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ABSTRACT

The Brueckner G-matrix formalism is employed to calculate the single-particle potentials of
nucleons and hyperons in isospin-symmetric nuclear matter and pure neutron matter. The
underlying YN interactions consist of NLO chiral two-baryon potentials and effective density-
dependent baryon-baryon interactions. We compare the chemical potential of Λs against that of
neutrons in order to investigate the critical density for the onset of Λ-formation in pure neutron
matter. The YNN three-body force depends on two undetermined short-distance parameters
H1 and H2, whose ranges are explored by imposing empirical constraints from Λ-hypernuclei.

ZUSAMMENFASSUNG

Mithilfe des Brueckner G-matrix-Formalismus werden die Ein-Teilchen-Potentiale von Nukleo-
nen und Hyperonen in Isospin-symmetrischer Kernmaterie und reiner Neutronenmaterie be-
rechnet. Die zugrunde liegenden YN-Wechselwirkungen bestehen aus nächst-führenden chiralen
Zwei-Baryon-Potentialen und effektiven dichteabhängigen Baryon-Baryon-Wechselwirkungen.
Wir vergleichen das chemische Potential von Λ-Hyperonen mit dem von Neutronen, um die für
die Entstehung von Λs kritische Dichte zu untersuchen. Die YNN-Dreikörperkraft hängt von
zwei unbestimmten Parametern H1 und H2 ab, deren Wertebereich mithilfe von empirischen
Bedingungen aus Λ-Hyperkernen untersucht wird.
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1
INTRODUCTION

At the end of their lifetime, stars of sufficiently large mass collapse into neutron stars, with a
radius in the order of 10 km and a mass typically ranging around 1.4M�. Their high density,
which exceeds that of atomic nuclei, makes them interesting not only from an astronomical
point of view, but also from a nuclear physical one. The observation of neutron stars with
masses of 1.97± 0.04M� [2], 2.01± 0.04M� [3] and, more recently, 2.14+0.10

−0.09M� [4] imposes
strong constraints on the equation of state (EoS) of neutron star matter.
The exact composition of neutron stars is still up to debate. While the proton and lepton

fractions, which vary in the few percentage range between the multiple layers of betastable
matter, has been fairly well established, further degrees of freedom are also being explored. In
particular, the density in neutron stars gets so high that initial considerations indicate the
appearance of Λ and Σ hyperons [5]. However, the inclusion of hyperons as additional degrees of
freedom would soften the EoS too much and contradict the observation of the aforementioned
heavy neutron stars. This is called the hyperon puzzle.

Ever since the introduction of the strange quantum number in the early 1950s, strangeness
nuclear physics has been of much interest from both an experimental and theoretical point
of view, with the Λ being the most prominent strange baryon. For a review, see Ref. [6]. In
particular, numerous techniques have been applied to explore the role of strangeness in neutron
stars [7–22]. For example, it was shown that the introduction of phenomenological repulsive
ΛNN three-body forces may restore the required stiffness of the EoS [7].

While phenomenological models provide a very good description of the underlying interactions,
both in the two-body- [23–25] and three-body-sector [26–30], there is a desire for more systematic
approaches that allow for a consistent use of many-body forces. Chiral effective field theory
(ChEFT) provides the necessary tool, with many-body forces arising in the same framework
as two-body forces and the perturbative nature allowing for uncertainty estimates [31, 32].
Nucleon potentials are available at very high precision from SU(2) ChEFT both for two-body
[33–36] and three-body forces [37–46], with three-nucleon interactions being an essential tool
for calculations of nuclei [47] or fitting neutron-deuteron scattering data [37]. In the strangeness
sector, the potentials are less advanced, because the limited amount of YN scattering data
[48–50] makes it unfeasible to proceed to higher orders. The two-body potentials from chiral
SU(3) interactions are available at NLO [51] and leading contributions to three-body forces
(3BF) have been explored at NNLO [52]. Similar to the nucleon sector, hyperon-nucleon-nucleon
3BFs are essential for hypernuclei and hypernuclear matter [53–61]. Further progress has been
made by transcribing the leading three-body forces to density-dependent effective two-body
forces, both in the nucleonic- [62, 63] and the hyperonic sector [64].

In this work, we will utilize Brueckner theory in the Brueckner-Hartree-Fock approximation,
with input potentials from ChEFT. A first study of this kind was done in Ref. [65], where
YN two-body potentials were taken from ChEFT at NLO and ΛNN three-body forces were
included as density dependent two-body forces. It was shown that the inclusion of 3-baryon
interactions provides the expected repulsive effect on the Λ single-particle potential UΛ [65],

1



2 introduction

indeed indicating that the onset of Λ-formation is pushed to higher densities. Similar results
were obtained in Ref. [66], where also ΛNN − ΣNN interactions were considered.

As a novelty, we extend the calculations to higher densities (3.5 times nuclear saturation
density) and include all three-baryon interactions for strangeness S = −1, namely the ΛNN −
ΛNN , ΛNN−ΣNN , and ΣNN−ΣNN transitions. For this purpose, we derive the expressions
for the density-dependent two-body interactions ΛN −ΣN , and ΣN −ΣN in general (isospin-
asymmetric) nuclear matter.

This thesis is organized as follows. First, in chapter 2 we will review how two-body potentials
can be systematically built from ChEFT and focus on the YN interactions. In chapter 3, we
recapitulate how three-body potentials are obtained in the same framework. Afterwards, we
summarize how they are transcribed to density-dependent two-body forces and perform this
procedure for the YNN 3BFs involving Λ or Σ. Chapter 4 deals with the basics of Brueckner
G-matrix theory, introducing the G-matrix as the sum of in-medium ladder diagrams, which
are summed to all orders by the Bethe-Goldstone equation. The single-particle potential is
given in the Brueckner-Hartree-Fock approximation. The self-consistent solution of this set
of coupled integral equations will then be discussed from a numerical point of view. Results
are presented in chapter 5. We will spell out technical challenges and how to overcome them,
compare results for nucleons in the medium against the literature and then turn to the strange
sector. Finally, in chapter 6 we summarize our results.
Notations are listed in the appendix.



2
SU ( 3 ) CH IRAL EFFECTIVE F IELD THEORY

There are four fundamental forces in nature: gravity, electromagnetism, weak interaction,
and strong interaction, of which the last three are described by the Standard Model of
particle physics. At the fundamental level, the strong interactions are described by Quantum
Chromodynamics (QCD).

In QCD the fundamental degrees of freedom are quarks and gluons, which make up all
hadronic matter. Quarks are spin-1

2 fermions and come in six flavors: up (u), down (d), strange
(s), charm (c), top (t), and bottom (b), sorted by their mass in ascending order. The eight
gluons, on the other hand, are gauge bosons (i.e. exchange particles) of spin 1. Quarks possess
a charge called color (red, green, or blue), historically introduced to resolve the violation of the
Pauli principle for ∆++-baryons (uuu) and Ω−-baryons (sss). In experiments, however, we can
only observe white (i.e. colorless) particles. This phenomenon is explained by color-confinement.
As opposed to quantum electrodynamics (QED) where the gauge bosons (photons) are not
electrically charged, the gluons actually possess a color charge and thus have self interactions.
Hence the strong force does not get weaker with increasing distance, so that at some point
the production of a quark-antiquark pair becomes energetically favorable over separating the
quarks further. This process is observed in collider experiments, for example, when jets of
colorless hadrons are detected instead of single quarks (hadronization).
In QCD the coupling constant αs is not weak in general. It depends on the energy scale

(running coupling) and decreases for high energies. This makes perturbative approaches in
powers of αs only applicable for large energies (unlike QED, for example, with α ≈ 1

137).
Due to this difficulty, numerical techniques to solve QCD by lattice simulations [69–72] have
been developed in the past. Some insights into QCD can also be obtained by the large-NC

expansion, with NC the number of colors [73–75]. One approach in particular, chiral effective
field theory (ChEFT), is very successful for the low energy regime and will be the basis of the
calculations in this work. Therefore, this chapter is dedicated to the introduction of ChEFT
on a fundamental level, exhibiting the key ideas and components. We follow [31, 32, 76], to
which the interested reader is referred for more details. First, we will review the basics of QCD
and highlight its symmetry properties. After that, we show how ChEFT naturally arises from
spontaneous symmetry breaking and construct the building blocks used to assemble the chiral
Lagrangians. Then the mesonic and baryonic SU(3) Lagrangians are given up to the orders
required for the further discussion. Finally, the resulting two-baryon potentials are presented.

2.1 quantum chromodynamics

The free quark Lagrangian of QCD reads

LQCD,free =
∑
f,c

q̄
(c)
f (i/∂ −mf )q

(c)
f , (2.1)

3



4 su(3) chiral effective field theory

with the sum going over six flavors f ∈ {u, d, s, c, t, b} and three colors c ∈ {r, g, b} for a total
of 18 terms. For the sake of brevity, all quark fields will be merged into a multi-component
vector q, with the masses mf becoming an appropriately structured diagonal matrix m.

2.1.1 Symmetries of QCD

Symmetries are an indisposable tool in physics, giving valuable insights into systems and
processes. QCD possesses a variety of symmetries, of which a few will be discussed in the
subsections below. A key feature of symmetries is stated by Noether’s theorem:

For every generator of a continuous symmetry, there exists a conserved current.

Formally, an infinitesimal transformation of the form

φ(x)→ φ(x) + α∆φ(x) , (2.2)

with a parameter α and associated field change ∆φ(x), which leaves the Lagrangian L(φ, ∂µφ)

invariant, gives rise to the conserved current

jµ(x) =
∂L

∂(∂µφ)
∆φ, with ∂µjµ(x) = 0 . (2.3)

Equivalently, the charge

Q =

∫
j 0d3x, with ∂0Q = 0 (2.4)

is time-independent.

Discrete symmetries

Before we deal with continuous symmetries, we consider discrete ones first. The QCD Lagrangian
is invariant under the transformations

• charge conjugation C (particle ↔ antiparticle interchange)

• parity P (space inversion)

• time reversal T

with quarks transforming under them as

C : q(t, ~x)→ −i(qγ0γ2)T , (2.5)

q̄(t, ~x)→ −i(γ0γ2q̄)T ,

P : q(t, ~x)→ γ0q(t,−~x) , (2.6)

q̄(t, ~x)→ q̄(t,−~x)γ0 ,

T : q(t, ~x)→ γ1γ3q(−t, ~x) , (2.7)

q̄(t, ~x)→ −q̄(−t, ~x)γ1γ3 .

As a side remark, we note that experiments indicate that gravity, electromagnetism, and the
strong force are C, P, and T invariant. However, the weak interaction was found to be parity-
violating in 1956 [77] and CP-violating in 1964 [78]. The strong interaction could potentially
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violate CP symmetry through the so-called θ-term, but no conclusive observations have been
made. Actually, measurements of the (upper limit) of the neutron electric-dipole moment [79]
set severe limits on the magnitude of this violation. Strong CP-violation remains an open
problem in nuclear and particle physics. In any case, up to now all observed processes in nature
exhibit CPT symmetry.

SU(3)C color symmetry

Even though the strong force acts on color charge, it does not distinguish between different
colors. Therefore, the Lagrangian has a global symmetry under unitary transformations within
color space:

q′r

q′g

q′b

 = q′ = Uq = U


qr

qg

qb

 , U ∈ SU(3) . (2.8)

When this symmetry holds at each point in space-time individually, the symmetry group SU(3)C
is said to be local, i.e. we require the invariance to still hold under a coordinate-dependent
transformation U = U(x). To accommodate for the extra term that arises from the product
rule of the partial derivative in eq.(2.1), the derivative must be promoted to a covariant one:

Dµ := ∂µ − igΓµ (2.9)

by introducing 8 gauge fields Aaµ (identified with the gluons) via the hermitian and traceless1

connection

Γµ =
8∑

a=1

Aaµ
λa
2
, (2.10)

with the Gell-Mann matrices λa. The gluon field constitutes a further building block for the
QCD Lagrangian, allowing to build a Lorentz tensor by introducing the gluon field-strength

Gcµν =
i

g
[Dµ, Dν ] = ∂µA

c
µ − ∂νAcµ + gf cdeAdµA

e
ν , (2.11)

with f cde the (totally antisymmetric) structure constants of the su(3) Lie algebra. The full2

QCD Lagrangian then reads:

L = q(i /D −m)q − 1

4
Gµν,aG

µν
a . (2.12)

In total, QCD is classified as a non-abelian gauge theory with an SU(3)C symmetry. Therefore,
it is a special case of a Yang-Mills theory.

1 A priori, we could use non-traceless matrices as well and accordingly have transformations U ∈ U(3). However,
this would imply the existence of color-singlet gluons. The associated long-range strong forces are not observed.

2 In principle one could also add the CP-violating term L =
g2cθ

64π2 εµνρσG
µν,aGρσ,a.



6 su(3) chiral effective field theory

2.1.1.1 Chiral SU(Nf ) symmetry

In the limit of massless quarks (chiral limit), the left- and right-handed components of quarks,
qL,R, are independently invariant under flavor transformations, which is called chiral symmetry.
The corresponding projection operators are

qR,L := PR,L q , with PR,L =
1

2
(1± γ5) . (2.13)

The name left- and right-handed stems from the fact that in the massless limit, free Dirac
particles are eigenstates of the helicity operator, which projects a particle’s spin onto its
momentum:

ĥqL,R = ±qL,R , with ĥ =
~σ · ~p
|~p|

. (2.14)

In the chiral limit, the Lagrangian becomes

L = q̄Ri /DqR + q̄Li /DqL −
1

4
Gµν,aG

µν
a , (2.15)

with an apparent independence of the right- and left-handed quarks. The Lagrangian then is
invariant under continuous unitary transformations in flavour space, denoted by the symmetry
group U(Nf )L×U(Nf )R ∼= SU(Nf )L× SU(Nf )R×U(1)L×U(1)R, with Nf being the number
of (light) flavors, which is chosen to be either 2 (up, down) or 3 (up, down, strange)3, of which
the latter is adopted in this work. From these continuous symmetries, we get 8 + 8 + 1 + 1 = 18

right- and left-handed Noether currents:

Laµ = q̄Lγµ
λa
2
qL , (2.16)

Raµ = q̄Rγµ
λa
2
qR , (2.17)

Lµ = q̄LγµqL , (2.18)

Rµ = q̄RγµqR . (2.19)

For the further discussion, it is instructive to combine them into vector and axial vector
currents:

V a
µ = Raµ + Laµ = q̄γµ

λa
2
q , (2.20)

Aaµ = Raµ − Laµ = q̄γµγ5
λa
2
q , (2.21)

Vµ = Rµ + Lµ = q̄γµq , (2.22)

Aµ = Rµ − Lµ = q̄γµγ5q . (2.23)

The corresponding conserved charges, as given by eq. (2.4), generate a Lie algebra[
QaL,R, Q

b
L,R

]
= ifabcQ

c
L,R , (2.24)[

QaL, Q
b
R

]
= 0 , (2.25)[

QaL,R, QV
]

= 0 . (2.26)

The symmetry group may now equivalently be written as SU(3)L × SU(3)R ×U(1)V ×U(1)A.
While being conserved in the classical field theory, the singlet axial current Aµ = q̄γµγ5q

is not conserved at the quantum level any more, which is referred to as the chiral anomaly.4

3 The masses of the charm, top and bottom quarks are too large, making larger flavor symmetry groups unfeasible.
4 The Adler-Bell-Jackiw anomaly [80–82] is responsible for the processes γ → γγ or π0 → γγ.
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Therefore it is common to say that QCD possesses a SU(3)L × SU(3)R ×U(1)V symmetry in
the chiral limit.

