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Abstract

The realistic prediction of protein–protein complex structures is import to ultimately

model the interaction of all proteins in a cell and for the design of new protein–

protein interactions. In principle, molecular dynamics (MD) simulations allow one to

follow the association process under realistic conditions including full partner flexibility

and surrounding solvent. However, due to the many local binding energy minima at the

surface of protein partners, MD simulations are frequently trapped for long times in

transient association states. We have designed a replica-exchange based scheme

employing different levels of a repulsive biasing between partners in each replica simu-

lation. The bias acts only on intermolecular interactions based on an increase in effec-

tive pairwise van der Waals radii (repulsive scaling (RS)-REMD) without affecting

interactions within each protein or with the solvent. For a set of five protein test cases

(out of six) the RS-REMD technique allowed the sampling of near-native complex

structures evenwhen starting from the opposide site with respect to the native binding

site for one partner. Using the same start structures and same computational demand

regular MD simulations sampled near native complex structures only for one case.

The method showed also improved results for the refinement of docked structures in

the vicinity of the native binding geometry compared to regular MD refinement.
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1 | INTRODUCTION

Biomolecular binding and in particular protein–protein binding

processes to form functional complexes are key elements of almost

all biological processes. Knowledge of the three-dimensional

(3D) structure of protein–protein complexes is a prerequisite for

understanding its function. Experimental structure determination as

well as prediction of protein–protein complex structures are also

of significant interest for the rational design of drug molecules to

influence biological processes. Computationally efficient docking

algorithms are frequently applied to identify putative protein–protein

binding geometries based on surface complementarity or simple

pairwise interaction potentials.[1–4] Molecular docking, however, often

largely neglects or only approximately accounts for the flexibility of

the binding partners and interactions with the solvent.[3,5–7] It is possi-

ble to include a moderate degree of flexibility using for example defor-

mations in soft normal modes at reasonable computational costs.[8–12]

In some approaches a refinement stage with side chain flexibility is

performed, mainly focusing on interfacial rearrangements.[13,14] In

addition, the evaluation of identified binding geometries is largely
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based on empirical scoring functions applied to single complex conforma-

tions neglecting conformational and orientational entropic contributions

to binding. Ideally, molecular association should be simulated including full

flexibility of both partners and accounting for surrounding water mole-

cules and ions.[15] Molecular dynamics (MD) simulations are in principle

well suited for investigating biomolecular association processes including

full atomic flexibility. The methodology has already been used to refine

potential binding geometries identified in the docking efforts.[16–18] In

selected cases it is even possible to skip any initial docking but to use ultra-

long atomisticMD simulations and directlymimic the physical binding pro-

cess.[19,20] This is, however, computationally very demanding and only

possible up to timescales on the order of microseconds to milliseconds for

individual examples with current computational resources. The search for

putative binding regions on the surface of proteins is associated with a

rough energy landscape. Hence, the binding partners often get kinetically

trapped in local energy minimum for long time intervals resulting in a

waste of computational resources. Several efforts have been undertaken

to accelerate the search for binding sites. It is possible to employ tempera-

ture replica exchange molecular dynamics (TREMD) with multiple parallel

MD simulations and periodic exchanges. It can improve the sampling by

exploring the surface of the receptor more rapidly at higher temperatures

and extracting relevant states at lower temperatures. However, TREMD

does not scale well with system size and another method, Hamiltonian

REMD (H-REMD) might be more suitable[21] because one can specifically

scale force field parameters affecting receptor–ligand interactions. One

possibility is to linearly scale the Lennard-Jones (LJ) and electrostatic

potential across replicas[22] or reduce the ruggedness of the energy land-

scape by introducing soft core potentials.[23] The latter method has shown

promising results to refine complex geometries close to the native binding

mode but do not effectively reduce the problem of trapped binding sites

on the receptor surface.[23] Transient binding states in agreement with

experiment could be recognized using replica exchangeMonteCarlo simu-

lations for three protein–protein complexes using a coarse grained repre-

sentation of themolecules.[24]

It is also possible to use metadynamics methods to reconstruct

the free energy surface of association and dissociation of protein–

ligand systems by gradually adding biasing potentials that destabilize

already sampled protein surface regions.[25] In the latter study the

choice of only two collective variables (CVs) was enough to identify

the binding site of four protein–ligand systems. In general, a higher

number of CVs is necessary to completely describe the relative

ligand–receptor position and orientation.[26] A larger set of CVs can

be chosen using reconnaissance metadynamics that incorporates a

self-learning algorithm that gradually pushes linear combinations of

the CVs.[27] For a protein–ligand system this method was able to iden-

tify multiple binding sites of the protein.

