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Abstract

The main objective of this work is to develop a multi-scale flow simulation tool for flood as-
sessment in complex environmental settings, like urban environments. We intend to predict
floods and impact of floods on infrastructure within a multi-scale framework reaching from
the river down to the scale of the built infrastructure, such as railways, subways, tunnels,
waste water channels, buildings, and other infrastructures. A numerical model is presented
which combines the 2D Shallow Water equations and the 3D Reynolds-Averaged Navier-
Stokes (RANS) equations with fairly good efficiency and accuracy. This coupled model
takes advantage of the 2D and 3D models to speed up the calculations while maintaining
adequate accuracy: The simulation domain is mainly described with the 2D model, while
the 3D model is only applied in small regions where the hydrodynamic effects need to be
described by a three-dimensional solution.

The coupled model, shallowInterFoamOL, is implemented in the open source framework
OpenFOAM by merging two existing OpenFOAM numerical solvers: shallowFoam, a 2D
Shallow Water solver and interFoam, a 3D Navier-Stokes solver. The computational do-
main is decomposed into a set of smaller regions, each region is governed by the corresponding
sub-solvers (i.e. interFoam or shallowFoam). Solutions at the coupling part are exchanged
and updated via the coupling algorithm. The overlapping coupling algorithm uses a simpli-
fied cell-to-cell overlapping method for data exchange between the sub-domains.

The quality of the model is assessed for the transport of waves including solitary waves in
both upstream and downstream directions and upstream-travelling surges. The results of
the coupled model are compared with the pure 2D and the 3D model. An extreme hydro-
dynamic scenario, a tsunami, is also set up to further investigate and quantify the hydraulic
bore-structure interactions. The numerical results are compared to experimental measure-
ments.

Finally, workflow for putting the model into practice is proposed to allow users get into the
model easily. The workflow enables users to generate the numerical mesh, set up the cases,
run the coupled model and perform some basic post-processing operations. A risk analysis
framework could then be developed on this basis for civil engineers, architects, planners,
insurance analysts, and politicians. The user of that framework will become a part of the
system or the iteration loop, allowing him or her to interactively explore and evaluate various
scenarios and, thus, enabling decision makers to decide based on informations with a new
level of detail and accuracy.
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Zusammenfassung

Das Hauptziel dieser Arbeit ist die Entwicklung eines mehrskaligens Simulationswer-kzeugs
zur Simulation von Hochwasserszenarien in komplexen Umgebungen wie dem städti-schen
Raum. Überschwemmungen und Auswirkungen von Überschwemmungen auf die Infrastruk-
tur sollen in einem mehrskaligen Rahmen vorhergesagt werden, der vom Fluss bis hinab zur
Größe der gebauten Infrastruktur reicht, z. B. Eisenbahn, U-Bahn, Tunnel, Abwasserkanäle,
Gebäude und Gebäudeinfrastrukturen. Ein numerisches Modell wird vorgestellter, das die
2D Flachwassergleichungen und die 3D-Reynolds-gemittelten Navier-Stokes (RANS) Gle-
ichungen mit guter Effizienz und Genauigkeit kombiniert. Dieses gekoppelte Modell nutzt
die Vorteile der 2D- und 3D-Modelle, um die Berechnungen zu beschleunigen, ohne an
Genauigkeit zu verlieren: Das Simulationgebiet wird hauptsächlich durch das 2D-Modell
abgebildet, während das 3D-Modell nur in kleinen Bereichen eingesetzt wird, in denen eine
dreidimensionale Beschreibung der hydrodynamischen Phänomene erforderlich ist.

Das gekoppelte Modell shallowInterFoamOL wird im OpenFOAM implementiert, indem
zwei vorhandene numerische OpenFOAM-Löser zusammengeführt werden: Der 2D-Flach-
wasserlöser shallowFoam und der 3D-Navier-Stokes Löser interFoam. Das Berechnungs-
gebiet wird in eine Reihe kleinerer Teilgebiete zerlegt, wobei jedes Teilgebiet mit Hilfe
der entsprechenden Unterlöser (i.e. interFoam oder shallowFoam) gesteuert wird. Lö-
sungen am Kopplungsteil werden über den Kopplungsalgorithmus ausgetauscht und ak-
tualisiert. Der überlappende Kopplungsalgorithmus verwendet ein vereinfachtes Überlap-
pungsverfahren von Zelle zu Zelle für den Datenaustausch zwischen den Unterdomänen.

Die Gültigkeit des Modells wird für den Wellentransport einschließlich solitonen und stro-
maufwärts laufender Schwallwellen bestimmt. Die gekoppelten Ergebnisse werden mit dem
reinen 2D-Flachwassermodell und dem 3D-RANS-Modell verglichen. Außerdem wird ein
hydrodynamisches Extremszenario, ein Tsunami, simuliert, um die Wechselwirkungen zwis-
chen einer hydraulischer Bore und einer Struktur weiter zu untersuchen und zu qualifizieren.
Numerische Ergebnisse werden mit den experimentellen Messungen verglichen.

Schließlich wird ein Arbeitsablauf zur praktischen Anwendung des Modells vorgeschlagen,
um Benutzern einen leichten Einstieg zu ermöglichen. Der Arbeitsablauf ermöglicht es
Benutzern, das Berechnungsnetz zuerzeugen, die Fälle einzurichten, das gekoppelte Mod-
ell auszuführen und einige grundlegende Postprocessingschritte durchzuführen. Auf dieser
Grundlage könnte dann ein Werkzeug für die Risikoanalyse für Bauingenieure, Architekten,
Planer, Versicherungsanalysten und Politiker entwickelt werden. Der Benutzer dieses Frame-
works wird Teil des Systems oder der Iterationsschleife, sodass sich er verschiedene Szenarien
interaktiv untersuchen und bewerten kann, sodass Entscheidungsträger auf Informationen
größerem Detailreichtums und höherer Genauigkeit stützen können.
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1. Introduction

Free surface flows, such as water waves, surface run-off, channel flow, and effluent discharge,
are important physical phenomena in environmental fluid mechanics which is comprised of
two-phase immiscible fluids (e.g. liquid water and air) separated by a well-defined interface
(Katopodes (2018)). Sometimes these flows can bring a dramatic impact on our daily lives.
Among a wide range of free surface flow scenarios, flooding is one of the most damaging
natural hazards to human societies (Schanze (2006)). Understanding and predicting flood
behaviours are of great interests in science and technology. Computational fluid dynamics
(CFD) is an efficient numerical analysis that provides the ability to simulate fluid perfor-
mance.

The present work is embedded with project No. 9.11 - High Performance Interactive Flood
Simulation - iFlood, from the Technical University of Munich (TUM) International Graduate
School of Science and Engineering (IGSSE) with the Chair of Hydromechanics (TUM), the
Chair for Computation in Engineering (TUM) and the School of Engineering and Computing
Science (Durham University). This chapter describes the background and the motivation
for flood prediction by using numerical methods. The research objectives and the scope of
the study are provided here as well.

1.1. Background

A flood occurs when a water resource (e.g. rivers, lakes and oceans) gains excessive water
in a short time such that an overflow of water is generated in an area which is usually dry.
Floods happen all over the world for various reasons. An effective way to establish flood
control by hydraulic structures e.g. dams or reservoirs, is therefore one of the most basic
hydraulic engineering tasks. These structures, which can be built in any water body, are
used to control the fluid flow velocities and depths in dams, spillways, overflow weirs, dikes
and so on. As reported in Munich Re Group (2005), flood events have increased in recent
decades, both in terms of magnitude and frequency due to a combination of natural and
man-made factors. Human causes of floods, for instance, include poorly designed hydraulic
infrastructures. On the other hand, varying degrees of natural hazards, e.g. extreme precip-
itation, high sea water levels and snow melt, may also increase flooding risk (Pedersen et al.
(2012)).

Extreme hydrological events are likely to produce an increasing number of flooding occur-
rences resulting in significant losses. Heavy rain is the most common factor leading to a flood
event in urban areas. Large parts of many cities are made of concrete or other impermeable
materials, so run-off water is mainly collected by rainwater gullies and drained into city
sewage systems. During a longer period of heavy rain, such systems are overwhelmed, which

1
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means the rainwater cannot be transferred to a wastewater treatment plant fast enough.
Consequently, the drainage pipes fill quickly and the rainwater spreads across the city, re-
sulting in floods. Heavy rain also can cause dam breaks, which are another direct reason for
urban floods. When dams fail, a huge amount of water rushes into rivers and may flow into
nearby cities.

The potential damage of floods in urban areas is so high that urban flooding is an important
consideration for city planners. The deadliest flood ever took place in China (1931) and killed
between 2,000,000 and 4,000,000 people (O’Connor and Costa (2004)). As a consequence,
a sustainable urban flood risk management tool is of great value for city managers. Flood
risk management is a well-established process for dealing with flood risks and for rebuilding
areas at risk in order to reduce losses (Plate (2002)). The most effective approach for flood
risk management is incorporating several elements covering before, during and after flood
periods: (1) preventing floods caused damage by optimisation of houses and industries loca-
tion; and by facilitating land-use planning; (2) protecting potential flooding area by building
hydraulic constructions; (3) educating the masses about relevant knowledge of floods; (4)
setting up an emergency plan during the flood and returning back to ordinary life as soon
as possible (COM (2004)).

Studying free surface flow plays a significant role in the first two elements of flood risk man-
agement mentioned above which are damage prevention and flooding protection. Flooding
flow can have a direct impact on the design of hydraulic structures (Katopodes (2018)). The
design of hydraulic structures varies depending on the goals of the hydraulic projects (Chen
(2015b)). By means of establishing flood models, the reaction between structures can be
analysed and the flooding area can be estimated. In general, there exist two approaches to
model a flood event: physical experiment and numerical simulation. Experiments are usu-
ally carried out on a scaled model. However, establishing a physical complex model is too
time consuming. Numerical simulations offer an alternative to experiments and are widely
employed for the efficient solution of problems in flooding investigations under a broad range
of configurations, known as computational fluid dynamics (CFD). Applying CFD to flood
simulations enables researchers to reproduce or predict the movement of flood waves and
helps them to analyse drag and lift forces on structures which are necessary to storm, and
flood assess risk. The choice of a specific numerical model depends on the problem under
examination.

1.2. State of the art

CFD solves problems numerically based on governing equations of fluid dynamics. These
mathematical models describe fluid physical properties in accordance with the conservation
laws for the mass, momentum, and energy. Typically, mathematical models are categorised
into three types: one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D).
The fundamental mathematical models are 3D since nature flows are 3D. However, a 3D
model is difficult to solve, and computationally expensive. For some simplified cases which
can be estimated to 2D or even 1D flows, low-dimensional models are used to reduce the
computational effort. Coupled models among 1D, 2D or 3D models have been investigated



1. Introduction 3

for some specific applications to speed up the calculations without losing adequate accu-
racy.

1.2.1. Basic mathematical models

1D Flood waves can be described by the Saint-Venant equations named after a French engi-
neer de Saint-Venant (1855). The 1D Saint-Venant equations system is derived from the 3D
Navier-Stokes equations for very shallow flows under certain assumptions: (1) the flow is 1D,
incompressible and homogeneous; (2) the pressure distributions are hydrostatic; (3) vertical
velocity components are neglected; (4) the bed slope is constant and relatively small; (5)
the streamline curvature is small; (6) fixed boundaries are considered with no erosion and
deposition. Dressler (1978) derived an extended approach to the Saint-Venant equations by
introducing curvilinear coordinates system based on the river beds. This method is employed
by Sivakumaran et al. (1983) for steady shallow flow and by Sivakumaran et al. (1983) for
unsteady shallow flow over a curved boundary. Fenton and Nalder (1995) applies the same
conception in the Saint-Venant model to capture the effects of channel curvature on the
propagation of floods and long waves. Hager and Hutter (1983) has implemented a method
based on potential flow in a streamline coordinate system and a higher-order method incor-
porating friction effects was developed by Matthew (1991) in Cartesian coordinate system.
Another modified model with a force-corrected term has been proposed by Zhang and Bao
(2012) enhancing the ability to simulate tidal rivers. Correction coefficients combining flow
velocity and the change rate of the tidal level have been applied to the force term. Param-
eters in 1D models are averaged over the water depth and the cross section (e.g. hydraulic
diameters and mean flow velocities) where the geometry is typically represented by a set of
cross sections. 1D models (e.g. HEC-RAS, MIKE 11) predict well for modelling constant and
well-defined flow path. For example, the main flow path is carried by a large river with min-
imal tributaries. When a flow path is poorly defined, a multi-dimensional model is needed.

The Shallow Water equations (SWE), 2D approaches, are widely used in current urban flood
simulation assessment tools, e.g. Bradford and Sanders (2002) and Simões (2011). The 2D
model, based on integration of the 3D Navier-Stokes equations in the vertical direction, is
derived by taking the first three assumptions in the Saint-Venant equations derivation men-
tioned above. Detailed representation of the geometry is considered in 2D models contribut-
ing to better estimations in frictional losses and inundation extents. 2D models are also able
to capture flood dynamics in topographically complex floodplain. For non-hydrostatics flow,
the Serre-type equations firstly derived by Serre (1953) and then Dias and Milewski (2010)
presented a fully-nonlinear weakly dispersive system for the shallow water wave regime.
Since the SWE have no ability to represent short waves, the Boussinesq equations are appli-
cable to slightly shorter length waves (Boussinesq (1872)). 2D models (e.g. ISIS 2D, MIKE
FLOOD and HYDRO AS-2D) reproduce accurately the surface run-off phenomenon in large river
basins, with complex bed shapes and meandering open channels. However, it cannot capture
depth varied velocities around structures. When the flow interacts with structures, higher
numeric accuracy is demanded, and more properties shall be calculated.

The basic equation system of 3D flows model is the Navier-Stokes equations which is appli-
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cable to all flow problems. It can handle complex topography and free surface deformations.
With a focus on small scales analysis 3D models (e.g. FLOW 3D, MIKE 3 and FLUENT) are
required to represent the features of flow around structures. Nevertheless, due to the high
computational effort of solving these complexities, a full 3D simulation is rarely applied in
flood simulations.

1D/2D/3D models have been developed for different usages. Approximate predictions can be
obtained for large scales by using 1D/2D models. For practical purposes of flood simulation,
flooding flows in most rural areas are considered as 1D flows, therefore 1D models is adequate
to delineating floodplains and assess risk regions in such areas. Most urban flood models
employ 2D surface run-off models. 3D models are more likely to assess local dominant fluid-
structure regions. Each model has its purpose of applications, but in reality, some target
applications are overlapped with multi-scales problems, which require 1D, 2D or 3D model at
the same time. Coupled models are therefore developed for those specific applications. Cou-
pled hydrodynamic numerical methods are often used in urban floods by taking an expensive
method regarding time consumption (Sailor (2013)).

1.2.2. Coupled models

With the objective to improve the simulation results within a reasonable cost, lower dimen-
sional models are commonly coupled with higher dimensional models in many fields as well
as in fluid mechanics simulations. The coupling between 1D and 2D models are typical
approaches in urban flood models. Various 1D-2D coupling approaches have been developed
in the last decades.

On the basis of 1D channel flow simulations, 2D Shallow Water models can be coupled
where the domain is located laterally to the 1D channels. Such a coupling approach is suit-
able for flood inundation modelling. Kuiry et al. (2010) have implemented a quasi 1D-2D
flood inundation model that 1D and 2D regions have been coupled via Manning’s equation.
Ahmadian et al. (2015) have achieved the coupling via a weir formula. The coupling can
also be accomplished by superposing a 2D domain on top of 1D results. D’Alpaos and Dena
(2007) have employed the continuity equation from both domains. Gejadze and Monnier
(2007) have added a source term to transfer the information from 2D to 1D and boundary
conditions are imposed from 1D to 2D. Coupling approaches mentioned above are mainly
applied in river-floodplain modelling.

When 1D and 2D regions are solved independently from each other, two regions are cou-
pled via boundary conditions, a longitudinal coupling is therefore defined. The fundamental
principle is the conservation law and these variety of models are eligible for solving the
river-lake or river-estuary systems. Chen et al. (2012) conserves the continuity equations at
the coupling interface and in addition to that Blade et al. (2012) conserves the momentum
equations. Urban drainage systems can be coupled into the 2D simulations to represent ur-
ban floods, such as the coupling of 1D-sewer and 2D-surface models (Leandro et al. (2009),
Schlauß and Grottker (2016) and Adeogun et al. (2015)).
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In addition to 1D-2D couplings, there exist 2D-3D coupling algorithms allowing the coupling
between the interaction of the surface and groundwater. Furthermore, the coupling between
2D-3D surface flow models are becoming popular recently. A 2D Boussinesq model with a 3D
Reynolds-Averaged Navier-Stokes Equations (RANS) model have been coupled by Qi and
Hou (2004) using an overlapping decomposition method. A direct matching between water
depths and flow velocities are imposed via the overlapping region. This approach saves most
of the computational expense with respect to a full 3D RANS model in a good agreement
with the velocity profiles of the 3D model. However, the solver remains incomplete in the
description, and no further validation data has been published.

Another common 2D-3D coupling approach is coupling the 2D Shallow Water solver with
the 3D Naiver-Stokes solver. Kilanehei et al. (2011) have implemented a coupling method
by taking the 2D SWE results as initial and boundary conditions of a 3D RANS solver.
These boundary conditions defined by 2D results help the 3D solver converge fast even in
realistic applications. Nevertheless, the feedback from 2D to 3D is not available and only
steady-state can be modelled under this approach. To improve the aforementioned coupled
method, the backwater effects from 3D to 2D has been taken into account by coupling the
2D SWE solver Hydro AS-2D and the 3D free surface RANS solver interFoam by Gerstner
et al. (2014). Apart from using 2D results as boundary conditions, 3D results will be updated
on the 2D model by introducing an overflow coefficient. Unfortunately, this method is also
only capable of steady-state conditions.

A full bi-directional coupling between 2D SWE and 3D RANS enables simulating unsteady
phenomena, which combines the 2D Shallow Water solver shallowFoam with the 3D RANS
solver interFoam by Mintgen and Manhart (2018). These solvers are available as an Open
Source software in the OpenFOAM framework. The coupling algorithm uses combinations
of Dirichlet-Neumann boundary conditions at the 2D-3D interface depending on the flow sit-
uations and it performs well in most application scenarios. However, an upstream-travelling
shock wave is unable to cross the 2D-3D interface due to the direction of the characteristics
in supercritical flows. This approach (details can be found in chapter 3 and 4) is the one that
is used in this work as a standard coupling method. Within the collaboration of the iFlood
project, N. Perovic who works at the Chair for Computation in Engineering (TUM) have
also studied the flow coupling and contributed to high performance computing simulations
of large flooding events (Perovic et al. (2017)).