2.1.2 Spontaneous symmetry breaking

There is strong experimental evidence to assume that the axial symmetry of the Lagrangian is
spontaneously broken, i.e. it is a symmetry of the system, but not of the ground state:
Since QaV commutes with the Hamiltonian and has negative parity, one would naively expect
the existence of degenerate doublets of opposite parity, but these are not observed. For example,
the ρ meson (JP = 1−) has a 1+ partner, the a1 meson, but their masses of 770 MeV and
1230 MeV, respectively, are too different for them to be seen as degenerate. Consequently, this
naive realization of chiral symmetry turns out to be false, which points to the aforementioned
broken symmetry in the ground state: QaA |0〉 6= 0. In such a situation Goldstone’s theorem
applies: [83, 84]

For every generator of a spontaneously broken continuous symmetry, there exists
one massless boson, called a (Nambu-)Goldstone boson.

Since the axial symmetry has eight generators, this gives rise to eight Goldstone bosons, which
are identified with the three pions (π±, π0), the four kaons (K±,K0, K̄0) and the eta-meson
(η). In the simpler case of Nf = 2, there would be only three broken generators, whose
corresponding Goldstone bosons are identified with the pions.

The above discussion is only approximate, because we have assumed vanishing quark masses,
i.e. mu,d,s = 0. Once the masses are set to their finite values, the left- and right handed quark
fields get coupled via the mass term

LM = q̄Mq = qLmqR + qRmqL , (2.27)

which breaks some of the flavor symmetries. Now the octet vector currents Aaµ and V a
µ are not

conserved anymore in general. V a
µ are still conserved in the SU(3) limit 0 6= mu = md = ms.

The singlet vector current is always conserved, even for non-vanishing and different quark
masses. It corresponds to baryon number conservation.

The mass terms also have a consequence for Goldstone’s theorem: Since the axial symmetry
is not exact in the first place, the Goldstone bosons are no more massless, but receive a mass
whose square is proportional to the extent of the chiral symmetry breaking. They are then
referred to as pseudo-Goldstone bosons. Since the strange quark’s mass is much larger than
those of the up and down quarks, axial SU(3) is more broken than axial SU(2), leading to the
kaons and η having a higher mass than the pions.

2.1.3 External field method

A particular object of interest in quantum field theory are Green’s functions (also known as
correlation functions), which are vacuum expectation values of time-ordered products of e.g.
currents. Divergences thereof can be related to other Green’s functions. These relations are
called Ward identities. If the Green’s function contains at least one V a

µ or Aaµ, the emerging
relation is called a chiral Ward identity.
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Since there exist infinitely many identities, it is more useful to formally combine all Green’s
functions into a generating functional. Consequently, the Ward identities express its invariance
properties. Following the approach of Ref. [85], the generating functional reads

exp(iZ[v, a, s, p]) = 〈0|T exp

(
i

∫
d4xLext

)
|0〉 , (2.28)

where we have introduced the 8 (hermitian) vector, axial-vector, scalar, and pseudoscalar
external sources

vµ =
8∑

a=1

vµa
λa
2
, aµ =

8∑
a=1

aµa
λa
2
, s =

8∑
a=1

sa
λa
2

+ s0 , p =
8∑

a=1

pa
λa
2
,

(2.29)

with an implicit space-time dependence. Now Green’s functions can be expressed as functional
derivatives of exp(iZ[v, a, s, p]) with respect to the external sources.
In QCD the external sources v, a, s, p couple to the vector, axial-vector, scalar and pseu-

doscalar quark current densities respectively via the additional Lagrangian

Lext = q̄γµ(vµ + γ5aµ)q − q̄(s− iγ5p)q . (2.30)

Note that the symmetry-breaking mass term LM in eq. (2.27) can be recovered by setting
v = a = p = 0 and s = diag(mu,md,ms). In order for LQCD +Lext to be invariant under local
SU(3)L × SU(3)R flavour transformations, the sources must obey the transformation rules5

vµ + aµ → R(vµ + aµ)R† + iR∂µR
† , (2.31)

vµ − aµ → L(vµ − aµ)L† + iL∂µL
† , (2.32)

s+ ip→ R(s+ ip)L† , (2.33)

s− ip→ L(s− ip)R† , (2.34)

with R,L ∈ SU(3)R,L.
As a side remark, we note that another advantage of this approach is that the coupling to
electroweak gauge fields follows by equating certain external vector and axial vector sources
with the W± and Z0 boson fields.

2.2 effective field theories

An effective field theory (EFT) is a low-energy approximation to an underlying theory, where
only the lightest degrees of freedom are kept and more massive, particles responsible for the
short-distance behavior, are encoded in low-energy constants.

ChEFT is such a low-energy approximation to QCD by treating Goldstone bosons and heavy
matter fields (baryons) as explicit degrees of freedom. EFTs are realized by the most general
Lagrangian that is consistent with the underlying symmetries:

"If one writes down the most general possible Lagrangian, including all terms
consistent with assumed symmetry principles, and then calculates matrix elements

5 The transformation properties of s± ip are verified by decomposing eq. (2.30) into chiral components: q̄(s−
iγ5p)q = q̄L(s− ip)qR + q̄R(s+ ip)qL
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with this Lagrangian to any given order of perturbation theory, the result will simply
be the most general possible S-matrix consistent with analyticity, perturbative
unitarity, cluster decomposition, and the assumed symmetry principles."[86]

The color symmetry SU(3)C is not an issue here because of the colorless active degrees of
freedom in the EFT. Chiral symmetry and discrete symmetries of QCD require more attention
and will be dealt with in subsequent sections.
However, one particular challenge of this approach is that an infinite number of terms will

arise in the effective Lagrangian, which at first sight makes calculations prohibitively complex.
However, there is a way of ranking each term (and thus every Feynman diagram) by the
magnitude of its contribution, through the so-called power counting. Up to a given order,
there is then only a finite number of terms, accompanied by low-energy-constants (LECs) that
parametrize the unresolved short-distance (=̂ high energy) behavior. These LECs can either be
obtained from fits to experimental data or computed from the underlying theory.
Every diagram is assigned a certain power (q/Λχ)ν of the ratio between the involved

momentum q and the chiral symmetry breaking scale Λχ ≈ 1 GeV. In particular, for the purely
mesonic Lagrangians one finds for the exponent

ν = 2 + 2L+
∑
i

vi∆i , (2.35)

with L the number of loops and vi the number of vertices with dimension ∆i. Here, ∆i itself is
calculated as di − 2, with di being the order of the Lagrangian term which the vertex comes
from. If baryons B are involved, the power counting of a connected diagram reads [32]

ν = −4 + 2B + 2L+
∑
i

vi∆i, ∆i = di +
bi
2
− 2 , (2.36)

with bi the number of baryon lines at the vertex i.

2.3 building blocks of the chiral lagrangian

The goal in this section is to establish a systematic way of constructing the chiral Lagrangian
to arbitrary orders by identifying basic "building blocks", whose transformation properties
under G = SU(3)L × SU(3)R, C, and P are well defined.
At higher orders in particular, it becomes important to find a systematic way to construct

the complete Lagrangians, especially to reduce the number of redundant terms. The idea is
that we want the building blocks to all have the same homogeneous transformation property

X
G−→ KXK† , (2.37)

with K ∈ SU(3), which will be defined soon.
In the end, taking the traces over any product of such building blocks will result in a chirally
invariant Lagrangian. This will be done explicitly in section 2.4. A list of all final building
blocks is given in table 2.1.
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building block P C h.c. order

uµ − + + O(q1)

χ± ± + ± O(q2)

f±µν ± ∓ ± O(q2)

(B̄B) + + + O(q0)

(B̄γ5B) − + − O(q1)

(B̄γµB) + − + O(q0)

(B̄γ5γµB) − + + O(q0)

(B̄σµνB) + − + O(q0)

Table 2.1: Transformation properties and chiral order of the building blocks of the effective Lagrangian.
All of them transform under G as X → KXK†. Under parity, a building block X transforms
as X P−→ ±X, under charge conjugation as X C−→ ±XT and under hermitian conjugation as
X → X† = ±X. The signs corresponding to each transformation are given in the respective
column.

The first chiral building block represents the mesons, for which a convenient way is to collect
them in a unitary matrix U(x). It comprises all eight meson fields φ1(x), ... , φ8(x) and has the
transformation property

U(x) → RU(x)L† , (2.38)

U(x)† → L†U(x)R , for (L,R) ∈ SU(3)L × SU(3)R . (2.39)

The most common way to express U in terms of φa is by using the exponential parametrization
U(x) = exp(iφ(x)/f0) with the Goldstone boson fields collected as

φ(x) =

8∑
a=1

λaφa(x) =


π0 + 1√

3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η
√

2K0

√
K
− √

2K̄0 − 2√
3
η

 (2.40)

and the pseudoscalar decay constant f0 in the chiral limit.6 For instance, it can be related to
the pion decay constant (in the chiral limit) entering the decay π+ → µ+νµ of charged pions.
In order to arrive at the transformation behavior in eq. (2.37), one first introduces - as an

auxiliary quantity - the square root of U which transforms like

u :=
√
U →

√
RUL† =: R

√
UK† = K

√
UL†. (2.41)

The relation defines the compensator field K ∈ SU(3) as

K(L,R,U) =
√
RUL†

−1
R
√
U . (2.42)

Morever, one introduces the quantity

uµ := i
[
u†(∂µ − irµ)u− u(∂µ − ilµ)u†

]
, (2.43)

6 At lowest order, all pseudoscalar mesons share the same decay constant. This degeneracy will be removed at
higher orders when SU(3) symmetry breaking is taken into account. [87]
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which has the desired transformation property uµ → KuµK
†.

Explicit chiral symmetry-breaking shows up in the QCD Lagrangian via the mass term
(2.27). More generally, consider the scalar and pseudoscalar external sources in eq. (2.30). This
motivates the quantity χ := 2B0(s+ ip) and the X → KXK† transformation behavior holds
for

χ± := u†χu† ± uχ†u . (2.44)

Since SU(3)L × SU(3)R has been promoted to a local symmetry, one has to work with a
covariant derivative:

DµX := ∂µX − irµX + iXlµ , (2.45)

with rµ the gauge field for SU(3)R and lµ that for SU(3)L. Accordingly, one gets the field
strength tensors:

fRµν := ∂µrν − ∂νrµ − i [rµ, rν ] , (2.46)

fLµν := ∂µlν − ∂ν lµ − i [lµ, lν ] , (2.47)

which transform as

fRµν
G−→ RfRµνR

† , fLµν
G−→ LfLµνL

† . (2.48)

The required transformation property X → KXK† is obtained for the quantities

f±µν = ufLµνu
† + u†fRµνu .

Finally, let us turn to baryonic building blocks. The traceless 3× 3 matrix B that comprises
the octet baryons has the form

B =


1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 −2√
6
Λ

 (2.49)

and it possesses the transformation property B G−→ KBK†.

Now we have all basic building blocks: uµ, χ±, f±µν , and B. We still have to consider their
derivatives. Just like for SU(3)C in QCD, the transformations from G are local and thus the
derivative must be promoted to a covariant one

DµX = ∂µX + [Γµ, X] , (2.50)

with the chiral connection

Γµ =
1

2

(
u†(∂µ − irµ)u+ u(∂µ − ilµ)u†

)
. (2.51)



12 su(3) chiral effective field theory

Note that this covariant derivative only applies to objects that transform as X → KXK†. For
building blocks that transform like U the covariant derivative defined in eq. (2.45) is appropriate.

Before we combine all these building blocks into a Lagrangian, we need to know of which
chiral order they are. The mesonic building block uµ scales as O(q1), because u is O(q0) and a
derivative in eq. (2.43) counts as q1. χ scales as O(q2), because it involves the quark masses,
which scale as two powers of the meson masses, as shown in eq. (2.58).
The sources rµ and lµ scale as O(q1) because of eq. (2.45), so fL/Rµν is O(q2) and consequently
f±µν as well.

The baryon field B counts as O(q0). Unlike the other building blocks, the derivative DµB of
the baryon field counts as O(q0) as well, because of the large baryon mass. However, subtracting
the mass results in a small quantity (i /D −M0)B ∼ O(q1).

The chiral orders of all relevant building blocks, together with that of baryon bilinears, are
summarized in table 2.1.

2.4 mesonic lagrangian

Using the building blocks, we can construct the chiral Lagrangian to arbitrary orders. The
chiral orders of the mesonic Lagrangian are always even, because quark masses come as powers
of q2 (χ± ∼ O(q2)), whereas derivatives (O(q1)) have to be contracted to form Lorentz scalars.
At lowest order O(p2), it reads

L2 =
f2

0

4
tr(uµu

µ + χ+) (2.52)

=
f2

0

4
tr
(
DµUD

µU †
)

+
f2

0

4
tr
(
χU † + Uχ†

)
. (2.53)

It contains two low-energy constants: f0 and B0 (hidden in χ).
One can identify f0 with the meson decay constant by applying Noether’s theorem to the

ungauged Lagrangian in the chiral limit, L =
f2
0
4 tr

(
∂µU∂

µU †
)
, and obtaining the (conserved)

left and right handed currents

Jµ,aL = i
f2

0

4
tr
(
λa∂

µU †U
)
, (2.54)

Jµ,aR = −if
2
0

4
tr
(
λaU∂

µU †
)
. (2.55)

Then the single-meson decay is completely determined by the axial-vector current transition
matrix element, which is proportial to f0 via〈

0
∣∣Aµ,a(x)

∣∣φb(p)〉 = ipµf0e
−ip·xδab , (2.56)

One can show that B0 is related to the chiral quark condensate via

3F 2
0B0 = −〈0| q̄q |0〉 . (2.57)
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Looking at the mass-terms in eq. (2.53) (i.e. those quadratic in the meson fields) for s+ ip =

diag(mu,md,ms), one finds in the isospin limit (mu = md = m):

M2
π = 2B0m, (2.58)

M2
K = B0(m+ms) , (2.59)

M2
η =

2

3
B0(m+ 2ms) . (2.60)

Since only two independent parameters B0m and B0ms are involved, the masses satisfy the
famous Gell-Mann-Okubo relation

4M2
K = 3M2

η +M2
π , (2.61)

which is accurate at the few percent level.

