖2 = 1 holds for each x ∈ ∂BE . Their
results are based on two assumptions:

Assumption 1 (Geometric regularity). There exists a tuple (keff, εC) such that there
is an ε-cover U of C with

|U| ≤ ε−keff for all ε ≤ εC . (227)

Assumption 2 (Sub-Gaussianity). There exist constants c1, c2 > 0 such that for
each x, y ∈ C ∪ {0}

P
[∣∣∣ ‖Ax‖2 − ‖Ay‖2

∣∣∣ ≥ λ‖x− y‖] ≤ 2e−c1mλ
2

(228)

for each 0 ≤ λ ≤ c2/c1 and

P
[∣∣∣ ‖Ax‖2 − ‖Ay‖2

∣∣∣ ≥ λ‖x− y‖] ≤ 2e−c2mλ (229)

for each λ ≥ c2/c1.

The first assumption is satisfied if the set C has a finite upper box-counting di-
mension, which is equivalent to assuming that C is k-regular. For example, if
N (C, d, ε) ≤ (N0/ε)k, then keff = k + s, εC = N

−k/s
0 is a valid pair that satisfies

Assumption 1 for each s > 0.
The second assumption can be stated in terms of log-concavity. If we define the
random process Zx = ‖Ax‖2, then Assumption 2 can be written as

P
[
d1(Zx, Zy) ≥ ud(x, y)

]
≤ 2f (u) (230)
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with d1(Zx, Zy) = |Zx − Zy| and the log-concave function

f (u) =
{

exp(−c1mu
2), if 0 ≤ u ≤ c2/c1,

exp(−c2mu), if c2/c1 ≤ u .
(231)

Thus, the process Zx = ‖Ax‖2 satisfies condition (207). This is in contrast to
Theorem 28 where it is required that the process Ax (without the norm) satisfies
condition (207) with respect to a norm in Rm or Cm and which is much simpler to
show (because we have the difference x− y inside the norm).
The authors then show the following theorem:

Theorem 29 (Theorem 4 in [58]). If Assumptions 1 and 2 hold, thenA has the RIP
with RIC δ for signals in C with probability at least 1− ξ provided that

m ≥ 3200
min(c1, c2)δ2 max

(
keff log(1/εC), log(6/ξ)

)
. (232)

To see how this compares with Theorem 28, let A ∈ Rm×M be a random matrix
with iid. Gaussian entries so that f (u) = exp(−m(u − log(1 − u))/2) (cf. Ta-
ble VIII.1) and assume that the covering number of C is bounded by g(ε) =
(4
√
L)k/εk (e.g., a Lipschitz union of k/2-dimensional real subspaces if k is even,

see Sect. 5). We demonstrate in Appendix 12 that Assumption 2 is satisfied with
min(c1, c2) ≤ 9c/642 where c is a constant (one of the constants that appears when
showing equivalent definitions of subexponential random variables, see, e.g., [67]).
We can further set keff = 2k + s, εC = (4

√
L)−k/s, and let s → ∞, to obtain

keff · (k/s)→ k and

m ≥ 3200 · 642

9cδ2 max
(
0.5k log(16L), log(6/ξ)

)
(233)

from Theorem 29, which has the same asymptotic characteristics (for growing L
and k) as the result stated in (226).

64



X
THE RIP AND CHANNEL ESTIMATION

Let us return to the question whether dimensionality reduction is possible in chan-
nel estimation for communication systems. We have seen in Chapter III that a
(flat-fading) communication channel can be modeled as a vector h and that prior
knowledge can be encoded as h ∈ U where two relevant examples for the union of
subspaces U are the DOA manifold and the single-cluster 3GPP manifold. In both
examples, the training equation reads as

y = Ah+ e (234)

whereA ∈ Cm×M is a matrix describing the network of phase shifters between the
M antennas and them analog-to-digital converters. As we have learned throughout
this work, optimal reconstruction of h is possible if A has the restricted isometry
property with respect to the union of subspaces U . In the following two sections,
we use the restricted isometry theory developed in the preceding chapters to give
conditions on m and M under which a randomly chosen matrix A has the RIP.

1—DOA manifold

We introduced the DOA manifold in Chapter III as

Uk,M = U ′k,M , U ′k,M =
⋃

t∈[−π,π]k
range

(
V (t)

)
, (235)

where
V (t) =

[
a(t1) . . . a(tk)

]
(236)

is a partial Vandermonde matrix and a(t`) are the steering vectors of a uniform lin-
ear array. If k < M and if all nodes t` are distinct, then V (t) has full column rank
and the projector onto St = range(V (t)) is given by Pt = V (t)V (t)† where V (t)†

denotes the Moore-Penrose pseudo-inverse of V (t). The key to using the general
restricted isometry theorem (Theorem 28) is to establish that the operator Pt is a
Lipschitz function of t, because then we can use the covering number estimate for a
Lipschitz union of subspaces given in Theorem 14. This analysis is complicated by
the fact that V (t) is rank-deficient if t` = tj for some ` 6= j and that, consequently,
V (t) becomes ill-conditioned whenever t` → tj .
The following theorem is slightly more general than needed: we show that V (z) =
[f (z1) . . . f (zk)] with z ∈ Ck and f (z) = [1 z . . . zM−1]T is such that Pz =
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V (z)V (z)† is Lipschitz continuous with respect to z. The DOA manifold is then
equivalently given as

Uk,M = U ′k,M , U ′k,M =
⋃

z∈Ck:|z`|=1,`=1,...,k

range
(
V (z)

)
, (237)

Let

BR = {z ∈ Ck : ‖z‖∞ ≤ R}, (238)

B′R = {z ∈ Ck : ‖z‖∞ ≤ R, zi 6= zj , i 6= j} (239)

denote the sup-norm closed ball in Ck with radius R and its subset of distinct
elements. We establish the following theorem, which shows that the orthogonal
projectors Pz onto range(V (z)) form a Lipschitz family of orthogonal projectors.

Theorem 30. The function P : B′R → CM×M , z 7→ V (z)V †(z), can be extended
to BR and has the Lipschitz property

‖Pz − Py‖ ≤ L‖z − y‖1 (240)

where ‖z − y‖1 =
∑k

i=1 |zi − yi| is the one-norm and

L ≤
√
e2k(k−1)M2k+1

k!
max(1, RM−2) . (241)

As will be clear from the proof, which is shown in Appendix 13, the continuous
extension of the projector is not given in terms of the Vandermonde matrix V when
multiple nodes coincide (V would be rank-deficient). Instead, if z1 = · · · = zj the
vectors f (z1), . . . , f (zj) have to be replaced by f (z1) and its first j − 1 derivatives
f (1)(z1), . . . , f (j−1)(z1).

Corollary 31. Let Pt denote the orthogonal projector onto range(V (t)) with V (t)
given by (236). An upper bound for the covering number of the set T = [−π, π]k

with respect to the metric
dF(s, t) = ‖Ps − Pt‖ (242)

is given by

N (T, dF, ε) ≤

(
π
√
e2k(k−1)M2k+1

ε(k − 1)!

)k
× 1

(k − 1)!
. (243)

Proof. For a given ε > 0, let ε′ = ε/(kL) and let T ′ε = {−π,−π + 2ε′, . . . ,−π +
2(N − 1)ε′}k where N = dπ/ε′e. There are N elements per dimension in T ′ε. As
Ps = Pt if s is a permutation of t, it is enough to only use those elements t ∈ T ′ε
for which tk ≥ tk−1 ≥ · · · ≥ t1. One can verify that this subset Tε ⊂ T ′ε only has(
N−1+k

k

)
instead of Nk elements and that(

dkLπ/εe − 1 + k

k

)
≤ (kLπ/ε)k

(k − 1)!
=
(
π
√
e2k(k−1)M2k+1

ε(k − 1)!

)k
1

(k − 1)!
(244)
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for k ≥ 2 and M ≥ k (this upper bound is loose but nice to manipulate).
By construction, for any given t ∈ T , we can find s ∈ T ′ε such that | exp(it`) −
exp(is`))| ≤ ε′ for each ` = 1, . . . , k (we can find s` such that the arc-distance
along the unit circle is smaller than ε′ and the straight distance between exp(is`)
and exp(it`) is smaller than the arc-distance). Then, by Theorem 30 and with a
slight abuse of notation (we apply exp(·) element-wise)

‖Pt − Ps‖ ≤ L‖ exp(it)− exp(is)‖1 (245)

= L
k∑
`=1

| exp(it`)− exp(is`)| ≤ L
k∑
`=1

ε′ ≤ ε. (246)

Thus, T ′ε and, consequently, Tε, are ε-covers of T and the cardinality of Tε is
bounded by (244).

We now have an upper bound for the cardinality of an εT -cover of the set T with
respect to the Finsler metric dF(t, s) = ‖Pt − Ps‖. If we combine this result
with Theorem 14 to bound the covering number of the DOA manifold, we can use
Theorem 28 and establish the following RIP result:

Theorem 32. Let A ∈ Cm×M be a random matrix that satisfies the point-wise
concentration inequality

P
[
(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2] ≤ 2f (δ) (247)

for all x ∈ CM and where f is log-concave and f (0) = 1. Let α ∈ [0.5, 1) and set

ε = (1− α)δ√
8(1 + 2α)

(248)

and

N0 = (12NT )1/3, NT = π
√
e2k(k−1)M2k+1

(k − 1)! k
√

(k − 1)!
. (249)

Then, if δ ≤ 1− 1/N0,

P

[
sup

x∈Uk,M

∣∣∣‖Ax‖2 − ‖x‖2
∣∣∣ > δ‖x‖2

]
≤ 3(N0/ε)3kf (αδ). (250)

Proof. The statement follows directly from Theorem 28 if we can show that there
is an ε-cover Cε ⊂ Ck,M = Uk,M ∩ ∂BCM with cardinality |Cε| ≤ (N0/ε)3k. As
shown in Theorem 14 there is an ε-cover Cε of Ck,M of cardinality

|Cε| ≤ |TεT |(2 + εH)2k/ε2k
H (251)

if TεT is an εT -cover of T with respect to the metric d(s, t) = ‖Ps − Pt‖ and if

ε2
H + ε2

T + (1− (1− ε2
T )1/2)2 ≤ ε2. (252)
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By Corollary 31, there is such an εT -cover of T with cardinality less than (NT /ε)k

with

NT = π
√
e2k(k−1)M2k+1

(k − 1)! k
√

(k − 1)!
. (253)