1.3. Problems formulation

A good flood assessment model should offer a flood risk evaluation in an efficient and ac-
curate manner, which covers flood waves propagating simulation, maximum water levels
calculation, flooded areas and waves arriving time estimation. This is mainly determined by
setting up a numerical flood simulation.

A complete numerical flood simulation usually contains three procedures: mesh generation,
problem-solving and results analysis. Problem-solving is the core for each simulation which
means solving the target model numerically. 3D models are too slow and 2D models are not
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accurate enough for flood assessment in complex environments, such as urban areas. The
2D-3D coupled model would be of great value for establishing an urban flood risk assessment
tool. However, the coupled models on the markets have severe limitations. An integrated
prediction of local flows together with large scale flow dynamics has rarely been established,
mainly because of intrinsic differences between the character of the depth integrated 2D
model and the full 3D RANS. A coupling of the Shallow Water model with a full solution
of the RANS model is needed in cases when the flow interacts with buildings, bridge piers,
or bridge abutments for instance. Such 2D-3D coupling code should capture different scale
flow dynamics.

Apart from identifying the problem for coupled model, grid generation and adaptation should
also be considered in mesh generation. Generally, meshes have different representation for
2D and 3D models, a 2D-3D coupling mesh should be determined by seeking for the most
suitable and efficient grid structure to be used in a coupled 2D-3D solve. In this study,
grids at the coupling region are constrained to be perfectly matched in horizontal directions
(details can be found in chapter 4). Current prototype of mesh generation are exclusive
for easy and regular geometry. Hence special treatments would be expected to build up a
coupling case. Thus, a new workflow for the coupled model is required.

In addition to mesh generation and problem-solving parts, post processing mainly including
data analysis remains vapoury. In order to better analyse the outcomes and make the results
in a more readable way, data filtration and extraction for desired locations from simulating
solutions are essential at the workflow.

1.4. Objective of this work

The overall goal of this research is to develop, implement, and validate a prototype for
urban flood scenarios based on multi-scale 2D and 3D fluid flow simulations in order to
evaluate, for instance, possible impacts on built infrastructure, such as railway, subway,
tunnels, waste water channels, buildings, and building infrastructures. Therefore, different
aspects such as efficient interaction / exploration methods, grid generation and adapta-
tion, and the 2D-3D coupling must be studied in detail in order to handle the compu-
tational complexity of the underlying problem and to make it feasible for an interactive
treatment.

1.4.1. Development of an improved method for 2D-3D
coupling

In the latest research by Mintgen and Manhart (2018), a coupling of a 2D SWE and a 3D
RANS solver with free surface has been implemented in the Open Source CFD environment
OpenFOAM. This coupled solver can handle most of the open channel flow simulations.
But it has no ability to track the hydraulic bore when the upstream-travelling wave is
approaching to the 2D-3D simulation interface, which leads to a wrong simulation result.
Such upstream-travelling wave is an important phenomenon in flooding events which should
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not be negligible. The work focuses on developing an improved method for a better treatment
for upstream-travelling shock waves.

1.4.2. Workflow development

All relevant flow models used in this work are implemented in OpenFOAM framework and
the outcome of this research will also be available as an open source package for publics. In
conformity with the OpenFOAM framework, mesh generation and results analysis have also
to be done by using OpenFOAM compatible utilities.

The coupling algorithm developed by Mintgen and Manhart (2018) has only been tested
and valid in simple geometry cases (e.g. rectangular open channel with constant slope and a
cubic structure located on a flat plane). However, the mesh from complicated geometry leads
to an unmatched grid structure at the coupling region thus the coupled solver is no longer
applicable. As a result, a well-suited method for mesh generation should be determined as
a part of the coupling workflow.

2D solver and 3D solver have different configurations for numerical variables. How to set up
a realistic application with more complex data for each solver is therefore another issue to
be tackled.

1.5. Outline

This study provides a systematic analysis tools for environmental flows representation. The
present work is organised into seven chapters.

In chapters 2 and 3, literature reviews of mathematical equation systems and numerical
models are briefly presented. Chapter 2 discusses mathematical modelling of 3D and 2D
flows. It starts with the explanation of the full 3D Navier-Stokes problems with focus on
two-phase flows, and then continues with the simplified 2D Shallow Water models which are
built upon certain of assumptions and simplifications from the 3D flow models.

Chapter 3 further explains the numerical discretization procedure of the derived equation
systems which are depicted in the previous chapter. First, the chosen CFD framework,
OpenFOAM, will be introduced as the foundation of this study. On top of it, highlighting
techniques are put forward: a spatial discretization approach - the Finite Volume Method,
interface tracking techniques with emphasis on the Volume of Fluid and the special technique
pressure-velocity coupling to solve inter-equation coupling. Accordingly, the implementation
of different flow models and the set up for these models in OpenFOAM are detailed.

The following chapter (chapter 4) elaborates the progress in 2D-3D coupling algorithms
about balance accuracy and computational efficiency. A published coupling method de-
veloped by Mintgen and Manhart (2018) exchanges information at the 2D-3D boundaries
by determining flow characteristics. An open issue of the coupling method concerning an
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upstream-travelling wave remains to be solved. For this reason, the improvement of the cou-
pled 2D-3D models is investigated in this study together with test cases, where an upstream-
travelling wave can be modelled correctly by applying the modified coupled model.

Test cases for quantitative validation and comparison of various numerical models are pre-
sented in chapter 5. In chapter 6, a tsunami-like hydraulic bore interacts with a square
structure is conducted and outcomes from the proposed coupled model are compared with
experimental data as well as 2D and 3D numerical results.

Chapter 7 devotes to develop a practical workflow with respect to the coupled model. With
the help of this workflow, realistic scenario applications can be put into practice by using
the coupling code.

The thesis is concluded in chapter 8 with the benefits and drawbacks of the proposed cou-
pling code. Due to the modification of the coupling method and the time limit, the high-
performance computing of the coupling code is still required to be implemented. The outlook
for further extension of discussion on methodologies which may have a future potential to
improve the capacity for the coupling numerical simulation are discussed at the end of this
chapter.

Appendices are provided afterwards as well as the bibliography list.



2. Mathematical Models

This chapter will introduce mathematical models used in this work. A typical mathematical
model contains governing equations, supplementary sub-models and assumptions. Fluid
properties can be defined as a set of variables in mathematical models to describe the flow
behaviour. Section 2.1 covers the equation system for general flows and turbulence. Section
2.2 describes the simplification of 3D flow systems, named as the 2D shallow flows, which
are widely used in large simulation areas. None of these equations have analytical solutions,
the following chapter (chapter 3) will present numerical methods which are required to solve
these problems.

2.1. 3D flow models

The Navier-Stokes equations system is a set of partial differential equations (PDE) describing
the dynamics of fluids mathematically, which are derived by Navier (1821) and Stokes (1880).
These equations are expressed based on laws of conservation: mass, momentum and energy.
In the present study, we focus on incompressible fluids and there is no relevant heat transfer in
the flow. Consequently, energy conservation equation can be neglected and only conservation
of mass and momentum are taken into account.

2.1.1. Navier-Stokes equations and turbulence

The free surface flow is considered as an incompressible Newtonian flow that can be governed
by the full Navier-Stokes equations. The Navier-Stokes equations consist of the conservation
of mass equation (2.1.1) and the conservation of momentum equation (2.1.2). These equa-
tions describe the relationship between velocity and pressure of a moving fluid.

∂ui

∂xi

= 0 (i = 1, 2, 3) (2.1.1)

∂ui

∂t
+ uj

∂ui

∂xj

= −1

ρ

∂p

∂xi

+
∂

∂xj

[ν(
∂ui

∂xj

+
∂uj

∂xi

)] + fi (i, j = 1, 2, 3) (2.1.2)

where t [s] is the time , u [m · s−1] is the flow velocity, ρ [kg ·m−3] is the fluid density, p
[kg ·m−1 · s−2] is the pressure, ν [m2 · s−1] is the kinematic viscosity and f [m · s−2] is the
body force, e.g. gravity. Subscripts i, j are Einstein summation convention indices vary from
1 to 3 representing three directions respectively.

9
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Generally, the flows can be classified as laminar, transitional and turbulent subject to the
Reynolds number (Reynolds (1883)). The dimensionless quantity Reynolds number formu-
lated as Re = uh

ν
,with h [m] a characteristic length with respect to the object, is the ratio

of inertial forces to viscous forces in the fluid flow. When inertial effects dominate resulting
in a large Re, turbulent flow appears; and in contrast, when viscous effects dominates with
a small Re, the flow will be laminar flow. The critical Re is defined where transition flow
occurs. Most of flows in our natural environment are turbulent which is characterized by
the irregular movement of particles of the fluid. Those flows are inherently unsteady, diffu-
sive and fluctuating that fluid velocities vary highly and irregularly both in space and in time.

Analytical solution of the Navier-Stokes equations for turbulent flows is infeasible due to
their inherently nonlinearity and complexity, which requires a very fine mesh and extremely
large computational time. In order to predict the effects of turbulence, special treatment of
turbulence is of great importance to solve the Navier-Stokes equations numerically. Several
approaches are commonly applied to compute turbulent flows in nowadays.

Direct Numerical Simulation (DNS)

A numerical simulation without any turbulence model to solve the time-dependent Navier-
Stokes equations resolving all spatial and temporal scales is called direct numerical simu-
lation. In order to cover full scales of the turbulence, the computational box should be
sufficient broad, however, the numerical grid and the time step must be fine enough. This
method is well-known due to its high accuracy with all details of turbulent flows with low
efficiency by requiring a great demand of computational costs. Details provided by direct
numerical simulation are not required for most hydraulic engineering purposes and large
scale resolution is enough for applications.

Large-Eddy Simulation (LES)

To speed up the computational efficiency, the large-eddy simulation is proposed by ignoring
the smallest length scales. In the large-eddy simulation approach, the large energy-containing
scales are resolved and the small scale effects should be modelled. In other words, it com-
putes time-varying flow, but models sub-grid-scale motions for turbulence of scales which
are smaller than the computational grid spacing. Large-eddy simulation has become one
of the most promising and successful techniques for turbulent flows simulations to calcu-
late complex engineering flows, which is currently applied in a wide variety of engineering
applications.

Reynolds-Averaged Navier-Stokes (RANS)

A further less expensive model based on Reynolds decomposition, the Reynolds-Averaged
Navier-Stokes (RANS) equations, are used to describe turbulent flows. They modelled the
mean flow and give time-averaged mean values for velocity fields. RANS equations are
chosen as the 3D flow model in this work since they offer the most economic approach for
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computing complex turbulent river flows. Elaborated description of the RANS equations
will be given in the following.

2.1.2. Reynolds-Averaged Navier-Stokes
equations

A time-averaged equations of motion for turbulent flow, the RANS equations, are widely used
instead of solving the Navier-Stokes equations directly. RANS equations apply Reynolds de-
composition with approximations of the turbulent properties and provide averaged solutions
to the Navier-Stokes equations. As a consequence of Reynolds decomposition, flow quanti-
ties can be resolved into mean and fluctuating components, φ = 〈φ〉 + φ̃. More specifically,
〈φ〉 denotes the expectation value of φ as a steady component and φ̃ is the deviation from
the expectation value (Adrian (2000)). By further time averaging the instantaneous flow
variable, the Reynolds time-averaged quantity is derived.

Mass conservation equation

The incompressible continuity equation (2.1.1) in Navier-Stokes equations contains only lin-
ear terms. The Reynolds decomposition of flow velocity is expressed in equation (2.1.3),
where 〈ui(xi)〉 is the mean velocity in space, and it must be larger compared to the typical
time scale of the fluctuations. ũi(xi, t) is the fluctuation about the mean value.

ui(xi, t) = 〈ui(xi)〉+ ũi(xi, t) (2.1.3)

Time averaging the fluctuation parts to right-hand side (RHS) of equation (2.1.3) is zero.

〈ũi(xi, t)〉 = 0 (2.1.4)

Therefore, equations (2.1.3) and (2.1.4) lead to the ensemble averaging interval in time and
space of velocity.

〈ui(xi, t)〉 = 〈ui(xi)〉 (2.1.5)

Applying the resulting Reynolds time averaging simplification form of the flow velocity to the
equation (2.1.1) and easily gives the time-averaged continuity equation (2.1.6).

∂〈ui〉
∂xi

= 0 (i = 1, 2, 3) (2.1.6)

Momentum conservation equation

Non-linear terms appear in the momentum equation (2.1.2) of the Navier-Stokes equa-
tions, thus additional terms - product of components of fluctuating velocities - are pro-
duced during the averaging technique. Time-averaging convective term yields equation
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(2.1.7).

〈ui(xi, t)uj(xj, t)〉 = 〈ui(xi)〉〈uj(xj)〉+ 〈ũi(xi, t)ũj(xj, t)〉 (2.1.7)

The left hand side (LHS) of the averaged momentum equation (2.1.2) results in equation
(2.1.8).

∂〈ui〉
∂t

+ 〈uj〉
∂〈ui〉
∂xj

=
∂〈ui〉
∂t

+
∂〈ui〉〈uj〉
∂xj

+
∂〈ũiũj〉
∂xj

(2.1.8)

The RHS in the momentum equation (2.1.2) is simply taking an average, this leads to the
RANS momentum equation (2.1.9).

∂〈ui〉
∂t

+〈uj〉
∂〈ui〉
∂xj

= −1

ρ

∂〈p〉
∂xi

+
∂

∂xj

[ν(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)−〈ũiũj〉]+〈fi〉 (i, j = 1, 2, 3) (2.1.9)

Hence the well-known non-conservative form the RANS equations are formulated into equa-
tions (2.1.6) and (2.1.9).

The Reynolds averaging process creates additional terms and no further equations. Addi-
tional terms, 〈ũiũj〉, named the Reynolds-Stress. There are six independent elements of the
Reynolds stress tensor and therefore six more unknowns in the above equations which must
be modelled to close the RANS system.

2.1.3. Turbulence models in 3D flows

The Reynolds stresses are components of a symmetric second-order tensor. The diagonal
components of the Reynolds stresses are known as normal stresses and the off-diagonal com-
ponents are shear stresses. In order to predict turbulence effects, the Reynolds stresses can be
modelled in terms of known quantities by turbulent modelling. More parameters are defined
in turbulence model. Boussinesq (1877) introduced the turbulent-viscosity hypothesis that
the momentum transfer caused by turbulent eddies can be modelled via an eddy viscosity
which is the basis of many turbulence models (Rodi (1993)). The Reynolds stresses can be
expressed by the turbulent eddy viscosity. νt(xi, t) [m2 · s−1]

−〈ũiũj〉 = νt(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

) (2.1.10)

The momentum equation (2.1.9) then becomes:

∂〈ui〉
∂t

+ 〈uj〉
∂〈ui〉
∂xj

= −1

ρ

∂〈p〉
∂xi

+
∂

∂xj

[(ν+νt)(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)]+ 〈fi〉 (i, j = 1, 2, 3) (2.1.11)
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In turbulent flows eddy viscosity is not a property of the fluid, but depends upon the fluid
density and distance from the river bed or ground surface. The principle of the eddy vis-
cosity is only the basic framework that approximations have to be considered as turbulence
models and to calculate νt(xi, t).

Various turbulence models are available in CFD simulations. Based on the time-averaged
RANS equations, four classical model hierarchies are used:

• Zero equation model: mixing length model (Prandtl (1925)).

• One equation model: Spalart-Almaras (Spalart and Allmaras (1994)).

• Two equation models: k − ω model (Saffman and Wilcox (1974)), k − ε model (Jones
and Launder (1972a)) and Algebraic Stress Models (Rodi (1974))

• Seven equation model: Reynolds stress model (Launder et al. (1975)).

RANS based turbulence models are suitable for a large variety in engineering applications
with good accuracy. However, none of these models is universal, different model shall be
taken in different situations (Leschziner (2010)).

2.2. 2D flow models

A 3D model has a full momentum balance on small scale that might be too expensive for most
practical problems. Due to the high requirement of computational cost, a few assumptions
and simplifications can be made to reduce the simulation expense. For this purpose, 2D
models are proposed and 3D flow problems become 2D flow problems in most applications
such as atmospheric flows, river flows, coastal flows and so on. When the vertical velocity
distributions are insignificant (i.e. vertical velocity is much smaller than the horizontal
velocities) and the flow is dominated by a hydrostatic pressure distribution, the flow is
considered as a shallow flow.

2.2.1. Shallow Water equations

The behaviour of a fluid in shallow water areas is governed by the Shallow Water equations
(SWE), which has been obtained from the Navier-Stokes equations by depth-integrating un-
der several simplifying assumptions. The SWE describe the properties and dynamics of the
depth-averaged velocities ū and the flow depth h. Derivation of the SWE has been achieved
by two principal procedures:

• Transport equation for flow depth h is derived by integrating the mass conservation
equation from the bottom zb [m] to the free surface zw [m] and specifying boundary
conditions for a water column at the water surface and at the bottom.

• The momentum equations for flow velocities are depth-averaged in x-, y-direction and
in z-direction the momentum transport is negligible compared to the horizontal ones.

A physical quantity φ can be split into a depth-averaged component φ̄ and a fluctuation
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part φ
′
, φ = φ̄ + φ

′
, where the depth-averaged quantity is defined as in equation (2.2.1).

