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Abstract Quantitative behavioral measurements are important for answering questions across

scientific disciplines—from neuroscience to ecology. State-of-the-art deep-learning methods offer

major advances in data quality and detail by allowing researchers to automatically estimate

locations of an animal’s body parts directly from images or videos. However, currently available

animal pose estimation methods have limitations in speed and robustness. Here, we introduce a

new easy-to-use software toolkit, DeepPoseKit, that addresses these problems using an efficient

multi-scale deep-learning model, called Stacked DenseNet, and a fast GPU-based peak-detection

algorithm for estimating keypoint locations with subpixel precision. These advances improve

processing speed >2x with no loss in accuracy compared to currently available methods. We

demonstrate the versatility of our methods with multiple challenging animal pose estimation tasks

in laboratory and field settings—including groups of interacting individuals. Our work reduces

barriers to using advanced tools for measuring behavior and has broad applicability across the

behavioral sciences.

Introduction
Understanding the relationships between individual behavior, brain activity (reviewed by

Krakauer et al., 2017), and collective and social behaviors (Rosenthal et al., 2015; Strandburg-

Peshkin et al., 2013; Jolles et al., 2017; Klibaite et al., 2017; Klibaite and Shaevitz, 2019) is a

central goal of the behavioral sciences—a field that spans disciplines from neuroscience to psychol-

ogy, ecology, and genetics. Measuring and modelling behavior is key to understanding these multi-

ple scales of complexity, and, with this goal in mind, researchers in the behavioral sciences have

begun to integrate theory and methods from physics, computer science, and mathematics

(Anderson and Perona, 2014; Berman, 2018; Brown and de Bivort, 2018). A cornerstone of this

interdisciplinary revolution is the use of state-of-the-art computational tools, such as computer vision

algorithms, to automatically measure locomotion and body posture (Dell et al., 2014). Such a rich

description of animal movement then allows for modeling, from first principles, the full behavioral

repertoire of animals (Stephens et al., 2011; Berman et al., 2014b; Berman et al., 2016;

Wiltschko et al., 2015; Johnson et al., 2016b; Todd et al., 2017; Klibaite et al., 2017;

Markowitz et al., 2018; Klibaite and Shaevitz, 2019; Costa et al., 2019). Tools for automatically

measuring animal movement represent a vital first step toward developing unified theories of behav-

ior across scales (Berman, 2018; Brown and de Bivort, 2018). Therefore, technical factors like
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scalability, robustness, and usability are issues of critical importance, especially as researchers across

disciplines begin to increasingly rely on these methods.

Two of the latest contributions to the growing toolbox for quantitative behavioral analysis are

from Mathis et al. (2018) and Pereira et al. (2019), who make use of a popular type of machine

learning model called convolutional neural networks, or CNNs (LeCun et al., 2015; Appendix 2), to

automatically measure detailed representations of animal posture—structural keypoints, or joints, on

the animal’s body—directly from images and without markers. While these methods offer a major

advance over conventional methods with regard to data quality and detail, they have disadvantages

in terms of speed and robustness, which may limit their practical applications. To address these

problems, we introduce a new software toolkit, called DeepPoseKit, with methods that are fast,

robust, and easy-to-use. We run experiments using multiple datasets to compare our new methods

with those from Mathis et al. (2018) and Pereira et al. (2019), and we find that our approach offers

considerable improvements. These results also demonstrate the flexibility of our toolkit for both lab-

oratory and field situations and exemplify the wide applicability of our methods across a range of

species and experimental conditions.

Measuring animal movement with computer vision
Collecting high-quality behavioral data is a challenging task, and while direct observations are impor-

tant for gathering qualitative data about a study system, a variety of automated methods for quanti-

fying movement have become popular in recent years (Dell et al., 2014; Anderson and Perona,

2014; Kays et al., 2015). Methods like video monitoring and recording help to accelerate data col-

lection and reduce the effects of human intervention, but the task of manually scoring videos is time

consuming and suffers from the same limitations as direct observation, namely observer bias and

mental fatigue. Additionally, due to limitations of human observers’ ability to process information,

eLife digest Studying animal behavior can reveal how animals make decisions based on what

they sense in their environment, but measuring behavior can be difficult and time-consuming.

Computer programs that measure and analyze animal movement have made these studies faster

and easier to complete. These tools have also made more advanced behavioral experiments

possible, which have yielded new insights about how the brain organizes behavior.

Recently, scientists have started using new machine learning tools called deep neural networks to

measure animal behavior. These tools learn to measure animal posture – the positions of an animal’s

body parts in space – directly from real data, such as images or videos, without being explicitly

programmed with instructions to perform the task. This allows deep learning algorithms to

automatically track the locations of specific animal body parts in videos faster and more accurately

than previous techniques. This ability to learn from images also removes the need to attach physical

markers to animals, which may alter their natural behavior.

Now, Graving et al. have created a new deep learning toolkit for measuring animal behavior that

combines components from previous tools with the latest advances in computer science. Simple

modifications to how the algorithms are trained can greatly improve their performance. For

example, adding connections between layers, or ‘neurons’, in the deep neural network and training

the algorithm to learn the full geometry of the body – by drawing lines between body parts – both

enhance its accuracy. As a result of adding these changes, the new toolkit can measure an animal’s

pose from previously unseen images with high speed and accuracy, after being trained on just 100

examples. Graving et al. tested their model on videos of fruit flies, zebras and locusts, and found

that, after training, it was able to accurately track the animals’ movements. The new toolkit has an

easy-to-use software interface and is freely available for other scientists to use and build on.

The new toolkit may help scientists in many fields including neuroscience and psychology, as well

as other computer scientists. For example, companies like Google and Apple use similar algorithms

to recognize gestures, so making those algorithms faster and more efficient may make them more

suitable for mobile devices like smartphones or virtual-reality headsets. Other possible applications

include diagnosing and tracking injuries, or movement-related diseases in humans and livestock.
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many studies that rely on manual scoring use relatively small datasets to estimate experimental

effects, which can lead to increased rates of statistical errors. Studies that lack the statistical resolu-

tion to robustly test hypotheses (commonly called ’power’ in frequentist statistics) also raise con-

cerns about the use of animals for research, as statistical errors caused by sparse data can impact

researchers’ ability to accurately answer scientific questions. These limitations have led to the devel-

opment of automated methods for quantifying behavior using advanced imaging technologies

(Dell et al., 2014) as well as sophisticated tags and collars with GPS, accelerometry, and acoustic-

recording capabilities (Kays et al., 2015). Tools for automatically measuring the behavior of individ-

uals now play a central role in our ability to study the neurobiology and ecology of animals, and reli-

ance on these technologies for studying animal behavior will only increase in the future.

The rapid development of computer vision hardware and software in recent years has allowed for

the use of automated image-based methods for measuring behavior across many experimental con-

texts (Dell et al., 2014). Early methods for quantifying movement with these techniques required

highly controlled laboratory conditions. However, because animals exhibit different behaviors

depending on their surroundings (Strandburg-Peshkin et al., 2017; Francisco et al., 2019;

Akhund-Zade et al., 2019), laboratory environments are often less than ideal for studying many nat-

ural behaviors. Most conventional computer vision methods are also limited in their ability to accu-

rately track groups of individuals over time, but nearly all animals are social at some point in their life

and exhibit specialized behaviors when in the presence of conspecifics (Strandburg-Peshkin et al.,

2013; Rosenthal et al., 2015; Jolles et al., 2017; Klibaite et al., 2017; Klibaite and Shaevitz,

2019; Francisco et al., 2019; Versace et al., 2019). These methods also commonly track only the

animal’s center of mass, which reduces the behavioral output of an individual to a two-dimensional

or three-dimensional particle-like trajectory. While trajectory data are useful for many experimental

designs, the behavioral repertoire of an animal cannot be fully described by its aggregate locomo-

tory output. For example, stationary behaviors, like grooming and antennae movements, or subtle

differences in walking gaits cannot be reliably detected by simply tracking an animal’s center of

mass (Berman et al., 2014b; Wiltschko et al., 2015).

Together these factors have driven the development of software that can accurately track the

positions of marked (Crall et al., 2015; Graving, 2017; Wild et al., 2018; Boenisch et al., 2018) or

unmarked (Pérez-Escudero et al., 2014; Romero-Ferrero et al., 2019) individuals as well as meth-

ods that can quantify detailed descriptions of an animal’s posture over time (Stephens et al., 2011;

Berman et al., 2014b; Wiltschko et al., 2015; Mathis et al., 2018; Pereira et al., 2019). Recently,

these advancements have been further improved through the use of deep learning, a class of

machine learning algorithms that learn complex statistical relationships from data (LeCun et al.,

2015). Deep learning has opened the door to accurately tracking large groups of marked

(Wild et al., 2018; Boenisch et al., 2018) or unmarked (Romero-Ferrero et al., 2019) individuals

and has made it possible to measure the body posture of animals in nearly any context—including

’in the wild’ (Nath et al., 2019)—by tracking the positions of user-defined body parts (Mathis et al.,

2018; Pereira et al., 2019). These advances have drastically increased the quality and quantity, as

well as the diversity, of behavioral data that are potentially available to researchers for answering sci-

entific questions.

Animal pose estimation using deep learning
In the past, conventional methods for measuring posture with computer vision relied on species-spe-

cific algorithms (Uhlmann et al., 2017), highly specialized or restrictive experimental setups

(Mendes et al., 2013; Kain et al., 2013), attaching intrusive physical markers to the study animal

(Kain et al., 2013), or some combination thereof. These methods also typically required expert com-

puter-vision knowledge to use, were limited in the number or type of body parts that could be

tracked (Mendes et al., 2013), involved capturing and handling the study animals to attach markers

(Kain et al., 2013)—which is not possible for many species—and despite best efforts to minimize

human involvement, often required manual intervention to correct errors (Uhlmann et al., 2017).

These methods were all built to work for a small range of conditions and typically required consider-

able effort to adapt to novel contexts.

In contrast to conventional computer-vision methods, modern deep-learning– based methods can

be used to achieve near human-level accuracy in almost any scenario by manually annotating data

(Figure 1)—known as a training set—and training a general-purpose image-processing algorithm—a
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Figure 1. An illustration of the workflow for DeepPoseKit. Multi-individual images are localized, tracked, and preprocessed into individual images,

which is not required for single-individual image datasets. An initial image set is sampled, annotated, and then iteratively updated using the active

learning approach described by Pereira et al. (2019) (see Appendix 3). As annotations are made, the model is trained (Figure 2) with the current

training set and keypoint locations are initialized for unannotated data to reduce the difficulty of further annotations. This is repeated until there is a

Figure 1 continued on next page
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convolutional neural network or CNN—to automatically estimate the locations of an animal’s body

parts directly from images (Figure 2). State-of-the-art machine learning methods, like CNNs, use

these training data to parameterize a model describing the statistical relationships between a set of

input data (i.e., images) and the desired output distribution (i.e., posture keypoints). After adequate

training, a model can be used to make predictions on previously-unseen data from the same data-

set—inputs that were not part of the training set, which is known as inference. In other words, these

models are able to generalize human-level expertise at scale after having been trained on only a

Figure 1 continued

noticeable improvement plateau for the initialized data—where the annotator is providing only minor corrections—and for the validation error when

training the model (Appendix 1—figure 4). New data from the full dataset are evaluated with the model, and the training set is merged with new

examples that are sampled based on the model’s predictive performance, which can be assessed with techniques described by Mathis et al. (2018)

and Nath et al. (2019) for identifying outlier frames and minimizing extreme prediction errors—shown here as the distribution of confidence scores

predicted by the model and predicted body part positions with large temporal derivatives, indicating extreme errors. This process is repeated as

necessary until performance is adequate when evaluating new data. The pose estimation model can then be used to make predictions for the full data

set, and the data can be used for further analysis.

