TUTl

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Informatics

dtControl: Decision Tree Learning for
Explainable Controller Representation

Mathias Jackermeier

0

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Informatics

dtControl: Decision Tree Learning for
Explainable Controller Representation

dtControl: Entscheidungsbaum-Lernen fiir
erklarbare Reprasentation von Controllern

Author: Mathias Jackermeier
Supervisor: Prof. Dr. Jan Kfetinsky
Advisors: M.Sc. Maximilian Weininger

M.Sc. Pranav Ashok
Submission Date: 05.05.2020

D

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Munich, 05.05.2020 Mathias Jackermeier

Acknowledgments

I thank my advisors M.Sc. Maximilian Weininger and M.Sc. Pranav Ashok for the
many fruitful discussions and the continuous exchange of ideas over the last year
and during my work on this thesis. Their willingness to meet frequently, often for
several hours, has been greatly appreciated, as well as the opportunity to work from
their office during the occasionally stressful weeks leading up to the submission of our
joint conference paper. Maxi’s valuable comments greatly improved the manuscript,
especially the structure of Chapter 7.

I also want to express my deep gratitude to my supervisor Prof. Dr. Jan K¥etinsky,
who introduced me to the exciting field of formal verification. Jan enabled me to gain
first research experiences and contribute to the project that would ultimately result in
my first academic publication and form the cornerstone of this thesis. I have always
appreciated the time he devoted to our meetings as I know how busy he usually is.

Finally, I thank my family and friends for their continued support throughout my
studies and during the writing of this thesis.

Abstract

Controllers are central objects in many model checking and synthesis processes. They
can not only be used for implementation, but also have the potential to reveal insights
about the system and validate the correctness of or highlight errors in the underlying
model. To leverage this potential, succinct and easily explainable data structures for
controller representation are required. Recent work has shown that decision trees are
particularly well-suited to this task, providing much more concise and understandable
representations than lookup tables or binary decision diagrams. This thesis presents an
overview of decision tree learning for controller representation and proposes a variety of
algorithmic improvements that make the resulting trees more efficient and explainable.
These techniques have been implemented in the latest version of the tool dtControl,
which enables the easy conversion of controllers from many verification tools to decision
trees. We furthermore introduce a thoroughly redesigned software architecture for
dtControl, allowing for much more flexibility and extensibility. We demonstrate the
effectiveness of our methods on a variety of case studies, where we can in almost all
cases reduce controller sizes by at least 96% compared to a lookup table representation.

vii

Kurzfassung

Controller sind wesentliche Bestandteile vieler Modellpriifungs- und Syntheseverfahren.
Sie werden einerseits zur Implementierung verwendet und erlauben andererseits Ein-
blicke in das System zu gewinnen, sowie die Korrektheit beziehungsweise potenzielle
Fehler des zugrundeliegenden Modells aufzuzeigen. Um dieses Potenzial nutzen zu kon-
nen, werden kompakte und leicht verstandliche Datenstrukturen fiir die Reprasentation
von Controllern benétigt. Jiingste Forschungsergebnisse haben gezeigt, dass Entschei-
dungsbdume besonders gut fiir diese Aufgabe geeignet sind und sehr viel kleinere und
ekldrbarere Reprasentationen ergeben als Lookup-Tabellen oder binidre Entscheidungs-
diagramme. Diese Bachelorarbeit gibt einen Uberblick iiber Entscheidungsbaum-Lernen
zur Reprasentation von Controllern und présentiert verschiedene algorithmische Verbes-
serungen, die zu effizienteren und verstiandlicheren Baumen fiihren. Diese Verfahren
wurden in der neuesten Version des Programms dtControl implementiert, welches es
ermoglicht, Controller von vielen Verifikationstools in Entscheidungsbdume umzuwan-
deln. Dariiber hinaus wurde die Softwarearchitektur des Programms von Grund auf neu
konzipiert, um mehr Flexibilitdt und Erweiterbarkeit zu ermoglichen. Die Effektivitat
unserer Methoden wird anhand einer Vielzahl von Fallstudien nachgewiesen, in denen
unsere Algorithmen fast immer eine Groflenreduktion von mindestens 96% gegentiber
Lookup-Tabellen erreichen.

X

Contents

Acknowledgments \4
Abstract vii
Kurzfassung ix
1 Introduction 1
2 Related Work 5
3 Preliminaries 7
31 Controllers L 7
3.2 Machinelearning 8
3.2.1 Learning algorithms and the classification task 8

3.2.2 Generalization and overfitting 9

33 Decisiontrees 10
331 Datastructure oo oo 10

3.3.2 Decision tree learning oL 12

4 Tool 15
41 OVerview 15
42 Workflow 15
421 Inputformats 15

422 Parameters. 16

423 Outputformats 17

5 Decision Tree Learning for Controller Representation 21
5.1 Controller representation as a classification problem 21
51.1 Thefeaturespace 21

512 Thelabels 21

51.3 The classification problem 0 0oL 22

514 Otherapproaches. 22

5.1.5 Comparison of the verification and the machine learning setting . 23

52 Predicates e 24
521 Numericfeatures oo oL 24

52.2 Categorical features 27

xi

Contents

9 Conclusion

53 Impuritymeasures

5.3.1
532
5.3.3
534
53.5
5.3.6
5.3.7

Entropy
Entropyratio 0L
Giniindex
Twoingrule L
Sum minority
Max minority L
Area under the receiver-operator curve

54 Determinization e

54.1
542
54.3
544
54.5

Determinizing before decision tree learning
Safepruning. L
Early stopping
Improving impurity estimates in the context of determinization

Tradeoff between decision tree size and optimality

Implementation

6.1 Designgoals
6.2 Overview of the software architecture
6.3 Objectmodel.

6.3.1
6.3.2
6.3.3
6.34

Evaluation

Dataset management,
Decision tree learning o L L.
Benchmarking L oo
UserInterface e

71 Overallresults e

7.1.1
7.12

Model checking of Markov decision processes
Controller synthesis for cyber-physical systems

7.2 Detailed comparison of decision tree learning algorithms

721
722

Model checking of Markov decision processes
Controller synthesis for cyber-physical systems

Future Work
8.1 Improving decision tree learning
8.2 Extending dtControl

Acronyms

Bibliography

55
55
55
58
61
61
64

69
69
70

71

73

75

xii

1 Introduction

In the modern world, computer systems are becoming ever more present in nearly
every aspect of everyday life, as for instance in the form of driving assistants, smart
home technology, or medical equipment. Designing and programming these devices is
a profoundly difficult task, especially when they need to operate in safety-critical, but
unreliable environments. It is therefore hardly surprising that such systems occasionally
fail —often with dire consequences: for example, programming errors in the Therac-25
radiation therapy machine caused the device to sometimes give its patients massive
overdoses in radiation, resulting in deaths and serious injuries [LT93].

A common and obvious technique to try to prevent such failures is testing systems
before their deployment, whether that is automatically testing individual software
components or performing end-user acceptance tests that treat the system as a black-
box and only validate its external behavior. While tests should of course always be
conducted, they are problematic in that they do not provide any guarantees for the
system: if every test is successful, the system may indeed be correct— or the tests may
simply be insufficient. To put it in the words of Dijkstra [Dij72]: “Program testing can
be a very effective way to show the presence of bugs, but it is hopelessly inadequate for
showing their absence.”

An alternative approach is provided by the field of formal verification, which is con-
cerned with rigorously proving the correctness of systems using a variety of formal
mathematical methods. In contrast to tests, these proofs guarantee that the system be-
haves as specified, which is of great benefit, especially in many safety-critical domains.

A particularly prominent formal verification technique is model checking [CGPO01],
in which an abstract mathematical model of a system, usually in the form of some
finite state automaton, is first constructed and subsequently analyzed with regard to a
set of formally specified properties. These properties could for example state that an
airbag must deploy within 20 milliseconds upon detection of a crash in a car safety
system or that the probability of successful message transmission must be greater
than 99% in a communication protocol [NP14]. Model checking has been successfully
employed in a wide variety of applications ranging from automotive systems to cloud
computing [Alj*09; KM11; NP14].

Besides only determining whether the system satisfies the desired properties, the
model checking process often also produces a controller that specifies exactly how the
properties are satisfied; or in the case that they are not, a controller representing a
counterexample to the properties. These controllers are useful in various ways: not
only can they be used for implementation, e.g. of communication protocols, but they
are also essential to understand the inner workings of the system and verify that the

1 Introduction

High-level Real-time model checking
System model/design
Model checker rbve;éfslﬁ?ttslon
e.g. UPPAAL /
45 b 35 X

f\/\ _’ =] —-0>0+0>0
(\\L) Counter-
o© — | ~EOs fail | — , example or

Optimal
P Low-level model
Systgm SpeCIflcatlor.] (states, transitions) schedule
require- (temporal logic) ’
ments

Figure 1.1: Overview of the controller synthesis model checking process [NP14].

mathematical model is correct. In the case of counterexamples, they can provide a means
to identify and fix bugs.

Controller synthesis is a special form of model checking that emphasizes the construc-
tion of controllers even more: instead of merely verifying properties of a given system,
this technique aims to directly construct a controller such that the resulting system
provably satisfies a given specification over its behavior. A schematic overview of the
process is given in Fig. 1.1. We initially have a system and a set of requirements that
it needs to satisfy. In the first step, a high-level mathematical model of the system is
constructed and the requirements are mapped to a formal specification, for instance in
temporal logic. We then invoke the actual model checking process, which produces both
the verification results —an answer to the question whether it is possible to fulfill the
requirements —and a controller that either satisfies the formal specification or represents
a counterexample.

To illustrate, consider the example given in [RZ16]: we provide a mathematical
description of the bicycle dynamics of a robot and the environment in which it must
operate, as well as a specification of the robot’s behavior, i.e. that it must avoid the
obstacles in the environment. Given this information, controller synthesis tools such
as SCOTS [RZ16] are able to produce a provably-correct controller that moves the robot
through the environment while avoiding the obstacles. Successful industrial applications
of controller synthesis include for example temperature control [Jes*07] and operating
hydraulic pumps [Cas*09].

The format in which most formal verification tools output controllers is usually just a
simple list of state-action pairs (i.e. a lookup table), which specifies which actions the
controller can take depending on the current state of the system. For instance, in the
robot motion planning example given above, the states of the system correspond to
the current position and orientation of the robot, and the actions correspond to setting

the velocity and steering angle. SCOTS simply produces a list of velocities and steering
angles that the controller can set for every possible position and orientation of the robot.

As systems can often have thousands or even millions of states, such a lookup table
representation of controllers is impractical and has several disadvantages: first, its sheer
size makes it inherently incomprehensible, with the result that we cannot understand
how the controller actually operates. Such a representation will not yield any insights
about the semantics and inner workings of the system, nor is it suitable to verify the
mathematical model itself. In the case of counterexamples, we will hardly be able to
use it to find and fix bugs. Second, the embedded devices on which controllers are
usually implemented often only have very limited amounts of memory and it is therefore
practically not feasible to work with a lookup table of up to several hundred megabytes.
It is thus evident that we need some other data structure for controller representation
that is ideally both succinct and explainable [Bra*18].

While binary decision diagrams [Bry86] have been traditionally used for controller
representation, a lot of progress in recent years has been made with decision trees,
e.g. [Mit97], a data structure originally from the field of machine learning. They satisfy
exactly the two key properties identified above: decision trees are commonly several
orders of magnitude smaller than lookup tables [Ash*19b], making them much better
suited for implementation, and represent the controller on a semantic level, which makes
them easily explainable and understandable [Bra*15]. Recent work has investigated
primarily how traditional machine learning algorithms for the construction of decision
trees can be adapted to and extended for the problem of controller representation [Bra*15;
Bra*18; Ash*19a; Ash*19b; Ash*20b].

Contribution. In this thesis, we aim to provide an overview of these approaches and
refine them in defining ways to yield even smaller, more explainable decision trees. To
this end, we

¢ explore different ways to handle controllers with states described by categorical
variables, thereby generalizing from binary trees to arbitrary m-ary trees,

¢ investigate the impact of different impurity measures on decision tree sizes,

¢ develop a theoretical framework for determinization methods and introduce the
concept of multi-label impurity measures.

We demonstrate the effectiveness of our methods on a variety of case studies, which
show that particularly our specialized algorithms for categorical variables and novel de-
terminization techniques indeed greatly reduce tree sizes. Generally, our best algorithms
reduce the size of the lookup table by at least 96% on almost all of our case studies and
usually perform significantly better than binary decision diagrams. Furthermore, we
manage to produce easily understandable trees with only a single-digit number of nodes
in many cases, and illustrate with an example that they indeed capture the intuitive
semantics of the underlying system.

1 Introduction

Our work has been implemented in the latest version of the tool dtControl [Ash*20b],
which provides many algorithms and parameters to construct decision trees for controller
representation. Parts of the software architecture of the tool have been thoroughly
redesigned to allow for much more flexibility and extensibility. We have also added
support for the probabilistic model checker PRISM [KNP11] to dtControl.

Structure. The rest of this thesis is structured as follows: we begin with a brief
discussion of related work (Chapter 2), after which we introduce some fundamental
preliminary concepts from machine learning and give precise definitions of controllers
and decision trees for the purpose of this thesis (Chapter 3). The primary software
artifact we develop and extend is the tool dtControl, which we describe in Chapter 4
from a user’s point of view, thereby giving a high-level overview of the functionality we
are able to provide. We proceed with Chapter 5, in which we examine at great length the
theoretical details of how decision tree learning can be used for controller representation.
It is in this chapter that we develop our primary algorithmic contributions, i.e. the
handling of categorical variables and novel determinization techniques. With the
theoretical background covered, we can then examine the concrete implementation of
dtControl in Chapter 6, where we introduce its new software architecture. Chapter 7
demonstrates the performance of our methods in practice on a variety of case studies.
Finally, we briefly consider possible directions of future research in Chapter 8, before
concluding the thesis in Chapter 9.

2 Related Work

We give a brief overview of previous work related to this thesis. We begin with a
general review of decision trees and their use in formal methods, subsequently consider
alternative data structures for controller representation, and finally give an overview of
related tools.

Decision trees. Decision trees, e.g. [Mit97, Ch. 3], are well-known and widely-used
data structures for classification and regression tasks in the field of machine learning.
They have several advantages compared to other methods from the field, such as their
non-parametric nature and explainability [Mur98]. Our work builds upon some of the
most fundamental decision tree learning algorithms, such as CART [Bre*84], ID3 [Qui86],
and C4.5 [Qui93]. A survey on the use of decision trees in multiple disciplines is given
in [Mur98].

Several extensions of the basic algorithms have been investigated, mainly to allow
for more complex, oblique predicates in the decision nodes, either by the use of some
heuristic [Mur*93], or by combining decision trees with linear classifiers [Utg88; LHF03;
CE07]. We investigate the effect of these ideas on tree sizes in the verification setting.

Decision trees have also been adapted to the problem of multi-label classification, which
is similar to the setting of nondeterministic controller representation, e.g. [CK01; CHCO3;
Zha*10]. The fundamental difference between those techniques and our approach is that
we need to ensure that a subset of the possible labels is always exactly represented by the
decision tree, while multi-label classification in machine learning can allow small errors
in the form of predicting wrong labels. Interestingly, the impurity measure developed
by Clare and King [CKO01] is fairly similar to our multi-label entropy formulation
(Section 5.4.4), although they give less theoretical justification. An overview of multi-
label classification techniques can be found in [TK07; Mad*12].

Decision trees in formal methods. In the verification setting, decision trees have previ-
ously been used for the representation of controllers or strategies, for example in Markov
decision processes (MDP) [Bra*15] or graph games [Bra*18; NM19]. They have also
been combined with linear classifiers [Ash*19a] and been investigated with regards to
optimality [Ash*19b]. The primary difference between those approaches and ours is that
we mostly use a different, more intuitive, data representation and provide specialized
techniques for categorical variables that lead to much more explainable decision trees.
Furthermore, we allow linear classifiers also in inner nodes and thoroughly investigate
determinization and impurity measures as key components of the learning algorithm.
Some of the techniques we use are based on our previous work in [Ash*20b].

2 Related Work

Neider et al. [NSM16] use decision trees in the domain of program synthesis for the
representation of piecewise functions and formulate a multi-label learning problem very
similar to our own. Their developed impurity measure based on minimal hitting sets is
quite different from our approaches, but could in principle also be used in the setting of
controller representation.

Decision diagrams. Binary decision diagrams (BDD) [Bry86] are an alternative, widely
used data structure for controller representation. However, they have several drawbacks
in comparison with decision trees [Bra*15; Bra*18]: first, they operate on a bit-level
representation of state-action pairs, which makes them barely comprehensible at all.
Second, they are usually only small if a good variable ordering is chosen, which is a
notoriously difficult problem. In contrast, decision trees are easily understandable as
they directly work on the semantic level of the variables and there exist a plethora of
sophisticated algorithms for their construction.

Algebraic decision diagrams (ADD) [Bah*97] are an extension of BDDs that allow
for leaf nodes from an arbitrary, not necessarily Boolean, domain. Furthermore, they
are often used not with a bit-level representation, but operate on Boolean vectors that
describe the outcome of several tests. Any such ADD can straightforwardly be converted
to a decision tree by inserting the tests themselves into the inner nodes and splitting
leaves to create an acyclic graph. They have been used in controller representation for
example by Girard [Gir12], although he does not provide any concrete algorithm.

Tools. We build upon and extend the tool dtControl [Ash*20b], which was developed
specifically for the construction of decision trees for controller representation. All alter-
native decision tree building tools we are aware of, such as CART [Bre*84], C4.5 [Qui93],
OC1 [Mur*93] or WEKA [Fra*10], are geared towards the machine learning usecase,
which often makes it harder to obtain decision trees precisely representing controllers.
They also do not implement our specialized algorithms, nor do they offer close inte-
gration with verification tools. MEKA [Rea*16] is an extension of WEKA allowing
for multi-label classification, although it is also primarily a machine learning tool. A
variety of programs exist for the construction and manipulation of BDDs and ADDs,
e.g. [Som01; Gos*19].

3 Preliminaries

In this chapter, we introduce the basic terms and definitions, as well as the fundamental
algorithms our work builds upon. We start by providing a precise definition of con-
trollers for the purpose of this thesis and examine different properties they may have.
We proceed by giving a brief introduction to some concepts from the field of machine
learning that are especially important in our context. Finally, we introduce decision trees
and the abstract decision tree learning algorithm, which forms the basis of most of our
work.

3.1 Controllers

Recall that the starting point for the model checking and synthesis problems is some kind
of abstract mathematical model of a system and a set of properties that it should satisfy.
The verification of this model produces a controller that specifies the behavior of the
system in such a way that the properties are guaranteed to be satisfied. Controllers can
be used both to deepen one’s understanding of a system and directly for implementation.

There exist a great deal of mathematical models that can be used to describe a system.
For instance, Markov decision processes [Put94], timed automata [AD90], and symbolic
models of hybrid systems [Tab09] have all been used successfully in various verification
contexts. While these are different models used in different scenarios, they still share
some key concepts:

¢ They define a notion of states of the system, which depend on a number of state
variables.

* They define actions that the system can perform in each state.

¢ Executing a particular action in a particular state changes the state of the system;
it transitions into a new state.

To specify the behavior of a system, a controller then needs to exactly describe which
action can be taken in which state in order to satisfy the given properties. These actions
are often referred to as safe.

Inspired by [Bra*15; Ash*19b], we formally define a controller as follows:

Definition 1. Given a model M with states S and actions A, a controller C C S x A

for that model is a (left-total) relation specifying safe actions for a state. We assume

that M’s states are determined by n state variables v; with domain Dom(v;), i.e. S C
i=1 Dom(v;).

3 Preliminaries

Remark 1. In general, the actions that a controller deems safe in a particular state could
depend on the previous actions taken by the controller. However, these controllers with
memory are often not required for optimal behavior [Bra*15; EJ91]. In this thesis, we
only consider the memoryless controllers defined above.

In some models, the actions of the controller correspond to the setting of one or
more output variables. For instance, a room temperature control system might be able
to simultaneously manage heaters in multiple rooms. This would still be considered a
single action in the definition above; we do not distinguish between these models and
models with single-output actions.

Remark 2. The terminology of input and output can become quite confusing in the
discussion of controllers, since the output of the controller often acts as the input of the
system to be controlled (e.g. in the temperature control system given above). In the
context of this thesis, we use the term output, since we are mainly interested in the
controllers themselves, and efficient representations thereof.

An important characteristic of controllers is whether they are deterministic or non-
deterministic. We say that a controller C is deterministic if and only if it only assigns
one action to each state, i.e. for all s € S we have that [{(s,a) :a € A, (s,a) € C}| = 1.
On the other hand, controllers that allow more than one action per state are called
nondeterministic (sometimes also liberal or permissive).

