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Abstract

This paper studies risk balancing features in an insurance market by evaluating
ruin probabilities for single and multiple components of a multivariate compound
Poisson risk process. The dependence of the components of the process is induced
by a random bipartite network. In analogy with the non-network scenario, a net-
work ruin parameter is introduced. This random parameter, which depends on the
bipartite network, is crucial for the ruin probabilities. Under certain conditions on
the network and for light-tailed claim size distributions we obtain Lundberg bounds
and, for exponential claim size distributions, exact results for the ruin probabili-
ties. For large sparse networks, the network ruin parameter is approximated by a
function of independent Poisson variables.
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Keywords: bipartite network, Cramér-Lundberg model, exponential claim size distribu-
tion, hitting probability, multivariate compound Poisson process, ruin theory, Poisson
approximation, Pollaczek-Khintchine formula, risk balancing network.

1 Introduction
Consider an insurance risk process in the celebrated Cramér-Lundberg model with Poisson
claim arrivals, premium rate c and claim sizes Xk, that is, a spectrally positive compound
Poisson process R = (R(t))t≥0 given by

R(t) =
N(t)

∑
k=1

Xk − ct, t ≥ 0,
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where R(0) = 0, c > 0 is a constant, Xk > 0, k ∈ N, are i.i.d. random variables with
distribution F and finite mean µ = E[Xk], and (N(t))t≥0 is a Poisson process with intensity
λ > 0. For such a process, the ruin probability for a given risk reserve u > 0 is denoted
by Ψ(u) = P(R(t) ≥ u for some t > 0) and it is given by the famous Pollaczek-Khintchine
formula (cf. [1, VIII (5.5)], [2, IV (2.2)] or [10, Eq. (1.10)])

Ψ(u) = 1 − (1 − ρ)
∞

∑
n=0

ρnF n∗
I (u) = (1 − ρ)

∞

∑
n=1

ρnF n∗
I (u), u ≥ 0, (1.1)

whenever the ruin parameter ρ = λµ/c satisfies ρ < 1. Hereby, for every distribution
function G with G(0) = 0, for x ≥ 0, we denote the corresponding tail by G(x) = 1 −
G(x), the integrated tail distribution function by GI(x) = 1

ν ∫
x

0 G(y)dy if the mean ν =
∫
∞

0 xdG(x) is finite, and the n-fold convolution by Gn∗, where G0∗(x) ∶= 1{x ≥ 0} and
G(n+1)∗(x) = ∫

x

0 G
n∗(x − u)dG(u), n ≥ 0.

We also recall that, whenever ρ ≥ 1, then Ψ(u) = 1 for all u > 0. Note that the function
Ψ of the Pollaczek-Khintchine formula (1.1) is a compound geometric distribution tail
with parameter ρ. Thus the smaller ρ, the smaller the ruin probability, and for ρ < 1 the
ruin probability Ψ(u) tends to 0 as u→∞. More precisely, it is well known that, when the
distribution function F is light-tailed in the sense that an adjustment coefficient κ exists;
i.e.,

∃κ > 0 ∶ ∫
∞

0
eκzdFI(z) =

1
ρ
, (1.2)

then the ruin probability Ψ(u) satisfies the famous Cramér-Lundberg inequality (cf. [1,
Eq. XIII (5.2)], [2, Eq. I.(4.7)] or [10, Eq. (1.14)])

Ψ(u) ≤ e−κu for all u > 0. (1.3)

It is easy to see that ρ < 1 is a necessary condition for the existence of an adjustment
coefficient. Further, if the Xk are exponentially distributed with mean µ, then κ = (1−ρ)/µ
and

Ψ(u) = ρe−u(1−ρ)/µ for all u > 0. (1.4)

In this paper we derive multivariate analogues to the above classic results in a network
setting. More precisely we consider a multivariate compound Poisson process whose de-
pendency structure stems from a random bipartite network which is described in detail
in Section 2 below. We investigate the influence to the insurance market of sharing ex-
ogeneous losses modelled by the network. Insurance companies or business lines of one
insurance company are the agents in the bipartite network of Figure 1, and the port-
folio losses, which are the objects, are shared either by different companies or assigned
to different business lines within a company. This can also yield useful scenarios for the
risk assessment of risk regulators or scenarios of the competitors of a company, when the
underlying selection strategy of the agents is unknown.

Our results assess the effect of a network structure on the ruin probability in a Cramér-
Lundberg setting. We show that the dependence in the network structure plays a funda-
mental role for the ruin probability; i.e., the risk within the reinsurance market or within a
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company. The ruin parameter ρ, which in itself serves as a risk measure, becomes random
and its properties depend on the random bipartite network as well as on the character-
istics of the claim amount processes. While the network adjacency matrix describes the
random selection process of the agents (given by random edge indicator variables), the
weights describe how the agents divide the losses among each other.

As a prominent network model, we single out the mixed Binomial network model with
conditionally independent Bernoulli edge indicators as defined in Section 2. This includes
the (deterministic) complete network where all agents are linked to all objects and vice
versa as a special case. We also provide scenarios for the division of the losses. In the
network with homogeneous weights, every claim size is equally shared by all agents that
are connected to it. The exponential system uses weights which depend on the expected
object losses. Notably, for exponentially distributed object claims the exponential system
yields an explicit formula for the ruin probability in the network.

Our framework is related to the two-dimensional setting in [3, 4] where it is assumed
that two companies divide claims among each other in some prespecified proportions. The
main novelty of our setting is that we consider a network of interwoven companies, with
emphasis on studying the effects which occur through this random network dependence
structure. Our bipartite network model has already been used in [11, 12] to assess quantile-
based risk measures for systemic risk.

Our results extend those for multivariate models to a random network situation.
Whereas one-dimensional insurance risk processes have been extensively studied since
Cramér’s introduction in the 1930s, results for multivariate models (beyond bivariate)
are scattered in the literature; for a summary of results see [2, Ch. XIII(9)]. In general
dimensions, multivariate ruin is studied e.g. in [7, 15], where dependency between the risk
processes is modeled by a Clayton dependence structure in terms of a Lévy copula, which
allows for scenarios reaching from weak to strong dependence. Further, in [9, 14], using
large deviations methods, multivariate risk processes are treated and so-called ruin regions
are studied, that is, sets in Rd which are hit by the risk process with small probability. In
contrast, in our setting claims are partitioned and assigned randomly.