The online version of this article includes the following video for figure 1:

Figure 1—video 1. A visualization of the posture data output for a group of locusts (5� speed).

https://elifesciences.org/articles/47994#fig1video1
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Figure 2. An illustration of the model training process for our Stacked DenseNet model in DeepPoseKit (see Appendix 2 for details about training

models). Input images x (top-left) are augmented (bottom-left) with various spatial transformations (rotation, translation, scale, etc.) followed by noise

transformations (dropout, additive noise, blurring, contrast, etc.) to improve the robustness and generalization of the model. The ground truth

annotations are then transformed with matching spatial augmentations (not shown for the sake of clarity) and used to draw the confidence maps y for

the keypoints and hierarchical posture graph (top-right). The images x are then passed through the network to produce a multidimensional array

gðf ðxÞÞ—a stack of images corresponding to the keypoint and posture graph confidence maps for the ground truth y. Mean squared error between the

outputs for both networks gðf ðxÞÞ and f 0ðxÞ and the ground truth data y is then minimized (bottom-right), where f 0ðxÞ indicates a subset of the output

from f ðxÞ—only those feature maps being optimized to reproduce the confidence maps for the purpose of intermediate supervision (Appendix 5). The

loss function is minimized until the validation loss stops improving—indicating that the model has converged or is starting to overfit to the training

data.
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relatively small number of examples. We provide more detailed background information on using

CNNs for pose estimation in Appendices 2–6.

Similar to conventional pose estimation methods, the task of implementing deep-learning models

in software and training them on new data is complex and requires expert knowledge. However, in

most cases, once the underlying model and training routine are implemented, a high-accuracy pose

estimation model for a novel context can be built with minimal modification—often just by changing

the training data. With a simplified toolkit and high-level software interface designed by an expert,

even scientists with limited computer-vision knowledge can begin to apply these methods to their

research. Once the barriers for implementing and training a model are sufficiently reduced, the main

bottleneck for using these methods becomes collecting an adequate training set—a labor-intensive

task made less time-consuming by techniques described in Appendix 3.

Mathis et al. (2018) and Pereira et al. (2019) were the first to popularize the use of CNNs for

animal pose estimation. These researchers built on work from the human pose estimation literature

(e.g., Andriluka et al., 2014; Insafutdinov et al., 2016; Newell et al., 2016) using a type of fully-

convolutional neural network or F-CNN (Long et al., 2015; Appendix 4) often referred to as an

encoder-decoder model (Appendix 4: ’Encoder-decoder models’). These models are used to mea-

sure animal posture by training the network to transform images into probabilistic estimates of key-

point locations, known as confidence maps (shown in Figure 2), that describe the body posture for

one or more individuals. These confidence maps are processed to produce the 2-D spatial coordi-

nates of each keypoint, which can then be used for further analysis.

While deep-learning models typically need large amounts of training data, both Mathis et al.

(2018) and Pereira et al. (2019) have demonstrated that near human-level accuracy can be achieved

with few training examples (Appendix 3). In order to ensure generalization to large datasets, both

groups of researchers introduced ideas related to iteratively refining the training set used for model

fitting (Mathis et al., 2018; Pereira et al., 2019). In particular, Pereira et al. (2019) describe a tech-

nique known as active learning where a trained model is used to initialize new training data and

reduce annotation time (Appendix 3). Mathis et al. (2018) describe multiple techniques that can be

used to further refine training data and minimize errors when making predictions on the full dataset.

Simple methods to accomplish this include filtering data or selecting new training examples based

on confidence scores or the entropy of the confidence maps from the model output. Nath et al.

(2019) also introduced the use temporal derivatives (i.e., speed and acceleration) and autoregressive

models to identify outlier frames, which can then be labeled to refine the training set or excluded

from further analysis on the final dataset (Figure 1).

Pose estimation models and the speed-accuracy trade-off
Mathis et al., 2018 developed their pose estimation model, which they call DeepLabCut, by modify-

ing a previously published model called DeeperCut (Insafutdinov et al., 2016). The DeepLabCut

model (Mathis et al., 2018), like the DeeperCut model, is built on the popular ResNet architecture

(He et al., 2016)—a state-of-the-art deep-learning model used for image classification. This choice is

advantageous because the use of a popular architecture allows for incorporating a pre-trained

encoder to improve performance and reduce the number of required training examples

(Mathis et al., 2018), known as transfer learning (Pratt, 1992; Appendix 3)—although, as will be

seen, transfer learning appears to offer little improvement over a randomly initialized model. How-

ever, this choice of of a pre-trained architecture is also disadvantageous as the model is overparame-

terized with >25 million parameters. Overparameterization allows the model to make accurate

predictions, but this may come with the cost of slow inference. To alleviate these effects, work from

Mathis and Warren (2018) showed that inference speed for the DeepLabCut model (Mathis et al.,

2018) can be improved by decreasing the resolution of input images, but this is achieved at the

expense of accuracy.

With regard to model design, Pereira et al. (2019) implement a modified version of a model

called SegNet (Badrinarayanan et al., 2015), which they call LEAP (LEAP Estimates Animal Pose),

that attempts to limit model complexity and overparameterization with the goal of maximizing infer-

ence speed (see Appendix 6)—however, our comparisons from this paper suggest (Pereira et al.,

2019) achieved only limited success compared to the DeepLabCut model (Mathis et al., 2018). The

LEAP model is advantageous because it is explicitly designed for fast inference but has disadvan-

tages such as a lack of robustness to data variance, like rotations or shifts in lighting, and an inability
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to generalize to new experimental setups. Additionally, to achieve maximum performance, the train-

ing routine for the LEAP model introduced by Pereira et al. (2019) requires computationally expen-

sive preprocessing that is not practical for many datasets, which makes it unsuitable for a wide range

of experiments (see Appendix 6 for more details).

Together the methods from Mathis et al. (2018) and Pereira et al. (2019) represent the two

extremes of a phenomenon known as the speed-accuracy trade-off (Huang et al., 2017b)—an active

area of research in the machine learning literature. Mathis et al. (2018) prioritize accuracy over

speed by using a large overparameterized model (Insafutdinov et al., 2016), and Pereira et al.

(2019) prioritize speed over accuracy by using a smaller less-robust model. While this speed-accu-

racy trade-off can limit the capabilities of CNNs, there has been extensive work to make these mod-

els more efficient without impacting accuracy (e.g., Chollet, 2017; Huang et al., 2017a;

Sandler et al., 2018). To address the limitations of this trade-off, we apply recent developments

from the machine learning literature and provide an effective solution to the problem.

In the case of F-CNN models used for pose estimation, improvements in efficiency and robust-

ness have been made through the use of multi-scale inference (Appendix 4: ’Encoder-decoder mod-

els’) by increasing connectivity between the model’s many layers across multiple spatial scales

(Appendix 4—figure 1) Multi-scale inference implicitly allows the model to simultaneously integrate

large-scale global information, such as the lighting, image background, or the orientation of the

focal individual’s body trunk; information from intermediate scales like anatomical geometry related

to cephalization and bilateral symmetry; and fine-scale local information that could include differen-

ces in color, texture, or skin patterning for specific body parts. This multi-scale design gives the

model capacity to learn the hierarchical relationships between different spatial scales and efficiently

aggregate them into a joint representation when solving the posture estimation task

(see Appendix 4: ’Encoder-decoder models’ and Appendix 4—figure 1 for further discussion).

Individual vs. multiple pose estimation
Most work on human pose estimation now focuses on estimating the pose of multiple individuals in

an image (e.g. Cao et al., 2017). For animal pose estimation, the methods from Pereira et al.

(2019) are limited to estimating posture for single individuals—known as individual pose estima-

tion—while the methods from Mathis et al. (2018) can also be extended to estimate posture for

multiple individuals simultaneously—known as multiple pose estimation. However, the majority of

work on multiple pose estimation, including Mathis et al. (2018), has not adequately solved the

tracking problem of linking individual posture data across frames in a video, especially after visual

occlusions, which are common in many behavioral experiments—although recent work has

attempted to address this problem (Iqbal et al., 2017; Andriluka et al., 2018). Additionally, as the

name suggests, the task of multiple pose estimation requires exhaustively annotating images of mul-

tiple individuals—where every individual in the image must be annotated to prevent the model from

learning conflicting information. This type of annotation task is even more laborious and time con-

suming than annotations for individual pose estimation and the amount of labor increases propor-

tionally with the number of individuals in each frame, which makes this approach intractable for

many experimental systems.

Reliably tracking the position of individuals over time is important for most behavioral studies,

and there are a number of diverse methods already available for solving this problem (Pérez-

Escudero et al., 2014; Crall et al., 2015; Graving, 2017; Romero-Ferrero et al., 2019; Wild et al.,

2018; Boenisch et al., 2018). Therefore, to avoid solving an already-solved problem of tracking indi-

viduals and to circumvent the cognitively complex task of annotating data for multiple pose estima-

tion, the work we describe in this paper is purposefully limited to individual pose estimation—where

each image contains only a single focal individual, which may be cropped from a larger multi-individ-

ual image after localization and tracking. We introduce a top-down posture estimation framework

that can be readily adapted to existing behavioral analysis workflows, which could include any

method for localizing and tracking individuals.

The additional step of localizing and tracking individuals naturally increases the processing time

for producing posture data from raw image data, which varies depending on the algorithms being

used and the number of individuals in each frame. While tracking and localization may not be practi-

cal for all experimental systems, which could make our methods difficult to apply ’out-of-the-box’,

the increased processing time from automated tracking algorithms is a reasonable trade-off for most
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systems given the costly alternative of increased manual labor when annotating data. This trade-off

seems especially practical when considering that the posture data produced by most multiple pose

estimation algorithms still need to be linked across video frames to maintain the identity of each

individual, which is effectively a bottom-up method for achieving the same result. Limiting our meth-

ods to individual pose estimation also simplifies the pose detection problem as processing confi-

dence maps produced by the model does not require computationally-expensive local peak

detection and complex methods for grouping keypoints into individual posture graphs (e.g.