In a recent study by Pan et al., reversible association and dissocia-

tion of five protein–protein complexes was observed using tempered

binding MD simulations.[28] However, the binding and unbinding

events were captured in still expensive computer simulations (simula-

tion times of several hundred microseconds) on the special purpose

machine Anton.[29] In tempered binding the interaction strength

between the two solutes (but not within each protein partner) is used

as tempering coordinate (instead of the total temperature as used in

standard simulated tempering). As another alternative it is possible to

add an explicit repulsive biasing potential between partners in a series

of replicas (BP-REMD) that keeps the ligand and receptor at various

distance intervals apart in higher replicas.[30] The higher replicas allow

to keep some space between partner molecules and therefore result

in fast diffusion. Upon exchange with lower replicas favorable binding

sites can be rapidly sampled also in the reference replica. This method

showed promising performance to specifically accelerate the search

process for identifying ligand binding sites on protein surfaces under

realistic conditions.[30] However, the method requires to calculate an

ambiguity distance between all pairs of surface atoms of both partners

which is computationally demanding and not well suited to run in par-

allel on many cores such as graphical processing units (GPUs).

In the present study, the possibility of increasing the repulsion

between ligand and receptor by specifically increasing the pairwise

effective van der Waals (vdW) radii and reducing the vdW attraction

along the replicas in an H-REMD simulation is explored. It weakens

not only the LJ contribution to binding interactions but also reduces

the number of hydrogen bonds and electrostatic interactions due to

an increased average distance between ligand and receptor. Hence, the

biasing potential in the replicas allows the partners to rapidly dissociate

from possible suboptimal binding sites to effectively search the protein

surface. The method is promising for its simplicity of implementation

and only requires adjusting parameters and can therefore be used with

existing simulation software that runs on GPUs. The approach was

tested on several protein–protein complexes of different sizes and

types. In contrast to regular MD simulations it allowed the identification

of near-native complexes even when starting far from the native bind-

ing region. In addition, we tested the approach for refinement of com-

plexes starting from geometries in the vicinity of the native binding

arrangement. In this case also a slightly better performance than regular

MD simulations at the same computational effort was achieved.

2 | MATERIALS AND METHODS

For all atomistic simulations the Amber16 or Amber18 software

packages,[31,32] were used employing the pmemd.cuda module for effi-

cient calculations on GPUs. The ff14SB[33] force field was used together

with an implicit water representation using the OBC Generalized Born

(GB) model[34] (igb = 8 option in amber) involving an infinite cutoff.

2.1 | Simulations of protein–protein complexes
starting far from the binding geometry

MD simulations on protein–protein complexes in order to identify the

native binding arrangement were started from an initial placement of

one partner (termed ligand) at the opposite side of the second (recep-

tor) protein with respect to the native binding site. Six complexes

were considered for these simulations (pdb-id of complexes: 2oo9,

2cfh, 7cei, 2sni, 1gcq and 1syx, see also Supporting
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Information Table S1). In all cases the unbound protein structures

were used for the simulations. The six complexes were selected due

to the relatively small size from the docking benchmark 3.0.[35] We

distinguish between receptor and ligand protein according to the

assignment in the benchmark 3.0[35] (typically the large protein part-

ner is the receptor and the smaller partner is the ligand). The root

mean square deviation (Rmsdligand: Rmsd of the ligand after best

superposition of the receptor with respect to the native complex

structure) of the initial relative placement of the partner proteins from

the native complex geometry was between 30 and 61 Å.

MD simulations were performed using the OBC (Onufriev,

Bashford, Case) Generalized Born (GB) implicit solvent model[34]

(igb = 8 option) and using an infinite cutoff radius for both the GB

radii and nonbonded interactions. A Langevin thermostat with a colli-

sion frequency of γ = 5 ps−1 was used to control the temperature. The

collision frequency is reduced relative to a more physical value of

50 ps−1 to reduce the apparent viscosity of the solvent and speed up

sampling.[36] Equilibration of the start geometry was achieved after

energy minimization (50 steps steepest descent followed by 1,500

steps conjugate gradient) and heating in three steps (each 12 ps) to

300 K with positional restraints of 0.05 kcal mol−1 Å−2 applied on the

heavy atoms relative to the starting structure. Since we observed in

long MD simulations for some proteins a partial unfolding positional

restraints on the receptor Cα atoms (force constant 0.05 kcal mol−1 Å−2)

were also included during production simulations. Note, that such weak

restraints allow still considerable backbone fluctuations and full side

chain flexibility but prevent unfolding or large domain motions in the

proteins. To prevent the ligand from diffusing too far away from the

receptor, restraints between the center of masses (COM) of the Cα

atoms of the proteins were employed. The restraining energy was zero

for COM distances below a certain threshold and increased quadrati-

cally beyond the threshold (force constant 1.0 kcal mol−1 Å−2) so that it

prevents large receptor–ligand separation but still allows the ligand to

dissociate from the receptors up to a certain distance. The COM dis-

tance threshold ranged from 27 to 50 Å for the different protein–

protein complexes and was larger than the sum of the largest center to

surface distances for the two partner proteins (given for each protein

pair in Table 1). It was chosen such that the ligand protein can reach every

position on the surface of the receptor protein without violating the COM

distance threshold. The mean difference of the applied COM distance

restraint threshold and the native COM distances was 11 Å. For avoiding

unfolding of the ligand protein additional intramolecular pairwise harmonic

distance restraints between the Cα atoms of the ligand protein (only dis-

tances between 5 and 10 Å) were applied, that prevented the ligand back-

bone from unfolding (force constant 2.0 kcal mol−1 Å−2) but allow full side

chain flexibility. Note, that the above harmonic backbone distance

restraints do not restrict the orientational and translation freedom of the

ligand protein relative to the receptor protein.

