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Abstract

Simulation models for, e. g., earthquakes or tsunamis heavily depend on the size of their
input parameter space. Typically, this input is some topography data which naturally
comes with a huge parameter space. We explore several (generative) deep learning
approaches to reduce the GEBCO dataset’s dimensionality while maintaining the ability
to reconstruct values back in the original parameter space. The presented approaches
range from straight-forward to complex autoencoders based on convolutional neural
networks. We find that the deep feature consistent variational autoencoder ([Hou+16])
can achieve a high reduction in the parameter space of roughly a 100-fold while producing
appropriate reconstructions of the topography. Since the model outputs are producing
reasonable results when being used for a highly complex tsunami simulation application,
we conclude that our model preserves key topographic attributes during the reduction
and reconstruction phases.

Keywords: Parameter Reduction, Topography, Bathymetry, Neural Network, Convolu-
tional Neural Network, Autoencoder, Variational Autoencoder, Generative Adversarial
Network, GEBCO.

iii





Contents

Abstract iii

1 Introduction 1
1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The GEBCO Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Models 3
2.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Multi-Layer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.4 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.5 Optimization in a Neural Network . . . . . . . . . . . . . . . . . . 9
2.1.6 Deficiencies of Backpropagation . . . . . . . . . . . . . . . . . . . . 11
2.1.7 Improved Network Optimization . . . . . . . . . . . . . . . . . . . 12
2.1.8 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.9 Batch Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Strides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Padding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Convolutional Autoencoders . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Variational Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.1 Variational Inference for Autoencoders . . . . . . . . . . . . . . . . 20
2.4.2 Deep Feature Consistency . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Variational Autoencoder - Generative Adversarial Networks . . . . . . . . 23
2.5.1 Generative Adversarial Networks . . . . . . . . . . . . . . . . . . . 23
2.5.2 Combining GAN & VAE . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 The ExaHyPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Autoencoding Bathymetry Data 29
3.1 Model Performances on Bathymetry Data . . . . . . . . . . . . . . . . . . 29

3.1.1 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Plain Variational Autoencoder . . . . . . . . . . . . . . . . . . . . 32

v



Contents

3.1.3 Deep Feature Consistent Variational Autoencoder . . . . . . . . . 34
3.1.4 Variational Autoencoder - Generative Adversarial Network . . . . 35

3.2 Things That Did Not Work . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Tsunami Simulation 39

5 Conclusion 43

List of Figures 45

List of Tables 47

Bibliography 49

vi



1 Introduction

Topography data is the basis for many simulation models describing physical processes
like earthquakes or tsunamis. Such simulations have great benefits to many people’s
everyday lives and researchers are striving to continuously make these simulations even
more accurate and robust. However, the sheer amount of input parameters to their models
is often challenging. Even with modern advancements in computational power, many such
applications are still constrained in their computational efficiency by the size of the input
parameter space. Therefore, being able to find an appropriate reduction of this space is of
general interest and typically greatly increases performance. However, such reductions are
difficult to achieve without losing a certain degree of information.

1.1 Scope

We aim to find some mapping of a topography dataset’s parameter space into a lower
dimensional space, have the ability to draw samples from there and be able to provide a
reasonably good reconstruction in the original parameter space. The ultimate objective,
which is beyond this thesis’ scope, is to apply a sampling-based uncertainty quantification
approach over a tsunami simulation. This can be done on the reduced parameter space
and the reconstruction ability can be leveraged to obtain results back in the original
parameter space. We explore selected deep learning approaches to find a good parameter
space reduction of topography data. To do this, we use several autoencoder models
of increasing complexity and ultimately evaluate the reconstruction quality based on a
tsunami simulation. To our best knowledge, approaches of this kind have not yet been
applied to problems of such nature, i. e. to topography or bathymetry data.

In Chapter 2, we will give a thorough introduction to neural networks and convolutional
neural networks, followed by a presentation of several models. The performance of these
models will be evaluated on real-world topography data throughout Chapter 3. We will
then look into how the best out of them performs when passing its model output into a
tsunami simulation engine (Chapter 4). Finally, we will conclude with a summary of our
findings in Chapter 5.
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1 Introduction

1.2 The GEBCO Dataset

We are working with a topography dataset, the GEBCO dataset.1 The General Bathy-
metric Chart of the Oceans (GEBCO) is a collection of bathymetric data. Bathymetry is
the study or representation of a solid surface beneath a layer of liquid, i. e. the depths of
oceans and lakes fall under this definition. The publicly available GEBCO dataset is a
global terrain grid at 15 arc-second intervals. The bathymetry measurements are mainly
based on acoustic methods and by deducing from gravity anomalies captured by satellites.
Whenever better measurements were available from existing sources, they were included.
This implies having bathymetric measurements of different quality. Figure 1.1 shows a
visualization of the dataset.

Figure 1.1 Visualizing the GEBCO dataset.

1GEBCO Compilation Group (2019), GEBCO_2019 Grid (doi: 10.5285/836f016a-33be-6ddc-e053-
6c86abc0788e), http://www.gebco.net.
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2 Models

The goal of this chapter is to present models of increasing complexity. First, we introduce
neural networks (NNs) and convolutional neural networks (CNNs), followed by the rather
straight-forward concept of autoencoders (AEs) and some of its more complex extensions.
We conclude this chapter with a brief introduction of the relevant theoretical aspects of
ExaHyPE – the engine we used to derive the key results of Chapter 4.

2.1 Neural Networks

This section provides the necessary background knowledge on neural networks and most of
the notations used throughout the remainder of this chapter. The content largely follows
[Krö+93].

2.1.1 Perceptron

Frank Rosenblatt laid out the basis of what is nowadays known as neural networks when
he introduced the perceptron in the late 1950’s, [Ros58]. While it was originally intended
to be an actual machine, people tend to refer to the perceptron as an architecture or
algorithm.

Definition 2.1. (Perceptron)
The perceptron is defined as a simple threshold (or Heaviside) function

ŷ = f(t) ..=

 1 if t > 0
−1 else,

where t = ωTx+ b. Here, ω is a real-valued weight vector, x the real-valued input vector
and b ∈ R the bias. Often, this definition is slightly amended by augmenting x with x0 = 1
and incorporating the bias term b into ω as ω0, resulting in x∗ = (x0, x), ω∗ = (ω0, ω)
and, thus, ŷ = f

(
ω∗Tx∗

)
.

The threshold function applied at the end is commonly referred to as activation function,
i. e. is the output node active: yes-no. Figure 2.1 shows a nice and simple illustration of
how one may think of the perceptron.

3
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Figure 2.1 An illustration of the perceptron architecture.

While perceptron models initially yielded great results, they soon reached their own
limitations at the XOR problem as shown by Minsky & Papert in [MP69]. They also
showed that a model of increased complexity could overcome these limitations, however,
they did not provide a solution on how to optimize the corresponding weights. The
following section will introduce such a model of increased complexity, the multi-layer
perceptron.

2.1.2 Multi-Layer Perceptron

The multi-layer perceptron is – as its name suggests – a collection of multiple perceptrons
organized in a layered structure. First, the sigmoid activation function will be introduced,
followed by a definition of the multi-layer perceptron.

Definition 2.2. (Sigmoid Activation Function)
The sigmoid activation function is defined as

σ : R→ (0, 1), σ(x) ..= 1
1 + e−x

.

Its derivative can be expressed in terms of the function itself:

σ′(x) = e−x

(1 + e−x)2 = σ(x)σ(1− x).

4



2.1 Neural Networks

Definition 2.3. (Multi-Layer Perceptron)
A multi-layer perceptron (MLP) consists of several perceptrons (also units/neurons)
’stacked’ on top of each other, thus forming a layer, where we use a more general concept
of activation functions (with known derivative) instead of the Heaviside function in the
perceptron outputs.1 Every unit of a layer is connected to every unit of the layer that
directly follows, but not to any other unit within its own layer. There are input, hidden and
output layers. Hidden layers are located between input and output layer. This architecture
is also called a fully-connected feed-forward neural network. The final output of
an MLP with one hidden layer is given as

ŷ = g(x,W) ..= σ2
[
W T

2 σ1
(
W T

1 x
)]
, ŷ ∈ RNO

where W1,W2 denote weight matrices, i. e. the collection of weight vectors of the in-
put/hidden layer and the hidden/output layer, respectively. Generally speaking, while the
activation functions may differ from layer to layer, they must be the same within a given
layer. Otherwise units of such a layer would produce inconsistent outputs.