Insafutdinov et al., 2016; Cao et al., 2017; Appendix 4). Additionally, because individual pose esti-

mation is such a well-studied problem in computer vision, we can readily build on state-of-the-art

methods for this task (see Appendices 4 and 5 for details).

Results
Here, we introduce fast, flexible, and robust pose estimation methods, with a software interface—a

high-level programming interface (API) and graphical user-interface (GUI) for annotations—that

emphasizes usability. Our methods build on the state-of-the-art for individual pose estimation

(Newell et al., 2016; Appendix 5), convolutional regression models (Jégou et al., 2017; Appendix 4:

’Encoder-decoder models’), and conventional computer vision algorithms (Guizar-Sicairos et al.,

2008) to improve model efficiency and achieve faster, more accurate results on multiple challenging

pose estimation tasks. We developed two model implementations—including a new model architec-

ture that we call Stacked DenseNet—and a new method for processing confidence maps called sub-

pixel maxima that provides fast and accurate peak detection for estimating keypoint locations with

subpixel precision—even at low spatial resolutions. We also discuss a modification to incorporate a

hierarchical posture graph for learning the multi-scale geometry between keypoints on the animal’s

body, which increases accuracy when training pose estimation models. We ran experiments to opti-

mize our approach and compared our new models to the models from Mathis et al. (2018) (Deep-

LabCut) and Pereira et al. (2019) (LEAP) in terms of speed, accuracy, training time, and

generalization ability. We benchmarked these models using three image datasets recorded in the

laboratory and the field—including multiple interacting individuals that were first localized and

cropped from larger, multi-individual images (see ’Materials and methods’ for details).

An end-to-end pose estimation framework
We provide a full-featured, extensible, and easy-to-use software package that is written entirely in

the Python programming language (Python Software Foundation) and is built using TensorFlow as a

backend (Abadi et al., 2015). Our software is a complete, end-to-end pipeline (Figure 1) with a cus-

tom GUI for creating annotated training data with active learning similar to Pereira et al. (2019)

(Appendix 3), as well as a flexible pipeline for data augmentation (Jung, 2018; Appendix 3; shown

in Figure 2), model training and evaluation (Figure 2; Appendix 2), and running inference on new

data. We designed our high-level programming interface using the same guidelines from Keras

(keras team, 2015) to allow the user to go from idea to result as quickly as possible, and we orga-

nized our software into a Python module called DeepPoseKit. The code, documentation, and exam-

ples for our entire software package are freely available at https://github.com/jgraving/deepposekit

under a permissive open-source license.

Our pose estimation models
To achieve the goal of ’fast animal pose estimation’ introduced by Pereira et al. (2019), while main-

taining the robust predictive power of models like DeepLabCut (Mathis et al., 2018), we imple-

mented two fast pose estimation models that extend the state-of-the-art model for individual pose

estimation introduced by Newell et al. (2016) and the current state-of-the art for convolutional

regression from Jégou et al. (2017). Our model implementations use fewer parameters than both

the DeepLabCut model (Mathis et al., 2018) and LEAP model (Pereira et al., 2019) while simulta-

neously removing many of the limitations of these architectures.

In order to limit overparameterization while minimizing performance loss, we designed our mod-

els to allow for multi-scale inference (Appendix 4: ’Encoder-decoder models’) while optimizing our

model hyperparameters for efficiency. Our first model is a novel implementation of FC-DenseNet

from Jégou et al. (2017) (Appendix 4: ’Encoder-decoder models’) arranged in a stacked
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configuration similar to Newell et al. (2016) (Appendix 5). We call this new model Stacked Dense-

Net, and to the best of our knowledge, this is the first implementation of this model architecture in

the literature—for pose estimation or otherwise. Further details for this model are available in

Appendix 8. Our second model is a modified version of the Stacked Hourglass model from

Newell et al. (2016) (Appendix 5) with hyperparameters that allow for changing the number of fil-

ters in each convolutional block to constrain the number of parameters—rather than using 256 filters

for all layers as described in Newell et al. (2016).

Subpixel keypoint prediction on the GPU allows for fast and accurate
inference
In addition to implementing our efficient pose estimation models, we developed a new method to

process model outputs to allow for faster, more accurate predictions. When using a fully-convolu-

tional posture estimation model, the confidence maps produced by the model must be converted

into coordinate values for the predictions to be useful, and there are typically two choices for making

this conversion. The first is to move the confidence maps out of GPU memory and post-process

them on the CPU. This solution allows for easy, flexible, and accurate calculation of the coordinates

with subpixel precision (Insafutdinov et al., 2016; Mathis et al., 2018). However, CPU processing is

not ideal because moving large arrays of data between the GPU and CPU can be costly, and compu-

tation on the CPU is generally slower. The other option is to directly process the confidence maps

on the GPU and then move the coordinate values from the GPU to the CPU. This approach usually

means converting confidence maps to integer coordinates based on the row and column index of

the global maximum for each confidence map (Pereira et al., 2019). However, this means that, to

achieve a precise estimation, the confidence maps should be predicted at the full resolution of the

input image, or larger, which slows down inference speed.

As an alternative to these two strategies, we introduce a new GPU-based convolutional layer that

we call subpixel maxima. This layer uses the fast, efficient, image registration algorithm introduced

by Guizar-Sicairos et al. (2008) to translationally align a two-dimensional Gaussian filter to each

confidence map via Fourier-based convolution. The translational shift between the filter and each

confidence map allows us to calculate the coordinates of the global maxima with high-speed and

subpixel precision. This technique allows for accurate predictions of keypoint locations even if the

model’s confidence maps are dramatically smaller than the resolution of the input image. We com-

pared the accuracy of our subpixel maxima layer to an integer-based maxima layer using the fly

dataset from Pereira et al. (2019) (see ’Materials and methods’). We found significant accuracy

improvements across every downsampling configuration (Appendix 1—figure 1a). Even with confi-

dence maps at 1

8
� the resolution of the original image, error did not drastically increase compared

to full-resolution predictions. Making predictions for confidence maps at such a downsampled reso-

lution allows us to achieve very fast inference >1000 Hz while maintaining high accuracy (Appen-

dix 1—figure 1b).

We also provide speed comparisons with the other models we tested and find that our Stacked

DenseNet model with our subpixel peak detection algorithm is faster than the DeepLabCut model

(Mathis et al., 2018) for both offline (batch size = 100) and real-time speeds (batch size = 1). While

we find that our Stacked DenseNet model is faster than the LEAP model (Pereira et al., 2019) for

offline processing (batch size = 100), the LEAP model (Pereira et al., 2019) is significantly faster for

real-time processing (batch size = 1). Our Stacked Hourglass model (Newell et al., 2016) is about

the same or slightly faster than Stacked DenseNet for offline speeds (batch size = 100), but is much

slower for real-time processing (batch size = 1). Achieving fast pose estimation using CNNs typically

relies on massively parallel processing on the GPU with large batches of data or requires downsam-

pling the images to increase speed, which increases error (Mathis and Warren, 2018). These factors

make fast and accurate real-time inference challenging to accomplish. Our Stacked DenseNet

model, with a batch size of one, can run inference at ~30–110 Hz—depending on the resolution of

the predicted confidence maps (Appendix 1—figure 1b). These speeds are faster than the Deep-

LabCut model (Mathis et al., 2018) and could be further improved by downsampling the input

image resolution or reconfiguring the model with fewer parameters. This allows our methods to be

flexibly used for real-time or closed-loop behavioral experiments with prediction errors similar to cur-

rent state-of-the-art methods.
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Learning multi-scale geometry between keypoints improves accuracy
and reduces extreme errors
Minimizing extreme prediction errors is important to prevent downstream effects on any further

behavioral analysis (Seethapathi et al., 2019)—especially in the case of analyses based on time-fre-

quency transforms like those from Berman et al. (2014b), Berman et al. (2016), Klibaite et al.

(2017), Todd et al. (2017), Klibaite and Shaevitz (2019) and Pereira et al. (2019) where high mag-

nitude errors can cause inaccurate behavioral classifications. While effects of these extreme errors

can be minimized using post-hoc filters and smoothing, these post-processing techniques can

remove relevant high-frequency information from time-series data, so this solution is less than ideal.

One way to minimize extreme errors when estimating posture is to incorporate multiple spatial

scales when making predictions (e.g., Chen et al., 2017). Our pose estimation models are implicitly

capable of using information from multiple scales (see Appendix 4: ’Encoder-decoder models’), but

there is no explicit signal that optimizes the model to take advantage of this information when mak-

ing predictions.

To remedy this, we modified the model’s output to predict, in addition to keypoint locations, a

hierarchical graph of edges describing the multi-scale geometry between keypoints—similar to the

part affinity fields described by Cao et al. (2017). This was achieved by adding an extra set of confi-

dence maps to the output where edges in the postural graph are represented by Gaussian-blurred

lines the same width as the Gaussian peaks in the keypoint confidence maps. Our posture graph out-

put then consists of four levels: (1) a set of confidence maps for the smallest limb segments in the

graph (e.g. foot to ankle, knee to hip, etc.; Figure 2), (2) a set of confidence maps for individual

limbs (e.g. left leg, right arm, etc.; Figure 4), (3) a map with the entire postural graph, and (4) a

fully integrated map that incorporates the entire posture graph and confidence peaks for all of the

joint locations (Figure 2). Each level of the hierarchical graph is built from lower levels in the output,

which forces the model to learn correlated features across multiple scales when making predictions.

We find that training our Stacked DenseNet model to predict a hierarchical posture graph

reduces keypoint prediction error (Appendix 1—figure 2), and because the feature maps for the

posture graph can be removed from the final output during inference, this effectively improves pre-

diction accuracy for free. Both the mean and variance of the error distributions were lower when pre-

dicting the posture graph, which suggests that learning multi-scale geometry both decreases error

on average and helps to reduce extreme prediction errors. The overall effect size for this decrease in

error is fairly small (<1 pixel average reduction in error), but based on the results from the zebra

dataset, this modification more dramatically improves performance for datasets with higher variance

images and sparse posture graphs. Predicting the posture graph may be especially useful for animals

with long slender appendages such as insect legs and antennae where prediction errors are likely to

occur due to occlusions and natural variation in the movement of these body parts. These results

also suggest that annotating multiple keypoints to incorporate an explicit signal for multi-scale infor-

mation may help improve prediction accuracy for a specific body part of interest.