φ̄ =
1

h

∫ zw

zb

φdz (2.2.1)

A typical water column definition is shown in figure 2.1. The subscript w and b mean the
bottom and the water surface respectively.

x,y

z

flow depth h(x,y,t)

bottom elevation zb(x,y)

free surface zw(x,y,t)

Figure 2.1: Typical water column

Kinematic boundary conditions at the bottom are defined in equations (2.2.2) and (2.2.3),

u(zb) = v(zb) = 0 (2.2.2)

w(zb) + u(zb)
∂zb

∂x
+ v(zb)

∂zb

∂y
= 0 (2.2.3)

resulting equation (2.2.4).

w(zb) = 0 (2.2.4)

where u, v, w [m · s−1] are flow velocity components in x−, y− and z−directions.
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Kinematic boundary condition at the surface gives:

w(zw) =
∂h

∂t
+ u(zw)

∂zw
∂x

+ v(zw)
∂zw

∂y
(2.2.5)

Depth integration of mass conservation

As indicated in figure 2.1, the flow depth h is the distance from the bottom to the free
surface (h = zw − zb). Integrate the continuity equation (2.1.6) from zb to zw (both zb and
zw are time-dependent) resulting in:

∫ z

zb

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z
)dz = 0 (2.2.6)

Use the Leibniz integral rule:

∂

∂x

∫ zw

zb

udz+
∂

∂y

∫ zw

zb

vdz−(u(zw)
∂zw

∂x
+u(zb)

∂zb

∂x
)−(v(zw)

∂zw
∂y

+v(zb)
∂zb

∂y
)+(w(zw)−w(zb)) = 0

(2.2.7)

Then apply the depth averaged definition into:

0 =
∂hū

∂x
+
∂hv̄

∂y
+ u(zb)

∂zb

∂x
− (v(zw)

∂zw

∂y
+ v(zb)

∂zb

∂y
) + (w(zw)− w(zb)) (2.2.8)

The transport equation for the flow depth is derived by substituting equations (2.2.2), (2.2.3)
and (2.2.5) into equation (2.2.8):

∂h

∂t
+
∂hū

∂x
+
∂hv̄

∂y
= 0 (2.2.9)

Depth integration of momentum conservation

Based on the primary assumption in the SWE, horizontal scales are much larger than vertical
scales, the relationship between the horizontal length l and the flow depth h are as follows:
l � h. We use U represent the order of magnitude of horizontal velocities u and v and W
stand for the order of magnitude of the vertical velocity w. We have equations (2.2.10) and
(2.2.11).

∂u

∂x
+
∂v

∂y
≈ U

l
(2.2.10)
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∂w

∂z
≈ W

h
(2.2.11)

Equation (2.2.12) is then obtained.

W ≈ U
h

l
(2.2.12)

By a scaling analysis and neglecting the vertical acceleration, all terms in Navier-Stokes
z−momentum equation except the pressure derivative and the gravity term are rather small.
As a consequence, pressure gradient balances the gravitational acceleration denoted by g
[m · s−2].

∂p

∂z
= −ρg (2.2.13)

Horizontal velocities u and v are independent of the vertical velocity w. Simplified x− and
y−momentum equations in (2.2.14) - (2.2.15) are derived.

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν(

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
) (2.2.14)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν(

∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2
) (2.2.15)

For the following derivation, we take x-momentum equation as an example.

Since the shallow water is considered having hydrostatic pressure distribution, the integral
form of equation (2.2.13) gives us (with atmospheric pressure patm [kg ·m−1 · s−2]):

p = g

∫ zw

zb

ρdz + patm (2.2.16)

With constant density assumption, finally we have a new expression for pressure:

p = ρg(zw − z) + patm (2.2.17)

Pressure term of the SWE in momentum equation can be obtained by implying equation
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(2.2.17) and integrating over depth:

−1

ρ

∫ zw

zb

∂p

∂x
=

∫ zw

zb

∂(g(zw − z) + patm)

∂x

= − ∂

∂x

∫ zw

zb

g(zw − z)dz + g(zw − zw)
∂zw

∂x
− g(zw − zb)

∂zb

∂x

= −g
2

∂h2

∂x
− gh∂zb

∂x

(2.2.18)

The stress tensor defined in equation (2.2.19) is introduced to express stress terms in 2D
models with µ [kg ·m−1 · s−1] the dynamic viscosity.

τij = µ(
∂ui

∂uj

+
∂uj

∂ui

) (2.2.19)

Depth integration of the stress term yields

∫ zw

zb

[ν(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
)]dz =

1

ρ

∫ zw

zb

(
∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
)dz

=
1

ρ

∂hτxx

∂x
+

1

ρ

∂hτyx

∂y
+

1

ρ
τzx(zw)− 1

ρ
τzx(zb)

(2.2.20)

where τxx and τyx [kg ·m−1 · s−2] are depth-averaged stresses that can be neglected. All stress
terms at the free surface are also neglected. In addition, shear stress at the bottom except
the wall shear stress τzx(zb) are either neglected due to their small contribution.

When integrating the LHS of the equation (2.2.14), we get,

∫ zw

zb

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
)dz =

∂hū

∂t
+
∂hū2

∂x
+
∂hūv̄

∂y
+
∂hu′u′

∂x
+
∂hu′v′

∂y
(2.2.21)

where uu = ūū+ u′u′ and uv = ūv̄ + u′v′ .

Similar to Time-averaging technique for non-linear terms in equation (2.1.7), the last two
terms in equation (2.2.21) represent a lateral momentum transfer due to rotating secondary
flow are diffusive terms, which are not covered in the SWE.

Putting everything together, the final SWE in index form of the continuity equation (2.2.22)

∂h

∂t
+
∂hui

∂xi

= 0 (i = 1, 2) (2.2.22)
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and of momentum equation (2.2.23):

∂hui

∂t
+ uj

∂hui

∂xj

= −g
2

∂h2

∂xi

− gh∂zb

∂xi

+
∂hτji/ρ

∂xj

− τBi

ρ
(i, j = 1, 2) (2.2.23)

with τB [kg ·m−1 · s−2] the bottom shear stress.

The first two terms on the RHS of the momentum equation (2.2.23) are derived from the
pressure term in equation (2.1.8), the first one of which characterizes the change in water
level and the second is lead by the bottom slope. The other terms on the RHS of equation
(2.2.23) embody the stress that need to be modelled.

2.2.2. Turbulence models in 2D flows

Compared to 3D flows, the modelling of turbulence in shallow water flows has been con-
sidered less profusely according to Cea et al. (2007). 2D depth-averaged equations can be
solved by applying a depth-averaged turbulence model. Several depth-averaged turbulence
models derived from the RANS turbulence models have been offered for the SWE of different
complexity. The effects of bottom friction is generally included. Two zero-equation turbu-
lence models are the depth-averaged parabolic eddy viscosity model and the depth-averaged
mixing length model. The eddy viscosity is computed from the mean horizontal shear and
the bed effect in the depth-averaged mixing length model. The depth-averaged parabolic
eddy viscosity model is thus formulated if no horizontal mean velocity is considered or if the
turbulence is dominated by bottom friction (Dorfmann (2016)). A two-equation model, the
depth-averaged k − ε model, first proposed by Rastogi and Rodi (1978) is the most com-
monly used SWE turbulence model. Such model is achieved by depth integrating the 3D
standard k − ε model of Jones and Launder (1972b). Different versions of the two-equation
depth-averaged turbulence models have been developed later.

In the present study, the depth-averaged parabolic eddy viscosity model is used and more
details can be found in sections 3.5.1 and 3.5.2.

2.3. Type of PDEs

Most of mathematical physics are described by PDEs. A given non-linear PDE is typically
only approachable to numerical solution. The type of solutions for PDE changes with dif-
ferent PDE because certain types of equations need appropriate boundary conditions. It is
no doubt that determining a PDE system type is important in order to solve the problem
properly.

2.3.1. Characteristic of PDE

The type of PDE implies the propagation of information. A PDE can be sorted by the
order, the linearity and the homogeneity. The single first order PDE is always hyperbolic.
A second order PDE is classified into three types as elliptic, parabolic and hyperbolic. Such



2. Mathematical Models 19

classification helps in knowing the allowable initial and boundary conditions to a given prob-
lem which helps in the effective choice of numerical methods.

The classification of second order PDE is most easily described when the equations are for-
mulated in matrix notation Garabedian (1965). The characteristic system, in which each
equation involves partial differentiations in one direction only, can be gained if we discuss
for a moment the question of classification of a more general quasi-linear system of PDE of
first order in two independent variables.

Consider the quasilinear system:

∂U

∂x
+ C

∂U

∂y
= F (2.3.1)

where U denotes a m × 1 column vector, C is a m ×m matrix and F is a m × 1 column
vector. Their arguments cij and fi are functions of x and y.

The curves determined by dy
dx

= λk (k = 1, ...,m) are characteristic curves, or simply called
characteristics. The system (2.3.1) is said to be hyperbolic if cij has m real eigenvalues λk,
defined as the roots of the characteristic equation |C− λI| = 0, and if, in addition, C has
a full set of m normalized independent orthogonal eigenvectors. If all eigenvalues are real
and distinct, the system is of strictly hyperbolic type. If we have less than m λk, the
system is parabolic, if we have complex eigenvalues (the characteristics are imaginary), the
system is elliptic.

Hyperbolic PDE have two real characteristics, thus two initial conditions are required. Infor-
mation propagates at a finite speed along the characteristics and the solution can be effected
in a limited influence zone. Equations of this type are often presented in time-dependent
marching problem with neglecting energy dissipation.

Parabolic PDE have only one real characteristics and one initial conditions are required. In
addition, boundary conditions must be specified for all time t > 0. This problem is called
an initial-boundary value problem. The preferred physical information propagation paths
are lines or surfaces of constant time. Parabolic equations normally describe time-dependent
marching problems with significant diffusion involving.

Elliptic PDE have no real characteristics and no preferred physical information propagation
path, which means the information travels equally in all directions. Solution will be influ-
enced by any disturbance at any point in the problem domain. As a consequence, one bound-
ary condition is required at all points on the boundary. This is called a boundary-value prob-
lem. Elliptic equations describe steady state or equilibrium problems.
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2.3.2. Type of Navier-Stokes equations

Many theory researches have been conducted through the type of Navier-Stokes equations
among the versions of these equations, e.g. steady and unsteady, viscid and inviscid, com-
pressible and incompressible.

Anderson et al. (1984) stated that the unsteady compressible Navier-Stokes equations are
a mixed set of hyperbolic-parabolic equations and Navier-Stokes equations become a mixed
set of hyperbolic-elliptic equations under steady conditions. For viscid flows, Navier-Stokes
equations are elliptic under steady state and are parabolic under unsteady conditions. The
classification of inviscid flows have been conducted by Anderson (1995) and Versteeg and
Malalasekera (2007). The system of equations is always hyperbolic if unsteady flow is pre-
sented. For compressible flow, density of a given fluid particle changes with position. Type of
equations for steady flows are therefore further classified regarding with the flow conditions.
The classification of the system is elliptic the flow is subsonic and hyperbolic if the flow is
supersonic. Steady incompressible inviscid flows are elliptic because the incompressible flow
is a subcase of subsonic flow with Mach number is zero (Garg (1998)).

As concluded by Murman and Krupp (1971), the unsteady viscous incompressible Navier-
Stokes equations is a parabolic equation and the steady viscous incompressible Navier-Stokes
equations is an elliptic equation. However, elliptic equations are difficult to solve. In most sci-
ence and engineering research we consider the Navier-Stokes equations is hyperbolic if convec-
tion terms dominated and is parabolic if diffusion terms are dominated.

2.3.3. Type of Shallow Water equations

The 2D SWE system has the same characteristics as compressible flows. Compressible
Navier-Stokes equations may be considered as mixed hyperbolic, parabolic and elliptic equa-
tions depends on the viscosity and flow conditions. Since the SWE system applies for in-
compressible flows, flow conditions depend on the Froud number instead of the Mach number.

The inviscid fully non-linear 2D SWE system is of hyperbolic type. The time independent
part of the SWE, i.e. steady state, is of hyperbolic type with supercritical flow; of parabolic
with critical flow; and of elliptic with subcritical flow. A full analysis of PDE type on the
SWE can be found in appendix A.

2.3.4. Shock wave travelling upstream from 3D to 2D
problems

In this study, the 3D model is a viscid unsteady incompressible Navier-Stokes equations
system, which has a parabolic PDE type. The 2D model has the same PDE type as the
inviscid unsteady compressible flow, which is hyperbolic. Problems with the 2D-3D coupling
are non-linear mixed hyperbolic-parabolic type. The problem may be either an initial or
initial-boundary value problem or a combination thereof, depending on the particular situ-
ation. The flow condition changes will not change the boundary condition requirements for
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parabolic equations, which applies in the 3D model.

According to the theory of characteristics, we need to prescribe boundary conditions depend-
ing on the number of positive eigenvalues. As demonstrated in appendix A, the unsteady 2D
SWE system has three eigenvalues with λ1 = u, λ2,3 = u± c. When the flow is supercritical,
all eigenvalues are positive, three boundary conditions are prescribed at the inlet of the 2D
domain. When the flow is subcritical, one eigenvalue turns to be negative, therefore one
boundary condition should be set at the outlet and two boundary conditions are given at
the inlet.

This can be explained in modelling shock wave travelling upstream from 3D to 2D where
boundary conditions change in the 2D model. To simulate this phenomenon properly, bound-
ary condition at the outlet of the 2D domain is necessary.

2.4. Summary

Numerical methods based on the RANS equations and the SWE are both popular in fluid
simulations. 3D models provide users with more accurate results as well as with more flow
features which are highly time consuming in full scales, while 2D models are developed to
compensate the high computational expense by reducing the complexity of solving models.
The SWE come up with several limitations:

• On account of depth averaging, the SWE provide no information about the velocity
distribution along the flow depth.

• The lack of velocity distribution and the ignored vertical velocity component therefore
lead to the disability of the secondary flow motions representation.

• In addition, modelling of the river bed friction is necessary in the SWE model which
means the chosen friction models influence the solutions.

• In cases where the prerequisites for the SWE are unsatisfied (no hydrostatic pressure
distribution or a relevant small velocity component), the SWE give wrong results.

This chapter epitomizes the most widely used models for the computation of fluid flows,
including governing equations, special treatment of turbulence models, the type of PDE sys-
tems and their limitations. There exist no universal model unless the problem is defined.
How to weigh the advantages and disadvantages of a model is very case depending. Although
3D models can capture more flow details and are becoming more popular thanks to increas-
ingly development in computational power, 3D models are more inclined to model the flow
in hydraulic structures, where turbulent features should be calculated with a high accuracy.
As we can see in this chapter, 2D models put less effort on turbulence model but give an
overall good representation of shallow flow. When simulating a problem in a large scale,
more precisely, a realistic river channel or a coastal region, 2D models have the priority over
3D models, because computational cost should be taken into account.
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As an increasing requirement of urban flood simulations, where the large field and the local
structures shall all be considered in one simulation, coupling 2D-3D models are emerged in or-
der to benefit the accuracy from 3D models and the efficiency from 2D models.
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Numerical methods for computational fluid dynamics (CFD) are employed to solve mathe-
matical models in a numerical manner. Today, various CFD codes have been developed and
are on the market. An open source CFD framework, OpenFOAM, is selected for this study
and is briefly introduced in section 3.1. Section 3.2 presents the discretization method that
OpenFOAM uses. Temporal discretization will be short explained in section 3.3. Sections
3.4 to 3.6 describe solver implementations in OpenFOAM as well as some special techniques
which are relevant to this work. A general coupling framework will also be included in section
3.6.

3.1. OpenFOAM framework

3.1.1. CFD program selection

CFD software packages fall into one of the following three categories:

• Commercial: Many business institutions sale the all-in-one offering CFD software as a
product, where grid generators, flow solvers, and post-processors are integrated into a
single CFD package. They are user friendly yet expensive. Two well-known commercial
CFD packages in surface flow simulations are ANSYS Mechanical (2017) and FLOW-3D

Santa Fe (2019).

• Open source: an open-source software is provided in accordance with a software license
(e.g. the General Public License, the Berkeley Software Distribution or similar licenses)
that allows users to use, study, change, and improve the software. Under the license
structure, the software remains free of charge and retains a wide audience and developer
base. The most widely used open-source CFD software package for general purpose is
OpenFOAM ESI Group (2012).

• Customer: Besides existing software, users may write their own codes. For example,
the in-house code MGLET (Manhart (2004) and Peller et al. (2006)) for large-scale space
and time resolved simulations of turbulent flows.

We intend to set up multi-scale flow simulations for urban flooding scenarios where the 2D-
3D coupling in both meshing and solving stages are necessary. To complete this objective,
a great deal of research is indispensable. OpenFOAM is a solid CFD software that is highly
competitive in terms of technology with commercial solutions currently available. With full
access to source codes, developers can create tailored solutions that are suited to their needs.
With its open source philosophy, this platform can fit easily into any development cycle. Al-
though the largest drawback to working with it is the lack of a user interface, processes can

23
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be fully automated by writing a shell script in the Unix environment. Once a case has been
set up for the first time, changes in geometry or flow conditions can be rapidly reset. Lastly,
OpenFOAM gives robust results and it can be effectively scaled when applying to high com-
puting performance. Therefore, OpenFOAM is selected as the CFD package platform in this
research.

OpenFOAM was initially released by OpenCFD Ltd and it has been developed into three
branches: (1) the official version of OpenFOAM development and maintenance that sup-
ported by OpenCFD Ltd (ESI Group (2012)), (2) the community edition of OpenFOAM
called foam-extend which is provided by Wikki Ltd (Jasak (2004)), and (3) a fork of the
OpenFOAM on behalf of OpenFOAM Foundation maintained by CFD Direct Ltd (Weller
et al. (2015)). The standard 2D-3D coupling solver has been developed within foam-extend-
3.1 environment, thus foam-extend-3.1 is the chosen OpenFOAM branch and denoted as
OpenFOAM in this dissertation.

3.1.2. General introduction

Open source Field Operation and Manipulation (OpenFOAM) is an open-source object-
oriented library for numerical simulations in continuum mechanics written in the C++ pro-
gramming language which is especially popular in the fields of science and engineering.
It uses the finite volume method (FVM) to solve systems of PDE. The fluid flow solvers
are developed within a robust, implicit, pressure-velocity, iterative solution framework, al-
though alternative techniques are applied to other continuum mechanics solvers. An entire
numerical simulation generally consists of three steps: pre-processing, problem solving and
post-processing. OpenFOAM framework listed below is able to realize all these procedures
(Greenshilds and Ltd (2015)). Converters to / from other pre- and post-processors are avail-
able.

• Pre-processing: transfer the provided input into a suitable form that can be used by
the solver, for instance mesh generation e.g. blockMesh, mapField.

• Standard solvers: solve a specific problem in continuum mechanics, like a two-phase
flow solver e.g. interFoam (a standard multi-phase 3D solver detailed in section 3.4).

• User applications: new solvers and utilities can be created by its users, e.g. shallow-

Foam (a custom user-defined solver that will be presented in section 3.5).

• Post-processing: extract the desired information from the computed flow field (e.g.
sample) and visualize the simulation results (e.g. paraFoam).

Every OpenFOAM simulation has been built with different inputs under a specific structure
depending on the solver. Details of OpenFOAM simulation cases can be founded in appendix
B.
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3.2. Finite volume method implementation in
OpenFOAM

Numerical algorithms, as employed in CFD, cannot represent continuous fields but only dis-
crete field values at discrete points or control volumes. The solution of PDE can be very
challenging, depending on many factors, e.g. the type of the equation, the number of in-
dependent variables as well as boundary and initial conditions. A common feature of all
discretization methods is that a system of algebraic equations needs to be solved at the grid
points or cells due to the discretization of PDEs (Sayma, 2009). This section focuses on
the implementation of FVM, one of the most widely used discretization methods for PDEs,
which is used in OpenFOAM.