2.5 meson-baryon lagrangian

At lowest order, O(q), the Lagrangian was first constructed in Ref. [87] and it reads

L(1)
MB = tr

(
B̄(i /D −M0)B

)
− D

2
tr
(
B̄γµγ5{uµ, B}

)
− F

2
tr
(
B̄γµγ5 [uµ, B]

)
, (2.62)

with the baryon octet mass M0 in the chiral limit and the axial vector coupling constants D
and F , which are obtained from semi-leptonic decays B → B′ + `+ ν̄`. At tree level, they have
the approximate values D ≈ 0.8 and F ≈ 0.5 [88].
For later purposes it is useful to rewrite this Lagrangian in the particle basis:

LBBφ =
∑
i,j,k

1

2f0
NBiBjφk(B̄iγ

µγ5Bj)(∂µφk) , (2.63)

with the coupling constants NBiBjφk between an incoming baryon Bi, outgoing baryon Bj ,
and a meson φk.
The O(q2) contribution was originally developed in Ref. [89] and reduced to its minimal

form in Ref. [90]. For our purpose, the relevant terms - given in particle basis - are

L =−
∑

cf=bD,bF ,b0

cf

4f2
0

8∑
i,j,k,l=1

Nf

φk
i
j
φl

(B̄iBj)φkφl

+
∑

cf=b1,b2,b3,b4

cf

f2
0

8∑
i,j,k,l=1

Nf

φk
i
j
φl

(B̄iBj)∂µφk∂
µφl

+
∑

cf=d1,d2,d3

icf

f2
0

8∑
i,j,k,l=1

Nf

φk
i
j
φl

(B̄iσµνBj)∂
µφk∂

νφl , (2.64)

with the coupling constants Nf

φk
i
j
φl

between two baryons and two mesons. Note that the first

three terms proportional to bD, bF , b0 involve the quark masses m and ms.
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2.6 baryon-baryon interaction

The SU(3) contact Lagrangian has been constructed in Ref. [91] at leading order O(q0) and
was extended to order O(q2) in Ref. [92]. We summarize only those results which are of interest
for the present work. The resulting potential takes the form of a linear combination of the
following spin- and momentum- dependent operators:

P1 = 1, P2 = ~σ1 · ~σ2 ,

P3 = (~σ1 · ~q) (~σ2 · ~q)−
1

3
~σ1 · ~σ2 ~q

2, P4 =
i

2
(~σ1 + ~σ2) · ~n ,

P5 = (~σ1 · ~n) (~σ2 · ~n) , P6 =
i

2
(~σ1 − ~σ2) · ~n ,

P7 = (~σ1 · ~k)(~σ2 · ~q) + (~σ1 · ~q)(~σ2 · ~k) , P8 = (~σ1 · ~k)(~σ2 · ~q)− (~σ1 · ~q)(~σ2 · ~k) , (2.65)

with ~q = ~pf − ~pi, ~k = (~pf + ~pi)/2 and ~n = ~k× ~q, where ~pi and ~pf are initial and final momenta.
For all operators the decomposition to partial waves is given in appendix B of [93].

Each of the two interacting baryons corresponds to an octet representation 8 of SU(3). Their
tensor product decomposes into irreducible representations as 8 ⊗ 8 = 27s ⊕ 10*a ⊕ 10a ⊕
8a ⊕ 8s ⊕ 1s, where s and a refer to the symmetry and antisymmetry with respect to particle
exchange, respectively. Since SU(3)-invariant interactions do not mix representations, we can
classify the interactions by the representation of the two-particle state and redefine the LECs
accordingly.
The total two-baryon wave-function needs to be antisymmetric, so an even/odd flavor

representation needs to combine with an odd/even partial wave, respectively: 27s, 8s, and
1s combine with 1S0, 3P0, 3P1, and 3P2, providing 3 · 5 = 15 constants. 10*a, 10a, and 8a
combine with 3S1, 1P1, 3D1, and 3D1 ↔ 3S1, yielding 3 · 4 = 12 constants. One more LEC c8as

characterizes the singlet-triplet transition 1P1 ↔ 3P1 that belongs to the transition between
8a and 8s. Moreover, there are 12 LECs c1,...,12

χ parametrizing SU(3) breaking. An example of
the contact potential reads〈

NN, 1S0

∣∣V ∣∣NN, 1S0

〉
= c̃27

1S0
+ c27

1S0
(p2
i + p2

f ) +
1

2
c1
χ(m2

K −m2
π) , (2.66)

with a complete list given in Table 10 of Ref. [92].

The meson-exchange contributions are obtained from the meson-baryon Lagrangian (2.62)
and the corresponding one-meson-exchange potential reads

V OBE
B1B2→B3B4

= −fB1B3φfB2B4φ ·
(~σ1 · ~q) (~σ2 · ~q)
~q 2 +m2

φ

(2.67)

with the baryon-baryon-meson coupling constants fBiBjφ, the momentum transfer ~q and mass
mφ of the exchanged pseudoscalar meson.

Two-meson exchanges are calculated from one-loop diagrams, namely the planar box, crossed
box, triangle, and football diagrams. Detailed expressions are given in appendix A of Ref. [92].
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After partial wave projection of the potential, a coupled-channel Lippmann-Schwinger
equation is solved for the T-matrix:

T ρ
′′ρ′,J

ν′′ν′ (k′′, k′;
√
s)

= V ρ′′ρ′,J
ν′′ν′ (k′′, k′) +

∑
ρ,ν

∫ ∞
0

dk k2

(2π)3
V ρ′′ρ,J
ν′′ν (k′′, k)

2µν
k2
ν − k2 + iε

T ρρ
′,J

νν′ (k, k′;
√
s) , (2.68)

where ν denotes the two-baryon channel, ρ the partial wave, and J the total angular momentum.√
s is the center-of-mass energy, kν the center-of-mass momentum, and µν the reduced baryon

mass in channel ν.
Note that there are two different fitting procedures to the experimental data points [48–50,

94, 95], both which impose SU(3) flavour symmetry to reduce the number of LECs, which in
the present notation corresponds to setting ciχ = 0.
The first fit, NLO13 [51], utilizes SU(3) symmetry by fitting the P-wave LECs to NN data.
The number of remaining P-wave LECs that need to fitted to YN data thus gets reduced from
10 to 6, while all of the 13 S-wave LECs are fitted to YN data.
The second fit, NLO19, extends this idea and uses NN data for fitting S-wave LECs, further
reducing the number of contact terms that need to be fitted to YN data from 13 to 10 [96].
For an extensive comparison between these potentials, see [96].





3
3 -BODY FORCES

We start by recapitulating the construction of the leading three-body interaction including
the exchange of one or two octet mesons, as given in [52]. Then we illustrate the process of
decuplet saturation and show how density-dependent 2BFs are obtained from 3BFs, following
Ref. [64]. Finally, we extend the calculations of [64] to density-dependent ΛN -ΣN and ΣN -ΣN
2BFs in isospin-asymmetric nuclear matter.

3.1 leading three-baryon lagrangian

The leading three-body contact Lagrangian has been derived in [52] and consists of 18 terms
and associated LECs. In the particle basis, it reads

LB
B
B
B
B
B

=

8∑
i,j,k,l,m,n=1

Ñ1
l
i
m
j
n
k

(B̄lBi)(B̄mBj)(B̄nBk)

+Ñ2
l
i
m
j
n
k

(B̄lσaBi)(B̄mσaBj)(B̄nBk)

+Ñ3
l
i
m
j
n
k

(B̄lBi)(B̄mσaBj)(B̄nσaBk)

+Ñ4
l
i
m
j
n
k

(B̄lBi)(B̄mσaBj)(B̄nσaBk)

+Ñ5
l
i
m
j
n
k

iεabc(B̄lσaBi)(B̄mσbBj)(B̄nσcBk) . (3.1)

The corresponding fully antisymmetrized potential for B1B2B3 → B4B5B6 boils down to the
form

V = −
[
N1

4
1
5
2
6
3

+N2
4
1
5
2
6
3

~σA · ~σB +N3
4
1
5
2
6
3

~σA · ~σC +N4
4
1
5
2
6
3

~σB · ~σC +N5
4
1
5
2
6
3

i~σA · (~σB × ~σC)
]
,

(3.2)

with N i
4
1
5
2
6
3

obtained from Ñf
l
i
m
j
n
k

by fully antisymmetrizing it. Ñf
l
i
m
j
n
k

is a combination of the 18

LECs and SU(3) coefficients obtained by evaluating the flavor traces in the original Lagrangian
in [52]. The indices A,B,C label the spin space attached to each baryon line.
The one-meson exchange contributions (c.f. figure 3.1b) require a two-baryon-one-meson

contact vertex from the meson-baryon Lagrangian (2.63) and a four-baryon-one-meson vertex
given by the respective Lagrangian in [52], which in particle basis reads

LB
B
B
B
φ =

10∑
f=1

Df

f0

8∑
i,j,k,l,m=1

Nf
i
j
k
l
φm

(B̄iBj)(B̄k~σBl) · ~∇φm

+
14∑

f=11

Df

f0

8∑
i,j,k,l,m=1

Nf
i
j
k
l
φm
i
[
(B̄i~σBj)× (B̄k~σBl)

]
· ~∇φm . (3.3)
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C i
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Figure 3.1: Leading contributions to the (irreducible) three-baryon interaction: (a) contact term, (b)
one-meson exchange, and (c) two-meson exchange. Small and large dots refer to vertex
dimensions of 0 and 1, respectively.

Figure 3.2: Decuplet saturation of the two-meson contact vertex. Octet baryons are represented by a
single line, decuplet baryons by a double line.

In the end, the three-body potential takes the form

V =
1

2f2
0

~σA · ~q
~q2 +m2

φ

[N1~σB · ~q +N2~σC · ~q +N3i(~σB × ~σC) · ~q ] , (3.4)

with N1,2,3 being combinations of two-baryon-one-meson and four-baryon-one-meson LECs
NBiBjφk and N i

j
k
l
φm

as defined in eqs. (2.63) and (3.3).

The two-meson exchange also requires the meson-baryon Lagrangian (2.62) both at order
O(q) and O(q2), given in eqs. (2.63) and (2.64), respectively. The corresponding three-body
potential reads

V =
−1

4f4
0

~σA · ~q1 ~σC · ~q2

(~q 2
1 +m2

φ1
)(~q 2

2 +m2
φ2

)

[
N ′1 +N ′2 ~q1 · ~q2 +N ′3 i(~q1 × ~q2) · ~σB

]
(3.5)

with N ′1,2,3 being combinations of two two-baryon-one-meson and one two-baryon-two-meson
LECs NBiBjφk and Nf

φk
i
j
φl

as defined in eqs. (2.63) and (2.64). The masses and momenta of

the two exchanged particles are denoted by mφ1,2 and ~q1,2, respectively.

3.2 estimation of lecs through decuplet baryon saturation

The problem of having very little experimental data is even more severe in the three-baryon
sector. The large number of LECs in the Lagrangians (2.63), (2.64), and (3.3) makes it unfeasible
to fit all to observables. In that situation estimates via decuplet baryon saturation can be
obtained as sketched in figures 3.2, 3.3, 3.4. For this purpose, one needs two new Lagrangians:
one for the transition between octect and decuplet baryons involving a meson and one for
the contact vertices between three octet and one decuplet baryon, both given in Ref. [52].
The important feature is that only three LECs are introduced by these Lagrangians. One,
denoted C, for the mesonic octet-decuplet transition (c.f. figure 3.5a) and two, H1 and H2, for
the contact vertex (c.f. figure 3.5b). While H1,2 are a priori unknown, the value of C can be
inferred from the ∆→ πN decay and large-NC considerations as C = 3

4gA ≈ 0.95.
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Figure 3.3: Decuplet saturation of the four-baryon-one-meson vertex.

Figure 3.4: Decuplet saturation of the six-baryon contact vertex.

With decuplet saturation, the parameters Ci, Di, bi, and di can be expressed through C,
H1,2, and the average decuplet-octet baryon mass-splitting ∆ ≈ 270 MeV in the form

bi, di ∝
C2

∆
, Ci =

1

∆
(αH1 + βH2) , (3.6)

Di =
C

∆
(αH2

1 + βH1H2 + γH2
2 ) . (3.7)

Because of the comparably small value of the mass-splitting ∆ ≈ 270 MeV in relation to the
chiral breakdown scale Λχ, the LECs in the decuplet saturation will become "unnaturally"
large. Therefore, these NNLO contributions are promoted to NLO.

3.3 reduction of three-body forces to density dependent two-body
potentials

In this section, we prepare the three-baryon forces for usage in two-body Brueckner calculations,
closely following Ref. [64]. This is done by integrating one nucleon over the Fermi sea of
the medium, effectively converting three-body interactions into density-dependent two-body
potentials. Diagrammatically, this is represented by closing one incoming with one outgoing
baryon line and indicating the Fermi sea contribution by a double-line on the loop. This
decoration symbolizes the medium insertion θ

(
k3
F −

∣∣~k∣∣) of the in-medium baryon propagator.
Formally, the two-body potential is calculated as

V12 =
∑
B

trσ3

∫
|~k|≤kBF

d3k

(2π)3
V123 , (3.8)

with a sum over all species B (protons and neutrons) in the Fermi sea, a spin trace over the
third particle, and a momentum integral over the filled Fermi sea.
Depending on the number of exchanged pions and the closing of nucleon lines, there are 6

different topologies (c.f. figure 3.6).
Three arise from two-pion-exchange: Topology 1 is obtained by closing the second nucleon

line to itself, effectively introducing a modification of the pion propagator. To get topology 2,
the second and third nucleon line are joined in order (a) or vice versa (b). The third topology
is realized by joining the first and third nucleon lines.
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C

(a)

H ,H1    2

(b)

Figure 3.5: Two new vertices associated with the decuplet saturation procedure. The meson-octet-
decuplet vertex in (a) introduces the LEC C, while the three-octet-one-decuplet contact-
vertex in (b) introduces H1 and H2.