In order to perform Hamiltonian replica exchange simulations

(H-REMD), 16 replicas for each protein were generated with differ-

ent Lennard-Jones (LJ) parameters for atom pairs involving atoms

from different protein molecules (all intramolecular nonbonded

parameters within were preserved). The intermolecular LJ potentials

were scaled by a parameter d that adjusts the effective van der

Waals radius and a factor e that changes the potential well depths

(see next section for a detailed description). The following parameter

set for d and e, with a smaller step size between the parameters

close to the reference replica that increases in the higher replicas,

gave the best results for protein–protein test simulations (see

Table 2). For each replica, a short equilibration was performed for

32 ps with no exchange attempts. In the production run every 1,000

TABLE 1 Simulation setups for each complex indicated by the
PDB-id for the repulsive scaling H-REMD (RS-REMD) approach and
the regular MD simulations

Simulation time
COM da

RS-REMD Regular MD (Å)
PDB (ns/replica) (ns/simulation)

7cei 772 400 40

2oo9 730 684 27

2cfh 845 899 50

1syx 438 380 35

2sni 340 308 35

1gcq 640 640 30

aDistance was chosen larger than the sum of the largest center to surface

distances for the two partner proteins such that every surface position can

be reached without violating the COM restraint.

TABLE 2 Lennard-Jones scaling parameters for the different RS-
REMD simulation setups

Replica number
16 replicas 8 replicas

d (Å) e d (Å) e

1 0.0 1.0 0.0 1.0

2 0.01 0.99 0.015 0.99

3 0.02 0.98 0.03 0.985

4 0.04 0.97 0.045 0.98

5 0.08 0.96 0.06 0.97

6 0.12 0.94 0.075 0.96

7 0.16 0.92 0.09 0.95

8 0.2 0.9 0.12 0.935

9 0.24 0.88

10 0.28 0.86

11 0.32 0.84

12 0.38 0.82

13 0.44 0.8

14 0.5 0.78

15 0.58 0.76

16 0.68 0.74

Note: For the repulsive scaling simulations starting far from the binding

geometry and for the refinement of a docking ensemble the 16 replica

scheme was used (columns 2 and 3). In the refinement simulations of

individual docking poses the eight replica setup was used (columns

4 and 5).
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MD steps an exchange between neighboring replicas was attempted,

yielding a total simulation time (per replica) ranging from 340 to

845 ns (see Table 1).

Finally, starting from the same equilibration runs, 16 regular MD

simulations with no H-REMD but different initial velocities (using the

same restraints) were performed for comparable timescales as the H-

REMD simulations (see Table 1).

2.2 | Refinement of individual protein–protein
docking poses in implicit solvent

In addition to simulations starting far away from the native binding geome-

try, H-REMD and regular MD simulations were also performed for

arrangements in the vicinity of the native complex structure obtained by

an initial protein–protein docking run using the program ATTRACT.[37,38]

The same set of structures and docking procedure as used in a previous

study[39] were employed (see Supporting Information Table S2). Since the

H-REMDmethod for refinement of docked complexes is computationally

demanding the number of test complexes was limited to 20 complexes

from the docking benchmark 3.0.[35] The docking was performed using a

standard docking protocol on the unbound partner structures with the

program ATTRACT.[37,38] The 300 top-ranked complexes were consid-

ered. Out of this set, the 50 models with lowest Rmsd to the native com-

plex structure were used for further refinement using the RS-REMD or

regular MD simulations. In order to refine the docking solutions atomistic

replica exchange simulations in implicit solvent were performed (OBC

model,[34] using the same conditions as described above) starting from the

50 docking poses of 20 protein–protein complexes. Energy minimization

consisted of 2,500 minimization steps (400 steps of steepest descent,

2,100 steps of conjugate gradient). The systems were heated gradually in

three steps of 15 ps to 300 Kusing a Langevin thermostat for temperature

scaling. For each equilibrated pose eight replicas were generated with

increasing bias for higher replica numbers of the intermolecular LJ parame-

ters. As described above for the simulations starting from the opposite

side of the receptor protein a parameter d adjusting the effective van der

Waals radius and a factor e that changes the potential well depthswas var-

ied between the eight replicas (see Table 2).