Stacked DenseNet is fast and robust
We benchmarked our new model implementations against the models Pereira et al. (2019) and

Mathis et al. (2018). We find that our Stacked DenseNet model outperforms both the LEAP model

(Pereira et al., 2019) and the DeepLabCut model (Mathis et al., 2018) in terms of speed while also

achieving much higher accuracy than the LEAP model (Pereira et al., 2019) with similar accuracy to

the DeepLabCut model (Mathis et al., 2018; Figure 3a). We found that both the Stacked Hourglass

and Stacked DenseNet models outperformed the LEAP model (Pereira et al., 2019). Notably our

Stacked DenseNet model achieved approximately 2� faster inference speeds with 3� higher mean

accuracy. Not only were our models average prediction error significantly improved, but also, impor-

tantly, the variance was lower—indicating that our models produced fewer extreme prediction

errors. At 1

4
� resolution, our Stacked DenseNet model consistently achieved prediction accuracy

nearly identical to the DeepLabCut model (Mathis et al., 2018) while running inference at nearly 2�

the speed and using only ~5% of the parameters—1.5 million vs. ~26 million. Detailed results of our

model comparisons are shown in Figure 3—figure supplement 1.

While the Stacked DenseNet model used for comparisons is already fast, inference speed could

be further improved by using a 1

8
� output without much increase in error (Appendix 1—figure 1) or
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by further adjusting the hyperparameters to constrain the size of the model. Our Stacked Hourglass

implementation followed closely behind the performance of our Stacked DenseNet model and the

DeepLabCut model (Mathis et al., 2018) but consistently performed more poorly than our Stacked

DenseNet model in terms of prediction accuracy, so we excluded this model from further analysis.

We were also able to reproduce the results reported by Pereira et al. (2019) that the LEAP model

and the Stacked Hourglass model (Newell et al., 2016) have similar average prediction error for the

fly dataset. However, we also find that the LEAP model (Pereira et al., 2019) has much higher vari-

ance, which suggests it is more prone to extreme prediction errors—a problem for further data

analysis.

Stacked DenseNet trains quickly and requires few training examples
To further compare models, we used our zebra dataset to assess the training time needed for our

Stacked DenseNet model, the DeepLabCut model (Mathis et al., 2018), and the LEAP model

(Pereira et al., 2019) to reach convergence (i.e., complete training) as well as the amount of training

data needed for each model to generalize to new data from outside the training set. We find that

our Stacked DenseNet model, the DeepLabCut model (Mathis et al., 2018), and the LEAP model

(Pereira et al., 2019) all fully converge in just a few hours and reach reasonably high accuracy after

only an hour of training (Appendix 1—figure 3). However, it appears that our Stacked DenseNet

model tends to converge to a good minimum faster than both the DeepLabCut model

(Mathis et al., 2018) and the LEAP model (Pereira et al., 2019).

We also show that our Stacked DenseNet model achieves good generalization with few training

examples and without the use of transfer learning (Appendix 1—figure 4). These results demon-

strate that, when combined with data augmentation, as few as five training examples can be used as

an initial training set for labelling keypoints with active learning (Figure 1). Additionally, because our

analysis shows that generalization to new data plateaus after approximately 100 labeled training

DeepLabCut 
(Mathis et al. 2018)

LEAP 
(Pereira et al. 2019)

Stacked DenseNet 
(DeepPoseKit) 

# initialize, train, and save a model

from deepposekit.io import TrainingGenerator

from deepposekit.models import StackedDenseNet

generator = TrainingGenerator(‘path/to/data.h5’)

model = StackedDenseNet(generator)

model.fit(batch_size=16, n_workers=8)

model.save(‘path/to/model.h5’)

# load the model and run inference on new data

from deepposekit.models import load_model

model = load_model(‘path/to/model.h5’)

new_data = load_new_data(‘path/to/new/data’)

predictions = model.predict(new_data)

a b

Figure 3. DeepPoseKit is fast, accurate, and easy-to-use. Our Stacked DenseNet model estimates posture at approximately 2�—or greater—the speed

of the LEAP model (Pereira et al., 2019) and the DeepLabCut model (Mathis et al., 2018) while also achieving similar accuracy to the DeepLabCut

model (Mathis et al., 2018)—shown here as mean accuracy ð1þ EuclideanerrorÞ�1 for our most challenging dataset of multiple interacting Grévy’s

zebras (E. grevyi) recorded in the wild (a). See Figure 3—figure supplement 1 for further details. Our software interface is designed to be

straightforward but flexible. We include many options for expert users to customize model training with sensible default settings to make pose

estimation as easy as possible for beginners. For example, training a model and running inference on new data requires writing only a few lines of code

and specifying some basic settings (b).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Euclidean error distributions for each model across our three datasets.
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examples, it appears that 100 training examples is a reasonable minimum size for a training set—

although the exact number will likely change depending the variance of the image data being anno-

tated. To further examine the effect of transfer learning on model generalization, we compared per-

formance between the DeepLabCut model (Mathis et al., 2018) initialized with weights pretrained

on the ImageNet database (Deng et al., 2009) vs. the same model with randomly initialized weights

(Appendix 1—figure 4). As postulated by Mathis et al. (2018), we find that transfer learning does

provide some benefit to the DeepLabCut model’s ability to generalize. However, the effect size of

this improvement is small with a mean reduction in Euclidean error of <0.5 pixel. Together these

results indicate that transfer learning is helpful, but not required, for deep learning models to

achieve good generalization with limited training data.

Discussion
Here, we have presented a new software toolkit, called DeepPoseKit, for estimating animal posture

using deep learning models. We built on the state-of-the-art for individual pose estimation using

convolutional neural networks to achieve fast inference without reducing accuracy or generalization

ability. Our new pose estimation model, called Stacked DenseNet, offers considerable improve-

ments (Figure 3a; Figure 3—figure supplement 1) over the models from Mathis et al. (2018)

(DeepLabCut) and Pereira et al. (2019) (LEAP), and our software framework also provides a simpli-

fied interface (Figure 3b) for using these advanced tools to measure animal behavior and locomo-

tion. We tested our methods across a range of datasets from controlled laboratory environments

with single individuals to challenging field situations with multiple interacting individuals and variable

lighting conditions. We found that our methods perform well for all these situations and require few

training examples to achieve good predictive performance on new data—without the use of transfer

learning. We ran experiments to optimize our approach and discovered that some straightforward

modifications can greatly improve speed and accuracy. Additionally, we demonstrated that these

modifications improve not the just the average error but also help to reduce extreme prediction

errors—a key determinant for the reliability of subsequent statistical analysis.

While our results offer a good-faith comparison of the available methods for animal pose estima-

tion, there is inherent uncertainty that we have attempted to account for but may still bias our con-

clusions. For example, deep learning models are trained using stochastic optimization algorithms

that give different results with each replicate, and the Bayesian statistical methods we use for com-

parison are explicitly probabilistic in nature. There is also great variability across hardware and soft-

ware configurations when using these models in practice (Mathis and Warren, 2018), so

performance may change across experimental setups and datasets. Additionally, we demonstrated

that some models may perform better than others for specific applications (Figure 3—figure supple-

ment 1), and to account for this, our toolkit offers researchers the ability to choose the model that

best suits their requirements—including the LEAP model (Pereira et al., 2019) and the DeepLabCut

model (Mathis et al., 2018).

We highlighted important considerations when using CNNs for pose estimation and reviewed the

progress of fully convolutional regression models from the literature. The latest advancements for

these models have been driven mostly by a strategy of adding more connections between layers to

increase performance and efficiency (e.g., Jégou et al., 2017). Future progress for this class of mod-

els may require better loss functions (Goodfellow et al., 2014; Johnson et al., 2016a; Chen et al.,

2017; Zhang et al., 2018), models that more explicitly incorporate the spatial dependencies within

a scene (Van den Oord et al., 2016b), and temporal structure of the data (Seethapathi et al.,

2019), as well as more mathematically principled approaches (e.g., Weigert et al., 2018; Roy et al.,

2019) such as the application of formal probabilistic concepts (Kendall and Gal, 2017) and Bayesian

inference at scale (Tran et al., 2018).

Measuring behavior is a critical factor for many studies in neuroscience (Krakauer et al., 2017).

Understanding the connections between brain activity and behavioral output requires detailed and

objective descriptions of body posture that match the richness and resolution neural measurement

technologies have provided for years (Anderson and Perona, 2014; Berman, 2018; Brown and de

Bivort, 2018), which our methods and other deep-learning– based tools provide (Mathis et al.,

2018; Pereira et al., 2019). We have also demonstrated the possibility that our toolkit could be

used for real-time inference, which allows for closed-loop experiments where sensory stimuli or

Graving et al. eLife 2019;8:e47994. DOI: https://doi.org/10.7554/eLife.47994 12 of 42

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.47994


input image posture graph

keypoints
subpixel 

maxima 

Figure 4. Datasets used for evaluation. A visualization of the datasets we used to evaluate our methods (Table 1). For each dataset, confidence maps

for the keypoints (bottom-left) and posture graph (top-right) are illustrated using different colors for each map. These outputs are from our Stacked

DenseNet model at 1

4
� resolution.

The online version of this article includes the following video(s) for figure 4:

Figure 4—video 1. A video of a behaving fly from Pereira et al. (2019) with pose estimation outputs visualized.

https://elifesciences.org/articles/47994#fig4video1

Figure 4—video 2. A video of a behaving locust with pose estimation outputs visualized.

https://elifesciences.org/articles/47994#fig4video2

Figure 4—video 3. A video of a behaving Grévy’s zebra with pose estimation outputs visualized.

https://elifesciences.org/articles/47994#fig4video3
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optogenetic stimulation are controlled in response to behavioral measurements (e.g., Bath et al.,

2014; Stowers et al., 2017). Using real-time measurements in conjunction with optogenetics or

thermogenetics may be key to disentangling the causal structure of motor output from the brain—

especially given that recent work has shown an animal’s response to optogenetic stimulation can dif-

fer depending on the behavior it is currently performing (Cande et al., 2018). Real-time behavioral

quantification is also particularly important as closed-loop virtual reality is quickly becoming an indis-

pensable tool for studying sensorimotor relationships in individuals and collectives (Stowers et al.,

2017).

Quantifying individual movement is essential for revealing the genetic (Kain et al., 2012;

Brown et al., 2013; Ayroles et al., 2015) and environmental (Bierbach et al., 2017; Akhund-

Zade et al., 2019; Versace et al., 2019) underpinnings of phenotypic variation in behavior—as well

as the phylogeny of behavior (e.g., Berman et al., 2014a). Measuring individual behavioral pheno-

types requires tools that are robust, scaleable, and easy-to-use, and our approach offers the ability

to quickly and accurately quantify the behavior of many individuals in great detail. When combined

with tools for genetic manipulations (Ran et al., 2013; Doudna and Charpentier, 2014), high-

throughput behavioral experiments (Alisch et al., 2018; Javer et al., 2018; Werkhoven et al.,

2019), and behavioral analysis (e.g., Berman et al., 2014b; Wiltschko et al., 2015), our methods

could help to provide the data resolution and statistical power needed for dissecting the complex

relationships between genes, environment, and behavioral variation.