Remark 3. In literature, controllers are also called strategies, policies, or schedulers. In the
context of this thesis, these terms are equivalent.

3.2 Machine learning

Decision trees have originally been developed in the field of machine learning. Therefore,
we need a basic understanding of some of the main concepts from that field to grasp
their underlying ideas in detail. Moreover, such an understanding will allow us to
realize the fundamental differences between the verification and the machine learning
setting and the resulting challenges that we will need to overcome.

3.2.1 Learning algorithms and the classification task

Machine learning is concerned with the development of learning algorithms — algorithms
whose performance at some class of tasks improves with some form of experience [Mit97,
Ch. 1]. In this thesis, we will focus on the particular task of classification, where
a computer program needs to assign labels to some input. For example, in image
recognition, the input is an image of an object and the program tries to label it with the
corresponding name of the object.

The following discussion is mainly based on [GBC16, Ch. 5]. In classification, the
experience an algorithm can utilize is usually present in the form of a training dataset
of examples (also known as data points) and their labels. For instance, we might have a
dataset of hand-labeled images that we provide to our learning algorithm.

3.2 Machine learning

We also need to specify how we represent the input to the algorithm. Usually, this is
done by extracting a set of features or attributes from an example that measure important
properties. In the case of image recognition, these features would mostly be the color
values of the individual pixels of the image, but could for example also include metadata
such as whether the image was taken inside or outside. We differentiate between numeric,
i.e. real-valued features such as the color values of the pixels, and categorical features,
which can only take on one of a specific set of possible values, e.g. inside or outside.

Formally, the task of classification is defined as follows:

Definition 2. Given a training dataset D: X — Y, explicitly represented as D C X x Y,
where X C F is a set of examples represented as feature vectors from some feature
space J, and Y is the set of possible labels, the task of classification requires learning a
function f: F — Y that should match the training dataset D as closely as possible. The
learned function f is called a classifier.

One special case of classification important in our setting is multi-label classification,
e.g. [TK07]. Here, we are given a set L = {I3,...,1,} of single-labels /; and have that
Y C 2L\ {@}. Thus, there exist potentially multiple single-labels that can be assigned
to a single data point. This is not to be confused with multi-class classification, which
simply requires that |Y| > 2.

The process of learning the function f is often referred to as training a classifier. Once
a classifier is trained, the label of a data point x € F can be retrieved by evaluating f(x),
a process known as inference or prediction.

In Section 5.1 we will see how we can frame the problem of controller representation
as a classification task, which will allow us to utilize learning algorithms such as decision
tree learning.

3.2.2 Generalization and overfitting

As is evident from Def. 2, a classifier f is an approximation of the real, unknown function
f*: F =Y, learned with only the limited information from the training dataset D. It is
crucial that f also performs well on the data points in F \ X, and not just on those on
which it has been trained. This ability is called generalization [GBC16, Ch. 5].

A key challenge in machine learning is preventing overfitting, which means that a
classifier performs very well on the training data, but poorly generalizes to previously
unseen examples [Mit97, Ch. 3]. This phenomenon can occur if the classifier only learns
concepts (or noise) that are specific to the training dataset, but do not extend to the
general feature space. In the worst case, a classifier simply memorizes the training
dataset, leading to perfect performance on the training data, but very poor predictions
for new examples. The concepts of generalization and overfitting are illustrated in
Fig. 3.1.

3 Preliminaries

Figure 3.1: The concepts of overfitting and generalization. The data are points in the
feature space F = RR? with different labels represented as squares and circles. The
shaded area indicates previously unseen examples not present in the unshaded training
data. The blue line shows a classifier that makes small errors on the training data, but
generalizes well. In contrast, the red line represents an overfitting classifier that perfectly
recalls the training data, but poorly generalizes.

3.3 Decision trees

We now turn our attention to a particular classifier — decision trees — and a related
learning algorithm that have received much attention in a variety of fields [Mur98].

3.3.1 Data structure

The underlying idea of classification with decision trees (DT), e.g. [Mit97, Ch. 3], is
simple. In order to classify a data point, we simply ask a number of questions about
the features of that data point. Depending on the answers to our questions, we return a
different label. A typical question we could ask is “Is the value of the i feature of the
data point < 5?” or “What is the value of the " feature of the data point?”.

It seems natural that the questions we want to ask depend on the answers to the
questions we have already asked. This process of asking questions can be conveniently
represented in a tree structure: starting from the first question in the root node, we
select a subtree depending on the answer to that question, and then proceed recursively
until we have enough information to confidently assign a label to the data point.

To illustrate, consider the task of classifying a day as suitable or not for playing tennis
based on several attributes, such as weather and wind strength, as introduced in [Qui86;
Mit97, Ch. 3]. We might not be willing to play if it rains; if it is overcast, our decision
might depend on the temperature; and if it is sunny, we might only want to play if

10

3.3 Decision trees

Figure 3.2: A sample decision tree that determines if a day is suitable for playing tennis.
In this case, the classes are either play or don’t play. Adapted from [Qui86].

the wind is not too strong. A sample decision tree corresponding to this classification
process is depicted in Fig. 3.2. For example, this DT would classify the day

(Weather = Overcast, Temperature = Cool, Wind = Strong, Humidity = Normal)

as play, since the instance would take the second branch of the root node and subse-
quently the first branch of the child node. Note that the DT does not have to consider
all attributes—e.g. in this example, it would ignore Humidity.

Formally, we give the following definition of DTs:

Definition 3. A decision tree (DT) T over a domain F with a set of labels Y is defined
recursively as follows:

1. A DT of height 0 is a label y € Y.
2. A DT of height h + 1 is a tuple (T, p), where

e T =(Ty,...,Ty) is an ordered list of sub-decision trees with height < h, with
at least one T; € T of exactly height &,

* p: F — [n] is a predicate assigning an index corresponding to a subtree T; € T
to every data point x € F.

Given a DT T and a data point x € F, predicting the label T;(x) is simple: if T is
a leaf, its label y is returned. If T is not a leaf, we evaluate p(x) to obtain an index
corresponding to a subtree T; € 7. We then return the result T;(x) of classifying x with
the DT T;.

An interesting perspective on DTs is that they recursively partition the feature space
according to their predicates [Bre*84, Ch. 2]. In the example above, the feature space
is first partitioned into the three subspaces containing the points where Weather equals
Rain, Overcast, or Sunny, respectively. Then those subspaces are again partitioned by
the respective subtrees. Finally, when reaching a leaf, we stop partitioning and assign a
label to the corresponding subspace.

11

3 Preliminaries

3.3.2 Decision tree learning

We have seen that DTs are useful structures for representing a classification process. But
how do we construct a DT for a given dataset D C X x Y? This amounts to the problem
of training a classifier as defined in Def. 2.

There exist numerous learning algorithms to solve this task, such as CART [Bre*84],
ID3 [Qui86], and its successor, C4.5 [Qui93]. The general principle behind these algo-
rithms is similar: they greedily search through the space of possible DTs in a top-down
manner [Mit97, Ch. 3]. In particular, they start with a single root node containing the
whole training dataset D, and proceed with the following steps [Qui93, Ch. 2]:

1. If D is pure, i.e. there exists a y € Y such that for all x € X, we have D(x) =y,
then return the leaf node y.

2. Otherwise, pick the best possible predicate p* € IT out of the set of possible
predicates I1. Partition D into subsets Dy, ..., D, using p*, recursively train DTs T;
on those subsets, and return the tuple (7,p*) with 7 = (Ty,..., T,).

The set of possible predicates I is a central parameter of the learning algorithm that
we will discuss in Section 5.2.

We see that the algorithm is greedy as it immediately picks the best predicate p* at a
node. But how do we determine the quality of a predicate? For this, we introduce the
concept of impurity measures.

Definition 4. An impurity measure ¢ is a function that assigns a non-negative impurity
value to a predicate p with respect to a (sub-)dataset D.

Intuitively, an impurity measure estimates how “impure” the dataset is after having
been split with p. For instance, if p perfectly separates the data, i.e. the resulting
partitions of D are all pure, the impurity ¢(p, D) is 0. On the other hand, if there is still
a lot of variety in the labels in the partitions after the split, the impurity is large. We
discuss several concrete impurity measures in Section 5.3.

The DT learning algorithm is specified formally in Algorithm 1.

Avoiding overfitting. DTs are classifiers that are especially prone to overfit [Mit97,
Ch. 3]. To see why, notice that Algorithm 1 is guaranteed to grow a tree that perfectly
classifies the training dataset (assuming the considered predicates are expressive enough
to completely separate the data). If there is any noise in the training data, or concepts
that do not generalize, the DT will memorize this information, and thus perform poorly
on unseen examples.

A variety of techniques have been developed to overcome this problem, which can be
grouped into two main classes [Mit97, Ch. 3]:

e early stopping approaches that stop growing the tree before it perfectly separates
the training data,

* pruning methods that post-process the tree in some manner.

12

3.3 Decision trees

Algorithm 1 Decision tree learning

Require:
A dataset D C X x Y, a set of possible predicates I1, and an impurity measure ¢.
1: procedure LEARN-DT(D, I1, ¢)
2 if D is pure then
3 return somey € Y
4: end if
5 p" < argmin, . ¢(p, D)
6 for all i in [n] do
7 D; < {(x,y) € D:p*(x) =i}
8 T; < Learn-DT(D;, I1, ¢)
9: end for
10: T« A{T,..., Ty}
11: return (7,p0%)
12: end procedure

Furthermore, an extension of DTs called random forests [Bre01] has been developed. These
classifiers consist of multiple decision trees and deal with the problem of overfitting by
introducing randomness to the tree growing process.

With these adaptations of the tree building algorithm, DTs and random forests have
been used successfully in machine learning for decades. Especially random forests have
been shown to produce very good results on a variety of datasets [Del*14]. However,
we will not investigate these techniques further since overfitting is not a problem in our
setting —in fact, it is an essential requirement as we will see in Section 5.1.5.

13

4 Tool

All techniques for controller representation with decision trees presented in this thesis
have been implemented in the latest version of the tool dtControl [Ash*20b]. In this
chapter, we give a short overview of the tool from a user’s perspective. The interested
reader is referred to the more extensive documentation in the user manual, which is
available at the official website!.

4.1 Overview

dtControl is an open-source tool that can convert memoryless controllers from a variety
of verification tools to a decision tree representation. It is written in Python, supporting
versions 3.6.7+. The only dependencies of dtControl are standard Python packages
such as NumPy [Oli06] and scikit-learn [Ped*11], which are automatically installed
alongside dtControl if the tool is installed as a pip? package. Detailed installation
instructions can be found on the official website of the tool.

There are two main ways to interact with dtControl. The command-line interface
(CLI) provides convenient access to all of the core functionality and should satisfy the
needs of most users who simply want to run dtControl to convert controllers to DTs.
We also provide a Python interface for users who want to integrate dtControl into their
own Python programs and Jupyter notebooks.

4.2 Workflow

To convert a controller represented as a list of state—action pairs to a DT, the user has
to (i) provide the controller as input to dtControl in one of the supported formats, (ii)
choose one of the predefined algorithms or specify a custom combination of algorithm
parameters, and (iii) select one of the various output formats. A schematic overview of
this process is given in Fig. 4.1.

4.2.1 Input formats

dtControl currently supports the following verification tools:

Ihttps://dtcontrol.model.in.tum.de/
2pip is a standard package-management system for Python.

15

https://dtcontrol.model.in.tum.de/
https://pypi.org/project/pip/

4 Tool

dtControl

Determinization

e R I
- o mm o o Em o e o o o o e o o o P

Input DT Output
SCOTS Learning DOT file
UPPAAL A_J C code
PRISM Benchmarks
Your tool

CSV/Lookup
table .
Impurity
measures
\ /

Figure 4.1: A schematic overview of converting controllers with dtControl. Adapted
from [Ash*20a].

® SCOTS [RZ16], an open-source symbolic controller synthesis tool for nonlinear
control systems. It can output the synthesized controllers in a sparse matrix format
that can directly be used as input for dtControl.

e UppaAL STRATEGO [Dav*15], a model checking and synthesis tool for timed games.
dtControl can read the controller produced by UpPAAL STRATEGO in its raw format.

¢ PRISM [KNP11], a probabilistic model checker supporting a variety of models
such as discrete- and continuous-time Markov chains, MDPs, and probabilistic
timed automata. In our context, not every model is relevant, since some are
entirely probabilistic and do not have a concept of actions. dtControl currently
only supports controllers for MDPs given in PRISM’s textual format.

Furthermore, dtControl supports a custom comma-separated values (CSV) format
that simply lists values of state variables and the corresponding values of output
variables. This format can be useful when dealing with output from unsupported
verification tools. Another option in that case would be to directly add support for the
new tool to dtControl, a straightforward process detailed in the developer manual®.

4.2.2 Parameters

As shown in Fig. 4.1, the DT learning algorithm implemented in dtControl has three
main parameters. We briefly describe their effect on the learned decision trees. For the
theoretical background of the learning algorithm, see Chapter 5.

3 Also available at https://dtcontrol .model.in. tum.de/

16

https://dtcontrol.model.in.tum.de/

4.2 Workflow

e Predicates. For a vector of numeric features x("), dtControl supports axis-aligned

(n)

predicates of the form x; ' <t,wheret € R is an arbitrary threshold, as well as

oblique splits of the form w " x(" < t, where w € R, t € R. Oblique splits have
the advantage that they can incorporate information from more than one state
variable, although they can be harder to interpret.

For a vector of categorical features x(¢), dtControl supports both binary predi-
(©)

cates x;’ = a, where a is one of the possible values of the feature xfc), as well as

i
multi-valued splits with one branch for every possible value the feature xl.(c) can
take. If the functionality is enabled, some of the branches of multi-valued splits

can also be merged automatically to improve the DT representation.

¢ Determinization. The user has the option to let dtControl (partly) determinize
nondeterministic controllers, i.e. remove some of the nondeterministic actions,
which can significantly reduce tree sizes [Ash*20b]. If determinization is not
wanted, dtControl retains all information present in the original controller.

* Impurity measures. dtControl offers a range of different impurity measures,
which affect the inner workings of the DT learning algorithm (and thus, potentially,
the size of the learned DTs). The default impurity measure, entropy, should be
kept in most cases. Advanced users can also try other options, such as the gini
index. dtControl furthermore offers extensions of the impurity measures meant to
be used in conjunction with determinization.

In order to facilitate the usage of dtControl as much as possible, the CLI ships
with a number of reasonable default parameter configurations that allow for quick
experimentation. Many users will find these default configurations sufficient for their
needs.

4.2.3 Output formats

dtControl outputs learned decision trees in two formats: in the DOT graph description
language [GINOO], for visual inspection of the trees, and as C code, which can directly
be used for implementation. The C code is simply a chain of if-then-else statements
corresponding to the DT. Examples for these output formats are given in Fig. 4.2 and
Listing 4.1, respectively.

There is a great number of parameters that can be tweaked in the DT learning
algorithm, and it can be fruitful to try many different combinations thereof. To this
end, dtControl offers benchmarking functionality that allows for the easy training and
comparison of differently configured decision trees. The results of a benchmark are
displayed in an HTML file, as shown in Fig. 4.3.

17

4 Tool

N
\ False
N\

Figure 4.2: A sample DOT output of dtControl, as displayed by the dot program [GNOO].

Listing 4.1: The C code produced by dtControl corresponding to the decision tree in
Fig. 4.2.

void classify(const float x[], float result[]) {
if (x[1] <= 20.625) {
if (x[4] <= 20.625) {

result[0] = 1.0f; result[1] = 1.0f;
}
else {
result[0] = 1.0f; result[1] = 0.0f;
}
}
else {
if (x[4] <= 20.625) {
result[0] = 0.0f; result[1] = 1.0f;
¥
else {
result[0] = 0.0f; result[1] = 0.0f;
}
t

18

4.2 Workflow

10rooms
#(s,a): 52488
#doc: 26244

cartpole
#(s,a): 21951
#doc: 271

helicopter
#(s,a): 561078
#doc: 280539

Axis

nodes: 17297
inner nodes: 8648
paths: 8649
bandwidth: 14

DOT/C

nodes: 253
inner nodes: 126
paths: 127
bandwidth: 7

DOT/C
nodes: 6347
inner nodes: 3173
paths: 3174
bandwidth: 12

DOT/C

LogReg

nodes: 147
inner nodes: 73
paths: 74
bandwidth: 7

DOT/C
nodes: 199
inner nodes: 99
paths: 100
bandwidth: 7
DOT/C

nodes: 3753

inner nodes: 1876

paths: 1877
bandwidth: 11

DOT/C

Multi-label

nodes: 7
inner nodes: 3
paths: 4
bandwidth: 2

DOT/C

nodes: 7
inner nodes: 3
paths: 4
bandwidth: 2

DOT/C
nodes: 123
inner nodes: 61
paths: 62
bandwidth: 6

DOT/C

Figure 4.3: Part of an HTML file created by dtControl containing a table with benchmark

results.

19

5 Decision Tree Learning for Controller
Representation

With the preliminaries as well as the functionality of the tool dtControl covered, we
now show how the basic DT learning algorithm described in Section 3.3.2 can be utilized
for the problem of controller representation. We begin by examining how this problem
can be framed as a classification task and what some of the key challenges are when
doing so. Subsequently, we discuss the resulting algorithm and all its parameters in
comprehensive detail.

5.1 Controller representation as a classification problem

In order to use DT learning algorithms to build decision trees for controller represen-
tation, we first need an instance of a classification problem. The main idea we employ
is to treat a controller as a training dataset, which can then be used as input for the
learning algorithm. Our approach has previously been described in [Ash*20b] and is
similar to the one of [Ash*™19b].

Recall that a training dataset is a function D: X — Y that maps feature vectors to
labels. A controller C C S x A is a relation specifying safe actions for each state. We
want to construct a DT that, given a state, returns the corresponding safe actions.

5.1.1 The feature space

With the above definitions, it is immediately obvious how we should define the feature
space F O X of the classification problem. Since we want to map states to actions, the
feature vectors must be able to represent states. Therefore, for the classification task, we
define

X=S

and

F = ﬁDom(vi),

i=1

where vy, ..., v, are again the state variables of the model.

5.1.2 The labels

The set of labels Y is determined by the set of actions A. We distinguish two cases:

21

5 Decision Tree Learning for Controller Representation

Deterministic controllers

If C is deterministic, we can directly set Y = A. Then the learned DT will represent a
function f: S — A that assigns the (only) safe action a2 € A to a state s € S.

Nondeterministic controllers

In the case of a nondeterministic controller C, the classification problem becomes an
instance of a multi-label classification task (see Def. 2). We set

L=A

and
Y={yec2l:3seS.Vliey.(s1) eC}

In this case, the learned DT will map from a state s to the set of possible actions y € 24
for that state.

Note that the standard DT learning algorithm will simply treat every label in Y as a
unique label, disregarding the information that we are actually dealing with a multi-label
classification problem. This approach is often called the label powerset method [Mad*12].
It has the advantage that the learned DT will retain all of the nondeterminism present
in the original controller. Other approaches for dealing with nondeterminism will be
discussed in Section 5.4.

5.1.3 The classification problem

We can use the defined sets X and Y to construct a training dataset: In the case of a
deterministic controller C, we have

D={(xeXyeY):(xy) €C}.
If C is nondeterministic,

D={(xeXyeY):Vac A (x,a) eC < acy}
={(xeX {acA:(x,a)eC})}

This training dataset D is the only ingredient we need to now actually run the DT
learning algorithm described in Section 3.3.2 to construct a decision tree representing
the controller C. With D as input, the algorithm will produce a tree that correctly maps
from states to (sets of) possible actions.

5.1.4 Other approaches

Another approach to frame the problem of controller representation as a classification
task is to construct a training dataset with only the two classes Good and Bad, where
Good contains all state—action pairs that are allowed by the controller, and Bad contains

22

5.1 Controller representation as a classification problem

those pairs that are not allowed. A feature vector then consists of both the state variables
as well as the suggested action, and the DT can determine whether this combination is
safe. This approach has been used in [Bra*15; Bra*18; Ash*19a].

While this idea has been shown to also work rather well, it has a few disadvantages
in comparison to our strategy. The first disadvantage is conceptual: we want an
understandable representation of a controller, which assigns actions to states. It is thus
more natural to learn DTs that also assign actions to states, instead of DTs that assign
a label € {Good, Bad} to a combination of state and action. We think that a DT with
actions only in its leaf nodes is more interpretable than a DT with actions in inner nodes.