The paper is structured as follows. In Section 2 we describe the bipartite network
model and present two loss sharing schemes that are characterized by homogeneous or
proportional weights. We focus on three ruin situations, namely the ruin of a single agent,
the ruin of a risk balanced set of agents, and the joint ruin of all agents. Section 3 derives
results for the ruin probabilities of sums of components of the multivariate compound
Poisson process with special emphasis on the network influence. Here we derive a network
Pollaczek-Khintchine formula for component sums and a network Lundberg bound. In
Section 4 we present explicit results for an exponential system. In Section 5 we investi-
gate the bipartite network with conditionally independent edges, and provide a Poisson
approximation for the ruin parameter P for arbitrary sets of agents. We specialize such
networks to the mixed Binomial network and the complete network. Section 6 is dedi-
cated to the joint ruin probability of all agents in a selected group and provides a network
Lundberg bound for this ruin event. The proofs are found in Section 7.
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A1 A2 A3 A4 A5 A6

O1 O2 O3 O4

Figure 1: A bipartite network with 6 agents and 4 objects. It strongly resembles the depiction
of the reinsurance market in Figure 21 of [13].

2 The bipartite network model
Let V = (V1, . . . , Vd)⊺ be a d-dimensional spectrally positive compound Poisson process
with independent components given by

Vj(t) =
Nj(t)

∑
k=1

Xj(k) − cjt, t ≥ 0,

such that for all j = 1, . . . , d the claim sizes Xj(k) are positive i.i.d. random variables
having mean µj < ∞ and distribution function Fj. Moreover Nj = (Nj(t))t≥0 is a Poisson
process with intensity λj > 0, and the premium rate cj > 0 is constant. The corresponding
deterministic constant ρj ∶= λjµj/cj as in the Pollaczek-Khintchine formula (1.1) is called
ruin parameter of component j.

Further we introduce a random bipartite network, independent of the multivariate
compound Poisson process V , that consists of q agents Ai, i = 1, . . . , q, and d objects Oj,
j = 1, . . . , d, and edges between agents and objects as visualized in Figure 1.

The random edge indicators are the indicator variables 1{i ∼ j} indicating whether or
not there is an edge between agent i and object j. Here and in the following the variable
i stands for an agent in A, and the variable j stands for an object in O.

The weighted edges are encoded in a weighted adjacency matrix

A = (Aij) i=1,...,q
j=1,...,d

where Aij = 1{i ∼ j}W i
j (2.1)

for random variables W i
j , which may depend on the random network and have values in

[0,1] such that

0 ≤
q

∑
i=1
Aij ≤ 1 for all j = 1, . . . , d. (2.2)

The edge indicators 1{i ∼ j} and weights W i
j may depend on each other but are assumed

to be independent of the process V . We use the degree notation

deg(i) =
d

∑
j=1

1{i ∼ j} and deg(j) =
q

∑
i=1
1{i ∼ j}

for all i = 1, . . . , q, j = 1, . . . , d. For Q ⊆ {1, . . . , q} and j ∈ {1, . . . , d} we abbreviate

deg(Q) = ∑
i∈Q

deg(i) and 1{Q ∼ j} ∶= max
i∈Q

{1{i ∼ j}}.
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We denote by A the set of all possible realizations a = (aij) i=1,...,q
j=1,...,d

of the weighted adjacency
matrix A from (2.1).

Every object of the bipartite network is assigned to the corresponding component of
the compound Poisson process V . Every agent is then assigned to a resulting compound
Poisson process, its portfolio, given by

Ri(t) ∶=
d

∑
j=1
AijVj(t), t ≥ 0.

In total, this yields a q-dimensional process R = (R1, . . . ,Rq)⊺ of all agents given by

R(t) = AV (t), t ≥ 0, (2.3)

with V = (V1, . . . , Vd)⊺ as defined above. Hence the components of R are no longer inde-
pendent.

Remarks 2.1. (i) The independence assumption on the components of V entails that
claims in different components never happen at the same time. This is no mathematical
restriction of the model, since we can disentangle dependence through the introduction of
additional objects. For example, we can always write two dependent compound Poisson
processes V1, V2 as V1 =W1 +W3 and V2 =W2 +W3, where W1 and W2 have claims only in
V1 and V2, respectively, and W3 is the process of the joint claims. Then W1,W2,W3 are
independent. Thus, mathematically, a third object, 3, is introduced, and objects 1 and
2 are altered. There is a caveat in that this procedure introduces preconditions on the
network structure: The resulting edge indicators to the new objects 1 and 3 will not be
independent as 1{i ∼ 1} = 1 implies 1{i ∼ 3} = 1 for any i, and the same holds for edges
to objects 2 and 3.

(ii)We can easily extend this model to multiple layers, where e.g. the agents are connected
to a set of super-agents via another bipartite network that is encoded in a second weighted
adjacency matrix B. The resulting process on the top layer is simply obtained by matrix
multiplication in (2.3), resulting in R = BAV , which reduces the problem to the form
(2.3).

While many general results in this paper do not require independence of the edge
indicators in the bipartite network, some of our examples will assume that the edges are
conditionally independent, given the value of a random variable Θ which is assumed for
convenience to take values in [0,1]. One could think of Θ as a hidden variable such as
an economic indicator or an environmental variable which governs the behaviour of all
agents. Given a realisation Θ = θ we then use the notation pi,j(θ) ∶= P(i ∼ j) ∶= P(1{i ∼
j} = 1) ∈ [0,1]. The following random bipartite network is of particular interest:

• The mixed Binomial network, where 1{i ∼ j} are conditionally independent Bernoulli
random variables with random parameter Θ ∈ [0,1]. In case of a degenerate variable
Θ = p a.s., we call the resulting model a Bernoulli network, where 1{i ∼ j} are
independent Bernoulli random variables with parameter p. For Θ = 1 a.s. we obtain
the complete network, where 1{i ∼ j} ≡ 1, that is, all agents are linked to all objects
and vice versa.
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We also single out two specific models for the weights of the weighted adjacency matrix
(2.1), which play a prominent role for the network ruin probability. In both examples, the
randomness in A arises solely from the randomness of the network; given the network,
the weights W i

j will be deterministic. Still, our general results apply to any random W i
j

as long as the resulting matrix A is independent of the compound Poisson process V and
(2.2) holds.

• A natural choice for Aij is given by the homogeneous weights

Aij =
1{i ∼ j}
deg(j) , where 0

0 is interpreted as 0; (2.4)

i.e., every object is equally shared by all agents that are connected to it.

• A leading example in our paper (see Section 4) extends the one-dimensional precise
ruin probability (1.4) for exponentially distributed claims to the network setting. It
relies on proportional weights defined as follows. Fix Q ⊆ {1, . . . , q} and set for every
agent i ∈ Q

W i
j =W

Q
j = 1{Q ∼ j}rQ

∑k∈Q 1{k ∼ j}µj
, where 0

0 is interpreted as 0, (2.5)

with some constant rQ > 0. Here rQ is chosen such that
q

∑
i=1
Aij = rQ

1{Q ∼ j}
µj

∑qi=1 1{i ∼ j}
∑i∈Q 1{i ∼ j}

≤ 1, for all j = 1, . . . , d,

and it can be viewed as the proneness of group Q to link to objects. The resulting
random weighted adjacency matrix encodes that the exposure of agent group Q to
object j is inversely proportional to the expected claim size of the process associated
to that object, while for a fixed object j with mean claim size µj, all i ∈ Q which
link to this object share it in equal proportion.