See e. g. [Krö+93].

This definition implies having at least one hidden layer in an MLP. Otherwise this
architecture would simply collapse to having several independent perceptrons running in
parallel. Again, it is helpful to graphically illustrate this architecture (Figure 2.2).
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Figure 2.2 Multi-layer perceptron architecture.

1Traditionally, the sigmoid function was used in MLPs since it is differentiable and a good approximation
of the Heaviside function. Later on, people started experimenting with other activation functions.
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2 Models

Clearly, we are aiming to learn the optimal weights with respect to the inputs, i. e. minimize
some output error measure. However, up until the 1980’s, it was not at all clear how to
proceed on this matter, as a simple learning rule did not exist.

Definition 2.4. (Sum of Squared Errors)
Let the error measure at the output layer of an MLP for a given input xn be the sum of
squared errors

[n]E ..= 1
2

NO∑
i=1

(
[n]yi − [n]ŷi

)2
,

where i iterates through all the units in the output layer and [n]E = E(xn) denotes the
error for input xn (the same notation applies to other variables). All derivations hereafter
work similarly for the cost function J ..= ∑

j
[j]E of all training samples.

Definition 2.5. (Charbonnier Error)
The Charbonnier error is commonly defined as

ρ(x) =
√
x2 + ε2,

see e. g. [Wu+17]. ε controls how closely the L1 norm should be resembled while maintaining
differentiability.

2.1.3 Activation Functions

There is a vast collection of activation functions, so only a few selected ones are presented
here (Figure 2.3). All derivations in this paper work analogously for these functions.

Common activation functions are:

1. Sigmoid, as defined in Definition 2.2.

2. Hyperbolic tangent, tanh(x) = e2x−1/e2x+1.

3. Rectified Linear Units (ReLU), ReLU(x) = max{0, x}.

4. Leaky ReLU, Leaky ReLUα(x) = max{αx, x}.

6
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Figure 2.3 Common activation functions.

2.1.4 Backpropagation

In 1986, almost 20 years after Minsky & Papert showed that a two layer feed forward
network could overcome many of the perceptron’s restrictions, Rumelhart, Hinton &
Williams published a simple and effective way to learn weights for an MLP, [RH86].
Similar approaches have been presented slightly earlier, e. g. [Wer74], [Par85], [LeC85].

Backpropagation – loosely speaking

Simply put, backpropagation is an automatic differentiation technique based on the chain
rule from calculus, i. e. it is a method for computing gradients efficiently. Every unit in
the network is visited only twice, thus the evaluation lies in O(|W|), where W is the set of
all the network’s weights. It will become clear throughout this subsection why this is the
case. We aim to propagate the error at the output layer through the hidden layer(s) back
to the input layer and, by doing so, optimize the weights such that we obtain a minimal
error for a given input vector.

Notations used throughout this section

An overview of notations, some of which have been introduced already:

• Nl ∈ N, l ∈ {1, . . . , L} denotes the number of units of layer l.

• xn ∈ RN1 is one of m ≥ 1 input vectors. For any variable, an upper left index [n]
indicates that this variable depends on the input xn.

7



2 Models

• W {l}, l ∈ {2, . . . , L} is the weight matrix of the layer l, where l = 1 is the input
layer and l = L the output layer. Specifically, W {l}ik denotes the weight connecting
the previous layer’s unit i with unit k of layer l. For instance, W {L}ik is the weight
connecting the i-th unit of the hidden layer L− 1 with the k-th unit of the output
layer L. The shape of the output layer’s weight matrix is NL−1 ×NL.

• b
{l}
i , l ∈ {2, . . . , L} is the bias at the i-th neuron of layer l.

• W
{l}
:,k , l ∈ {2, . . . , L} is the weight vector representing the collection of weights

connecting every unit of layer l − 1 to unit k of layer l.

• σ(x) denotes the (element-wise) sigmoid activation function defined in Definition
2.2.

• [n]a
{l}
i , l ∈ {2, . . . , L} is the value at node i of layer l before applying σ. Often this

is referred to as the layer’s activation.

• [n]z
{l}
i , l ∈ {2, . . . , L} is the value at node i of layer l after applying σ. For l = L

this coincides with the model output at that particular neuron.

• [n]ŷ ∈ RNL is the vector of outputs at the output layer.

• [n]E is the error at the output layer, defined in Definition 2.4.

For the remainder of this subsection, assume we are given a neural network (NN) with
L = 3 layers, i. e. only one hidden layer. Then, N1 denotes the number of units in the
input layer, N2 the ones in the hidden layer and N3 in the output layer. For simplicity,
all layers use the sigmoid activation function, however, the derivation works analogously
for other activation functions (the concept of sub-differentials may be required).

Using the above notations, the output at unit k of this NN can be rewritten as

[n]ŷk = σ

[
W
{L}
:,k

T [n]z
{L−1}
i + b

{L}
k

]
= σ

[
W
{L}
:,k

T
σ

(
W {L−1}Txn + b{L−1}

)
+ b
{L}
k

]
= σ

[
W
{3}
:,k

T
σ

(
W {2}

T
xn + b{2}

)
+ b
{3}
k

]
.

Remarks 2.6.

• Actually, here, ŷ ∈ (0, 1)NL as the sigmoid function only produces outputs between 0
and 1. These outputs can be interpreted as probabilities, i. e. [n]ŷc is the probability
of input sample xn belonging to class c. To perform classification, one could then
assign class c∗ to xn where c∗ = arg maxc′ [n]ŷc′ . For other activation functions, the
model output may not be restricted to (0, 1)NO and the network can be used e. g. for
regression tasks.

8



2.1 Neural Networks

• It is important that the chosen activation function is non-linear, as otherwise neural
networks collapse to a single layer network, regardless of the number of hidden layers
and units.
To prove this, choose the identity as activation function, i. e. σ(x) = x. Then, the
model output simplifies to

[n]ŷ = W {L}
T
(
W {L−1}T [n]z{L−2} + b{L−1}

)
+ b
{L}
k .

This gives a single layer network of the type ŷ = W ∗xn + b∗, where

W ∗ = W {L}
T
W {L−1}T . . .W {2}

T
,

b∗ = b
{L}
k +W {L}

T
(
b{L−1} +W {L−1}T (. . . )

)
.

2.1.5 Optimization in a Neural Network

Starting from the error [n]E at the output layer {L}, first propagate the error back to the
hidden layer. Meaning the quantity of interest is the derivative of [n]E with respect to the
weights W:,k of the output layer. More specifically, we are going from each output unit k
back to the hidden unit j of the hidden layer {L− 1} by

∂ [n]E

∂ W
{L}
jk

= ∂ [n]E

∂ [n]ŷk
· ∂

[n]ŷk

∂ [n]a
{L}
k

·
∂ [n]a

{L}
k

∂ W
{L}
jk

, j = 1, . . . , NL−1, k = 1, . . . , NL.

(2.1)

Simply by applying the chain rule, the non-trivial derivative of ∂ [n]E

∂ W
{L}
jk

breaks down into

several much less complicated components. The right hand side of Equation (2.1) can be
checked term by term, from right to left:

∂ [n]a
{L}
k

∂ W
{L}
jk

=
∂
∑NL−1
p=1

(
W
{L}
pk · [n]z

{L−1}
p

)
+ b
{L}
k

∂ W
{L}
jk

= [n]z
{L−1}
j , (2.2)

∂ [n]ŷk

∂ [n]a
{L}
k

= σ′
(

[n]a
{L}
k

)
, (2.3)

∂ [n]E

∂ [n]ŷk
= −

(
[n]yk − [n]ŷk

)
. (2.4)

Hence, Equation (2.1) gives

∂ [n]E

∂ W
{L}
jk

= −
(

[n]yk − [n]ŷk
)
· σ′

(
[n]a
{L}
k

)
· [n]z

{L−1}
j . (2.5)

9



2 Models

A second item of interest is the bias at each layer. For the bias at the output layer, it
follows similarly

∂ [n]E

∂ b
{L}
k

= ∂ [n]E

∂ [n]ŷk
· ∂

[n]ŷk

∂ [n]a
{L}
k

·
∂ [n]a

{L}
k

∂ b
{L}
k

= −
(

[n]yk − [n]ŷk
)
· σ′

(
[n]a
{L}
k

)
· 1,

since Equations (2.3)-(2.4) remain unchanged for the bias. Consequently, this means the
two derivatives of interest can be expressed in terms of each other ∂ [n]E

∂ W
{L}
jk

= ∂ [n]E

∂ b
{L}
k

·[n]z
{L−1}
j .