Note that for α ∈ [0.5, 1) and δ ≤ 1, we have ε ≤ 1/8. For this upper bound
for ε, it is not difficult to verify that εH = 5ε/6 and εT = 6ε/11 is a valid pair
for which (252) holds. If we use these values for εH and εT in (251) and exploit
ε ≤ 1/8 again, we find that with N0 = (12NT )1/3, we have

|Cε| ≤
(

6(2 + 5ε/6)
5ε

)2k

×
(

11NT

5ε

)k
≤ (12NT )k

ε3k = (N0/ε)3k. (254)

For example, if A is a zero-inflated Steinhaus matrix, we have f (δ) = m(δ −
log(1 + δ)) and Theorem 32 shows that

m ≥ inf
0.5≤α<1

k log(12NT ) + 3k log(
√

8(1 + 2α)/(δ(1− α))) + log(3/ξ)
αδ − log(1 + αδ)

(255)

is a sufficient condition for A to have the RIP with RIC δ with probability at least
1 − ξ and with respect to the DOA manifold with k sources and M antennas.
Crucially, if we insert NT , we see that the right-hand side only grows as k2 logM
as a function of M (the number of antennas). The lower bound on the number
of ADCs as a function of the antennas is visualized in Figure 5 for k = 3, 4, 5
and for δ = 0.5 and ξ = 0.01. The number of ADCs m is smaller than the
number of antennas M in the shaded area and one can observe from Figure 5 that
dimensionality reduction is possible once there are more than a thousand antennas
(under the assumption that the model h ∈ Uk,M is accurate). One should keep in
mind that this result is derived using the (loose) Lipschitz bound from Theorem 30,
the tail bound for Steinhaus random variables (Example 10), and a series of triangle
inequalities and union bounds in the proof of Theorem 28.

2—Lipschitz continuity in 3GPP models

In the single-cluster 3GPP model, the channel vector h is conditionally normal
distributed according to

h | t ∼ NC(0,Σt) (256)

with covariance matrix Σt given by

Σt =
∫
g(τ )a(t+ τ )a(t+ τ )Hdτ = DtΣ0D

∗
t . (257)

If we express the steering vector a(t+ τ ) as

a(t+ τ ) = 1√
M

[
1 exp(i(t+ τ )) . . . exp(i(M − 1)(t+ τ ))

]T = Dta(τ )

(258)
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Figure 5: Minimal number of ADCs m such that in at least 99 per cent of the draws, the RIC
of A is smaller than δ = 0.5 for the DOA manifold with k = 3, 4, 5 sources (as a function of
the number of antennas M ). The shaded area indicates non-trivial results (wide matrix).

with the unitary diagonal matrix

Dt = diag
(
1, exp(it), . . . , exp(i(M − 1)t)

)
, (259)

we can write Σt as

Σt = Dt

∫
g(τ )a(τ )a(τ )Hdτ D∗t . (260)

Let the eigenvalue decomposition of Σ0 be given by Σ0 = UΛUH = D0UΛUHD∗0
with a diagonal matrix Λ. Because Dt is unitary, the eigenvalue decomposition of
Σt is given by Σt = UtΛUH

t with Ut = DtU . If we use a rank-k approximation Σ̃0
of Σ0 and discard all eigenvalues that are smaller than the kth largest eigenvalue,
we obtain

Σ̃0 = D0Ũ Λ̃ŨHD∗0 with ‖Σ0 − Σ̃0‖ ≤ λk+1 (261)

where λk+1 is the k+1-th largest eigenvalue and where Ũ is a tall matrix with only
those eigenvectors corresponding to the k strongest eigenvalues. We immediately
obtain a low-rank approximation of Σt by

Σ̃t = DtŨ Λ̃ŨHD∗t . (262)

Let Pt denote the orthogonal projector onto range(Σ̃t) = range(DtŨ ). By Corol-
lary 35, we can express the projector difference in terms of the orthonormal bases
as

‖Pt − Ps‖ ≤ ‖(Dt −Ds)Ũ‖
≤ ‖Dt −Ds‖ = max

0≤n≤M−1
| exp(int)− exp(ins)|

= max
0≤n≤M−1

| exp(in(t− s))− 1| ≤ (M − 1)|t− s|. (263)
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Consequently, the union of k-dimensional subspaces

U3GPP =
⋃

t∈[−π,π]

range
(
Σ̃t

)
(264)

is Lipschitz continuous with constant L ≤ (M − 1). We call this set the single-
cluster 3GPP union of subspaces (with approximation order k and forM antennas).

Theorem 33. Let A ∈ Cm×M be a random matrix that satisfies the point-wise
concentration inequality

P
[
(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2] ≤ 2f (δ) (265)

for all x ∈ CM and where f is log-concave and f (0) = 1. Let α ∈ [0.5, 1) and set

ε = (1− α)δ√
8(1 + 2α)

(266)

and
N0 = 1.5 2k+1

√
π(M − 1) (267)

Then, if δ ≤ 1− 1/N0,

P

[
sup

x∈U3GPP

∣∣‖Ax‖2 − ‖x‖2∣∣ > δ‖x‖2

]
≤ 3(N0/ε)2k+1f (αδ) (268)

Proof. The statement follows directly from Theorem 28 if we can show that there
is an ε-cover Cε ⊂ U3GPP ∩ {‖x‖ = 1} with cardinality |Cε| ≤ (N0/ε)2k+1. By
Theorem 14, there is such an ε-cover of cardinality

|Cε| ≤ |TεT |(2 + εH)2k/ε2k
H (269)

if TεT is an εT -cover of T with respect to the metric d(s, t) = ‖Ps − Pt‖ and if

ε2
H + ε2

T + (1− (1− ε2
T )1/2)2 ≤ ε2. (270)

As ‖Ps−Pt‖ ≤ (M − 1)|s− t| (cf. (263)), we can find an εT cover of the interval
T = [−π, π] with cardinality less than π(M − 1)/ε. We choose εH = 8ε/9 and
εT = 8ε/19 for which (270) holds. We then have for ε ≤ 1,

|Cε| ≤
(

9(2 + 8ε/9)
8ε

)2k

×
(

19π(M − 1)
8ε

)
≤ (N0/ε)2k+1 (271)

with N0 = 19
8

2k+1
√
π(M − 1) (where we used ε ≤ 1/8 for α ∈ [0.5, 1) and δ ≤

1).
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Figure 6: Minimal number of ADCs m such that in at least 99 per cent of the draws, the RIC
of A is smaller than δ = 0.5 for the 3GPP manifold with approximation order k = 3, 4, 5 (as a
function of the number of antennas M ). The shaded area indicates non-trivial results (wide
matrix). This graph assumes a fixed approximation order k.

As in the previous section, if we use a zero-inflated Steinhaus random matrix A,
we obtain that

m ≥ inf
α∈[0.5,1)

log(π(M − 1)) + (2k + 1) log(12/(δ(1− α))) + log(3/ξ)
αδ − log(1 + αδ)

(272)

is a sufficient condition under which A has the RIP with RIC δ with probability at
least 1−ξ (we used 19

√
8(1 + 2α)/8 ≤ 12). The condition is visualized in Figure 6

for δ = 0.5 and ξ = 0.01 and the approximation orders k = 3, 4, 5. However, in
contrast to the DOA manifold for which the subspace dimension k – the number
of paths – is independent of the number of antennas, the approximation order k
in the 3GPP model should increase as the number of antennas is increased (and
presumably even linearly). This is because the subspace dimension is determined
by the standard deviation of the Laplace kernel defining the angular spread of a
path (a cluster of micro paths). If we assume that there is an infinite number of
these micro paths (and not a fixed number such as the 20 tabulated values in the
3GPP manual [37]), the subspace dimension increases (more antennas can resolve
more micro paths). In this case, if k scales linearly with M , then also m must
scale linearly with M and non-trivial results are only possible if k = cM with
c < 2 log(12/(δ(1−α)))/(αδ−log(1+αδ)), i.e., for very small standard deviations
of the Laplace kernel.
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XI
CONCLUSION

We have developed a theory for signal reconstruction in unions of subspaces, which
consists of several independent building blocks:

i) A convergence analysis that provides worst-case error bounds for various al-
gorithms under a RIP condition.

ii) A chaining theory for analyzing the tail probabilities of suprema of random
processes that can be used to show under what conditions matrices have the
RIP. This theory requires that point-wise concentration equations for random
matrices and covering-number bounds for the constraint sets are available.

iii) A result that bounds the covering number of Lipschitz unions of subspaces in
terms of the Lipschitz constants of their orthogonal projectors.

iv) Upper bounds for the Lipschitz constants of two unions of subspaces that are
relevant for channel estimation.

So how many ADCs do we need for channel estimation in systems with many an-
tennas? This question was certainly the main motivation for our focus on quantita-
tive results, especially in the parts concerned with chaining and covering numbers.
We are glad to report that it is indeed possible to use the theory to answer the ques-
tion. However, as can be inferred from the graphs shown in Chapter X, the answer
is anything but practically relevant (at least as long as we stick to communication
systems with less than a million antennas).
What is practically relevant, however, is that some parts of the theory can serve as
an inspiration for practical systems. For example, we showed that zero-inflated
Steinhaus random matrices achieve the same concentration results as Gaussian
random matrices. About half of the entries of these matrices are zeros and each
zero means one wire less between an antenna and an ADC. Similarly, for some
of the algorithms we presented, it was only clear from the convergence analysis
how they should be modified to properly incorporate the union-of-subspaces con-
straint. Even though we did not invest a lot of energy into algorithm tuning, the
GHTP algorithm, for example, with a Root-MUSIC based projection shows very
competitive results in the channel estimation problem stated in Chapter III.
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XII
APPENDIX

1—Images of unions of subspaces

In this section, we show that if a union of subspaces U has the Lipschitz property
dF(s, t) = ‖Ps−Pt‖ ≤ L‖s− t‖, then its image under a linear operator A also has
the property provided that A does not introduce too much distortion. To show this,
we first need an auxiliary result. Let P,Q be orthogonal projectors in a Hilbert
space with range(P ) = SP and range(Q) = SQ and let BH denote the unit ball in
H.