Each replica was simulated for 0.5 ns with an exchange attempt

every 125 steps amounting to 4 ns simulation time per pose. Intramolec-

ular pairwise harmonic distance restraints between the Cα atoms of each

individual protein were applied (force constant 0.5 kcal mol−1 Å−2)

together with a COM distance restraint of interfacial Cα atoms between

the ligand and receptor (atoms with distances between 10 and 15 Å

were considered) with a half parabolic shape (force constant

1.5 kcal mol−1 Å−2) that prevents full dissociation in the high replicas and

shrinks the possible sampling space for these short simulations. The same

simulation conditions and restraints were applied for regular MD simula-

tions of each pose (no replica exchange and bias involved) of the same

simulation time (4 ns) following a standard refinement protocol devel-

oped previously.[39,40] For evaluating the interaction energy a short MD

simulation (30 ps) was applied on the reference replica of the REMD sim-

ulations followed by a minimization (500 steps of steepest descent, 2000

steps of conjugate gradient), which was also applied to evaluate the final

structures from regular MD simulations. Finally, the minimized structures

were scored by subtracting the potential energy of the partners from the

energy of the complex.[39] To access the deviation of the refined struc-

tures from the native binding site the Rmsdligand was calculated, the root

mean square deviation of the ligand to the native ligand after

superpositioning the receptor on the native receptor (only heavy atoms

were considered).

2.3 | Refinement of a protein–protein docking
ensemble in implicit solvent

Multiple docking poses were considered in a single REMD run to per-

form refinement simulations for each of the 20 protein–protein com-

plexes. Only docking poses with a rmsdligand above 10 Å (for the complex

7cei 8 Å was chosen, due to a lack of poses with large Rmsd) were con-

sidered as starting structures for the subsequent RS-REMD refinement.

Each of these poses was first scored based on the potential energy dif-

ference of the complex to the individual partners. The 16 highest ranked

poses were considered for the subsequent REMD simulations. The poses

formed the start structures in the 16 replicas and were distributed based

on the ranking (best ranked pose in replica 1, second best in replica

2, etc.). Thus, the (initially) best ranked pose started in the reference rep-

lica. Each replica was simulated for 30 ns amounting to a total simulation

time of 480 ns per RS-REMD run with an exchange attempt every

250 steps between neighboring replicas. Finally, for comparison, regular

MD simulations (no biases and no replica exchange involved) were per-

formed starting from the same poses and simulating the same time as in

the RS-REMD case.

2.4 | LJ parameter scaling between partner
molecules

The LJ interaction consists of an attractive part proportional to 1/r6 and

a repulsive contribution typically modeled by a term proportional to

1/r12. The parameters ϵij and Rij in the LJ potential determine the magni-

tude of attractive interaction and the effective (pairwise) van der Waals

radius of the interaction between a pair of atoms of type i and j.

Typically, only the parameters between atoms of the same type,

ϵii and Rii are used and one obtains parameters for pairs of different

atom types using the Lorentz-Berthelot rules[41]:

Rij =
Rii +Rjj

2
ð1Þ

ϵij =
ffiffiffiffiffiffiffiffiϵiiϵjj

p
: ð2Þ

By defining new atom types, it is possible to specifically modify

the LJ potential for interactions between the ligand and receptor

without affecting the LJ interaction within one partner molecule or

with the solvent. We used this possibility by adding an adjustable
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parameter d to an effective pair-wise van der Waals interaction

between pairs of ligand and receptor atoms,

R0
ij =Rij + d: ð3Þ

One might also scale Rij by multiplying with a factor, but this

would increase the effective radius of pairs of atoms by different

amounts and may strongly distort an interaction interface. A change

in the potential well depth ϵii is described by a factor e:

ϵ0ij = e�ϵij: ð4Þ

As this factor enters multiplicative instead of additive the same rel-

ative scaling of attractive interactions of different pairs of atom types is

possible. One subtle problem with increasing d, however, is that the

number of atoms that can interact increases (illustrated in Figure 1).

This increases the total binding strength, even though any individ-

ual interaction might be weaker due to an e < 1. ϵij has to be

decreased further to compensate for that effect. The number of

atoms that can exactly fit into the energy minimum around one atom

is proportional to the surface area of a sphere with van der Waals

radius, which would suggest the following quadratic correction:

ϵ00ij =
R

R0

� �2

ϵ0ij =
R

R+ d

� �2

ϵ0ij: ð5Þ

The LJ potential minimum also gets wider linearly as Rij increases

and more atoms can fit into the minimum along the radial direction,

leading to a cubic correction:

ϵ00ij =
R

R+ d

� �3

ϵ0ij: ð6Þ

In the cubic case, the binding energy stays approximately con-

stant so that the correction with Equation (6) compensates well for

the additional possible interactions and a lowering of e < 1 indeed

weakens the attractive LJ interaction between the partner molecules.

Hence, in all cases a cubic correction of ϵij was used.