(1) (2a) (2b) (3)

(4) (5a) (5b) (6)

Figure 3.6: Different topologies for the density-dependent two-body potential arising from the closing
of nucleon lines.

Two topologies stem from one-meson-exchange: Diagram 4 corresponds to the closing of a
nucleon line of the contact vertex and constitutes to a density-dependent modification of the
one-pion exchange. In topology 5 one nucleon line is joined to a nucleon on the other side of
the contact vertex.

The last topology 6 originates from the six-baryon contact interaction by closing two nucleon
lines. It modifies the two-baryon contact potential.

In the same way, results for density-dependent NN potentials in symmetric nuclear matter
have been obtained in Ref. [63], whereas the extension to asymmetric nuclear matter was
derived in Ref. [62]. For the LECs related to the three-nucleon force, we take the values
cD = −0.2, cE = −0.205 as given in Ref. [97]. Furthermore, we employ the off-shell extension
p2 → 1

2(p′2 + p2), with p (p′) the initial (final) center of mass momentum of baryons, as
suggested in Ref. [63].
In Ref. [64], the medium corrections have been calculated from contact and pion-exchange

contributions 1 to the ΛN -ΛN interaction in general asymmetric nuclear matter and for ΛN -
ΣN and ΣN -ΣN interactions in symmetric nuclear matter. A special feature of these results

1 The exchange of heavier mesons, kaons or η, contributes at shorter distances. Therefore, their contribution is
understood to be parameterized by the contact terms.
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is that for the ΛN -ΛN interaction the LECs H1 and H2 only contribute in the combination
H ′ := H1 + 3H2, thus reducing the variability of this interaction. A similar feature does not
apply for ΛN -ΣN and ΣN -ΣN .

In this work, we extend the aforementioned ΛN -ΣN and ΣN -ΣN calculations to asymmetric
nuclear matter. The explicit results obtained in the particle basis are given in appendix B. In
the case of symmetric nuclear matter, they coincide with the results given in Ref. [64].
Since the LECs H1 and H2 are not empirically constrained, they serve as a good tool for

tuning the results of the Brueckner calculations. We will investigate this in further detail in
section 5.3.5.

Note that we only include three-body forces that involve a single hyperon, while interactions
with two or three hyperons are neglected. Since we are investigating the onset of Λ formation,
there is no Λ (or Σ) Fermi sea that would contribute to the medium insertion of a YYY
three-body interaction. The same applies to YYN forces.





4
BRUECKNER THEORY

In this chapter, we will introduce Brueckner theory and lay the groundwork for our calculations
of the hyperon single-particle potentials in nuclear matter. This chapter follows Refs. [98, 99].

4.1 foundation

Brueckner theory is a non-relativistic many-body approach that has been mostly applied to
nuclear matter. It is based on the hole-line expansion of Goldstone, which is a linked-cluster
perturbation series. It works for any number of particles, with the only requirement that the
ground state is not degenerate.
Nuclear matter is a hypothetical, infinitely large system of equal parts protons and neutrons of
uniform density in which the Coulomb force is switched off. The system possesses a translational
invariance, which provides a great simplification to the calculation, since the wave functions are
plane waves. Originally formulated to calculate the energy per particle E/A at fixed density
ρ, Brueckner theory also allows to calculate more detailed properties like the single-particle
energies of the constituents.
We start with a Hamiltonian of the system that consists of the kinetic energies of all A

particles and the two-body interactions between all pairs of particles:

H = T + V =
A∑
i=1

Ti +
A∑
i<j

vij . (4.1)

However, it is not yet possible to perform a perturbative expansion in V , because vij contains
a very strong short-range repulsion. Therefore, one defines a new unperturbed Hamiltonian H0

and its perturbation H1 as

H = H0 +H1 , with H0 =
A∑
i=1

(Ti + Ui), H1 =
A∑
i<j

vij −
A∑
i=1

Ui (4.2)

where the single-particle potential Ui of particle i is chosen in such a way that H1 is reasonably
"small". Due to its auxiliary nature, the total Hamiltonian does not depend on Ui, so the
results of the calculations should be independent of it. However, certain choices of Ui will make
the expansion series converge faster than others. This will be specified in detail later on.
The unperturbed ground state |Φ0〉 and the exact ground state |Ψ〉 of the many-body system
obey

H0 |Φ0〉 = E0 |Φ0〉 and (4.3)

H |Ψ〉 = E |Ψ〉 . (4.4)

With this, the Goldstone expansion for the energy shift ∆E = E − E0 reads [100]

∆E =
∞∑
n=0
L

〈Φ0|H1

(
1

E0 −H0
H1

)n
|Φ0〉 (4.5)

23



24 brueckner theory

l a b m l a

Figure 4.1: Diagrammatic representation of V (left) and Ui (right) as a dashed line, acting on |Φ0〉.
Upward and downward lines denote particles and holes, respectively. In second quantization,
the interactions read 〈ab| vij |lm〉 a†aa

†
bamal and 〈a|Ui |l〉 a†aal, so that creation operators a†

are identified with outgoing lines and annihilation operators a with incoming lines.

1st order:

2nd order:

Figure 4.2: Diagrammatic representation of the first two orders of the Goldstone expansion. The
diagrams are read from bottom to top, with the state |Φ〉0, corresponding to no particles or
holes, at both ends. Second order diagrams that involve only a single particle- or hole-line
do not contribute because of momentum conservation.

where
∑

L indicates that only connected diagrams are to be included in the sum.1 The action
of the two constituents Ui and V of H1 on a state can be represented in diagrams, as shown in
figures 4.1. The first two orders of the Goldstone expansion (4.5) are shown in figure 4.2. Note
that for every intermediate state, the energy denominator E0 −H0 is calculated as the sum of
hole energies minus the sum of particle energies.
To first order, the total energy reads

E =
∑
n≤A
〈n|T |n〉+

1

2

∑
m,n≤A

(〈mn| v |mn〉 − 〈mn| v |nm〉) . (4.6)

One cannot use this expansion for nuclear matter calculations, because of the strong short-range
repulsion in V, which would make the series divergent. Hence, one has to replace it with a
better-behaved quantity, namely Brueckner’s reaction matrix G. It is obtained by adding up
an infinite series of ladder-diagrams, effectively summing V up to all orders (see fig. 4.3).
While performing the ladder resummation, the energy denominator (hole energies minus particle
energies) changes with each interaction V . However, there are certain terms that all energy
denominators have in common and do not change throughout the resummation. In the example
of fig. 4.3, the energies of the two holes lines on the outside of each diagram contribute to
every denominator. Such terms are collected in the so-called starting energy ω. The energy
denominator e can therefore be written as the starting energy minus the energies of the two
intermediate particles p and q:

e = ω − Ep − Eq . (4.7)

1 Goldstone’s achievement was to show that the disconnected graphs arising in the general perturbation series
cancel in every order
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Figure 4.3: One example of the ladder summation G = V + V (Q/e)G. G is represented as wiggly line.
This summation may also occur as part of larger diagrams.

Figure 4.4: Three diagrams (bubble interaction, exchange bubble, and U interaction, respectively)
whose contributions cancel each other by choosing U = UHF . Similar cancellations occur
if the interactions happen on a hole line. Furthermore, these cancellations are preserved
under replacement of the bare interactions V with the reaction matrix G.

In the end, the summation of ladder diagrams reads

G(ω) = V + V
Q

e
V + V

Q

e
V
Q

e
V + ... = V + V

Q

e
G(ω) (4.8)

where the Pauli blocking operator Q ensures that intermediate particle states are from above
the occupied Fermi sea:

Q |pq〉 =

|pq〉 kp, kq > kF ,

0 else .
(4.9)

Although this series looks divergent to any given order (because of the strong repulsion in
V ), the infinite ladder summation for G is well-behaved. This divergence behavior makes a full
solution (as opposed to an iterative one) of eq. (4.8) mandatory, a circumstance that will be
discussed later on.

As mentioned before, the auxiliary nature of Ui allows us to choose it in such a way that it
is most beneficial for the convergence behavior of the series. The most famous choice is the
Hartree-Fock potential UHF :

〈p|UHF |q〉 =
∑
n≤A

(〈pn|V |qn〉 − 〈pn|V |nq〉) , (4.10)

with the idea of cancelling a certain subgroup of diagrams, one example of which is given in
fig. 4.4. When switching to the Brueckner G-matrix, the single-particle potential becomes

U(km) =
∑
n≤A
〈mn|G(ω) |mn〉A (4.11)

where the subscript A denotes antisymmetrization. Returning to the starting energy ω, it can be
shown that by choosing it on-shell, this leads to cancellations in higher order diagrams. Bethe,
Brandow, and Petschek furthermore have proved that this holds to any order in perturbation
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theory [101], so that the on-shell condition can also be used for the G-matrix. We finally arrive
at

U(km) =
∑
n≤A
〈mn|G(ω = Em + En) |mn〉A . (4.12)

4.2 formalism

We employ conventional Brueckner theory in leading order of the hole-line expansion (i.e. two
hole-lines), the so-called Brueckner-Hartree-Fock (BHF) approximation.
Explicit formulas in the particle basis have been worked out in Ref. [99] and are now recapitu-
lated in this section.

Two incoming baryons B1 and B2 have the momenta ~k1 and ~k2 and masses M1 and M2,
respectively. The total and relative momentum are then given by

~K = ~k1 + ~k2, ~k =
ξ12
~k1 − ~k2

1 + ξ12
, with ξ12 =

M2

M1
. (4.13)

The Bethe-Goldstone equation (BGE), realizing the ladder resummation (4.8), is first projected
onto partial waves. For a given total angular momentum J , total momentum K and starting
energy ω, it reads

Gρ
′′ρ′,J
ν′′ν′ (k′′, k′;K,ω) = V ρ′′ρ′,J

ν′′ν′ (k′′, k′) (4.14)

+
∑
ρ,ν

∫ ∞
0

dk k2

(2π)3
V ρ′′ρ,J
ν′′ν (k′′, k)

Q̄ν(K, k)

ēν(K, k;ω) + iε
Gρρ

′,J
νν′ (k, k′;K,ω)

where ρ = (SL) denotes the partial wave with S the spin and L the orbital angular momen-
tum, while ν = (BiBj) denotes a particle channel. To be more precise, the sets of labels
{k′, ρ′, ν ′ = (B1B2)}, {k′′, ρ′′, ν ′′ = (B3B4)}, and {k, ρ, ν = (B5B6)} denote the initial, final,
and intermediate state, respectively.
In practice, the calculations are conducted up to a maximum total angular momentum Jmax = 5.
One should note that the angular dependence of the integral in eq. (4.14) has been removed by
replacing Q/e with its angle-averaged counterparts Q̄/ē. This approximation is necessary to
make calculations in the partial wave basis feasible at all.
The angle-averaged version of the Pauli-blocking operator is given by

Q̄ν(K, k) =
1

2

∫ 1

−1
d cos θ ·Θ

(∣∣∣~k5

∣∣∣− k(5)
F

)
Θ
(∣∣∣~k6

∣∣∣− k(6)
F

)
=

[
0

∣∣∣∣ [−1|z5|1] + [−1|z6|1]

2

∣∣∣∣1] , (4.15)

where z5 =
1 + ξ56

2kK

((
K

1 + ξ56

)2

+ k2 −
(
k

(5)
F

)2
)

z6 =
1 + 1/ξ56

2kK

((
ξ56K

1 + ξ56

)2

+ k2 −
(
k

(6)
F

)2
)
, (4.16)
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using the convenient notation [a|b|c] = max(a,min(b, c)).
The energy-denominator reads

ēν(K, k;ω) = ω − K2

2Mν
− k2

2µν
−Mν − ReUB5(k̄5)− ReUB6(k̄6) , (4.17)

with Mν = M5 +M6, µν =
M5M6

M5 +M6
, (4.18)

where the angle-averaged momenta k̄5 and k̄6 of the intermediate state baryons are calculated
from K and k by rearranging eq. (4.13) and replacing cos θ with its angle average:

k̄5 =

(
1

(1 + ξ56)2
K2 + k2 + 2

1

1 + ξ56
Kkcos θ

)1/2

, (4.19)

k̄6 =

(
ξ56

(1 + ξ56)2
K2 + k2 + 2

ξ56

1 + ξ56
Kkcos θ

)1/2

, (4.20)

with

cos θ =

∫ 1
−1 d cos θ cos θ Q( ~K,~k)∫ 1
−1 d cos θ Q( ~K,~k)

=
1

2
([−1|z5|1]− [−1|z6|1]) . (4.21)

Note that cos θ = 0 in the case of two nucleons in symmetric nuclear matter, because z5 = z6.
Alternatively one can use the root of the mean squared cosine

√
cos2 θ =

√√√√∫ 1
−1 d cos θ cos2 θ Q( ~K,~k)∫ 1
−1 d cos θ Q( ~K,~k)

=
1√
3

[
0

∣∣∣∣ 1

kK

(
K2

4
+ k2 − k2

F

)∣∣∣∣1] . (4.22)

There are two options for introducing the single-particle potentials (SPPs) to the energy-
denominator (4.17): The first one is the so-called gap choice, where the SPP is set to zero
above the Fermi sea, i.e. UB(k > kF ) = 0. Since this introduces a discontinuity at the Fermi
sea, it is also referred to as the discontinuous choice. While the gap choice is computationally
much simpler2, it underestimates the nuclear binding energy (see fig. 4.5).
The other one is the so-called continuous choice, where the discontinuity is lifted by applying
eq. (4.17) to all states. While it provides more accurate results in terms of nuclear binding
energies and features some favorable analytical properties [102], it is computationally much
more challenging. In this work, the continuous choice will be employed throughout.
The equation for the single-particle potential of baryon B1 due to the Fermi sea of baryon

B2, based on eq. (4.12), reads

UB2
B1

(k1) =
(
1 + δB1B2(−1)L+S

) (1 + ξ12)3

2

×
∑
J,ρ

(2J + 1)