The FVM, which was developed in the early 1970’s, is a discretization technique for rep-
resenting and evaluating PDEs in the form of algebraic equations (LeVeque (2002), Toro
(2009) and Ferziger and Peric (1996)). The fundamental property of FVM is the integral
conservation of the quantity, which makes it a preferred method in CFD. The core idea of
this method is the approximation of the integral conservation law on each control volume.
Furthermore, FVM can be easily formulated on unstructured meshes which fit the physical
space better. Since the unknown variables are estimated at the cell center not at the cell
faces, it is simple to achieve different boundary conditions in a non-invasive manner.

In general, FVM involves the following steps: (1) Decomposition of the problem domain
into a sequence of control volumes. (2) Formulation of integral balance equations for each
control volume. (3) Approximation of integrals by numerical integration. (4) Approximation
of function values and derivatives by interpolation with nodal values. (5) Assembling and
solution of discrete algebraic system.

3.2.1. Domain discretization

The finite volume cell-centered discretization of the computational domain results in a group
of control volumes on which the governing equations are eventually solved. These non-
overlapping control volumes completely fill the solution domain. Values of variables are
assessed at the centroids of the control volume. This allows the optimal flexibility in de-
scribing unstructured grids in a general polyhedron shape. Discrete grids in OpenFOAM
can be arranged in space as structured grids, unstructured grids and block structured grids.

For simplicity, we take the 2D Cartesian mesh illustrated in in figure 3.1 as an example
to demonstrate the principal procedures of FVM. Data of variables are stored at the cell
center (marked as a point) and values at faces (marked as a cross) are obtained from the
interpolation scheme. Cell faces are classified into internal faces (dashed lines) and boundary
faces (solid lines). Internal faces are located between two cells, while boundary faces coincide
with the boundaries of the domain.
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Figure 3.1: Numerical grids with cell center and face center in a 2D Cartesian mesh

3.2.2. Spatial discretization of equations

The conservation equation for a general variable φ can be expressed in vector notation form
as:

∂ρφ

∂t
+∇ · (ρUφ) = ∇ · (Γ∇φ) + S(φ) (3.2.1)

with the vector form velocity U, the diffusion coefficient Γ and the source term S.

Such standard transport equation (3.2.1) is first integrated over the cell domain and spatial
derivatives (i.e. convection and diffusion terms) are then converted by surface integral over
the bounding surface using the Gauss divergence theorem. The resulting equation (3.2.2) is
given below:

∫
Vc

∂ρφ

∂t
dV +

∫
∂Vc

(ρUφ) ·ndS =

∫
∂Vc

(Γ∇φ) ·ndS +

∫
Vc

S(φ)dV (3.2.2)

with Vc the volume of the cell, ∂Vc the closed surface encircling the control volume Vc, n
the normal vector of this surface pointing outwards and dS the outward pointing differential
surface area vector.

Equation (3.2.2) consists volume integrals (time derivative and source terms) and surface
integrals (convection and diffusion terms) which can be further approximated. We em-
ploy exemplary the midpoint rule of approximation on the temporal derivative and spatial
derivatives. Figure 3.2 exhibits the surface integration of fluxes from the target cell cen-
ter P to its neighbour cell center N . Sf is the face area normal vector pointing outwards
with the magnitude is equal to the face area. dPN is the distance between points P and
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N .

P N
dPN

f

Sf

Figure 3.2: Surface integration of fluxes using midpoint rule

Time derivative term

The volume integral of the time-dependent term is therefore become a linear variation of the
integrand (equation (3.2.3) ),

∫
Vc

∂ρφ

∂t
dV =

∂ρφPVc

∂t
(3.2.3)

where φP is the cell center value at P.

Convection term

Surface integral terms are evaluated as fluxes at the surfaces, which ensures the conser-
vation of fluxes of the control volume. Since each cell is bounded by a series of flat
faces, these terms can be transformed into a sum of integrals over all faces using the cen-
troid value of face surfaces. The convection term approximation is accessed in equation
(3.2.4),

∫
∂Vc

(ρUφ) ·ndS =
∑

f

(ρU)fφfSf (3.2.4)

where φf is the face center value at f and (ρU)fSf is the face flux through the face f.



28 3.2. Finite volume method implementation in OpenFOAM

Diffusion term

In a similar way, we obtain the surface integral form of the diffusion term in equation
(3.2.5)

∫
∂Vc

(Γ∇φ) ·ndS =
∑

f

Γf(∇φ)fSf (3.2.5)

where (∇φ)f is the face gradient.

Source term

Several source term discretization methods can be found in Patankar (1981). One point
Gauss integration will be presented here. The source term should first be linearised as:

S(φ) = SC + φSL (3.2.6)

where SC is the constant part and SL is the linear part of the source term. Finally the volume
integral of the source term is computed in equation (3.2.7).

∫
Vc

S(φ)dV = SCVc + SLVcφP (3.2.7)

This approximation is second order accurate and is applicable in two and three dimensions
if φP is in the center of the cell.

3.2.3. Interpolation schemes

The solution is available only at computational nodes, i.e. center of the control volume. Face
values and face gradients are embedded in the equation discretization. Interpolation schemes
are therefore demanded to transform cell-center quantities to face centers. OpenFOAM offers
a wide range of options for interpolation schemes as well as gradient schemes (Greenshilds
and Ltd (2015)). The accuracy of FVM disretizations are mesh and discretization schemes
dependent. Due to the coupling mesh feature in this work, orthogonal meshes are required.
For bounded transport quantities, bounded differencing schemes are also indispensable.

For convection terms, a promising approach that guarantees boundedness of the solution
is the upwind differencing scheme. The idea is taking information from upstream. The
transportation property of the term specifies which point should be taken into account during
the interpolation (equation (3.2.8)). Therefore, the convective transport of φ only happens
downstream. It gives a bounded solution by reducing the accuracy. The leading error
resembles a diffusive flux using Taylor series expansion. Consequently, no oscillations appear
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in the result, but the solution is smeared on coarse meshes.

φf = max(F, 0)φP + min(F, 0)φN (3.2.8)

where F = (ρU)fSf and φN is the cell center value at N. When F > 0, it is a backward
difference scheme. Otherwise, it is a forward difference scheme when F < 0.

Discrete form of the diffusion term preserves boundedness on orthogonal meshes, which
implies vectors dPN and Sf are aligned to each other. The face normal gradient of φ can be
calculated by equation (3.2.9).

(∇φ)fSf = |Sf |
φN − φP

|dPN|
(3.2.9)

3.2.4. Treatment of boundary conditions

Numerical boundary conditions provides numerical treatment of conditions in the model.
These include three general boundary types in OpenFOAM: Dirichlet boundary condition,
Neumann boundary condition and Robin boundary condition. Implementation of these
boundary types are explained as follows.

Dirichlet boundary condition

A Dirichlet boundary condition specifies a value explicitly on the boundary patch by using
fixedValue in OpenFOAM as a dictionary entry.

φf = φref (3.2.10)

where φf denotes the face value and φref indicates the reference value.

Neumann boundary condition

A value on the boundary can be extrapolated by specifying the respective normal gradient
via a Neumann boundary condition.

φf = φc + ∆∇φref (3.2.11)

where φc gives the cell value, ∆ is the face-to-cell distance and ∇φref is the reference gradient
prescribed by either zeroGradient or fixedGradient in OpenFOAM.
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Robin boundary condition

Robin type boundary condition is a linear blend of Dirichlet boundary condition and Neu-
mann boundary condition by defining a weighted value fraction, thus a mixed entry type
is provided for OpenFOAM users. Face values are evaluated according to a function of
reference value and reference gradient.

φf = ωφref + φc + (1− ω)∆∇φref (3.2.12)

where ω is the value fraction between 0 and 1.

Besides numerical boundary conditions, physical boundary describe physical meanings in an
algebraic equation. For free surface cases, e.g. flooding events, the flow discharge is always
prescribed at the inlet boundary patch and the depiction of the flow depth at the inlet or
outlet boundary depends on the flow conditions.

3.3. Temporal discretization

Equation discretization contains two procedures: spatial and temporal discretization. When
the problem is time dependent, we must integrate the PDE in time as well. Assuming that
the control volumes do not change in time, temporal discretization of equation (3.2.2) over
a time step ∆t can be represented in equation (3.3.1),

(ρφ)n+1 − (ρφ)n

∆t
Vc =

∫ t+∆t

t

[L(φ)]dt (3.3.1)

where L(φ) denotes discrete terms containing full discretize convection, diffusion and source
term from (equation (3.2.4), (3.2.5) and (3.2.7)).

L(φ) = −
∑

f

(ρU)fφfSf +
∑

f

Γf(∇φ)fSf + SCVc + SLVcφP (3.3.2)

The RHS of equation (3.3.1) has to be computed using the time scheme, which defines how a
property is integrated as a function of time. The choice of time scheme is highly dependent
on the type of equations which you are solving. Various time schemes have been imple-
mented in OpenFOAM which can be categorized into explicit and implicit methods. Table
3.1 indicates the advantages and drawbacks of explicit and implicit methods.

The most well-known method is the Euler method, a first-order numerical procedure for
solving ordinary differential equations with a given initial value. In our work, different time
schemes are employed in the 2D and the 3 solvers, details will be discussed in the section of
each solver implementation.
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Explicit methods Implicit methods
time step small a wide range

cost per time step low high
stability conditionally unconditionally

Table 3.1: Comparison of explicit and implicit time schemes

3.4. Reynolds-Averaged Navier Stokes equations solver -
interFoam

The 3D solver interFoam is a standard OpenFOAM multiphase solver using the Volume of
Fluid method for capturing the interface of incompressible fluids.

3.4.1. Governing equations

Let us apply the turbulence model equation (2.1.10) into the momentum equation (2.1.9),
we get:

∂ūi

∂t
+ ūj

∂ūi

∂xj

= −1

ρ

∂p̄

∂xi

+
∂

∂xj
[(ν + νt)

∂ūi
∂xj

+
∂ūj

∂xi

] + f̄i (3.4.1)

where νt needs to be modelled in the second term on the RHS.

For each phase the normal component of the pressure gradient at a stationary inclined
wall is different under hydrostatic conditions. In OpenFOAM, a modified pressure variable
pd replaces the total pressure p to simplify the boundary condition description (Rusche
(2002)):

pd = p− ρg ·x (3.4.2)

where x is the position vector.

Substituting the equation (3.4.2) and getting rid of the constant fluid density, a vector
notation of the RANS equations can be expressed:

∇ ·U = 0 (3.4.3)

∂U

∂t
+∇ · (UU) = −1

ρ
∇pd − g ·x + (ν + νt)∆U + F (3.4.4)

with U is the notation form of fluid velocity and F is the notation form of the body
force, more specifically the gravity. The velocity vector here acts as a shared velocity of
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the two fluids which are water and air in most cases, and the interface is determined by
solving the transport equation of volume fraction indicator α1 introduced in the follow-
ing.

3.4.2. Volume of fluid method

In fluid dynamics, Lagrangian and Eulerian coordinates have been employed as the basis for
numerical solution algorithms. The selection of which coordinate system to use relies on the
characteristics of the problem to be solved. OpenFOAM uses Eulerian formulations for 3D
multiphase flow problems, in particular, problems where the discontinuities exist in one or
more variables that Lagrangian methods cannot be applied (Hirt and Nichols (1981)). As
mentioned in Rusche (2002), an indicator function, e.g. volume fraction, level set or phase
field, is used to represent the interface. The Volume of Fluid (VOF) method is a simple, but
powerful free-surface modelling technique. Based on the concept of a fractional volume of
fluid, it describes the shape and position of the interface. In OpenFOAM, the VOF model
was implemented by Rusche (2002) within the interFoam solver.

When defining the fluid state, it is customary to use only one value for each variable in
each cell of the mesh. The VOF method requires only one storage word for each mesh
cell, which is consistent with the storage requirements for all other dependent variables.
An indicator function of α1 (equation (3.4.5)) indicates the fractional volume of the cell
occupied by fluid whether a cell is full of fluid, the cell contained no fluid or some state in
between. The phase fraction α1 values within the range 0 < α1 < 1 must then contain a free
surface. Accordingly, gradients of the phase fraction are encountered only in the region of
the interface.

α1(x, y, z, t) =


0 air

1 water

0 < α1 < 1 both

(3.4.5)

The transport equation for the indicator function is solved simultaneously with the continuity
and momentum equations.

∂α1

∂t
+∇ ·α1u = 0 (3.4.6)

The physical properties (i.e. density and viscosity) of which fluids phase are also calculated as
weighted mixture based on the distribution of the liquid volume fraction:

ρ = ρwaterα1 + ρair(1− α1) (3.4.7)
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µ = µwaterα1 + µair(1− α1) (3.4.8)

where ρ and µ are density and dynamic viscosity respectively. Subscripts air and water
indicates the properties of the fluid as air (gas) and water (fluid) respectively.

According to Berberović et al. (2009), with respect to the conservation of the phase fraction,
problems may occur when the ratio of two fluids density is high. Small errors in volume
fraction α1 may lead to significant errors in calculations of physical properties such as surface
curvature and the corresponding pressure gradient. Moreover, the VOF method is highly
grid resolution sensitive. A numerical simulation with large grid sizes, the formation of small
bubbles or droplets are smaller than the minimum grid size will be ignored. Much research
has been conducted to overcome these difficulties, the most commonly way was formulated
by Weller (2002), introducing the artificial compression term as an extra term in the equation
(3.4.6).

∂α1

∂t
+∇ ·α1u+∇ ·urα1(1− α1) = 0 (3.4.9)

The third term on the LHS of equation (3.4.9) is then the artificial compression term with
ur the relative velocity between the two fluids (air and water). u is the average velocity of
the two fluids calculated by:

u = α1uwater + (1− α1)uair (3.4.10)

The multi-dimensional limiter for explicit solution (MULES) scheme has been used for solv-
ing equation (3.4.9) as a very effective method of guaranteeing boundedness of α1.

3.4.3. Pressure-velocity coupling

Because the pressure field is unknown as well as the three velocity components, there are
four unknowns in only three equations. Furthermore, due to the quasi-linearity and the
interdependence between the velocity U and the pressure p, the momentum equations can
hardly be solved. A special numerical technique is required for solving this inter-equation
coupling which is called the pressure-velocity coupling.

Fortunately for incompressible flow, the pressure field does not affect the flow continuity,
the mass conservation is thus used to derive an additional condition for the pressure field.
The idea is to make use of the continuity equation to get rid of terms and end up with the
pressure Poisson equation.

Calculation of the pressure gradient is necessary. One way to get the pressure gradient of
a control volume is interpolation from the face values, which will lead to checker-boarding
problem on a uniform grid. In order to avoid this unphysical pressure field appearing in any
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situation, OpenFOAM uses Rhie-Chow correction (Ferziger and Peric (1996)).

Algorithms of dealing with the pressure-velocity coupling can be either simultaneously or in
sequence. The former one also called the direct-coupled solver, is resource-demanding. It
solves the equation system simultaneously over the whole domain which is more applicable
under the small number of computational points simulations and is unaffordable for large
cases. For speeding up the simulations, the later one is commonly put into practice called
the segregated approach.

In the segregated approach, we keep all other variables constant for solving each unknown
quantity. The solving equations will be done sequentially which means the velocity field will
be solved first and then is the pressure field. In addition, the solution of the procedures
above should satisfy the mass conversation and the given boundary conditions. The stan-
dard solution algorithms for pressure-velocity coupling in OpenFOAM are listed:

• SIMPLE: Semi-Implicit Method of Pressure Linked Equations that are used for steady
state cases (Patankar (1981)).

• PISO: Pressure Implicit of Split Operations that more preferred in transient situations
with a limited time step (Issa (1986)).

• PIMPLE: a PISO and SIMPLE combination that allows user to apply bigger time-step.
It also supports partial convergence of intermediate iterations.

Realization of PISO algorithm in OpenFOAM

interFoam solver is capable to solve the general free surface problems including transient cal-
culation thus the PISO procedure is used for the pressure-velocity coupling. PISO was devel-
oped originally for non-iterative computation of unsteady flow.

It involve one predictor step for U, p and two corrector steps, which can be also defined as
a SIMPLE plus a further corrector step.

Figure 3.3 indicates the PISO algorithm splitting the operators into an implicit predictor
and multiple explicit corrector steps. In every time step, it involves one predictor for U and
two correctors for U, p. The velocity field is corrected and updated explicitly. The point
of the corrector step is to make the corrected velocity field divergence free to satisfy the
continuity equation. PISO algorithm is robust and effective that within a very few corrector
steps a desired accuracy is obtained.

3.4.4. Time integration

Systems of PDE in the 3D solver are treated in the segregated way due to the inter-equation
coupling. For instance, the VOF solver MULES solving the transport equation of α1 with its
very strict limit on time-step. And both implicit and explicit manners have been presented
in the PISO loop. Therefore, an explicit time integration scheme is actually employed in the
3D solver .
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Figure 3.3: PISO loop in interFoam

As an explicit method, the estimation of a new time value is based on the rate of change at the
current time value. The explicit Euler time scheme of equation (3.3.1) can be reformulated
as:

(ρφ)n+1 = (ρφ)n +
∆t

Vc

L(φ)n (3.4.11)

The consequence of this method is that all terms on the RHS of equation (3.4.11) depend
only on current values. The new time value of φ can be calculated directly. With respect
to the convergence and stability of numerical schemes, the Courant number was addressed.
Equation (3.4.12) defines the Courant number, which is the ratio between the propagation
speed u and the gird travelling speed ∆x

∆t
. It measures how much information traverses a

computational grid cell in a given time-step.

Co =
∆t

Vc

U (3.4.12)
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The Courant-Friedrichs-Lewy (CFL) condition name after Courant et al. (1928) is the max-
imum allowable Courant number that a time-integrator can use. In dealing with the explicit
Euler method, time step lengths have to be fitted such that the CFL number should be
smaller than one regarding to equation (3.4.12), otherwise the simulation diverges and the
model will blow up.