Lemma 34. The projector difference can be calculated as

‖Ps − Pt‖ = max
(

sup
x∈Ss∩BH

inf
y∈St

‖x− y‖, sup
x∈Ss∩BH

inf
y∈St

‖x− y‖
)
. (273)

Proof. For arbitrary orthogonal projectors P,Q, we have

‖P −Q‖2 = sup
x∈BH

‖Px−QPx+QPx−Qx‖2 (274)

= sup
x∈BH

‖Q⊥Px−QP⊥x‖2 (275)

≤ sup
x∈BH

‖Q⊥P‖2‖Px‖2 + ‖QP⊥‖2‖P⊥x‖2 (276)

≤ max
(
‖Q⊥P‖2, ‖QP⊥‖2). (277)

By definition of the orthogonal projectors, we obtain

‖Q⊥P‖ = sup
x∈BH

‖Px−QPx‖ = sup
x∈SP∩BH

inf
y∈SQ

‖x− y‖ (278)

and a similar equation for ‖P⊥Q‖ so that

‖P −Q‖ ≤ max
(

sup
x∈SP∩BH

inf
y∈SQ

‖x− y‖, sup
x∈SQ∩BH

inf
y∈SP

‖x− y‖
)
. (279)

For the equality, we note that

sup
x∈SP∩BH

inf
y∈SQ

‖x− y‖ = sup
x∈SP∩BH

‖x−Qx‖ (def. of projection) (280)

= sup
x∈SP∩BH

‖Px−Qx‖ (Px = x) (281)

≤ sup
x∈BH

‖Px−Qx‖ (282)

= ‖P −Q‖ (283)
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and a similar calculation with the roles of P and Q reversed.

The following corollary can be useful when orthonormal bases of the two sub-
spaces are known.

Corollary 35. Let P = UUH and Q = V V H be orthogonal projectors with
U, V ∈ CM×k. Then ‖P −Q‖ ≤ ‖U − V ‖.

Proof. We have

sup
x∈SP∩BH

inf
y∈SQ

‖x− y‖ = sup
α∈Ck,‖α‖=1

inf
β∈Ck

‖Uα− V β‖ (284)

≤ sup
α∈Ck,‖α‖=1

‖Uα− V α‖ = ‖U − V ‖ (285)

and, similarly

sup
x∈SQ∩BH

inf
y∈SP

‖x− y‖ ≤ sup
α∈Ck,‖α‖=1

‖V α− Uα‖ = ‖U − V ‖. (286)

By Lemma 34, it follows that ‖P −Q‖ ≤ ‖U − V ‖.

Lemma 36 (Image of a union of subspaces). Let U = ∪t∈TSt be a union of
subspaces and let Pt denote the orthogonal projector onto St for t ∈ T and let

dF(s, t) = ‖Ps − Pt‖ (287)

denote the Finsler metric in T with respect to U . If A : H → H′ is a linear map
with

‖Ax‖2 ≥ cmin‖x‖2 and ‖A(x− y)‖2 ≤ cmax‖x− y‖2 (288)

for all x, y ∈ U , then

d′F(s, t) = ‖Qs −Qt‖ ≤
cmax

cmin
dF(s, t) (289)

where Qt denotes the orthogonal projector onto range(APt) for t ∈ T .

Proof. Let y ∈ rangeAPt ∩BH′ . Then y = Ax for some x ∈ St with ‖x‖ ≤ c−1
min.

Choose y′ = APsx. Then

‖y − y′‖ = ‖A(Ptx− Psx)‖ ≤ cmax‖(Pt − Ps)x‖

≤ cmax‖x‖‖Pt − Ps‖ ≤
cmax

cmin
dF(s, t). (290)

Because y was arbitrary in range(APt) ∩BH′ , we obtain

sup
y∈range(APt)
‖y‖≤1

inf
z∈range(APs)

‖y−z‖ ≤ sup
y∈range(APt)
‖y‖≤1

cmax

cmin
dF(s, t) = cmax

cmin
dF(s, t). (291)

A similar calculation holds for the roles of s and t exchanged. Thus, by Lemma 34,
we have d′F(s, t) ≤ dF(s, t)cmax/cmin.
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2—Projected gradient descent

The proof is an adaptation of the proof for IHT in [75]. Let x∗ ∈ S∗ be an arbi-
trary element in U and define the residual rn = xn − x∗ with xn ∈ Sn. We use
the following notation: P∗.n, P∗.n.n−1, P∗.◦ denote the orthogonal projectors onto
the subspaces span{S∗, Sn}, span{S∗, Sn, Sn−1}, and span{S∗, S◦}, respectively
(S◦ ⊂ U is also a subspace). We use δ2 = δ(A, U2) and δ = δ3 = δ(A, U3) for the
second and third order restricted isometry constants. By the triangle inequality, we
can decompose the residual rn = P∗.nrn into

‖P∗.n rn‖ ≤ ‖P∗.n(x∗ − zn)‖+ ‖P∗.n(xn − zn)‖ . (292)

If we use y = Ax∗ + e′ with e′ = A(x− x∗) + e and expand zn, we obtain

P∗.n(x∗ − zn) = P∗.n
(
x∗ − (xn−1 +A∗(y −Axn−1))

)
(293)

= P∗.n(I−A∗A)(x∗ − xn−1)− P∗.nA∗e′ (294)

Next, we use that rn−1 = x∗ − xn−1 ∈ S∗.n−1 and span{S∗.n, S∗.n−1} ⊂ U3 and
apply Lemmas 4 and 6 to obtain

‖P∗.n(x∗ − zn)‖ ≤ δ‖rn−1‖+
√

1 + δ2‖e′‖. (295)

For the second term in (292), we use the sub-optimality of the approximate projec-
tion xn = Q(zn). For some subspace S◦ ⊂ U , we have

‖xn − zn‖2 = ‖Q(zn)− zn‖2 ≤ ‖P∗zn − zn‖2 + ε2‖P∗.◦zn‖2 (296)

≤ ‖x∗ − zn‖2 + ε2‖P∗.◦zn‖2 (297)

where second inequality follows because P∗zn is a better approximation of zn in S∗
than x∗. By subtracting the terms ‖(I−P∗.n)(xn−zn)‖2 = ‖(I−P∗.n)(x∗−zn)‖2

from both sides, we obtain

‖P∗.n(xn − zn)‖2 ≤ ‖P∗.n(x∗ − zn)‖2 + ε2‖P∗.◦zn‖2 (298)

≤ ‖P∗.n(x∗ − zn)‖2 + ε2 (‖P∗.◦(x∗ − zn)‖+ ‖x∗‖
)2 (299)

where the second inequality follows from the triangle inequality. By applying
Lemma 4 as in (295), we get (this also works with P∗.n replaced by P∗.◦)

‖P∗.n(xn − zn)‖2 (300)

≤
(
δ‖rn−1‖+

√
1 + δ2‖e′‖

)2
+ ε2

(
δ‖rn−1‖+

√
1 + δ2‖e′‖+ ‖x∗‖

)2

(301)

≤
(

(γL + γRε)
(
δ‖rn−1‖+

√
1 + δ2‖e′‖

)
+ γRε‖x∗‖

)2
(302)

where the second inequality follows from Lemma 42 with {γL, γR} = {1, cγ} and
cγ = 1/(1 +

√
2). While we do not know which of γL and γR is smaller than one,
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we know that γL + γRε ≤ 1 + cγε (because ε ≤ 1) so that by taking the square
root and using γR ≤ 1, we get

‖P∗.n(xn − zn)‖ ≤
(
1 + cγε

) (
δ‖rn−1‖+

√
1 + δ2‖e′‖

)
+ ε‖x∗‖. (303)

We can plug this result together with (295) into the triangle inequality (292) to
obtain

‖rn‖ ≤
(
2 + cγε

) (
δ‖rn−1‖+

√
1 + δ2‖e′‖

)
+ ε‖x∗‖. (304)

Thus, we get
‖rn‖ ≤ c1‖rn−1‖+ c2‖e′‖+ ε‖x∗‖ (305)

with

c1 =
(

2 + ε/(1 +
√

2)
)
δ and c2 =

(
2 + ε/(1 +

√
2)
)√

1 + δ2. (306)

For x0 = 0, this is recursively found to yield

‖rn‖ ≤ cn1 ‖x∗‖+ 1− cn1
1− c1

(
c2‖e′‖+ ε‖x∗‖

)
. (307)

We arrive at (95) by noting that

‖xn − x‖ ≤ ‖xn − x∗‖+ ‖x− x∗‖ = ‖rn‖+ ‖x− x∗‖ (308)

and expanding

‖e′‖ = ‖e+A(x− x∗)‖ ≤ ‖e‖+ ‖A(x− x∗)‖ . (309)

3—Generalized hard thresholding pursuit

This proof is an adaptation of the proof in [52, Theorem 3.8]. Let x∗ ∈ S∗ be an
arbitrary element in U and define the residual rn = xn − x∗ with xn ∈ Sn. We
use the following notation: P∗.n, P∗.n.n−1, P∗.◦ denote the orthogonal projectors
onto the subspaces S∗.n = span{S∗, Sn}, S∗.n.n−1 = span{S∗, Sn, Sn−1}, and
S∗.◦ = span{S∗, S◦}, respectively (S◦ ⊂ U is also a subspace). Next, let P∗|∗.n =
P∗.nP

⊥
n andPn|∗.n = P∗.nP

⊥
∗ denote the orthogonal projectors onto the orthogonal

complements of Sn and S∗ in S∗.n, respectively. Finally, δ2 = δ(A, U2) and δ3 =
δ(A, U3) are the second- and third-order restricted isometry constants. Also, we
write e′ = e+A(x− x∗) so that y = Ax∗ + e′ with x∗ ∈ U .
Since rn ∈ S∗.n, we can write rn = P∗|∗.nrn + Pnrn and use the orthogonal
decomposition

‖rn‖2 = ‖Pnrn‖2 + ‖P∗|∗.nrn‖2. (310)
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3.1 First bound

Because xn minimizes ‖y − Az‖2 with z ∈ Sn, the orthogonality principle states
that the error y −Axn is orthogonal to range(APn), i.e.,

〈Axn − y,Az〉 = 0 for z ∈ Sn. (311)

Since y = Ax∗ + e′, we can rewrite (311) as

〈A∗A(xn − x∗︸ ︷︷ ︸
=rn

), z〉 = 〈A∗e′, z〉 for z ∈ Sn. (312)

If we use z = Pnrn ∈ Sn, we obtain

‖Pnrn‖2 = 〈rn, Pnrn〉 − 〈A∗Arn, Pnrn〉+ 〈A∗Arn, Pnrn〉 (313)

= 〈(I −A∗A)rn, Pnrn〉+ 〈A∗e′, Pnrn〉 (314)

= 〈Pn(I −A∗A)P∗.nrn, Pnrn〉+ 〈PnA∗e′, Pnrn〉 (315)