We consider the ruin probability of the sum of a non-empty selected subset Q ⊆
{1, . . . , q} of all agents and the probability that these agents face ruin (an and-condition),
that is

ΨQ(u) ∶= P(∑
i∈Q

(Ri(t) − ui) ≥ 0 for some t ≥ 0), (2.6)

ΨQ
∧ (u) ∶= P(min

i∈Q
(Ri(t) − ui) ≥ 0 for some t ≥ 0), (2.7)

for u ∈ [0,∞)q such that ∑i∈Q ui ≠ 0.
If Q = {1, . . . , q} we simply denote Ψ ∶= ΨQ, while for Q = {i} for i ∈ {1, . . . , q} we

write Ψi = Ψ{i}. Similarly we write Ψ{i}
∧ = Ψ{i} = Ψi for i = 1, . . . , q. Note that for every

Q′ ⊆ Q ⊆ {1, . . . , q},
ΨQ
∧ ≤ ΨQ′

.
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3 The ruin probability of aggregated risk processes
in the network

We start with ΨQ for Q ⊆ {1, . . . , q}, the ruin probability of a set of agents or the total
risk of these agents. We will derive two main results for the bipartite network. First, we
generalize the Pollaczek-Khintchine formula of (1.1) and, second, the Lundberg inequality
(1.3). The proofs rely on the independence of the risk processes and the network and are
obtained by conditioning on the network, carefully taking the network properties into
account. We postpone them to Section 7.

3.1 The network Pollaczek-Khinchine formula for component
sums

Theorem 3.1. [Network Pollaczek-Khintchine formula for component sums]
For any Q ⊆ {1, . . . , q} the joint ruin probability

ΨQ(u) = P(∑
i∈Q

(Ri(t) − ui) ≥ 0 for some t ≥ 0)

for a given risk reserve u ∈ [0,∞)q such that ∑i∈Q ui > 0 has representation

ΨQ(u) = P(PQ < 1)E[(1 − PQ)
∞

∑
n=1

(PQ)n(FQ
I )n∗(∑

i∈Q

ui) ∣PQ < 1] + P(PQ ≥ 1), (3.1)

where PQ is defined in (3.3) and

FQ
I (x,A) ∶=FQ

I (x) = (
d

∑
j=1

(∑
i∈Q

Aij)λjµj)
−1 d

∑
j=1
λj1{Q ∼ j}∫

x

0
F j(

y

∑i∈QAij
)dy, x ≥ 0,

(3.2)

is a random integrated tail function depending on the matrix A, taking values in the set
of cumulative distribution functions on non-negative real numbers. ◻

In the network the random variable, henceforth called the (network) ruin parameter,

PQ ∶=
∑dj=1(∑i∈QAij)λjµj
∑dj=1(∑i∈QAij)cj

1{deg(Q) > 0} (3.3)

=
d

∑
j=1

1{Q ∼ j}
ρj

1 +∑k≠j 1{Q ∼ k}∑i∈Q 1{i∼k}W i
k

∑i∈Q 1{i∼j}W i
j

ck

cj

(3.4)

is the random equivalent of ρ in the classical Pollaczeck-Khinchine formula (1.1). Note
that given PQ ≥ 1 as in the classical case we derive from (3.1) that ΨQ(u) = 1. While in
the classical case, ρ < 1 is a cut-off for Ψ(u) to trivially equal 1, as PQ is random, in the
network a similar cut-off for the ruin probability for PQ < 1 or PQ ≥ 1 is not available.
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Remark 3.2. If the weighted adjacency matrix A is such that deg(Q) = 0, then ∑i∈QAij =
0 and PQ = 0

0 ∶= 0. Hence the indicator 1{deg(Q) > 0} in (3.3) is not mathematically
necessary, however, we keep it for transparency. Example 3.4 illustrates a case where the
indicator features prominently.

The following remark collects some general observations on PQ.

Remark 3.3. (i) Given deg(Q) > 0 it holds that

min{ρj, j = 1, . . . , d} ≤ PQ ≤ max{ρj, j = 1, . . . , d}.

Thus, if all objects have a ruin parameter ρj < 1, then PQ < 1. Nevertheless PQ < 1 can
be achieved even if some ruin parameters exceed 1, as long as the others balance this
contribution.

(ii) Eq. (3.4) shows that the ruin parameter PQ depends on the weights W i
j only through

ratios of sums of weights. Eq. (3.4) implies further that

PQ ≤
d

∑
j=1

1{Q ∼ j}ρj.

This bound is an equality when all agents i ∈ Q are connected only to one single object.
Otherwise the bound may be quite crude. Using the Markov inequality this bound can be
used to bound P(PQ ≥ t) for any t > 0:

P(PQ ≥ t) ≤ 1
t
E[

d

∑
j=1

1{Q ∼ j}ρj] =
1
t

d

∑
j=1

P(Q ∼ j)ρj.

Example 3.4. [Equal ruin parameters]
If all ρj = ρ are equal, we obtain directly from (3.3) that for any set Q ⊆ {1, . . . , q}

PQ = ρ1{deg(Q) > 0}

and hence for any measurable function f on R

E[f(PQ)] = f(ρ)P(deg(Q) > 0) + f(0)P(deg(Q) = 0).

In particular, E[PQ] < 1 if and only if ρ < (P(deg(Q) > 0))−1. Comparing this condition
to the condition ρ < 1 in the non-network case, we see that the presence of the network
allows for 1 ≤ ρ < (P(deg(Q) > 0))−1. The network thus balances the ruin probabilities for
single components in the sense that ρ > 1 is possible while still ensuring that E[PQ] < 1.
Similarly, if we interpret PQ as a risk measure, then ∑i∈QP {i} = ρ∑i∈Q 1{deg(i) > 0},
which can be much larger than PQ = ρ1{deg(Q) > 0}. ◻

Example 3.5. [Deterministic weights]
Let W i

j = r
λjµj

be independent of i and r > 0 independent of i and j, such that (2.2) holds.
Then

PQ =
d

∑
j=1
∑
i∈Q

1{i ∼ j}(ρ−1
j ∑

i∈Q

1{i ∼ j} +∑
k≠j

ρ−1
k ∑

i∈Q

1{i ∼ k})
−1
.
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The summands in the nominator show that the agents in Q share the ruin parameters
of all objects they are linked to in equal proportion. A small PQ corresponds to a large
denominator, hence, to small ρk’s. Consequently, the agents group Q would favour risk
processes with small ruin parameters. ◻

For illustration purposes we extract from Theorem 3.1 the ruin probability of a single
agent in the network.