3.4.5. interFoam solution procedure

After the computational domain is created, interFoam is applied to solve the problem nu-
merically. Simulation set up in OpenFOAM for interFoam solver is detailed in appendix
B. A flow chart of the solution procedure is displayed in figure 3.4. It starts with initial
conditions, combing with the required CFL number a new time step is calculated. Then
the transport equation for the indicator function α1 is solved. The PISO loop comes after
getting the pressure pd and the velocity U . Turbulent model is computed in the next step.
The simulation will stop only when the final time is reached. The sub-parts enclosed by a
dashed-line frame is briefed as 3D solver part, named Solve 3D regions, in the coupled
solver.
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Figure 3.4: Solution procedure in interFoam
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3.5. Shallow Water equations solver -
shallowFoam

SWE are widely used in large-scale open channel simulations and the results are proved to be
close to reality. Chair of Hydromechanics at Technical University of Munich developed the
2D solver shallowFoam under OpenFOAM environment Mintgen (2017). It solves the depth-
averaged 2D shallow water equations which consist of the continuity equation (2.2.22) and the
momentum equations (2.2.23). Bottom friction and eddy viscosity have been implemented
to represent bottom shear stress.

3.5.1. Bottom friction modelling

The bottom friction is modelled under the assumption of horizontally uniform and steady
flow. Therefore, equation (2.2.23) becomes:

τBxi

ρ
= gh

∂Zbi

∂xi

(i = 1, 2) (3.5.1)

Manning’s empirical formula relates the cross section average velocity u (u =
√
u2

i + u2
j )

[m · s−1] of open channel flow with the hydraulic radius Rh, the empirical roughness coeffi-
cient n and the slope of the energy head line I. The Manning formula gives as (Manning
(1981)):

u =
1

n
R

2/3
h I1/2 (3.5.2)

When the flow depth keeps constant in a rectangular open channel shallow flow, the slope of
the energy head line equals to the slope of the channel I = −∂Zbi

∂x
and the hydraulic radius

can be simplified to the flow depth Rh ≈ h .

ui = − 1

n
h2/3(

∂Zb

∂xi

)1/2 (i = 1, 2) (3.5.3)

The expression for calculating the bottom stresses is obtained by substituting the slope term
in equation (3.5.3) into the equation (3.5.1):

τBxi

ρ
= u2

i g
n2

h1/3
(i = 1, 2) (3.5.4)

The Strickler coefficient kst [m1/3 · s−1] is introduced by definition kst = 1
n

and is used in
shallowFoam. The coefficient kst varies from 20 (rough stone and rough surface) to 80
(smooth concrete and cast iron). Since the direction of the bottom stresses are against
the flow direction, the velocity vector not only contains the magnitude value but also with
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the direction information. The bottom stresses modelling by means of Strickler-equation is
therefore:

τBxi

ρ
= ui |u| g

n2

h1/3
(i = 1, 2) (3.5.5)

3.5.2. Eddy viscosity model

Turbulence feature is captured by an eddy viscosity model. The mean shear stress has both
viscous (first term on the RHS) and turbulent (second term on the RHS) parts defining in
equation (3.5.6).

τij

ρ
= ν

∂〈ui〉
∂xj

− 〈uiuj〉 (3.5.6)

Under the eddy viscosity hypothesis the Reynolds stresses are assumed to be proportional to
the mean velocity gradients in a manner analogous to viscous stress.

−〈uiuj〉 = νt
∂〈ui〉
∂xj

(3.5.7)

The kinematic eddy viscosity νt is a hypothetical property of the flow that must be modelled.

The mean shear stress now becomes:

τij

ρ
= (ν + νt)

∂〈ui〉
∂xj

(3.5.8)

The friction velocity u∗ is introduced to describe shear-related motion in moving fluids. It
characterizes the shear at the boundary and defined on the basis of the wall shear stress. In
turbulent flows, a scaling parameter for velocity fluctuating component is often represented
by u∗.

u∗ =

√
τBxi

ρ
(3.5.9)

In most of shallow water flows Re is very high thus the viscous term in equation (3.5.6)
is negligible compared to turbulent stress because of νt � ν. νt varies in position. The
turbulent boundary layer over roughness elements within a high Re is classified into three
sub-layers that the eddy sizes are scaled with different parameters:

• Roughness sublayer: Eddy size ∼ roughness size r

• Logarithmic region: Eddy size ∼ distance from the boundary z
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• Outer region or a full-turbulent layer: Eddy size ∼ flow depth h

Above the sub-layer, the mean velocity can be correctly approximated by the logarithmic
profile H.Tennekes and Lumley (1972). The profile shape depends both on the bed stress
(through u∗) and also on the bed texture. The resulting parabolic eddy viscosity formula is
implemented in shallowFoam:

νt = Cνu
∗h (3.5.10)

where the viscosity coefficient Cν equals 0.7.

3.5.3. Time integration

shallowFoam uses the implicit Euler time scheme, which is the default time scheme in Open-
FOAM. The new time values of variable are taken instead of the current time values compared
to the explicit method. Equation (3.3.1) then becomes:

(ρφ)n+1 = (ρφ)n +
∆t

Vc

L(φ)n+1 (3.5.11)

This method leads to the necessity of solving the system of an algebraic equation for the
unknown, which can be very expensive because not only a few more iterations are required
to converge the nonlinear problem but also at each iteration the linear matrix problem needs
to be solved. In this way, the implicit Euler method is unconditionally stable even with large
time-step. However, due to the order of accuracy in time, large time-step gives rise to low
accuracy.

3.5.4. shallowFoam solution procedure

Similar to the 3D solver, the solution procedure is outlined in figure 3.5 where the dashed
line frame surrounds the 2D solver part in the coupled solver. Although an implicit time
scheme is applied, a CFL number can be specified as well to calculate the corresponding
time step. Comparing to the explicit scheme, a larger CFL can be prescribed in order to set
a larger time-step. Simulation set up for shallowFoam solver can be also found in appendix
B.

3.6. Hybrid solver -
shallowInterFoamOL

The coupled solver shallowInterFoamOL has been implemented in OpenFOAM by merg-
ing the 2D Shallow Water solver shallowFoam with the 3D Navier-Stokes solver inter-

Foam. Coupling between different solvers can be achieved by means of coupling environ-
ment.
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Figure 3.5: Solution procedure in shallowFoam

3.6.1. General coupling environments

Many coupling structures are available nowadays which offer a wide usage of applications to
users. Users take advantage of these software to couple the desired solvers for some specific
problems. Some of them will be exemplified in the following.

preCICE coupling framework

Under the development corporation of the Technical University of Munich and the Uni-
versity of Stuttgart, an open-source plug-and-play coupling library preCICE framework is
exhibited in figure 3.6. Such coupling framework preCICE which stands for Precise Code
Interaction Coupling Environment is available to couple the multi-physics simulations such
as fluid-structure interaction problems and conjugate heat transfer simulations that can be
applied by different existing solvers (e.g. OpenFOAM, SU2, or CalculiX) (Bungartz et al.
(2016)). With the help of the adapters, the solvers communicate, map data and couple
via the preCICE process. It is an implicit coupling which means each solver will work in-
dependently and communicate not only at the coupling boundary or the interface but also
at a given time stamp. In this manner, it permits high flexibility with different scenar-
ios.
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Figure 3.6: preCICE overview (Bungartz et al. (2016))

DLR’s coupling module

The DLR’s Institute of Aerodynamics and Flow Technology in Brunswick has developed a
coupling module which enables two flow solvers coupling with arbitrary spatial and temporal
discretization (Schwarz et al. (2010)). Independent meshes communicates at the common
boundaries and flow variables of each flow solver exchange through these interfaces based on
Chimera interpolation.

A two-way hybrid RANS-LES approach of the LES code from MGLET (Manhart (2004))
and the RANS code from TAU (Keye (2011) has been introduced using such coupling en-
vironment for overlapping meshes to estimate the gust effect on aircraft wake vortices by
Stephan et al. (2017). The RANS domain is moving through the LES domain and both
domains exchange flow data at the interfaces.

Fluid-Structure coupling

Most commonly, the Computational Structural Dynamics (CSD) problems and the CFD
problems are solved separately in reference to different governing equations. For the fluid-
structure interaction (FSI) problems, coupling at interfaces of fluid and structural domains
is the typical approach.

In Apostolatos (2019) doctoral dissertation, a novel isogeometric mortar-based mapping
method has been applied to couple the fluid and structural problems. The partitioned
FSI simulation has been conducted by coupling an Isogeometric Analysis (IGA) structural
model and a FVM fluid model (OpenFOAM). The coupling has been achieved by solving the
fluid model as a Dirithlet problem with respect to the solution of the structural model; and
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solving the structural model as a Neumann problem depending on solution of the fluid model.

Such partitioned FSI approach offers best-suited specialized solution schemes for fluid and
structural fields independently. The aforementioned mapping method and the coupling
methodology have been both implemented in the open source software EMPIRE (Enhanced
MultiPhysics Interface Research Engine).

3.6.2. OpenFOAM coupling environment

OpenFOAM itself provides several approaches for problems of interest (Bungartz et al.
(2018)).

• Framework approach allows two different regions governed by two different solvers.
Everything can be implemented inside the OpenFOAM and only OpenFOAM solver
can be coupled. Each sub-solver works sequentially depending on boundary conditions
computed from the other sub-solver.

• Master-Slave approach, however, enables the OpenFOAM solver to call external
solver library that a non-OpenFOAM solver can be coupled within this approach.

• In Files-based approach each sub-solver solves independently and communicates
only at the coupling time-step during the whole simulation. Additional script for
setting up are necessary.

• If every solver calls an external library, the Server library approach can be applied.
These solvers do not communicate directly which makes them flexible to be coupled.

Both interFoam and shallowFoam are OpenFOAM solvers, the framework approach of
OpenFOAM has been chosen in the present coupled solver. Each solver has its target
solving regions (meshes) as demonstrated in figure 3.7. Implementation of 2D and 3D
solvers has been rearranged in the corresponding sub-regions and custom boundary con-
dition types have been investigated to transfer the information between each sub-solver.
In addition, region pointers has to be defined which combing the sub-regions and the sub-
solvers.

3.6.3. shallowInterFoamOL solution procedure

Figure 3.8 presents the solution procedure in the coupled solver using the staggered solu-
tion procedure (Felippa (2001)), which the previous 3D solution is used to update the 2D
boundary and the new 2D solution is then used as a boundary condition factor to the 3D
domain.

The coupling algorithm proposed by Mintgen (2017) and Mintgen and Manhart (2018) is
used in this work as a reference, the resulting solver is named shallowInterFoam. It uses
combinations of Dirichlet-Neumann boundary conditions at the 2D-3D interface depending
on the flow situations. A different approach is developed in this study which overlaps sub-
domains allowing Dirichlet conditions regardless of flow conditions (i.e. supercritical flows or
subcritical flows), yields shallowInterFoamOL. Fully explanation of both coupling methods
will be detailed in chapter 4.
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4. Development of a new 2D-3D
coupling algorithm

A coupling algorithm generally requires domain decomposition regarding the mesh struc-
ture and the coupling method. The whole computing domain is decomposed into a set of
sub-domains in which regions for 2D and 3D sub-domains are governed by corresponding sub-
solvers. Solutions at the common region or interface from sub-solvers are then exchanged and
updated via the coupling method. This chapter develops a new 2D-3D coupling algorithm
for the coupled solver shallowInterFoamOL. Several coupling algorithms will be introduced
to better explain the development procedure.

These coupling algorithms use different coupling methods and mesh structures, while they
share the same mapping functions between 2D and 3D flow quantities implemented by Mint-
gen (2017). Section 4.1 will focus on these mapping functions.

The characteristics-based coupling algorithm proposed by Mintgen (2017) will be explained
first in section 4.2 as the starting point of this work. Due to its main drawback in upstream-
travelling wave capture, three ad-hoc modifications were tested and will be described in
section 4.3. Finally, an improved coupling algorithm using the overlapping method which
overcomes the aforementioned fault was developed and will be detailed in 4.4.

Each coupling algorithm mentioned in this chapter will be further tested in a simple case
to show their performance in an upstream positive surge travelling over an approaching
supercritical flow. Results of the upstream-travelling surge from 5 - 20 [s] simulated by each
coupling algorithm will be compared with the fully 2D and 3D simulations. 2D simulation
results are from now on denoted as 2D and 3D simulation results are from now on denoted
as 3D. Full details of the test case and more results will be given in section 5.2 of chapter
5.

4.1. Flow quantity mappings between 2D and
3D

In accordance with the governing equations of each sub-solver, three variables in the 3D
sub-solver (i.e. u, α1 and pd) and two variables in the 2D sub-solver (i.e. h and hu) have to
communicate. The flow discharge information u and α1 interrelate with hu, while α1 and pd

are related with h to represent the flow depth. Moreover, turbulent parameters in the 3D
sub-solver shall be coupled as well. The k−ω SST turbulence model was implemented in the
coupled solver with two turbulent parameters: the turbulent frequency ω and the turbulent

44
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kinetic energy k.

Solutions from one sub-solver cannot be read and recognised directly by the other one, and
vice versa. Therefore, mapping functions for data transfer must be determined. As described
in appendix C, meshes in OpenFAOM are constructed differently for the 2D and 3D solvers.
In the vertical direction of the mesh, 2D meshes have only one cell while 3D meshes consist
of multiple cells. As a consequence, the 3D data are integrated over the cells column and
passed to the 2D region, while the 2D data are redistributed into the 3D cells. The mapping
diagrams between each sub-solver are demonstrated in figure 4.1, and will be elaborated in
the following.

2D region 3D region
𝛼1, 𝑢

𝛼1, 𝑢

𝛼1, 𝑢

𝛼1, 𝑢

𝛼1, 𝑢

𝛼1, 𝑢

ℎ = 𝑓(𝛼1)

ℎ𝑢 = 𝑓(𝛼1, 𝑢)

a: From 3D to 2D

2D region 3D region

ℎ, ℎ𝑢

𝛼1 = 𝑓(ℎ)

𝑢 = 𝑓(ℎ, ℎ𝑢)

𝑝d = 𝑓(ℎ)

𝑘 = 𝑓(ℎ)

𝜔 = 𝑓(ℎ)

b: From 2D to 3D

Figure 4.1: Mapping diagrams between 2D and 3D flow quantities

4.1.1. Mapping functions

Since the cell height of a 2D cell is irrelevant, therefore the mesh information is considered
only in 3D regions. Axy is the area of a horizontal face. ∆z is the single cell height and zc

is the center elevation of the cell / face (depending on the coupling algorithm used).

In order to better depict the mapping approach, variables for 3D and 2D regions are denoted
with corresponding superscriptions (i.e. 3D and 2D). As displayed in table 4.1, these variables
are sorted to two categories: inner variables, which are solved by the sub-solver inside the
sub-region; and mapping variables, which are calculated after inner variables are solved and
then mapped to the neighbour sub-region. zb is the bottom elevation and zw is the absolute
water level.
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Category 2D variable 3D variable

Inner

h2D α3D
1

hu2D u3D

u2D p3D
d

z2D
b k3D

z2D
w ω3D

- z3D
b

Mapping

α2D
1 (zc) h3D

u2D(zc) hu3D

p2D
d z3D

w

k2D(zc) -

ω2D(zc) -

Table 4.1: Computing variables in 2D and 3D regions

Calculated flow depth from 3D regions (h3D)

Cell height may change along the 3D cell column, thus the flow depth in 3D region h3D can be
obtained by integrating the VOF indicator α3D

1 over the cell column.

h3D =

∫
α3D

1 d∆z (4.1.1)

Calculated discharge from 3D regions (hu3D)

Multiply the flow depth by the velocity gives the discharge. Since the 2D solver requires the
specific discharge, the calculated discharge from 3D regions should be further divided by the
cell surface in horizontal directions.

hu3D =

∫
u3Dα3D

1 d∆z

Axy

(4.1.2)

Calculated interface indicator from 2D regions (α2D
1 (zc))

The location of the water surface is required to assess the interface indicator. The water sur-
face in 2D regions is the sum of the flow depth and the bottom elevation:

z2D
w = z2D

b + h2D (4.1.3)
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If a water surface from 2D side is greater than the top face of a 3D cell, this 3D cell is
then fully submerged by the water; if the water surface is lower then the bottom face of a
3D cell, this 3D cell contains no water; otherwise, there is an interface in this 3D cell. The
volume fraction of a cell contains an interface nor not are calculated via a linear interpolation
prescribed in equation (4.1.4).

α2D
1 (zc) =


0 z2D

w < zc − 0.5∆z

1 z2D
w > zc + 0.5∆z

z2D
w −zc
∆z

+ 0.5 other

(4.1.4)

Calculated 3D velocity profile from 2D regions (u2D(zc))

Velocities are combined with interface indicators to represent the flow discharge in 3D do-
main. Flow velocity transferring from 2D to 3D should take special care due to different
velocity profiles are employed in 2D and 3D sub-solvers. As demonstrated in figure 4.2, 2D
model uses a mean velocity profile calculated by equation (4.1.5) where the flow velocity
remains constant over the flow depth.

𝑧c

𝑧b 𝑢(𝑧c)

2D region 3D region

𝑧c

Figure 4.2: Velocity profiles in 2D and 3D sub-solvers respectively

u2D =
hu2D

h2D
(4.1.5)
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3D model applies a fully developed logarithmic profile in the flow velocity to avoid high
velocity gradient near the bottom due to the wall shear stress. A logarithmic velocity
profile given in equation (4.1.6) is a function of the depth-averaged velocity (ū), the fric-
tion velocity (u∗) and the flow depth (h). The friction velocity is defined in equation
(3.5.9).

u(z) = ū+
u∗

κ
(1 + ln(

z − zb

h
)) (4.1.6)

with von-Karman’s constant κ = 0.41 and the vertical position z.

The depth-averaged velocity (ū) can be substituted by the 2D mean velocity (u2D). The
friction velocity (u∗) is obtained from the deviatoric stress tensor at the bottom patch
as the effects of variations of ν, which is solved from the 3D sub-solver. The flow depth
can be easily taken from the 2D result h. The relative vertical position can be expressed
by the difference between the present cell center position and the bottom elevation (zc −
z3D

b ).

u2D(zc) = u2D +
u∗

κ
(1 + ln(

zc − z3D
b

h3D
)) (4.1.7)

Velocities formulated by using equation (4.1.7) give an overall fitted velocity profile with no
mass conservation guarantee. The flow discharge enclosed by velocity profiles indicated in fig-
ure 4.2 should be equal in both regions. However, the imposed discharge from 2D to 3D calcu-
lated via equation (4.1.8) differs from the 2D discharge hu2D.

hu2D(zc) =

∫
u2D(zc)α

2D
1 d∆z

Axy

(4.1.8)

Therefore a mass flux corrector β is introduced to express a rate of difference between these
two flow discharges. In equation (4.1.9) velocities are corrected by multiplying itself with
the corrector factor resulting in new velocities. New velocities are used again to calculate
the updated corrector and the checking process will be repeated until a mass conservation
is met.