Furthermore, the alternative approach poses two practical problems: first, it tremen-
dously increases the size of the training dataset, since it must also include state—action
pairs that are not safe, and thus slows the learning process. Second, if we want to
actually compute safe actions for a state as part of the implementation of the controller,
we now have to potentially query the DT with many state-action combinations, until we
finally try one that is indeed safe.

5.1.5 Comparison of the verification and the machine learning setting

Because we have transformed the problem of controller representation into the machine
learning problem of classification, it is important to be aware of the fundamental
differences between the verification and the machine learning setting, and why we can
still use DT learning algorithms.

As outlined in Section 3.2.2, in machine learning, one of the most important character-
istics we want a classifier to have is the ability to generalize. In order to achieve this,
various techniques to prevent overfitting are often employed.

In contrast, in the setting of verification, we want our controllers to be safe. Thus,
we cannot allow any errors in the classification of the training dataset. Even if a
single instance of the training data is misclassified, the controller representation is not
guaranteed to be safe anymore. This means that we do not wish to prevent the overfitting
of the classifier on the training dataset; in fact, it is now an essential requirement [Bra*18].

Generalization, on the other hand, does not apply in the verification setting. The
controller we are given already exhaustively lists all relevant states the modeled system
can reach, and provides the corresponding actions. Because we then map this controller
to the training dataset, there simply is no state in F \ X that would ever be reached by
the system. Therefore, the ability of the resulting DT to generalize is entirely irrelevant.

With all these differences, how can it be that DT learning algorithms can still be used
in our setting? The answer to this question lies in the fact that the standard DT learning
algorithm already trains DTs that completely overfit the training data by continuing
with the tree building process until all leaves are pure. We simply do not apply any
of the measures generally taken to prevent overfitting, outlined in Section 3.3.2, but
appreciatively accept the overfitting DT. Consequently, we must be very careful to never
instantiate the learning algorithm in such a way that it is unable to overfit, e.g. when
using predicates not expressive enough to completely separate the training dataset.

23

5 Decision Tree Learning for Controller Representation

5.2 Predicates

We now discuss the central parameter of the DT learning algorithm: the set of possible
predicates II. Our discussion is split into two parts: we first examine predicates for
numeric features and secondly consider categorical attributes.

5.2.1 Numeric features

For this section, if x € X is a vector of features, let x(") denote the features of x which
are numeric.

Axis-aligned predicates

The simplest predicate on numeric features is to simply compare one feature against

a fixed threshold. This results in so-called axis-aligned predicates of the form xl.(n) <t,

where t € R is the arbitrary threshold. Formally, the predicate assigns 1 to the data
points where) < 't, and 2 to the data points where s > t.

1 1

Let us now fix a specific numeric feature A. How do we choose appropriate thresholds
from the infinitely many possible values t? Breiman et al. [Bre*84, Ch. 2] note that,
in fact, there are only finitely many thresholds one has to consider and suggest the
following procedure:

Let V) be the set of possible values for the feature A in D. We can sort this set to
obtain a sequence v, 1, ..., v, of values. Now, note that all thresholds t € [U/\J', UMH)
produce the same partition of D: all data points with A < v, ; are separated from the
data points with A > v, ;1. Thus, there are only m — 1 thresholds we have to consider,

where the j* threshold is simply the midpoint, i.e.

UAj T 0Aj4+1

ti= 5

In order to find the best predicate, we exhaustively consider all such axis-aligned
predicates for every numeric feature xf") and pick the one with lowest impurity.

Why are these predicates called axis-aligned? Consider the numeric part ") of the
feature space with dimension d := |x(")|. A predicate of the form xz-(") < t partitions
this feature space along a d — 1 dimensional, axis-aligned hyperplane. For instance, if
F = R?, axis-aligned predicates corresponds to lines parallel to either the x- or the
y-axis. A DT with axis-aligned predicates and the corresponding partitioning of the

feature space is shown in Fig. 5.1.

Oblique predicates

An inherent disadvantage of axis-aligned predicates is that they are only able to utilize
information from a single feature at once. However, in many cases we might be interested
in a combination of different features. For example, suppose that x; and x, measure the

24

5.2 Predicates

~

\V]
w

Figure 5.1: A DT with axis-aligned predicates (left) and its representation as a partition
of the feature space (right). Concept from [Bre*84, Ch. 2].

distances that two cars have traveled. A controller for some kind of collision avoidance
system could probably be represented much more concisely if we could ask questions
about the distance between the cars, which would correspond to predicates of the form
X1 — X2 S t.

In addition to axis-aligned predicates, we thus also consider oblique predicates, which
are linear combinations of the numeric features. They have the following form:

which can be represented more compactly in vector notation:
w'x <t

The vector w € R? specifies the weights used in the linear combination, and ¢ € R is
again an arbitrary threshold.

From the geometric point of view, these oblique predicates correspond to arbitrary
d — 1 dimensional hyperplanes in the numeric part of the feature space. As illustrated in
Fig. 5.2, the removal of the restriction that the hyperplanes be axis-aligned often allows
to partition a dataset with fewer predicates.

The problem of finding the optimal hyperplane H to separate the dataset is much
harder than the problem of finding the best axis-aligned predicate. Simply enumerating
all possible hyperplanes, as we did for axis-aligned predicates, is not feasible, since
there are exponentially many ways the examples could be partitioned with an oblique

25

5 Decision Tree Learning for Controller Representation

o0
00
DDEI 085
OO
000

Figure 5.2: Oblique predicates. The blue line illustrates how a dataset in the feature
space F = IR? can be separated with just one oblique predicate. In contrast, five axis-
aligned predicates would be required to partition the same dataset, as indicated by the
red line. Concept from [Ash*19a].

predicate [Mur*93]. As such, some kind of heuristic to restrict the set of considered
hyperplanes is required.

In this thesis, we investigate the two methods for finding oblique predicates that are
currently implemented in dtControl:

OC1. The oblique classifier system OC1 [Mur*93] uses a combination of a local search
and randomization to find a hyperplane with low impurity. The algorithm roughly
works as follows:

1. Choose a random hyperplane H.

2. For every coefficient c; of H, find a locally optimal value that minimizes the
impurity.

3. Perturb H in a random direction. If this improves the impurity, go to step 2.
Otherwise, try a different random direction until a stopping criterion is met.

This random search is carried out multiple times, and finally the hyperplane with the
lowest impurity is returned.

It is obvious that this approach is entirely heuristic and does not guarantee in any
way that the returned predicate is optimal. However, even if there might be another
hyperplane with even lower impurity, tree sizes can already be significantly reduced
with any hyperplane that performs better than the standard axis-aligned predicates.

Linear classifiers. An alternative to the random search approach of OCl1 is using
binary linear classifiers from machine learning to obtain oblique predicates.

Definition 5. A binary linear classifier f with labels Pos and Neg, e.g. [Bis07, Ch. 4],
consists of a weight vector w € R? and a threshold ¢t € R. A feature vector x € F is

classified as follows:
Pos, ifw'x>t
flx) = {

Neg, otherwise.

26

5.2 Predicates

In the machine learning literature, there exist a wide variety of binary linear clas-
sifiers and related learning algorithms. Some of the most prominent ones include
Logistic Regression [Bis07, Ch. 2], linear Support Vector Machines (SVM) [Bis07, Ch. 7],
Perceptrons [Bis07, Ch. 2], and Naive Bayes [For19, Ch. 2].

Now, assume for the moment that there are only two actions in our training dataset.
In order to obtain an oblique predicate, we could train a linear classifier on the subset
of training data at a particular node. The obtained classifier would yield a hyperplane,
given by the classifier’s weights w, that tries to best separate the dataset into the two
classes. This approach has been used successfully with different linear classifiers in some
machine learning problems, e.g. [Utg88; LHF03; CE07]. In the verification setting, Ashok
et al. [Ash*19a] first explored using linear classifiers in DTs. By using the Good/Bad
data representation outlined in Section 5.1.4, they ensure that they always have a binary
classification problem.

In contrast, with our data representation, we cannot simply train a binary classifier,
since we have a multi-class (and not binary) classification problem. As a remedy,
[Ash*20b] introduces the following technique based on the classical one-versus-the-rest
classification known from machine learning [Bis07, Ch. 4]: for every possible label y
that appears in the subset of a particular node, train a classifier f, that tries to separate
the points with label y from all other points. Finally, pick the one classifier f; with the
lowest impurity.

It is again clear that there is no guarantee that the oblique predicates obtained this
way are optimal — especially since with the one-versus-the-rest approach, the training
of the linear classifiers only takes one particular label into account. Linear classifiers are
thus simply another heuristic that can be used to obtain oblique predicates. In the end,
the impurity of those predicates determines how useful they actually are.

With the concept of linear classifiers in the nodes of the DT introduced, the idea of
using more powerful, non-linear classifiers might also occur. However, recall that one
of our main goals is to create explainable controller representations. If we were to use
e.g. a neural network inside the DT to partition the dataset, we would lose all of the
interpretability of decision trees. The oblique predicates covered in this section strike
the balance: they are more powerful than standard axis-aligned predicates, but are in
principle still easy to understand.

5.2.2 Categorical features

We now turn our attention to categorical features, support for which has been added to
dtControl as part of this thesis.

Treating categorical data as numeric

A very simple initial idea to deal with categorical features is to just treat them as
numeric by mapping each value to an arbitrary integer and using axis-aligned or oblique

27

5 Decision Tree Learning for Controller Representation

predicates as discussed above. This method has been used previously in verification
with some success, e.g. [Ash*19a].

However, this approach has several obvious disadvantages: first, the resulting DTs are
harder to interpret since relations such as “less than” hardly make sense on categorical
features. Second, the arbitrary mapping from categorical values to integers can have an
effect on the size of the learned DT. Clearly, we need more sophisticated techniques to
deal with categorical features.

Single-comparison predicates

Let A be a categorical feature with possible (discrete) values V) = {vr1,...,0xm}. A
very simple type of predicate we can construct are single-comparison predicates of the
form A = v, ;, which are for instance used in [HMS66]. Formally, these predicates assign
1 to the data points where A = v, ; and 2 to the data points where A # v, ;.

Note the similarity of single-comparison predicates to axis-aligned predicates: they
both have a finite set of values or thresholds to consider and compare a feature to a value
or threshold with an (in-)equality. Using single-comparison or axis-aligned predicates
always yields a binary tree.

Multi-comparison predicates

Another common way to partition the data at a node with a categorical feature is to
create one branch for each possible value the feature can take [Qui86; Qui93]. Such a
multi-comparison predicate assigns the integer i to a data point if and only if A = v, ;
for that data point. These predicates were used in the first example of a DT in Fig. 3.2,
Section 3.3.

In practice, multi-comparison predicates often produce trees that are larger than
necessary. For example, consider the DT depicted in Fig. 5.3. Merging the branches with
values red and green, as well as the branches with values blue and yellow would yield a
much smaller tree. In general, we thus want to find multi-comparison predicates that
do not assign a single feature value to a branch, but instead allow a group of attribute
values at every branch.

It is not feasible to simply try all different possible attribute value groupings for
every categorical feature A, since the number of such groupings is exponential in the
number of possible values |V, | [Qui93, Ch. 7]. We instead use a greedy algorithm based
on iterative merging of value groups suggested by [Qui93, Ch. 7], which proceeds as
follows:

1. Set the initial value groups G; to {v, ;}. This value grouping corresponds to the
standard multi-comparison predicates as introduced above.
2. If only two value groups remain, return those as the optimal grouping.

3. For every pair of value groups (G;, G;), compute the impurity of the new value
grouping in which G; and G; are merged.

28

5.2 Predicates

Figure 5.3: Merging branches of nodes with multi-comparison predicates can reduce
tree sizes. In this case, the branches with values red and green, as well as the branches
with values blue and yellow could be merged.

4. If the impurity has not decreased in any of the new groupings, return the original
grouping. Otherwise, proceed to Step 2 with the best new grouping.

In our experiments we found that the grouping algorithm sometimes did not merge
branches where it would actually have made the tree more explainable, because the
resulting impurity was marginally higher. We thus introduce a bias parameter in favor
of larger value groups: instead of only proceeding to Step 2 if the impurity of the
new groups has strictly decreased, we set a tolerance T of an acceptable increase in
impurity with which we still choose the new grouping. Note that, if we set T = oo,
the algorithm will continue merging branches until only two remain and thus produce
binary predicates. The procedure is formalized in Algorithm 2.

Algorithm 2 Attribute value grouping

Require:
The currently considered categorical feature A, the tolerance 7, a dataset D, and an
impurity measure ¢.

1: procedure AVG(A, T, D, ¢)

2 g’ege{Gb...,Gm}:{{v}:UEVA}
3 while ¢(pg, D) < ¢(pg, D) + T do > pg is the predicate induced by G
4 G+ ¢

5: if |G| = 2 then

6: return G

7 end if

8 for all (G;, G;) € G* do

9 Gij < {GiU G} U(G\{Gi, G;})
10: end for
11: G« arg ming, ¢(pg,, D)
12: end while
13: return G

14: end procedure

29

5 Decision Tree Learning for Controller Representation

5.3 Impurity measures

The second parameter of the DT learning algorithm we discuss is the impurity measure
¢, which measures the quality of a predicate with respect to a dataset.

5.3.1 Entropy

A particularly well-known impurity measure is based on the concept of entropy from
information theory, as introduced in the seminal work of Shannon [Sha48]. Information
theory is concerned with quantifying the amount of information the occurrence of a
random event yields. If an event x occurs with probability py, its information content is
defined to be

I(x) = —log,(px) bits.

This definition has several desirable properties [GBC16, Ch. 3]: first, we see that the
information content of an event is inversely proportional to its probability. For instance,
an event with probability 1 always occurs, and thus does not convey any information.
Second, if two events are independent, the information content of both events occurring
is the sum of the individual information contents, since

I(x,y) = — logz(Px,y> = _1032<Pxpy) = _logz(PX> - 1082(191/)-

In the context of impurity measures, the events that we are interested in are that a
randomly picked data point from a sub-dataset D C X x Y has the label y € Y. Let n,
be the frequency of the label y in D, i.e. n, = [{x € X : D(x) = y}|. Then, such an event
occurs with probability

"y
D]

and has an information content of

— log, (‘”Dy‘> bits.

The crucial insight that allows for the development of an impurity measure is the
following: if the expected amount of information content of these events is low, we
already have a lot of knowledge about the labels in the sub-dataset. Thus, classifying
this dataset probably requires less effort than classifying a dataset where the expected
amount of information content from these events is high. The expected amount of
information content is also known as the entropy of the dataset D and is defined as

n n
HD) = - ¥ o, ()
yeYy

To illustrate two extreme cases, consider a dataset where every data point has a
different label. This is extremely hard to classify since every data point has to be

30

5.3 Impurity measures

separated from all other points, and, correspondingly, the entropy of such a dataset is
maximal. In contrast, the entropy of a pure dataset is always 0.

We now have a way to measure the difficulty of classifying a sub-dataset. The
entropy impurity measure then simply averages the difficulty of classifying the partitions
Dy,..., Dy, created by a predicate p. It is thus defined as follows:

ent(p,D) = ¥ D] H(D;).
ic[m] ’D’

Instead of entropy, a similar measure called information gain is sometimes used. The
only real difference between the two is that information gain is a measure of goodness, i.e.
we want to maximize the information gain in DT learning. This is however equivalent
to minimizing entropy [Qui86]. Entropy and information gain are some of the most
common ways to determine the quality of predicates and have received a great deal of
attention in the DT literature [Bre*84; Qui86; Qui93].

5.3.2 Entropy ratio

An issue with entropy that is sometimes encountered with categorical features is that
it favors multi-comparison predicates with a large number of branches [Qui86]. Quin-
lan [Qui86] thus introduces a normalization of the information gain criterion called
the gain ratio. Since this is again a goodness measure, we modified it into an impurity
measure named the entropy ratio.

We first introduce the quantity of the intrinsic information content of a split

L D; D
split info(p, D) = — } ‘|D\’ log, <’\D\’> .
ie[m]

This measures the expected information content of the event that a randomly selected
data point in D will be assigned the i*" branch, which corresponds to the information
generated by the partitioning itself. Naturally, the more branches the predicate p creates,
the higher this information content will be. In contrast, the entropy measures the amount
of information relevant to classification from the same partitioning [Qui93, Ch. 2].

The entropy ratio then simply normalizes the entropy with the intrinsic information
content of a split, i.e.

‘ B ent(P/ D)
ent rath(Pz D) - spht lnf0<P/ D) ‘

It has to be noted that one of the primary reasons for using the entropy ratio instead

of just the entropy is to prevent overfitting [Qui93, Ch. 2]. In our setting, overfitting is
desirable and there is hence less justification for the entropy ratio.

5.3.3 Gini index

Another common impurity measure used in e.g. the CART system is the gini index [Bre*84,
Ch. 4]. It measures the probability of a data point being misclassified if we were to assign

31

5 Decision Tree Learning for Controller Representation

labels randomly based on the label distribution in the sub-dataset. This probability is

given by
ny n
GD)= Y L=
)= L, biip
y#z
and can equally be written as
1y ? ny \? ny \2
o= (55) -5 (B) -+ B ()
() <y§|D|> L 1o L 1o
Similarly to entropy, the gini index is then a weighted average of these values:

gii(p,0) = T {1G(0)

ic[m

5.3.4 Twoing rule

The CART system also defines another measure known as the twoing rule, which is a
goodness measure only defined for binary predicates. It is based on transforming the
problem of computing the impurity of a multi-class dataset into the task of computing
the impurity of a two-class dataset. This transformed problem is then solved with the
gini index defined above.

Let I (r) be the number of examples on the left (right) side of the split and n,, (1)
be the number of examples with label y on the left (right) side of the split. Then, the
twoing rule is defined as follows [Bre*84, Ch. 4]:

) 2

Following [Mur*93], the impurity measure we minimize is then simply the reciprocal
of the twoing rule.

nl,y nr,y

! r

. I r
twoing(p, D) = D] 1D (Z
yey

5.3.5 Sum minority

Probably the simplest way to calculate impurity is to count the number of misclassified
instances if we were to assign the most frequent label in a partition to all of its data
points. This impurity measure is called sum minority and due to Heath et al. [HKS93;
Hea93].

Formally, for every partition D;, let |D;| be the number of examples in that partition
and y(D;) be the label occurring most frequently in D;. Then, define the minority u; as

wi = (% y) € Dizy # v(Di)}|.
The sum minority impurity measure is then simply the sum of these minorities:

sum minority (o, D) = Y ;.
]

ie[m

32

5.3 Impurity measures

5.3.6 Max minority
A very similar impurity measure is max minority [HKS93; Hea93], defined as

max minority(p, D) = max y;.
ie[m]
It counts the number of misclassified instances in the “worst” partition with the maxi-
mum number of misclassifications.

Max minority has the theoretical advantage that it produces trees of depth at most
log, (|D]) [Mur*93]. However, note that it is the depth that is logarithmic in this expres-
sion — the number of nodes is linear in |D|. Thus, this theoretical insight is not very
useful in practice.

5.3.7 Area under the receiver-operator curve

The final impurity measure we discuss has been developed specifically for DTs with
linear classifiers in the context of controller representation [Ash*19a]. The underlying
idea is simple: we want to exploit the knowledge that the dataset will be split with
a hyperplane, obtained from a linear classifier or a different heuristic. The impurity
measure tries to estimate how well separable the dataset is by a hyperplane after having
been split with the predicate p.

For now, let us consider the case of only two actions in a dataset. In order to estimate
how well separable a sub-dataset is by a hyperplane, we can again train a linear classifier
on this sub-dataset and report a metric that measures some quality of this classifier. The
simplest such quality would probably be the accuracy;, i.e. the fraction of data points
classified correctly. However, this has the disadvantage that even trivial classifiers that
assign the same label to every data point can achieve high accuracy in the case of an
imbalanced label distribution. Ashok et al. [Ash*19a] instead suggest the usage of the
area under the receiver-operator curve (AUC), a well-known metric in statistics and machine
learning that does not suffer from this drawback.

We thus proceed as follows to estimate the quality of a predicate p:

1. Train a linear classifier for every sub-dataset D;.

2. Return the sum of the obtained AUC scores of the classifiers.

Note that this is again a goodness measure, which we can transform into an impurity
measure by considering the reciprocal.

Ashok et al. [Ash*19a] use the Good/Bad data representation outlined in Section 5.1.4
and hence always deal with a binary classification problem. In order to utilize their
idea with our different data representation, we again make use of the technique based
on one-versus-the-rest classification introduced in Section 5.2.1: we train one linear
classifier for every possible label, which tries to separate this label from the rest, and
report a weighted average of the obtained AUC scores.