Example 3.6. [Network Pollaczek-Khintchine formula for a single agent]
The ruin probability for a given risk reserve ui of Ri for i ∈ {1, . . . , q} is given by

Ψi(ui) = P(P i < 1)E[(1 − P i)
∞

∑
n=1

(P i)n(F i
I)n∗(ui) ∣P i < 1] + P(P i ≥ 1), ui > 0,

where for deg(i) > 0,

P i ∶= P {i} =
∑dj=1A

i
jλjµj

∑dj=1A
i
jcj

=
d

∑
j=1

1{i ∼ j}
ρj

1 +∑k≠j 1{i ∼ k}
W i

k

W i
j

ck

cj

,

and
F i
I(x) ∶= F

{i}
I (x) = (

d

∑
j=1
Aijλjµj)

−1 d

∑
j=1
λj1{Aij ≠ 0}∫

x

0
F j(

y

Aij
)dy, x ≥ 0.

◻

Remark 3.7. In Example 3.6, if the network is deterministic and fixed, then the formula
for the ruin probability of a single agent reduces to the classical Pollaczek-Khintchine
formula (1.1).

3.2 A Lundberg bound for ΨQ

As in the classical one-dimensional setting, we expect exponential decay of the ruin prob-
ability of sums of agents also in the network setting, provided that the claim size distri-
butions are light-tailed. This is shown in the following theorem. Note that a similar result
for ruin probabilities of sums of components of a multivariate risk process, but without
network structure, is derived in [2, Ch. XIII, Proposition 9.3].

In order to find an adjustment coefficient which is independent of the specific realisa-
tion of the network, let W i be deterministic constants such that for all j = 1, . . . , d,

0 ≤W i
j ≤W i ≤ 1. (3.5)

Theorem 3.8. [Network Lundberg bound for component sums]
Let Q ⊆ {1, . . . , q} be a set of agents and assume that for all j ∈ {1, . . . , d} the cumulant
generating functions ϕj(t) ∶= logEetVj(1) exist in some neighbourhood of zero. Then for
fixed a ∈ A,

P(∑
i∈Q

(Ri(t) − ui) ≥ 0 for some t ≥ 0 ∣ A = a)
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≤ 1{deg(Q) > 0}e−κ(a)∑i∈Q ui

, u ∈ [0,∞)q,∑
i∈Q

ui > 0, (3.6)

with
κ(a) = sup{r > 0 ∶

d

∑
j=1
ϕj(r∑

i∈Q

aij) ≤ 0}.

In particular, if for all j = 1, . . . , d an adjustment coefficient κj ∈ (0,∞) satisfying (1.2)
exists, then

ΨQ(u) ≤ P(deg(Q) > 0)e−κ∑i∈Q ui

, u ∈ [0,∞)q,∑
i∈Q

ui > 0,

where
κ = min{κ1, . . . , κd}

∑i∈QW i
. (3.7)

Note that the general bound in Theorem 3.8 is optimal only in the case that all agents
in Q are only connected to the objects with the heaviest tail in the claim size distribution.
For a given network structure (3.6) shows that a Lundberg bound can exist even if some
of the claim sizes are heavy tailed in the sense that (1.2) does not hold for all objects j.

Also note that, similar to Remark 3.7, for a deterministic and fixed network structure
an application of Theorem 3.8 on a single agent with positive degree yields the classical
Lundberg bound (1.3).

4 The exponential system
For the one-dimensional ruin model the exponential distribution and mixtures thereof
are the only claim size models which allow for an explicit solution of (1.1). Hence, it is
not surprising that exponential claim size distributions also play a prominent role in the
network model. However, an explicit solution also depends on the network itself. In what
follows we work with an exponential system, which is characterized by the proportional
weights as in (2.5), identical Poisson intensities λj =∶ λ and exponential claim sizes with
means µj. For this exponential system we obtain an explicit expression for (3.6).

Theorem 4.1. [Ruin probability for component sums in the exponential system]
Let Q ⊆ {1, . . . , q} be a set of agents and assume the exponential system as defined above.
Then the ruin probability of the sum of all agents in Q is given by

ΨQ(u) = P(PQ < 1)E[PQe−
1−P Q

rQ ∑i∈Q ui

∣PQ < 1] + P(PQ ≥ 1), u ∈ [0,∞)q,∑
i∈Q

ui > 0, (4.1)

and, regardless of the claim size distribution,

PQ = λ
∑dj=1 1{Q ∼ j}

∑dj=1 1{Q ∼ j}cj/µj
. (4.2)

In contrast to Theorem 3.1, in this special case the integrated tail distribution from
(3.2) is deterministic and exponential,

FQ
I (x) = 1 − e−x/rQ

, x ≥ 0.
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Note that Eq. (4.1) can be abbreviated as

ΨQ(u) = E[f(PQ)] (4.3)

with the function f given as

f(ρ) = 1{ρ < 1}ρe−∑i∈Q ui(1−ρ)/rQ + 1{ρ ≥ 1}.

We may again extract the ruin probability for a single agent in the network as follows.

Example 4.2. [Ruin probability for a single agent]
Let i ∈ {1, . . . , q} and assume that the conditions of Theorem 4.1 hold with Q = {i}. Then
the ruin probability of agent i for ui > 0 is given by

Ψi(ui) = P(P i ≥ 1) + P(P i < 1)E [P ie−u
i(1−P i)/ri ∣P i < 1] , (4.4)

where

P i = λ
d

∑
j=1

1{i ∼ j}
cj

µj
+∑k≠j 1{i ∼ k} ck

µk

.

The argument in the expectation in (4.4) coincides with (1.4) with random ρ.
For the special situation of equal Pollaczek-Khintchine parameters as in Example 3.4 we
obtain the single agent’s ruin probability as

Ψi(ui) = (1{ρ < 1}ρe−ui(1−ρ)/ri + 1{ρ ≥ 1})P(deg(i) > 0), ui ≥ 0.

◻

5 The bipartite network with conditionally indepen-
dent edges

Throughout this section we assume that the edge indicators in the bipartite network are
conditionally independent, given the random variable Θ, and that for the realisation Θ = θ
we have P(i ∼ j) = pi,j(θ). In this model, for Q ⊆ {1, . . . , q}, also the degrees for different
i ∈ Q are conditionally independent; in particular,

P(deg(Q) = 0 ∣ Θ = θ) =∏
i∈Q

d

∏
j=1

(1 − pi,j(θ)).

For fixed Θ = θ this model is a prominent network model (an inhomogeneous random
graph, cf. [6]), and we present results for the network ruin parameter as well as the
network ruin probability in several situations.

If ρj = ρ for j = 1, . . . , d, then from Example 3.4 we know that the ruin parameter
PQ = ρ1(degQ > 0). In general, calculating PQ and functions thereof as for example in
(4.3) is not easy. For sparse networks we therefore give a Poisson approximation for PQ.
Here sparseness refers to the sum of the squared edge probabilities being small.
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5.1 Poisson approximation of PQ

The results in this subsection are based on the following proposition, which follows from
[5, Thm. 10.A] by conditioning; the proof is omitted.