βi =
hu2D

hu2D(zc)
(i = 1, 2) (4.1.9)

u2D(zc) = βu2D(zc) (4.1.10)

Another special treatment for velocity field is to keep the velocity gradient between the air
and the water phase is as mall as possible so that the maximum velocity in the water is
taken as a reference to set the air velocity.
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Calculated pressure from 2D regions (p2D
d )

The pressure term is calculated as a hydrostatic pressure, where the density is the averaged
density of the water and the air in 3D region (equation (3.4.7)).

p2D
d = ρgz2D

w (4.1.11)

Calculated turbulence parameters from 2D regions (k2D(zc) and
ω2D(zc))

Turbulence parameters, the turbulent kinetic energy k and the turbulent frequency ω, are es-
timated by imposing different profiles of k and ω. More details please refer to Mintgen (2017).

A slightly modified k profile is given in equation (4.1.12) which is originally taken from Nezu
and Nakagawa (1993).

k2D(zc) = 4.0(u∗)2e−1.7zc/h2D

(4.1.12)

An own power-law has applied to express ω in equation (4.1.13).

ω2D(zc) =
6.0(u∗)(zc/h

2D)13/10

h2D
(4.1.13)

4.1.2. Negative flow depth

Flow quantities are mapped from cells to cells based on these mapping functions. However,
for coupling algorithms exchanging the data via the 2D-3D interface, the mapped values
need to be interpolated at the interface. A linear interpolation scheme was applied in the
characteristics-based method.

According to equation (4.1.7), the reference flow depths along the 3D column are required
to produce the 3D velocity profile. The reference flow depth href is determined by (zc−z3D

b ),
where zc is the face center elevation at the interface on 3D side and zb is the bottom elevation
at the interface. Theoretically, the bottom elevation at the interface from the 2D side
zb(Γ2D) equals to the 3D side zb(Γ3D). Within the code implementation, h3D

ref is determined
by equation (4.1.14).

h3D
ref = zc − z2D

b (Γ2D) (4.1.14)

However, due to high irregular terrains in realistic cases, no exact value of bottom elevations
will be prescribed at the boundary. Instead, a zero gradient interpolation scheme are more
likely to be taken place resulting in z2D

b (Γ2D) = z2D
b , where z2D

b is the bottom elevation of
the neighbour 2D cell of the 2D interface). Therefore, in cases where 2D region is located
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at a higher elevation than 3D region, a negative flow depth will be obtained, resulting in
mathematical error in equation 4.1.7.

For example, figure 4.3 illustrates a problematic situation that the first lowest face center
elevation at the 3D interface zc is smaller than z2D

b , h3D
ref is then negative. This potential risk

is avoided in the overlapping method.

𝚪𝟑𝐃𝚪𝟐𝐃

x,y

z

𝑧b
2D(𝚪𝟐𝐃)

𝑧b
3D(𝚪𝟑𝐃)

𝑧b
2D

𝑧b
3D

𝑧b
2D(𝚪𝟐𝐃) = 𝑧b

3D(𝚪𝟑𝐃)

𝑧b
2D > 𝑧c

ℎref
3𝐷=𝑧c − 𝑧b

2D 𝚪𝟐𝐃
=𝑧c − 𝑧b

2D

< 0𝑧c

Figure 4.3: A problematic example of bottom elevation calculation

4.2. Characteristics-based algorithm

The multiple-regions problem with the non-overlapping mesh was implemented within the
coupling framework provided by OpenFOAM by means of the well-known Dirichlet-Neumann
domain decomposition method (Quarteroni and Valli (1999)). This method exchanges the
information through the interface (the common boundary) between regions based on the
characteristics of the flow information transfer directions. Tested results from this coupling
algorithm will be noted as CB 2D3D. More details of this method can be found in Mintgen
(2017).

4.2.1. Mesh representation

In the context of the domain decomposition method, the global domain Ω is subdivided
into a number of non-overlapping smaller sub-domains: in figure 4.4 (a), Ω2D represents the
2D region and Ω3D represents the 3D region. The common boundary Γ connected to each
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region is denoted as the interface at the 2D side Γ2D and the interface at the 3D side Γ3D.
Neighbouring regions communicate through the interface Γ2D and Γ3D therefore the mesh
structure should be matched at the interface in a way that information from both sides can
be transferred correctly.

As a consequence of the difference in structure of the 2D and 3D meshes, the meshes must
match horizontally but not vertically. In contrast with 3D meshes representing the real ge-
ometry of the domain, 2D meshes are built by cuboid cells with an unit height (the default
value is 1 [m]) and the boundaries normal to the z-direction (i.e. top and bottom) are totally
flat. Figures 4.4 (b) and (c) outline the setting up of the coupling meshes, indicating that
the adjacent cells have to match only in the xy-plane. Information transfer in the vertical
dimension takes place by means of the spatial interpolation from Ω3D to Ω2D and the redis-
tribution from Ω2D to Ω3D.

4.2.2. Types of boundary condition

The coupling was achieved by exchanging flow variables depending on the respective con-
ditions. The Dirichlet-Neumann coupling is employed, based on an exchange of values and
fluxes at the 2D-3D interface. When the information is entering the domain from the outside,
the Dirichlet boundary condition is applied; that a defined value has to be specified explicitly
to the boundary. In contrast, when the information is leaving the domain, the value at the
boundary can be extrapolated by imposing the respective normal gradient on the boundary
via the Neumann boundary condition. Hence the information transfer is always going from
the side of the interface with the Neumann condition to the side with the Dirichlet condition.

In OpenFOAM the Dirichlet-Neumann boundary condition is controlled by a weighted frac-
tion value ω resulting in a mixed boundary condition. Equation (4.2.1) defines the mixed
boundary function for the target cell (the left cell in figure 4.5) and parameters are identified
in figure 4.5. Two adjoint cells are connected via the common face, where the target face
value Φf is determined. Φc is the cell center value taken from the target cell, Φref is the
reference cell value taken from the neighbouring cell, Φ

n ref
is the reference gradient between

Φc and Φref , ∆dc and ∆dref are distances from the cell center to the face center in the target
cell and the neighbouring cell respectively.

Φf = ω ·Φref + (1− ω) ·Φc +
Φ

n ref
·∆dc (4.2.1)

where,

Φ

n ref
=

Φref − Φc

∆dref + ∆dc

(4.2.2)

In the context of the implementation, the face value is the value at the interface denoted by
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c: Coupling mesh side view

Figure 4.4: Non-overlapping coupling mesh representation

Φif , cell values are taken from the cells next to the interface, i.e. Φ2D and Φ3D. ω is one for
the Dirichlet boundary condition and is zero for the Neumann boundary condition.

By using the non-overlapping mesh, two regions are bounded by the interfaces which are
highlighted in red as shown in figure 4.6. Under the circumstances of subcritical flow from
Ω3D to Ω2D, the flow depth is controlled by the hydrostatics pressure from downstream,
therefore the pressure term is prescribed from z2D

w which means a Dirichlet boundary condi-
tion is adopted to the pd and a Neumann boundary condition is applied to α1.

The Dirichlet-Neumann approach used in the coupling algorithm demands the information
transferring directions, which is not only dependent on the flow directions but is also related
to the flow conditions. Based on the flow direction from one region to the other and the
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∆𝑑c ∆𝑑ref

Φc ΦrefΦf Φf

Figure 4.5: Sketch of neighbouring cells

flow condition characteristics, four general sub-cases were considered during the coupling:
subcritical flows from Ω2D to Ω3D, supercritical flows from Ω2D to Ω3D, subcritical flows from
Ω3D to Ω2D, and supercritical flows from Ω3D to Ω2D. The flow condition and direction at
the interface is determined by the Froude number Fr, which is calculated at the interface
using the interpolated values from both regions (equation (4.2.3)). The flow is supercritical
if |Fr| > 1 and when |Fr| < 1 the flow is subcritical. Meanwhile, the velocity normal vector
n is considered to determine the flow directions, Fr > 0 represents an outflow and Fr < 0
implies an inflow.

Frif =
(u2D∆d3D + u3D∆d2D) ·n√
g(h2D∆d3D + h3D∆d2D)

(4.2.3)

4.2.3. Hydraulic jump blocking

This coupling algorithm works well in most configurations. However, a problem may arise
when the flow condition changes from supercritical to subcritical (e.g. hydraulic jump) espe-
cially in cases where a steep gradient wave front of back water is developed (e.g. the positive
surge towards upstream). Such an upstream-travelling hydraulic jump passing through the
2D-3D interface cannot be properly modelled in this implementation. The tested example
from the section 5.2 is displayed in figure 4.7. A fully closed outlet is set up for the outlet
boundary based on a steady state supercritical flow condition. The back wave is then gen-
erated at the outlet and transfers upstream. Results from 5 - 20 [s] show the blockage of the
upstream-travelling wave at the interface located at x = 50 [m] where the flow depth keeps
increasing in the 3D region, while the purely 2D and 3D waves advance through the interface.

A hydraulic jump occurs when a supercritical flow and a subcritical flow meet. The reason
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Figure 4.6: Transfer variables of four coupling flow situations in exchange boundary conditions
coupling

why the upstream-travelling hydraulic jump fails to pass the 2D-3D interface is the sudden
change of the flow conditions from the supercritical to the subcritical. The flow is under
the supercritical condition at the beginning of the simulation, the Neumann boundary con-
ditions are employed at the upstream side interface and the Dirichlet boundary conditions
are applied to the downstream side interface. After the surge is produced downstream, the
flow condition changes to the subcritical and the flow depth is no longer controlled by the
upstream but by the downstream due to the subcritical flow feature.

Unfortunately, the back wave transfer stops at the coupling interface as the code does not
detect the flow condition change. A characteristic of the supercritical initial flow condition
is that, both discharge and flow depth in the cells next to the interface in the downstream
region are imposed from the cells next to the interface in the upstream region. No information
passes on from the downstream side and values for calculating Frif are not updated from the
back wave. Consequently, the calculated Frif is still larger than 1 at the interface resulting
in a supercritical flow condition. In other words, flow quantities at the interface are always
assigned from the upstream side to the downstream side.
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Figure 4.7: Surge travelling upstream at 5 - 20 [s] with 2D, 3D and CB 2D3D simulations

4.3. Tested ad-hoc modifications

During the development, some modifications were made as-needed to solve the hydraulic
jump blocking problem with the characteristics-based method. Despite the fact that these
ad-hoc tests turned out not to work, they helped to clarify the problem in a sense. These
interim tests were all implemented based on the the non-overlapping mesh structure as the
characteristics-based method.

4.3.1. Ad-hoc solution 1: Dirichlet boundary condition at
interface

The first idea to overcome the hydraulic jump blocking uses Dirichlet boundary conditions
for flow depth terms in both supercritical and subcritical flows, so that the increased hy-
draulic jump depth should be updated at the 2D interface. However, this does not improve
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the results of the characteristics-based method. Another idea to capture the back wave
is using Dirichlet boundary conditions also for flow rate terms in all flow conditions, such
that the wave information from downstream can be imposed on the upstream side of the
interface. The surge wave is generated because of a sudden change of discharge; for this
reason, only enforcing a specific flow depth at the interfaces will not correctly yield the wave
information transfer. Dirichlet boundary conditions for discharge are then set regardless of
the flow direction. As a result, all flow quantities use Dirichlet boundary conditions at both
interfaces. To continue the simulation, the solution from the previous time to the new time,
three general steps need to be performed. First of all, cell values will be computed at time n.
Secondly, boundary values will be determined depending on cell values. Finally, cell values
at the new time n+1 can be calculated.

𝚪𝟐𝐃

ℎⅈf
n+1 = ℎ3D

ℎ𝑢ⅈf
n+1 = ℎ𝑢3D

Step 1: solving the SWE in 2D region at time n

Step 2: updating interface values from 3D region

Step 3: calculate interface values at time n+1

ℎM−1
n

ℎ𝑢M−1
n

ℎM
n

ℎ𝑢M
n

ℎⅈf
n+1 = 𝑓(ℎM−1

n , ℎM
n )

ℎ𝑢ⅈf
n+1 = 𝑓(ℎ𝑢M−1

n , ℎ𝑢M
n )

Step 4: solving the SWE in 2D region at time n+1

Flow direction

Figure 4.8: Solution procedure in 2D region for one time step

However, on the basis of applying the upwind scheme for the convective terms in the 2D
sub-solver, flow information is propagated in a stream-wise manner. If Ω2D is located further
upstream than Ω3D, problems may occur. A complete solution procedure in Ω2D from time n
to time n+1 is listed in figure 4.8. Quantities of interest (h and hu) for every cell are solved
at time n. After that, an additional step (step 2) is performed as a part of the coupling
algorithm, in which 2D interface values will be assigned from 3D values. Then all boundary
values including the 2D interface values will be calculated by the 2D sub-solver (step 3). Cell
values combined with boundary values are then used to program the new time step values.
When the flow travels from Ω2D to Ω3D, step 2 and step 3 conflict that all imposed data from
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3D sides will not give a smart impact on the upstream field during the simulation. Thus,
the back wave information is still missing in Ω2D.
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Figure 4.9: Surge travelling upstream at 5 - 20 [s] with 2D, 3D and DBC 2D3D simulations

As illustrated in figure 4.9, a similar behaviour is expressed as in figure 4.7; the back wave
fails to pass the interface. Results from the present ad-hoc coupled solver is noted as DBC

2D3D.

4.3.2. Ad-hoc solution 2: Discontinous wave
correction

The hydraulic jump can be classified as a stationary hydraulic jump or a the moving hy-
draulic jump: The phenomenon that the flow transitions from the rapidly flowing water to
the slowly moving water is termed the stationary hydraulic jump. The moving hydraulic
jump also called the tidal bore when an obstacle is suddenly introduced against the wa-
ter flowing downstream. Hydraulic jumps cause energy losses which means the momentum
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equation is used instead of the energy equation in the analysis. In the open channel unsteady
rapidly varied flow, the discontinuous wave is an important feature. Depending upon the
substantial large change in the flow rate in a short time, the flow depth in the open channel
changes abruptly, which produces a surge travelling in the upstream or the downstream di-
rection. This kind of surge shows a discontinuity of the water surface. Typical examples of
discontinuous waves are:

• Dam break wave due to failure of dams

• Tidal bore in estuaries or inlets

• Surge wave generated by starting or stopping a hydro power plant

The upstream-travelling surge is the problem of interest in this study. A control volume of
rectangular open channel with a moving upstream discontinuous wave is displayed in figure
4.10. Variables at the inlet are labelled with subscript in and variables at the outlet are
labelled with subscript out. The wave speed at the wave surface is called the wave celerity
uw [m · s−1].

𝑢w

ℎin

𝑞in

ℎout

𝑞out

Figure 4.10: Upstream positive surge in an rectangular open channel

A sudden decreased discharge after the surge is derived based on the continuity equa-
tion:

qin = qout + uw(hout − hin) (4.3.1)

and the wave celerity is calculated as a result of the momentum equation (full derivation
can be found in appendix D):

uw =

√
ghout(

hin + hout

2hout

) (4.3.2)

However, in our Shallow Water solver the wave speed is determined only by the flow depth
at the wave (equation (4.3.3)), thus, the sudden change in discharge cannot be repre-
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sented.

u2D
w =

√
gh2D (4.3.3)

In order to eliminate the wave speed difference between the shallow water wave and the dis-
continuous wave, wave celerity correction terms are added to calculate the Froude number
and the specific discharge at the bore.

The corrected discharge is:

huw = hu2D − uw(h3D − h2D) (4.3.4)

ans the corrected Fr is:

Frw =
u2D − uw√

gh2D
(4.3.5)

Frw is then used to determine the flow condition at the interface and huw is used to check
the flow direction.

Figure 4.11 expresses the failure of the back wave to travel though the interface on the
same test case. DWC 2D3D is used to indicate results from the discontinuous wave correction
method. This method is unable to work because the corrected Frw only affects the boundary
type at interfaces. When a hydraulic bore is moving upstream from Ω3D to Ω2D, a subcritical
flow condition can be determined by the corrected Frw at the interface. However, the flow
condition in Ω2D is still supercritical. As in subsection 4.3.1, information in Ω2D will not be
effected by Γ2D.

4.3.3. Ad-hoc solution 3: Hydraulic jump
detection

Imposing values at the interface are not helping in imposing the information transfer direc-
tion. The main reason leads to this failure is the lack of information from downstream. In
order to integrate the code ability in hydraulic jump detection, a new determinant is added.

As mentioned above, the direction of flow depth information transfer is decided by Fr while
the discharge or the flow velocity information is always transfer stream-wise as long as no
input flow rate is coming from the outlet of the channel. Although the surge wave gives
rise to a partially negative flow rate (towards upstream), the total flow rate is always from
upstream (2D region) to downstream (3D region). The discharge is the original drive ele-
ment. The block of discharge information is the key factor stopping the upstream-travelling
hydraulic jump.
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Figure 4.11: Surge travelling upstream at 5 - 20 [s] with 2D, 3D and DWC 2D3D simulations

For sake of bringing the back wave information to the interface, whether a hydraulic jump
is generated shall be estimated. Conjugate depths (equation 4.3.6) are the depths (y1)
upstream and the depth (y2) downstream of the hydraulic jump whose momentum functions
are equal for a given unit discharge q.

y2 =
y1

2
(
√

1 + 8Fr2
1 − 1) (4.3.6)

Many empirical relationships for length of the normal hydraulic jump can be found. In
the ad-hoc code, the hydraulic jump length equation 4.3.7 is implemented (dan Beeba
(1917)).

Lj = 5(y2 − y1) (4.3.7)
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The new criteria is proceeding as follows. The flow information changes if and only if an
upstream-travelling hydraulic jump is detected from downstream of the interface. A flow
chart and the sketch of influence zone are shown in figures 4.12 and 4.13.

𝐿j and the

influence zone determination 

𝑦dwonstream≥ 𝑦2 and 
𝑦upstream≤ 𝑦2 ?

𝑞interface = 𝑞downstream

𝑦dwonstream𝑦upstream

𝑦1 and 𝑦2 calculation

yes

𝑞interface = 𝑞upstream

no

Figure 4.12: Flow chart of the new criteria for discharge information direction determine

• Calculate the corresponding conjugate depth y2 based on the steady state upstream
flow depth y1 using equation (4.3.6). y1 is obtained by taking the steady state flow
depth far upstream of the interface.