3 | RESULTS AND DISCUSSION

3.1 | Simulations of near-native protein–protein
complex formation

For six protein–protein complexes regular MD simulations and the

RS-REMD (repulsive scaling replica exchange molecular dynamics)

method were compared to identify the native complex geometry after

starting from distant initial location of partner proteins. In the starting

arrangement the ligand protein was located on the opposite side of

the receptor partner with respect to the native binding site (worst

case scenario of the initial guess). In each case, 16 MD simulations

with different initial velocities were performed using an implicit Gen-

eralized Born (GB) solvent model (see Methods for details). The use of

an implicit solvent model reduces the computational demand and

allows for faster free diffusion of the proteins due to appropriate

reduction of the viscosity compared to an explicit solvent model. The

simulations started from the unbound ligand and receptor conforma-

tions. Only in two of the test cases (2oo9, 1syx) individual regular MD

simulations reached locations near to the native binding site and sam-

pled it for longer than a few ns with the 16 × (300 to 900) ns (see

Table 1). In the smallest test case (2oo9) the native binding site

(Rmsdligand < 10 Å) (root mean square deviation of the ligand to the

native ligand after best superposition of native and simulated receptors)

was identified in 10 runs after an average simulation time of 186 ns (rela-

tive occupancy of binding site 47% in second half of the simulations, see

Supporting Information Table S1). For 1syx one simulation reached

placements near the binding site (Rmsdligand < 10 Å) after a long simula-

tion time of 236 ns where it stayed for a short time span (approximately

44 ns) until the Rmsdligand grew again beyond 10 Å. In the other simula-

tions including all 16 regular MD simulations of the other 4 protein cases

(2cfh, 2sni, 1gcq, 7cei) trapping at locally stable sites but no approach of

the native binding site was observed (see Figure 2).

Next, we employed the repulsive scaling (RS)-REMD technique

using 16 replicas and started them from the same initial placement as

the regular MD simulations. In this technique a repulsive biasing

potential acting only between the proteins is added in the replica runs

(see Methods for details) that destabilizes protein–protein binding for

incorrect trapped states (as well as the native binding state). However,

no biasing is employed in the reference replica (under control of the

original force field) that was used for further evaluation and analysis.

In all but one case sampling of near native arrangements was

observed in the reference replica after �20–400 ns (see Figure 2 and

Table 3). For the 2oo9 system, it took 55 ns and thus a bit longer than

in case of the regular MD simulations (28 ns). Here, the interacting

proteins are very small (contain fewer than 70 residues) with an

apparently small number of alternative locally stable binding geome-

tries. However, using RS-REMD the ligand of 2oo9 reached the native

site on average faster than in case of regular MD simulations

F IGURE 1 Effect of increasing the van der Waals radius on the
number of possible interactions [Color figure can be viewed at
wileyonlinelibrary.com]
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(by �100 ns, see Table 3) and the relative occupancy of the binding

site was 78% in the reference replica, higher than the 47% observed

when combining all regular MD results (see Supporting Information -

Table S1). The RS-REMD simulation on 1syx explored near-native

binding arrangements (Rmsdligand < 10 Å) after 68 ns and thus more

than 150 ns faster than the free simulations. For the other three pro-

teins the RS-REMD simulations captured the native binding site after

21 ns (2sni), 258 ns (7cei) and 405 ns (2cfh). For these complexes one

can observe that the ligand continuously approaches the native bind-

ing site through several intermediate states (see Figure 2). It illustrates

F IGURE 2 Rmsdligand from the native structure for the reference replica of the RS-REMD simulations (magenta dots; first and second row)
and for the regular MD simulations (green dots; third and fourth row) of the six protein–protein test cases. The results of the 16 individual
simulations (separated by vertical lines) were concatenated in the regular MD cases [Color figure can be viewed at wileyonlinelibrary.com]
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the advantage of RS-REMD compared to regular MD simulations:

while regular MD simulations can get easily trapped in intermediate

binding states for significant simulation times the RS-REMD allows

the system to more rapidly dissociate from such states and reach

near-native geometries. The process of approaching the binding site is

illustrated for the 7cei case in Figure 3. The initial population of the cen-

ters of mass of the ligand protein is located on the opposing side of the

receptor in the first third of the simulation (in the reference replica). The

sampled distribution eventually shifts toward the binding site on the

receptor protein and there increases continuously until the ligand is

mostly populated at the binding site or in the vicinity of the binding site

in the reference replica. A similar representation for the highest replica

shows a quite uniform spherical population of the ligand around the

receptor (see Supporting Information Figure S1).

In all the cases for which the binding site was identified RS-REMD

led occasionally to a very close agreement to the native structure with

a lowest Rmsdligand of �3 Å (see Table 3). In particular, the lowest

Rmsdligand using RS-REMD was closer than for regular MD also in

those cases were both methods identified the correct binding site.

Thus, in these cases RS-REMD not only performs better than regular

MD in the global searching process for the binding site, but also for

local rearrangements at the binding site.