Proposition 5.1. Assume we are given a bipartite network such that the edge indicators
1{i ∼ j} for i = 1, . . . , q and j = 1, . . . , d are conditionally independent given the value
of Θ ∈ [0,1]. For each θ ∈ [0,1] let Zi,j(θ) ∼ Poisson(pi,j(θ)) be independent Poisson
variables for i = 1, . . . , q and j = 1, . . . , d. Then for any g ∶ Zqd → [0,1], denoting R(Θ) ∶=
∑qi=1∑

d
j=1 pi,j(Θ)2,

∣E[g({1{i ∼ j}, i = 1, . . . , q, j = 1, . . . , d})] −E[g(Z1,1(Θ), . . . , Zq,d(Θ))]∣

≤E[R(Θ)] =
q

∑
i=1

d

∑
j=1

E[pi,j(Θ)2]. (5.1)

If agents pick objects with probability roughly proportional to the number of objects,
so that for some fixed α > 0, pi,j(θ) ∼ αd−1 for all θ as q/d→ 0, then the bound (5.1) tends
to 0 if q/d→ 0.

Proposition 5.2. [Homogeneous weights]
Let Q ⊆ {1, . . . , q} be a set of agents and assume homogeneous weights as in (2.4). For
each θ ∈ [0,1] set

ZQ(θ) (5.2)

=
d

∑
j=1
∑
i∈Q

λjµjZi,j(θ)
cj(1 +Z(i)

j (θ)) +∑`≠j∑s∈QZs,`(θ)c`(1 +Z
(i)
j (θ) + Z̄(i)

j (θ))/(1 +Z(s)
` (θ) + Z̄(s)

` (θ))
,

where the Poisson variables Z
(i)
j (θ), Z̄(i)

j (θ) and Zi,j(θ) are independent with means
∑s∈Q,s≠i ps,j(θ), ∑s/∈Q,s≠i ps,j(θ) and pi,j(θ), respectively. Let R(Θ) be as in Proposition 5.1.
Then for g ∶ R→ [0,1],

∣E[g(PQ)] −E[g(ZQ(Θ)]∣ ≤
d

∑
j=1
ρjE[R(Θ)]. (5.3)

Corollary 5.3. [Homogeneous weights for a single agent]
If Q = {i}, then under the assumptions of Proposition 5.1 the approximating Poisson-based
random variable for P i simplifies to

Zi(θ) ∶=
d

∑
j=1

1{i ∼ j}
ρj

1 +∑k≠j 1{i ∼ k}
ck(1+Z̄

(i)
j (θ))

cj(1+Z̄(i)k
(θ))

, (5.4)

where the Poisson variables Z̄(i)
j (θ) are independent with means πi,j(θ) = ∑s≠i ps,j(θ).

Remark 5.4. Based on the Poisson approximation, the Delta method can be used to
approximate E[P i] using the expressions in (5.4). For each θ ∈ [0,1] set

Si,j(θ) ∶= 1 +∑
k≠j

1{i ∼ k}
ck(1 + Z̄(i)

j (θ))

cj(1 + Z̄(i)
k (θ))

,
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then by conditioning on the value of Θ and of 1{i ∼ j},

∣E[P i] −
d

∑
j=1
ρjE[pi,j(Θ)S−1

i,j (Θ)]∣ ≤
d

∑
j=1
ρjE[R(Θ)].

We calculate

E[Si,j(θ) ∣ Θ = θ] = 1 +∑
k≠j

pi,k(θ) (1 + πi,k(θ))
ck
cj

(
1 − exp(−πi,k(θ))

πi,k(θ)
) =∶ βi,j(θ),

where we used Eq. (3.9) in [8] for the last equality. Similarly, by the independence of the
Poisson variables and again using the results in [8],

Var[Si,j(θ) ∣ Θ = θ] = π2
i,j(θ)∑

k≠j

(ck
cj

)
2
pi,k(θ)

× {Chi(πi,k(θ)) + Shi(πi,k(θ)) − log(πi,k(θ)) − γ − [
1 − exp(−πi,k(θ))

πi,k(θ)
]

2
}

where Chi(x) is the hyperbolic cosine integral, Shi(x) is the hyperbolic sine integral, log(x)
is the natural logarithm and γ is the Euler-Mascheroni constant. If each Si,j(θ) has small
variance Var[Si,j(θ) ∣ Θ = θ], then the Delta method combined with Proposition 5.1 yields
EP i can be approximated well by ∑dj=1 ρjE [ pi,j(Θ)

βi,j(Θ)
] . If agents pick objects with probability

roughly proportional to the number of objects, so that for some fixed α > 0, pi,j(θ) ∼ αd−1,
then Var[Si,j(θ) ∣ Θ = θ] ∼ (q/d)2 → 0 if q/d→ 0.

Proposition 5.5. [Proportional weights]
Let Q ⊆ {1, . . . , q} be a fixed set of agents. Assume proportional weights as in (2.5). For
each θ ∈ [0,1] set

ZQ(θ) ∶=
d

∑
j=1
ZQ,j(θ)

1
1
ρj
+∑`≠j ZQ,`(θ) 1

ρ`

, (5.5)

where ZQ,j(θ) are independent Poisson variables with means 1 − ∏i∈Q(1 − pi,j(θ)). Let
R(Θ) be as in Proposition 5.1. Then for any g ∶ R→ [0,1],

∣E[g(PQ)] −E[g(ZQ
p (Θ)]∣ ≤

d

∑
j=1
ρjE[R(Θ)]. (5.6)

In practical applications the distribution of Θ may not be available. In such a situa-
tion a second approximation step could be used, approximating mixed Poisson variables
of the type Z(Θ) by a Poisson variable Z with mean λ. By [5, Thm. 1.C] the approxi-
mation error is bounded so that for any g ∶ R→ [0,1], we have ∣E[g(Z(Θ))] −E[g(Z)]∣ ≤
min(1, λ−1)E[∣Θ − λ∣]. Corresponding error terms would then be added to the bounds in
this subsection.
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Figure 2: E[P 1
∣deg(1) > 0] (left) and

√

Var(P 1
∣deg(1) > 0) (right) as functions of p in a ho-

mogeneous Bernoulli model. Here, for n = 0, . . . , d, n of the total of d objects j have a low ruin
parameter, while the rest have a high ruin parameter, i.e. ρj = 0.1, j = 1, . . . , n, and ρj = 1.1,
j = n + 1, . . . , d; and the proportion of objects with high and low ruin parameter is changed
with n. Further λjµj = 0.5, j = 1, . . . , d, and d = q = 6. Observe that for large p the influence
of the proportion on the expected value becomes smaller, because of many connections and a
resulting high balancing effect. Still, the behaviour of the standard deviation depends heavily
on the proportion as long as there exist two different ruin parameters in the system.