Note that this impurity measure has the practical disadvantage that we need to train
several linear classifiers for every considered predicate, which can be very inefficient.

33

5 Decision Tree Learning for Controller Representation

5.4 Determinization

Determinization is a technique that can tremendously decrease the size of DTs for
nondeterministic controllers. In this section, we first describe three simple ideas that
already yield surprisingly good results. We then develop a theoretical framework for the
improvement of impurity estimates in the context of determinization and introduce two
techniques based on this framework that enable us to obtain even smaller decision trees.

Up to now, we have treated nondeterministic controllers C C S x A very similarly
to deterministic controllers. The label powerset method employed so far simply treats
every combination of safe actions as a unique label and preserves all possible safe actions
for every state. The key idea of determinization is the following: since we know that
all actions C(s) := {a : (s,a) € C} for a particular state s are safe, it suffices if the DT
represents only a subset thereof. This reduces the amount of information the DT has to
encode and consequently also its size.

5.4.1 Determinizing before decision tree learning

The simplest idea for determinization is to directly alter the set of labels Y used in the
representation of the controller as a training dataset. For instance, we could randomly
pick a single label a € C(s) for every state s € S and proceed with the usual DT learning
algorithm as in the deterministic case.

A slightly more advanced technique is to determinize in a way that guarantees
desirable properties of the controller. For example, to obtain the most energy-efficient
controller, one can always pick the action 4 € C(s) with minimum norm (assuming
the actions are numeric) [Mey*17]. Similarly, the tool UrraAL STRATEGO allows for
the (partial) determinization of controllers to minimize a given cost function [Dav*14;
Dav*15]. This determinized controller can then be used as input to the DT learning
algorithm.

The disadvantage of this approach is that since we determinize before decision tree
learning, we cannot use the information that there are multiple possible actions for a
single state in the learning algorithm itself.

5.4.2 Safe pruning

An alternative is to determinize the controller represented by the DT after the learning
process. To illustrate, consider the DT depicted in Fig. 5.4. The left child of the root
node has two children with a common subset of labels. We can thus replace this subtree
with a new leaf node that only contains the common subset. If we recursively apply this
idea of merging leaf nodes, we obtain the safe pruning algorithm [Ash™19b] formalized
in Algorithm 3.

Safe pruning clearly preserves the safety properties of the controller due to the fact
that nodes are only merged if they share a common subset of safe labels. If all leaf nodes

34

5.4 Determinization

@ G @D ()

Figure 5.4: The safe pruning algorithm. If multiple children of a node share a common
subset of possible labels, the node can be replaced with a leaf node containing only that
subset. Concept from [Ash*19b].

Algorithm 3 Safe pruning

Require:

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:

A decision tree T.
procedure SAFE-PRUNING(T)

if T is a leaf node then
return T
end if
(T,p) T
forall T; € 7 do
T! < SAFE-PRUNING(T;)
end for
if all T/ are leaf nodes then
Yy < ﬂi Ti/
if y # @ then
return y
end if
end if
T (14,...,T,,)
return (77, p)

17: end procedure

35

5 Decision Tree Learning for Controller Representation

reachable from a node 7 can be assigned the set of labels v, it is safe to replace that node
directly with a leaf node containing y.

Ashok et al. [Ash*19b] furthermore introduce a parameter to control the amount
of nondeterminism preserved in the pruned tree. In particular, if the parameter p is
supplied, only p rounds of safe pruning are performed. This means that leaf nodes are
only merged at the deepest p levels of the tree.

We briefly want to contrast this safe pruning algorithm to the usual pruning performed
in machine learning. In that setting, the DT is also pruned by merging and removing
branches. However, the decision which branches to prune is made on the basis of some
statistical measure with the aim to reduce overfitting [Min89]. In contrast, safe pruning
only merges branches if the resulting tree is still guaranteed to overfit, as this is the
primary requirement in the context of controller representation.

5.4.3 Early stopping

Instead of first constructing the whole DT and subsequently pruning it, techniques
based on early stopping aim to directly learn a determinized tree. The general procedure
is as follows: during standard DT learning, always check if there is a (maximal) subset
y C L of labels that are safe for all data points before training a node. If there exists
such a y, directly return the leaf node y instead of training the node.

We can again introduce a variety of parameters to control the amount of nondeter-
minism preserved. For example, we can only perform this check for a common subset if
there are fewer than k data points at a node or if the depth of the node is greater than d.
Early stopping with the former parameter has been introduced in [Ash*19b] under the
name of minimum split size.

We now show that, if no parameters are specified, early stopping and safe pruning
produce equivalent trees:

Theorem 1. Given a (multi-label) dataset D C X X Y, a set of predicates 11, and an impurity
measure ¢, standard DT learning with early stopping returns the same decision tree as the safe
pruning algorithm applied to the output of standard DT learning, assuming both techniques are
used without parameters.

Proof. First, note that neither early stopping nor safe pruning affect the predicate
selection of the DT learning algorithm. Therefore, the inner nodes produced will always
be the same. It remains to show that both algorithms return trees with the same leaf
nodes.

Recall from Def. 2 that in multi-label classification we have a set L of single-labels
and Y C 2L\ {@}. Let us formally define the maximal subset (D) of safe labels for
a dataset D: we have that (D) C L such that for every x € X, we have (D) C D(x).
Furthermore, for all different /(D) C L with the same property, |c(D)| > |¢/(D)|.

An interesting property of o(D) arising directly from its definition is that for any
partition Dj, ..., D,, of D, we have that ();0(D;) = o(D). This is due to the fact that a
label that is safe in D must also be safe in any subset of D.

36

5.4 Determinization

Early stopping then simply trains a DT as in the standard algorithm, but stops at a
node n with sub-dataset D,, C X,, x Y if and only if ¢(D,) # @ and returns o (D).

We now prove the following two claims about safe pruning: (1) if ¢(D,) # @ then
SAFE-PRUNING(11) = 0(D,) and (2) if SAFE-PRUNING(n) is a leaf, then o(D,,) # @. We use
structural induction on the DT n:

* Base case: 7 is a leaf. Then, by definition, n = y forsome y € Y (and y C L\ {@})
and for all x € X,, we have that D(x) = y. Thus, ¢(D,) must be equal to y.
Furthermore, we have that SAFE-PRUNING(11) = n = y = o(D,,). With this, both
claims from above hold.

e Inductive hypothesis: Suppose n is a DT of the form n = (7,p). Then, for
every DT T; € T that is assigned the sub-dataset D; C D, by the predicate p, the
following claims hold: (1) if o(D;) # @ then SAFe-PRUNING(T;) = ¢(D;) and (2) if
SAFE-PRUNING(T;) is a leaf, then o(D;) # @.

* Inductive step: n = (T, p).

(1) Assume o(D,) # @. Then, for every sub-dataset D; created by p, we also
have o(D;) # @. Thus, in the recursive calls of safe pruning (lines 6-8), by
the inductive hypothesis, all children of n are replaced with the leaf nodes
o(D;). Then, the condition in line 9 will be true. Furthermore, we have
that N; 0(D;) = o(D,) since the D; partition D,. Line 10 of the algorithm
computes exactly this intersection, which is nonempty by assumption, and
replaces 1 by it. Thus, SAFE-PRUNING(11) = 0(Dp,).

(2) Assume SAFE-PRUNING(n) is a leaf node. This means that all children of n
are replaced by leaf nodes in the recursive calls (see line 9). By the inductive
hypothesis, we thus have that o(D;) # @ for all D; created by p. Now,
again applying the inductive hypothesis, this time with Claim 1, we get
that all children were replaced with ¢(D;). Thus, the intersection in line
10, which by assumption cannot be empty, is equal to ;o (D;). We again
have N;c(D;) = o(D,) because the D; form a partition of D,. Therefore,
0(Dy) # @. [

Taking claims 1 and 2 together, we get Claim 3: if SAFE-PRUNING(1) is a leaf, SAFE-
PrRUNING(11) = 0(Dy,). Thus, if safe pruning replaces a node n, it always replaces it with
a(Dy).

Now, let Tsp, be the tree obtained by safe pruning and Tes be the tree obtained by the
early stopping algorithm.

Let 1 be a leaf node in T,s. By definition, n = ¢(D,) # @. Therefore, by Claim 1, the
safe pruning algorithm will replace n with ¢(D,) when it recursively reaches n. The
same leaf node thus also occurs in the same place in Tsp.

On the other hand, let 1 be a leaf node in Tp. If 7 has been replaced by safe pruning,
by claims 2 and 3, we have n = 0(D,) # @. If n was already a leaf node in the tree
before pruning, the same property trivially holds. Therefore, when the early stopping
algorithm reaches the corresponding node, it is immediately replaced with o(D,). O

37

5 Decision Tree Learning for Controller Representation

The obvious advantage of early stopping over safe pruning is that only the deter-
minized part of the tree has to be built. Safe pruning, on the other hand, first has
to construct the whole nondeterministic DT, which is less efficient both runtime- and
memory-wise. However, the safe pruning parameter p allows for the exact specification
of how many levels of the tree should be pruned, while the parameters of early stopping,
such as the number of examples at a node, depend strongly on the specific dataset and
are thus harder to choose.

5.4.4 Improving impurity estimates in the context of determinization

The determinization techniques covered so far have not used the information that there
are multiple safe actions in a single state to improve the selection of predicates, i.e. the
impurity measures. To see why this may be suboptimal, consider a predicate splitting
a dataset into the two sub-datasets D; and D,, where every data point in those sub-
datasets has a different combination of safe labels. Furthermore, assume that there
exist single-labels /1 (I) that can be assigned to every data point in Dy (D;). Since
after splitting, every data point has a different combination of safe labels, the impurity
measures we have used so far will estimate the impurity of this predicate as very high.
However, we know that we can determinize the labels in Dy and D, such that both
datasets are pure (with the determinization that always determinizes to /; respectively
l>). Therefore, the impurity of such a split should actually be 0.

We now develop improvements of some of the impurity measures introduced in
Section 5.3 to take determinization into account. The setting in which these impurity
measures are meant to be used is the following: we want to reduce tree sizes as much as
possible and are willing to accept that the resulting DT might be heavily determinized,
as long as it is still safe. To this end, the early stopping algorithm is employed.

Let us first formally define the notion of a determinization of a multi-label dataset:

Definition 6. A determinization of a multi-label dataset D C X x Y, where Y C 2L\ {@},
is a function 6: X — 2L\ {@}, such that for all x € X we have that §(x) C D(x). J is
called complete if and only if [§(x)| = 1 for all x € X, otherwise it is called incomplete.

Now, note that in the case of nondeterminism, an impurity measure is actually not only
a function of a predicate and a dataset, but also of a determinization. The determinization
specifies which labels are used for every data point to compute the impurity. Up to
now, we have always implicitly used the trivial determinization x — D(x). However,
the minimization problem we have in general is the following:

p* = argmin¢(p, (5;,D),
pell
where J; denotes the best possible determinization of D for the predicate p. We thus
want to pick the predicate with the lowest impurity regardless of the determinization
required to achieve that impurity.

38

5.4 Determinization

It is clearly not feasible to simply iterate over all possible determinizations for every
predicate, since the number of possible determinizations is in O(Z‘LHX‘). We thus need a
heuristic to approximate J;.

First, we show that we can reduce the search space by only considering complete deter-
minizations. In particular, we prove that there always exists a complete determinization
with minimal impurity in Proposition 1 and Theorem 2. We limit our discussion to the
entropy and the gini index, since these impurity measures are the most widely used and
performed the best in our experiments.

Proposition 1. Given an impurity measure ¢ € {ent, gini}, a predicate p, and a dataset D,
for every incomplete determinization & of D there exists a complete determinization & of D with

¢(p,8,D) < ¢(p,4,D).

Proof. We outline a procedure that turns an incomplete determinization into a complete
determinization with at most the same impurity. Let 6 be an incomplete determinization
of D with image Im(é). Furthermore, let 7;,, denote the number of data points that are
assigned the (possibly non-deterministic) label y € Im(8) under § in the i*" sub-dataset
D; created by p.

Let us start with ¢ = ent. We have that

ID\

ent(p,0,D) = Z H(é,D;),

i€m]
where
nly <ni,y>
H(6,D;) = — lo — .
(1) ye§ ‘D‘ 08> ‘Dz"

Since ¢ is incomplete, there is a label g € Im(6) with |g] > 1. Consider the deter-
minization ¢ that is equivalent to J, except that it assigns the single-label r € g to all
data points x € X where 6(x) = . We define 7;,, for § equivalently to n;, for 5. We fix
a specific sub-dataset D; and drop the corresponding index to simplify notation. Then,

H@) =— ¥ Llog, (2
yeims) DI (mo

B) (5)
s 10y 10182 \1D]) 7 107 82 \ D7)
It follows that

HE)-HE) _
:|mb&Q3)||b&Qm>+ﬁb&Q3>

ﬁr = Ny +nq,

With

39

5 Decision Tree Learning for Controller Representation

we obtain:
H(8) — H (9)
=o' (1)~ o1 (1) +“or oo (o)
=——1Io — | - lo — | + lo .
DI %2 \[D]) ~ D] *#\[p]) D] %\ D]
First, consider the special case of n, = 0. As is usual in information theory, we evaluate
0log,(0) as lim,_,o xlog,(x) = 0, and thus arrive at

H(8) — H () = 0.
If n, > 0, we have
H(6) — H (3)
oy g\ (M), g\ L (n
= D] <1°g2(D]) 1"gZ<|D|>>+|D| <1°g2< ol) '8\ |p|
> 0,

where the last step follows from the fact that log, is strictly increasing.
Thus, for every sub-dataset D;, we have H (5, Dl-) < H(J, D;), and consequently

ent(p,6,D) < ent(p, 5, D).

Note the following key point: ¢ is “more deterministic” than ¢ as there are fewer states
to which it assigns a label y with |y| > 1. If we thus continue this process of producing
“more deterministic” determinizations (now starting with &), we will eventually reach a
complete determinization with an entropy less than or equal to the entropy of 4.

A similar analysis can be conducted for the case of ¢ = gini. With the same definitions

as above, we obtain
2 _ (2
o £ ()"
yemon (g NPl D]

Then,
G(6) - G (5)
== (i) - () ()
D] D] D]
- n? o +n$+2nrnq—i—n§
D> D IDJ?
_annq
Df?
> 0.

40

5.4 Determinization

Therefore, similar as above, we have
gini(p, 6, D) < gini(p, §, D)

and can continue this process to eventually reach a complete determinization with gini
index less than or equal to the gini index of 4. O

Theorem 2. Let A* be the set of determinizations that achieve the minimal impurity with respect
to an impurity measure ¢ € {ent, gini}, a predicate p, and a dataset D. Then, there exists a
0% € A* that is complete.

Proof. We give an indirect proof. Assume every determinization §* € A* is incomplete.
Then, by Proposition 1, we know that there exists a §* that is complete and ¢(p, 5*, D) <
¢(p,0*,D) for every 6* € A*. However, this means that &* achieves the minimal
impurity and would have to be an element of A*. Therefore, A* cannot be the set of
determinizations that achieve minimal impurity. O

Theorem 2 shows that it would suffice to consider all complete determinizations
to determine the best predicate. However, the number of complete determinizations
is still far too large to simply enumerate them all. We thus present two heuristics
allowing us to efficiently approximate ¢(p, 55, D) by making use of the fact that the best
determinization is complete.

Maximum frequencies

The maximum frequency approach, introduced in [Ash*20b] (albeit without the theoret-
ical justification given above), explicitly approximates the complete determinization 4,
with lowest impurity. The idea works as follows: consider a dataset D at a particular
node and a predicate p that partitions D into Dy, ..., D;,. In order to make the partitions
D; as pure as possible, we greedily assign the label occurring most frequently in D;
to all data points where it is safe. We then recursively continue this process with the
remaining data points, until every point is assigned a determinized label.

Formally, let f;: L — IN be the function that assigns to every single-label the number
of states in D; for which it is safe, i.e. f;(I) = |{x € X; : | € D;(x)}|. Then, assign the
safe single-label with maximum frequency in the corresponding sub-dataset to every
data point x € X: if x belongs to the i*" partition D;, we have

Sy(x) = {argmaxfi(l)} .
leD(x)
Note that J;(x) is a set (with only a single element) to be consistent with Def. 6.

In practice, computing a new determinization ¢, for every predicate p often is compu-
tationally infeasible. Instead, one can compute the function f, assigning to every action
the number of states in D for which it is safe, and use the resulting determinization *
as an approximation for the J;. This approach tries to make D itself as pure as possible,
instead of the sub-datasets D;. It is this approximation that was originally introduced
in [Ash*20b].

41

5 Decision Tree Learning for Controller Representation

Multi-label impurity measures

We now introduce a different approach —multi-label impurity measures — that allows
us to approximate ¢(p,J;, D) without computing the explicit determinization J;. In
principle, any standard impurity measure can be converted into a multi-label impurity
measure, but we again focus on the entropy and the gini index.

Let us first examine the multi-label formulation of the entropy impurity measure.
Recall that ent(p, 55, D) averages the entropies of the sub-datasets D;, defined as

n; n;
H(6,D;) = — Y 1o ("y> . 5.1
(/D) L |Di| 52 |D; G

ye€m(dy)

From Theorem 2 we know that it suffices to consider complete determinizations to
minimize the entropy, and can thus rewrite Eq. 5.1 to

ni) ni)
H(5;,Di) =—-) —lo (> 5.2
(% D) = Di & | D 52
The only values we do not know in Eq. 5.2 are the n;; —the number of data points in D;

that are assigned single-label I under J;. We can, however, provide the following rough
(over-)approximation:
nip={x € X;:5,(x) =1}

<|{x € X;:1€ Dj(x)}| (5.3)

= fil).
While we previously used the values f;(I) to approximate the best determinization ¢,
we now use them as an approximation of the 1;; to directly compute the impurity.

To complete the formulation of the multi-label entropy, we use one further insight:

if there exists a label I € L such that f;(I) = |D;|, we explicitly know the actual best
determinization d;: it is simply the determinization that assigns [to every data point

x € X;, producing an entropy of 0.
We thus obtain the following approximations for the entropies:

0 if3eL: fi(l) = |Di

H(D;) = _, fi() o fi(D) otherwise
L T o6 (fpyf) - otmervise

The multi-label entropy is then simply the weighted average of the estimated dataset
entropies H(D;).

We proceed with the multi-label formulation of the gini index, which can be derived
similarly. Applying Theorem 2, we obtain that

) 2
G, D) =1-Y <";’i”> . (5.4)

leL

42

5.4 Determinization

We can again estimate the 1;; with the approximation given in Eq. 5.3. However, we
need to be careful since we over-approximate and the value of the sum in Eq. 5.4 can
therefore be greater than 1. In order to keep the impurity non-negative, we thus need to
subtract the sum not from 1, but from its maximal value |L|. Finally, applying the same
insight we had for the entropy yields

0, if A eL:fi(l) = |Di

G(Dy) = f(D\? .
Ll — , otherwise.
- (o) - o

The complete multi-label gini index is then again the weighted average of the estimated
values G (D).

The approximation in Eq. 5.3 is of course very rough and there is no guarantee that it
will be close to the actual values of #;;. For instance, imagine a sub-dataset where eight
data points can be assigned either label 1 or 2, one data point can only be assigned label
1, and one data point can only be assigned label 2. Obviously, the best determinization
assigns either label 1 or label 2 to all eight nondeterministic data points. Thus, the real
values (n1,n;) would be either (0.9,0.1) or (0.1,0.9). In contrast, the approximation
given above produces the values (0.9,0.9) — we inevitably make a relative error of 800%
in one of the values.

Despite being based on rough approximations, multi-label impurity measures prove
to be very useful in practice. Partly, this can be attributed to the fact that the DT
learning process is entirely heuristic anyway, and the approximation errors therefore
do not matter as much. Furthermore, because we do not have to construct the actual
determinizations ¢,;, multi-label impurity measures are often much more efficient than
the maximum frequency approach —especially in comparison to the more precise
version that approximates a determinization for every predicate.

An alternative point of view. Having derived multi-label impurity measures formally,
we now want to point out an alternative, more intuitive point of view that may shed
some light on their internal workings. Let us fix a specific sub-dataset D; with frequency
function f;. Plotting f;/|D;|, i.e. the fraction of data points that can be assigned a specific
single-label, yields a bar chart that may look like the one depicted in Fig. 5.5 (left).

If we now had to construct an impurity measure solely from this bar chart, we might
make the following observations:

1. The impurity should be 0 if all bars have a value of 1, since then every label can be
assigned to every data point.

2. The impurity should be high if there are many bars with low values.

3. Generally, if there are fewer bars the impurity should be lower, because if there
are fewer labels we will probably need fewer splits of the dataset.