∫ kmax

kmin

dk k2

(2π)3
W (k1, k)Gρρ,J(B1B2)(B1B2)(k, k; K̄, ωo.s.) . (4.23)

The weighting function W includes an angular integral and takes the explicit form

W (k1, k) =
1

4π

∫
|~k2|≤k(2)

F

dΩk =
1

2
(1− [−1|x0|1]) , (4.24)

2 Only a moderate number points on the momentum grid need to be calculated.
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Figure 4.5: Energy per particle E/A of symmetric nuclear matter for different choices of the single-
particle potential and perturbation orders. BHF-G and BHF-C refer to the Brueckner-
Hartree-Fock (=two hole-line contributions) with gap and continous choice, respectively.
Squares and stars also include (higher order) three hole-line contributions. Figure taken
from [103].

with the auxiliary quantity

x0 =
ξ2

12k
2
1 + (1 + ξ12)2k2 − (k

(2)
F )2

2ξ12(1 + ξ12)k1k
. (4.25)

The integration limits in eq. (4.23) are

kmin = max

(
0,
−k(2)

F + ξ12k1

1 + ξ12

)
, (4.26)

kmax =
k

(2)
F + ξ12k1

1 + ξ12
, (4.27)

and the on-shell starting energy is

ωo.s. = EB1(k1) + EB2(k̄2) , (4.28)

where EBi(ki) = Mi +
k2
i

2Mi
+ ReUBi(ki) . (4.29)

At this point, further angle-averaged momenta are introduced, namely for the square of the
momentum of the second incoming baryon and the square of the total momentum:

k̄2
2(k1, k) =

ξ12

1 + ξ12
K̄2(k1, k) + (1 + ξ12)k2 − ξ12k

2
1 , (4.30)

K̄2(k1, k) = (1 + ξ12)2
(
k2

1 + k2 − k1k(1 + [−1|x0|1])
)
. (4.31)

4.3 nuclear matter properties

The density ρ of baryonic matter is the sum over the densities of each baryon species and it
reads

ρ =
∑
B

ρB =
∑
B

(
k

(B)
F

)3

3π2
. (4.32)

In particular, for isospin-symmetric nuclear matter we have ρn = ρp = ρ/2, whereas pure
neutron corresponds to ρn = ρ, ρp = 0.
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From the (nucleon) single-particle potentials we can calculate several properties of nuclear
matter that will be used for comparisons in the following chapter. The energy density of the
system is

ε =
∑
B


(
k

(B)
F

)5

10π2MB
+

1

2π2

∫ k
(B)
F

0
dk k2 ReUB(k)

 , (4.33)

with the binding energy per particle

E

A
=
ε

ρ
(4.34)

and the chemical potential of a baryon species B follows from it as

µB =
∂ε

∂ρB
. (4.35)

quickly following from it. Furthermore, the pressure of a system can be obtained from the
Gibbs-Duhem relation dE = −p dV at T = 0:

p(ε) = ρ
∂ε

∂ρ
− ε . (4.36)

4.4 input potentials

For the calculation of nuclear matter properties, the bare potential V is given by SU(2) chiral
EFT at next-to-next-to-next-to leading order (N3LO)[33]. It is available for different cutoffs
(414, 450, and 500 MeV) and we will distinguish between these versions by appending the cutoff
in parentheses behind the order, e.g. N3LO(500). Moving over to the strangeness sector S = −1,
hyperon-nucleon potentials are given by chiral SU(3) EFT at NLO, plus the density-dependent
effective two-body potentials obtained from chiral three-baryon forces.
As mentioned in section 2, chiral two-body potentials are fitted to scattering data, which

makes them yield similar on-shell predictions for different cutoffs. However, their results in
nuclear matter will differ because of their off-shell behavior that becomes relevant when
integrating over intermediate states in the BGE. Adopting the same notation as before,
different cutoffs of the NLO13 or NLO19 potentials will also be specified when necessary, e.g.
NLO13(500).
When including three-body forces in the calculation of U , it is important to note that the

procedure of closing nucleon-lines is used both for the transcription of 3BFs to 2BFs in eq.
(3.8) and for calculating U from G in eq. (4.23). Since these steps happen independently from
each other, some interaction diagrams are over-counted: For NNN [Y NN ] interactions, the
contraction from 3BF to 2BF (figure 4.6a) has 9 [4] possibilities and the subsequent contraction
from 2BF to U has 4 [1] possibilities, for a total of 36 [4]. On the other hand, the direct
contraction from 3BF to U (figure 4.6b)) only has 18 [2] possibilities. Therefore a statistical
factor of 1

2 needs to be applied to the effective two-body interaction when it is used to compute
the single-particle potential.
Analogously, a factor of 1

3 has to be applied when adding the 3N-forces through density-
dependent NN-potentials to calculations of the energy per particle of nuclear matter. In this
case, all three nucleon lines get contracted.
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Figure 4.6: Comparison of (a) the single medium-insertion from 3BF to 2BF and (b) the double
contraction from 3BF to the single-particle potential.

4.5 numeric approach

The self-consistent eqs. (4.14), (4.23) are solved numerically by alternately iterating both
equations until U converges. For this purpose U(k) is interpolated on a uniformly-spaced grid
with a momentum spacing of 33.33 MeV. Moreover, the Bethe-Goldstone equation in eq. (4.14)
is discretized so that G assumes matrix-form and the integral equation becomes a matrix
equation which can be solved by methods of linear algebra [104].

4.5.1 Treatment of poles in the BGE

Integrals over poles in the BGE are treated either by manually adding a small imaginary
increment iε to the numerator (in the nucleonic case) or by invoking the principal value
prescription for the real part (in the hyperon case). In the latter case one uses the identity∫ ∞

0
dk

N(k)

D(k) + iε
=

∫ ∞
0

(
N(k)

D(k)
− 2k0

N(k0)

D′(k0)

1

k2 − k2
0

)
− iπ N(k0)

|D′(k0)|
(4.37)

for a simple pole located at k = k0, i.e. D(k0) = 0, D′(k0) 6= 0.

4.5.2 Optimization

There are several ways to improve the runtime of the calculations. First of all, we can use the
information about the particle channels that couple with each other (c.f. table 4.1). As NN
two-body states do not couple to Y N states, the calculation can be split up by first computing
Un and Up and employing them in the calculation of UΛ and UΣ.
In case of pure neutron matter, the calculations of hyperon single-particle potentials can be
split up even further by the charge. As Σ−n does not couple to any other Y N state, UΣ− does
not depend on UΛ, UΣ+ , or UΣ0 and thus can be computed on its own. Next, UΛ and UΣ0 can
be computed at the same time regardless of UΣ+ , because Λn and Σ0n do not couple to Σ+N .
At this point, the calculation of UΣ+ may be omitted since the focus of this work lies on UΛ.
In symmetric nuclear matter, isospin symmetry implies that all three Σ single-particle potentials
are equal, i.e. UΣ− = UΣ0 = UΣ+ , so that only one of them needs to be calculated, which is
chosen to be UΣ0 .



4.5 numeric approach 31

S Q coupled states

0 nn

0 1 np

2 pp

-1 Σ−n

0 Λn,Σ0n,Σ−p

0 1 Λp,Σ+n,Σ0p

2 Σ+p

Table 4.1: Coupled particle channels, sorted by strangeness S and charge Q

4.5.3 Solving the BGE

Throughout this work, the Bethe-Goldstone equation will be solved via discretization to a
matrix equation, thus summing up all orders of V and Q/e. The disadvantage is that no
libraries exist to solve this kind of problem, making a custom-tailored solution prone to coding
bugs and numerical instabilities.
Another approach that is worth mentioning is to solve the BGE iteratively up to a certain

order:

G = G(0) +G(1) +G(2) + ... , (4.38)

G(0) = V ,

G(1) = V
Q

e
V ,

G(2) = V
Q

e
V
Q

e
V ,

where the integrations are performed with the help of Monte-Carlo methods. The advantage
of this method is the availability of a robust library [105], which makes the programming
relatively easy. While this approach has yielded very similar results to the full solution in the
nucleonic sector, it has failed for hyperons due to the large size of some Y N potentials. In
particular, the 3S1 partial wave is so large that the above series becomes divergent.

4.5.4 Numerical instabilities

For large densities ρ & 3ρ0 , especially in pure neutron matter, the convergence of UΛ is getting
more and more unreliable. One reason for UΛ to overshoot its fixed point are the strong input
potentials. To allow for more stable convergence, one can artificially slow down the process by
introducing a brake parameter N : Let U (i)

Λ denote the single-particle potential after iteration
step i, starting with U (0)

Λ ≡ 0. Instead of using U (i−1)
Λ as input when calculating U (i)

Λ , one takes
the weighted average

U
(i−1)
Λ +N · U (i−2)

Λ

1 +N
. (4.39)

Another reason for the unreliability of the outcome are numerical artifacts that produce
sudden sign changes or spikes in the order of GeV to the potential. Dealing with these issues
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is straight-forward, but rather time-consuming: By manually guessing the correct shape of
the single-particle potential, it can be brought close enough to its fixed point to allow for
convergence after further iterations. Likewise, results of similar configurations (e.g. same density,
but different interaction) can serve as a reasonable starting point for further calculations.



5
RESULTS AND DISCUSS ION

When performing the BHF calculations as described in the previous chapter, there are several
options – like the choice of the hyperon-nucleon potential or the values of the LECs – which all
can have a significant impact on the results. Given the large number of possible configurations,
we will isolate certain options and separately investigate their effect on the calculational results
one at a time.

For the sake of simplicity, we have chosen one specific set of options that will be used if not
stated otherwise. It consists of the continuous choice for the spectrum of intermediate states,
N3LO(500) for the NN two-body interaction, NLO13(500) for the YN two-body interaction,
and a single-particle potential cutoff (see section 5.1.2) of Λspp = 600 MeV.

5.1 technical challenges and limitations

Several technical challenges begin to emerge when investigating the single-particle potentials
for densities around 3ρ0. Some of these are pitfalls of the numerics that can be easily dealt
with once they are recognized, while some will prove to be real obstacles. In any case, all of
them need to be examined first before one can turn to the actual results.

5.1.1 Fitting the single-particle potentials

Early optimization attempts consisted of approximating each single-particle potential by the
form

U(k) = (U0 + ak2 + bk4) · exp

{
−2

(
k

Λ

)e}
, (5.1)

where U0 is U(k = 0), and the other parameters a, b, Λ, and e were obtained from fitting
the k-dependence. The number of grid points on which U was calculated ranged around 8
points, roughly spaced in steps of 150 MeV. This approach lead to a significant speed-up in
comparison to pure grid calculations with dozens of points.
While this proved to be a viable strategy at lower densities, severe problems showed up at
higher densities (ρ & 2.5ρ0), making it impossible to reasonably fit U(k) to the data points.
The origins of this issue will be further investigated in sections 5.1.2 and 5.1.4. It is almost
impossible to (manually) detect and exclude faulty results if only a handful of data points are
computed, which makes a full grid calculation with dozens of grid points a necessary strategy.

5.1.2 Regulation of single-particle potentials

As already pointed out in Ref. [66], UN (k) exhibits oscillations for momenta well above the
chiral cutoff (Fig. 5.1). While the oscillations are already present for low densities around
ρ0, they become more pronounced for larger densities, increasing both in size and frequency.
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Figure 5.1: UN (k) in SNM for various densities without a single-particle cutoff. Three-nucleon forces
are included.

Because of the chiral cutoff Λ ≈ 500 MeV that suppresses high-momentum interactions, one
would not expect such contributions to appear in the single-particle potential. Therefore we
apply – in analogy to ChEFT and similar to Ref. [66] – a cutoff to the single-particle potential:

U(k)→ U(k) · exp
(
−(k/Λspp)6

)
. (5.2)

For consistency reasons, this cutoff is applied to nucleons and hyperons in the same way.
Despite the significant modification of the large-momentum behavior, this cutoff barely changes
the potential in the low-momentum region, as shown in Figs. 5.2 and 5.3. Note that around
3ρ0 a cutoff of Λspp = 600 MeV will result in a consistently more attractive potential than
for other cutoffs, which is not only the case in this example, but a general observation. This
is to be expected because of the almost purely repulsive nature of both UΛ and UΣ at these
densities, which gets more suppressed by lower cutoffs. For the sake of computational speed,
we will adopt Λspp = 600 by default. With this in mind, all results should be understood as a
lower boundary to the "actual value", i.e. if the cutoff had not been applied.

5.1.3 Density dependence of UΛ beyond 3.5ρ0

For large enough densities, around 3.5ρ0, the results for UΛ(k1 = 0) start to flatten (see Fig.
5.4), which is not to be expected from naive considerations, because the interactions are not
expected to weaken with increasing densities and the integral limits in eq. (4.23) already
contribute by a factor of ρ.
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Figure 5.2: UN (k) in SNM for various choices of Λspp ∈ {600, 700, 1000,∞} MeV. Three-nucleon forces
are included.
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Figure 5.3: UΛ(k) in SNM for various choices of Λspp ∈ {600, 700, 1000,∞} MeV. Three-body forces
are included, with (H1, H2) = (−0.1, 0.5).
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Figure 5.4: UΛ in SNM for densities above 3.5ρ0. Only two-body forces are considered. The curves
represent different values of Λspp.

The observed behavior in Fig. 5.4 is an artifact of the cutoff, as can be seen by first looking
at the Pauli blocking operator Q in eq. (4.15): For k1 = 0 and k(Λ)

F = 0, Q only contributes if

kBGE > k
(N)
F −ξ12kspp, which for kspp ∈ [kmin, kmax] ranges from kBGE > k

(N)
F to kBGE >

k
(N)
F

1+ξ12
.

With the chiral cutoff of 500 MeV in mind, the support of Q is

k
(N)
F

1 + ξ12
. k . 500 MeV . (5.3)

In the limit of very large Fermi momenta, this interval shrinks progressively, which implies the
suppression of higher-order ladder contributions, with only the Hartree approximation G = V

eventually remaining. In reality, densities of 3.5ρ0 correspond to Fermi momenta of around 500

MeV in PNM and 400 MeV in SNM, which seem to be sufficient for this effect to kick in.
By further investigating the single-particle potential as given in eq. (4.23), we see that for

large k(N)
F its derivative with respect to the density becomes

d

dρ
U

(N)
Λ (k1 = 0) ∝ V(ΛN)(ΛN)(kmax, kmax)

k
(N)
F &500 MeV
≈ 0 , (5.4)

thus explicitly exhibiting the flattening property.
A proper understanding of this artifact is crucial for the high-density extrapolations as described
in section 5.3.1.