≤ δ2‖rn‖‖Pnrn‖+
√

1 + δ1‖e′‖‖Pnrn‖ (316)

where, in the last step, we applied Lemmas 4 and 6 from Chapter VI to handle
Pn(I−A∗A)P∗.n (noting that span{Sn, S∗.n} = S∗.n ⊂ U2) and PnA∗e′. This can
be simplified to

‖Pnrn‖ ≤ δ2‖rn‖+
√

1 + δ1‖e′‖. (317)

3.2 Second bound

Bounding the term ‖P∗|∗.nrn‖ requires some work. First, we use that P∗|∗.nxn = 0
so that P∗|∗.nrn = P∗|∗.nx∗. The triangle inequality thus yields

‖P∗|∗.nrn‖ = ‖P∗|∗.nx∗‖ ≤ ‖P∗|∗.n(x∗ − zn)‖+ ‖P∗|∗.nzn‖. (318)

The first term is easy (see also (293) in Appendix 2): If P is any of the projectors
P∗|∗.n, Pn|∗.n, P∗.◦, we get

‖P (zn − x∗)‖ = ‖P (I −A∗A)rn−1 + PA∗e′‖ (319)

≤ δ3‖rn−1‖+
√

1 + δ2‖e′‖ (320)

as span{range(P ), rn−1} ⊂ U3 in all cases.
For the second term, we note that range(P∗|∗.n +Pn) = range(Pn|∗.n +P∗) so that

‖P∗|∗.nzn‖2 + ‖Pnzn‖2 = ‖Pn|∗.nzn‖2 + ‖P∗zn‖2 (321)

⇔ ‖zn − P∗zn‖2 + ‖P∗|∗.nzn‖2 = ‖zn − Pnzn‖2 + ‖Pn|∗.nzn‖2 (322)

as P∗|∗.n ⊥ Pn and Pn|∗.n ⊥ P∗. By the approximate optimality of the subspace
Sn, there is a subspace S◦ with

‖zn − Pnzn‖2 ≤ ‖zn − P∗zn‖2 + ε2‖P∗.◦zn‖2. (323)
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Combined with (322), this inequality yields

‖P∗|∗.nzn‖2 ≤ ε2‖P∗.◦zn‖2 + ‖Pn|∗.nzn‖2. (324)

Then, using ‖P∗.◦zn‖ ≤ ‖P∗.◦(x∗ − zn)‖+ ‖x∗‖ and Pn|∗.nzn = Pn|∗.n(zn − x∗)
and applying (320), we obtain

‖P∗|∗.nzn‖2 ≤ ε2 (‖x∗‖+ a
)2 + a2 (325)

with a = δ3‖rn−1‖+
√

1 + δ2‖e′‖. We then use Lemma 42 to get the complicated-
looking

‖P∗|∗.nzn‖2 ≤ a2 + ε2 (a+ ‖x∗‖
)2 ≤

(
(γL + γRε) a+ γRε‖x∗‖

)2 (326)

with {γL, γR} ∈ {1, cγ} and cγ = 1/(1 +
√

2). While we do not know which of
γL and γR is smaller than one, we know that γL + γRε ≤ 1 + cγε (because ε ≤ 1)
so that by taking the square root and using γR ≤ 1, we get

‖P∗|∗.nzn‖ ≤
(
1 + cγε

) (
δ3‖rn−1‖+

√
1 + δ2‖e′‖

)
+ ε‖x∗‖. (327)

Finally, it follows from (318) and (320) that

‖P∗|∗.nrn‖ ≤ (2 + cγε)
(
δ3‖rn−1‖+

√
1 + δ2‖e′‖

)
+ ε‖x∗‖. (328)

3.3 Synthesis

If we insert (317) and (328) into (310), we obtain another sum of squares:

‖rn‖2 ≤
(
δ2‖rn‖+

√
1 + δ2‖e′‖

)2
(329)

+
(

(2 + cγε)
(
δ3‖rn−1‖+

√
1 + δ2‖e′‖

)
+ ε‖x∗‖

)2
. (330)

Let ξ = 2 + cγε and φ =
√

1 + δ2‖e′‖ so that

‖rn‖2 ≤
(
γ′L
(
δ2‖rn‖+ φ

)
+ γ′R

(
ξ
(
δ3‖rn−1‖+ φ

)
+ ε‖x∗‖

))2 (331)

with {γ′L, γ′R} = {1, cγ} (see Lemma 42, we do not know which of γ′l and γ′R is
smaller than one) so that

‖rn‖ ≤
(γ′L + γ′Rξ)φ+ γ′R

(
ξδ3‖rn−1‖+ ε‖x∗‖

)
1− γ′Lδ2

. (332)

For δ2 ≤ 1/3 (which is satisfied as δ2 ≤ δ3 < 1/3) and ξ ≥ 2, we have1

1 + cγξ

1− δ2
≤ cγ + ξ

1− cγδ2
⇒

γ′L + γ′Rξ

1− γ′Lδ2
≤ cγ + ξ

1− cγδ2
(333)

1These formulas can be easily verified numerically.

80



XII APPENDIX

and
cγ

1− δ2
≤ 1

1− cγδ2
⇒

γ′R
1− γ′Lδ2

≤ 1
1− cγδ2

. (334)

If we insert these upper bounds into (332), we get

‖rn‖ ≤
(cγ + ξ)φ+ ξδ3‖rn−1‖+ ε‖x∗‖

1− cγδ2
= c1‖rn−1‖+ c2‖e′‖+εc3‖x∗‖ (335)

with

c1 =
(
2 + cγε

)
δ3

1− cγδ2
, c2 =

(
2 + cγε+ cγ

)√
1 + δ2

1− cγδ2
, c3 = 1

1− cγδ2
(336)

which is the desired statement of the theorem.

4—Orthogonal matching pursuit

Let Λ = {i∗1, . . . , i∗k} be such that x∗ ∈ S∗ = ⊕i∈ΛV
∗
i with V ∗i ⊂ U i, i.e.,

Λ contains the true indices and V ∗i are the true subspaces. Similarly, let Λn =
{i1, . . . , in} denote the sequence of indices found by the OMP algorithm and let
xn ∈ Sn = ⊕i∈ΛnV

n
i with V n

i ⊂ U i. We show by recursion that for n = 1, . . . , k,
we have Λn ⊂ Λ, i.e., the OMP algorithm always selects correct indices.
For the first index, this is particularly simple. If j 6∈ Λ, we have

‖PUj (A∗Ax∗)‖ = sup
Sj⊂Uj

‖PSjA
∗AP∗x∗‖ ≤ δ‖x∗‖ (337)

by Lemma 5 and as S∗andSj are orthogonal. Here and in the following, we use
δ = δ(A,Wk+1) with the union of subspaces

Wk+1 =
⋃

i1,...,ik+1∈{1,...,P}

⊕
j=1,...,k+1

U2
ij (338)

where the union is over indices with ij 6= ij′ for j 6= j′ and U2
ij = {x : x =

x1 + x2, x1, x2 ∈ U ij}. For indices i ∈ Λ, we have

kmax
i∈Λ
‖PUi

(
A∗Ax∗

)
‖2 ≥

∑
i∈Λ
‖PV ∗i A

∗Ax∗‖2 = ‖PS∗A∗Ax∗‖2 ≥ (1− δ)2‖x∗‖2.

(339)
Consequently, if (1 − δ)/

√
k > δ ⇔ δ < 1/(1 +

√
k), then a correct index is

chosen at the first iteration.
For the subsequent iterations, let us introduce the subspaces

S∗.n = ⊕i∈Λn span{V ∗i , V n
i } and S∗\n = ⊕i∈Λ\Λn

V ∗i (340)

so that S∗.n⊕S∗\n = span{Sn, S∗}with corresponding orthogonal projectors P∗.n
and P∗\n. The subspaces are chosen such that

x∗ − xn = P∗.n(x∗ − xn) + P∗\nx∗, (341)

x∗ = P∗.nx∗ + P∗\nx∗. (342)
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First, we note that because of step 2ii of Alg. 3, the intermediate solution xn is
such that

‖y −Axn‖2 ≤ ‖y −AP∗.nx∗‖2 = ‖Ax∗ −AP∗.nx∗‖2 = ‖AP∗\nx∗‖2 (343)

where the inequality follows, because P∗.nx∗ is a valid candidate point in the mini-
mization.2 We use this property to bound the error in subspaces of already detected
unions of subspaces, P∗.n(x∗−xn), by the residual error, P∗\nx∗, in subspaces with
indices that are not yet in Λn. We use the restricted isometry property ofA together
with (343) in

(1− δ)‖x∗ − xn‖2 ≤ ‖A(x∗ − xn)‖2 (344)

= ‖y −Axn‖2 ≤ ‖AP∗\nx∗‖2 ≤ (1 + δ)‖P∗\nx∗‖2. (345)

Consequently

‖P∗.n(x∗ − xn)‖2 = ‖x∗ − xn‖2 − ‖P∗\nx∗‖2 (346)

≤
(

1 + δ

1− δ
− 1
)
‖P∗\nx∗‖2 = 2δ

1− δ
‖P∗\nx∗‖2. (347)

Now, let Sj ⊂ U j be an arbitrary subspace with j 6∈ Λ. By assumption, we have
x∗ − xn ⊥ Sj and span{x∗ − xn, Sj} ⊂ Wk+1 so that

‖PUj

(
A∗A(x∗ − xn)

)
‖ = sup

Sj⊂Uj

‖PSjA
∗A(x∗ − xn)‖ (348)

≤ δ‖x∗ − xn‖ ≤ δ
√

1 + δ

1− δ
‖P∗\nx∗‖ (349)

yields an upper bound for the bad indices. The first inequality is due to Lemma 5
and the second one follows from (345).
On the other hand, for correct indices, we have

(k − n) max
i∈Λ\Λn

‖PU i

(
A∗A(x∗ − xn)

)
‖2 ≥

∑
i∈Λ\Λn

‖PUi

(
A∗A(x∗ − xn)

)
‖2 (350)

≥
∑

i∈Λ\Λn

‖PV ∗i A
∗A(x∗ − xn)‖2 (351)

= ‖P∗\nA∗A(x∗ − xn)‖2. (352)

We use the decomposition (341), the inverse triangle inequality, and Lemma 5 to
obtain

‖P∗\nA∗A(x∗ − xn)‖ ≥ ‖P∗\nA∗AP∗\nx∗‖ − ‖P∗\nA∗AP∗.n(x∗ − xn)‖ (353)