This already rules out two simple ideas that come to mind: we cannot use the
reciprocal of the sum of the bars, because this would violate point 2 if there is a great

43

5 Decision Tree Learning for Controller Representation

1.0 1.0 1

0.8 1 0.8

0.6 0.6

0.4+ 0.4

0.24 0.24

0.0- 0.0-

Figure 5.5: Bar chart of the frequency function. The bar chart (left) for a dataset with
labels 1, ...,5 and the error bars indicating the impurity (right).

number of different labels. We also cannot use the reciprocal of the mean of the bars,
since this would not take observation 3 into account. Instead, we could come up with
the following impurity measure that satisfies all three desired properties: we measure
how much is missing from each bar to get a value of 1 and return the sum of these
values. This idea is depicted in Fig. 5.5 (right).

Formalizing this concept yields the following function to measure the impurity of a
sub-dataset:

l;l — |D | (5.5)
=|L| — Z (5.6)

leL |D|

We could then compute the impurity of a predicate as the weighted average of the values
J(D;) for every sub-dataset D;.

Eq. 5.6 already looks surprisingly similar to the function G(D;) of the multi-label gini
index. Indeed, we see that G(D;) is merely a scaled version of J(D;): before computing
the error bars, the bar chart is scaled with the function s(x) = x2, which penalizes
smaller bars more strongly.

With the same idea we can also work towards the multi-label entropy. Consider the
scaling function s(x) = 1+ xlog,(x). We have

)

leL
—Ef ~{o% (o)
- L (o)

44

5.4 Determinization

—s(x) =22

0.8 1

0.6 1

s(x)

04

0.2 ¢ 02+

0 02 04 06 08 1 0 02 04 06 08 1
X X

Figure 5.6: Plots of the scaling functions arising out of multi-label entropy (left) and gini
index (right).

which matches the function H(D;) of the multi-label entropy.

The scaling functions of the multi-label entropy and gini index are plotted in Fig. 5.6.
As previously mentioned, the gini index scaling function especially increases the impu-
rity assigned to small bars. In contrast, the entropy scaling function penalizes bars with
a value of approximately 0.37 the most heavily and assigns small impurity to bars with
very low value. While not quite as intuitive at first glance, this also seems like a valid
approach: small bars mean that only few data points can be assigned a particular label
and we thus only have to separate those few data points. On the other hand, a label that
can be assigned to around 40 percent of the examples means that we might have to split
off a large fraction of the dataset.

5.4.5 Tradeoff between decision tree size and optimality

To conclude the determinization section, we briefly want to mention the tradeoff between
DT size and optimality that is often encountered in practice. By construction, the
determinization algorithms introduced preserve the safety guarantees of the controller —
this is the essential property that we must never violate in any controller representation.
However, there are often additional desirable properties besides safety that we want the
controller to satisfy, such as resource-efficiency or the quality of service, as measured by
some metric [Ash*19b]. We thus want the controller to not only be safe, but furthermore
also optimal with respect to some optimality criteria.

The determinization algorithms we have covered only guarantee the safety of the
determinized controller and throw away much of the nondeterminism that could be
used to also increase the optimality. For example, consider the problem of constructing
an automatic cruise control system, as introduced in [LMT15]. We want to produce a
controller that follows the car in front of it as closely as possible (optimality criterion)
while keeping a minimum safe distance (safety property).

45

5 Decision Tree Learning for Controller Representation

Standard verification tools such as UppaaL Tica [Beh"07] can synthesize a nonde-
terministic controller satisfying the safety property [Lar*18]. To make it also behave
optimally, we have to intelligently choose one of the safe actions for each state, i.e.
determinize the controller, so that it drives as close as possible to the car ahead. How-
ever, when applying for instance the maximum frequency determinization strategy, we
obtain a very small decision tree with only three nodes that simply always deceler-
ates [Ash*20b]. Clearly, this strategy is safe and we have succeeded in training a very
small DT, but it performs very badly regarding the optimality criterion.

Ashok et al. [Ash™19b] have investigated various ideas to learn small, yet still almost
optimal DTs. For instance, they have introduced the various discussed parameters for
the safe pruning and early stopping algorithms that allow keeping some amount of
nondeterminism in the DT. We can of course also determinize the controller optimally
before DT learning, as discussed in Section 5.4.1, with the caveat that the resulting DT
will likely be much larger than if a more sophisticated determinization technique is
applied. Other approaches to retain optimality and make it an integral part of the tree
building process, while keeping tree sizes as small as possible, remain an active area of
further research.

46

6 Implementation

As described in Chapter 4, the algorithms and techniques presented in this thesis have
been implemented in the latest version of the tool dtControl [Ash*20b]. While we
previously reviewed the tool from a user’s perspective, we now have enough theoretical
background to examine it from a developer’s point of view. We start with a brief
discussion of the primary design goals that guided the entire development process.
Afterwards, we give a high-level overview of the software architecture from the system
design perspective, and then describe the details of the individual subsystems and the
object model. Readers who are interested in the concrete implementation are encouraged
to read the extensive developer manual' or directly explore the source code?.

The general high-level structure of dtControl as a number of distinct interacting
subsystems had already been implemented in the initial version of the tool. As part of
this thesis, the DT learning component has been thoroughly redesigned to allow for
much more flexibility and the integration of a variety of new algorithms. Furthermore,
we added support for the probabilistic model checker PRISM [KNP11] to dtControl.

6.1 Design goals

The ability to deal with frequent changes in the requirements is one of the cornerstones
of modern software engineering. While the requirements of academic tools are usually
less prone to change than those of commercial software, it is equally important to keep
the software architecture flexible: often, during the lifetime of an academic product a
variety of new discoveries are made which will need to be integrated with the existing
code. Furthermore, we want to be able to quickly try out new ideas and see whether
they are worthwhile to pursue further from a theoretical perspective.

To make the tool useful to the research community as a whole, it is also essential that
it is easily extensible. Other people might want to tightly integrate it into their existing
workflows, for example by supporting new input and output formats.

Finally, any tool dealing with a large amount of data—in our case controllers with
a size of several hundreds of megabytes —should be efficient. The smallest and most
explainable DT is worth nothing if it cannot be found in a reasonable amount of time.

! Available at the official website of dtControl: https://dtcontrol.model.in.tum.de/
2 Available at https://gitlab.1lrz.de/i7/dtcontrol

47

https://dtcontrol.model.in.tum.de/
https://gitlab.lrz.de/i7/dtcontrol

6 Implementation

«system»
dtControl

DT
learning CLI

service
«subsystem» E O o Updates «subsystem» E
DT Learning > User Interface

. Visualization
DT exporting (5 i
service '
«Subsystem» E :

Benchmarking
service

Benchmarking

Dataset loading
service 9

«subsystem» E

Dataset Management

Figure 6.1: Component diagram showing the subsystem decomposition of dtControl.

6.2 Overview of the software architecture

The functionality of dtControl is distributed among four distinct subsystems, whose
high-level functionality and interaction we briefly describe. The subsystem decompo-
sition is illustrated in the the Unified Modeling Language (UML) [R]JB04] component
diagram in Fig. 6.1.

The heart of the tool is formed by the DT Learning subsystem, which is responsible
for the actual decision tree learning algorithms and representation. It provides a great
deal of different options for training DTs (as covered in Chapter 5) and can export the
learned trees in the DOT and C format.

The decision tree learning itself should undoubtedly be independent of any verification
tool that produces the synthesized controllers. Therefore, all of the Dataset Management
has been extracted into a separate subsystem, which mainly provides functionality for
loading and converting controllers from many different sources such as SCOTS [RZ16],
UrPAAL STRATEGO [Dav*15], and PRISM [KNP11].

The Benchmarking component is responsible for running a set of different given DT
learning configurations on a number of specified controllers. It thus uses both the
functionality provided by the Dataset Management and the DT Learning subsystems.

Finally, the User Interface serves as the main entry point for user interaction with
the tool, in the form of a CLI. Furthermore, once decision trees have been constructed,
dtControl reports several statistics and gives the DOT and C output in a HTML file that
can be inspected by the user.

As shown in Fig. 6.1, the subsystems communicate solely over a few, well-defined
interfaces. This ensures that coupling between subsystems is reduced as much as

48

6.3 Object model

Dataset
DatasetlLoader filename

name
loaded_datasets

X
load_dataset(filename) x_metadata

PN y
y_metadata
load()
UppaalDatasetLoader ScotsDatasetLoader
compute_accuracy(y_pred)
load_dataset(filename) load_dataset(filename) get_unique_labels()

A
|

CSVDatasetLoader

PrismDatasetLoader

SingleOutputDataset

MultiOutputDataset

load_dataset(filename)

load_dataset(filename)

unique_labels

compute_accuracy(y_pred)
get_unique_labels()

unique_labels
tuple_ids

compute_accuracy(y_pred)

get_unique_labels()
get_tuple_ids()

Figure 6.2: Class diagram of the dataset management subsystem.

possible, which means that changes to one subsystem generally do not affect the other
components [SMC74]. For example, we could easily add support for new verification
tools to the dataset management subsystem without making any modifications to the
other components. Similarly, we could easily add a different user interface such as a
desktop GUI without touching any of the core entities and algorithms.

6.3 Object model

With the high-level overview in mind, we now examine the individual subsystems of
dtControl in detail.

6.3.1 Dataset management

The core of the dataset management subsystem is the abstract DatasetLoader class,
which provides the abstract load_dataset (filename) method that loads a controller
from a file and returns its states, actions, and relevant metadata. For efficiency reasons,
we chose NumPy [Oli06] arrays as the primary data structure for this information. Further-
more, the DatasetLoader keeps track of which datasets have already been loaded in the
dictionary loaded_datasets, and stores converted controllers in dtControl’s internal
representation in the file system, which decreases future loading times.

The concrete instantiations of this class are then the dataset loaders responsible for a
specific verification tool, such as the ScotsDatasetLoader. Their implementations vary

49

6 Implementation

widely depending on the file format they need to parse. In order to add support for a
new verification tool, one thus simply has to provide an instantiation of a DatasetLoader
that satisfies the required interface.

The abstract Dataset class is a wrapper for the data returned by a dataset loader. It
also provides some methods convenient for DT learning, such as a procedure to convert
nondeterministic labels to a unique label representation with the label powerset method.
Caching of the result ensures that such a representation is only computed once for every
dataset and thus decreases runtime.

A simple implementation of the abstract methods in the Dataset class is given in the
SingleOutputDataset, which represents controllers with a single output variable. To
keep dtControl flexible and allow for potential future algorithms operating on multi-
output controllers, these are represented separately with the MultiOutputDataset class.
Its most important method is get_tuple_ids(), which converts the multi-output actions
to single tuples that can be used equivalently to SingleOutputDatasets.

An overview of the different classes that make up the dataset management component
is given in the UML class diagram in Fig. 6.2.

6.3.2 Decision tree learning

The central choice that has to be made for the DT learning subsystem is how all of the
different possible configurations of the learning algorithm can be represented in a clean
way. For instance, the first version of dtControl used an inheritance-based approach:
there was one central decision tree class that implemented the main algorithm. To alter
the parameters, one had to extend this class and override the required functionality; e.g.
there was a separate class for DT learning with linear classifiers and a separate class that
implemented the maximum frequency determinization technique. The problem with
this approach is its inflexibility: what if we want a DT that both uses linear classifiers as
well as the maximum frequency technique? We would again have to create a new class
that extends both corresponding DT classes and carefully ensure that it uses the correct
functionality from the respective superclass. This leads not only to an explosion in the
number of classes, but also to possible code duplication to circumvent the problems of
multiple inheritance.

For the newest version of dtControl, we instead chose to follow the well-known
principle of composition over inheritance [Gam*95] and implemented a composition-
based approach that allows for much more flexibility and extensibility. The resulting
design is shown in the UML class diagram in Fig. 6.3, which omits many concrete
implementations of interfaces to avoid unnecessary complexity.

The heart of the DT learning subsystem is the DecisionTree class, which implements
the interface required to be used with the benchmarking component. It provides
functions such as fit(dataset), which trains the DT on a dataset, predict (dataset),
which returns the labels the DT predicts for a dataset, get_stats(), providing several
statistics such as the number of nodes in the tree, as well as print_dot () and print_c(),
which return the DT in a DOT or C representation, respectively. Most of these methods

50

6.3 Object model

BenchmarkSuiteClassifier

name PostProcessingMethod
Determinizer
pre_determinized_labels get_name() run()

— — fit(dataset) —< fit(dataset)
determinize(dataset) predict(dataset) <------ predict(dataset)
is_pre_split() get_stats() get_stats()

print_dot() print_dot()
print_c() print_c()
A
DeterminizinglmpurityMeasure
T DecisionTree
V4 name
Im;tijnr:tilrltl?::;ure early_stopping LabelPreProcessor
check_valid() preprocess(dataset)

calculate_impurity(dataset, split)

C 0..1

preprocess_single_output(dataset)

preprocess_multi_output(dataset)

«interface»
SplittingStrategy

fit(dataset)
A predict(dataset)
. get_stats()
_ «interface» print_dot()
MultiLabellmpurityMeasure .
print_c()
root
Node

«interface»
Split

early_stopping
depth

predict(features)
split(dataset)
print_dot()
print_c()

num_nodes

14

num_inner_nodes
label

— find_split(dataset, impurity_measure)

predict(x)

predict_one(features)
fit(dataset)
check_done(dataset)
print_dot()

print_c()

children

Figure 6.3: Class diagram of the decision tree learning subsystem.

51

6 Implementation

simply delegate the call to the tree’s root node, an instance of the Node class that
represents the actual DT data structure. It has mostly the same attributes as the
DecisionTree class, as well as certain statistics and either a list of child nodes (if it is an
inner node) or a label (if it is a leaf node).

The considered predicates in the DT learning algorithm are provided by several
splitting strategies of type SplittingStrategy, implementations of which include the
AxisAlignedSplittingStrategy and the LinearClassifierSplittingStrategy. The
predicates they return are of type Split and provide methods to determine the child
node an example belongs to and to partition a dataset into the sub-datasets that can be
used to continue the learning process.

A DecisionTree furthermore has an instance of an ImpurityMeasure, which can
compute the impurity for a given dataset and predicate. There exist both multi-label
impurity measures, such as the multi-label entropy, as well as determinizing impurity
measures, such as standard entropy. Determinizing impurity measures furthermore
have a Determinizer that determines with which labels the impurity is computed. This
can for example be the LabelPowersetDeterminizer, if all nondeterminism should be
preserved, or the MaxFreqDeterminizer, which can be used in conjunction with early
stopping.

If determinization before DT learning is wanted, an optional LabelPreProcessor can
be supplied to the decision tree. This interface, which is for example implemented by
the NormPreProcessor, allows for the determinization of a dataset by returning a new
dataset with modified labels.

Finally, a PostProcessingMethod both has a BenchmarkSuiteClassifier and satis-
ties this interface itself. Its most important method is run(), which runs the post-
processing technique on the classifier. This interface is currently only implemented by
the SafePruning class, which transforms a trained DecisionTree using the safe pruning
algorithm.

This composition-based software architecture is clearly much more flexible than an
approach based on inheritance. For instance, we can now combine splitting strategies and
determinization approaches arbitrarily, simply by setting the corresponding attributes
in the DecisionTree class. It also easily extensible: if we want to add a new impurity
measure or splitting strategy, we just have to provide a class that implements the
respective interface.

6.3.3 Benchmarking

The benchmarking subsystem is relatively simple. Its core class is the Benchmark-
Suite, which has a variety of configuration attributes such as the file the benchmark is
saved to, the folder the resulting DTs are saved to, and an optional timeout parameter.
Furthermore, the class provides methods to add datasets to a benchmark and then
execute a benchmark with given classifiers on these datasets. The classifiers need not
necessarily be DecisionTrees, they just have to satisfy the BenchmarkSuiteClassifier
interface.

52

6.3 Object model

The results of a benchmark are saved in an internal JSON format, which is processed
by the TableController to update the HTML file that is part of the user interface.

6.3.4 User Interface

Finally, the user interface subsystem consists mainly of the CLI, which is a script that
parses user input and runs the corresponding benchmarks using the benchmarking
component. Furthermore, the HTML, CSS, and JavaScript files for the benchmark output
belong to the user interface.

53

7 Evaluation

In this chapter, we examine how well the DT learning techniques we have covered per-
form in practice. We first give a general overview of our findings on a variety of case stud-
ies on controllers obtained from either the probabilistic model checker PRISM [KNP11]
or the controller synthesis tools SCOTS [RZ16] or UrrPaAL STRATEGO [Dav*15]. We split
our discussion into two sections due to significant differences between these case studies:
the former controllers arise out of standard model checking of MDPs, are deterministic,
and include many categorical variables, while the latter arise out of controller synthesis
for cyber-physical systems (CPS), are often nondeterministic, and only consist of nu-
meric variables. Afterwards, we present a more detailed comparison of our results with
different choices for the parameters of the decision tree learning algorithm. Some of
our results for CPS have previously been reported in [Ash™20b]. All experiments were
conducted on a machine with an Intel Xeon W-2123 processor with a clock speed of
3.60GHz and 64 GB of RAM.

7.1 Overall results

7.1.1 Model checking of Markov decision processes

We give a brief description of the case studies on which we ran our methods and subse-
quently present our results in comparison to other controller representation techniques.

Case studies

We evaluated our algorithms on the following case studies, most of which are available
in the PRISM benchmark suite [KNP12]:

¢ CSMA/CD communication protocol. The CSMA /CD (Carrier Sense, Multiple
Access with Collision Detection) protocol can be employed in Ethernet technology
for media access control. We investigate the probabilistic model introduced
by [Kwi*04].

¢ FireWire root contention protocol. The FireWire root contention protocol selects
a leader as part of the Tree Identify Protocol of the IEEE 1394 High Performance
Serial Bus, which is used for the transportation of video and audio signals in
multimedia networks. A PRISM model of the protocol is given in [KNSO03].

* Leader. The problem of choosing a leader in a ring of processors, as introduced
in [IR90].

55

7 Evaluation

* Mars exploration rovers (mer). A probabilistic model of resource sharing among
threads in mars rovers [Fenl14].

¢ WLAN. The WLAN (Wireless Local Area Network) protocol uses a variant of the
CSMA /CA (Carrier Sense, Multiple Access with Collision Avoidance) scheme for
media access control. We examine the probabilistic model of [KNS02].

¢ Zeroconf. A randomized protocol for the dynamic configuration of IPv4 addresses,
a PRISM model of which is given in [Kwi*06].

We used PRISM to construct an almost-sure winning strategy for the MDPs given by
the case studies introduced above. This winning strategy is a deterministic controller
where the state variables corresponds to the variables in the implicit PRISM model
description and the actions consist of both a module and an action performed by that
module [Ash*19a]. The controllers we obtain are all deterministic and mostly dominated
by categorical variables, such as protocol states, but usually also have a few numeric
variables, as for example clocks.

Results

Table 7.1 lists the number of nodes in the DTs constructed with our most performant
and explainable method — attribute value grouping with varying tolerance settings and
entropy as impurity measure — on the case studies introduced above. A comparison of
our other methods is provided in Section 7.2.1. We compare our approach to the results
obtained with other controller representation techniques, namely BDDs and the DTs
with linear classifiers from [Ash*19a], which use the Good/Bad data representation from
Section 5.1.4 and treat categorical data as numeric.

The BDDs were constructed with the Python library dd! and minimized by calling
reordering heuristics until convergence. The numbers we report from [Ash™19a] are the
overall best results they have achieved on the case studies. In order to provide a fair
comparison, we converted the number of inner nodes in the DTs that [Ash*19a] report
to the number of total nodes?. The results of our own method can be found in the AVG
column of the table.

First, we notice that our decision tree learning algorithm is a very effective technique
to concisely represent controllers arising out of PRISM model checking. Compared to a
naive lookup table representation, our algorithm results in a size reduction of more than
96% on all of our case studies. On the csma and firewire examples, we obtain trees
with only a double-digit number of nodes.

Comparing to the previous decision tree learning approach of Ashok et al. [Ash*19a],
we find that attribute value grouping produces smaller trees by a factor of about 3 on
all but one dataset. Therefore, it is apparent that our different data representation in
combination with techniques specific to categorical features has a positive impact on the
size of the learned decision trees.

Ihttps://pypi.org/project/dd/
2Gince their trees are binary, the number of total nodes is two times the number of inner nodes plus one.

56

https://pypi.org/project/dd/

7.1 Qwerall results

Table 7.1: Results on PRISM case studies. We report the number of states (i.e. entries in
the lookup table), the number of nodes with a BDD representation, the number of nodes
obtained with attribute value grouping with varying tolerance values and entropy, and
the best results from [Ash*19a].