5.1.4 Instabilities at higher densities

For densities around 4ρ0, it may become prohibitively difficult to obtain stable solutions. One
source of these instabilities is the strength of the bare potential V . When solving the discretized



5.2 nuclear matter properties 37

Bethe-Goldstone-equation, one needs to invert the matrix (1− V Q
e ), whose determinant may

become zero for large enough densities or low-energy constants H1,2, resulting in poles of
G(k, k). Simple roots of the determinant with respect to k can be dealt with by principal value
treatment, but eventually this will not suffice for certain configurations, e.g. when the G-matrix
has a double pole.
The process in which these instabilities arise typically is a rather gradual one. Once the

density or the LECs become too large, UΣ will more often exhibit an erratic behavior and even
feature sharp peaks with unphysical values in the GeV region. The procedure on how to deal
with this was discussed in section 4.5.4. Because of this slow onset of the instabilities, we err
on the side of caution and choose 3.5ρ0 to be the upper limit at which trustworthy results may
still be obtained.

5.2 nuclear matter properties

The calculation of the nucleon single-particle potential fulfills two purposes. Firstly, it is needed
for subsequent calculations of the hyperon single-particle potentials. Secondly, nuclear matter
properties like the energy per particle can be inferred from it, c.f. section 4.3.
An important thing to note is that Brueckner-Hartree-Fock calculations of nuclear matter

properties have already been performed by far more sophisticated and reliable approaches [106,
107]. Therefore, in section 5.3.6 we will not use the neutron chemical potential obtained from
BHF calculations, but rather use a state-of-the-art chemical potential obtained from functional
renormalization group (FRG) approaches [107].
Nevertheless, in this section we will compute (density-dependent) properties of symmetric

nuclear matter and pure neutron matter from BHF theory and compare them against other
findings, like the results from the variational chain summation method of Akmal et al. [106]
(APR) that uses the Argonne v18 potential [24] (AV18), results from Brueckner-Hartree-Fock
calculations of Isaule et al. [108] (IAR) that also employ AV18, and results from gravitational
wave constraints of Annala et al. [109]. The goal is to establish the fact that our nucleon
single-particle potential provides a sensible baseline for subsequent hyperon calculations.

Fortunately, even if our UN cannot perfectly reproduce sophisticated many-body approaches,
the hyperon calculations will not be affected considerably, because the exact shape of the
potential is not that relevant at low densities. See section 5.3.2, where we see that a difference
between N3LO(500) and AV18 is basically non-existent for densities below 2.5ρ0.

5.2.1 Energy per particle and chemical potential

We start with computing the energy per particle E/A and chemical potential µ according to
eqs. (4.34) and (4.35), yielding the results shown in Fig. 5.5. For comparison, results are given
for pure two-body calculations – N3LO(414), N3LO(450), and N3LO(500) – as well as for the
inclusion of three-body forces as elaborated on in section 3.3.
It is apparent that 3BFs are required to reproduce the APR results shown in black. The

results for E/A turn out to be flatter than those of APR, with PNM being close to the lower
border of the APR band and SNM lying even above APR for intermediate densities around
ρ0. While the low-density behavior (ρ� ρ0) of ChEFT and APR coincide for PNM, this is
not the case for SNM, where APR lies substantially higher. Interestingly, the result of IAR
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Figure 5.5: Energy per particle E/A for PNM (left) and SNM (right). The pure chiral N3LO two-body
force calculations are shown in blue. They comprise the three chiral cutoff choices of 414,
450, and 500 MeV. The orange curve additionally incorporates N2LO three-nucleon forces.
For comparison, APR (black), FRG (pink) and IAR (green) results are given.
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Figure 5.6: Chemical potential µ derived from E/A for PNM (left) and SNM (right). Same description
as figure 5.5.

has the same shortcomings in reproducing the APR equation of state, even though the lower
boundary of the APR band exactly comes from the AV18 potential as well. This suggests that
the difference of the low-density behavior stems from the calculational procedure instead of
the input potentials.

5.2.2 Pressure

The next quantity we compute is the pressure p(ε) as given in eq. (4.36) of PNM as a function
of the energy density ε according to eq. (4.36). Our results are plotted against those from
Fig. 3 of Ref. [109], where constraints on the pressure were obtained from gravitational wave
observations (see Fig. 5.7). Note that the energy density in Ref. [109] is relativistic, which
differs from the one given in eq.(4.34) by the term MN · ρ and needs to be included.
Again, it is apparent that the two-body forces (blue lines) are insufficient to describe pure

neutron matter, entering the light-blue region of the plot around ε ≈ 200− 300 MeV/fm−3 and
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Figure 5.7: Comparison of chiral BHF calculations of the pressure in PNM with constraints from
gravitational wave observations. Colored regions are taken from [109]. Light-blue areas
indicate EOSs that can not support 2 M� neutron stars. Matter in the red and purple
regions is excluded at a certain confidence level. The 3NF calculations are orange, the 2BF
are blue. For both colours, top to bottom: (500/414/450) MeV cutoff.

even leaving the shaded region at lower densities. The results with 3NF included (orange lines),
on the other hand, fit very well into the green range up to around ε = 550− 650 MeV/fm−3, at
which the N3LO(450) curve enters the light-blue region and the N3LO(414)/N3LO(500) lines
hit the red/purple areas, respectively. This energy density corresponds to a matter density of
roughly 3.5ρ0, further indicating that this should be the upper limit for the present calculations.

5.3 lambda hyperons in nuclear matter

Now we turn towards calculations of the Λ single-particle potential. At first, we analyze results
from YN two-body interactions alone and later include YNN three-body forces. A central
constraint when adjusting the strength of the three-body forces in symmetric nuclear matter is
the potential depth

UΛ(ρ0) = −30 MeV , (5.5)

which is empirically obtained from the spectroscopy of Λ hypernuclei [6, 110–112]. From the
single-particle potential, we then compute the (relativistic) chemical potential of the Λ as

µΛ(ρ) =
∂ε

∂ρΛ

∣∣∣∣∣
ρΛ=0

= MΛ + UΛ(k1 = 0, ρ) . (5.6)
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5.3.1 Fit of the density-dependence

A simple polynomial fit of UΛ(k1 = 0, ρ) is not possible because of the flattening discussed in
section 5.1.3, which is characteristic for regularized potentials. This requires special care in
order to sensibly incorporate high-density results into the fitting procedure.

The first step is to establish which density dependence is expected for higher densities. For
ρ & 2ρ0, the results for YN two-body interactions exhibit a linear dependence in ρ, reminiscent
of a Hartree potential, where the only density contribution comes from the integral limits in eq.
(4.23). The YN three-body body interactions lead to an additional factor ρ, so UΛ(k1 = 0, ρ) is
then expected to scale quadratically for ρ & 2ρ0

Fits of the low-density region still require a cubic polynomial, which will then smoothly
turn over into a linear or quadratic behavior for calculations using two-body or three-body
interactions, respectively. Since the numerical data exhibit a significant flattening already
around 3.0− 3.5ρ0, this transition point is chosen to be around 2.5− 3ρ0.

5.3.2 Gap vs continuous choice, ChEFT vs AV18

Both the gap and the continuous choice are prominent options in BHF calculations [65, 66].
Therefore it is instructive to directly compare them against each other. In order to check our
results against Ref. [65], we also investigate the effect of using the IAR results for UN [108]. For
the sake of simplicity and comparability, this calculation is limited to YN two-body interactions
only.

Fig. 5.8 shows that the results for the gap choice (dashed curves) are flatter than those for the
continuous choice and more repulsive for lower densities, which qualitatively coincides with Fig.
4.5. It is important to note that UΛ(ρ0) = −30 MeV cannot be reproduced by the gap choice.
This seems troublesome, because three-body forces are expected to add repulsive contributions,
which would make it almost impossible to reproduce this empirical value. Repulsive forces only
work very well with the continuous choice, where UΛ(ρ0) lies below −30 MeV. This supports
our decision of using the continuous choice.

AV18 on the other hand mostly yields more repulsive results. There is almost no difference
between N3LO(500) and AV18 up to 2.5ρ0 for the continuous choice, whereas the difference is
more pronounced for the gap choice, where it already becomes noticeable around ρ0. Since there
is no advantage in choosing one of the nucleon potentials over another in terms of reproducing
empirical data, we will use ChEFT in order to stay consistent with YN interactions. Note that
this choice will also lead to more conservative results in section 5.3.6.

The combined usage of the gap choice and AV18 reproduces the results of Ref. [65], serving
as a non-trivial check for the correctness of our numerical implementation.

5.3.3 NLO13 vs NLO19 YN two-body forces

As elaborated on in section 2.6, there are two different outcomes of fitting the chiral YN
two-body interaction, NLO13 and NLO19. Fig. 5.9 shows that NLO19(500) is substantially
more attractive than NLO13(500), already lying 15 MeV lower at nuclear saturation density.
This qualitatively coincides with the results in Ref. [96], although our results are considerably
more attractive. Unlike NLO13, even using the gap choice and nucleon single-particle potentials
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Figure 5.8: Λ single-particle potential for various combinations of continuous vs. gap choice and chiral
N3LO vs. AV18 for the NN interaction. Only YN 2BFs are considered. Solid/dashed
curves represent the continuous/gap choice, respectively. Orange/blue curves correspond
to N3LO/AV18, respectively. The gray dotted line represents UΛ = −30 MeV and will be
featured in all SNM plots hereafter.

of IAR does not fully explain these differences. This indicates that there might be another
influence that is not accounted for.

5.3.4 Chiral cutoff dependence

The YN two-body interaction NLO13 is available for several cutoffs, of which we will adapt
those with the smallest χ2 values when fitted to experimental YN-scattering data, namely
500, 550, 600, 650, and 700 MeV [51]. Figure 5.10 shows a strong dependence of UΛ on the
cutoff. NLO(550) and NLO(600) provide the most repulsion with UΛ(ρ0) staying well above
the −30 MeV benchmark, making them unsuitable for further calculations, just like the gap
choice. The other three cutoff choices yield enough attraction for UΛ(ρ0) to fall well below
−30 MeV, with NLO(700) introducing so much attraction that UΛ will stay attractive even for
densities up to 3.5ρ0. For computational simplicity, only NLO13(500) and NLO13(650) will be
used in the following, as they are the most repulsive choices while still staying below −30 MeV,
thus requiring the least amount of repulsion from three-body interactions.

5.3.5 Exploring the H1H2-plane

In the ΛNN diagonal channel, H1 and H2 contribute only through the linear combination
H ′ = H1 + 3H2. Dimensional arguments have been invoked to estimate its order of magnitude
to H ′ ≈ ±1/f2

0 [65], with the pion decay constant f0 ≈ 92 MeV. Consequently, we expect H1
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Figure 5.9: UΛ(k1 = 0) calculated from NLO13 (orange) and NLO19 (blue) in PNM and SNM. The
SNM results also feature a different set that applies the gap choice and uses IAR results for
UN .
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Figure 5.10: UΛ(k1 = 0), calculated from NLO13 using different chiral cutoffs, ranging from 500 to 700

MeV.
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NLO13(500) NLO13(650) NLO19(500)

line 1 line 2 line 1 line 2 line 1 line 2

H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2

−2.65 0.1 −2.47 1.2 −3.0 −0.4 −1.4 1.9 −2.7 −0.3 −2.5 1.67

−2.2 0 −2 1 −1.8 −0.5 −1.1 1.7 −1.6 −0.6 −2 1.47

−1.8 −0.1 −1.55 0.8 −0.9 −0.6 −0.4 1.2 −0.5 −0.91 −1.5 1.27

−1.35 −0.2 −1.1 0.6 0 −0.7 0.1 0.9 0 −1.06 −1.0 1.07

−0.9 −0.3 −0.6 0.4 0.6 −0.8 0.7 0.6 0.5 −1.2 0 0.72

−0.05 −0.5 −0.1 0.2 1.6 −1 1.5 0.2 1.45 −1.5 0.5 0.52

0.9 −0.7 0.5 0 2.3 −1.2 2.7 −0.2 1.2 0.3

1.5 −0.9 1.05 −0.2 2.15 0

1.6 −0.4

1.9 −0.5

Table 5.1: Pairs of H1 and H2 that reproduce UΛ(ρ0) = −30 MeV for the given YN two-body interaction,
c.f. Figs. 5.11 and 5.12

and H2 themselves to be of similar magnitude. In the following, H1 and H2 will always be
given in units of 1/f2

0 .
Within this range, both LECs have a substantial influence on the properties of the hyperon

single-particle potentials, being able to introduce both repulsion and attraction at nuclear
saturation density. While the amount of repulsion can be almost arbitrary by choosing extreme
values, the amount of attraction is limited to a few MeV, which rules out two-body interactions
that yield UΛ(ρ0) > −30 MeV to begin with.

Since H1 and H2 are not (yet) fixed from experimental data, we take the liberty of choosing
them in a way that suits best for our purpose. By calculating UΛ(ρ0) in symmetric nuclear
matter on the two-dimensional H1H2-grid (Figs. 5.11 and 5.12), we identify two curves in the
H1H2-plane that satisfy the constraint 5.5. As these curves do not intersect, they divide the
plane into three regions: The area between the curves, where UΛ(ρ0) < −30 MeV, and the
areas outside, where UΛ(ρ0) > −30 MeV.

Since NLO13(650) and NLO13(700) both yield more attractive results for UΛ than NLO13(500)
(c.f. Fig. 5.10) and thus require more repulsion coming from the three-body interaction, it
comes as no surprise that the lines in the H1H2-plane become more separated for higher cutoffs,
with no sign of them intersecting even outside of the plotted region. Interestingly, even though
NLO19(500) yields the largest attraction out of the examined YN two-body forces (c.f. Fig. 5.9)
and would therefore be expected to require the most extreme values of H1,2, this is actually
not the case. While the two lines indeed are more separated than those of NLO13(500), they
stay relatively close to the black reference line, as opposed to NLO13(650) and especially
NLO13(700), which seem to wander off for smaller H1 or larger H2.
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Figure 5.11: UΛ(ρ0) calculated on H1H2-grid. H1,2 are given in units of 1/f2
0 . Colored lines represent

those (H1, H2)-pairs that reproduce UΛ(ρ0) = −30 MeV in SNM. For reference, the black
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Figure 5.12: UΛ(ρ0) calculated on H1H2-grid. Same caption as Fig. 5.11
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5.3.6 Comparison of chemical potentials in pure neutron matter

While staying on the aforementioned lines in the H1H2-plane, we calculated UΛ(3ρ0) in PNM
for various (H1, H2)-pairs. The value of 3ρ0 was chosen in order to avoid the flattening effect
discussed in section 5.1.3.
For the calculations in this section, we used Λspp = 700 MeV in order to obtain sufficient

repulsion, in contrast to Λspp = 600 MeV which would yield too attractive results, as discussed
in section 5.1.2.