Propagating the error back one more layer, i. e. to the hidden layer’s weights and biases,
works in the same fashion, i. e.

∂ [n]E

∂ W
{L−1}
jk

=
NL∑
p=1

∂ [n]E

∂ [n]ŷp
· ∂

[n]ŷp

∂ [n]a
{L}
p

· ∂ [n]a
{L}
p

∂ [n]z
{L−1}
k

·
∂ [n]z

{L−1}
k

∂ [n]a
{L−1}
k

·
∂ [n]a

{L−1}
k

∂ W
{L−1}
jk

= −
NL∑
p=1

[(
[n]yp − [n]ŷp

)
· σ′

(
[n]a{L}p

)
·W {L}kp

]
· σ′

(
[n]a
{L−1}
k

)
· xj ,

∂ [n]E

∂ b
{L−1}
k

=
NL∑
p=1

∂ [n]E

∂ [n]ŷp
· ∂

[n]ŷp

∂ [n]a
{L}
p

· ∂ [n]a
{L}
p

∂ [n]z
{L−1}
k

·
∂ [n]z

{L−1}
k

∂ [n]a
{L−1}
k

·
∂ [n]a

{L−1}
k

∂ b
{L−1}
k

= −
NL∑
p=1

[(
[n]yp − [n]ŷp

)
· σ′

(
[n]a{L}p

)
·W {L}kp

]
· σ′

(
[n]a
{L−1}
k

)
· 1.

The additional sum here comes from the fact that the error with respect to the weight
connecting input unit j to hidden unit k is affected by all the output units p = 1, . . . , NL.
The above results in a simple recursive procedure that may be applied to NNs with an
arbitrary amount of layers and neurons. It now also becomes clear why the computation
of gradients with backpropagation scales linearly in the total number of network weights.
First, compute a forward pass, i. e. pass the data from input through to the output, and,
next, a backward pass during which the gradients are computed based on the values
obtained during the previous step. Each neuron is visited twice.

Optimizing the Weights

Now that the gradients with respect to every weight in the network have been computed,
we would like to find the optimal weights such that the final error at the output layer
is minimized for given inputs. A natural choice for doing so is to use gradient descent.
Higher-order optimization techniques, e. g. Newton’s Method, generally converge faster
since they exploit the curvature of the function but are computationally more expensive
and, thus, usually not considered in the context of neural networks.

Definition 2.7. (Gradient Descent in Neural Networks)
Gradient descent (GD) is an iterative way to obtain (locally) optimal weights given their
gradients. Let L ∈ {H,O} be the current layer of the network. Let OW {L} be the gradient

10



2.1 Neural Networks

of the cost function J with respect to the weight matrix of layer L, Ob{L} the one of the
bias of the layer.
Process the network for the entire set of inputs and iteratively update weights and biases
by

t+1W
{L} = tW

{L} − αOtW {L},

t+1b
{L} = tb

{L} − αOtb{L},

until some stopping criterion is met2 and where α > 0 is a suitable learning rate – typically
close to zero. Repeatedly subtracting a fraction of the gradient from the current function
value leads to a local minimum since the gradient always points in the steepest ascent
direction. If the function is convex, this local minimum is a global minimum, however,
this is typically not the case for neural networks.

2.1.6 Deficiencies of Backpropagation

It is important to mention that, while backpropagation certainly is a very powerful method,
it also has its deficiencies.

Local Minima

One of the major flaws is that functions represented by neural networks tend to be highly
non-convex, i. e. we are only guaranteed to converge to a local minimum, not a global one.

Vanishing Gradients

If the given network learns very large weight values during the training phase, the input
to the sigmoid activation function can possibly be very large as well (in absolute value).
This means that the value returned by the sigmoid function will be close to either 0 or
1 and, therefore, the gradient will be almost 0. Hence, the respective weight updates
will be close to 0, too. This would cause the training process to not achieve any further
improvements. Due to its shape, the sigmoid activation function is particularly prone to
running into this problem.

In 2000, Hahnloser et al. introduced the rectified linear unit (ReLU) activation function,
[Hah+00], and it gained in popularity through the work of Nair and Hinton in 2010,
[NH10], and also Glorot, Bordes and Bengio in 2011, [GBB11]. Using this activation
function instead of the sigmoid, the network is much less prone to the problem of vanishing
gradients as can be seen when comparing the shapes of these two activation functions
(Figure 2.3 from before). However, there is the possibility that certain neurons "collapse",
i. e. their activation becomes zero for the whole training process. Here, the leaky ReLU
(Subsection 2.1.3) provides remedy.

2e. g. the changes in the weights or error measure at each step are almost zero.
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2.1.7 Improved Network Optimization

Earlier, backpropagation in its most basic form was introduced. Many improvements and
extensions to the presented procedure have been published in the past – a few of these
will be briefly introduced before moving on to convolutions. Most of these enhancements
are aiming particularly at improving the convergence of gradient descent (GD) with
backpropagation. They can be split into two categories. Methodological adaptions of GD,
on the one hand, and methods using an adaptive learning rate, on the other hand. Two of
the former being:

• Stochastic Gradient Descent (SGD)
Instead of evaluating the gradient based on the entire training data set – like in
the regular GD – SGD only evaluates the gradient on a single training example at
a time. This not only requires considerably less memory but it is also much less
likely to get stuck in a certain local minimum while a better one is nearby. See
e. g. [KLY18] for more details.

• Mini-Batch GD
This is a mixture of GD and SGD, where the mini-batch size (i. e. number of training
samples processed for one update) represents a trade-off between the computational
complexity of one parameter update and the accuracy of such an update. This is
typically the standard choice for training a neural network with large amounts of
input data.

Using a constant learning rate α is usually not optimal. The following three are only a
selected few out of many methods which can be used to gradually optimize the learning
behavior over time:

• Momentum
The optimization is based on the "history" of previous gradients. As long as the
gradients point into the same direction, the method builds up a momentum and
goes with bigger steps in that particular direction. Contrary to the other methods
listed here, the momentum algorithm does not actually change the learning rate; it
only adds the accumulated momentum to the gradient descent update step.

• Adadelta
The learning rate is based on an exponentially decaying average of squared gradients.

• Adaptive Moment estimation (Adam)
A powerful combination of Momentum and Adadelta.

The above methods (amongst others) are presented in detail in, e. g., [Rud16] and will not
be further analyzed here. Some of the above adaptions aim to improve the convergence
speed, others are potentially less likely to get stuck on plateaus or in bad local minima
(i. e. a much better minimum would be close by).

12



2.1 Neural Networks

Combining for instance mini-batch GD with Adam will generally lead to much better
training behavior than using just regular mini-batch GD with a constant learning rate.
Figure 2.4 shows the result of an optional Python project task of a lecture at TUM.3 Three
basic neural networks were trained for image classification on the CIFAR-10 dataset.4
Each model is based on a fully-connected neural network with 5 hidden layers, 100 neurons
each, a mini-batch size of 100 and an initial learning rate of 0.01 for the blue and orange
curves, 0.001 for the green one. Despite the smaller learning rate, Adam converges faster
and is more accurate (thus, training is stopped earlier).

MB-GD

MB-GD

MB-GD

MB-GD Momentum

MB-GD Momentum

MB-GD Momentum

Adam

Adam

Adam

Figure 2.4 Mini-batch GD (MB-GD) with and without adaptive learning rates.

2.1.8 Regularization

To prevent a NN from overfitting the training data, i. e. learning to represent the training
data perfectly but failing to work on unseen test data, there exist several techniques.

3IN2346: Introduction to Deep Learning, summer term 2018.
4Dataset with 10 classes; 6,000 images each. Data collected by Krizhevsky, Hinton et al., [KH+09].
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Common ones are, for instance, adding an L1 or L2 penalty term to the network’s cost
function, just like for e. g. Ridge and Lasso regression models,5 or using dropout. Dropout,
see [Hin+12], is a regularization technique specific to deep neural networks, where – with
a certain probability – neurons are randomly dropped out, i. e. set to zero, during the
training phase. This has proven to lead to better generalization by keeping the network
from relying heavily on certain input combinations.