Case study |States] BDD AVG [Ash*19a]

csma2_4 7958 1,236 41 83
firewire_abst 845 52 9 17
firewire_impl 6,953 1,721 71 145
leader4 3,168 1,240 119 91
mer30 67,092 874 115 253
wlan2 24514 1,220 201 413
zeroconf 29,814 1,893 367 661

{fast_start,
start_fast,
start_slow,
slow_start}

{fast_slow,
slow_fast,
slow_slow }

start_start fast_fast

Figure 7.1: Decision tree learned for the firewire_abst example.

BDDs are also a more efficient controller representation than naive lookup tables.
However, the DT-based representations always perform much better than BDDs and
additionally have the potential to be explainable, since they do not operate on a binary
level.

To illustrate this last point, consider the firewire_abst example. Applying our
algorithm to the rather incomprehensible list of 845 state-action pairs produced by
PRISM yields the small and easily understandable decision tree depicted in Fig. 7.1. In
this representation, the semantics of the controller are immediately obvious: for many
protocol states it simply always picks the move action, for others, it picks either move or
time depending on the clock variable, and round is only chosen if the protocol state is
start_start.

57

7 Evaluation

7.1.2 Controller synthesis for cyber-physical systems
Case studies

We evaluated our methods on ten different case studies arising out of controller synthesis
for CPS with the tools SCOTS or UPPAAL STRATEGO:

¢ Cartpole. This is a standard example in CPS, in which a cart must balance an
inverted pendulum. We consider the model given in [Jag*18].

¢ Temperature control. The problem of regulating the temperature in connected
rooms using the available heaters. We investigate a model with two rooms and
one heater [Girl2] and a model with ten rooms and two heaters [JZ17].

¢ Flight dynamics. We consider models describing the flight dynamics of a 3-DOF
tandem rotor helicopter [Jag*18] and an aircraft landing maneuver [RWR15].

¢ Cruise control. The problem of following a car in front as closely as possible. We
examine the model introduced in Section 5.4.5 [LMT15] and an example involving
a truck and a trailer [KZ19].

¢ DC-DC boost converter. The controller for a DC-DC boost converter from [RZ16].

* Vehicle. The path planning problem for the bicycle dynamics of a vehicle intro-
duced in [RZ16] and discussed in Chapter 1.

¢ Traffic planning. A model of a road traffic planning system [SZ19].

The synthesized controllers for all ten case studies consist only of numeric variables.
For all but the aircraft and vehicle datasets, the verification tools yield nondetermin-
istic controllers. Half of the examples have multiple output variables, while the other
half only has a single output variable, as indicated in the table below.

Results

Table 7.2 shows the overall best results we have achieved on the CPS case studies. We
distinguish between the nondeterminism-preserving case, in which the smallest trees
were obtained with different techniques for choosing oblique predicates and entropy
as impurity measure, and the deterministic case, where multi-label entropy with early
stopping always performed the best; sometimes with and sometimes without oblique
predicates.

We compare our algorithm against BDDs, which were either again constructed with
the dd Python library and minimized using reordering heuristics until convergence, or
directly obtained from SCOTS. The deterministic BDDs were generated from a controller
pre-determinized with minimum norm. Due to the different tools and reordering
heuristics that were available, for cruise and truck_trailer the deterministic BDDs
were actually worse than the nondeterministic BDDs; to provide a fair comparison, we
report the lower number.

58

7.1 Qwerall results

Table 7.2: Results on SCOTS and UrPAAL STRATEGO case studies. We report the overall best
results for our nondeterminism-preserving and determinizing methods in comparison
to BDDs. “c0” indicates failure to produce a result within three hours; “n/a” denotes
that the approach is not applicable, since the controller is already deterministic.

Case study States| Nondeterministic Deterministic
BDD DT BDD DT
Single-output
cartpole 271 363 183 169 7
tworooms 40,311 269 15 158 7
helicopter 280,539 1,753 3,753 1,572 123
cruise 295,615 1,815 747 1,815 3
dcdc 593,089 o) 139 440 5
Multi-output
tenrooms 26,244 328 133 130 7
truck_trailer 1,386,211 10,574 338,389 10,574 20,781
traffic 16,639,662 %) 8,953 (o) 97
vehicle 48,018 4,087 9,771 n/a n/a
aircraft 2,135,056 177,332 815,045 n/a n/a

It is again apparent that DTs are an effective data structure to represent controllers
concisely. In the nondeterminism-preserving case, the number of nodes in the DT is
usually comparable to the number of nodes in the BDD; sometimes higher, sometimes
lower. However, we were always able to compute a DT for every dataset, while BDDs
timed out on dcdc and traffic. Note again that a small BDD is desirable from an
efficiency perspective, but—in contrast to a small DT — does not aid with understanding
the controller.

The effectiveness of DT learning is greatly amplified when we allow determinization:
in this case, our algorithms manage to learn DTs with fewer than ten nodes on more
than half of our case studies, in which we initially started with a lookup table of up to
almost 600,000 entries. These trees are so small that they can easily be drawn on a single
sheet of paper! For helicopter and traffic the DT is slightly larger with about 100
nodes — which is still a size reduction of more than 99.9% from the original controller.
The only example where DTs perform not quite as well is truck_trailer, where we
can nevertheless reduce the size of the naive lookup table by more than 90%. On all
but this last dataset, determinized DTs are also far more concise representations than
determinized BDDs.

We want to exemplify the explainability of the DT representation and the resulting
benefits with the tenrooms example, which has previously been discussed in [Ash™20b].

59

7 Evaluation

Y
N\
\\False

Figure 7.2: The decision tree learned with multi-label entropy and axis-aligned predicates
on tenrooms.

The original controller for tenrooms output by SCOTS is a lookup table with 26,244
states and multiple potential actions per state. This is a large, inefficient, and obscure
representation that makes it impossible to understand what the controller is actually
doing.

In contrast, applying DT learning with multi-label entropy and axis-aligned splits,
we obtain the extremely small decision tree with just seven nodes depicted in Fig. 7.2.
Clearly, this representation is much more succinct and efficient: instead of having to
store thousands of lookup table entries in memory, we now only have to store a small
chain of if-then-else statements corresponding to the tree structure.

Furthermore, the concise DT representation allows us to actually understand the
internal workings of (a determinized version of) the controller. We see that it simply
compares the temperature in rooms two and five — the rooms with the heaters —against
a threshold; if the temperature is below that threshold, it turns the respective heater on,
if it is above the threshold, it turns the heater off. This immediately makes intuitive sense,
and we have thus gained confidence in the correctness of the model and the controller,
which goes beyond merely relying only on the output of some hard-to-understand
verification process.

Additionally, the DT also reveals that temperature measurements are only needed
in rooms two and five—we can therefore improve upon the implementation of the
controller and only install temperature sensors in those two rooms.

We thus have come from a large, inefficient, and obscure controller representation as
a lookup table to a small, memory-efficient, and explainable decision tree representation
that helps us understand the controller and reduce its deployment cost by improving
upon its implementation.

60

7.2 Detailed comparison of decision tree learning algorithms

Table 7.3: Number of nodes obtained with different predicates on PRISM controllers.

Case study Single Multi LogReg OC1 AVG

csma?2_4 41 51 45 63 48
firewire_abst 15 18 18 18 9
firewire_impl 79 94 95 93 77
leader4 121 174 174 174 154
mer30 115 202 202 202 158
wlan2 265 272 275 265 222
zeroconf 379 370 341 285 367

7.2 Detailed comparison of decision tree learning algorithms

7.2.1 Model checking of Markov decision processes

Since the PRISM controllers we work with are all deterministic, there are only two main
parameters of the decision tree learning algorithm: the considered predicates and the
impurity measure.

Predicates. We first set entropy as the impurity measure for our initial experiments
and compare the following algorithms: single-comparison predicates in combination
with axis-aligned predicates (Single), multi-comparison predicates with axis-aligned
predicates (Multi), multi-comparison predicates with either logistic regression (LogReg)
or OC1 (OC1), and attribute value grouping with tolerance 0 in combination with
axis-aligned predicates (AVG). The effect of other tolerance values on attribute value
grouping will be discussed shortly. The number of nodes in the resulting DTs is listed
in Table 7.3.

We see that the different DT algorithms all perform roughly equally well. In many
cases, the simple single-comparison predicates produce the trees with the smallest
number of nodes. However, we find that this number is slightly misleading since
multi-comparison predicates inherently produce more new nodes with a single split
than single-comparison predicates; inspecting the trees shows that the multi-comparison
approach often leads to more explainable trees.

Oblique predicates can sometimes further reduce tree sizes. However, on the PRISM
controllers the effects are rather weak, which can partly be attributed to the fact that
categorical variables dominate in the datasets. Recall that we ignore categorical variables
in oblique splits for explainability reasons.

As expected, attribute value grouping always performs strictly better than standard
multi-comparison predicates. The resulting decision trees are often the easiest to
interpret. To illustrate, compare the trees for firewire_abst with single-comparison
predicates and standard multi-comparison predicates in Fig. 7.3 to the tree obtained

61

7 Evaluation

clock <=108.5

Figure 7.3: Decision trees with multi-comparison (top) and single-comparison (bottom)
predicates for firewire_abst.

with attribute value grouping depicted in Fig. 7.1. Clearly, the latter is much more
concise and easier to grasp.

The effects of different tolerance values T on the attribute value grouping algorithm
are shown in Table 7.4. We see that a value of T = 107>, which is merely used to
handle floating point inaccuracies in the impurity calculation, only produces a different
tree for the mer30 example. A higher tolerance value can help to build smaller trees,
but sometimes also increases tree size. Interestingly, the case where T = co, which
guarantees that branches are merged until the resulting predicate is binary, often leads
to the fewest number of nodes.

Impurity measures. The second parameter we need to consider is the impurity mea-
sure used to determine the quality of predicates. Table 7.5 gives the results of attribute
value grouping in combination with different impurity measures on the case studies.
We chose to provide the numbers for attribute value grouping since, as outlined above,
it appears to us as the most sensible default predicate mechanism; the outcome of the
same benchmark with other predicates is comparable.

Table 7.5 clearly shows that probabilistic impurity measures such as entropy and
gini index perform far better than non-probabilistic impurity measures like sum- and
max-minority. Furthermore, we see that the entropy ratio is strictly worse than the

62

7.2 Detailed comparison of decision tree learning algorithms

Table 7.4: Effects of different tolerance values on the performance of attribute value
grouping on PRISM case studies.

Casestudy 7=0 =10 7=02 T=00

csma2_4 48 48 41 41
firewire_abst 9 9 10 11
tirewire_impl 77 77 71 71
leader4 154 154 120 119
mer30 158 149 120 115
wlan2 222 222 232 201
zeroconf 367 367 379 379

Table 7.5: Number of nodes obtained with different impurity measures and attribute
value grouping on PRISM models.

Case study Entropy Entropy ratio Gini index Sum minority Max minority
csma2_4 48 89 43 579 1,412
firewire_abst 9 18 12 110 36
firewire_impl 77 124 77 442 126
leader4 154 207 150 547 1,767
mer30 158 213 165 7,557 6,797
wlan2 222 416 220 495 3,723
zeroconf 367 456 374 7,243 14,624

standard entropy. As discussed in Section 5.3.2, this is expected, since the main reason
for choosing the entropy ratio over just the entropy is normally to prevent overfitting.
On the other hand, gini index and entropy perform similarly well and are both viable
choices. Note that the twoing rule is not applicable in this scenario, as it is limited to
binary predicates.

We also experimented with our modified version of the AUC impurity measure,
introduced in Section 5.3.7. As previously noted, one of its drawbacks is that it is very
expensive to compute. Indeed, it took more than 13 minutes to build a tree with AUC
for the small firewire_abst controller —in comparison to roughly 0.2 seconds with the
standard impurity measures. On the one hand, this is due to the fact that AUC requires
the training of several linear classifiers for every considered predicate, which simply
is computationally demanding. On the other hand, we notice that it also produces
unnecessarily large trees, which in turn again increases the computational cost: we
obtain 716 nodes in the tree for firewire_abst.

63

7 Evaluation

Table 7.6: Effects of different impurity measures with axis-aligned predicates on decision
tree sizes for synthesis of CPS. “co” indicates failure to produce a result within three
hours.

Casestudy Entropy Entropy ' Gini ‘ Su'm ' Max Twoing
ratio index minority —minority rule
Single-output
cartpole 253 257 255 259 277 253
tworooms 27 37 27 39 2,627 27
helicopter 6,347 7,363 7,177 31,835 125,727 6,429
cruise 987 1,161 1,065 11,131 89,503 1,043
dcdc 271 391 275 o0 2,429 277
Multi-output
tenrooms 17,297 15,951 17,297 18,565 26,751 17,415
truck_trailer 338,389 348,959 312,741 442,013 561,083 316,457
traffic 12,573 o 16,627 276,067 o 15,319
vehicle 13,237 15,677 13,135 32,271 39,129 13,109
aircraft 913,857 932,625 923,709 oo 2,242,773 922,727

Why does AUC not work in our scenario? There are two factors that come into play:
tirst, the impurity measure tries to estimate the linear separability of the sub-datasets
resulting from a predicate. However, since many features in the examples are categorical
and we only use oblique splits with numeric features because of explainability reasons,
the measure itself is not that meaningful in our context. Second, we conjecture that our
approach based on one-versus-the-rest classification, which we adopted due to our data
representation, just is not well-suited as an impurity measure in general.

7.2.2 Controller synthesis for cyber-physical systems

Impurity measures. Similar to before, our experiments suggest that entropy is one of
the strongest impurity measures overall in the case of controllers obtained from CPS
synthesis. To illustrate, we list the number of nodes when learning DTs with axis-aligned
predicates, no determinization, and varying impurity measures in Table 7.6.

The table clearly shows that sum- and max-minority perform far worse than the
probabilistic impurity measures on many datasets and are overall not competitive.
Entropy, gini index, and twoing rule usually perform similarly well, although entropy is
slightly better in a number of cases. As expected, the entropy ratio is overall somewhat
worse. We again encountered the same performance issues with AUC as before, and the
numbers we could compute were not promising, which is why we did not include this
impurity measure in the table.

64

7.2 Detailed comparison of decision tree learning algorithms

Table 7.7: Number of nodes in the DTs produced by different predicates with entropy on
controller synthesis case studies when retaining nondeterminism. “co” indicates failure
to produce a result within three hours.

Case study Axis LinSVM LogReg OC1
Single-output

cartpole 253 251 199 183
tworooms 27 27 15 23
helicopter 6,347 5,789 3,753 00
cruise 987 1,085 783 747
dcdc 271 279 139 179
Multi-output

tenrooms 17,297 133 147 4,525
truck_trailer 338,389 00 o0 oo
traffic 12,573 1) 8,953 %)
vehicle 13,237 13,183 10,389 9,771
aircraft 913,857 co 815,045 00

Now that we have established which impurity measure to use, we can examine the
effect of oblique predicates and determinization strategies.

Preserving nondeterminism. In the case of not determinizing the controllers, we
need to compare the performance of our different approaches to generate oblique
predicates. We thus list the number of nodes obtained with the following algorithms
in Table 7.7: standard axis-aligned predicates (Axis), linear SVMs (LinSVM), logistic
regression (LogReg), and OC1 (OC1).

Clearly, oblique predicates are an effective way to reduce tree sizes on controllers
dominated by numeric variables: DTs with oblique splits perform strictly better than
those with only axis-aligned splits. However, the resulting reduction in the number of
nodes varies from dataset to dataset. For instance, on tenrooms, oblique predicates can
achieve a reduction of about 99%, on tworooms and dcdc, tree sizes are roughly halved,
and the effect on cruise is much less pronounced.

There is no single strategy for generating oblique predicates that is superior on every
example, although logistic regression and OC1 often perform comparatively well. We
also notice that computing oblique predicates can be rather demanding, especially in
the case of OC1 and linear SVMs.

Determinizing. We first compare the different determinization techniques with only
axis-aligned predicates. Table 7.8 reports the number of nodes when determinizing with
minimum norm before DT learning (MinNorm) and when using safe pruning / early

65

7 Evaluation

stopping (ES). We also include the effects of combining early stopping with maximum
frequencies, either with the approximation introduced in Section 5.4.4 (MaxFreq) or
without (MaxFreg-exact), and with multi-label entropy (Multi-label).

While all determinization techniques greatly reduce tree sizes, simply determinizing
before DT learning is clearly not as effective as the other approaches. Once we integrate
determinization into the actual DT learning algorithm with early stopping, we can
produce a DT with fewer than 20 nodes on more than half of the datasets. Taking
determinization into account when computing impurities further decreases tree sizes,
as shown in the last three columns. As expected, the exact computation of maximum
frequencies performs better than the approximation, but is more computationally ex-
pensive and cannot always produce a result within three hours. Multi-label entropy is
clearly the overall best determinization approach as it is always better than or equally
good as the other techniques.

The results of combining determinization with oblique predicates generated by logistic
regression are listed in Table 7.9. The effects are overall less pronounced than in the
nondeterminism-preserving case; probably because many of the DTs were already very
small without oblique predicates. On the larger truck_trailer and traffic datasets,
allowing linear splits did improve our results quite a bit—at least for maximum
frequencies and multi-label entropy —although oblique predicates can also have a
negative effect in some cases.

66

7.2 Detailed comparison of decision tree learning algorithms

Table 7.8: Effects of different determinization methods with axis-aligned predicates
and entropy on tree sizes in controller synthesis case studies. “co” indicates failure to

produce a result within three hours.

Case study MinNorm ES MaxFreq MaxFreg-exact Multi-label

Single-output

cartpole 111 11
tworooms 15 7
helicopter 1,353 447
cruise 563 3
dcdc 21 19
Multi-output

tenrooms 5,407 7
truck_trailer 190,833 49,431
traffic 1,379 327

11
9
229

43,195
195

9 7

7 7
185 123
3 3
oo 5
7 7
00 31,499
00 151

Table 7.9: Effects of different determinization methods with logistic regression and

entropy on tree sizes in controller synthesis case studies.

produce a result within three hours.

“" 4

oo” indicates failure to

MinNorm ES MaxFreq MaxFreq-exact Multi-label
Case study

+ LogReg + LogReg + LogReg + LogReg + LogReg
Single-output
cartpole 77 7 13 7 7
tworooms 9 9 7 7 7
helicopter 1,051 437 267 207 127
cruise 393 3 3 3 3
dcdc 21 19 9 (oS 7
Multi-output
tenrooms 55 7 19 7 7
truck_trailer 61,775 () 25,221 oo 20,781
traffic 00 1,391 159 00 97

67

8 Future Work

We now briefly examine possible directions for future research. We first consider how
the decision tree learning algorithm itself might be improved, and then suggest potential
additions to the tool dtControl that could make working with decision trees in practice
much easier.

8.1 Improving decision tree learning

Globally optimal trees. All DT learning algorithms considered in this thesis are
variants of the standard top-down, recursive algorithm used in e.g. CART [Bre*84],
ID3 [Qui86], and C4.5 [Qui93]. A major drawback of this approach is its greedy search
strategy, which immediately picks the predicate with lowest impurity at every node. It
is easy to see that this procedure will often get stuck in local minima of the search space
and thus result in globally sub-optimal trees.

One approach to possibly circumvent this issue is the introduction of a lookahead:
instead of immediately picking the predicate with lowest impurity at every node, the
algorithm could conduct a more extensive search by first exploring how well the best
predicates for its children would perform. This idea has for example been investigated
in [EMO03; Bra*18].

A different approach is based on evolutionary algorithms, e.g. [LL02, Ch. 1], which have
been used in different ways in DT learning [Bar*12]. Their randomized nature guarantees
a robust global search, but could also pose a challenge in controller representation, since
we need to guarantee overfitting of the training data.

Predicates. The predicates for numeric features we have considered have been limited
to standard axis-aligned splits and oblique predicates. It might be fruitful to allow
more expressive predicates involving nonlinear combinations of features to obtain even
smaller decision trees. For instance, Ashok et al. [Ash*19b] show that crafting predicates
from domain knowledge —in their case kinematic equations — can significantly reduce
tree sizes. A potential starting point could be the work of Akmese [Akm19], who uses a
grammar-based approach for the automatic generation of rich predicates.

Optimality. As discussed in Section 5.4.5, the determinization techniques we have
introduced often suffer from the drawback that they produce non-optimal controllers.
The question how optimality can be preserved, while still keeping the decision trees
small and explainable, is an ongoing research issue. For instance, we could imagine that

69

8 Future Work

some sort of refinement procedure that allows to interactively expand nodes to increase
the amount of nondeterminism in combination with our determinization techniques
could be a worthwhile pursuit. Additionally, one could try to adapt techniques from
standard multi-label machine learning, such as PPT [Rea08] or HOMER [TKV08], which
try to keep as many labels as possible by design, to the controller representation problem.