The neutron chemical potential from Ref. [107] takes values of µn(2.5ρ0) = 1126.6 MeV and
µn(3ρ0) = 1180.5 MeV, so that UΛ(2.5ρ0) > 10.9 MeV and UΛ(3ρ0) > 64.8 MeV need to hold
in order to be repulsive enough for µΛ > µn at the respective densities. The range in which
H1 and H2 provide sufficient repulsion is strongly dependent on the YN two-body interaction,
as can be seen in Figs. 5.13a, 5.13b, 5.14 for NLO13(500), NLO19(500), and NLO13(650),
respectively.

For NLO13(500), increasingly large absolute values of H1 mostly provide more repulsion to
UΛ(3ρ0). Both curves exhibit a minimum around H1 ≈ −0.5, with both minima not falling
below the threshold, so no (H1, H2)-combination can be instantly ruled out. By calculating
lower-density values, however, it becomes apparent that the slope of UΛ(ρ) is too flat for
some combinations to yield enough repulsion at higher densities, as shown in figures 5.15 and
5.16. For line 1, the combinations that provide enough repulsion are roughly characterized by
H1 /∈ [−1.5, 0.5]. For line 2, this range is H1 & 0.5.

Unlike NLO13(500), there is no local minimum for NLO19(500). Instead, UΛ(H1) seems to
fall indefinitely for low values of H1,2. This makes it readily apparent that some choices for Hi

are not repulsive enough. Further looking at the density dependence in total (see Figs. 5.17
and 5.18), we can identify that H1 & −2.5 for line 1 and H1 & −1.5 for line 2 provide enough
repulsion.

Note that the results for NLO13(500) and NLO19(500) are of comparable size, even though
NLO19(500) introduced substantial attraction (c.f. Fig. 5.9). This might not come as a surprise,
since H1 and H2 need to be chosen in such a way that they compensate the mentioned
attraction. Since this repulsion grows with density, it will eventually close the gap between
NLO13(500) and NLO19(500) at high densities as well.
As mentioned in section 5.1.2, we can expect UΛ to be a few MeV more repulsive than

given here because of the choice of Λspp. Therefore, the given ranges for H1,2 can be seen as
somewhat conservative. Similarly, using AV18 would also make it more repulsive: The two lines
in the H1H2-plane would stay unchanged, since AV18 does not change the results for UΛ(ρ0)

in SNM, but we have seen that is adds substantial repulsion at large densities.
In contrast to the other results, NLO13(650) yields so much attraction that it is sufficient to

compare the chemical potentials at 2.5ρ0 instead. This is also necessary, because the amount
of attraction compromises the stability, as discussed in section 5.1.4. While there are two
combinations that provide enough repulsion for UΛ(2.5ρ0) to surpass the threshold of 10.9

MeV, (0,−0.7) and (0.6,−0.7), they only yield 30 and 27 MeV at 3ρ0, respectively, which is too
attractive. Therefore, we conclude that there is no (H1, H2) combination that can introduce
enough repulsion for NLO13(650). Similar observations can be made for NLO13(700), where
UΛ(2.5ρ0) shows a comparable level of attraction. Furthermore, we observed that NLO13(650)
and NLO13(700) may yield attractive Σ single-particle potentials, a feature which is absent for
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NLO13(500) and NLO19(500). This is unfavorable, as the repulsiveness of UΣ(ρ0) in symmetric
nuclear matter has been fairly well established [6] and therefore should be expected for higher
densities in PNM as well. Hence, it is highly questionable whether NLO13(650) and NLO13(700)
are suitable choices for a YN two-body interaction in the first place.
It is important to note that for a proper discussion of neutron star properties, the effect

of a proton admixture needs to be accounted for. The proton fraction of beta-stable matter
lies in the few percent range and is governed by the equilibrium condition µn = µp + µe.
Test calculations in which we used the proton fraction of the APR EoS indicate that UΛ(3ρ0)

becomes at most 10 MeV more attractive than in PNM, which is well within the uncertainty
bands.
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Figure 5.13: UΛ(H1) at 3ρ0 in PNM for NLO13(500) (a) and NLO19(500) (b) along the two lines in
the H1H2-plane. The horizontal line represents the minimum-required value of 64.8 MeV.
Only H1 is given on the horizontal axis, the corresponding value for H2 (on either line)
can be looked up in Table 5.1.
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Figure 5.14: UΛ(H1) at 2.5ρ0 in PNM for NLO13(650) along the two lines in the H1H2-plane. The
horizontal line represents the minimum-required value of 10.9 MeV. Only H1 is given on
the horizontal axis, the corresponding value for H2 (for either line) can be looked up in
table 5.1.
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Figure 5.15: Comparison of the chemical potentials of the Λ-baryon and neutrons in pure neutron
matter for various choices of H1 and H2 along line 1. 2BF results from NLO13(500) are
given in black for comparison.
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Figure 5.16: Comparison of the chemical potentials of the Λ-baryon and neutrons in pure neutron
matter for various choices of H1 and H2 along line 2. 2BF results from NLO13(500) are
given in black for comparison.



5.3 lambda hyperons in nuclear matter 49

0 1 2 3 4 5
Density/ 0      ( 0 = 0.16fm 3)

900

1000

1100

1200

1300

1400

1500

 [M
eV

]
NLO19(500)

, 2BF
, (0.5, 0.52)
, (0, 0.72)
, ( 1, 1.07)
, ( 1.5, 1.27)
, ( 2, 1.47)

n

Figure 5.17: Comparison of the chemical potentials of the Λ-baryon and neutrons in pure neutron
matter for various choices of H1 and H2 along line 1. 2BF results from NLO19(500) are
given in black for comparison.
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Figure 5.18: Comparison of the chemical potentials of the Λ-baryon and neutrons in pure neutron
matter for various choices of H1 and H2 along line 2. 2BF results from NLO19(500) are
given in black for comparison.





6
SUMMARY AND CONCLUS ION

In this work, we investigated the condition for the onset of Λ-baryon formation in neutron
stars by employing Brueckner theory at first order in the hole-line expansion and computing
the single-particle potentials of nucleons and hyperons. The two-body interactions used were
obtained from SU(2) ChEFT at N3LO for nucleon-nucleon interactions and from SU(3) ChEFT
at NLO for hyperon-nucleon interactions. Three-body forces, which arise at N2LO, were
incorporated as density-dependent effective two-body interactions. As a novelty, we derived
the expressions for all YNN channels involving exactly one hyperon of strangeness S = −1, i.e.
ΛNN -ΛNN , ΛNN -ΣNN , and ΣNN -ΣNN , in isospin-asymmetric nuclear matter.

We investigated the effect of several options that are available when performing Bruecker
calculations. The single-particle potential of a Λ in the gap choice has a weaker dependence
on the density than in the continuous choice, rendering it too shallow to fall below −30

MeV for the examined two-body interactions. Consequently, they leave no room for repulsive
three-body forces. Similar shortcomings are observed for some of the chiral YN-interactions in
the continuous choices, where only NLO13(500), NLO13(650), NLO13(700), and NLO19(500)
are sufficiently attractive, while NLO13(550) and NLO13(600) yield too repulsive single-particle
potentials.
The choice of different NN-potentials barely changes the low-density behaviour of UΛ, but

has a significant effect on the high-density results. As an alternative to ChEFT at N3LO, we
explored AV18, which introduces substantial repulsion above 2.5ρ0, consequently favoring the
absence of Λs. The addition of three-nucleon forces to AV18 is expected to underline this trend
even more.
Since the experimental data on strange three-body forces is very scarce, the related LECs

H1 and H2, which parametrize the 3-octet-1-decuplet contact interaction, are currently uncon-
strained. Even though different YN two-body potentials yield distinctive levels of attraction
for UΛ, we can always find continuous sets of (H1, H2)-pairs that are able to introduce the
right amount of three-body repulsion to reproduce UΛ(ρ0) = −30 MeV. Each set takes the
form of two separate lines in the H1H2-plane that vary significantly in position, depending
on the YN two-body interaction. Furthermore, for NLO13(500) and NLO19(500) there are
intervals along those two lines within which the LECs introduce sufficient repulsion such that
µΛ > µn holds for any density. Remarkably, NLO13(650) and NLO13(700) yield too attractive
results for any (H1, H2)-combination, even though their results from two-body calculations
alone are less attractive than NLO19(500).
At such high cutoffs, higher order terms in the chiral expansion might become relevant

already, which are beyond what is currently achievable with the limited amount of YN-scattering
data, as discussed before. The availability of NLO13 and NLO19, which provide substantially
different results for UΛ while excluding three-body forces, allows for an uncertainty estimate to
some extent.
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To conclude, we require a larger database for YN-scattering data and hypernuclei in order
to obtain more reliable two- and three-body interactions. Even though a conclusive statement
is not possible at this point, we were able to show that ΛNN three-body forces can indeed
allow for sufficient repulsion in order to suppress the onset of Λ formation in neutron stars.



A
NOTATION AND BAS ICS

a.1 notation

• We use natural units where ~ = c = 1.
Momentum units are written as MeV instead of MeV/c.
Energy units are given as MeV instead of MeV/c2.

• Latin indices range from 1 to 3, Greek indices range from 0 to 3.

• Summation over repeated indices is implied (Einstein summation convention)
Latin indices then typically are both subscripts or both superscripts.
Greek indices will feature one subscript and one superscript.

• The Minkowski metric tensor takes the form gµν = gµν = diag(+1,−1,−1,−1)

• Covariant and contravariant vectors are related by xµ = gµνx
ν

• The four-gradient can be written as ∂µ = ∂
∂xµ

• The four-momentum of a particle reads pµ = (E, ~p) with p2 = pµpµ = E2 − ~p 2

• The commutator or anticommutator of two operators reads:
[a, b] = ab− ba or {a, b} = ab+ ba

• A Lorentz scalar is obtained from Dirac spinors by Ψ̄Ψ with Ψ̄ = Ψ†γ0

• The totally antisymmetric Levi-Civita tensor εijk is normalized as ε123 = 1

• Unitary group of degree N: U(N) = {U ∈ CN×N | U †U = 1}

• Special unitary group of degree N: SU(N) = {U ∈ U(N)| det(U) = 1}

• Its Lie algebra is the tangent space at the identity:

su(N) = {X = c′(0) ∈ CN×N
∣∣ smooth c : R→ SU(N), c(0) = 1} . (A.1)

A basis of su(N) is also referred to as generators of SU(N).

• The generators of SU(2) are chosen as {iσi/2}, with the Pauli matrices σi:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (A.2)

with

σiσj = δij + iεijkσk, [σi, σj ] = 2iεijkσk, {σi, σj} = 2δij . (A.3)

In the case of isospin space, the Pauli matrices τi are used instead.
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• The generators of SU(3) are chosen as {iλi/2}, with the Gell-Mann matrices λi:

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 1 0

0 0 0



λ4 =


0 0 1

0 0 0

1 0 0

 , λ5 =


0 0 −i
0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0



λ7 =


0 0 0

0 0 −i
0 i 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 , (A.4)

where

tr(λa) = 0, λ†a = λa, tr(λaλb) = 2δab . (A.5)

The Lie bracket of two generators takes the form[
λa
2
,
λb
2

]
= ifabc

λc
2
, (A.6)

with the real and totally antisymmetric structure constants fabc, which have the non-zero
values

f123 = 1, f458 = f678 =

√
3

2

f147 = f165 = f246 = f257 = f345 = f376 =
1

2
. (A.7)

• The gamma matrices read - in Dirac representation -

γ0 =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi 0

)
. (A.8)

Together with

γ5 = γ5 = iγ0γ1γ2γ3 =

(
0 1

1 0

)
and σµν =

i

2
[γµ, γν ] , (A.9)

the set {1, γµ, γ5, γ
µγ5, σµν} forms a basis for the space of all 4× 4 Dirac matrices. The

elements satisfy the relations

{γµ, γν} = 2gµν , {γµ, γ5} = 0 ,

γ†0 = γ0 , γi† = −γi ,

γ†5 = γ5 , γ2
5 = 1 , σµν = −σνµ . (A.10)

• The Feynman slash notation is an abbreviation for /a := γµaµ



B
DENS ITY -DEPENDENT 2BFS IN ASYMMETRIC NUCLEAR
MATTER

In this appendix we give explicit expressions for all density-dependent effective YN-potentials
derived from YNN 3-body-potentials in the strangeness S = −1 sector for isospin-asymmetric
matter, as sketched in chapter 3. We were able to reproduce the results from Ref. [64] for
ΛN -ΛN . Furthermore, the results for ΛN -ΣN and ΣN -ΣN coincide in symmetric matter. As
isospin symmetry cannot be used in asymmetric matter anymore, the results are given in the
particle basis.
For the purpose of comparison with Ref. [64], the ΛN -ΛN potentials are split into two-

pion-exchange, one-pion-exchange, and contact term contributions. The ΛN -ΣN and ΣN -ΣN
transitions are broken down into contributions from each three-body topology, c.f. chapter 3.
Furthermore, a conversion factor of

√
2
3 between isospin- and particle basis is factored out

where convenient.
In addition to the notation introduced in Ref. [64],

Γ̃i(p) = Γi(p, k
n
f ) + 2Γi(p, k

p
f ) , (B.1)

G̃i(p, q) = Gi(p, q, k
n
f ) + 2Gi(p, q, k

p
f ) , (B.2)

we define

Γn(p) =
2

3
(knF )3 −m2

πΓ0(p, knF ) , (B.3)

Γp(p) =
2

3

(
kpF
)3 −m2

πΓ0(p, kpF ) , (B.4)

Γ4(p, kF ) = Γ0(p, kF ) + 2Γ1(p, kF ) + Γ3(p, kF ) , (B.5)

Γ5(p, kF ) = Γ2(p, kF ) +
1

4
q2Γ4(p, kF ) , (B.6)

Ĝ(p, q, kF ) = G0(p, q, kF ) + 4G1(p, q, kF ) + 4G3(p, q, kF ) , (B.7)