In only one case, 1gcq, the near-native binding geometry was not

detected after the upper limit of 640 ns of simulation time in the RS-

REMD and also not during any of the 16 regular MD simulations

(Figure 2). In the 1gcq case the correct position of the ligand at the

protein-interface site of the receptor was captured but the orientation

of the ligand was incorrect (see Supporting Information Figure S2). It

is possible that the force field and implicit solvent representation

favor in this case the non-native binding geometry. Stabilization of

alternative (non-native) binding geometries (in the current force field

setup) is also observed for some of the other test cases. For example,

in the 1syx case, complexes with an Rmsdligand < 5 Å are occasionally

visited in the reference replica but alternative states with larger

Rmsdligand � 8 Å are more frequently sampled. Besides of force field

artifacts, such deviation can also be due to the conformational

restraining with respect to the unbound (backbone) protein

conformation that we include during all simulations. Indeed, the pro-

tein association in the case of 1syx involves some backbone changes

toward the bound structure at the protein interface (1syx corresponds

to a target of medium difficulty, Supporting Information Table S2). In

particular, a loop conformation at the interface of the receptor protein

differed in the sampled near-native complexes from the structure in

the bound form (see Supporting Information Figure S3). Also, states

with larger Rmsdligand are still populated in the reference replica in the

final stage of the RS-REMD simulation (Figure 2). In the 2cfh case a

near-native geometry (Rmsdligand < 5 Å) forms the dominant sampled

state in the final simulation stage but an alternative binding geometry

with Rmsdligand � 25 Å remains also highly populated. The result indi-

cates that the force field setup stabilizes in many cases not only the

native binding geometry but also alternative states in the vicinity of

the native structure but also some binding modes quite far from the

experimentally observed complex structure. All protein simulations for

which the binding site was captured were extended for more than

300 ns after having encountered the native binding site. The relative

population in the reference replica of near-native states at the binding

site grows in several cases with ongoing simulation time (reaching

>50%) (see Supporting Information Table S1). This is not the case for

1syx with a population of the near-native complex of � 25% (still for-

ming the largest populated cluster; Supporting Information Figure S4)

but some alternative binding modes reaching similar population indi-

cating similar binding affinity. The population of ligand placements

at the native binding site is highest in the reference replica and

decreases for the higher (larger bias) replicas (see Supporting

TABLE 3 Simulation details for each complex indicated by the
PDB-id

Time to encounter native site Lowest Rmsd

RS-REMD Regular MD RS-REMD Regular MD
PDB (ns/replica) (ns/simulation) (Å) (Å)

7cei 258 363a 2.7 7.6a

2oo9 55 186b 2.4 2.4

2cfh 405 3.0 14.9

1syx 68 236 3.1 4.5

2sni 21 2.1 37.4

1gcq 11.6 10.2

aThe ligand was not stable at the binding site and stayed only for 1.4 ns.
bThe mean value of all encounter times was taken.

F IGURE 3 (Upper panel) Three snapshots from the reference
replica trajectory of the RS-REMD of the 7cei complex example
(green cartoon: receptor protein, blue cartoon: ligand protein, black
cartoon: native ligand protein placement). (Lower panel) The
population of the sampled ligand (center-of-mass) placements during
RS-REMD is indicated as blue spheres around the receptor (green
cartoon). The ligand protein placement in the native complex is shown
by an enlarged black sphere [Color figure can be viewed at
wileyonlinelibrary.com]
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Information Figure S5 for the example case 7cei) due to the higher

repulsive bias. Hence, an advantage of the RS-REMD technique rela-

tive to regular MD is that the near-native binding site can be identi-

fied by just looking at the population in the different replicas.

3.2 | Refinement of individual protein–protein
docking poses in implicit solvent

Significant computational demand and simulation times are still necessary

to reach near-native binding geometries using RS-REMD from distant ini-

tial placements. However, this corresponds to a worst-case scenario.

Instead, it is also possible to first perform a rapid protein–protein docking

(not including solvent or partner flexibility) in order to first identify poten-

tial binding sites possibly not too far from the native binding geometry. In

a second step short RS-REMD simulations are used as a refinement pro-

cedure to further improve the docking results. We first performed a

docking run on a subset of 20 protein–protein complexes of the protein–

protein benchmark 3.0[35] using the docking program ATTRACT and

obtained 50 top ranked poses with different ligand deviations from the

bound complex (Rmsdligand < 25 Å) around the receptor protein (same as

used in a recent study on protein–protein docking scoring[39]). For each

of these poses a short RS-REMD refinement (4 ns) was performed to

refine the docking results. In order to limit the computational demand for

this procedure an RS-REMDwith eight replicas was performed.

Overall, upon RS-REMD refinement of all 50 decoys for the

20 test cases a slightly larger number of models (65%) with higher

Rmsdligand was observed compared to the starting structures (35% of

poses had higher Rmsdligand before refinement) (Figure 4). Likely,

because of the short simulation time, no Rmsdligand improvements

better than 13 Å were sampled. More important than the Rmsdligand

improvement of poses with a high deviation from the native binding

mode is the refinement performance of the near-native models. For

the docking model closest to the native binding site a smaller

Rmsdligand after RS-REMD refinement was observed for 13 complexes.