Another popular regularization method is data augmentation. Say we are trying to classify
whether or not there is a cat on a picture. Then our model should correctly recognize the
cat regardless of its "position", i. e. we would like the classifier to be invariant to various
transformations, e. g. to recognize a cat even if it is up-side-down. In this regard, many
datasets could be biased as they might only contain pictures of animals where the animals
are in the main focus. To nevertheless achieve accurate results, we augment the dataset
by transformations of itself. For example, we can add the 180° rotation of each image
to the dataset. Other augmentations are, e. g., randomly cropping images into smaller
pieces (e. g. only a cat’s paws remain on a certain image) or random brightness or contrast
changes. In most cases, this will make a classifier more robust and increase generalization.

2.1.9 Batch Normalization

Batch normalization, introduced by [IS15], is a powerful extension to neural networks of-
fering faster, more robust training, increased model performance and better generalization.
Simply put, it is a normalization layer in a mini-batch based neural network (Subsection
2.1.7). A layer’s activation a will be mean centered and standardized for each mini-batch
individually. Algorithm 1 describes the procedure in more detail.

Algorithm 1: Batch Normalization applied to activation a at layer l over a
mini-batch, taken from [IS15].
input :Values over mini-batch B = {a1, . . . , am}; Parameters to be learned: γ, β

µB ←
1
m

m∑
i=1

ai // mini-batch mean

σ2
B ←

1
m

m∑
i=1

(ai − µB)2 // mini-batch variance

âi ←
ai − µB√
σ2
B + ε

// normalize

yi ← γâi + β ≡ BNγ,β(ai) // scale and shift

The above transformations are differentiable and, thus, the necessary assumptions for
backpropagation are not violated; there is just an additional chain rule step.

5For Ridge regression see e. g. [TA77], for Lasso regression [Tib96].
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2.2 Convolutional Neural Networks

2.2 Convolutional Neural Networks

Fully-connected neural networks deliver great results on numerical classification tasks,
but become extremely memory hungry when applied to image classification. Imagine the
objective is to classify a gray-scale input image of 1,000 by 1,000 pixels with a simple
NN with one hidden layer and 1,000 units. This would lead to an immense number of
required weights, i. e. one weight per each pixel and unit combination, 109 parameters
in total. Also, this approach does not capture spatial pixel correlations as every pixel
is processed on its own and only combined pairwise with all other pixels. This is where
convolutions come into play. Instead of applying weight matrices to the input, filters
(also called kernels) are used to extract only the key features. Similarly to NNs, we can
use gradient descent based techniques to find the optimal kernels which extract certain
kinds of features. Finally, a fully-connected feed-forward NN could be used to perform the
classification task on the reduced space of these key features. [Kha+19] gives an overview
of major milestone achievements (Figure 2.5).

Figure 2.5 Evolutionary history of CNNs from ConvNet till to date. Taken from [Kha+19].

Coming back to the gray-scale image example, using a one-layer convolutional NN (CNN)
with 64 3x3 kernels leads to just slightly above 500 parameters. Not only were convolutional
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nets computationally much less expensive, but they also delivered better results on image
data than regular NNs. Thus, they quickly grew popular and there have been many
improvements. The subsequent architectural concepts are following [Zha+20].

2.2.1 Kernels

A convolutional neural network (CNN) is an extension of a NN where the concept of
weight matrices is replaced by that of kernels. The parameters are shared over the entire
network input and multiple such kernels will be applied simultaneously.

Take a single kernel of, for instance, size 3x3. Lay this kernel over the input image and
slide it from left to right, top to bottom, through the input image, multiplying each input
pixel by the respective kernel element. Each such operation results in a (smaller) matrix
whose entries are then summed up, giving one element of the output matrix, i. e. for each
step we perform a matrix product with the kernel’s transpose. See e. g. Figure 2.6 for an
illustration of the first of these steps of this process on a 4x4 input. This gives the first
element of the final 2x2 output, ( 30 1

19 26 ), which is obtained by completing the remaining
three steps on this input "image" by further sliding the filter.

5 3 2 4

7 3 1 6

0 9 10 4

1 2 5 3

1 0 -1

2 1 0

-1 0 1

5 0 -2

14 3 0

0 0 10

=
Σ

30x

Input image

3x3 kernel

Figure 2.6 First step of applying a 3x3 kernel on a 4x4 image.

This can be done for multiple kernels simultaneously, i. e. adding a third dimension
to the kernel, which yields different feature capturing filters due to randomness in the
initialization phase. Applying the full set of kernels to the input forms what is called a
convolutional layer. For simplicity, we will work with one kernel only going forward.

2.2.2 Strides

The process described above is using a stride of one. The stride quantifies how far the
filter is moved after each operation, i. e. a stride of one means we just slide the kernel by
one to the right, or downward, respectively. With a stride of two, it is moved by two, a
stride of three means to skip over three rows/columns, and so on. The output dimensions
then look as follows:
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Input: N ×N, Kernel: K ×K, Stride: S

⇒ Output:
(
N −K
S

+ 1
)
×
(
N −K
S

+ 1
)
.

This can obviously lead to ill-posed set-ups which is why K and S must be chosen such
that N−K

S is an integer.

2.2.3 Padding

Having several convolutional layers after another, the dimensions will shrink extremely fast
and corner pixels are only ever used once. To counter these effects, we add a padding to
the layer’s input, increasing its size. See the figure below which extends the example from
Figure 2.6 by adding a 0-padding – using a stride of one, again. One could also decide
to add more than just one row/column of zeros. This amount is called the padding size.
There exist approaches of padding the image with values other than zeros, e. g. reflections
of the actual image, or duplicating the outer image values.

0 0 0 0 0 0

0 5 3 2 4 0

0 7 3 1 6 0

0 0 9 10 4 0

0 1 2 5 3 0

0 0 0 0 0 0

1 0 -1

2 1 0

-1 0 1

…x

Input image

3x3 kernel

8 7 11 7

13 30 1 0

-1 19 26 20

-8 -6 14 23

Output image

⇒

Figure 2.7 Applying a 3x3 kernel on a 0-padded 4x4 image.

An updated view on the output dimensions is then:

Input: N ×N, Kernel: K ×K, Stride: S, Padding: P

⇒ Output:
(
N + 2P −K

S
+ 1

)
×
(
N + 2P −K

S
+ 1

)
,

N + 2P −K
S

∈ N.

2.2.4 Pooling

As an alternative to regular convolutional layers with kernels, we can use what is called
pooling layers for downsampling the input in a CNN. A pooling layer can be seen as a
special convolutional layer with a fixed kernel which is capturing the "strongest" features
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in a certain region of the picture. Typical such pooling layers are max pooling and average
pooling, i. e. take the maximum – or average, respectively – of each input slice. See, for
instance, [SMB10]. Adapting the previous example from Figure 2.6 by replacing the kernel
with an average pooling approach, leads to a different result, see the figure hereafter.

5 3 2 4

7 3 1 6

0 9 10 4

1 2 5 3

=x

Input image

Avg Pooling
Layer

40 42

38 43

1
9 ×

Output image

Figure 2.8 Applying an Average Pooling layer on a 4x4 image.

2.3 Autoencoders

It is not clear when or by whom an autoencoder (AE) as such has been first introduced,
but it probably goes back to the 1980s where Rumelhart et al. were trying to solve an
error propagation problem ([RHW85]). More recently, along with the boom in deep
learning research, autoencoders (AEs) have become an increasingly popular topic. They
are neural networks that perform an unsupervised task to output their own original input
by compressing it into a (much) lower dimensional space and, from there, reconstructing
the original input with minimal information loss. Commonly referred to as encoder and
decoder steps. Due to the encoding into a lower dimensional space, only the most relevant
features will be kept – whatever these may be. Typically, encoder and decoder operate
in a symmetrical fashion, i. e. the encoder and decoder have the same amount of layers.
Obviously, the use cases of such an architecture are highly limited, though, there exist
extensions that have proven to be quite powerful and will be discussed in the following
sections. One would usually use AEs for image denoising or outlier detection. [Pla18]
outlines the relation between AEs and principal component analysis, where a certain
autoencoder set-up allows to train weights spanning the same subspace as the one spanned
by the principal component loading vectors. Typically, an AE’s reconstructed output is
noisy and appears blurry when working with image data.
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2.3.1 Convolutional Autoencoders

Autoencoding can easily be transferred to CNNs and the corresponding architecture is
commonly called a convolutional autoencoder. Convolutional layers are used to reduce the
input image to a lower dimensional space. Kernels and upsampling (factor 2) layers are
then used to scale up again to the original space. Many typical implementation examples
of such convolutional AEs are based on the MNIST database.6 It contains 60,000 training
images and 10,000 testing images of 28×28 pixels, black and white. Each image represents
one handwritten digit ranging from 0 to 9. Figure 2.9 illustrates how reconstructed outputs
of a straight-forward convolutional AE implementation could look like.