When used together with other tools for localization and tracking (e.g., Pérez-Escudero et al.,

2014; Crall et al., 2015; Graving, 2017; Romero-Ferrero et al., 2019; Wild et al., 2018;

Boenisch et al., 2018), our methods are capable of reliably measuring posture for multiple interact-

ing individuals. The importance of measuring detailed representations of individual behavior when

studying animal collectives has been well established (Strandburg-Peshkin et al., 2013;

Rosenthal et al., 2015; Strandburg-Peshkin et al., 2015; Strandburg-Peshkin et al., 2017). Esti-

mating body posture is an essential first step for unraveling the sensory networks that drive group

coordination, such as vision-based networks measured via raycasting (Strandburg-Peshkin et al.,

2013; Rosenthal et al., 2015). Additionally, using body pose estimation in combination with compu-

tational models of behavior (e.g., Costa et al., 2019; Wiltschko et al., 2015) and unsupervised

behavioral classification methods (e.g., Berman et al., 2014b; Pereira et al., 2019) may allow for

further dissection of how information flows through groups by revealing the networks of behavioral

contagion across multiple timescales and sensory modalities. While we have provided a straightfor-

ward solution for applying existing pose estimation methods to measure collective behavior, there

still remain many challenging scenarios where these methods would fail. For example, tracking pos-

ture in a densely packed bee hive or school of fish would require novel solutions to deal with the

3-D nature of individual movement, which includes maintaining individual identities and dealing with

the resulting occlusions that go along with imaging these types of biological systems.

When combined with unmanned aerial vehicles (UAVs; Schiffman, 2014) or other field-based

imaging (Francisco et al., 2019), applying these methods to the study of individuals and groups in

the wild can provide high-resolution behavioral data that goes beyond the capabilities of current

GPS and accelerometry-based technologies (Nagy et al., 2010; Nagy et al., 2013; Kays et al.,

2015; Strandburg-Peshkin et al., 2015; Strandburg-Peshkin et al., 2017; Flack et al., 2018)—

especially for species that are impractical to study with tags or collars. Additionally, by applying

these methods in conjunction with 3-D habitat reconstruction—using techniques from photogram-

metry (Strandburg-Peshkin et al., 2017; Francisco et al., 2019)—field-based studies can begin to

integrate fine-scale behavioral measurements with the full 3-D environment in which the behavior

evolved. Future advances will likely allow for the calibration and synchronizaton of imaging devices

across multiple UAVs (e.g., Price et al., 2018; Saini et al., 2019). This would make it possible to

measure the full 3-D posture of wild animals (e.g., Zuffi et al., 2019) in scenarios where fixed camera

systems (e.g., Nath et al., 2019) would not be tractable, such as during migratory or predation

events. When combined, these technologies could allow researchers to address questions about the

behavioral ecology of animals that were previously impossible to answer.

Computer vision algorithms for measuring behavior at the scale of posture have rapidly advanced

in a very short time; nevertheless, the task of pose estimation is far from solved. There are hard limi-

tations to this current generation of pose estimation methods that are primarily related to the

requirement for human annotations and user-defined keypoints—both in terms of the number of
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keypoints, the specific body parts being tracked, and the inherent difficulty of incorporating tempo-

ral information into the annotation and training procedures. Often the body parts chosen for annota-

tion are an obvious fit for the experimental design and have reliably visible reference points on the

animal’s body that make them easy to annotate. However, in many cases the required number and

type of body parts needed for data analysis may not be so obvious—such as in the case of unsuper-

vised behavior classification methods (Berman et al., 2014b; Pereira et al., 2019). Additionally, the

reference points for labeling images with keypoints can be hard to define and consistently annotate

across images, which is often the case for soft or flexible-bodied animals like worms and fish. More-

over, due to the laborious nature of annotating keypoints, the current generation of methods also

rarely takes into account the natural temporal structure of the data, instead treating each video

frame as a statistically independent event, which can lead to extreme prediction errors (reviewed by

Seethapathi et al., 2019). Extending these methods to track the full three-dimensional posture of

animals also typically requires the use of multiple synchronized cameras (Nath et al., 2019;

Günel et al., 2019), which increases the cost and complexity of creating an experimental setup, as

well as the manual labor required for annotating a training set, which must include labeled data from

every camera view.

These limitations make it clear that fundamentally-different methods may be required to move

the field forward. New pose estimation methods are already replacing human annotations with

fully articulated volumetric 3-D models of the animal’s body (e.g., the SMAL model from Zuffi et al.,

2017 or the SMALST model from Zuffi et al., 2019), and the 3-D scene can be estimated using

unsupervised, semi-supervised, or weakly-supervised methods (e.g., Jaques et al., 2019;

Zuffi et al., 2019), where the shape, position, and posture of the animal’s body, the camera position

and lens parameters, and the background environment and lighting conditions are jointly learned

directly from 2-D images by a deep-learning model (Valentin et al., 2019; Zuffi et al., 2019). These

inverse graphics models (Kulkarni et al., 2015; Sabour et al., 2017; Valentin et al., 2019) take

advantage of recently developed differentiable graphics engines that allow 3-D rendering parame-

ters to be controlled using standard optimization methods (Zuffi et al., 2019; Valentin et al.,

2019). After optimization, the volumetric 3-D timeseries data predicted by the deep learning model

could be used directly for behavioral analysis or specific keypoints or body parts could be selected

for analysis post-hoc. In order to more explicitly incorporate the natural statistical properties of the

data, these models also apply perceptual loss functions (Johnson et al., 2016a; Zhang et al., 2018;

Zuffi et al., 2019) and could be extended to use adversarial (Goodfellow et al., 2014; Chen et al.,

2017) loss functions, both of which incorporate spatial dependencies within the scene rather than

modelling each video frame as a set of statistically independent pixel distributions—as is the case

with current methods that use likelihood functions such as pixel-wise mean squared error (e.g.,

Pereira et al., 2019) or cross-entropy loss (e.g., Mathis et al., 2018). Because there is limited or no

requirement for human-provided labels with these new methods, these models could also be easily

modified to incorporate the temporal structure of the data using autoregressive representations (e.

g., Van den Oord et al., 2016a; Van den Oord et al., 2016b; Kumar et al., 2019), rather than

modeling the scene in each video frame as a statistically independent event. Together these advan-

ces could lead to larger, higher-resolution, more reliable behavioral datasets that could revolutionize

our understanding of relationships between behavior, the brain, and the environment.

In conclusion, we have presented a new toolkit, called DeepPoseKit, for automatically measuring

animal posture from images. We combined recent advances from the literature to create methods

that are fast, robust, and widely applicable to a range of species and experimental conditions. When

designing our framework we emphasized usability across the entire software interface, which we

expect will help to make these advanced tools accessible to a wider range of researchers. The fast

inference and real-time capabilities of our methods should also help further reduce barriers to previ-

ously intractable questions across many scientific disciplines—including neuroscience, ethology, and

behavioral ecology—both in the laboratory and the field.

Materials and methods
We ran three main experiments to test and optimize our approach. First, we compared our new sub-

pixel maxima layer to an integer-based global maxima with downsampled outputs ranging from 1�

to 1

16
� the input resolution using our Stacked DenseNet model. Next, we tested if training our
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Stacked DenseNet model to predict the multi-scale geometry of the posture graph improves accu-

racy. Finally, we compared our model implementations of Stacked Hourglass and Stacked DenseNet

to the models from Pereira et al. (2019) (LEAP) and Mathis et al. (2018) (DeepLabCut), which we

also implemented in our framework (see Appendix 8 for details). We assessed both the inference

speed and prediction accuracy of each model as well as training time and generalization ability.

When comparing these models we incorporated the relevant improvements from our experiments—

including subpixel maxima and predicting multi-scale geometry between keypoints—unless other-

wise noted (see Appendix 8).

While we do make comparisons to the DeepLabCut model (Mathis et al., 2018) we do not use

the same training routine as Mathis et al. (2018) and Nath et al. (2019), who use binary cross-

entropy loss for optimizing the confidence maps in addition to the location refinement maps

described by Insafutdinov et al. (2016). We made this modification in order to hold the training

routine constant for each model while only varying the model itself. However, we find that these dif-

ferences between training routines effectively have no impact on performance when the models are

trained using the same dataset and data augmentations (Appendix 8—figure 1). We also provide

qualitative comparisons to demonstrate that, when trained with our DeepPoseKit framework, our

implementation of the DeepLabCut model (Mathis et al., 2018) appears to produce fewer predic-

tion errors than the original implementation from Mathis et al. (2018) and Nath et al. (2019) when

applied to a novel video (Appendix 8—figure 1—figure supplements 1 and 2; Appendix 8—figure

1—video 1).

Datasets
We performed experiments using the vinegar or ’fruit’ fly (Drosophila melanogaster) dataset (Fig-

ure 4, Figure 4—video 1) provided by Pereira et al. (2019), and to demonstrate the versatility of

our methods we also compared model performance across two previously unpublished posture data

sets from groups of desert locusts (Schistocerca gregaria) recorded in a laboratory setting (Figure 4,

Figure 4—video 2), and herds of Grévy’s zebras (Equus grevyi) recorded in the wild (Figure 4, Fig-

ure 4—video 3). The locust and zebra datasets are particularly challenging for pose estimation as

they feature multiple interacting individuals—with focal individuals centered in the frame—and the

latter with highly-variable environments and lighting conditions. These datasets are freely-available

from https://github.com/jgraving/deepposekit-data (Graving et al., 2019; copy archived at https://

github.com/elifesciences-publications/DeepPoseKit-Data).

Our locust dataset consisted of a group of 100 locusts in a circular plastic arena 1 m in diameter.

The locust group was recorded from above using a high-resolution camera (Basler ace acA2040-

90umNIR) and video recording system (Motif, loopbio GmbH). Locusts were localized and tracked

using 2-D barcode markers (Graving, 2017) attached to the thorax with cyanoacrylate glue, and any

missing localizations (<0.02% of the total dataset) between successful barcode reads were interpo-

lated with linear interpolation. Our zebra dataset consisted of variably sized groups in the wild

recorded from above using a commercially available quadcopter drone (DJI Phantom 4 Pro). Individ-

ual zebra were localized using custom deep-learning software based on Faster R-CNN (Ren et al.,

2015) for predicting bounding boxes. The positions of each zebra were then tracked across frames

using a linear assignment algorithm (Munkres, 1957) and data were manually verified for accuracy.

After positional tracking, the videos were then cropped using the egocentric coordinates of each

individual and saved as separate videos—one for each individual. The images used for each training

set were randomly selected using the k-means sampling procedure (with k = 10) described by

Pereira et al. (2019) (Appendix 3) to reduce correlation between sampled images. After annotating

the images with keypoints, we rotationally and translationally aligned the images and keypoints

using the central body axis of the animal in each labeled image. This step allowed us to more easily

perform data augmentations (see ’Model training’) that allow the model to make accurate predic-

tions regardless of the animal’s body size and orientation (see Appendix 6). However, this prepro-

cessing step is not a strict requirement for training, and there is no requirement for this

preprocessing step when making predictions on new unlabeled data, such as with the methods

described by Pereira et al. (2019) (Appendix 6). Before training each model we split each annotated

dataset into randomly selected training and validation sets with 90% training examples and 10% vali-

dation examples, unless otherwise noted. The details for each dataset are described in Table 1.
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Model training
For each experiment, we set our model hyperparameters to the same configuration for our Stacked

DenseNet and Stacked Hourglass models. Both models were trained with 1

4
� resolution outputs and

a stack of two networks with two outputs where loss was applied (see Figure 2). Although our model

hyperparameters could be infinitely adjusted to trade off between speed and accuracy, we com-

pared only one configuration for each of our model implementations. These results are not meant to

be an exhaustive search of model configurations as the best configuration will depend on the appli-

cation. The details of the hyperparameters we used for each model are described in Appendix 8.