Also, the improvement in Rmsdligand was higher, so an overall

improvement of 0.49 Å was found considering the mean difference in

Rmsdligand before and after RS-REMD refinement of the closest to

native pose (see Figure 4, left panel).

The RS-REMD scaling results are compared to a well-established

atomistic refinement procedure[39,40] using regular MD simulations with

8 times longer simulation time per decoy and final energy minimization

(same force field setup and positional and distance restraints as in the

RS-REMD, see Methods). In Figure 4 (right panel), the Rmsdligand after

RS-REMD refinement is plotted vs. Rmsdligand after regular MD refine-

ment. A slightly higher amount of structures had a lower Rmsd with RS-

REMD refinement (57%, magenta dots) than with regular MD refine-

ment (43%, green dots). RS-REMD refinement also performed better

than the regular MD refinement considering the model with the lowest

Rmsdligand for each protein–protein complex. For 13 complexes the

near-native pose was closer for RS-REMD refinement than regular MD

refinement and the mean Rmsdligand of the near-native poses of all

structures was slightly lower (0.33 Å) for RS-REMD refinement.

Finally, the refined poses were scored based on the interaction

energy of ligand and receptor, the total energy of the complex was

subtracted from the total energy of the individual ligand and receptor.

The selectivity of the resulting funnel plots (Rmsdligand versus scoring)

was compared (see Figure 5 and Supporting Information Figures S6

and S7), measuring the ability of the refinement procedures to distin-

guish near-native from other decoys. The selectivity was calculated

based on an approach introduced recently,[39] by calculating the nor-

malized difference in binding energy of the highest scored pose at the

binding site (Rmsdligand < 10 Å from the pose of minimal Rmsdligand) S
0
T

and not at the binding site S0F :

Selectivity = S0T−S0F : ð7Þ

The two key poses were shifted by the mean scoring value of all

poses and divided by the minimum scoring value in order to obtain

comparable results for each protein.

S0i =
Si−�S
Smin

: ð8Þ

F IGURE 4 The Rmsdligand of
all refined complexes after RS-
REMD refinement is plotted
against the Rmsdligand before
refinement (left panel) and after
regular MD refinement (right
panel). Magenta dots mark poses
where the Rmsdligand decreased
due to RS-REMD refinement
(35% for the left panel and 56%
for the right panel) and green dots
depict the poses for which the
Rmsdligand increased after RS-
REMD refinement [Color figure
can be viewed at
wileyonlinelibrary.com]
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A selectivity of 1 means a perfectly selective funnel plot for the best

bound pose at the binding site and −1 means that the funnel plot is very

selective for the highest scored decoy not at the binding site. A value of

0 means that the highest scored near-native pose and the highest scored

pose not at the binding site have the same binding affinity.

In 16 cases RS-REMD was able to identify the near-native binding

placement (positive selectivity) and only in four cases the refinement

approach resulted in a clearly negative selectivity (1ffw, 2oob, 1ak4,

2i25), identifying an incorrect binding site.

The selectivity was slightly higher for 14 structures in RS-REMD

(1z0k, 3a4s, 7cei, 1ay7, 1ffw, 1qa9, 3sgq, 1gcq, 2oob, 2cfh, 1ak4, 1fle,

1z5y, 2i25) compared to using regular MD refinement. The mean

selectivity of all structures was also higher after the RS-REMD refine-

ment procedure (0.12) in contrast to regular MD refinement (0.06).

In summary, the RS-REMD refinement was able to improve in

many cases the placements of the near-native poses. It overall per-

formed slightly better than an established regular MD refinement pro-

cedure (at same computational costs) in terms of the selectivity in

identifying the native binding site.

3.3 | Refinement of a protein–protein docking
ensemble in one RS-REMD

Instead of refining every docked pose separately, it is also possible to

start from a different docking decoy in each replica leading to a higher

diversity in the starting conditions such that multiple possible binding

sites are represented in different replicas. In the case of a sufficient num-

ber of replicas, it is then possible to perform only one RS-REMD simula-

tion per complex in contrast to 50 separate simulations for individual

refinement of decoys (see above). To increase the challenge, the refine-

ment was initialized exclusively from starting placements that were not

located at the binding site. Only poses with an Rmsdligand above 10 Å (for

the complex 7cei 8 Å, due to a lack of poses with large Rmsd) were con-

sidered as starting structures. An increasing replica number was linked to

a lower ranking after docking for the selected starting poses. The results

of the RS-REMD (with 16 replicas) are again compared to 16 regular MD

simulations of the same length starting from the same initial placements.