Figure 2.9 Input and reconstructed output of an Autoencoder.7

Going forward, when speaking of an Autoencoder we are referring to a convolutional one.

2.4 Variational Autoencoders

In 2013, Kingma and Welling introduced the variational autoencoder (VAE) ([KW13]).
Their method suggests adjustments to the bottleneck of regular AEs, i. e. the point where
the space is most reduced. Instead of simply scaling back up from there, they show how
to use variational inference to learn parameters describing a probability distribution and,
thereby, represent the input data in this latent space. It is then possible to sample from
this distribution and scale back up, leading to much higher robustness and making the
variational autoencoder (VAE) a generative model. The latter is a desirable characteristic
as it allows to generate new data simply by plugging a random sample into the decoder
network. Figure 2.10 shows a simplified representation of a VAE architecture.

Figure 2.10 Components of a (convolutional) VAE.8

6MNIST database: Modified National Institute of Standards and Technology (NIST) database – a
size-normalized and centered subset of a dataset from NIST – was created by LeCun et al., [LCB10].

7from a Keras Autoencoder tutorial: https://blog.keras.io/building-autoencoders-in-keras.html
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2.4.1 Variational Inference for Autoencoders

This section’s content largely follows the paper of Kingma and Welling, [KW13]. Assume
some data X is generated by some latent variable z. The objective is to infer knowledge
about z by computing

p(z|X) = p(X|z)p(z)
p(X) , p(X) =

∫
p(X|z)p(z)dz.

Unfortunately, this problem is intractable. We can, however, try approximating p(z|X)
by another distribution q(z|X). Here, Kingma and Welling propose to make use of the
Kullback-Leibler divergence which was originally defined in [KL51].

Definition 2.8. (Kullback-Leibler Divergence)
The Kullback-Leibler (KL) divergence, or relative entropy, measures how different one
probability distribution is from another. Let p and q be probability distributions defined on
the same probability space X . We define their Kullback-Leiber divergence as:

KL(q || p) ..=
∫
X
p(z) log p(z)

q(z)dz = Ez∼p(z) [log p(z)− log q(z)]

The KL divergence is in general asymmetric, i. e. KL(p || q) 6= KL(q || p), and non-
negative.

Now, we can reformulate our objective as finding the distribution q which is the most
similar to p:

q∗(z) = arg min
q∈Q

KL(q(z) || p(z|X)) = arg min
q∈Q

Ez∼q [log q(z)− log p(z|X)] , (2.6)

where Q is a set of tractable candidate distributions. Equation (2.6) still involves the
intractable p(z|X), so we can maximize the (variational) lower bound instead:

q∗(z) = arg max
q∈Q

Ez∼q [log p(X, z)− log q(z)] , (2.7)

since

arg min
q∈Q

Ez∼q [log q(z)− log p(z|X)]

= arg min
q∈Q

Ez∼q

log q(z)− log p(X, z) + log p(X)︸ ︷︷ ︸
independent of z


= arg min

q∈Q
Ez∼q [log q(z)− log p(X, z)] + const.

8taken from http://kvfrans.com/variational-autoencoders-explained/
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Once more, it is possible to rewrite the objective in Equation (2.7):

Ez∼q [log p(X, z)− log q(z)]
=Ez∼q [log p(X|z)p(z)− log q(z)]
=Ez∼q [log p(X|z) + log p(z)− log q(z)]
=Ez∼q [log p(X|z)]− Ez∼q [log p(z)− log q(z)]
=Ez∼q [log p(X|z)]−KL(q(z) || p(z)).

Part of the objective, KL(q(z) || p(z)), can now be calculated in closed-form for specific
Q. Putting everything together, the objective is as follows:

q∗(z) = arg max
q∈Q

Ez∼q [log p(X|z)]−KL(q(z) || p(z)). (2.8)

Before we proceed, we introduce the following notations:

• Determinant of a square matrix A: det(A),

• Trace of a matrix A: tr(A).

Now, let p follow a Gaussian distribution, p(z|X) ∼ N (µ, σ2) with mean µ and variance σ2.
Accordingly, we choose q(z|X) = N (z | µθ(X), Σθ(X)), where µθ and Σθ are arbitrary
functions dependent on parameters θ which can be inferred from the data. The KL
divergence of two Gaussian distributions can be calculated analytically:9

KL(N (µ1, Σ1) || N (µ2, Σ2)) =

= 1
2

(
tr(Σ−1

2 Σ1) + (µ2 − µ1)TΣ−1
2 (µ2 − µ1)− d+ log detΣ2

detΣ1

)
,

where d is the distributions’ dimensionality. However, Ez∼q [log p(X|z)] in Equation (2.8)
is harder to solve.

The "Reparameterization Trick"

Ideally, we would still want to be able to optimize the network using gradient descent.
Kingma and Welling found that, for sufficiently large batch sizes, one sample from p is
sufficient to approximate Ez∼q [log p(X|z)], but one may also combine this with a Monte
Carlo sampling approach. As we optimize our network through backpropagation, all
operations need to be differentiable. However, sampling from a distribution does not
meet this criteria. Therefore, Kingma and Welling propose a "reparameterization trick".
Instead of sampling from p(z|X), we can sample from a standard normal distribution
and let the network learn the respective transformation. This workaround maintains the
necessary differentiability of the network. See Figure 2.11 for an illustration; red colors
indicate non-differentiable sampling operations and blue shows loss layers.

9Refer to, e. g. [Duc07], for a simple proof.
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Figure 2.11 Variational autoencoder – reparameterization trick. The feedforward behavior of these
networks is identical, but backpropagation can be applied only to the right network. Taken from

[Doe16].

2.4.2 Deep Feature Consistency

Since its introduction in 2013, the variational autoencoder has seen many improvements,
especially convolutional VAEs. One very promising of these is the combination of VAE
with a pre-trained deep CNN via a perceptual loss propagation. The perceptual loss of
two images is defined as their similarity of hidden features in such a pre-trained deep CNN.
Hou et al. ([Hou+16]) propose how such a framework could look like – a deep feature
consistent variational autoencoder (DFC VAE). They suggest to combine a VAE with a
state-of-the-art pre-trained deep CNN, the VGGNet-19 (Figure 2.12).10

Figure 2.12 Deep feature consistent VAE. Taken from [Hou+16].

This means the VAE will be penalized by the dissimilarity of its own output compared to
the original image, when passing both through the pre-trained VGGNet-19 CNN. This
is expected to force the VAE to achieve a better reconstruction, ensuring a deep feature
10Winner of the ImageNet Challenge 2014 (Classification+Localization). For model details see [SZ15].
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consistency. Figure 2.13 shows how this DFC VAE compares to a plain VAE. It shows
the model outputs, i. e. image reconstructions, based on the CelebA dataset.11 The first
row shown in the figure is the input image, the second row is generated from the decoder
network of a plain variational autoencoder (PVAE), and the last two rows are the results
of VAE-123 and VAE-345 trained with feature perceptual loss based on VGGNet-19 layers
1-2-3 and 3-4-5, respectively. On the one hand, we can see that the PVAE seems to
produce a reasonably good reconstruction, however, the images appear blurry and are
lacking detail. On the other hand, the models trained with perceptual loss have a much
sharper output image appearance. The figure also shows that there is quite a significant
difference between VAE-123 and VAE-345. Some reconstructed images of the latter show
e. g. different hair colors compared to the input but, at the same time, seem to better
capture certain features like, for instance, hair strands or head coverings.

Figure 2.13 Image reconstructions from different models. Taken from [Hou+16].