• Define the estimated hydraulic jump length Lj by applying equation (4.3.7).

• Fix the influence zone of hydraulic jump where Lj away from the interface in both
upstream and downstream directions. A hydraulic jump would be supposed to appear
or disappear in the influence zone if some determinants are satisfied. The influence
zone is marked in the dashed box in figure 4.13.

• Identify flow depths at the influence zone boundaries. ydownstream is the flow depth that
Lj away downstream from the interface, while yupstream is the flow depth that Lj away
upstream from the interface.

• Determine whether ydownstream or yupstream reaches the corresponding conjugate depth
y2. If ydownstream > y2, an upstream-travelling hydraulic jump is entering the influence
zone. If yupstream > y2, a hydraulic jump is leaving the influence zone.

• When ydownstream > y2 and yupstream < y2, the upstream-travelling hydraulic jump in the
influence zone is detected and the flow discharge information at the interface qinterface
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shall be updated from the downstream side qdownstream. Otherwise, qinterface remains the
same as it is before (i.e. qinterface = qupstream).

interface 

LjLj

flow direction

back wave

influence zone

y2

y1

Figure 4.13: Sketch map of influence zone in open channel flow

This method is able to let the back wave moving through the interface but an obvious block-
age can be noticed at the early time during the wave transfer phase. HJD 2D3D is used as
an abbreviation of the hydraulic jump detection. In figure 4.14, the HJD 2D3D back wave is
stopped by the interface at T = 10 [s] while purely 2D and 3D waves advance without any
hindrance. At T = 15 [s], the 2D3D wave passes the interface and speeds up in Γ2D. The
wave arriving time lag in the coupled results is compensated in a later time. The reason why
a severe delay appears in the coupled simulation is the hydraulic jump length determination.
It is evident that the hydraulic jump length equation (4.3.7) implemented here is shorter
than the real length in the test case. However, a proper hydraulic jump length is hardly
defined only a one single equation.

Moreover, when applying such method to a more complex problem, the back wave may get
totally blocked at the interface. For instance, when an obstacle is located in a river with
irregular bottom elevations, part of the fluids hit the obstacle and is reflected upstream while
others move around the obstacle and travel downstream. Under such configuration, the cal-
culated conjugate depth is not applicable any more and wrong prediction of the hydraulic
jump length will be produced.
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Figure 4.14: Surge travelling upstream at 5 - 20 [s] with 2D, 3D and HJD 2D3D simulations

4.4. Overlapping algorithm

This section describes my development of the improved coupling algorithm. The main reason
for the back wave transfer failure is the lack of information at the interface from downstream.
Communication between the regions was accomplished by interpolating the dependent vari-
ables at grid boundaries in previous implementations.

OpenFOAM provides an overset framework Ltd (2017-2019), which is a generic implemen-
tation of the Chimera method (Steger et al. (1983) and Benek et al. (1986)). This method
was originally developed to treat moving objects by generating different geometrical features
independently and coupling each component via interpolation. An overlapping mesh usually
contains a dynamic object of interest superimposed on a static background mesh. To meet
our needs, an improved coupling algorithm using a simplified overlapping mesh is developed
here.
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4.4.1. Cell-to-cell overlapping

In order to develop an overlapping coupling algorithm, overlapping domain decomposition
methods are required to split the initial system into smaller subsystems, which are over-
lapped by more than the interface. The main feature that distinguishes the overlapping
domain decomposition methods from the non-overlapping domain decomposition methods
is that no special treatment needs to be made at the interface of the subsystems. Each
subsystem is solved independently, and solutions between the subsystems are coordinated
through an iterative procedure.

𝛀𝟏 𝛀𝟐𝛀∪

Γ𝟏

Γ𝟐

Figure 4.15: Typical overlapping sub-domains

The Schwarz algorithm is an iterative method for identifying the approximate solution for
the entire domain. The typical structure of this method can be explained with the help of
figure 4.15, where a union of a circle and a rectangle is divided into the sub-domain Ω1 and
the sub-domain Ω2, sharing the overlapping region Ω∪. The overlapping region Ω∪ is enclosed
by the internal interfaces Γ1 and Γ2, which are originally elements from the circle’s and the
rectangle’s boundary, respectively. Overlapping regions are used to transfer data over the
boundaries by means of interpolation schemes. For each time step, the iteration process for
Ω1 and Ω2 are repeated until the solutions converge. The convergence of the solution at
these interfaces ensures the convergence of the solution in the whole domain. During each
iteration, the previous iteration’s solution from Ω2 on Γ1 functions as a boundary condition
for solving Ω1. Ω2 is then solved by imposing Γ2 as a boundary condition, which is taken
from the current iteration’s solution from Ω1. This boundary condition renewal is also called
the Schwarz iteration.

After the aforementioned trial investigations in section 4.3, it was evident that interpolated
data are not accurate enough to transmit the necessary information in certain extreme ap-
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plications (e.g. hydraulic bore), and any improper value at the boundary face will lead to
numerical instability. Imposing the downstream data on the interface will not yield definite
information on the upstream field during the hydraulic bore simulation, for instance. To
obviate interpolation for boundary data, the cell-to-cell overlapping technique provides a
more robust connection between the regions because it incorporates the coupling method
to update the downstream information in the upper part of the interface. In this manner,
the hydraulic jump feature should be captured by the upstream region; and the upstream-
travelling surge moves through the interface.

𝛀𝟏 𝛀𝟐𝛀∪

𝛀∪𝟐

𝛀∪𝟏

Figure 4.16: Cell-to-cell overlapping sub-domains

Typically, iterative procedure significantly slows down the simulation. The sub-solver in
each sub-domain iterates on each time step and no interpolation is occurred during the data
exchange in overlapping regions. To speed up the simulation, a simplified approach using
only one Schwarz iteration and cell-to cell overlapping is applied here, allowing a direct
exchange between the subsystems. Cell values from the internal interface’s neighbour cells
(e.g. Ω∪1 and Ω∪2 in figure 4.16) instead of face values on the internal interface (e.g. Γ1

and Γ2 in figure 4.16) will be updated during the Schwarz iteration. The solution procedure
then becomes: (1) update values of Ω∪1 in Ω1 with the previous time step values of Ω∪1

from Ω2, (2) solve Ω1 and extract the current time step values of Ω∪2, (3) update these
values for Ω2, (4) solve Ω2 and extract the current time step values of Ω∪1 for the next time
step.

4.4.2. Mesh representation

Grid-embedding does not require common boundaries but rather common regions between
sub-domains. In this dissertation, no moving body is considered that enables perfect match-
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ing common regions and cell-to-cell mappings between sub-domains without any interpola-
tion prerequisite. Due to the overlapping methodology, the mesh representation illustrated
in figure 4.4 is not suitable because an overlapping mesh structure is necessary. The present
coupling mesh shown in figure 4.17 overlaps a certain area (marked in grey) such that grids
in the overlapping areas should match. More specifically, all grids next to the interfaces Γ2D

and Γ3D must match in the xy-plane, though they do not have to match in the vertical di-
rection. Accordingly, 2D and 3D meshes share the same geometry and the same grid spacing
in horizontal directions inside the overlapping areas. With this approach, dependent data
can be transferred directly between 2D and 3D cell columns.

𝛀𝟐𝐃 𝛀𝟑𝐃

Overlapping area

𝚪𝟐𝐃𝚪𝟑𝐃

a: Domain decomposition

𝛀𝟐𝐃 𝛀𝟑𝐃

x

y

𝚪𝟐𝐃𝚪𝟑𝐃

Overlapping area

b: Coupling mesh top view

𝛀𝟐𝐃
𝛀𝟑𝐃

x,y

z

𝑧b(𝑥, 𝑦)

𝚪𝟐𝐃𝚪𝟑𝐃

Overlapping area

c: Coupling mesh side view

Figure 4.17: Overlapping coupling mesh representation

However, the arbitrary grid shape causes considerable difficulties in ensuring a perfect match
between 2D and 3D grids in the overlapping area. Quadrilateral grids in that area are then
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employed to simplify the mesh generation process.

4.4.3. Implementation in OpenFOAM

The overlapping method can be implemented in the coupled solver by imposing communi-
cating variables in one region from the overlapping area onto the corresponding area in the
other region. However, employing the OpenFOAM coupling framework, sub-domains are
solved independently and communications between them occur at the interface. In other
words, inner cells’ data cannot be exchanged directly between sub-domains. In order to
transfer the data cell-to-cell, interfaces play the role of a cell value receiver and transmitter.
Accordingly, the Dirichlet-Dirichlet approach is applied here.

Nevertheless, a special treatment on the pressure term is taken into account in subcritical
flow conditions. As introduced in chapter 3, a modified pressure term pd instead of the total
pressure p is used in the momentum equations of the 3D solver interFoam and the flow
depth is governed by the hydrostatic pressure from downstream. Under the subcritical flow
condition, a specified pressure should be prescribed at the outlet and the interface indicator
α1 will then automatically adjusts to the flow depth calculated from the pressure. Mintgen
(2017) experienced that a fixed α1 at the 3D outlet under such situation leads to an un-
bounded simulation. Consequently, the Dirichlet condition is activated for the pressure term
pd. This special treatment is also considered in my coupling implementation. In other words,
the Dirichlet condition is set for the pd and the Neumann condition is set for the α1 if and
only if subcritical flow conditions occur from Ω3D to Ω2D. Flow conditions and flow directions
at the 3D interface Γ3D are determined by equation (4.4.1):

Fr3D
if =

u2D
ol ·n√
gh2D

ol

(4.4.1)

where the subscript ol is the value in the overlapping area and n is the normal vector of the
velocity. The Fr3D

if between 0 and 1 introduces a subcritical flow from Ω3D to Ω2D.

Figure 4.18 presents an overview of the overlapping approach in the coupled solver with
three sub-cases. There is no difference in the exchange of variables between the supercritical
and the subcritical flows when the flow goes from Ω2D to Ω3D. Flow quantities such as the
flow depth h, the discharge hu, the VOF indicator α1 and the flow velocity u are transferred
via the Dirichlet boundary condition and are updated by the cell-to-cell overlapping, while
the Neumann boundary condition is set for the pressure term pd (figure 4.18 a). The same
settings are implemented in the supercritical flow from Ω3D to Ω2D (figure 4.18 b). When
a subcritical flow is simulated, the pressure pd is used to update the flow depth h thus the
Dirichlet boundary condition is specified for pd (figure 4.18 c). Accordingly, the VOF indi-
cator α1 uses the Neumann boundary condition.

In technical terms, the overlapping cells for the data exchange should have the same number
as the faces at the communicator interface. For example, in Ω∪3D each cell must have a
corresponding face at Γ3D; therefore, values in Ω∪3D can be generated correctly. The new
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Figure 4.18: Transfer variables of all flow situations in the overlapping method coupling

coupling procedure for one time-step is:

• Extract Ω∪2D values from Ω3D at time n-1

• Update Ω∪2D values to Γ2D at time n

• Transfer Γ2D values to their neighbouring inner cells in Ω2D at time n

• Solve Ω2D at time n

• Extract Ω∪3D values from Ω2D at time n

• Update Ω∪3D values to Γ3D at time n

• Transfer Γ3D values to their neighbouring inner cells in Ω3D at time n

• Solve Ω3D at time n
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Figure 4.19: Surge travelling upstream at 5 - 20 [s] with 2D, 3D and OL 2D3D simulations

The overlapping method is examined by using the same test case. Results from the over-
lapping method are denoted as OL 2D3D and the overlapping distance is 3 [m]. Comparing
the surge travelling results of the coupling method (figure 4.19) with previous results from
the other coupling methods (figures 4.7, 4.9, 4.11 and 4.14) demonstrates an improved surge
transfer behaviour from Ω3D to Ω2D. Before the wave approaches the interface (e.g. T = 5
[s]), flow depths from all coupled solvers fit well. After the wave touches the interface, the
flows from CB 2D3D, DBC 2D3D, DWC 2D3D and HJD 2D3D are blocked at the interface and
deflect back to the downstream, while the flow in the OL 2D3D passes the interface and ad-
vances upstream. The overlapping method can handle the upstream-travelling wave problem
moving from a high dimension to a low dimension.
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4.5. Summary

A series of 2D-3D coupling algorithms based on OpenFOAM is presented in this chapter. The
main framework is referred to the characteristics-based coupling algorithm (Mintgen (2017)).
To overcome the hydraulic jump blocking failure of the characteristics-based coupling algo-
rithm, some ad-hoc modifications of the algorithm have been tested and the resulting new
algorithm, the overlapping coupling algorithm, is formulated. The new 2D-3D solver is
named as the shallowInterFoamOL. This solves the hydraulic jump blocking problem algo-
rithm.



5. Validation tests

Wave magnitudes and propagation velocities are of great significance in free surface flows.
This chapter investigates the properties of the numerical scheme in terms of wave formation
and propagation in rectangular open channel flows. To analyse the method’s ability, a se-
quence of test cases with simple geometries will be introduced as a validation of the proposed
coupling method.

This chapter is organized as follows. The motivation of all test cases will be given in the first
section as well as an overview of relevant parameters. Sections 5.2, 5.3 and 5.4 introduce val-
idation cases based on different flow conditions and configurations so that distinct wave mo-
tions are originated. The conclusions are drawn in section 5.5.

5.1. Introduction

Different types of water waves are categorized based on their formations and behaviors,
among which (1) breaking waves and (2) shallow water waves are two popular topics in open
channel flow simulations. Three scenarios are therefore established upon these two types.

The former type (1) of waves occur when their amplitude reach a critical level and the huge
swells collapse on top of themselves. No wave crest are associated with them. The process of
wave breaking causes large amount of turbulent kinetic energy that 3D models are preferred
to solve breaking wave problems accurately. One kind of the typical breaking wave, the
upstream-travelling surge, cannot be solved correctly by the coupling method proposed by
Mintgen (2017). The upstream-travelling surge is produced when a plenty of supercritical
flows change to subcritical flows and travel backwards at high speeds. The flow condition
change from supercritical to subcritical over the coupling region was failed to determine by
the characteristics-based coupling method. The main challenge of the new improved cou-
pling method is therefore to tackle the sudden change of flow conditions. Section 5.2 studies
the method’s capacity for this upstream-travelling surge.

The later water wave type (2) of interest, the shallow water wave, has a considerable large
applications in both research and engineering filed. It is defined that the flow depth is 1/20
lesser than the wavelength and travels at the free surface of a fluid under the force of grav-
ity. Within the scope of validating the coupling method, a solitary shallow water wave is
selected to analyse the stability and accuracy of the coupling method. The solitary wave
is localized gravity wave having finite amplitude and propagate with constant speed and
wave shape (Hereman (2009)). Two sub-cases will be discussed about the solitary wave: the
downstream-travelling wave in supercritical flows in section 5.3 and the upstream-travelling
wave in subcritical flows in section 5.4.

71
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Each scenario is simulated by three kinds of models: (1) the two-dimensional shallow water
equations, (2) the three-dimensional RANS equations and (3) the 2D-3D coupling method.
The methods are marked in the following contents and figures: the proposed overlapping
coupling method is marked as the OL 2D3D; the 2D and the 3D methods use 2D and 3D re-
spectively as abbreviations. To simplify the test cases, channel widths in all tests are ignored
due to the fact that the flow dynamic in the span-wise direction is of less interest in wave
transfer modelling here. Table 5.1 summarises basic parameters for three cases.

Case 1 Case 2 Case 3

Is [-] 0.005 0.005 0.001

kst [m1/3 · s−1] 59 73 52.3
ks [m] 0.001 0.001 0.008

q [m2 · s] 2.23 3.886 2.49
h [m] 0.77 0.72 1.1

Solitary wave center in X-direction [m] - 40 30
Fr before the wave [-] 1.19 2 0.72

grid resolution [m] 0.05 0.1 0.05
Overlapping region in X-direction [m] 50 - 53 50 - 53 20 - 23

Table 5.1: Parameters of test cases

where

• Case 1: Upstream-travelling surges over a supercritical flow in section 5.2

• Case 2: Downstream-travelling wave over a supercritical flow in section 5.3

• Case 3: Upstream-travelling wave over a subcritical flow in section 5.4

and where Is is the channel slope, kst [m1/3 · s−1] is the Strickler coefficient, ks is the sand
roughness, q [m2 · s−1] is the specific discharge, h [m] is the flow depth and Fr is the Froude
number.

5.2. Upstream-travelling surges over a supercritical
flow

Upstream-travelling surges or shock waves show fierce behaviors over an incoming supercrit-
ical flow, which failed to be modelled by Mintgen (2017). Such shock wave starts with a sud-
den strong swelling in the free surface level, then the sharp surge front rolls and submerges the
incoming flow. In this section, a series of surge propagation simulations based on the steady
supercritical flow are carried out to present the OL 2D3D performance. This test case was
also selected as the benchmark case by the characteristics-based coupling method and other
ad-hoc modification coupling methods described in chapter 4.
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5.2.1. General description

A general set-up of the study case is displayed in figure 5.1, where the red column implies
the coupling interface in the non-overlapping coupling methods introduced in chapter 4 or
the coupling overlapping area in the overlapping method. Each test case consists of two
sub-simulations: the steady state flow development in the channel and the backward surge
propagation. To develop the supercritical steady state flow, a certain amount of flow goes
through the steep slope channel from the left to the right without any control operation until
the water level stabilises. The incoming supercritical flow stems from a specific flow rate of
2.23 [m2 · s−1] and a flow depth of 0.77 [m] at the channel inlet section resulting in the Froude
number Fr of 1.19 before the surge is generated. On this basis, a closed outlet in an instant,
for example a fully closed hydraulic gate or a high enough obstacle, engenders the surge over
the incoming supercritical flow which travels upstream.

Steady state flow

Back wave moving upstream

Flow direction

Flow direction

Back wave

Free outlet

Closed outlet

Figure 5.1: Surge transfer simulations set-up

5.2.2. Numerical set-up

The prospective channel should be long enough to observe the wave travelling process and
the side walls should be high enough to cover the shock wave amplitude. Moreover, a slightly
steep channel slope is applied, which, on the one hand, helps in supercritical flow generation;
on the other hand, the resultant upstream-travelling surge is able to transfer further towards
upstream. As a consequence, a rectangular open channel with 65 [m] length, 4 [m] height
and 0.005 slope is considered to represent the geometry system. Since the channel width
is not relevant to our interests, a single cell is specified in the y-direction and the patches
perpendicular to the y-axis are assigned with empty boundary type. As mentioned in section
4.1, the 2D OpenFOAM mesh requires only one cell in the vertical direction, i.e. z-direction,
thus the 2D cell height is prescribed to be the same height as the geometry system (∆ z =
4 [m]). Referring to Mintgen (2017), a uniform grid spacing of 0.05 [m] produced accurate
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results in such scenarios and is therefore adopted in each direction.
4

 m

50 m 15 m

interface

overlapping region

3 m

x

y

z

Figure 5.2: Side view of the computational domain

As sketched in figure 5.2, the 2D-3D interface (marked in red dotted line) locates 15 [m] up-
stream from the outlet for the characteristics-based and other ad-hoc modification coupling
methods, and a 3 [m] overlapping distance (i.e. from 50 to 53 [m]) is used for the OL 2D3D.
The upstream region starts from 0 to 53 [m] and the downstream region covers from 50 to
65 [m].