To make our posture estimation tasks closer to realistic conditions, incorporate prior information

(Appendix 3), and properly demonstrate the robustness of our methods to rotation, translation,

scale, and noise, we applied various augmentations to each data set during training (Figure 2). All

models were trained using data augmentations that included random flipping, or mirroring, along

both the horizontal and vertical image axes with each axis being independently flipped by drawing

from a Bernoulli distribution (with p ¼ 0:5); random rotations around the center of the image drawn

from a uniform distribution in the range [�180˚, +180˚); random scaling drawn from a uniform distri-

bution in the range [90%, 110%] for flies and locusts and [75%, 125%] for zebras (to account for

greater size variation in the data set); and random translations along the horizontal and vertical axis

independently drawn from a uniform distribution with the range [�5%, +5%]—where percentages

are relative to the original image size. After performing these spatial augmentations we also applied

a variety of noise augmentations that included additive noise (i.e., adding or subtracting randomly-

selected values to pixels); dropout (i.e., setting individual pixels or groups of pixels to a randomly-

selected value); blurring or sharpening (i.e., changing the composition of spatial frequencies); and

contrast ratio augmentations—(i.e., changing the ratio between the highest pixel value and lowest

pixel value in the image). These augmentations help to further ensure robustness to shifts in lighting,

noise, and occlusions. See Appendix 3 for further discussion on data augmentation.

We trained our models (Figure 2) using mean squared error loss optimized using the ADAM opti-

mizer (Kingma and Ba, 2014) with a learning rate of 1 � 10-3 and a batch size of 16. We lowered

the learning rate by a factor of five each time the validation loss did not improve by more than

1 � 10-3 for 10 epochs. We considered models to be converged when the validation loss stopped

improving for 50 epochs, and we calculated validation error as the Euclidean distance between pre-

dicted and ground-truth image coordinates for only the best performing version of the model, which

we evaluated at the end of each epoch during optimization. We performed this procedure five times

for each experiment and randomly selected a new training and validation set for each replicate.

Model evaluation
Machine learning models are typically evaluated for their ability to generalize to new data, known as

predictive performance, using a held-out test set—a subsample of annotated data that is not used

for training or validation. However, due to the small size of the datasets used for making compari-

sons, we elected to use only a validation set for model evaluation, as using an overly small training

or test set can bias assessments of a model’s predictive performance (Kuhn and Johnson, 2013).

Generally a test set is used to avoid biased performance measures caused by overfitting the model

hyperparameters to the validation set. However, we did not adjust our model architecture to achieve

better performance on our validation set—only to achieve fast inference speeds. While we did use

validation error to decide when to lower the learning rate during training and when to stop training,

lowering the learning rate in this way should have no effect on the generalization ability of the

model, and because we heavily augment our training set during optimization—forcing the model to

learn a much larger data distribution than what is included in the training and validation sets—

Table 1. Datasets used for model comparisons.

Name Species Resolution # Images # Keypoints Individuals Source

Vinegar fly Drosophila melanogaster 192 � 192 1500 32 Single Pereira et al., 2019

Desert locust Schistocerca gregaria 160 � 160 800 35 Multiple This paper

Grévy’s zebra Equus grevyi 160 � 160 900 9 Multiple This paper
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overfitting to the validation set is unlikely. We also demonstrate the generality of our results for each

experiment by randomly selecting a new validation set with each replicate. All these factors make

the Euclidean error for the unaugmented validation set a reasonable measure of the predictive per-

formance for each model.

The inference speed for each model was assessed by running predictions on 100,000 randomly

generated images with a batch size of 1 for real-time speeds and a batch size of 100 for offline

speeds, unless otherwise noted. Our hardware consisted of a Dell Precision Tower 7910 workstation

(Dell, Inc) running Ubuntu Linux v18.04 with 2� Intel Xeon E5-2623 v3 CPUs (8 cores, 16 threads at

3.00 GHz), 64 GB of RAM, a Quadro P6000 GPU and a Titan Xp GPU (NVIDIA Corporation). We

used both GPUs (separately) for training models and evaluating predictive performance, but we only

used the faster Titan Xp GPU for benchmarking inference speeds and training time. While the hard-

ware we used for development and testing is on the high-end of the current performance spectrum,

there is no requirement for this level of performance, and our software can easily be run on lower-

end hardware. We evaluated inference speeds on multiple consumer-grade desktop computers and

found similar performance (±10%) when using the same GPU; however, training speed depends

more heavily other hardware components like the CPU and hard disk.

Assessing prediction accuracy with Bayesian inference
To more rigorously assess performance differences between models, we parameterized the Euclid-

ean error distribution for each experiment by fitting a Bayesian linear model with a Gamma-distrib-

uted likelihood function. This model takes the form:

pðy j X; ��; �fÞ~Gammaða;bÞ

a¼ �2f�1

b¼ �f�1

�¼ hðX��Þ

f¼ hðX�fÞ

where X is the design matrix composed of binary indicator variables for each pose estimation model,

�� and �f are vectors of intercepts, hð�Þ is the softplus function (Dugas et al., 2001)—or

hðxÞ ¼ log ð1þ exÞ—used to enforce positivity of � and f, and y is the Euclidean error of the pose esti-

mation model. Parameterizing our error distributions in this way allows us to calculate the posterior

distributions for the mean E½y� ¼ ab�1 � � and variance Var½y� ¼ ab�2 �f. This parameterization then

provides us with a statistically rigorous way to assess differences in model accuracy in terms of both

central tendency and spread—accounting for both epistemic uncertainty (unknown unknowns; e.g.,

parameter uncertainty) and aleatoric uncertainty (known unknowns; e.g., data variance). Details of

how we fitted these models can be found in Appendix 7.
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Appendix 1

a

b

Appendix 1—figure 1. Our subpixel maxima algorithm increases speed without decreasing

accuracy. Prediction accuracy on the fly dataset is maintained across downsampling

configurations (a). Letter-value plots (a-top) show the raw error distributions for each

configuration. Visualizations of the credible intervals (99% highest-density region) of the

posterior distributions for the mean and variance (a-bottom) illustrate statistical differences

between the error distributions, where using subpixel maxima decreases both the mean and

variance of the error distribution. Inference speed is fast and can be run in real-time on single

images (batch size = 1) at ~30–110 Hz or offline (batch size = 100) upwards of 1000 Hz (b).

Plots show the inference speeds for our Stacked DenseNet model across downsampling

configurations as well as the other models we tested for each of our datasets.

The online version of this article includes the following source data is available for figure 1:

Appendix 1—figure 1—source data 1. Raw prediction errors for experiments in Appendix 1—

figure 1a.
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Appendix 1—figure 2. Predicting the multi-scale geometry of the posture graph reduces error.

Letter-value plots (top) show the raw error distributions for each experiment. Visualizations of

the posterior distributions for the mean and variance (bottom) show statistical differences

between the error distributions. Predicting the posture graph decreases both the mean and

variance of the error distribution.

The online version of this article includes the following source data is available for figure 2:

Appendix 1—figure 2—source data 1. Raw prediction errors for experiments in Appendix 1—

figure 2.

Appendix 1—figure 3. Training time required for our Stacked DenseNet model, the DeepLab-

Cut model (Mathis et al., 2018), and the LEAP model (Pereira et al., 2019) (n = 15 per model)

using our zebra dataset. Boxplots and swarm plots (left) show the total training time to

convergence (<0.001 improvement in validation loss for 50 epochs). Line plots (right) illustrate

the Euclidean error of the validation set during training, where error bars show bootstrapped

(n = 1000) 99% confidence intervals of the mean. Fully training models to convergence

requires only a few hours of optimization (left) with reasonable accuracy reached after only 1

hr (right) for our Stacked DenseNet model.

The online version of this article includes the following source data is available for figure 3:

Appendix 1—figure 3—source data 1. Total training time for each model in Appendix 1—
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figure 3.

Appendix 1—figure 3—source data 2. Mean euclidean error as a function of training time for

each model in Appendix 1—figure 3.

Appendix 1—figure 4. A comparison of prediction accuracy with different numbers of training

examples from our zebra dataset. The error distributions shown as letter-value plots (top)

illustrate the Euclidean error for the remainder of the dataset not used for training—with a

total of 900 labeled examples in the dataset. Line plots (bottom) show posterior credible

intervals (99% highest-density region) for the mean and variance of the error distributions. We

tested our Stacked DenseNet model; the DeepLabCut model (Mathis et al., 2018) with

transfer learning—that is with weights pretrained on ImageNet (Deng et al., 2009); the same

model without transfer learning—that is with randomly-initialized weights; and the LEAP

model (Pereira et al., 2019). Our Stacked DenseNet model achieves high accuracy using few

training examples without the use the transfer learning. Using pretrained weights does slightly

decrease overall prediction error for the DeepLabCut model (Mathis et al., 2018), but the

effect size is relatively small.
The online version of this article includes the following source data is available for figure 4:

Appendix 1—figure 4—source data 1. Raw prediction errors for experiments in Appendix 1—

figure 4.
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Appendix 2

Convolutional neural networks (CNNs)
Artificial neural networks like CNNs are complex, non-linear regression models that ’learn’ a

hierarchically-organized set of parameters from real-world data via optimization. These

machine learning models are now commonplace in science and industry and have proven to

be surprisingly effective for a large number of applications where more conventional statistical

models have failed (LeCun et al., 2015). For computer vision tasks, CNN parameters typically

take the form of two-dimensional convolutional filters that are optimized to detect spatial

features needed to model relationships between high-dimensional image data and some

related variable(s) of interest, such as locations in space—for example posture keypoints—or

semantic labels (Long et al., 2015; Badrinarayanan et al., 2015).

Once a training set is generated (Appendix 3), a CNN model must be selected and

optimized to perform the prediction task. CNNs are incredibly flexible with regard to how

models are specified and trained, which is both an advantage and a disadvantage. This

flexibility means models can be adapted to almost any computer vision task, but it also means

the number of possible model architectures and optimization schemes is very large. This can

make selecting an architecture and specifying hyperparameters a challenging process.

However, most research on pose estimation has converged on a set of models that generally

work well for this task (Appendix 4).