≥ (1− δ)‖P∗\nx∗‖ − δ‖P∗.n(x∗ − xn)‖ (354)

≥ (1− δ)‖P∗\nx∗‖ − δ
√

2δ
1− δ

‖P∗\nx∗‖ (355)

2The projector P∗.n only zeros some blocks of x∗: P∗.nx∗ = P⊕i∈Λn
V ∗i
x∗ ∈ ⊕i∈Λn U i.
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where the last inequality follows from (347). By combining (355) and (352)
with (349), we see that we always select a correct index if

√
k − n

√
1 + δ

1− δ
< δ−1 − 1−

√
2δ

1− δ
(356)

for n = 1, . . . , k − 1. This bound holds for all n ≥ 1 if it holds for n = 1. In
the remaining part of the proof, we show that this slightly complicated and implicit
bound for δ is implied by the stronger bound δ ≤ (

√
6 +
√
k − 1)−1 (a comparison

of the bound for small values of k is shown in Figure 7). Thus, let n = 1 and
δ−1 = 1 + u2 and re-write (356) as

√
k − 1

√
u2 + 2
u2 ≤ u2 −

√
2
u2 ⇔ ξ

√
1 + 2/u2 ≤ u2 −

√
2/u (357)

with ξ =
√
k − 1. As

√
1 + 2/u2 ≤ 1 + 1/u2 (we use the concavity of

√
· and a

Taylor approximation), this condition is met if

ξ + ξ/u2 ≤ u2 −
√

2/u. (358)

Let u2 = ξ + x, then we write (358) as

x ≥ ξ/u2 +
√

2/u = ξ

ξ + x
+

√
2

ξ + x
. (359)

For k = 2, . . . , 9, one can numerically verify that this inequality is met if x ≥√
6 − 1. For k ≥ 9, the derivative of the right-hand side of (359) with respect

to ξ is negative for x ≥
√

6 − 1 so that (359) also holds for such k.3 As the
resulting condition δ ≤ (

√
6 +
√
k − 1)−1 is always stronger than the condition

δ ≤ (1 +
√
k), which was necessary for the first iteration of the OMP algorithm,

we find that the OMP algorithm successfully recovers x∗ if

δ ≤ 1√
6 +
√
k − 1

. (360)

5—Reduced-complexity OMP

Let Λ = {i∗1, . . . , i∗k} be such that x∗ ∈ S∗ = ⊕i∈ΛV
∗
i with V ∗i ⊂ U i, i.e.,

Λ contains the true indices and V ∗i are the true subspaces. Similarly, let Λn =
3We have

d

dξ

(
ξ

ξ + x
+
√

2
ξ + x

)
= x

(ξ + x)2 −
1√

2(ξ + x)3
∝
√

2x√
ξ + x

− 1.

If ξ ≥ 2x2 − x, the derivative is negative. If x ≥
√

6− 1, this condition is met if ξ ≥
√

9− 1, i.e.,
if k ≥ 9.
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k − 1)−1

Figure 7: Comparison of the implicit bound for δ given by (356) with the explicit, but approx-
imate, bound (360).

{i1, . . . , in} denote the sequence of indices found by the reduced-complexity OMP
algorithm and let xn ∈ Sn = ⊕i∈ΛnV

n
i with V n

i ⊂ U i. We show by recursion that
for n = 1, . . . , k, we have Λn ⊂ Λ, i.e., the reduced-complexity OMP algorithm
always selects correct indices.
For the first index, this is particularly simple: if j 6∈ Λ, we have

‖PUj (A∗Ax∗)‖ = sup
Sj⊂Uj

‖PSjA
∗AP∗x∗‖ ≤ δ‖x∗‖ (361)

by Lemma 5, where here and in the following, we use δ = δ(A,Wk+1) and δ′ =
δ(A,W ′k) with the unions of subspaces

Wk+1 =
⋃

i1,...,ik+1∈{1,...,P}, all ij distinct

⊕
j=1,...,k+1

U2
ij (362)

W ′k =
⋃

i1,...,ik∈{1,...,P} all ij distinct

⊕
j=1,...,k

span{U ij}. (363)

For indices i ∈ Λ, we have

kmax
i∈Λ
‖PUi

(
A∗Ax∗

)
‖2 ≥

∑
i∈Λ
‖PV ∗i A

∗Ax∗‖2 (364)

= ‖PS∗A∗Ax∗‖2 ≥ (1− δ)2‖x∗‖2. (365)

Consequently, if (1 − δ)/
√
k > δ ⇔ δ < 1/(1 +

√
k), then a correct index is

chosen at the first iteration.
For the subsequent iterations, things become substantially more complicated. Let

S∗.n = ⊕i∈Λn span{U i} and S∗\n = ⊕i∈Λ\Λn
V ∗i (366)

with corresponding orthogonal projectors P∗.n and P∗\n. Note that the definition
of S∗.n differs from the proof for the OMP algorithm (because of the span{·} op-
eration). The subspaces are chosen such that

x∗ − xn = P∗.n(x∗ − xn) + P∗\nx∗, (367)

x∗ = P∗.nx∗ + P∗\nx∗. (368)
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First, let Sj ⊂ U j be an arbitrary subspace with j 6∈ Λ. By assumption, we have
x∗ − xn ⊥ Sj and span{x∗ − xn, Sj} ⊂ Wk+1 so that

‖PUj

(
A∗A(x∗ − xn)

)
‖ = sup

Sj⊂Uj

‖PSjA
∗A(x∗ − xn)‖ ≤ δ‖x∗ − xn‖ (369)

yields an upper bound for the incorrect indices. The inequality follows from
Lemma 5.
On the other hand, for correct indices, we have

(k − n) max
i∈Λ\Λn

‖PUi

(
A∗A(x∗ − xn)

)
‖2 ≥

∑
i∈Λ\Λn

‖PUi

(
A∗A(x∗ − xn)

)
‖2 (370)

≥
∑

i∈Λ\Λn

‖PV ∗i A
∗A(x∗ − xn)‖2 (371)

= ‖P∗\nA∗A(x∗ − xn)‖2. (372)

If we use the decomposition (367) and the inverse triangle inequality, we obtain

‖P∗\nA∗A(x∗ − xn)‖ ≥ ‖P∗\nA∗AP∗\nx∗‖ − ‖P∗\nA∗AP∗.n(x∗ − xn)‖ (373)

≥ (1− δ)‖P∗\nx∗‖ − δ‖P∗.n(x∗ − xn)‖. (374)

If we combine this inequality with (372), we obtain

max
i∈Λ\Λn

‖PUi

(
A∗A(x∗ − xn)

)
‖ ≥

(1− δ)‖P∗\nx∗‖ − δ‖P∗.n(x∗ − xn)‖
√
k − n

(375)

Thus, if we compare (369) and (375), we see that we always select correct indices
if

(1− δ)‖P∗\nx∗‖ > δ‖P∗.n(x∗ − xn)‖+ δ
√
k − n‖x∗ − xn‖. (376)

Below, we show the inequality

‖P∗.n(x∗ − xn)‖ ≤ u‖P∗\nx∗‖ with u = 2

√
δ + δ′

1− δ′
(377)

If we use this bound in (376) and use the orthogonal decomposition

‖x∗ − xn‖2 = ‖P∗.n(x∗ − xn)‖2 + ‖P∗\nx∗‖2 ≤ (1 + u2)‖P∗\nx∗‖2 (378)

we can simplify the condition (376) to

1− δ > uδ + δ
√
k − n

√
1 + u2 ⇔ δ <

1

1 + u+
√

(k − n)(1 + u2)
(379)

and this condition holds for all n ≥ 1 if it holds for n = 1.
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To show (377), we note that x∗ − zn ∈ W ′k (zn is the not-yet projected solution
of the LS problem), that P∗.nx∗ ∈ S∗.n, and that zn minimizes the expression
‖y −Az‖2 over all z ∈ S∗.n (step 2ii of Alg. 4) so that

(1− δ′)‖x∗ − zn‖2 ≤ ‖A(x∗ − zn)‖2 (380)

= ‖y −AP∗.nzn‖2 (381)

≤ ‖y −AP∗.nx∗‖2 (382)

= ‖AP∗\nx∗‖2 ≤ (1 + δ)‖P∗\nx∗‖2. (383)

Finally, by the triangle inequality and because xn is a better approximation of zn
as x∗ (step 2iii of Alg. 4)

‖P∗.n(x∗ − xn)‖ ≤ ‖P∗.n(x∗ − zn)‖+ ‖P∗.n(xn − zn)‖ (384)

≤ 2‖P∗.n(x∗ − zn)‖ (385)

= 2
√
‖x∗ − zn‖2 − ‖P∗\nx∗‖2 (386)

≤ 2
√

(1 + δ)/(1− δ′)− 1‖P∗\nx∗‖ (387)

= 2
√

(δ + δ′)/(1− δ′)‖P∗\nx∗‖ (388)

which shows (377).

6—On measurability

Lemma 37. Let (Ω,A,P) be a probability space, (T, d) a separable metric space,
and (E, d) a metric space. Let X = (Xt)t∈T denote a random process on Ω
with index set (T, d) and values in (E, d) that is almost surely continuous. Let
f : E × E → R be a continuous function, T0 ⊂ T a countable subset, and Γ ∈ A
satisfying P[Γ] = 1 and Xt(ω) is continuous for ω ∈ Γ. Then, the event

A =
{

sup
t∈T

inf
s∈T0

f (Xt, Xs) > u

}
∩ Γ (389)

is measurable.

Proof. First, we note that for s, t ∈ T and open subsets W ⊂ E × E, the sets

{ω ∈ Ω : (Xt(ω), Xs(ω)) ∈W} (390)

are clearly measurable as they generate the σ-algebra on the set of functions from
T to E (the usual cylinder sets). Because f is continuous, also the sets

{ω ∈ Ω : f (Xt(ω), Xs(ω)) ∈ U} (391)
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are measurable if U is open. Let Tn ⊂ T be a sequence of countable subsets such
that each Tn is an εn-cover of T with εn → 0 (such a family must exist by the
separability assumption). The set

B =
⋃
n≥1

⋃
t∈Tn

⋂
s∈T0

{f (Xt, Xs) > u} ∩ Γ (392)

is also measurable as a countable union of a countable intersection of measurable
sets. We show that A = B. The direction B ⊂ A is clear: If ω ∈ B, there must
be some n ≥ 1 and tn ∈ Tn such that f (Xt(ω), Xs(ω) > u for all s ∈ T0. In this
case, supt∈T infs∈T0

f (Xt, Xs) ≥ infs∈T0
f (Xtn , Xs) > u.