8.2 Extending dtControl

Visualization. The DOT format dtControl currently outputs is well-suited for the
visual inspection of small decision trees. However, once DT sizes reach several hundred
nodes, a more interactive way to visualize the trees would be desirable. For example,
the ability to expand or collapse certain nodes of the tree would make it much easier to
get an overview of how the DT operates. Similarly, the tool could highlight important
nodes, i.e. nodes with large corresponding sub-datasets, and deemphasize nodes only
applicable to a few states of the controller. Other ideas for the visualization of large
decision trees have for example been presented in [NHSO00].

Input and output formats. To facilitate the usage of dtControl and make it suitable
for a wider range of applications, support for many other verification tools, such as
pFaces [KZ19], QUEST [JZ17], CoSyMA [MGG13], or STorM [Deh*17] could be added to
the tool. It would also be interesting to investigate the performance of our algorithms
in the domain of program synthesis, where DTs have previously been used for the
representation of piecewise functions [NSM16]. To this end, dtControl would for
example need to provide support for the program synthesis framework developed
in [NSM16]. Furthermore, additional output formats such as VHDL could simplify the
implementation of the controllers produced by the tool.

Performance improvements. Although dtControl already is relatively performant, it
still often needs several hours to learn decision trees for large controllers. To improve its
efficiency, one could for example parallelize the tree building process and investigate
whether there is room for optimization in the current implementation.

70

9 Conclusion

We have investigated a variety of techniques for controller representation with decision
trees. We first demonstrated how the controller representation problem can be framed as
a classification task, which allows for the usage of standard DT learning algorithms from
the field of machine learning. However, fundamental differences between the verification
and the machine learning setting made it necessary to adapt those algorithms to ensure
that the resulting decision trees retain the safety guarantees of the controller.

We then examined the three main building blocks of the DT learning algorithm in
detail: predicates partition the controller into several sub-controllers and make up the
nodes of the decision tree. Impurity measures are used to evaluate the quality of predicates
and select the best one at every node. Finally, various determinization techniques aim
to reduce tree sizes by representing only a determinized version of the controller that
allows a subset of the safe actions for every state.

Our results on numerous case studies demonstrate the effectiveness of decision trees
for controller representation in general and our approach to DT learning in particular.
Novel techniques for dealing with categorical state variables and new determinization
approaches allow us to obtain DTs that are tremendously smaller than naive lookup
tables and also perform significantly better than BDDs. Additionally, we have seen that
the resulting decision trees are easily explainable as they often capture the semantics
of the underlying system, which allows for understanding, validating, and potentially
correcting the mathematical model.

All algorithms and techniques presented in this thesis are available in latest version
of the open-source tool dtControl, which supports the easy conversion of controllers
from a variety of formal verification tools to a decision tree representation in either the
DOT format or as C code. As shown in Chapter 6, the new software architecture we
developed for the tool is highly flexible and easily extensible, in that it allows for the
straightforward integration of new algorithms and verification tools.

We anticipate that the decision tree learning algorithms we have covered and their
implementation in the easy-to-use tool dtControl will allow a wider audience of re-
searchers and practitioners of formal verification to represent their controllers concisely.
Not only will this simplify the implementation of these controllers, but the understand-
ing that can be gained from the decision tree representation also has the potential to help
in validating and improving upon the underlying model. We expect that these advances
will considerably facilitate the development of safe and reliable computer systems in the
future.

71

Acronyms

ADD Algebraic Decision Diagram

AUC Area Under Receiver-Operator Curve
BDD Binary Decision Diagram

CLI Command-Line Interface

CPS Cyber-Physical System

DT Decision Tree

MDP Markov Decision Process

SVM Support Vector Machine

UML Unified Modeling Language

73

Bibliography

[AD90]

[Akm19]

[Alj*09]

[Ash*19a]

[Ash*19b]

[Ash*20a]

[Ash*20b]

R. Alur and D. L. Dill. “Automata For Modeling Real-Time Systems”. In:
Automata, Languages and Programming, 17th International Colloquium, ICALP90,
Warwick University, England, UK, July 16-20, 1990, Proceedings. Ed. by M.
Paterson. Vol. 443. Lecture Notes in Computer Science. Springer, 1990,
pp- 322-335. 1sBN: 3-540-52826-1. por: 10.1007/BFb0032042.

S. M. Akmese. “Generating Richer Predicates for Decision Trees”. Bachelor’s
Thesis. Technical University of Munich, 2019.

H. Aljazzar, M. Fischer, L. Grunske, M. Kuntz, F. Leitner-Fischer, and S.
Leue. “Safety Analysis of an Airbag System Using Probabilistic FMEA and
Probabilistic Counterexamples”. In: QEST 2009, Sixth International Conference
on the Quantitative Evaluation of Systems, Budapest, Hungary, 13-16 September
2009. IEEE Computer Society, 2009, pp. 299-308. 1sBN: 978-0-7695-3808-2.
DpOI: 10.1109/QEST. 2009 .8. URL: https://ieeexplore.ieee.org/xpl/
conhome/5290656/proceeding.

P. Ashok, T. Brazdil, K. Chatterjee, J. Kfetinsky, C. H. Lampert, and V.
Toman. “Strategy Representation by Decision Trees with Linear Classifiers”.
In: Quantitative Evaluation of Systems, 16th International Conference, QEST
2019, Glasgow, UK, September 10-12, 2019, Proceedings. 2019, pp. 109-128. por:
10.1007/978-3-030-30281-8_7.

P. Ashok, J. Kfetinsky, K. G. Larsen, A. L. Coént, J. H. Taankvist, and M.
Weininger. “SOS: Safe, Optimal and Small Strategies for Hybrid Markov
Decision Processes”. In: Quantitative Evaluation of Systems, 16th International
Conference, QEST 2019, Glasgow, UK, September 10-12, 2019, Proceedings. 2019,
pp. 147-164. por: 10.1007/978-3-030-30281-8_9.

P. Ashok, M. Jackermeier, P. Jagtap, J. Kfetinsky, M. Weininger, and M.
Zamani. “Demo: dtControl: Decision Tree Learning Algorithms for Con-
troller Representation”. In: 23rd ACM International Conference on Hybrid
Systems: Computation and Control (HSCC '20), April 22—24, 2020, Sydney,
NSW, Australia. ACM, New York, NY, USA, 2020. 1sBN: 978-1-4503-7018-9.
DOIL: 10.1145/3365365.3383468.

P. Ashok, M. Jackermeier, P. Jagtap, J. Kfetinsky, M. Weininger, and M.
Zamani. “dtControl: Decision Tree Learning Algorithms for Controller
Representation”. In: 23rd ACM International Conference on Hybrid Systems:
Computation and Control (HSCC "20), April 22—24, 2020, Sydney, NSW, Aus-

75

https://doi.org/10.1007/BFb0032042
https://doi.org/10.1109/QEST.2009.8
https://ieeexplore.ieee.org/xpl/conhome/5290656/proceeding
https://ieeexplore.ieee.org/xpl/conhome/5290656/proceeding
https://doi.org/10.1007/978-3-030-30281-8_7
https://doi.org/10.1007/978-3-030-30281-8_9
https://doi.org/10.1145/3365365.3383468

Bibliography

[Bah*97]

[Bar*12]

[Beh*07]

[Bis07]

[Bra*15]

[Bra*18]

[Bre*84]

[Bre01]

tralin. ACM, New York, NY, USA, 2020. 1sBN: 978-1-4503-7018-9. por: 10.
1145/3365365.3382220.

R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo,
and F. Somenzi. “Algebraic Decision Diagrams and Their Applications”. In:
Formal Methods in System Design 10.2/3 (1997), pp. 171-206. por: 10.1023/A:
1008699807402.

R. C. Barros, M. P. Basgalupp, A. C. P. de Leon Ferreira de Carvalho, and
A. A. Freitas. “A Survey of Evolutionary Algorithms for Decision-Tree
Induction”. In: IEEE Trans. Systems, Man, and Cybernetics, Part C 42.3 (2012),
pp- 291-312. por: 10.1109/TSMCC.2011.2157494.

G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and D. Lime.
“UPPAAL-Tiga: Time for Playing Games!” In: Computer Aided Verification,
19th International Conference, CAV 2007, Berlin, Germany, July 3-7, 2007, Pro-
ceedings. Ed. by W. Damm and H. Hermanns. Vol. 4590. Lecture Notes in
Computer Science. Springer, 2007, pp. 121-125. 1sBN: 978-3-540-73367-6. DOI:
10.1007/978-3-540-73368-3_14. URL: -.

C. M. Bishop. Pattern recognition and machine learning, 5th Edition. Information
science and statistics. Springer, 2007. 1sBN: 9780387310732. URL: http://wuw.
worldcat.org/oclc/71008143.

T. Brazdil, K. Chatterjee, M. Chmelik, A. Fellner, and J. Ktetinsky. “Coun-
terexample Explanation by Learning Small Strategies in Markov Decision
Processes”. In: Computer Aided Verification - 27th International Conference,
CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part 1. Ed.
by D. Kroening and C. S. Pasareanu. Vol. 9206. Lecture Notes in Com-
puter Science. Springer, 2015, pp. 158-177. 1sBN: 978-3-319-21689-8. por1:
10.1007/978-3-319-21690-4_10.

T. Brazdil, K. Chatterjee, J. Kfetinsky, and V. Toman. “Strategy Representa-
tion by Decision Trees in Reactive Synthesis”. In: Tools and Algorithms for the
Construction and Analysis of Systems - 24th International Conference, TACAS
2018, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part
I. Ed. by D. Beyer and M. Huisman. Vol. 10805. Lecture Notes in Com-
puter Science. Springer, 2018, pp. 385—407. 1sBN: 978-3-319-89959-6. po1:
10.1007/978-3-319-89960-2_21.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth, 1984. 1sBN: 0-534-98053-8.

L. Breiman. “Random Forests”. In: Mach. Learn. 45.1 (2001), pp. 5-32. por:
10.1023/A4:1010933404324.

76

https://doi.org/10.1145/3365365.3382220
https://doi.org/10.1145/3365365.3382220
https://doi.org/10.1023/A:1008699807402
https://doi.org/10.1023/A:1008699807402
https://doi.org/10.1109/TSMCC.2011.2157494
https://doi.org/10.1007/978-3-540-73368-3_14
-
http://www.worldcat.org/oclc/71008143
http://www.worldcat.org/oclc/71008143
https://doi.org/10.1007/978-3-319-21690-4_10
https://doi.org/10.1007/978-3-319-89960-2_21
https://doi.org/10.1023/A:1010933404324

[Bry86]

[Cas*09]

[CE07]

[CGPO1]

[CHCO3]

[CKO1]

[Dav*14]

[Dav*15]

R. E. Bryant. “Graph-Based Algorithms for Boolean Function Manipulation”.
In: IEEE Trans. Computers 35.8 (1986), pp. 677-691. por1: 10.1109/TC.1986.
1676819.

F. Cassez, J. J. Jessen, K. G. Larsen, J. Raskin, and P. Reynier. “Automatic
Synthesis of Robust and Optimal Controllers - An Industrial Case Study”.
In: Hybrid Systems: Computation and Control, 12th International Conference,
HSCC 2009, San Francisco, CA, USA, April 13-15, 2009. Proceedings. Ed. by
R. Majumdar and P. Tabuada. Vol. 5469. Lecture Notes in Computer Science.
Springer, 2009, pp. 90-104. 1sBN: 978-3-642-00601-2. po1: 10.1007/978-3-
642-00602-9_7.

I. T. Christou and S. Efremidis. “An Evolving Oblique Decision Tree En-
semble Architecture for Continuous Learning Applications”. In: Artificial
Intelligence and Innovations 2007: from Theory to Applications, Proceedings of
the 4th IFIP International Conference on Artificial Intelligence Applications and
Innovations (AIAI 2007), 19-21 September 2007, Peania, Athens, Greece. Ed. by
C. Boukis, A. Pnevmatikakis, and L. Polymenakos. Vol. 247. IFIP. Springer,
2007, pp. 3-11. 1sBN: 978-0-387-74160-4. por: 10.1007/978-0-387-74161-
I_1.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press,
2001. 1sBN: 978-0-262-03270-4. URL: http://books.google.de/books?id=
Nmc4wEaLXFEC

Y. Chen, C. Hsu, and S. Chou. “Constructing a multi-valued and multi-
labeled decision tree”. In: Expert Syst. Appl. 25.2 (2003), pp. 199-209. por:
10.1016/S0957-4174(03)00047-2.

A. Clare and R. D. King. “Knowledge Discovery in Multi-label Phenotype
Data”. In: Principles of Data Mining and Knowledge Discovery, 5th European
Conference, PKDD 2001, Freiburg, Germany, September 3-5, 2001, Proceedings.
Ed. by L. D. Raedt and A. Siebes. Vol. 2168. Lecture Notes in Computer
Science. Springer, 2001, pp. 42-53. 1sBN: 3-540-42534-9. por: 10.1007/3-540-
44794-6_4.

A. David, P. G. Jensen, K. G. Larsen, A. Legay, D. Lime, M. G. Serensen,
and J. H. Taankvist. “On Time with Minimal Expected Cost!” In: Automated
Technology for Verification and Analysis - 12th International Symposium, ATVA
2014, Sydney, NSW, Australia, November 3-7, 2014, Proceedings. Ed. by F. Cassez
and J. Raskin. Vol. 8837. Lecture Notes in Computer Science. Springer, 2014,
pp- 129-145. 1sBN: 978-3-319-11935-9. por: 10.1007/978-3-319- 11936 -
6_10.

A. David, P. G. Jensen, K. G. Larsen, M. Mikucionis, and J. H. Taankvist.
“Uppaal Stratego”. In: Tools and Algorithms for the Construction and Analysis

of Systems - 21st International Conference, TACAS 2015, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2015,

77

https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1007/978-3-642-00602-9_7
https://doi.org/10.1007/978-3-642-00602-9_7
https://doi.org/10.1007/978-0-387-74161-1_1
https://doi.org/10.1007/978-0-387-74161-1_1
http://books.google.de/books?id=Nmc4wEaLXFEC
http://books.google.de/books?id=Nmc4wEaLXFEC
https://doi.org/10.1016/S0957-4174(03)00047-2
https://doi.org/10.1007/3-540-44794-6_4
https://doi.org/10.1007/3-540-44794-6_4
https://doi.org/10.1007/978-3-319-11936-6_10
https://doi.org/10.1007/978-3-319-11936-6_10

Bibliography

[Deh*17]

[Del*14]

[Dij72]

[EJ91]

[EMO3]

[Fenl14]

[For19]

[Fra*10]

[Gam™95]

London, UK, April 11-18, 2015. Proceedings. Ed. by C. Baier and C. Tinelli.
Vol. 9035. Lecture Notes in Computer Science. Springer, 2015, pp. 206-211.
ISBN: 978-3-662-46680-3. pO1: 10.1007/978-3-662-46681-0_16.

C. Dehnert, S. Junges, J. Katoen, and M. Volk. “A Storm is Coming: A
Modern Probabilistic Model Checker”. In: Computer Aided Verification - 29th
International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part 1. Ed. by R. Majumdar and V. Kuncak. Vol. 10427. Lecture
Notes in Computer Science. Springer, 2017, pp. 592-600. 1sBN: 978-3-319-
63389-3. po1: 10.1007/978-3-319-63390-9_31.

M. F. Delgado, E. Cernadas, S. Barro, and D. G. Amorim. “Do we need
hundreds of classifiers to solve real world classification problems?” In: J.
Mach. Learn. Res. 15.1 (2014), pp. 3133-3181. URL: http://dl.acm.org/
citation.cfm?id=2697065.

E. W. Dijkstra. “The Humble Programmer”. In: Commun. ACM 15.10 (1972),
pp. 859-866. por: 10.1145/355604.361591.

E. A. Emerson and C. S. Jutla. “Tree Automata, Mu-Calculus and Deter-
minacy (Extended Abstract)”. In: 32nd Annual Symposium on Foundations of
Computer Science, San Juan, Puerto Rico, 1-4 October 1991. IEEE Computer Soci-
ety, 1991, pp. 368-377. 1sBN: 0-8186-2445-0. pO1: 10.1109/SFCS.1991.185392.
URL: https://ieeexplore.ieee.org/xpl/conhome/379/proceeding.

T. Elomaa and T. Malinen. “On Lookahead Heuristics in Decision Tree
Learning”. In: Foundations of Intelligent Systems, 14th International Symposium,
ISMIS 2003, Maebashi City, Japan, October 28-31, 2003, Proceedings. Ed. by
N. Zhong, Z. W. Ras, S. Tsumoto, and E. Suzuki. Vol. 2871. Lecture Notes
in Computer Science. Springer, 2003, pp. 445—-453. 1sBN: 3-540-20256-0. poTI:
10.1007/978-3-540-39592-8_63.

L. Feng. “On learning assumptions for compositional verification of proba-
bilistic systems”. PhD thesis. University of Oxford, UK, 2014. URL: http://
ora.ox.ac.uk/objects/uuid:12502ba2-478f-429a-a250-6590c43a8e8a.

D. A. Forsyth. Applied Machine Learning. Springer, 2019. 1sBN: 978-3-030-
18113-0. por: 10.1007/978-3-030-18114-7.

E. Frank, M. A. Hall, G. Holmes, R. Kirkby, B. Pfahringer, I. H. Witten,
and L. Trigg. “Weka-A Machine Learning Workbench for Data Mining”. In:
Data Mining and Knowledge Discovery Handbook, 2nd ed. Ed. by O. Maimon
and L. Rokach. Springer, 2010, pp. 1269-1277. 1sBN: 978-0-387-09822-7. por:
10.1007/978-0-387-09823-4_66. URL: http://www.springerlink.com/
content/978-0-387-09822-7.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 1995. 1sBN: 0201633612.

78

https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-319-63390-9_31
http://dl.acm.org/citation.cfm?id=2697065
http://dl.acm.org/citation.cfm?id=2697065
https://doi.org/10.1145/355604.361591
https://doi.org/10.1109/SFCS.1991.185392
https://ieeexplore.ieee.org/xpl/conhome/379/proceeding
https://doi.org/10.1007/978-3-540-39592-8_63
http://ora.ox.ac.uk/objects/uuid:12502ba2-478f-429a-a250-6590c43a8e8a
http://ora.ox.ac.uk/objects/uuid:12502ba2-478f-429a-a250-6590c43a8e8a
https://doi.org/10.1007/978-3-030-18114-7
https://doi.org/10.1007/978-0-387-09823-4_66
http://www.springerlink.com/content/978-0-387-09822-7
http://www.springerlink.com/content/978-0-387-09822-7

[GBC16]
[Girl12]

[GNOO]

[Gos*19]
[Hea93]

[HKS93]

[HMS66]

[IR90]

[Jag*18]

[Jes™07]

[JZ217]

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://wuw .
deeplearningbook.org. MIT Press, 2016.

A. Girard. “Low-Complexity Quantized Switching Controllers using Ap-
proximate Bisimulation”. In: CoRR abs/1209.4576 (2012). arXiv: 1209.4576.

E. R. Gansner and S. C. North. “An open graph visualization system and its
applications to software engineering”. In: Softw., Pract. Exper. 30.11 (2000),
pp- 1203-1233. por: 10.1002/1097 - 024X(200009) 30 : 11\ <1203 : : AID -
SPE338\>3.0.C0;2-N.

F. Gossen, A. Murtovi, P. Zweihoff, and B. Steffen. “ADD-Lib: Decision
Diagrams in Practice”. In: CoRR abs/1912.11308 (2019). arXiv: 1912.11308.

D. G. Heath. “A Geometric Framework for Machine Learning”. UMI Order
No. GAX93-13375. PhD thesis. USA, 1993.

D. G. Heath, S. Kasif, and S. Salzberg. “Induction of Oblique Decision
Trees”. In: Proceedings of the 13th International Joint Conference on Artificial
Intelligence. Chambéry, France, August 28 - September 3, 1993. Ed. by R. Bajcsy.
Morgan Kaufmann, 1993, pp. 1002-1007. 1sBN: 1-55860-300-X. URL: http:
//ijcai.org/proceedings/1993-1.

E. B. Hunt, J. Marin, and P. J. Stone. Experiments in Induction. New York:
Academic Press, 1966.

A. Itai and M. Rodeh. “Symmetry breaking in distributed networks”. In: Inf.
Comput. 88.1 (1990), pp. 60-87. por: 10.1016/0890-5401(90)90004-2.