2.5 Variational Autoencoder - Generative Adversarial
Networks

This section will present a framework that is a powerful combination of two architectures.
Both of which have proven successful over the recent years. First, we need to briefly
present generative adversarial networks (GANs).

2.5.1 Generative Adversarial Networks

Ian Goodfellow introduced the Generative Adversarial Network (GAN) in 2014, [Goo+14].
This framework consists of two competing NNs: a generator and a discriminator. The
11containing more than 200,000 celebrity face images, see [Liu+15].
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former takes random noise as an input and generates an output in the desired space; the
latter tries to distinguish the generated output from input training data. The generator
should learn to generate realistic outputs such that the discriminator is fooled and cannot
tell true from fake anymore. For a simplified illustration, see Figure 2.14 below.

Figure 2.14 Framework of a generative adversarial network. Taken from [Bla18].

The training phase of this model is particularly complex, as one needs to maintain a
certain balance between the two models. Training the generator much faster than the
discriminator will make the latter unable to tell true from fake apart, even though the
reconstruction is still poor and could be much better. Vice versa, if the discriminator
is trained too fast, it will always be one step ahead of the generator, i. e. it will always
recognize the fake picture. Simply choosing the same set of certain hyperparameters,
e. g. learning rate and optimization method, is not sufficient to tackle this problem, as the
two networks might behave entirely different. However, heuristics indicate that his can be
overcome by training the two models in an alternating fashion, moving back and forth
rather frequently.

GANs have become extremely popular for a variety of reasons. One of them being that
they were the first generative model producing reasonably good outputs. Yann LeCun,
known for laying out important groundwork on convolutional nets and being Facebook’s
Chief AI Scientist, called GANs in a talk in November 2016 at Carnegie Mellon University
in Pittsburgh, Pennsylvania, the "coolest idea in deep learning in the last 20 years".12

2.5.2 Combining GAN & VAE

Only several months after Goodfellow’s paper on GANs, Larsen et al. proposed a combina-
tion of GANs and VAEs ([Lar+15]) – building on top everything presented in this paper
so far. They suggest to replace the generator in Goodfellow’s GAN by a VAE, resulting
in a compelling framework, variational autoencoder - generative adversarial network, for
12RI Seminar: Yann LeCun: The Next Frontier in AI: Unsupervised Learning. See LeCun’s YouTube

channel: https://www.youtube.com/playlist?list=PL80I41oVxglK--is17UhoHVosOLFEJzKQ
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short VAE-GAN. Figure 2 from their paper illustrates how the two architectures interact,
plus at which point certain training objectives are obtained (represented by gray lines).
See Figure 2.15 hereafter.

Figure 2.15 Flow through the combined VAE-GAN model during training. Taken from [Lar+15].

As the above figure suggests, training a model following such an architecture is complex.
The discriminator model takes three inputs: the original image x, the VAE output x̃
and the decoder output xp obtained by plugging in a random sample. LDisl

llike represents a
reconstruction error in the GAN discriminator at layer l. The straight-forward approach
would be to optimize the following quantity

L = LVAE + LGAN, where LVAE = Lpixel
llike + Lprior, (2.9)

where Lpixel
llike is the element-wise pixel reconstruction error of the VAE13 and Lprior is

the KL divergence term. Instead, the authors suggest to replace Lpixel
llike in Equation (2.9)

by LDisl
llike which is the expected log-likelihood of a Gaussian observation model for the

discriminator’s hidden representation of layer l. The resulting training objective is then

L = Lprior + LDisl
llike + LGAN, (2.10)

and the model can be trained following Algorithm 2:

13see the first quantity of the previously derived VAE objective in Equation (2.7).
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Algorithm 2: Training the VAE-GAN model, taken from [Lar+15].
Initialize network parameters, θEnc, θDec, θDis;
repeat

X ← random mini-batch from dataset ;
Z ← Enc(X) ;
Lprior ← KL(q(Z|X) || p(Z)) ;
X̃ ← Dec(Z) ;
LDisl

llike ← −Eq(Z|X)[p(Disl(X)|Z)] ;
Zp ← samples from prior N (0, I) ;
Xp ← Dec(Zp) ;
LGAN ← log (Dis(X)) + log

(
1−Dis(X̃)

)
+ log (1−Dis(Xp)) ;

// Update network parameters; gradient descent step

θEnc
+← −OθEnc

(
Lprior + LDisl

llike

)
;

θDec
+← −OθDec

(
γLDisl

llike − LGAN
)
;

θDis
+← −OθDisLGAN ;

until some stopping criterion;
Here, Larsen et al. define a weight γ for the ability to reconstruct vs. fooling the
discriminator. According to them, this can also be interpreted as weighting style and
content. Finally, Figure 2.16 shows how VAE-GAN performs on the CelebA dataset. The
authors describe the plain VAE’s output as being able to draw the frontal part of the
face sharply, but being blurry off-center. Also, their VAEDisl

appears to produce sharper
images even off-center. The VAE-GAN’s reconstructed images generally look sharper with
a more natural appearance.

Figure 2.16 Reconstructions from different autoencoders. Taken from [Lar+15].

There has been a lot of research on VAEs, GANs and VAE-GANs since and results
have been continuously pushed. In January 2019, Google’s DeepMind has released the
VQ-VAE-2, a second version of their Vector Quantized Variational AutoEncoder, claiming
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to rival the (at the time) state-of-the-art BigGAN-deep ([ROV19]). Figure 2.17 shows
generated images from VQ-VAE-2 by plugging a certain random sample into the decoder
network. Thus, even though the pictures below may look very real, these persons do not
exist. The authors are highlighting that the samples from the VQ-VAE-2 are especially
realistic since the model successfully produces long-range dependencies. For example,
matching eye colors and symmetrical attributes. At the same time, their model also covers
lower density modes of the dataset like green hair color.

Figure 2.17 Representative samples from VQ-VAE-2. Taken from [ROV19].

2.6 The ExaHyPE

This section aims to briefly introduce the ExaHyPE (Exascale Hyperbolic PDE Engine), see
[Rei+20]. It is an open source engine for solving first-order hyperbolic partial differential
equations (PDEs) and it is built upon the PDE solver framework Peano ([Wei19]). The
numerical method is given in the engine’s concept and, in general, the user does not need
to interact with any solver components. Our ultimate goal is to leverage ExaHyPE to
simulate tsunamis based on bathymetry data. Following [Rei+20], we present only a few
selected key items relevant for our specific application.

The engine needs PDEs of the following form:

∂

∂t
Q+ OF (Q,OQ) +B(Q) · OQ, (2.11)

where Q : Ω ⊂ Rd 7→ Rv is the state vector of the v conserved variables, Ω is the
computational domain, F (Q) is the flux tensor for modeling viscous effects and B(Q)
represents the non-conservative part. Hyperbolic systems of this form can be used for a
wide range of applications involving waves. In particular, we are interested in the two
dimensional shallow water equations which can model fluid flow in coastal areas. These

27



2 Models

can be written in the form of Equation (2.11) as

∂

∂t


h

hu

hv

b


︸ ︷︷ ︸

=Q

+O


hu hv

hu2 huv

huv hv2

0 0


︸ ︷︷ ︸

=F (Q)

+


0

hg ∂x(b+ h)
hg ∂y(b+ h)

0


︸ ︷︷ ︸

=B(Q)·OQ

= 0,

where h is the water column’s height, (u, v) the horizontal flow velocity, g the gravity and
b the bathymetry. We will use an ADER-DG ([Zan+15]) based scheme provided in the
ExaHyPE framework for solving these equations.
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3 Autoencoding Bathymetry Data

Over the course of this chapter, we will explore how the previously described models
perform on the GEBCO dataset. That is, we want to know how well they can approximate
the original bathymetry data and capture certain kinds of features. We analyze each
model’s results both quantitatively and qualitatively.

3.1 Model Performances on Bathymetry Data

The code used to derive this section’s results can be found on GitHub.1 Implementations
were done using Keras, a Python-based deep learning library ([Cho+15]).

General Setup

Coming back to the GEBCO dataset described in Chapter 1, we would now like to use
the models from Chapter 2 to reconstruct the original data as well as possible. We will
focus on quantitative results and, also, on a purely visual aspect.