For the reverse direction, let ω ∈ A. There must be t0 ∈ T and ε > 0 such that
f (Xt0(ω), Xs(ω)) ≥ u+ε for all s ∈ T0. As f andX(ω) are continuous, there must
be a neighborhood of t0, i.e., some δ > 0, such that f (Xt(ω), Xs(ω)) ≥ u + ε/2
for all s ∈ T0 and t with d(t, t0) ≤ δ. Let n be large enough such that εn ≤ δ
and such that we can find tn ∈ Tn with d(tn, t0) ≤ δ. For this tn, we have
f (Xtn(ω), Xs(ω)) ≥ u + ε/2 > u for all s ∈ T0. Thus, ω ∈ B, which completes
the proof.

7—CGF bound for database friendly projections

Let Xj denote zero-inflated independent Rademacher random variables, P[Xj =√
c] = P[Xj = −

√
c] = 1/(2c) and P[Xj = 0] = 1 − 1/c for 1 ≤ c ≤ 3.

Let Z =
(∑m

j=1 Xjbj

)2
for some b ∈ RM , ‖b‖ = 1. It is shown in [71] that

EZp ≤ (2p)!/(2pp!) for each p ∈ N (for c = 1 and c = 3, but their proof works
just as well for 1 ≤ c ≤ 3, see also [23, Theorem 8.5]). Consequently,

EZp ≤ (2p)!
2pp!

= (2p− 1)!! = 1× 3× · · · × (2p− 1) = EQp (393)

where Q ∼ χ2
1 is chi-squared distributed with a single degree of freedom. By the

monotone convergence theorem, we have

E exp(λZ) =
∑
p≥0

λpEZp/p! ≤
∑
p≥0

λpEQp/p! = E exp(λQ) (394)

for λ ≥ 0 so that taking logarithms, we obtain ΨZ(λ) ≤ ΨQ(λ) so that

ΨZ−1(λ) ≤ −λ− 0.5 log(1− 2λ), 0 ≤ λ < 1/2. (395)

For the lower tail, we use that −(Z − 1) ≤ 1 and

σ2 = E[(−(Z − 1))2] = EZ2 − 1 ≤ EQ2 − 1 ≤ 2 (396)
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and apply Lemma 27 to obtain, for λ < 1/2,

Ψ−(Z−1)(λ) ≤ log(2 exp(λ)− 2λ− 1) (397)

≤ 2 (exp(λ)− λ− 1) (398)

= 2
∑
p≥2

λp/p! (399)

≤ 0.5
∑
p≥2

(2λ)p/p! (400)

≤ −λ+ 0.5
∑
p≥1

(2λ)p/p (401)

= −λ− 0.5 log(1− 2λ). (402)

8—CGF bound for Steinhaus sums

LetXj ∈ C be a sequence of zero-inflated normalized Steinhaus random variables,
that is,

Xj =
√
cBj exp(iUj), (403)

Uj ∼ U[−π,π] (uniform distribution), (404)

P[Bj = 1] = 1/c, P[Bj = 0] = 1− 1/c, (405)

where all Uj and Bj are independent and 1 ≤ c ≤ 2. Let Z =
∣∣∣∑M

j=1 Xjbj

∣∣∣2 for

some b ∈ CM , ‖b‖ = 1. For p, q ≥ 0, we have EBp+q
j = 1/c and, thus,

E[Xp
j (Xq

j )∗] = c(p+q)/2

c
E[exp(i(p− q)Uj)] =


cp−1, p = q > 0,
1, p = q = 0,
0, otherwise.

(406)

For E[Zp], we use the multinomial theorem in

E[Zp] = E
∣∣∣ M∑
j=1

Xjbj

∣∣∣2p =
∑

k1+···+kM=p
`1+···+`M=p

(p!)2∏M
j=1 b

kj
j (b`jj )

∗
E[Xkj

j (X`j
j )
∗
]

k1! · · · kM !`1! · · · `M !

(407)

= p!
∑

k1+···+km=p

p!
∏M
j=1 |bj |

2kjcmax(kj−1,0)

(k1! · · · kM !)2 . (408)

Note that for k1 + · · ·+ kM = p, we have

1
p!
≤

M∏
j=1

cmax(kj−1,0)

kj!
≤ 1 (409)
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and that ∑
k1+···+kM=p

p!
∏M
j=1 |bj |2kj

k1! · · · kM !
= ‖b‖2p = 1 (410)

so that
1 ≤ E[Zp] ≤ p!. (411)

A moment expansion for the CGF of Z then yields

exp (ΨZ(λ)) =
∑
p≥0

λp

p!
E[Zp] ≤ 1

1− λ
, λ ≥ 0 (412)

from which
ΨZ−1(λ) ≤ −λ− log(1− λ), λ ≥ 0 (413)

gives us the same bound we already encountered for complex Gaussian RVs. For
the lower tail, we use that −(Z − 1) ≤ 1 and

E[(−(Z − 1))2] = EZ2 − 1 ≤ 1 (414)

and apply Lemma 27 to obtain, for λ < 1,

Ψ−(Z−1)(λ) ≤ log(exp(λ)− λ) ≤ exp(λ)− 1− λ

=
∑
p≥2

λp/p! ≤ −λ+
∑
p≥1

λp/p = −λ− log(1− λ). (415)

9—CGF bound for structured matrices

We have

ΨZ(λ) =
M∑
n=1

log
(
q + p exp(λ|〈x, un〉|2/p)

)
. (416)

Let us calculate an upper bound for ΨZ that does not depend on x. We exploit that
1 = ‖x‖2 =

∑M
n=1 |〈x, un〉|2, ‖x‖1 ≤

√
k‖x‖2, and

|〈x, un〉|2 ≤ |‖x‖1‖un‖∞|2 ≤ kc∞/M =: M−1
eff . (417)

As each term f : ξ 7→ log(q + p exp(λξ)) is convex with f (0) = 0, we have

ΨZ(λ) ≤
M∑
n=1

Meff|〈x, un〉|2 log
(
q + p exp(λ/(pMeff))

)
(418)

= Meff log
(
q + p exp(λ/(pMeff))

)
(419)

≤ pMeff
(
exp(λ/(pMeff))− 1

)
. (420)
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For the lower tail, we use that

Ψ−(Z−1)(λ) = ΨZ−1(−λ) = λ+ pMeff
(
exp

(
−λ/(pMeff)

)
− 1
)

(421)

≤ −λ+ pMeff
(
exp

(
λ/(pMeff)

)
− 1
)

(422)

where the inequality is quickly derived from

e−x − 1 + x =
∑
p≥2

(−x)p/p! ≤
∑
p≥2

xp/p! = ex − 1− x. (423)

We calculate the rate function corresponding to the upper bound

c(λ) = pMeff

(
exp

(
λ

pMeff

)
− 1− λ

pMeff

)
. (424)

We obtain λ = pMeff log(µ+1) as a solution to the first-order optimality condition

0 = d

dλ
(µλ− c(λ)) = µ− exp

(
λ

pMeff

)
+ 1 (425)

so that

c∗Z−1(µ) = sup
λ≥0

µλ− c(λ) = pMeff ((1 + µ) log(1 + µ)− µ) (426)

is a rate function for Z − 1 and −(Z − 1).

10—Proof of Lemma 21

Define the sequences

δn = (1 + n)αδ = (1 + n)δ0 (427)

εn = ε0g(ε0)−n/k (428)

for n ≥ 1. Let ω be a convex function with ω(0) = 0, then ω(nx) ≥ nω(x) for
n ≥ 1. This can be seen from

ω((nx)/n) ≤ ω(nx)/n+ ω(0)(n− 1)/n = ω(nx)/n. (429)

For a log-concave function with f (0) = 1, we have f (x) = exp(−ω(x)) with
ω(0) = 0 and, hence, f (nx) ≤ exp(−nω(x)) = f (x)n. Because 1 + n ≥ 1 for all
n, we can use this inequality to get

f (δn) = f ((1 + n)δ0) ≤ f (δ0)1+n ≤ f (δ0) (2g(ε0))−n (430)

and, by the geometric regularity of g,

g(εn) ≤ (ε0/εn)kg(ε0) = g(ε0)n+1 (431)
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such that g(εn)f (δn) ≤ g(ε0)f (δ0)2−n and∑
n≥1

g(εn)f (δn) ≤ g(ε0)f (δ0). (432)

As concerns the other summation (168), we have∑
n≥1

εn−1
p
√

1 + δn = ε0

(
p
√

1 + 2αδ + η
)

(433)

with
η =

∑
n≥1

g(ε0)−n/k p
√

1 + (2 + n)αδ. (434)

To show (168), which can be reformulated as

ε0

(
p
√

1 + 2αδ + η
)
≤ p
√

1 + δ − p
√

1 + αδ, (435)

we use the following inequalities that follow from the concavity and a first-order
approximation of the function x 7→ p

√
x:

p
√

1 + δ − p
√

1 + αδ ≥ (1− α)δ

p p
√

(1 + δ)p−1
(436)

p
√

1 + 2α− p
√

1 + 2αδ ≥ 2(1− δ)α

p p
√

(1 + 2α)p−1
(437)

p
√

1 + 2αδ + nαδ − p
√

1 + 2αδ ≤ nαδ

p p
√

(1 + 2αδ)p−1
. (438)

First, by (437), the inequality p
√

1 + 2αδ+ η ≤ p
√

1 + 2α is implied by the stricter
condition

η ≤ 2(1− δ)α

p p
√

(1 + 2α)p−1
. (439)

Then, if (439) is satisfied, also (435) is fulfilled because

ε0

(
p
√

1 + 2αδ + η
)
≤ ε0

p
√

1 + 2α
(166)
≤ (1− α)δ

p p
√

(1 + δ)p−1

(436)
≤ p
√

1 + δ− p
√

1 + αδ.