5.2 PQ and ΨQ in the mixed Binomial network
As in the mixed Binomial network all vertices are exchangeable, we can assume without
loss of generality that Q = {1,2, . . . , ∣Q∣}, with a slight abuse of notation. Further, given
Θ = θ ∈ (0,1], every edge is chosen with the same probability θ ∈ (0,1] independently, the
degree deg(i) of each agent i ∈ Q follows a Binomial distribution with parameters d and
θ. Thus, for Θ = 1 a.s. we obtain the complete network treated in Section 5.3.

In a general mixed Binomial model the value PQ can take on any positive number. To
see this, consider a Bernoulli network with fixed edge probability p > 0. Then on the set
{deg(Q) > 0}, in the limit for p→ 0 the set of vertices in Q will have exactly one edge, and
the corresponding neighbour J of Q is chosen uniformly at random in {1, . . . , d}. Hence
for p→ 0 we approach a single edge network such that

lim
p→0

P(PQ ≤ x ∣ deg(Q) > 0) = P(λJµJ
cJ

≤ x) =
#{j ∶ ρj ≤ x}

d
,

where J is uniformly distributed on {1, . . . , d}. This is also illustrated in Figure 2, which
shows the varying balancing effect of the network on P i when the proportion of objects
with high and low ruin parameter is changed.

If in the mixed Binomial model ρj = ρ for j = 1, . . . , d we know from Example 3.4 that
PQ = ρ1(deg(Q) > 0) and as P(degQ = 0 ∣ Θ = θ) = (1−θ)∣Q∣d, we have EPQ < 1 if and only
if ρ < E[(1 − (1 −Θ)∣Q∣d)−1]. If the distribution of Θ allows for interchanging expectation
and the limit d→∞, then for d→∞ we recover the classical condition ρ < 1.

In the following example, we present a family of deterministic weights, such that the
randomness of PQ only depends on the random connections of the agents to objects.
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Example 5.6. [Deterministic weights]
Let W i

j = r
cj

independent of i with r > 0 independent of i and j, such that (2.2) holds.
Then

PQ =
d

∑
j=1
∑
i∈Q

1{i ∼ j}
ρj

∑i∈Q 1{i ∼ j} +∑k≠j∑i∈Q 1{i ∼ k}
.

For Q = {i} in the Bernoulli network with deterministic parameter p ∈ (0,1], applying
Theorem 1 of [8] on X i = ∑k≠j 1{i ∼ k} we find

E [ 1
1 +X i

] = ∫
1

0
E[uXi]du = ∫

1

0
∏
k≠j

E[u1{i∼k}]du = ∫
1

0
∏
k≠j

(pu + (1 − p))du

= ∫
1

0
(pu + (1 − p))d−1du = 1

pd
(1 − (1 − p)d)

and hence

E[P i] =
d

∑
j=1

E [1{i ∼ j}ρj
1

1 +X i
] = p

d

∑
j=1
ρjE [ 1

1 +X i
] = (1 − (1 − p)d)1

d

d

∑
j=1
ρj.

Thus the mean ruin parameter is independent of i and equals the arithmetic mean of the
ruin parameters of all objects multiplied by P(deg(i) ≠ 0) = 1 − (1 − p)d.
Similarly, for Q = {i} in a mixed Binomial network with random parameter Θ,

E[P i] = 1
d

d

∑
j=1
ρjE (1 − (1 −Θ)d) .

In particular if Θ follows a Beta(α,β) distribution with densityB(α,β)−1xα−1(1−xβ−1)1x∈[0,1],

E[P i] = (1 − B(α,β + d)
B(α,β)

)1
d

d

∑
j=1
ρj = (1 − β(β + 1)⋯(β + d)

(α + β)(α + β + 1)⋯(α + β + d)
)1
d

d

∑
j=1
ρj

and again the expected ruin parameter is independent of i and proportional to the arith-
metic mean of the ruin parameters of all objects.
In the special case α = β = 1 where Θ follows a uniform distribution on [0,1] the above
simplifies to

E[P i] = (1 − (d + 1)!
(d + 2)!)

1
d

d

∑
j=1
ρj =

d + 1
(d + 2)

1
d

d

∑
j=1
ρj,

such that for d→∞ the expected ruin parameter converges from below to the arithmetic
mean of the ruin parameters of all objects. ◻

5.3 PQ and ΨQ in the complete network
The complete network is particularly easy to treat. Here the network ruin parameter PQ

from (3.3) equals

PQ =
∑dj=1(∑i∈QW i

j )λjµj
∑dj=1(∑i∈QW i

j )cj
, Q ⊆ {1, . . . , q}.
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In particular, if ∑i∈QW i
j =WQ does not depend on j, then PQ = (∑dj=1 λjµj)/(∑dj=1 cj) is

deterministic and does not depend on the choice of the set Q. This holds true in particular
for homogeneous weights (2.4), where every object is equally shared by all agents that
connect to it such that deg(j) = q for j = 1, . . . , d and thus ∑i∈QW i

j =
∣Q∣

q .
For a fixed set Q ⊆ {1, . . . , q} of agents and an exponential system with proportional

weights as in Theorem 4.1, a complete network implies

PQ = dλ

∑dj=1 cj/µj
= (1

d

d

∑
j=1

1
ρj

)
−1
, i = 1, . . . , q,

which again is deterministic. If PQ < 1, then in the exponential system we find from (4.1)

ΨQ(u) = PQe−
1−P Q

rQ ∑i∈Q ui

for u ∈ [0,∞)q such that ∑i∈Q ui > 0, which is similar to the one-dimensional case (1.4).

Example 5.7. To illustrate the effect of the random network and the weights further,
assume that the underlying bipartite network is itself a mixture - a complete graph with
probability α ∈ (0,1), and the mixed Binomial model considered in Example 5.6 with
probability 1 − α. For a single agent i ∈ Q we then have

E[P i] = 1
d

d

∑
j=1
ρj (α + (1 − α)E[1 − (1 −Θ)d]) ≤ 1

d

d

∑
j=1
ρj.

The expected ruin parameter will be smaller than the ruin parameter of the deterministic
network unless the random network is a complete graph almost surely.

In general this monotone behaviour is not the case. For example, in an exponential
system with proportional weights as in Theorem 4.1, the same graph mixture gives for a
single agent i that

E[P i] = αd (
d

∑
j=1

1
ρj

)
−1
+ (1 − α)E[ deg(i)

∑dj=1
1
ρj
1(i ∼ j)

].