To feed the data into our autoencoders, we need to break down the GEBCO dataset
into many smaller pieces, which we will call samples going forward. From a modeling
perspective, each sample is treated as a simple gray-scale image, i. e. each coordinate
is represented by a pixel and its altitude is given through the respective pixel’s value.
The samples are set to a size of 96× 96 pixels. Given the GEBCO dataset’s dimensions
of 86,400 × 43,200, this results in having a total of 405,000 samples. We split these
into training (95%) and test (5%) set, where an additional 5% of the training set is
reserved as a validation set for fine-tuning the models. Furthermore, the GEBCO’s
altitude measurements are scaled down into [0, 1] to ensure higher model robustness and
input/output consistency. Additionally, we augment both training and validation set by
each sample’s 90° rotation to the right.2 Thus, we end up with a split of 731,025 training
samples, 38,475 validation samples and 20,250 test samples – each of size 96× 96 pixels.

3.1.1 Autoencoder

The very first goal is to assess the feasibility of obtaining reasonable model outputs.
Therefore, we first implement a plain autoencoder, despite it not being a generative model.
The AE’s architecture is shown below in Figure 3.1.

1https://github.com/se-wltr/topography_dl
2Further augmentations were not applied as this significantly increases memory requirements.
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3 Autoencoding Bathymetry Data

Input Layer

Convolutional Layer + BN + 
LeakyReLU

Convolutional Layer + BN + 
LeakyReLU

Convolutional Layer + BN + 
LeakyReLU

Convolutional Layer + BN + 
LeakyReLU

96 x 96 x 1

48 x 48 x 64

24 x 24 x 128

12 x 12 x 128

6 x 6 x 256

Output Layer

Upsampling Layer + Sigmoid

Upsampling Layer + BN + 
LeakyReLU

Upsampling Layer + BN + 
LeakyReLU

Upsampling Layer + BN + 
LeakyReLU

Encoded 
Representation

Figure 3.1 Our 8-layer autoencoder implementation architecture. The number of filters used at
each layer is indicated in green.

Training this model for 50 epochs proved to be sufficient, as the loss started to stagnate
from there on. We chose the Charbonnier error penalty3 (Definition 2.5) and a rather
high learning rate of 1e-2 with the Adam optimization method and a batch size of 128.
As the Charbonnier loss closely resembles the L1 norm, it is known for high robustness.
Figure 3.2 shows our model’s loss development over time.

Figure 3.2 Autoencoder loss history.

Looking at how the model performs on reconstructing images from the unseen test set,
Figure 3.3 shows a good visual approximation. The reconstructions appear to be not
as good at capturing maximum and minimum values, i. e. the very yellow or dark spots,

3with ε =1e-10.
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respectively. Very complex structures like in the 6th image can apparently not be handled
by our autoencoder. What we are seeing as Latent Representation of Test Images is the
average over all filters of what is labeled as "Encoded Representation" in Figure 3.1.

Test Images (96x96)

Reconstruction of Test Images (96x96)

Latent Representation of Test Images (6x6)

Figure 3.3 Autoencoder performance on test images. The latent representation is showing the
average over the encoded space.

From a quantitative perspective, the approximation appears to be sufficiently good.
Passing the whole GEBCO dataset through the trained autoencoder, we take the Euclidean
distance between original and reconstruction. For the given setup, we are getting a total of
455.65, with a maximum per sample error of 5.95 (Figure 3.4). The latter, i. e. the worst
reconstruction, is not coming from the test set. Visualizing this reconstruction, it appears
the model cannot handle strong relative bathymetry changes within a short distance.

Figure 3.4 Autoencoder – maximum reconstruction error.

We conclude that this AE’s reconstructions work sufficiently well and to go forward with
more advanced, generative models.
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3.1.2 Plain Variational Autoencoder

We build upon the previously presented autoencoder. The underlying main architecture
remains unchanged, i. e. the same amount of convolutional layers, the same number of
kernels, the same batch size. However, following the theory presented in the previous
chapter, the VAE’s architecture now looks as follows (Figure 3.5).

Input Layer

Convolutional Layer + BN + 
LeakyReLU

Convolutional Layer + BN + 
LeakyReLU

Convolutional Layer + BN + 
LeakyReLU

Convolutional Layer + BN + 
LeakyReLU

96 x 96 x 1

48 x 48 x 64

24 x 24 x 128

12 x 12 x 128

6 x 6 x 256

Output Layer

Upsampling Layer + Sigmoid

Upsampling Layer + BN + 
LeakyReLU

Upsampling Layer + BN + 
LeakyReLU

Upsampling Layer + BN + 
LeakyReLU

Encoded 
Representation

Fully Connected Layer + ReLU100 x 1
Mean

Var

Latent 
vector

Two times:
Fully Connected Layers + ReLU

Figure 3.5 VAE implementation architecture.

This means we obtain a reduction from a 96× 96 input to a single 100-dimensional latent
vector. A tremendous reduction from 9,216 elements to 100.

The beginning of the decoding network has two fully connected layers to give the network
more learnable parameters before switching over to convolutional upsampling layers. In
addition to the VAE specific KL divergence loss, we again used the Charbonnier loss and
the Adam optimization method. As our main goal is to obtain good reconstructions, we
give more weight to the pure reconstruction loss than the KL loss. This makes the network
focus on improving reconstruction quality rather than perfectly approximating the true
latent distribution.4 We trained for 100 epochs and, compared to before, with a much
lower learning rate of 1e-6. Figure 3.6 shows the logarithmic loss development over time.

4Assume we wanted to use the latent distribution to generate new, realistic data, we would have to
give less weight to the reconstruction loss instead and thereby trade-off some reconstruction quality.
[Yan+19] provides some more in-depth reasoning on this.
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Figure 3.6 VAE loss history.

As before, we look at the reconstruction performance on the test set (Figure 3.7). The
total L2 reconstruction error is at 307.88, the maximum per sample error at 10.36 (Figure
3.8). So, even though the plain VAE outperforms the AE from a quantitative perspective,
the reconstructions are noisy and, thus, the plots appear blurry.

Test Images (96x96)

Reconstruction of Test Images (96x96)

Latent Representation of Test Images (6x6)

Figure 3.7 VAE performance on test images. The latent representation is the latent space’s average.

Figure 3.8 VAE – maximum reconstruction error.
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The VAE’s worst reconstruction seems to confirm the previous assumption of having
weaker reconstructions when the input has a strong, sudden surface change. Again, the
highest error sample is not part of the test set.

3.1.3 Deep Feature Consistent Variational Autoencoder

Starting from the plain VAE described in the previous subsection, we join it together with
the VGGNet-19 through a perceptual loss on the first four layers. We use a weighting
for the layers as we do not want to give too much credibility to this network that was
trained on non topographical data.5 We therefore give a weighting of [1.0, 0.75, 0.5, 0.5]
to the perceptual loss of VGGNet-19 layers one to four. We train our DFC VAE using
identical hyperparameters compared to the plain VAE, but train for 115 epochs. The
reconstructions seem to capture features much better than those of the previous models.
However, they still appear to fail at reconstructing certain specific surfaces like in the 6th

image (Figure 3.9).

Test Images (96x96)

Reconstruction of Test Images (96x96)

Latent Representation of Test Images (6x6)

Figure 3.9 DFC VAE performance on test images. The latent representation is showing the average
over the latent space.

Looking at the reconstruction L2 errors again, we get a value of 213.26 for the entire
dataset – much lower compared to the previous models – and a maximum reconstruction
error of 7.36 on a single sample (Figure 3.10). We observe the same pattern again, the
worst reconstruction is on a training set image with large topographic changes.

5Experiments with the perceptual loss layer weighting seem to indicate that – in our case – taking the
full perceptual loss into the model, i. e. no weighting, results in poor reconstructions. The same goes
for using too many layers for the perceptual loss.
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Figure 3.10 DFC VAE – maximum reconstruction error.

3.1.4 Variational Autoencoder - Generative Adversarial Network

Contrary to our expectations, our VAE implementation combined with a GAN failed to
produce reasonable reconstructions, both qualitatively and quantitatively. It is still left
to be explored whether or not this can be overcome when relying on different training
and optimization procedures. The performance on the test set is also rather poor (Figure
3.11). Though, it appears as if the encoder network is working, as some similarity to
some extent can be recognized (colors are sometimes inverted). As it currently stands,
our VAE-GAN model has a total reconstruction error of above 600 with a maximum per
sample error of 31.46 (Figure 3.12).