P. Jagtap, F. Abdi, M. Rungger, M. Zamani, and M. Caccamo. “Software
Fault Tolerance for Cyber-Physical Systems via Full System Restart”. In:
CoRR abs/1812.03546 (2018). arXiv: 1812.03546. URL: http://arxiv.org/
abs/1812.03546.

J.J. Jessen, J. I. Rasmussen, K. G. Larsen, and A. David. “Guided Controller
Synthesis for Climate Controller Using Uppaal Tiga”. In: Formal Modeling
and Analysis of Timed Systems, 5th International Conference, FORMATS 2007,
Salzburg, Austria, October 3-5, 2007, Proceedings. Ed. by]. Raskin and P. S.
Thiagarajan. Vol. 4763. Lecture Notes in Computer Science. Springer, 2007,
pp- 227-240. 1sBN: 978-3-540-75453-4. po1: 10.1007 /978 -3 - 540 - 75454 -
1_17.

P. Jagtap and M. Zamani. “QUEST: A Tool for State-Space Quantization-Free
Synthesis of Symbolic Controllers”. In: Quantitative Evaluation of Systems -
14th International Conference, QEST 2017, Berlin, Germany, September 5-7, 2017,
Proceedings. Ed. by N. Bertrand and L. Bortolussi. Vol. 10503. Lecture Notes
in Computer Science. Springer, 2017, pp. 309-313. 1sBN: 978-3-319-66334-0.
DOI: 10.1007/978-3-319-66335-7_21.

79

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1209.4576
https://doi.org/10.1002/1097-024X(200009)30:11\<1203::AID-SPE338\>3.0.CO;2-N
https://doi.org/10.1002/1097-024X(200009)30:11\<1203::AID-SPE338\>3.0.CO;2-N
http://arxiv.org/abs/1912.11308
http://ijcai.org/proceedings/1993-1
http://ijcai.org/proceedings/1993-1
https://doi.org/10.1016/0890-5401(90)90004-2
http://arxiv.org/abs/1812.03546
http://arxiv.org/abs/1812.03546
http://arxiv.org/abs/1812.03546
https://doi.org/10.1007/978-3-540-75454-1_17
https://doi.org/10.1007/978-3-540-75454-1_17
https://doi.org/10.1007/978-3-319-66335-7_21

Bibliography

[KM11]

[KNP11]

[KNP12]

[KNS02]

[KNS03]

[Kwit04]

[Kwi*06]

[KZ19]

S. Kikuchi and Y. Matsumoto. “Performance Modeling of Concurrent Live
Migration Operations in Cloud Computing Systems Using PRISM Proba-
bilistic Model Checker”. In: IEEE International Conference on Cloud Computing,
CLOUD 2011, Washington, DC, USA, 4-9 July, 2011. Ed. by L. Liu and M.
Parashar. IEEE Computer Society, 2011, pp. 49-56. 1sBN: 978-1-4577-0836-7.
DOI: 10.1109/CLOUD.2011.48. URL: https://ieeexplore.ieee.org/xpl/
conhome/6008653/proceeding.

M. Z. Kwiatkowska, G. Norman, and D. Parker. “PRISM 4.0: Verification
of Probabilistic Real-Time Systems”. In: Computer Aided Verification - 23rd
International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings. Ed. by G. Gopalakrishnan and S. Qadeer. Vol. 6806. Lecture
Notes in Computer Science. Springer, 2011, pp. 585-591. 1sBN: 978-3-642-
22109-5. por: 10.1007/978-3-642-22110-1_47.

M. Kwiatkowska, G. Norman, and D. Parker. “The PRISM Benchmark
Suite”. In: Proc. 9th International Conference on Quantitative Evaluation of
SysTems (QEST’12). IEEE CS Press, 2012, pp. 203-204.

M. Z. Kwiatkowska, G. Norman, and J. Sproston. “Probabilistic Model
Checking of the IEEE 802.11 Wireless Local Area Network Protocol”. In:
Process Algebra and Probabilistic Methods, Performance Modeling and Verifica-
tion, Second Joint International Workshop PAPM-PROBMIV 2002, Copenhagen,
Denmark, July 25-26, 2002, Proceedings. Ed. by H. Hermanns and R. Segala.
Vol. 2399. Lecture Notes in Computer Science. Springer, 2002, pp. 169-187.
1SBN: 3-540-43913-7. po1: 10.1007/3-540-45605-8_11.

M. Kwiatkowska, G. Norman, and J. Sproston. “Probabilistic Model Check-
ing of Deadline Properties in the IEEE 1394 FireWire Root Contention
Protocol”. In: Formal Aspects of Computing 14.3 (2003), pp. 295-318.

M. Kwiatkowska, G. Norman,]J. Sproston, and F. Wang. “Symbolic Model
Checking for Probabilistic Timed Automata”. In: Proc. Joint Conference on
Formal Modelling and Analysis of Timed Systems and Formal Techniques in Real-
Time and Fault Tolerant Systems (FORMATS/FTRTFT'04). Ed. by Y. Lakhnech
and S. Yovine. Vol. 3253. LNCS. Springer, 2004, pp. 293-308.

M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. “Performance
Analysis of Probabilistic Timed Automata using Digital Clocks”. In: Formal
Methods in System Design 29 (2006), pp. 33-78.

M. Khaled and M. Zamani. “pFaces: an acceleration ecosystem for symbolic
control”. In: Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control, HSCC 2019, Montreal, QC, Canada, April
16-18, 2019. Ed. by N. Ozay and P. Prabhakar. ACM, 2019, pp. 252-257. 1SBN:
978-1-4503-6282-5. por: 10.1145/3302504.3311798. URL: https://dl.acm.
org/citation.cfm?id=3302504.

80

https://doi.org/10.1109/CLOUD.2011.48
https://ieeexplore.ieee.org/xpl/conhome/6008653/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6008653/proceeding
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/3-540-45605-8_11
https://doi.org/10.1145/3302504.3311798
https://dl.acm.org/citation.cfm?id=3302504
https://dl.acm.org/citation.cfm?id=3302504

[Lar*18]

[LHFO03]

[LLO2]

[LMT15]

[LT93]

[Mad*12]

[Mey*17]

[MGG13]

K. G. Larsen, A. L. Coént, M. Mikucionis, and J. H. Taankvist. “Guaran-
teed Control Synthesis for Continuous Systems in Uppaal Tiga”. In: Cyber
Physical Systems. Model-Based Design - 8th International Workshop, CyPhy 2018,
and 14th International Workshop, WESE 2018, Turin, Italy, October 4-5, 2018,
Revised Selected Papers. Ed. by R. D. Chamberlain, W. Taha, and M. Torngren.
Vol. 11615. Lecture Notes in Computer Science. Springer, 2018, pp. 113-133.
1sBN: 978-3-030-23702-8. po1: 10.1007/978-3-030-23703-5_6.

N. Landwehr, M. A. Hall, and E. Frank. “Logistic Model Trees”. In: Machine
Learning: ECML 2003, 14th European Conference on Machine Learning, Cavtat-
Dubrovnik, Croatia, September 22-26, 2003, Proceedings. Ed. by N. Lavrac, D.
Gamberger, L. Todorovski, and H. Blockeel. Vol. 2837. Lecture Notes in
Computer Science. Springer, 2003, pp. 241-252. 1sBN: 3-540-20121-1. por:
10.1007/978-3-540-39857-8_23.

P. Larrafiaga and J. A. Lozano, eds. Estimation of Distribution Algorithms.
Genetic Algorithms and Evolutionary Computation. Springer, 2002. 1SBN:
978-1-4613-5604-2. por: 10.1007/978-1-4615-1539-5.

K. G. Larsen, M. Mikucionis, and J. H. Taankvist. “Safe and Optimal Adap-
tive Cruise Control”. In: Correct System Design - Symposium in Honor of
Ernst-Riidiger Olderog on the Occasion of His 60th Birthday, Oldenburg, Ger-
many, September 8-9, 2015. Proceedings. Ed. by R. Meyer, A. Platzer, and H.
Wehrheim. Vol. 9360. Lecture Notes in Computer Science. Springer, 2015,
pp- 260-277. 1sBN: 978-3-319-23505-9. por: 10.1007 /978 - 3-319 - 23506 -
6_17.

N. G. Leveson and C. S. Turner. “An investigation of the Therac-25 acci-
dents”. In: Computer 26.7 (1993), pp. 18—41.

G. Madjarov, D. Kocev, D. Gjorgjevikj, and S. Dzeroski. “An extensive
experimental comparison of methods for multi-label learning”. In: Pattern
Recognit. 45.9 (2012), pp. 3084-3104. por: 10.1016/j . patcog.2012.03.004.

P. J. Meyer, M. Rungger, M. Luttenberger, J. Esparza, and M. Zamani.
“Quantitative Implementation Strategies for Safety Controllers”. In: CoRR
abs/1712.05278 (2017). arXiv: 1712.05278. URL: http://arxiv.org/abs/
1712.056278.

S. Mouelhi, A. Girard, and G. Gofsler. “CoSyMA: a tool for controller syn-
thesis using multi-scale abstractions”. In: Proceedings of the 16th international
conference on Hybrid systems: computation and control, HSCC 2013, April 8-11,
2013, Philadelphia, PA, USA. Ed. by C. Belta and F. Ivancic. ACM, 2013,
pp- 83-88. 1sBN: 978-1-4503-1567-8. DO1: 10.1145/2461328 . 2461343. URL:
http://dl.acm.org/citation.cfm?id=2461328.

81

https://doi.org/10.1007/978-3-030-23703-5_6
https://doi.org/10.1007/978-3-540-39857-8_23
https://doi.org/10.1007/978-1-4615-1539-5
https://doi.org/10.1007/978-3-319-23506-6_17
https://doi.org/10.1007/978-3-319-23506-6_17
https://doi.org/10.1016/j.patcog.2012.03.004
http://arxiv.org/abs/1712.05278
http://arxiv.org/abs/1712.05278
http://arxiv.org/abs/1712.05278
https://doi.org/10.1145/2461328.2461343
http://dl.acm.org/citation.cfm?id=2461328

Bibliography

[Min89]

[Mit97]

[Mur*93]

[Mur98]

[NHS00]

[NM19]

[NP14]

[NSM16]

[Oli06]

J. Mingers. “An Empirical Comparison of Pruning Methods for Decision
Tree Induction”. In: Mach. Learn. 4 (1989), pp. 227-243. po1: 10.1023/A:
1022604100933.

T. M. Mitchell. Machine learning. McGraw Hill series in computer science.
McGraw-Hill, 1997. 1sBN: 978-0-07-042807-2. URL: http://www.worldcat .
org/oclc/61321007.

S. K. Murthy, S. Kasif, S. Salzberg, and R. Beigel. “OC1: A Randomized
Induction of Oblique Decision Trees”. In: Proceedings of the 11th National
Conference on Artificial Intelligence. Washington, DC, USA, July 11-15, 1993.
Ed. by R. Fikes and W. G. Lehnert. AAAI Press / The MIT Press, 1993,
pp- 322-327. 1sBN: 0-262-51071-5. URL: http://www.aaai.org/Library/
AAAT/1993/aaai93-049. php.

S. K. Murthy. “Automatic Construction of Decision Trees from Data: A
Multi-Disciplinary Survey”. In: Data Min. Knowl. Discov. 2.4 (1998), pp. 345
389. por: 10.1023/4:1009744630224.

T. D. Nguyen, T. B. Ho, and H. Shimodaira. “A visualization tool for
interactive learning of large decision trees”. In: 12th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI 2000), 13-15 November
2000, Vancouver, BC, Canada. IEEE Computer Society, 2000, pp. 28-35. 1SBN:
0-7695-0909-6. po1: 10.1109/TAI.2000.889842. URL: https://ieeexplore.
ieee.org/xpl/conhome/7148/proceeding.

D. Neider and O. Markgraf. “Learning-Based Synthesis of Safety Con-
trollers”. In: 2019 Formal Methods in Computer Aided Design, FMCAD 2019,
San Jose, CA, USA, October 22-25, 2019. 2019, pp. 120-128. por: 10.23919/
FMCAD.2019.8894254.

G. Norman and D. Parker. Quantitative Verification: Formal Guarantees for
Timeliness, Reliability and Performance. Tech. rep. The London Mathematical
Society and the Smith Institute, 2014.

D. Neider, S. Saha, and P. Madhusudan. “Synthesizing Piece-Wise Functions
by Learning Classifiers”. In: Tools and Algorithms for the Construction and
Analysis of Systems - 22nd International Conference, TACAS 2016, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2016,
Eindhoven, The Netherlands, April 2-8, 2016, Proceedings. Ed. by M. Chechik
and J. Raskin. Vol. 9636. Lecture Notes in Computer Science. Springer, 2016,
pp- 186-203. 1sBN: 978-3-662-49673-2. DOIL: 10. 1007 /978-3-662- 49674 -
O_11.

T. Oliphant. A guide to NumPy. Vol. 1. Trelgol Publishing USA, 2006.

82

https://doi.org/10.1023/A:1022604100933
https://doi.org/10.1023/A:1022604100933
http://www.worldcat.org/oclc/61321007
http://www.worldcat.org/oclc/61321007
http://www.aaai.org/Library/AAAI/1993/aaai93-049.php
http://www.aaai.org/Library/AAAI/1993/aaai93-049.php
https://doi.org/10.1023/A:1009744630224
https://doi.org/10.1109/TAI.2000.889842
https://ieeexplore.ieee.org/xpl/conhome/7148/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7148/proceeding
https://doi.org/10.23919/FMCAD.2019.8894254
https://doi.org/10.23919/FMCAD.2019.8894254
https://doi.org/10.1007/978-3-662-49674-9_11
https://doi.org/10.1007/978-3-662-49674-9_11

[Ped*11]

[Put94]

[Qui86]

[Qui93]

[Rea*16]

[Real8]

[RJB04]

[RWR15]

[RZ16]

[Sha48]

[SMC74]

[Som01]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn:
Machine Learning in Python”. In: Journal of Machine Learning Research 12
(2011), pp. 2825-2830.

M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics. Wiley, 1994. 1sBN: 978-0-
47161977-2. por: 10.1002/9780470316887.

J. R. Quinlan. “Induction of Decision Trees”. In: Mach. Learn. 1.1 (1986),
pp- 81-106. por: 10.1023/A:1022643204877.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
1sBN: 1-55860-238-0.

J. Read, P. Reutemann, B. Pfahringer, and G. Holmes. “MEKA: A Multi-
label/Multi-target Extension to WEKA”. In: J. Mach. Learn. Res. 17 (2016),
21:1-21:5. UrRL: http://jmlr.org/papers/v17/12-164 . .html.

J. Read. “A pruned problem transformation method for multi-label clas-
sification”. In: Proc. 2008 New Zealand Computer Science Research Student
Conference (NZCSRS 2008). 2008, pp. 143-150.

J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Reference
Manual, The (2nd Edition). Pearson Higher Education, 2004. 1sBN: 0321245628.

M. Rungger, A. Weber, and G. Reissig. “State space grids for low complexity
abstractions”. In: 54th IEEE Conference on Decision and Control, CDC 2015,
Osaka, Japan, December 15-18, 2015. 1EEE, 2015, pp. 6139-6146. 1sBN: 978-1-
4799-7886-1. por: 10.1109/CDC.2015.7403185. URL: https://ieeexplore.
ieee.org/xpl/conhome/7396016/proceeding.

M. Rungger and M. Zamani. “SCOTS: A Tool for the Synthesis of Symbolic
Controllers”. In: Proceedings of the 19th International Conference on Hybrid
Systems: Computation and Control, HSCC 2016, Vienna, Austria, April 12-14,
2016. Ed. by A. Abate and G. E. Fainekos. ACM, 2016, pp. 99-104. 1sBN:
978-1-4503-3955-1. por: 10.1145/2883817 .2883834.

C. E. Shannon. “A mathematical theory of communication”. In: Bell Syst.
Tech.]. 27.4 (1948), pp. 623-656. DO1: 10.1002/j.1538-7305.1948.tb00917.
X.

W. P. Stevens, G. J. Myers, and L. L. Constantine. “Structured Design”. In:
IBM Syst.]. 13.2 (1974), pp. 115-139. por: 10.1147/sj.132.0115.

F. Somenzi. “Efficient manipulation of decision diagrams”. In: Int. J. Softw.
Tools Technol. Transf. 3.2 (2001), pp. 171-181. por: 10.1007/s100090100042.

83

https://doi.org/10.1002/9780470316887
https://doi.org/10.1023/A:1022643204877
http://jmlr.org/papers/v17/12-164.html
https://doi.org/10.1109/CDC.2015.7403185
https://ieeexplore.ieee.org/xpl/conhome/7396016/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7396016/proceeding
https://doi.org/10.1145/2883817.2883834
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1147/sj.132.0115
https://doi.org/10.1007/s100090100042

Bibliography

[SZ19]

[Tab09]

[TKO7]

[TKVO08]

[Utg88]

[Zha*10]

A. Swikir and M. Zamani. “Compositional Synthesis of Symbolic Models
for Networks of Switched Systems”. In: IEEE Control. Syst. Lett. 3.4 (2019),
pp- 1056-1061. por1: 10.1109/LCSYS.2019.2920766.

P. Tabuada. Verification and Control of Hybrid Systems - A Symbolic Approach.
Springer, 2009. 1sBN: 978-1-4419-0223-8. URL: http://www.springer.com/
mathematics/applications/book/978-1-4419-0223-8.

G. Tsoumakas and I. Katakis. “Multi-Label Classification: An Overview”.
In: IDWM 3.3 (2007), pp- 1-13. por: 10.4018/jdwm.2007070101.

G. Tsoumakas, I. Katakis, and I. Vlahavas. “Effective and efficient multilabel
classification in domains with large number of labels”. In: Proc. ECML/PKDD
2008 Workshop on Mining Multidimensional Data (MMD’08). Vol. 21. sn. 2008,
pp. 30—44.

P. E. Utgoff. “Perceptron Trees: A Case Study In Hybrid Concept Representa-
tions”. In: Proceedings of the 7th National Conference on Artificial Intelligence, St.
Paul, MN, USA, August 21-26, 1988. Ed. by H. E. Shrobe, T. M. Mitchell, and
R. G. Smith. AAAI Press / The MIT Press, 1988, pp. 601-606. 1sBN: 0-262-
51055-3. URL: http://www.aaai.org/Library/AAAT/1988/aaai88-107.php.

X. Zhang, Q. Yuan, S. Zhao, W. Fan, W. Zheng, and Z. Wang. “Multi-label
Classification without the Multi-label Cost”. In: Proceedings of the SIAM
International Conference on Data Mining, SDM 2010, April 29 - May 1, 2010,
Columbus, Ohio, USA. SIAM, 2010, pp. 778-789. 1sBN: 978-0-89871-703-7. por:
10.1137/1.9781611972801.68.

84

https://doi.org/10.1109/LCSYS.2019.2920766
http://www.springer.com/mathematics/applications/book/978-1-4419-0223-8
http://www.springer.com/mathematics/applications/book/978-1-4419-0223-8
https://doi.org/10.4018/jdwm.2007070101
http://www.aaai.org/Library/AAAI/1988/aaai88-107.php
https://doi.org/10.1137/1.9781611972801.68

	Acknowledgments
	Abstract
	Kurzfassung
	Contents
	Introduction
	Related Work
	Preliminaries
	Controllers
	Machine learning
	Learning algorithms and the classification task
	Generalization and overfitting

	Decision trees
	Data structure
	Decision tree learning

	Tool
	Overview
	Workflow
	Input formats
	Parameters
	Output formats

	Decision Tree Learning for Controller Representation
	Controller representation as a classification problem
	The feature space
	The labels
	The classification problem
	Other approaches
	Comparison of the verification and the machine learning setting

	Predicates
	Numeric features
	Categorical features

	Impurity measures
	Entropy
	Entropy ratio
	Gini index
	Twoing rule
	Sum minority
	Max minority
	Area under the receiver-operator curve

	Determinization
	Determinizing before decision tree learning
	Safe pruning
	Early stopping
	Improving impurity estimates in the context of determinization
	Tradeoff between decision tree size and optimality

	Implementation
	Design goals
	Overview of the software architecture
	Object model
	Dataset management
	Decision tree learning
	Benchmarking
	User Interface

	Evaluation
	Overall results
	Model checking of Markov decision processes
	Controller synthesis for cyber-physical systems

	Detailed comparison of decision tree learning algorithms
	Model checking of Markov decision processes
	Controller synthesis for cyber-physical systems

	Future Work
	Improving decision tree learning
	Extending dtControl

	Conclusion
	Acronyms
	Bibliography