The resulting total population of sampled near-native states close

to the binding site (Rmsdligand < 10 Å) increased significantly (30%) in

F IGURE 5 Mean selectivity of all
structures and the selectivity of each
structure for the different refinement
procedures. The selectivity was calculated
as described in the main text (see
Equations 7 and 8) [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 6 Histograms of the Rmsdligand from the native structure
for the reference replica of the RS-REMD refinement (magenta) (for
all 20 protein–protein test cases) is compared to the Rmsdligand
histograms of the regular MD simulations (green). The refinement was
performed starting from initial placements not at the binding site
[Color figure can be viewed at wileyonlinelibrary.com]
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comparison to regular MD refinement (17%) (see Figure 6). For 14 of

the 20 structures RS-REMD was able to capture the binding site, in

some cases the population was highest at the binding site (see

Figure 7). It points out, that even relatively short RS-REMD simula-

tions can capture near-native binding geometries that were not

already found in the initial docking search.

Performing only one refinement simulation starting from an

ensemble of promising docking solutions and not refining every single

pose individually can significantly reduce the computational demand.

Hence, the refinement starting from an ensemble of promising dock-

ing solutions can be considered as overall more efficient than refine-

ment of every single pose.

Comparing the Rmsdligand histograms of the refinement procedure

to the histograms of the pure RS-REMD simulations (see Figure 2 and

Supporting Information Figure S4) the dominant states are consistent

in most cases, especially for Rmsdligand values under 10 Å (see 2cfh,

7cei, 2sni, 1syx). In case of 1gcq the binding site was not captured in

the long repulsive scaling simulation, still the two populated spikes

around 20 Å are also present in the refinement simulations.

4 | CONCLUSION AND OUTLOOK

A new H-REMD scheme is presented that includes a repulsive scaling

potential (RS-REMD) between different protein molecules based on

modification of the intermolecular LJ parameters. The bias requires a

modification of the simulation parameter file but no changes in the

underlying MD program are involved and full GPU support is possible.

F IGURE 7 Histograms of the Rmsdligand from the native structure for the reference replica of the RS-REMD refinement (magenta) (for all
20 protein–protein test cases in an individual figure) is compared to the Rmsdligand histograms of the regular MD simulations (green). Both
refinement procedures were initialized from poses that were not at the binding site [Color figure can be viewed at wileyonlinelibrary.com]
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The replica exchange scheme was applied and tested on three tasks

that seek to identify the native binding geometry of protein–protein

complexes using an implicit solvent model. First, RS-REMD allowed to

sample near-native binding placements in five out of six example com-

plexes, starting from a random placement far away from the native

binding site. In contrast to multiple regular MD simulations, which were

stuck mostly at locally stable sticky sites, these sticky sites were over-

come through several intermediate steps in the RS-REMD. While the

higher replicas sampled the whole receptor surface, the reference rep-

lica sampled locally favorable sites quickly until the native binding site

was captured but depending on the case alternative binding modes

were also still sampled. Although much less demanding than regular

continuous (c)MD simulations still quite extensive sampling is needed

for this approach that may limit its applicability. Our RS-REMD

approach is designed to identify native binding geometries given the

knowledge that the protein partners form a complex. For two proteins

that do not bind in reality the approach will likely also suggest putative

binding geometries. It might, however, be possible to predict the likeli-

hood of complex formation for two protein partners by studying the

population of associated states in the higher replicas (with larger repul-

sive bias) or from the lifetime and accumulation of complexed states in

the reference replica. This will be subject of future studies.

In addition to starting from a worst-case scenario, we also used

the approach for refining pre-docked poses. By applying a short RS-

REMD run for each of the 50 poses of a benchmark set of 20 pro-

tein–protein complexes, it was possible to decrease the mean devia-

tion from the native binding site. Moreover, the mean selectivity of

identifying the native binding site according to a simple scoring func-

tion (based on the interaction energy) was increased in comparison to

a regular MD refinement.

The simulation effort could be further reduced using a refinement

scheme that associates each replica in the RS-REMD run with a different

docking pose as starting structure. In contrast to the first refinement pro-

cedure, only one refining simulation had to be performed for each

protein–protein complex. The population of the ligand protein partners

near the binding site was clearly increased with RS-REMD beyond the

result achieved by regular MD simulations. The benchmark set also con-

tained difficult test cases (also reported in[39]), where the identification of

the native binding site was not possible in both refinement procedures.

Possible reasons are inaccuracies of the implicit solvent model that may

not always favor correct complex structure relative to alternative

arrangements. Explicit solvent simulations may help to solve this issue

and will be tested in future studies. However, the probably slower diffu-

sion and increase in number of particles will likely demand higher compu-

tational efforts. Another limitation of our setup is the inclusion of

conformational restraints of the partner molecules with respect to the

unbound conformations. This avoids any large-scale conformational

change or unfolding of partners but in some cases may prevent confor-

mational adaptations necessary for productive protein–protein complex

formation. More global restraining methods like inclusion of backbone

Rmsd restraints can help to overcome this issue in future efforts.

In principle, the RS-REMD biasing scheme can also be helpful to

study folding/unfolding events or dissociation/association of parts of

a protein structure. In such a case only the interactions of the selected

part of the protein with other protein segments are scaled in the rep-

lica simulations.
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