Test Images (96x96)

Reconstruction of Test Images (96x96)

Latent Representation of Test Images (6x6)

Figure 3.11 VAE-GAN performance on test images. The latent representation is showing the
average over the latent space.
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Figure 3.12 DFC VAE – maximum reconstruction error.

Looking at the model’s loss development, we can see that the discriminator almost always
recognizes the fake picture. Figure 3.13 shows the model accuracy with which it tells
true from fake over the epochs. This would typically indicate that the discriminator
is simply learning too fast. But experimenting with different hyperparameter settings
has repeatedly resulted in the same pattern. One possible explanation might be that
VAE-GAN models, or GANs in general, need less varying data as it is the case for, e. g.,
face attribute datasets. Here, we have many pictures which are all showing objects (faces)
of similar shape and typically in the picture’s focus. However, Bathymetry, or topography
in general, is fundamentally different in this regard. While many parts of the GEBCO
dataset look similar, specific details can vary a lot, as could be seen in many of the
previous figures. We even have inter-sample dependencies. This means the generator has a
much harder task to do, while for the discriminator it is much easier to learn what is true
and what is not. Even when trying to train the VAE-GAN model based on a pre-trained
VAE as generator, after a certain amount of training, the discriminator always wins.

0 5 10 15 20 25 30

0.92

0.93

0.94

0.95

0.96

Discriminator Accuracy

Figure 3.13 VAE-GAN – discriminator accuracy over the epochs.
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3.2 Things That Did Not Work

For the sake of completeness, we would like to mention things that we tried but which did
not work. Apart from the VAE-GAN model, there were a few other items:

• Small input image size
While the input image size seemed to have mattered less for the plain autoencoder,
it had a big impact on the other models. Initially, we trained the autoencoder
based on a much smaller input image size of 60× 60 with almost identical results.
When moving on to variational autoencoders, this posed a rather big problem.
Reconstructions were extremely poor and mostly random noise.

• Regularization
Adding a penalty term to the networks cost function is usually expected to lead to
higher performance on the test set. However, in our given set-up, both L1 and L2
penalties did not show such effects. Instead, they worsened results slightly.

• Padding
Zero padding showed to be highly inferior to reflection padding. Analogously for no
padding used at all.

• Plain VAE
First, we started with a straight-forward implementation of the variational autoen-
coder, as it was introduced in the original paper ([KW13]). However, using only
one sample to approximate the expected log-likelihood from Equation (2.8) turned
out to be insufficient. Thus, we increased it to 100 – this number is solely based on
heuristics.
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4 Tsunami Simulation

In Chapter 3, we saw how certain models perform on reducing and reconstructing the
GEBCO dataset. Over the course of the current chapter, we want to assess whether or not
such reconstructions are suitable for highly complex applications like tsunami simulations.
We are particularly interested in the Tohoku region, Northeast Japan (Figure 4.1). In
2011, this region has been hit by a huge tsunami, resulting from the fourth most powerful
earthquake in the world since the begin of record-keeping.1 This tragic event has cost
many lives, caused nuclear accidents and even moved Honshu – Japan’s main island – by
some meters.2 Having respective early warning systems in place can save many lives. Part
of that is knowing where tsunami waves would potentially have the most severe impact on
land. Therefore, we would not only like to simulate tsunamis but also be able to assess the
uncertainty within this simulation. Quantifying this uncertainty is not part of this thesis’
scope, however, having a reasonable parameter reduction of some kind will hopefully
contribute to making this assessment easier. We use the ExaHyPE set-up described in
Section 2.6 to run a tsunami simulation based on the best-performing model of Chapter 3
(i. e. the deep feature consistent variational autoencoder).

Figure 4.1 GEBCO bathymetry data east of Tohoku region, Japan. In red is the earthquake’s
location, in yellow the buoy’s coordinates.

1https://www.usgs.gov/natural-hazards/earthquake-hazards/science/
20-largest-earthquakes-world

2http://edition.cnn.com/2011/WORLD/asiapcf/03/12/japan.earthquake.tsunami.earth/index.html
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4 Tsunami Simulation

Figure 4.2 shows the DFC VAE’s reconstruction of the area near Tohoku.

Figure 4.2 Reconstructed GEBCO bathymetry data east of Tohoku region, Japan.

We simulate a tsunami stemming from seismic activity around 150 kilometers east of the
coast (the red star in Figure 4.1). We look at how a buoy in the water (yellow circle in the
figure) moves when passing the original dataset through the simulation engine and when
passing the DFC VAE reconstruction instead. For running the tsunami simulation, we need
to specify the displacement of the bathymetry values, i. e. the earthquake. Unfortunately,
we currently have these displacement values for the 2011 version of the GEBCO dataset
only. This older version has a much lower resolution and less details. It is therefore quite
different and, consequently, our model performs not as good on it (Figure 4.3).3

Figure 4.3 GEBCO 2011 bathymetry data east of Tohoku region, Japan.

Comparing Figures 4.2 and 4.3 shows fundamental differences between the two versions.
The snippet shown in Figure 4.3, i. e. the 2011 version, has exactly 7 million data points.
On roughly the same area, the 2019 version has over 160 million data points. Also, the
long chain of (mostly) underwater elements, which is noticeably crossing through the area,
follows an entirely different path on these versions. Nevertheless, we proceed with the
current set-up – knowing that with updated displacement values, the results hereafter
should improve.

3This should speak in favor of our model. This is a reconstruction which is entirely based on data the
model has not seen during the training phase. Additionally, the data appears to be of different nature.
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In addition to what was mentioned before, we also run the simulation over a flat bathymetry,
i. e. a constant value. We look at a time window of t = 7, 500s starting from the moment
the earthquake occurs and capture the current water level every 5 seconds. Figure 4.4
shows how the water height changes at the buoy’s position over time. We can see a good
approximation of the water heights coming from the DFC VAE’s simulation basis and the
water heights from the original bathymetry’s simulation. This is especially true in the
beginning, when the biggest wave passes the buoy (disregarding the time lag, i. e. shift on
the x-axis). Later on, there are larger deviations but they are within the range of roughly
a meter. The gray curve depicts a completely different outcome. As a result, it is safe to
say that the DFC VAE’s reconstruction works significantly better and produces results of
much higher quality than a flat bathymetry.
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Figure 4.4 Water height at a fixed coordinate resulting from tsunami simulations.
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5 Conclusion

Putting everything together, we have showed that we can find a reasonable mapping of
topography data into a much lower dimensional space and a second mapping back to the
original space. The best-performing model has achieved a reduction in the amount of
parameters by almost 100-fold. This model’s reconstructions work sufficiently well, both
qualitatively and quantitatively speaking. Table 5.1 summarizes the key quantitative
findings of all the models we investigated.

Total L2 Error Maximum per
Sample Error

Autoencoder 455.65 5.95

Variational Autoencoder 307.88 10.36

Deep Feature Consistent
Variational Autoencoder 213.26 7.36

Variational Autoencoder -
Generative Adversarial Network 642.51 31.46

Table 5.1 Summary of the total and maximum per sample reconstruction errors.

The deep feature consistent variational autoencoder (DFC VAE) not only delivered the
best results from a quantitative perspective, but also qualitatively. Thus, we concluded
to use this model for further analysis. By passing it through a tsunami simulation in
ExaHyPE, we showed that the DFC VAE’s reconstruction appears to correctly capture
major bathymetric attributes. The resulting wave propagations are – subject to a small
time lag – close to the ones coming from the same tsunami simulation based on the original
data.

Outlook

As previously indicated, one area of further improvement is, e. g., re-running the tsunami
simulation exercise of Chapter 4 once the respective earthquake displacement values are
available for the GEBCO 2019 version (or later). This is expected to significantly improve
the model’s performance on the simulation evaluation. A second item could be evaluating
options to incorporate the bathymetry’s gradient into the loss functions. Many of the
maximum per sample error visualizations suggest that the models are the weakest when
there is a high (relative) change in the bathymetry within a short distance. Another
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5 Conclusion

area of future research on this topic is to explore certain 3D model approaches. These
aim at modeling a 3-dimensional surface instead of working with a 2-dimensional heat
map approach. Though promising, these are novel approaches as they only recently have
become "tractable" due to the leap forward in generally available computational power.
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