γ(p, q, kF ) = 2Γ0(p, kF ) + 2Γ1(p, kF )− (q2 + 2m2
π)(G0(p, q, kF ) + 2G1(p, q, kF )) , (B.8)

κ(p, q, kF ) =
8

3
(kF )3 − 4(q2 + 2m2

π)Γ0(p, kF )

− 2q2Γ1(p, kF ) + (q2 + 2m2
π)2G0(p, q, kF ) , (B.9)

with G0,1,2,3(p, q) and Γ0,1,2,3(p) given in Ref. [63]
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b.1 ΛN → ΛN

b.1.1 Λn→ Λn

Two-pion-exchange:

C2g2
A

48f4
0π

2∆

(
8

3

(
(knF )3 + 2

(
kpF
)3) (B.10)

− 4
(
q2 + 2m2

π

)
Γ̃0(p)− 2q2Γ̃1(p) +

(
q2 + 2m2

π

)2 · G̃0(p, q)

+ 2i(~q × ~p) · ~σ2

[
2Γ̃0(p) + 2Γ̃1(p)− (q2 + 2m2

π)
(
G̃0(p, q) + 2G̃0(p, q)

)])
One-pion-exchange:

CgA
18f2

0π
2∆

(H1 + 3H2)

(
2

3

(
(knF )3 + 2

(
kpF
)3)−m2

πΓ̃0(p)

)
(B.11)

Contact term:

ρn + 2ρp
18∆

(H1 + 3H2)2 (B.12)

b.1.2 Λp→ Λp

VΛp→Λp = VΛn→Λn

∣∣∣∣
kn↔kp

(B.13)
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b.2 ΛN → ΣN

b.2.1 Λn→ Σ0n

topology 1

8C2DgA

9
√

3f4
0 ∆

q2 (~σ1 · ~q) (~σ2 · ~q)
(q2 +m2

π)2
(ρn + ρp) (B.14)

topology 2

− 2C2DgA

9
√

3f4
0π

2∆

(~σ1 · ~q) (~σ2 · ~q)
q2 +m2

π

(
2Γ5(p, knF )− Γ5(p, kpF ) + Γp(p)

)
topology 3

C2g2
A

12
√

3f4
0π

2∆

((
(~σ1 · ~q) (~σ2 · ~q)− q2~σ1 · ~σ2

)
G2(p, q, kpF ) (B.15)

− ~σ1 · (~q × ~k)~σ2 · (~q × ~k) Ĝ(p, q, kpF ) +
i

2
(~q × ~p) · ~σ1 γ(p, q, kpF )

)
topology 4

2CgAH2

3
√

3f2
0 ∆

(~σ1 · ~q) (~σ2 · ~q)
q2 +m2

π

(ρn + ρp) (B.16)

topology 5

CgA

144
√

3π2∆f2
0

(
12(H1 −H2)Γn(p) (B.17)

+ ~σ1 · ~σ2

[
− 48H2Γ2 (p, knF )

− 16(H1 + 3H2)(Γp(p)− Γ2

(
p, kpF

)
)
]

+
(
~σ1 · ~p ′

) (
~σ2 · ~p ′

) [
24(H1 + 2H2)Γ4

(
p, kpF

)
− (5H1 + 39H2)Γ4 (p, knF )

]
+ (~σ1 · ~p) (~σ2 · ~p)

[
(5H1 − 9H2)Γ4 (p, knF )− 8H1Γ4

(
p, kpF

)])
topology 6

ρn

6
√

3∆
(H1 + 2H1H2 − 3H2

2 )− ~σ1 · ~σ2
ρp

9
√

3∆
(H2

1 + 4H1H2 + 3H2
2 ) (B.18)

b.2.2 Λp→ Σ0p

VΛp→Σ0p = −VΛn→Σ0n

∣∣∣∣
knF↔k

p
F

(B.19)
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b.2.3 Λn→ Σ−p

topology 1

−
√

2

3

8C2DgA
9∆f4

0

q2 ~σ1 · ~σ2

(m2
π + q2) 2

(ρn + ρp) (B.20)

topology 2√
2

3

C2DgA
9π2∆f4

0

(~σ1 · ~q) (~σ2 · ~q)
m2
π + q2

(
Γn(p) + Γp(p) + 3Γ5(p, knF )− Γ5(p, kpF )

)
topology 3

−
√

2

3

C2g2
A

24π2∆f4
0

(
− ~σ1 · (~q × ~k)~σ2 · (~q × ~k)

[
Ĝ (p, q, knF ) + Ĝ

(
p, q, kpF

)]
(B.21)

+
(
(~σ1 · ~q) (~σ2 · ~q)− q2~σ1 · ~σ2

) [
G2 (p, q, knF ) +G2

(
p, q, kpF

)]
+
i

2
(~q × ~p) · ~σ1

[
γ (p, q, knF ) + γ

(
p, q, kpF

)])
topology 4√

2

3

CgA
9∆f2

0

(~σ1 · ~q) (~σ2 · ~q)
m2
π + q2

(2H1 (ρn − ρp)− 3H2 (ρn + 3ρp)) (B.22)

topology 5√
2

3

CgA
432π2∆f2

0

(
− 18(H1 −H2) [Γn(p) + Γp(p)]

+ 3~σ1 · ~σ2

[
3(H1 + 3H2)Γn(p) + 13(H1 + 3H2)Γp(p)

− 3(H1 − 5H2)Γ2 (p, knF )− (13H1 + 15H2)Γ2

(
p, kpF

) ]
+
(
~σ1 · ~p ′

) (
~σ2 · ~p ′

) [
−3(7H1 − 15H2)Γ4 (p, knF )− 36(H1 + 2H2)Γ4

(
p, kpF

)]
+ (~σ1 · ~p) (~σ2 · ~p)

[
12H1Γ4 (p, knF )− 3(H1 − 9H2)Γ4

(
p, kpF

)])
topology 6

−
√

2

3

ρn + ρp
12∆

[
H2

1 + 2H2H1 − 3H2
2

]
(B.23)

+

√
2

3

1

36∆
~σ1 · ~σ2

[
(3H2

1 + 10H2H1 + 3H2
2 )ρn + (H1 + 3H2)2ρp

]
b.2.4 Λp→ Σ+n

=
(
Λn→ Σ−p

) ∣∣∣∣
knF↔k

p
F

(B.24)
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b.3 ΣN → ΣN (i=3/2)

b.3.1 Σ+p→ Σ+p

topology 1

−8C2FgA
9∆f4

0

q2 (~σ1 · ~q) (~σ2 · ~q)
(m2

π + q2)2
(ρn + ρp) (B.25)

topology 2

2C2gAF

9π2∆f4
0

(~σ1 · ~q) (~σ2 · ~q)
m2
π + q2

(
2Γ5(p, kpF )− Γ5(p, knF ) + Γn(p)

)
topology 3

C2g2
A

72π2∆f4
0

((
(~σ1 · ~q) (~σ2 · ~q)− q2~σ1 · ~σ2

)
G2 (p, q, knF ) (B.26)

− ~σ1 · (~q × ~k)~σ2 · (~q × ~k)Ĝ (p, q, knF ) +
1

2

(
κ (p, knF ) + κ

(
p, kpF

))
+
i

2
(~q × ~p) · ~σ1γ (p, q, knF ) + i(~q × ~p) · ~σ2

(
γ (p, q, knF ) + γ

(
p, q, kpF

)))
topology 4

−4CgA
9∆f2

0

(~σ1 · ~q) (~σ2 · ~q)
m2
π + q2

(H1 (ρn + ρp) +H2ρn) (B.27)

topology 5

CgA
216π2∆f2

0

(
12(H1 +H2)Γn(p) + 24H1Γp(p)

+ 6~σ1 · ~σ2

[
+ (3H1 +H2)Γn(p) (B.28)

+ 8H1Γ2

(
p, kpF

)
− 3(H1 −H2)Γ2 (p, knF )

]
+ 3

((
~σ1 · ~p ′

) (
~σ2 · ~p ′

)
+ (~σ1 · ~p) (~σ2 · ~p)

)
×[

8H1Γ4

(
p, kpF

)
− 3(H1 −H2)Γ4 (p, knF )

])
topology 6

− ρn
18∆

~σ1 · ~σ2 (H1 +H2)2 + (B.29)

1

18∆

[
3(H1 +H2)2ρn + 12H2

1ρp
]

b.3.2 Σ−n→ Σ−n

VΣ−n→Σ−n = VΣ+p→Σ+p

∣∣∣∣
knF↔k

p
F

(B.30)
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b.3.3 Σ+n→ Σ+n

topology 1

8C2FgA
9∆f4

0

q2 (~σ1 · ~q) (~σ2 · ~q)
(m2

π + q2)2 (ρn + ρp) (B.31)

topology 2

−2C2FgA
9π2∆f4

0

(~σ1 · ~q) (~σ2 · ~q)
(m2

π + q2)

(
2Γ5(p, knF )− Γ5(p, kpF ) + Γp(p)

)
topology 3

C2g2
A

72π2∆f4
0

((
q2~σ1 · ~σ2 − (~σ1 · ~q) (~σ2 · ~q)

)
G2

(
p, q, kpF

)
(B.32)

+ ~σ1 · (~q × ~k)~σ2 · (~q × ~k)Ĝ
(
p, q, kpF

)
+

1

2

(
κ (p, knF ) + κ

(
p, kpF

))
− i

2
(~q × ~p) · ~σ1γ

(
p, q, kpF

)
+ i(~q × ~p) · ~σ2

(
γ (p, q, knF ) + γ

(
p, q, kpF

)))
topology 4

4CgA
9∆f2

0

(~σ1 · ~q) (~σ2 · ~q)
m2
π + q2

(H1 (ρn + ρp) +H2ρn) (B.33)

topology 5

CgA
216π2∆f2

0

(
12(H1 +H2)Γp(p) + 24H2Γn(p)

+ 6~σ1 · ~σ2

[
− (3H1 +H2)Γp(p)

− 8(H1 +H2)Γ2 (p, knF ) + (3H1 + 5H2)Γ2

(
p, kpF

) ]
+ 3

(
(~σ1 · ~p) (~σ2 · ~p) +

(
~σ1 · ~p ′

) (
~σ2 · ~p ′

))
·[

−8(H1 +H2)Γ4 (p, knF ) + (3H1 + 5H2)Γ4

(
p, kpF

)])
topology 6

1

18∆

(
12H2

2ρn + 3(H1 +H2)2ρp (B.34)

+ ~σ1 · ~σ2 (H1 +H2)2 ρp

)

b.3.4 Σ−p→ Σ−p

VΣ−p→Σ−p = VΣ+n→Σ+n

∣∣∣∣
knF↔k

p
F

(B.35)
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b.3.5 Σ0p→ Σ0p

topology 1

0 (B.36)

topology 2

0 (B.37)

topology 3

C2g2
A

72π2∆f4
0

(κ (p, knF ) + 2i(~q × ~p) · ~σ2γ (p, q, knF )) (B.38)

topology 4

4CH2gA
9∆f2

0

(~σ1 · ~q) (~σ2 · ~q)
m2
π + q2

(ρn − ρp) (B.39)

topology 5

CgA
9π2∆f2

0

(
(H1 +H2)Γn(p) (B.40)

−H2

(
(~σ1 · ~p) (~σ2 · ~p) +

(
~σ1 · ~p ′

) (
~σ2 · ~p ′

)) [
Γ4 (p, knF )− Γ4

(
p, kpF

)]
− 2H2 ~σ1 · ~σ2

[
Γ2 (p, knF )− Γ2

(
p, kpF

)])
topology 6

1

6∆

(
2(H1 +H2)2ρn + (H1 −H2)2ρp

)
(B.41)

b.3.6 Σ0n→ Σ0n

VΣ0n→Σ0n = VΣ0p→Σ0p

∣∣∣∣
knF↔k

p
F

(B.42)
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b.4 ΣN → ΣN (i=i/2)

b.4.1 Σ0n→ Σ−p

topology 1

−8
√

2C2FgA
9∆f4

0

q2 (~σ1 · ~q) (~σ2 · ~q)
(m2

π + q2)2 (ρn + ρp) (B.43)

topology 2
√

2C2FgA
9π2∆f4

0

(~σ1 · ~q) (~σ2 · ~q)
m2
π + q2

(
3Γ5(p, knF )− Γ5(p, kpF ) + Γn(p) + Γp(p)

)
topology 3

√
2C2g2

A

144π2∆f4
0

(1

2

[
κ (p, knF )− κ

(
p, kpF

)]
(
(~σ1 · ~q) (~σ2 · ~q)− q2~σ1 · ~σ2

) [
G2 (p, q, knF ) +G2

(
p, q, kpF

)]
(B.44)

− ~σ1 · (~q × ~k)~σ2 · (~q × ~k)
[
Ĝ
(
p, q, kpF

)
+ Ĝ (p, q, knF )

]
+
i

2
(~q × ~p) · ~σ1

[
γ (p, q, knF ) + γ

(
p, q, kpF

)]
+ i(~q × ~p) · ~σ2

[
γ (p, q, knF )− γ

(
p, q, kpF

)] )
topology 4

−
√

2CgA
9∆f2

0

(~σ1 · ~q) (~σ2 · ~q)
m2
π + q2

((4H1 −H2)ρn + (4H1 + 5H2)ρp) (B.45)

topology 5
√

2CgA
72π2∆f2

0

(
4H1Γn(p)− 4H2Γp(p) (B.46)

+ ~σ1 · ~σ2

[
(3H1 +H2) (Γn(p) + Γp(p))

+ (5H1 − 9H2)Γ2 (p, knF ) + 5(H1 + 3H2)Γ2

(
p, kpF

) ]
+
(
~σ1 · ~p ′

) (
~σ2 · ~p ′

) [
3(13H1 − 5H2)Γ4 (p, knF )− 3(3H1 − 11H2)Γ4

(
p, kpF

)]
+ (~σ1 · ~p) (~σ2 · ~p)

[
−3(3H1 + 13H2)Γ4 (p, knF ) + 3(13H1 + 19H2)Γ4

(
p, kpF

)])
topology 6

√
2

36∆

(
(9H2

1 + 6H1H2 − 3H2
2 )ρn + (3H2

1 − 6H1H2 − 9H2
2 )ρp (B.47)

− ~σ1 · ~σ2(H1 +H2)2(ρn + ρp)

)

b.4.2 Σ0p→ Σ+n

VΣ0p→Σ+n = −VΣ0n→Σ−p

∣∣∣∣
knF↔k

p
F

(B.48)
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