After selecting an architecture, the parameters of the model are set to an initial value and

then iteratively updated to minimize some objective function, or loss function, that describes

the difference between the model’s predictive distribution and the true distribution of the

data—in other words, the likelihood of the model’s output is maximized. These parameter

updates are performed using a modified version of the gradient descent algorithm

(Cauchy, 1847) known as mini-batch stochastic gradient descent—often referred to as simply

stochastic gradient descent or SGD (Robbins and Monro, 1951; Kiefer and Wolfowitz,

1952). SGD iteratively optimizes the model parameters using small randomly-selected

subsamples, or batches, of training data. Using SGD allows the model to be trained on

extremely large datasets in an iterative ’online’ fashion without the need to load the entire

dataset into memory. The model parameters are updated with each batch by adjusting the

parameter values in a direction that minimizes the error—where one round of training on the

full dataset is commonly referred to as an epoch. The original SGD algorithm requires careful

selection and tuning of hyperparameters to successfully optimize a model, but modern

versions of the algorithm, such as ADAM (Kingma and Ba, 2014), automatically tune these

hyperparameters, which makes optimization more straightforward.

The model parameters are optimized until they reach a convergence criterion, which is

some measure of performance that indicates the model has reached a good location in

parameter space. The most commonly used convergence criterion is a measure of predictive

accuracy—often the loss function used for optimization—on a held-out validation set—a

subsample of the training data not used for optimization—that evaluates the model’s ability to

generalize to new ’out-of-sample’ data. The model is typically evaluated at the end of each

training epoch to assess performance on the validation set. Once performance on the

validation set stops improving, training is usually stopped to prevent the model from

overfitting to the training set—a technique known as early stopping (Prechelt, 1998).
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Appendix 3

Collecting training data
Depending on the variability of the data, CNNs usually require thousands or tens of thousands

of manually-annotated examples in order to reach human-level accuracy. However, in

laboratory settings, sources of image variation like lighting and spatial scale can be more

easily controlled, which minimizes the number of training examples needed to achieve

accurate predictions.

This need for a large training set can be further reduced in a number of ways. Two

commonly used methods include (1) transfer learning—using a model with parameters that are

pre-trained on a larger set of images, such as the ImageNet database (Deng et al., 2009),

containing diverse features (Pratt, 1992; Insafutdinov et al., 2016; Mathis et al., 2018)—

and (2) augmentation— artificially increasing data variance by applying spatial and noise

transformations such as flipping (mirroring), rotating, scaling, and adding different forms of

noise or artificial occlusions. Both of these methods act as useful forms of regularization—

incorporating a prior distribution—that allows the model to generalize well to new data even

when the training set is small. Transfer learning incorporates prior information that images

from the full dataset should contain statistical features similar to other images of the natural

world, while augmentation incorporates prior knowledge that animals are bilaterally

symmetric, can vary in their body size, position, and orientation, and that noise and occlusions

sometimes occur.

Pereira et al. (2019) introduced two especially clever solutions for collecting an adequate

training set. First, they cluster unannotated images based on pixel variance and uniformly

sample images from each cluster, which reduces correlation between training examples and

ensures the training data are representative of the entire distribution of possible images.

Second, they use active learning where a CNN is trained on a small number of annotated

examples and is then used to initialize keypoint locations for a larger set of unannotated data.

These pre-initialized data are then manually corrected by the annotator, the model is

retrained, and the unannotated data are re-initialized. The annotator applies this process

iteratively as the training set grows larger until they are providing only minor adjustments to

the pre-initialized data. This ’human-in-the-loop’-style annotation expedites the process of

generating an adequately large training set by reducing the cognitive load on the annotator—

where the pose estimation model serves as a ’cognitive partner’. Such a strategy also allows

the annotator to automatically select new training examples based on the performance of the

current iteration—where low-confidence predictions indicate examples that should be

annotated for maximum improvement (Figure 1).

Of course, annotating image data requires software made for this purpose. Pereira et al.

(2019) provide a custom annotation GUI written in MATLAB specifically designed for

annotating posture using an active learning strategy. recently Mathis et al. (2018) added a

Python-based GUI in an updated version of their software—including active learning and

image sampling methods (see Nath et al., 2019). Our framework also includes a Python-

based GUI for annotating data with similar features.
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Appendix 4

Fully-convolutional regression
For the task of pose estimation, a CNN is optimized to predict the locations of postural

keypoints in an image. One approach is to use a CNN to directly predict the numerical value

of each keypoint coordinate as an output. However, making predictions in this way removes

real-world constraints on the model’s predictive distribution by destroying spatial relationships

within images, which negates many of the advantages of using CNNs in the first place.

CNNs are particularly good at transforming one image to produce another related image,

or set of images, while preserving spatial relationships and allowing for translation-invariant

predictions—a configuration known as a fully-convolutional neural network or F-CNN

(Long et al., 2015). Therefore, instead of directly regressing images to coordinate values, a

popular solution (Newell et al., 2016; Insafutdinov et al., 2016; Mathis et al., 2018;

Pereira et al., 2019) is to optimize a F-CNN that transforms images to predict a stack of

output images known as confidence maps—one for each keypoint. Each confidence map in

the output volume contains a single, two-dimensional, symmetric Gaussian indicating the

location of each joint, and the scalar value of the peak indicates the confidence score of the

prediction—typically a value between 0 and 1. The confidence maps are then processed to

produce the coordinates of each keypoint.

In the case of multiple pose estimation where an image contains many individuals, the

global geometry of the posture graph is also predicted by training the model to produce part

affinity fields (Cao et al., 2017)— directional vector fields drawn between joints in the posture

graph—or pairwise terms (Insafutdinov et al., 2016)—vector fields of the conditional

distributions between posture keypoints (e.g., pðfootjheadÞÞ. This allows multiple posture

graphs to be disentangled from the image using graph partitioning as the vector fields

indicate the probability of the connection between joints (see Cao et al., 2017 for details).
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Appendix 4—figure 1. An illustration showing the progression of encoder-decoder architec-

tures from the literature—ordered by performance from top to bottom (see Appendix 4:

’Encoder-decoder models’ for further details). Most advances in performance have come from

adding connections between layers in the network, culminating in FC-DenseNet from

Jégou et al. (2017). Lines in each illustration indicate connections between convolutional

blocks with the thickness of the line indicating the magnitude of information flow between

layers in the network. The size of each convolution block indicates the relative number of

feature maps (width) and spatial scale (height). The callout for FC-DenseNet (Jégou et al.,

2017; bottom-left) shows the elaborate set of skip connections within each densely-connected
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convolutional block as well as our additions of bottleneck and compression layers (described

by Huang et al., 2017a) to increase efficiency (Appendix 8).

Encoder-decoder models
A popular type of F-CNN (Appendix 4) for solving posture regression problems is known as an

encoder-decoder model (Appendix 4—figure 2), which first gained popularity for the task of

semantic segmentation—a supervised computer vision problem where each pixel in an image

is classified into a one of several labeled categories like ’dog’, ’tree’, or ’road’ (Long et al.,

2015). This model is designed to repeatedly convolve and downsample input images in the

bottom-up encoder step and then convolve and upsample the encoder’s output in the top-

down decoder step to produce the final output. Repeatedly applying convolutions and non-

linear functions, or activations, to the input images transforms pixel values into higher-order

spatial features, while downsampling and upsampling respectively increases and decreases the

scale and complexity of these features.

skip connections

encoder decoder

input output

Appendix 4—figure 2. An illustration of the basic encoder-decoder design. The encoder

converts the input images into spatial features, and the decoder transforms spatial features to

the desired output.

Badrinarayanan et al. (2015) were the first to popularize a form of this model —known as

SegNet— for semantic segmentation. However, this basic design is inherently limited because

the decoder relies solely on the downsampled output from the encoder, which restricts the

features used for predictions to those with the largest spatial scale and highest complexity.

For example, a very deep network might learn a complex spatial pattern for predicting ’grass’

or ’trees’, but because it cannot directly access information from the earliest layers of the

network, it cannot use the simplest features that plants are green and brown. Subsequent

work by Ronneberger et al. (2015) improved on these problems with the addition of skip

connections between the encoder and decoder, where feature maps from encoder layers are

concatenated to those decoder layers with the same spatial scale. This set of connections then

allows the optimizer, rather than the user, to select the most relevant spatial scale(s) for

making predictions.

Jégou et al. (2017) are the latest to advance the encoder-decoder paradigm. These

researchers introduced a fully-convolutional version of Huang et al. (2017a) DenseNet

architecture known as a fully-convolutional DenseNet, or FC-DenseNet. FC-DenseNet’s key

improvement is an elaborate set of feed-forward residual connections where the input to each

convolutional layer is a concatenated stack of feature maps from all previous layers. This

densely-connected design was motivated by the insight that many state-of-the-art models

learn a large proportion of redundant features. Most CNNs are not designed so that the final

output layers can access all feature maps in the network simultaneously, and this limitation
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causes these networks to ’forget’ and ’relearn’ important features as the input images are

transformed to produce the output. In the case of the incredibly popular ResNet-101

(He et al., 2016) nearly 40% of the features can be classified as redundant (Ayinde and

Zurada, 2018). A densely-connected architecture has the advantages of reduced feature

redundancy, increased feature reuse, enhanced feature propagation from early layers to later

layers, and subsequently, a substantial reduction in the number of parameters needed to

achieve state-of-the-art results (Huang et al., 2017a). Recent work has also shown that

DenseNet’s elaborate set of skip connections have the pleasant side-effect of convexifying the

loss landscape during optimization (Li et al., 2018), which allows for faster optimization and

increases the likelihood of reaching a good optimum.

Graving et al. eLife 2019;8:e47994. DOI: https://doi.org/10.7554/eLife.47994 34 of 42

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.47994


Appendix 5

The state of the art for individual pose estimation
Many of the current state-of-the-art models for individual posture estimation are based on the

design from Newell et al. (2016) (e.g., Ke et al., 2018; Chen et al., 2017; also see

benchmark results from Andriluka et al. (2014), but employ various modifications that

increase complexity to improve performance. Newell et al. (2016) employ what they call a

Stacked Hourglass network (Appendix 4—figure 1), which consists of a series of multi-scale

encoder-decoder hourglass modules connected together in a feed-forward configuration

(Figure 2). The main novelties these researchers introduce include (1) stacking multiple

hourglass networks together for repeated top-down-bottom-up inference, (2) using

convolutional blocks based on the ResNet architecture (He et al., 2016) with residual

connections between the input and output of each block, and (3) using residual connections

between the encoder and decoder (similar to Ronneberger et al., 2015) with residual blocks

in between. Newell et al. (2016) also apply a technique known as intermediate supervision

(Figure 2) where the loss function used for model training is applied to the output of each

hourglass as a way of improving optimization across the model’s many layers. Recent work by

Jégou et al. (2017) has further improved on this encoder-decoder design (see Appendix 4:

’Encoder-decoder models’ and Appendix 4—figure 1), but to the best of our knowledge, the

model introduced by Jégou et al. (2017) has not been previously applied to pose estimation.
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Appendix 6

Overparameterization and the limitations of LEAP
Overparameterization is a key limitation for many pose estimation methods, and addressing

this problem is critical for high-performance applications. Pereira et al. (2019) approached

this problem by designing their LEAP model after the model from Badrinarayanan et al.