(440)
To show (439), we need to calculate the series (434), which determines η. If we
use the abbreviation ξ = g(ε0)−1/k, we obtain

η =
∑
n≥1

ξn p
√

1 + (2 + n)αδ (441)

(438)
≤
∑
n≥1

ξn

(
p
√

1 + 2αδ + nαδ

p p
√

(1 + 2αδ)p−1

)
(442)

= ξ

(
p
√

1 + 2αδ
1− ξ

+ αδ

p p
√

(1 + 2αδ)p−1(1− ξ)2

)
. (443)
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Inserting ε0 from (166) into ξ results in

ξ = g(ε0)−1/k = (1− α)δ

N0p
p
√

(1 + 2α)2p−1
≤ 1

4pN0
≤ 1

4
(444)

for α ≥ 1/2 and p,N0 ≥ 1. Following up on (443), we obtain

η ≤ ξ

(
p
√

1 + 2αδ
1− ξ

+ αδ

p p
√

(1 + 2αδ)p−1(1− ξ)2

)
(445)

≤ ξ

(
4
3

p
√

1 + 2αδ + 16
9

αδ

p p
√

(1 + 2αδ)p−1

)
≤ 2(1− α)δ

N0p
p
√

2p−1
(446)

where, in the last step, we used that

αδ

p p
√

(1 + 2α)(1 + 2αδ)p−1
≤ 1

3p
and p

√
1 + 2αδ
1 + 2α

≤ 1 (447)

and 4/3 + 16/(27p) ≤ 2. Thus, condition (439) is satisfied if

2(1− α)δ

N0p
p
√

2p−1
≤ 2(1− δ)α

p p
√

(1 + 2α)p−1
, (448)

i.e., if
(1− α)δ
αN0(1− δ)

(
1 + 2α

2

)(p−1)/p

≤ 1. (449)

Because of the condition δ ≤ 1 − 1/N0 and because ((1 + 2α)/2)(p−1)/p ≤ (1 +
2α)/2 for all p ≥ 1 if α ≥ 1/2, this is satisfied if

1 ≥ (1− α)(1 + 2α)
2α

= 1 + α− 2α2

α+ α
. (450)

Because α ≥ 1/2, we have

1 + α− 2α2

α+ α
≤ 1 + α− 1/2

1/2 + α
= 1 (451)

which concludes the proof.

11—Proof of Lemma 22

Let δn = 2n − 1 and set

εn = ε0
k

√
2nf (δn)
f (δ0)

(452)

for n ≥ 1. By the geometric regularity of g, we have

g(εn) ≤ (ε0/εn)kg(ε0) = g(ε0)f (v0)
2nf (vn)

(453)
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so that g(εn)f (δn) ≤ g(ε0)f (δ0)2−n and, thus,∑
n≥1

g(εn)f (δn) ≤ g(ε0)f (δ0)
∑
n≥1

2−n = g(ε0)f (δ0). (454)

As concerns the other summation (171), we have∑
n≥1

εn−1
p
√

1 + δn = ε0

(
p
√

2 + η
)

(455)

with
η = 1

k
√
f (δ0)

∑
n≥1

k
√

2nf (δn)
p
√

2n+1. (456)

We now observe that the monotonicity and convexity of ω yield4

ω(δn) ≥ 2n−1 (ω(1)− ω(0)) . (459)

If we insert this expression into (456), we obtain

η ≤ 1
k
√
f (δ0)

∑
n≥1

k

√
2n

(2n−1(ω(1)− ω(0)))q
p
√

2n+1 (460)

= k

√
2q+k/p

(
ω(δ0)

ω(1)− ω(0)

)q∑
n≥1

(
k
√

2−(q−1−k/p)
)n

(461)

= k

√
2q+k/p

(
ω(δ0)

ω(1)− ω(0)

)q 2−(q−1−k/p)/k

1− 2−(q−1−k/p)/k (462)

= p
√

4
(

ω(δ0)
ω(1)− ω(0)

)q/k k
√

2
1− 2−(q−1−k/p)/k (463)

≤ 21+1/k+1/p
(

ω(δ0)
ω(1)− ω(0)

)q/k
p
√

2 (464)

if q > 1 + k/p. With the choice of ε0, we achieve

ε0

(
p
√

2 + η
)
≤ (1− α)δ

p
p
√

2p−1
≤ p
√

1 + δ − p
√

1 + αδ (465)

as in the proof of Lemma 21 (see (436)).
4For α = 21−n, x = 2n − 1 = vn, y = 0, we obtain for n ≥ 1

ω(1) ≤ ω(2− 21−n) = ω(αx+ (1− α)y) ≤ αω(x) + (1− α)ω(y)

= 21−nω(δn) + (1− α)ω(0) ≤ 21−nω(δn) + ω(0) (457)

from which
ω(δn) ≥ 2n−1(ω(1)− ω(0)) (458)

follows.
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12—Sub-Gaussian norm of a Gaussian random variable

The sub-Gaussian norm of a Gaussian random variable is given by

‖X‖Ψ2 = inf
{
t > 0 : E exp(X2/t2) ≤ 2

}
(466)

= inf
{
t >
√

2 : (1− 2/t2)−1/2 ≤ 2
}

=
√

8/3. (467)

If A has normalized iid. real Gaussian entries, aTx is Gaussian and ‖aTx‖Ψ2 =√
8/3. Then, going through the proof of [58, Theorem 8] we observe that c1 =

c/(64Λ4
2) with Λ4

2 = ‖aTx‖4
Ψ2

= 64/9 and an unspecified constant c (which ap-
pears when showing the equivalence of the different characterizing properties of
sub-exponential random variables).

13—Lipschitz continuity of the Vandermonde projector

Let A : [0, 1] → CM×k, t 7→ A(t), be a continuously differentiable matrix-valued
function with full column rank for all t and with derivative Ȧ = d

dtA(t). It is
well known (cf. [76]) that the derivative of the projector P = AA† is given by
Ṗ = P⊥ȦA†P + P (ȦA†)HP⊥ where P⊥ = I − P and where (·)H denotes the
conjugate transpose of a matrix. By the fundamental theorem of calculus, we have

‖P (1)− P (0)‖ =
∥∥∥∫ 1

0
Ṗ (t)dt

∥∥∥ ≤ sup
t
‖Ṗ (t)‖

≤ sup
t
‖P⊥(t)Ȧ(t)A†(t)P (t)‖ ≤ sup

t
‖Ȧ(t)A†(t)‖ (468)

where the supremum is over t in the interval [0, 1] and where the second inequality
follows from (with B = P⊥ȦA†P )

‖(P⊥BP + PBHP⊥)x‖2 = ‖P⊥BPx‖2 + ‖PBHP⊥x‖2 (as PP⊥ = 0)

≤ ‖B‖2‖Px‖2 + ‖BH‖2‖P⊥x‖2 = ‖B‖2‖x‖2. (469)

An upper bound is obtained by using ‖ȦA†‖ ≤ ‖Ȧ‖‖A†‖. The main difficulty is
that when A = V is the Vandermonde matrix, a uniform bound for ‖V †‖ cannot
exist, because V (z) becomes rank deficient as zi → zj . A straightforward proof
would require a minimum separation condition |zi − zj | ≥ ε. Our principal con-
tribution is to show that Newton’s divided differences yield a re-parametrization of
range(V ) that avoids such a condition.
Define Newton’s divided differences by (cf. [77])

f [z1, . . . , zj] =
j∑
`=1

f (z`)∏
i=1,...,j,i6=`(z` − zi)

(470)
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and the matrix W (z) =
[
f [z1] . . . f [z1, . . . , zk]

]
. It follows from (470) that

W (z) = V (z)∆(z) with an upper triangular matrix ∆(z) with

det ∆(z) =
k∏
j=1

j−1∏
i=1

(zj − zi)−1 6= 0 (471)

if zi 6= zj when i 6= j. Thus, the two projectors PW = WW † and PV = V V †

coincide: PW (z) = PV (z) if z ∈ B′R.
To see what advantages the divided differences offer, let z′ ∈ BR \ B′R denote a
problematic node with, e.g., z′1 = z′2, and let (zn)n∈N ⊂ B′R be a sequence with
zn → z′. As the first two columns of V (z′), which are given by f (z′1) = f (z′2), co-
incide, the projector PV (z′) is rank-deficient. Hence, PV (z′) cannot be the limit of
the sequence PV (zn), because the projectors PV (zn) are not rank-deficient. In con-
trast, the first two columns of the Newton matrixW (z′) are given by f [z′1] = f (z′1)
and f [z′1, z

′
2] = ḟ (z′1), and these vectors are linearly independent. Consequently,

PW (z′) is not rank-deficient and it turns out that PW (z′) = limn→∞ PV (zn). Thus,
the correct way to define the projector for such z′ is to use PW instead of PV . The
relationship between Newton’s differences with repeated nodes and the derivatives
follows from the Hermite-Genocchi theorem stated below.
We now proceed from the single-parameter formula (468) to the more general state-
ment in Theorem 30. First, we define ρ = max(1, R) with the sole purpose of
simplifying the problem to the special case R = 1. Let ξ : [0, 1] → B1 be a con-
tinuously differentiable curve with y = ρξ(0) and z = ρξ(1). Because W (ρz) =
ΛW (z) with a matrix Λ = diag(1, ρ, . . . , ρM−1) that is independent of z, we can
restrict our attention to B1 in the following sections. Using A(t) = W (ρξ(t)) and
P (t) = PW (ρξ(t)) in (468), we obtain

‖P (1)− P (0)‖ ≤ sup
t

∥∥∥ d
dt
W
(
ρξ(t)

)∥∥∥∥∥∥W †
(
ρξ(t)

)∥∥∥ (472)

= sup
t

∥∥∥Λ d

dt
W
(
ξ(t)
)∥∥∥∥∥∥(ΛW

(
ξ(t)
))†∥∥∥ (473)

≤ κ(Λ) sup
t

∥∥∥ d
dt
W
(
ξ(t)
)∥∥∥∥∥∥W †

(
ξ(t)
)∥∥∥ (474)

where κ(Λ) = σmax(Λ)/σmin(Λ) = ρM−1 is the condition number of Λ. Next, we
show how to bound the derivative and pseudo-inverse ofW inB1 where ‖z‖∞ ≤ 1.

Theorem 38 (see [78]). The smallest singular value of a matrixA ∈ Ck×k satisfies

σmin(A) ≥
(
k − 1
k

) k−1
2

| detA| minn rn∏k
n=1 rn

(475)

where rn denotes the Euclidean norm of the nth row of A.