Which one of the two summands dominates the expectation depends on the network
model and on α. ◻

6 The joint ruin probability of a set of agents
In this section we consider ΨQ

∧ as defined in (2.7). Due to the far more complicated
structure of the process mini∈Q(Ri(t) − ui) compared to the sum of components, we do
not obtain an explicit form for ΨQ

∧ . Still, we can derive a Lundberg-type bound for ΨQ
∧

using classical martingale techniques.
Recall the bound W i in (3.5) and write for any Q ⊆ {1, . . . , q} and any two vectors

a, b ∈ Rq

⟨a, b⟩Q ∶= ∑
i∈Q

aibi.
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Theorem 6.1. [Network Lundberg bound for joint ruin probabilities of several agents]
Let Q ⊆ {1, . . . , q} be a set of agents and assume that for all j ∈ {1, . . . , d} the cumulant
generating functions ϕj(t) ∶= logEetVj(1) exist in some neighbourhood of zero. Then for
fixed a ∈ A,

P(min
i∈Q

(Ri(t) − ui) ≥ 0 for some t ≥ 0 ∣ A = a) ≤ 1{min
i∈Q

deg(i) > 0}e−⟨κ∧(a,u),u⟩Q , (6.1)

for u ∈ [0,∞)q,∑i∈Q ui ≠ 0, where

κ∧(a, u) = arg max
r∈(0,∞)q ∶

ϕj(∑i∈Q riai
j)≤0

⟨r, u⟩Q.

In particular, assume that for all objects j = {1, . . . , d} the adjustment coefficient κj ∈
(0,∞) satisfying (1.2) exists. Then

ΨQ
∧ (u) ≤ P(min

i∈Q
deg(i) > 0)e−⟨κ∧(u),u⟩Q , u ∈ [0,∞)q,∑

i∈Q

ui ≠ 0,

with
κ∧(u) = arg max

r∈(0,∞)q ∶

∑i∈Q riW i≤min{κj ,j=1,...,d}

⟨r, u⟩Q.

Remarks 6.2. [Comparing the bounds for ΨQ(u) and ΨQ
∧ (u)]

(i) Assume that all objects j ∈ {1, . . . , d} have the same adjustment coefficient κ. Let
Q ⊆ {1, . . . , q} be a set of agents and assume for the risk reserve ui = U/∣Q∣ for i ∈ Q and
U = ∑i∈Q ui > 0. Then κ∧(u) = κ/∑i∈QW i ⋅ (1, . . . ,1), which gives the bounds

ΨQ
∧ (u) ≤ P(min

i∈Q
deg(i) > 0)e−κU/∑i∈QW i

, and

ΨQ(u) ≤ P(deg(Q) > 0)e−κU/∑i∈QW i

,

from Theorem 3.8. The exponential decay is for both ruin probability bounds the same.
The constant in ΨQ

∧ (u) is, however, in general smaller than in ΨQ(u).
(ii) For Q = {i} we have Ψi = Ψi

∧ and also the bounds obtained in Theorems 3.8 and 6.1
coincide.

7 Proofs
Throughout, we shall denote all realisations of random quantities which are influenced by
the realisations a ∈ A of the network structure, by the corresponding tilded letters; e.g.,
R̃ = R̃(a) is a specific realisation of the process R when the network a is fixed.

Proof of Theorem 3.1

By definition of the process (R(t))t≥0 we have

∑
i∈Q

(Ri(t) − ui) =
d

∑
j=1

(∑
i∈Q

Aij)Vj(t) −∑
i∈Q

ui, t ≥ 0,
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such that

Ψ(u) = P(
d

∑
j=1

(∑
i∈Q

Aij)Vj(t) ≥ ∑
i∈Q

ui for some t ≥ 0), u ∈ [0,∞)q,∑
i∈Q

ui > 0.

For every realisation a = (aij) of the network with deg(Q) > 0 the process (∑dj=1(∑i∈Q aij)Vj(t))t≥0

is a compound Poisson process with intensity, claim size distribution and drift given by

λ̃ =
d

∑
j=1

1{Q ∼ j}λj, F̃ (x) = 1
λ̃

d

∑
j=1
λj1{Q ∼ j}Fj(

x

∑i∈Q aij
), and c̃ =

d

∑
j=1

(∑
i∈Q

aij)cj.

Hence, whenever

ρ̃ ∶=
∑dj=1(∑i∈Q aij)λjµj
∑dj=1(∑i∈Q aij)cj

< 1,

for any fixed realisation a = (aij) of A it holds that

P(
d

∑
j=1

(∑
i∈Q

aij)Vj(t) ≥ ∑
i∈Q

ui for some t ≥ 0) = (1 − ρ̃)
∞

∑
n=1

ρ̃n(F̃ )n∗I (∑
i∈Q

ui),

by the classical Pollaczek-Khintchine formula (1.1). For deg(Q) = 0 the ruin probability is
obviously 0. The result now follows by conditioning on the realisations of A since A and
V are independent.

Proof of Theorem 3.8

Our proof relies on standard martingale arguments which is why we will only briefly sketch
it here. Note first that for any realisation a ∈ A with deg(Q) = 0 obviously ruin cannot
occur. Thus fix a ∈ A such that deg(Q) ≠ 0. Then the mgf of ∑i∈Q R̃i(t) can be computed
as

E[ exp (r∑
i∈Q

R̃i(t))] = E[ exp (r∑
i∈Q

(
d

∑
j=1
aijVj(t)))] =

d

∏
j=1

E[r(∑
i∈Q

aij)Vj(t)]

= exp (t
d

∑
j=1
ϕj(r∑

i∈Q

aij)) =∶ exp(tga(r)),

for any r ≥ 0 such that the occuring terms are finite. This yields by standard arguments
that for all u ∶= ∑i∈Q ui > 0

Ma,u(t) ∶=
exp (r(∑i∈Q R̃i(t) − u))

exp(tga(r))
, t ≥ 0,

is a martingale with respect to the natural filtration of (V (t))t≥0. Proceeding as in the
classical proof of the Lundberg bound (see e.g. Proposition 3.1 of [2]) we obtain

P(∑
i∈Q

(Ri(t) − ui) ≥ 0 for some t ≥ 0 ∣ A = a) ≤ e−ru sup
t≥0

exp(tga(r)),
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which yields (3.6) with κ(a) = sup{r > 0 ∶ ga(r) ≤ 0}.
To obtain the global bound we have to choose κ as large as possible such that ga(κ) ≤ 0
for all a ∈ A. This is clearly satisfied if ϕj(κ∑i∈Q aij) ≤ 0 for all j and all a ∈ A which leads
to the form given in (3.7). Thus

P(∑
i∈Q

(Ri(t) − ui) ≥ 0 for some t ≥ 0 ∣ A = a) ≤ e−κu,

for all a ∈ A, and with

Ψ(u) = ∫
A
P(∑

i∈Q

(Ri(t) − ui) ≥ 0 for some t ≥ 0 ∣ A = a)dPA(a)

we obtain the result.

Proof of Theorem 4.1

We calculate the random integrated tail distribution FQ
I as in (3.2),

FQ
I (x) = (

d

∑
j=1

(∑
i∈Q

1{i ∼ j}WQ
j )µj)

−1 d

∑
j=1

1{Q ∼ j}∫
x

0
Fj(

y

∑i∈Q 1{i ∼ j}W
Q
j

)dy

= (
d

∑
j=1

1{Q ∼ j}rQ)
−1 d

∑
j=1

1{Q ∼ j}∫
x

0
Fj(

yµj
1{Q ∼ j}rQ

)dy

= (
d

∑
j=1

1{Q ∼ j})
−1 d

∑
j=1

1{Q ∼ j}(1 − e−x/rQ)

= 1 − e−x/rQ

, x ≥ 0,

which is deterministic; we recognise it as the distribution function of the exponential
distribution with mean rQ. Hence (FQ

I )n∗ is an Erlang distribution function with density

gQn (x) =
xn−1

(n − 1)!(rQ)n e
−x/rQ

, x ≥ 0.