(2015), which is a straighforward encoder-decoder design (Appendix 4—figure 1; Appendix

4: ’Encoder-decoder models’). They benchmarked their model on posture estimation tasks for

laboratory animals and compared performance with the more-complex Stacked Hourglass

model from Newell et al. (2016). They found their smaller, simplified model achieved equal or

better median accuracy with dramatic improvements in inference speed up to 185 Hz.

However, Pereira et al. (2019) first rotationally and translationally aligned each image to

improve performance, and their reported inference speeds do not include this computationally

expensive preprocessing step. Additionally, rotationally and translationally aligning images is

not always possible when the background is complex or highly-variable—such as in field

settings—or the study animal has a non-rigid body. This limitation makes the LEAP model

(Pereira et al., 2019) unsuitable in many cases. While their approach is simple and effective

for a multitude of experimental setups, the LEAP model (Pereira et al., 2019) is also implicitly

limited in the same ways as Badrinarayanan et al. (2015)’s SegNet model (see Appendix 4:

’Encoder-decoder models’). The LEAP model cannot make predictions using multiple spatial

scales and is not robust to data variance such as rotations (Pereira et al., 2019).
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Appendix 7

Linear model fitting with Stan
We estimated the joint posterior pð��; �f j X; yÞ for each model using the No-U-Turn Sampler

(NUTS; Hoffman and Gelman, 2014), a self-tuning variant of the Hamiltonian Monte Carlo

(HMC) algorithm (Duane et al., 1987), implemented in Stan (Carpenter et al., 2017). We

drew HMC samples using four independent Markov chains consisting of 1000 warm-up

iterations and 1000 sampling iterations for a total of 4000 sampling iterations. To speed up

sampling, we randomly subsampled 20% of the data from each replicate when fitting each

linear model, and we fit each model 5 times to ensure the results were consistent. All models

converged without any signs of pathological behavior. We performed a posterior predictive

check by visually inspecting predictive samples to assess model fit. For our priors we chose

relatively uninformative distributions �� ~Cauchyð0; 5Þ and �f ~Cauchyð0; 10Þ, but we found that

the choice of prior generally did not have an effect on the final result due to the large amount

of data used to fit each model.
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Appendix 8

Stacked DenseNet
Our Stacked DenseNet model consists of an initial 7 � 7 convolutional layer with stride 2, to

efficiently downsample the input resolution—following Newell et al. (2016)—followed by a

stack of densely-connected hourglass networks with intermediate supervision (Appendix 5)

applied at the output of each network. We also include hyperparameters for the bottleneck

and compression layers described by Huang et al. (2017a) to make the model as efficient as

possible. These consist of applying a 1 � 1 convolution to inexpensively compress the number

of feature maps before each 3 � 3 convolution as well as when downsampling and upsampling

(see Huang et al., 2017a and Appendix 4—figure 1 for details).
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Appendix 8—figure 1. Prediction errors for the odor-trail mouse dataset from Mathis et al.

(2018) using the original implementation of the DeepLabCut model (Mathis et al., 2018;

Nath et al., 2019) and our modified version of this model implemented in DeepPoseKit. Mean

prediction error is slightly lower for the DeepPoseKit implementation, but there is no
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discernible difference in variance. These results indicate that the models achieve nearly

identical prediction accuracy despite modification. We also provide qualitative comparisons of

these results in Appendix 8—figure 1—figure supplement 1 and 2, and Appendix 8—figure

1—video 1.

The online version of this article includes the following video and source data for figure 1:

Appendix 8—figure 1—source data 1. Raw prediction errors for our DeepLabCut model

(Mathis et al., 2018) reimplemented in DeepPoseKit in Appendix 8—figure 1.

Appendix 8—figure 1—source data 2. Raw prediction errors for the original DeepLabCut

model from Mathis et al. (2018) in Appendix 8—figure 1.

Appendix 8—figure 1—video 1. A video comparison of the tracking output of our implementa-

tion of the DeepLabCut model (Mathis et al., 2018) in DeepPoseKit vs. the original implemen-

tation from Mathis et al. (2018) and Nath et al. (2019).

Appendix 8—Figure 1 supplement 1. Plots of the predicted output for Appendix 8—figure
1—video 1 comparing our implementation of the DeepLabCut model (Mathis et al., 2018) in
DeepPoseKit vs. the original implementation from Mathis et al. (2018), and Nath et al. (2019).
Appendix 8—Figure 1 supplement 2. Plots of the temporal derivatives of the predicted
output for Appendix 8—figure 1—video 1 comparing our implementation of the DeepLabCut
model (Mathis et al., 2018) in DeepPoseKit vs. the original implementation from Mathis et al.
(2018), and Nath et al. (2019).

Model hyperparameters
For our Stacked Hourglass model we used a block size of 64 filters (64 filters per 3 � 3

convolution) with a bottleneck factor of 2 (64/2 = 32 filters per 1 � 1 bottleneck block). For

our Stacked DenseNet model we used a growth rate of 48 (48 filters per 3�3 convolution), a

bottleneck factor of 1 (1 � growth rate = 48 filters per 1 � 1 bottleneck block), and a

compression factor of 0.5 (feature maps compressed with 1 � 1 convolution to 0.5 m when

upsampling and downsampling, where m is the number of feature maps). For our Stacked

DenseNet model we also replaced the typical configuration of batch normalization and ReLU

activations (Goodfellow et al., 2016) with the more recently-developed self-normalizing SELU

activation function (Klambauer et al., 2017), as we found this modification increased inference

speed. For the LEAP model (Pereira et al., 2019) we used a 1 � resolution output with

integer-based global maxima because we wanted to compare our more complex models with

this model in the original configuration described by Pereira et al. (2019). The LEAP model

could be modified to output smaller confidence maps and increase inference speed, but

because there is no obvious ’best’ way to alter the model to achieve this, we forgo any

modification. Additionally, applying our subpixel maxima algorithm at high-resolution reduces

inference speed compared to integer-based maxima, so this would bias our speed

comparisons.

Our implementation of the DeepLabCut model
Because the DeepLabCut model from Mathis et al. (2018) was not implemented in Keras (a

requirement for our pose estimation framework), we re-implemented it. Implementing this

model directly in our framework is important to ensure model training and data augmentation

are identical when making comparisons between models. As a consequence, our version of

this model does not exactly match the description in the paper but is identical except for the

output. Rather than using the location refinement maps described by Insafutdinov et al.

(2016) and post-processing confidence maps on the CPU, our version of the DeepLabCut

model (Mathis et al., 2018) has an additional transposed convolutional layer to upsample the

output to 1

4
� resolution and uses our subpixel maxima algorithm.

To demonstrate that our implementation of the DeepLabCut model matches the

performance described by Mathis et al. (2018), we compared prediction accuracy between

the two frameworks using the odor-trail mouse dataset provided by Mathis et al. (2018)

(downloaded from https://github.com/AlexEMG/DeepLabCut/). This dataset consists of 116

images of a freely moving individual mouse labeled with four keypoints describing the location

of the snout, ears, and the base of the tail. See Mathis et al. (2018) for further details on this
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dataset. We trained both models using 95% training and 5% validation data and applied data

augmentations for both frameworks using the data augmentation procedure described by

Nath et al. (2019). We tried to match these data augmentations as best as possible in

DeepPoseKit; however, rather than cropping images as described by Nath et al. (2019), we

randomly translated the images independently along the horizontal and vertical axis by

drawing from a uniform distribution in the range [�100%, +100%]—where percentages are

relative to the size of each axis. Translating the images in this way should serve the same

purpose as cropping them.

We trained the original DeepLabCut model (Mathis et al., 2018) using the default settings

and recommendations from Nath et al. (2019) for 1 million training iterations. See

Mathis et al. (2018); Nath et al. (2019) for further details on the data augmentation and

training routine for the original implementation of the DeepLabCut model (Mathis et al.,

2018). For our re-implementation of the DeepLabCut model (Mathis et al., 2018), we trained

the model with the same batch size and optimization scheme described in the ’Model training’

section. We then calculated the the prediction accuracy on the full data set. We repeated this

procedure five times for each model and fit a Bayesian linear model to a randomly selected

subset of the evaluation data to compare the results statistically (see Appendix 7).

These results demonstrate that our re-implementation of and modification to the

DeepLabCut model (Mathis et al., 2018) have little effect on prediction accuracy

(Appendix 8—figure 1). We also provide qualitative comparisons of these results in

Appendix 8—figure 1—figure supplement 1 and Appendix 8—figure 1—video 1. For these

qualitative comparisons, we also added an additional rotational augmentation (drawing from a

uniform distribution in the range [�180˚, +180˚)) when training our implementation of the

DeepLabCut model (Mathis et al., 2018) as we noticed this improved generalization to the

video for situations where the mouse rotated its body axis. To the best of our knowledge,

rotational augmentations are not currently available when using the software

from Mathis et al. (2018), and Nath et al. (2019), which demonstrates the flexibility of the

data augmentation pipeline (Jung, 2018) for DeepPoseKit. The inference speed for the odor-

trail mouse dataset using our implementation of the DeepLabCut model (Mathis et al., 2018)

is ~49 Hz with a batch size of 64 (offline speeds) and ~35 Hz with a batch size of 1 (real-time

speeds) at full resolution 640�480, which matches well with results from Mathis and Warren

(2018) of ~47 Hz and ~32 Hz respectively. This suggests our modifications did not affect the

speed of the model and that our speed comparisons are also reasonable. Because the training

routine could be changed for any underlying model—including the new models we present in

this paper—this factor is not relevant when making comparisons as long as training is identical

for all models being compared, which we ensure when performing our comparisons.
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Appendix 9

Depthwise-separable convolutions for memory-limited
applications
In an effort to maximize model efficiency, we also experimented with replacing 3 � 3

convolutions in our model implementations with 3 � 3 depthwise-separable convolutions —

first introduced by Chollet (2017) and now commonly used in fast, efficient ’mobile’ CNNs

(e.g. Sandler et al., 2018). In theory, this modification should both reduce the memory

footprint of the model and increase inference speed. However we found that, while this does

drastically decrease the memory footprint of our already memory-efficient models, it slightly

decreases accuracy and does not improve inference speed, so we opt for a full 3 � 3

convolution instead. We suspect that this discrepancy between theory and application is due

to inefficient implementations of depthwise-separable convolutions in many popular deep

learning frameworks, which will hopefully improve in the near future. At the moment we

include this option as a hyperparameter for our Stacked DenseNet model, but we recommend

using depthwise-separable convolutions only for applications that require a small memory

footprint such as training on a lower-end GPU with limited memory or running inference on a

mobile device.
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