The following theorem is a direct corollary of the Hermite-Genocchi theorem ap-
plied to the function z 7→ zn (assuming ‖z‖∞ ≤ 1, see Sec. 14 below).
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Lemma 39. The nth entry of f [z1, . . . , zj] satisfies

fn[z1, . . . , zj] = 0 if n < j, (476)

fn[z1, . . . , zj] = 1 if n = j, (477)

|fn[z1, . . . , zj]| ≤
(
n− 1
j − 1

)
if n ≥ j. (478)

For the row norms rn of W , we obtain

r2
n =

k∑
j=1

|fn[z1, . . . , zj]|2 ≤
n∑
j=1

(
n− 1
j − 1

)2

≤ 22(n−1). (479)

DefineU as the first k rows ofW . As ‖Wx‖ ≥ ‖Ux‖ implies σmin(W ) ≥ σmin(U ),
we can use Theorem 38 with U :

‖W †‖2 ≤ 1
σmin(U )2 ≤ e

k∏
n=1

22(n−1) = e2k(k−1) (480)

as (k/(k− 1))k−1 ≤ e and because also minn rn(U ) = 1 and det(U ) = 1 by virtue
of Lemma 39.
Another consequence of the Hermite-Genocchi theorem is the following expres-
sion for the derivative of the divided differences and the ensuing bound for the
Frobenius norm (assuming ‖z‖∞ ≤ 1, see Sec. 14 below).

Lemma 40. The derivative of the jth column of W (z) with respect to the `th coor-
dinate z` is given by

∂f [z1, . . . , zj]
∂z`

=
{
f [z1, . . . zj , z`], if ` ≤ j,
0, if ` > j.

(481)

Furthermore, ∥∥∥∥∂W (z)
∂z`

∥∥∥∥
F

≤ Mk+1/2

k!
. (482)

By the chain rule, we obtain

∥∥∥∥ ddtW (ξ(t))
∥∥∥∥
F

=
∥∥∥∥ k∑
`=1

∂W (z)
∂z`

[ξ̇(t)]`

∥∥∥∥
F

≤
k∑
`=1

|[ξ̇(t)]`|
∥∥∥∥∂W (z)

∂z`

∥∥∥∥
F

≤ ‖ξ̇(t)‖1
Mk+1/2

k!
. (483)

Theorem 30 follows from (474), (480), (483), by setting ξ(t) = y/ρ+ t(z − y)/ρ,
for which ‖ξ̇(t)‖1 = ‖z − y‖1/ρ holds, and noting that the remaining expressions
do not depend on t.
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14—Hermite-Genocchi Theorem

The following version of the Hermite-Genocchi theorem for holomorphic functions
is a straightforward generalization of the version for real functions (cf., e.g., [79]).
The theorem can be used to define the differences with repeated arguments.

Theorem 41. Let f : U → C be holomorphic on an open subset U ⊂ C with jth
complex derivative f (j). If the convex hull of the nodes satisfies conv(z0, . . . , zj) ⊂
U , we have

f [z0, . . . , zj] =
∫
τj

f (j)
( j∑
i=0

tizi

)
dλ(t) (484)

where τj = {t ≥ 0 :
∑j

i=0 ti = 1} is the unit simplex and dλ the Lebesgue
measure on τj .

The first consequence of this theorem is that the order of the nodes in f [z0, . . . , zj]
is irrelevant. Moreover, by exchanging integration and differentiation in (484), one
can show that the partial derivative with respect to the `th node is given by [80]

∂

∂z`
f [z0, . . . , zj] = f [z0, . . . , zj , z`] (485)

if ` ≤ j, i.e., the node z` is repeated. Lemma 39 follows by observing that for
f (z) = zn, we have f (j)(z) = 0 for n < j and f (j)(z) = n!/(n − j)! zn−j for
n ≥ j. Because the volume of the simplex is given by

∫
τj
dλ = 1/j!, we obtain

the bound

|f [z0, . . . , zj]| ≤
∫
τj

∣∣∣∣ n!
(n− j)!

( j∑
i=0

tizi

)n−j∣∣∣∣dλ(t)

≤ n! · vol(τj)
(n− j)!

sup
t∈τj

∣∣∣∣ j∑
i=0

tizi

∣∣∣∣n−j ≤ (nj
)
‖z‖n−j∞ (486)

for n ≥ j. If n = j, we even have equality, because in this case f (n)(z) = j! is
constant so that

∫
τj
f (j)dλ = j!

∫
τj
dλ = 1.

Furthermore, Lemma 40 follows by applying (485) to all entries of the vector
f [z1, . . . , zj]. Using Lemma 39 with j replaced by j + 1, we can bound its Eu-
clidean norm by

‖f [z1, . . . , zj , z`]‖2 ≤
M∑
n=1

(
n− 1
j

)2

≤
(
M − 1
j

) M∑
n=1

(
n− 1
j

)

=
(
M − 1
j

)(
M

j + 1

)
= j + 1

M

(
M

j + 1

)2

(487)
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if j ≥ ` and zero otherwise. From this, we obtain the bound on the Frobenius norm
of the matrix ∂W (z)/∂z` stated in Lemma 40:

k∑
j=`
‖f [z1, . . . , zj , z`]‖2 ≤

k∑
j=`

j + 1
M

(
M

j + 1

)2

≤
k∑
j=`

(j + 1)M2j+1

(j + 1)!2 ≤
k∑
j=`

(k + 1)M2k+1

(k + 1)!2 ≤ M2k+1

k!2 . (488)

15—Sum of squares

The following simple result can sometimes be used to achieve slightly tighter
bounds than the trivial bound a2 + b2 ≤ (a + b)2 for non-negative a, b even when
it is not known whether a ≥ b or b ≥ a.

Lemma 42. Let a, b ≥ 0. Then

a2 + b2 ≤ (γLa+ γRb)2 (489)

and {γL, γR} = {1, 1/(1 +
√

2)}, i.e., one of γL and γR is smaller than one.

Proof. Let a ≥ b and set x = b/c for some c ≥ 1. Then a ≥ cx = b and

(a+ x)2 = a2 + 2ax+ x2 ≥ a2 + (2c+ 1)x2 = a2 + 2c+ 1
c2 b2. (490)

If we set c = 1 +
√

2, we obtain (2c+ 1)/c2 = 1 and get

a2 + b2 ≤ (a+ x)2 =
(
a+ b

1 +
√

2

)2

. (491)

The same holds for the roles of a and b reversed so that we get

a2 + b2 ≤ (γLa+ γRb)2 (492)

where one of γL and γR is one and the other value is 1/(1 +
√

2) depending on
whether a ≥ b or b ≥ a.
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International Publishing, 2016, pp. 45–60.

[70] S. Boucheron, G. Lugosi, and P. Massart, Concentration Inequalities: A
Nonasymptotic Theory of Independence. Oxford Scholarship Online, May
2013.

[71] D. Achlioptas, “Database-friendly random projections,” in Proceedings of
the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, ser. PODS ’01. New York, NY, USA: ACM, 2001, pp.
274–281. [Online]. Available: http://doi.acm.org/10.1145/375551.375608

[72] I. Haviv and O. Regev, “The restricted isometry property of subsampled
Fourier matrices,” in Geometric Aspects of Functional Analysis: Israel Sem-
inar (GAFA) 2014–2016, B. Klartag and E. Milman, Eds. Cham: Springer
International Publishing, 2017, pp. 163–179.

[73] E. J. Candès and T. Tao, “Near-optimal signal recovery from random pro-
jections: Universal encoding strategies?” IEEE Trans. Inf. Theory, vol. 52,
no. 12, pp. 5406–5425, Dec. 2006.

[74] M. Rudelson and R. Vershynin, “On sparse reconstruction from Fourier and
Gaussian measurements,” Comm. Pure Appl. Math., vol. 61, no. 8, pp. 1025–
1045, Nov. 2007.

104

http://doi.acm.org/10.1145/375551.375608


XII BIBLIOGRAPHY

[75] T. Blumensath and M. E. Davies, “Iterative hard thresholding for compressed
sensing,” Appl. Comput. Harmon. Anal., vol. 27, no. 3, pp. 265–274, Nov.
2009.

[76] M. Viberg and B. Ottersten, “Sensor array processing based on subspace fit-
ting,” IEEE Transactions on Signal Processing, vol. 39, no. 5, pp. 1110–1121,
May 1991.

[77] G. M. Phillips, Interpolation and Approximation by Polynomials. Springer,
2003.

[78] Y. Hong and C.-T. Pan, “A lower bound for the smallest singular value,” Lin-
ear Algebra and its Applications, vol. 172, pp. 27–32, 1992.

[79] L. Filipsson, “Complex mean-value interpolation and approximation of holo-
morphic functions,” Journal of Approximation Theory, vol. 91, pp. 244–278,
1997.

[80] K. E. Atkinson, An Introduction to Numerical Analysis. Wiley, 1988.

105


	Introduction
	Notation

	Compressive Sensing
	Compressive sensing in unions of subspaces
	Infinite unions of subspaces and parameter estimation

	Channel Estimation
	The DOA manifold
	3GPP and conditionally normal channel models
	Spatio-temporal channel models
	Channel estimation with linear measurements

	Algorithms and Simulation Results
	Random matrices and small problem dimensions
	Projected gradient descent
	Generalized hard thresholding pursuit
	Orthogonal matching pursuit
	Reduced-complexity orthogonal matching pursuit
	Simulations for pilot-based channel estimation

	Approximate Projectors
	Notions of approximate projectors
	Approximate projectors in compound models

	Recovery Guarantees
	Restricted isometry calculus
	Projected gradient descent
	Generalized hard thresholding pursuit
	Orthogonal matching pursuit
	Reduced-complexity orthogonal matching pursuit

	Chaining in Geometrically Regular Spaces
	Geometric regularity
	Examples of geometrically regular spaces
	Chaining in topological spaces
	Concentration and covering numbers
	Non-isotropic distributions
	Chaining set construction
	Relation to the generic chaining

	Overview of distributions with log-concave tails
	The RIP in Unions of Subspaces
	Gaussian or Rademacher matrices and sparse signals
	Sub-Gaussian matrices and sparse signals
	Structured matrices and sparse signals
	Low-rank matrices with Gaussian measurements
	Lipschitz unions of subspaces
	Sets with low covering dimension

	The RIP and Channel Estimation
	DOA manifold
	Lipschitz continuity in 3GPP models

	Conclusion
	Appendix
	Images of unions of subspaces
	Projected gradient descent
	Generalized hard thresholding pursuit
	Orthogonal matching pursuit
	Reduced-complexity OMP
	On measurability
	CGF bound for database friendly projections
	CGF bound for Steinhaus sums
	CGF bound for structured matrices
	Proof of Lemma 21
	Proof of Lemma 22
	Sub-Gaussian norm of a Gaussian random variable
	Lipschitz continuity of the Vandermonde projector
	Hermite-Genocchi Theorem
	Sum of squares