Moreover, due to the assumptions on the network, PQ in (3.3) equals (4.2). From (3.1)
we obtain for u ∈ [0,∞)q such that ∑i∈Q ui > 0,

ΨQ(u) =P(PQ ≥ 1) + P(PQ < 1) (7.1)

×E[(1 − PQ)
∞

∑
n=1

(PQ)n 1
(n − 1)!(rQ)n ∫

∞

∑i∈Q ui
tn−1e−t/r

Q

dt ∣PQ < 1].

Now we calculate that
∞

∑
n=1

(P
Q

rQ
)
n

tn−1

(n − 1)! =
PQ

rQ
eP

Qt/rQ

, t ≥ 0,

and

∫
∞

∑i∈Q ui

∞

∑
n=1

(P
Q

rQ
)
n

tn−1

(n − 1)!e
−t/rQ

dt = P
Q

rQ ∫
∞

∑i∈Q ui
e−t(1−P

Q)/rQ

dt = PQ

1 − PQ
e−∑i∈Q ui(1−PQ)/rQ

.

Using this expression in (7.1) gives the assertion.

19



Proof of Proposition 5.2

We write

deg(j) = 1{i ∼ j} + deg(i)(j), and degQ(j) = ∑
i∈Q

1{i ∼ j} = 1{i ∼ j} + deg(i)
Q (j),

so that deg(i)(j) and 1{i ∼ j} are independent, as well as deg(i)
Q (j) and 1{i ∼ j}. Recall

from Remark 3.2 that in (3.3) the indicator 1{deg(Q) > 0} can be omitted. Thus,

PQ =
∑dj=1∑i∈Q 1{i ∼ j}λjµj/deg(j)
∑d`=1∑i∈Q 1{i ∼ `}c`/deg(`)

=
d

∑
j=1
∑
i∈Q

1{i ∼ j}
λjµj

deg(j)∑d`=1∑s∈Q 1{s ∼ `}c`/deg(`)

=
d

∑
j=1
∑
i∈Q

1{i ∼ j}
λjµj

cj(1 + deg(i)
Q (j)) +∑`≠j∑s∈Q 1{s ∼ `}c`(1 + deg(i)(j))/(1 + deg(s)(`))

.

Note that for objects j and `, deg(i)(j) and deg(s)(`) are independent for ` ≠ j ∈ {1, . . . , d}
and i ≠ s ∈ {1, . . . , q}. Thus PQ is expressed as a function of the edge indicators with
the dependence disentangled. While PQ is a non-negative function of the edge indica-
tors, it does not quite fit into the framework of Proposition 5.1 because it may not be
bounded by 1. Instead, the deterministic expression ∑dj=1 ρj serves as upper bound. Using
the function g({1{i ∼ j}, i = 1, . . . , q, j = 1, . . . , d}) = h ((∑dj=1 ρj)−1PQ) with h ∈ [0,1]
makes Proposition 5.1 applicable. Equivalently, instead of transforming g the bound (5.1)
can be multiplied by ∑dj=1 ρj. .

We apply Proposition 5.1 and use that the sum of independent Poisson variables is
again Poisson, so that we approximate deg(i)

Q (j) by Z
(i)
j , and deg(i)(j) by Z

(i)
j + Z̄(i)

j .

Moreover, the Poisson variables Z(i)
j and Z

(i)
` are independent for ` ≠ j ∈ {1, . . . , d} and

independent of 1{i ∼ j}. The same is true for Z̄(i)
j , Z̄(i)

` and {Zi,j, i = 1, . . . , q, j = 1, . . . , d}.
The assertion now follows from Proposition 5.1.

Proof of Proposition 5.5

For proportional weights as in (2.5), using (3.4) for (4.2) we have, regardless of the claim
size size distribution,

PQ =
d

∑
j=1

1(Q ∼ j) λ
cj

µj
+∑`≠j 1(Q ∼ `) c`

µ`

=
d

∑
j=1

1(Q ∼ j) 1
1
ρj
+∑`≠j 1(Q ∼ `) 1

ρ`

.

Thus PQ is a non-negative function of the edge indicators, and it can be bounded above
by ∑j=1 ρj. Now for j = 1, . . . , d and θ ∈ [0,1] let

πQ,j(θ) = P(Q ∼ j∣ Θ = θ) = 1 −∏
i∈Q

(1 − pi,j(θ)).

Then the Poisson approximation of Proposition 5.1 gives the assertion.
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Proof of Theorem 6.1

For notational simplicity the following proof is only given for Q = {1, . . . , q}. The general
case can easily be obtained by cutting down the network to a subset of agents. As in the
proof of Theorem 3.8 we will follow a standard martingale approach. Note first that, if
deg(i) = 0 for one or more agents, then the joint ruin probability is zero, since at least
one component of the process R is constant. Thus fix any realisation a of A such that
deg(i) > 0 for all i. The mgf of aV (t) can be computed as

E[ exp (⟨r,aV (t)⟩)] = E[ exp (
q

∑
i=1
ri(

d

∑
j=1
aijVj(t)))] =

d

∏
j=1

E[
q

∑
i=1
ria

i
jVj(t)]

= exp (t
d

∑
j=1
ϕj(

q

∑
i=1
ria

i
j)) =∶ exp(tha(r)),

for any r = (r1, . . . , rq) ∈ (0,∞)q such that the occuring terms are finite. Hence, for these
r

Ma,u(t) =
exp(⟨r,aV (t) − u⟩)

exp(tha(r))
, t ≥ 0,

is a martingale with respect to the natural filtration of (V (t))t≥0. Proceeding via Doob’s
optional stopping theorem as in the classical proof of the (one-dimensional) Lundberg
bound (see e.g. Proposition 3.1 of [2]) we obtain for any r ∈ (0,∞)q

P(aV (t) − u ∈ [0,∞)q for some t ≥ 0) ≤ e−⟨r,u⟩ sup
t≥0

etha(r),

which proves (6.1).
For the global bound note that for any r such that ∑qi=1 r

iW i ≤ κj we have ∑qi=1 r
iaij ≤ κj

for all j and hence ϕj(∑qi=1 r
iW i) ≤ ϕj(κj) = 0, j = 1, . . . , d. Thus if ∑qi=1 r

iW i ≤ min{κj, j =
1, . . . , d} this yields ha(r) ≤ 0 and

P(aV (t) − u ∈ [0,∞)q for some t ≥ 0) ≤ e−⟨r,u⟩

for any realisation a, which gives the result.
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