The OL 2D3D numerical cases are validated in two types of coupling connections: (1) the
Ω2D situated upstream of the Ω3D denoted as 2D->3D and (2) the other way around denoted
as 3D->2D connection. As introduced in section 4.1, different variables are solved in the
pure 2D and 3D solvers, resulting in different initial and boundary condition set-ups. The
coupling initial and boundary set-ups are derived from the intersections of the set-ups in the
matched non-coupled models.

To make it clearer, flow chart of the inlet and the outlet boundary conditions is additionally
detailed in figure 5.3 as an example to illustrate the coupled model set-up. We use blue
and green outlines to represent the pure 2D and 3D boundary conditions respectively. Each
sub-region of coupled models adopts its corresponding non-coupled boundary conditions in-
dicated by the same color, and the coupling region marked in red merges two sub-regions.
Consequently, three categories of boundary conditions are introduced in coupled models:
the customized coupling boundary conditions (in red), the 2D boundary conditions (in blue)
and the 3D boundary conditions (in green).

Assuming the flow direction is from the left to the right, where the left boundary is the inlet
and the right boundary is the outlet. Four group of variables are then assigned to the target
boundary, which are variables at the 2D inlet (φ2D

in ), the 2D outlet (φ2D
out), the 3D inlet (φ3D

in )
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and the 3D outlet (φ3D
out). When an upstream Ω2D encounters a downstream Ω3D, φ2D

in and
φ3D

out are therefore adopted for such a 2D->3D connection. Vice versa, the 3D->2D connection
prescribes φ3D

in and φ2D
out onto its boundary patches.

Ω2D Ω3D

Ω2D Ω3D Ω3D Ω2D

Non − coupled models

Coupled models

𝜙in
2D 𝜙out

2D

𝜙in
3D

𝜙out
3D

𝜙: variables Flow direction:

Figure 5.3: General boundary conditions set-up for coupled models

Steady state development

In order to minimize disturbances in the flow, a fully developed flow is pre-generated. In
practice, a fully developed 3D flow can be generated at a certain distance downstream of the
inlet, known as the establishment length (Le). An estimation of Le in an open channel varies
from 50 to 150 times of the flow depth (H. Bonakdari (2014)), resulting in a maximum Le

of 115.5 [m] in this case. This Le is fairly long that increases the computational costs. To
get a fully developed flow for surges generation, a steady state flow is initially implemented
before the surge transfer. In supercritical flows all flow information travels in a stream-wise
direction, prescribed flow properties are defined at the inlet whereas Neumann conditions
are employed on the outlet. To speed up the simulation, a wet bed condition with 0.1 [m]
water depth is predefined initially.

The numerical tests performed in this chapter act as laboratory tests and no control ex-
periment data is available for parameters calibration. 3D simulations are therefore used
as the reference to adjust 2D parameters (mainly for the friction terms). Followed by the
schematic diagram of boundary conditions set-up in figure 5.3, the 2D and 3D set-ups are
firstly determined and subsequently, the coupled set-up can be simply achieved by patching
the corresponding initial and boundary conditions in the Ω2D and the Ω3D. Variables set-up
for different regions are described below.

3D region set-up 3D inlet is delicately set up based on equations presented in the previous
chapter of section 4.1. The inlet volume fraction indicator distribution is prescribed using
equation (5.2.1) by inserting the inlet flow depth of 0.77 [m] and the half cell height which
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is 0.025 [m]. zc is the variable of the face center in the vertical direction along the 3D inlet
patch.

α3D
1 (zc) =


0 0.77 < zc − 0.025

1 0.77 > zc + 0.025
0.77−zc

0.05
+ 0.5 other

(5.2.1)

Theoretically, a logarithmic velocity profile fits better in the 3D domain than a uniform
mean velocity profile. According to equation (4.1.7), the friction velocity is necessary but
challenging to properly define at the Ω3D inlet. With this respect, a uniform mean velocity
profile of 2.896 [m3 · s−1] is employed at the Ω3D inlet patch.

The channel bottom patch utilizes a non-slip boundary condition and the k−ω SST turbu-
lent model. For the channel roughness, the sand grain roughness ks = 0.001 [m] is chosen.
The pressure term uses a buoyant pressure boundary type which is suitable for the hy-
drostatic pressure contribution. It sets a fixed-gradient pressure based on the atmospheric
pressure gradient.

For other boundary patches setting, free boundary conditions are set to develop the super-
critical flow, hence the zero-gradient condition is specified in all variables.

2D region set-up 2D region set-up is rather simple that a fixed value for the flow depth
0.77 [m] and for the flow rate 2.23 [m3 · s−1] are explicitly imposed at the Ω2D inlet patch.
After calibration with 3D results, the Strickler value is estimated as 59 [m1/3 · s−1] for the
bottom friction modelling. At the Ω2D outlet, the zero-gradient is applied in all variables in
the steady flow generation case.

Surge generation

To produce the upstream-travelling surge, the outlet of the channel is closed suddenly. In
other words, when the supercritical flow reaches the steady state, a fully closed outlet bound-
ary condition is set by imposing a fixed zero velocity at the outlet of the Ω3D and a fixed
zero flow rate at the Ω2D outlet. Wall functions for turbulent parameters also apply to the
closed 3D outlet. The simulation time is reset from this point.

Figure 5.4: Surge profile at 20 [s]
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A screen shot obtained from the 3D results at 20 [s] is shown in figure 5.4 as an example
illustrating the upstream-travelling surge with air bubbles. More results with all models will
be detailed in the following.

5.2.3. Surge transfer from Ω3D to Ω2D

In order to test the capability of the overlapping algorithm in surge transfer from the Ω3D to
the Ω2D, the flow direction is therefore from the Ω2D to the Ω3D leading to a 2D->3D coupling
connection. The overlapping region located at x = 50 - 53 [m] splits the whole domain into
the upstream part (i.e. the Ω2D: x = 0 - 53 [m]) and the downstream part (i.e. the Ω3D: x
= 50 - 65 [m]). Under such configuration, the surge is produced at the outlet in the Ω3D and
moves upstream. Concerning our interests of the study, the whole process of the OL 2D3D

can be categorized into four phases: (1) surge generation in the Ω3D; (2) surge movement in
the Ω3D; (3) surge transfer from the Ω3D to the Ω2D and (4) surge travelling in the Ω2D.

Figure 5.5: Surge travelling in the Ω3D at 1 - 4 [s]
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Figure 5.5 reproduces phases (1) and (2) in the Ω3D, where the free surface behaviors from
the three models are investigated in the downstream region. During the first 4 [s] the OL

2D3D back wave stays in the Ω3D, results from the 3D sub-solver of the OL 2D3D, denoted as
OL 2D3D-3D, are compared with the 2D and the 3D results. As a consequence of the totally
blocked outlet, the incoming water was stopped by violence at the downstream boundary.
Due to the sudden deceleration in flow velocities, a sharp rise in the water elevation is ob-
served at T = 1 [s] associated with an energy transfer into potential energy. The pounding
water body swiftly topples over and rolls away from the blocked outlet. The hydraulic jump
roll is subsequently formed, characterised by some complicated turbulent air-water flow fea-
tures. During T = 2 - 4 [s], the surge is thus generated and propagates upstream. These
turbulent jumps are well represented by the OL 2D3D-3D results compared to the pure 3D,
including the splashing spray and some intense entrained air bubbles at the roller and the
jump toe. These entrained air bubbles are broken up into smaller bubbles by the turbulent
shear and tend to disappear eventually (Brocchini et al. (2002)). Such features of wave
discontinuity are not able to be captured by the 2D solver, resulting in a steeper wave front
and a wavy surface.

However, the appearance of wiggles in the 3D free surface is observed at T = [2]. This impact
is usually arisen from simulation of the non-linear wave propagation using the interFoam.
As introduced in chapter 2 section 3.4.2, interFoam used the VOF model to represent the
two-phase flow interface and the VOF model is solved by the currently implemented MULES
scheme (a numerical interface compression method ). A comprehensive investigation of the
interFoam performance on progressive waves simulations has been studied by B. E. Larsen
(2019), which stated that the wiggles are caused by the numerical interface compression
method (MULES). These wiggles decrease with higher spatial and temporal resolutions,
which requires a much more computational expense. Applying the more diffusive schemes
also help in mitigating the undesirable effects, nevertheless, the more diffusive schemes are
more like to smear the interface leading to more vague results. Recently, Roenby et al.
(2018) have developed a new algorithm (isoAdvector) coupled in the interFoam to remedy
the aforementioned effects. Considering the relatively small wiggles in this case and the core
attention in surge transfer, these wiggles will not be deeply discussed in this work.

In ’phase (3)’ the surge travels through the overlapping region which is exhibited in figures
5.6 to 5.9. The 2D sub-solver results are included from now on since the surge enters the
Ω2D, denoted as OL 2D3D-2D at X = 53 [m]. To better understand the OL 2D3D performance,
results from the two sub-solvers of the OL 2D3D are both displayed in the overlapping region
which is highlighted in grey. Overall, the results from the three models are in general
agreement. The OL 2D3D-3D and the 3D surges are well matched before they leave the
overlapping region (e.g. at T = 5 and 6 [s]). Because of the steeper 2D wave front, its
jump toe slightly lags behind the 3D jump toe so that the 3D wave information passes the
overlapping region earlier (e.g. at T = 7 [s]). In reference to the coupling algorithm, the
right overlapping interface receives the 3D information, in the meantime the left overlapping
interface receives the 2D information. Caused by the lag in the OL 2D3D-2D wave front, no 2D

wave information is detected at the left overlapping interface at T = 7 [s]. On the contrary,
the incoming supercritical flow information is assigned to the left overlapping interface as the
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inlet input of the OL 2D3D-3D, which results the reflected wave travelling downstream. The
reflected wave grows and induces an objectionable surface in the overlapping region (e.g. at
T = 8 [s]).

Figure 5.6: Surge transfer from the Ω3D to the Ω2D at 5 [s]

Figure 5.7: Surge transfer from the Ω3D to the Ω2D at 6 [s]
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Figure 5.8: Surge transfer from the Ω3D to the Ω2D at 7 [s]

Figure 5.9: Surge transfer from the Ω3D to the Ω2D at 8 [s]

However, as the surge propagates far from the overlapping region, the aforementioned vio-
lent disturbances neutralizes shown in figure 5.10, which can be interpreted by the on going
information updating in the 2D-3D coupling process. Meanwhile wave front features com-
pletely cross the overlapping region by all the three models, the upstream advancement wave
is dominated by downstream quantities. In the phase (4), when the wave front is totally
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placed in the Ω2D, a good match of the wave front can be noticed between the 2D and the
OL 2D3D at T = 20 [s].

Figures 5.5 to 5.10 demonstrate the surge transfer proceeding along the open channel. Before
the OL 2D3D surge accesses the overlapping region and only stays in the Ω3D, its performance
lies in the consistency with the 3D flow. After it runs through the overlapping region to
the Ω2D, a 2D free surface flow manner is expressed. Surge transfer through the overlap-
ping region reveals wave disturbances between two interfaces. In consequence, wave transfer
crossing and after crossing the overlapping field are additionally inspected in figure 5.11.

Figure 5.10: Surge travelling in the Ω3D at 17 - 20 [s]

To assess this process via a more comparable wave shape, the spatial averaged flow depth
rather than the free surface is visualized. The averaged flow depth is calculated by integrat-
ing values of α1 over each column in the Ω3D. At T = 6.5 [s], the 3D wave front first partially
passes the overlapping region, while the OL 2D3D and the 2D wave fronts are entirely situated
inside the overlapping zone. In other words, no discharge and flow depth change are sensed
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Figure 5.11: Surge travelling at 6.5 - 20 [s] in term of the flow depth
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at the OL 2D3D-3D inlet patch but a decreased discharge and an increased flow depth are pre-
scribed at the OL 2D3D-2D downstream boundary. A reflected wave is sequentially generated
at T = 7 [s] as a consequence of the discharge gap imposed on both overlapping interfaces.
This resulting reflected wave prevents the wave from advancing upstream, which is thus be-
hind the pure 2D wave front. Such reflected wave also conflicts with the approaching surge
from the downstream in the Ω3D and produces a prominent fluctuating wave surfaces at T =
7.5 [s]. Impacts from the non-matching information at the overlapping interfaces during the
surge transfer phase mitigate as time goes on. Results of later time stamps shown in figure
5.11 indicate a better agreement with aspects mentioned above. Once the full wave front
enters the Ω2D, the steepening of the OL 2D3D wave front is inherited from the 2D feature
and stays the same. The wave arriving lag becomes smaller and finally vanishes at T = 20
[s]. The amplitude of unexpected disturbances also reduces and the wave surface in average
reaches a satisfying match among the three models.

5.2.4. Sensitive study

To enhance the understanding of the relationships between input variables and output re-
sults of a model, uncertainty and sensitive study is a critical step in systematic reviews.
Within the help of the study, the robustness of a model and the impact of a variable can be
evaluated. One-at-a-time is one of the most common approaches to examine how this un-
certainty factors affect the results by changing one factor meanwhile keeping other variables
unchanged.

Input of a numerical model can be categorized as (1) mesh parameters (e.g. mesh resolu-
tion, overlapping configurations), (2) physical properties (e.g. flow properties), (3) numerical
settings (e.g. time step, simulation time and numerical schemes). (1) The coupling posi-
tion and the overlapping distance can be considered as two major factors influencing to
the overlapping coupling algorithm configuration, however, the coupling position is highly
case dependent and will not be discussed here. We do not investigate the impact of grid
size mesh resolution either since the effects in coupled models is not much different than in
non-coupled models. (2) The most interesting flow property in this test case is the hydraulic
jump feature and the hydraulic jump is mainly classified by the approaching Froude number.
(3) In section 3.3, we briefly introduced a condition, the CFL condition, for the stability of
unstable numerical methods. The CFL number defined in equation (3.4.12) gives the upper
limit for the time step if the mesh resolution is fixed. On the premise that the simulation
converges, by increasing the CFL number we shorten the computation time at a price of
decreasing the accuracy.

Due to the facts above, three variables are accordingly selected as uncertainty factors: (1)
the distance of the overlapping distance (OL Distance), (2) the incoming Froude number
(Fr) and (3) the maximum Courant number (CFL number).

Distance of the overlapping region

The overlapping distance (OL Distance) can be freely adjusted during the mesh generation
process. To analyse the influence of the overlapping distance, a series of tests with different
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overlapping distances was conducted. Equation 4.3.7 is used to estimate a 5 [m] hydraulic
jump length in the test case. To cover a wide range of variance considering the jump length
and the grid spacing, the overlapping distance varying from 0.5 to 7 [m] are tested in this
study, noted as OL Distance 0.5, OL Distance 1, OL Distance 3, OL Distance 4, OL Distance
5, OL Distance 7 respectively in following figures.

A glance of surge travelling process from Ω3D to Ω2D in terms of flow depth with different
overlapping distances are presented in figures 5.12 and 5.13: from T = 5 - 5.5 [s], the surge
is entering the overlapping region (figure 5.12) and from T = 7 - 7.5 [s], the surge is leaving
the overlapping region (figure 5.13). In overlapping regions, only OL 2D3D-2D results are
displayed. The left overlapping interface keeps the same at X = 50 [m]. The grey column
implies the largest overlapping region applied in this test which is from 50 to 57 [m].
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Figure 5.12: Surge travelling from the Ω3D into the overlapping region with different overlapping
distances at 5 - 5.5 [s]
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Before all surge fronts passed the overlapping region, T = 5 - 7 [s], the location of surge
fronts has a linear relationship with the OL Distance: the larger OL Distance leads to the
more delayed surge front. Once the surge travels through the left interface, reflected waves
are generated and as a consequence, disturbances appear in the Ω3D. At T = 7.5 [s], the
reflected wave is situated between X = 50 - 50.5 [m], thus disturbances are only show up
with OL Distance 0.5.
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Figure 5.13: Surge travelling from the overlapping region into the Ω2D with different overlapping
distances at 7 - 7.5 [s]
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Figure 5.14: Surge transfer with different overlapping distances at T = 5.5 [s]
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Figure 5.15: Surge transfer with different overlapping distances at T = 7.5 [s]
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Elaborated comparisons in flow depth at two specific time stamps (i.e. 5.5 and 7.5 [s]) are
further given in figures 5.14 and 5.15. At T = 5.5 [s], for each overlapping distance, the OL

2D3D-3D jump toe touches the left overlapping interface, while the OL 2D3D-2D jump toe
stays a certain distance downstream from the left overlapping interface. That means the
same incoming supercritical flow information is assigned to all these Ω3D inlet patches at
X = 50 [m] and different flow data are imposed to the Ω2D outlet patches from X = 50.5 -
57 [m]. A steepened wave front is generated followed by the wave detection. The distance
between OL 2D3D-2D and OL 2D3D-3D jump toes become smaller when the two overlapping
interfaces stay closer.

2 [s] later indicated in figure 5.15, the wave front leaving the overlapping region enables
the detection of waves by the 2D sub-solver and feeds back to the Ω3D. Disturbances are
therefore induced in the overlapping regions. The reflected wave is first generated with the
smallest OL Distance and transfer backwards. These reflected waves can be considerably
fluctuating with large OL Distances, e.g. OL Distance 3 and OL Distance 7. It is difficult
to summarize that a linear connection exists between the larger overlapping distances and
the model’s ability. From the observation, the smaller OL Distances of 0.5 and 1 [m] have
smaller disturbances.

The final state of surge travelling in our simulations at T = 20 [s] is exhibited in figure 5.16.
No conspicuous trend can be concluded regarding the relationships between the OL Distances
and the surge front locations. The smallest OL Distance 0.5 produces the highest front
height, however, the largest OL Distance 7 engenders the second highest front height. As a
result, observations of the surge front height do not give a clue on how the OL Distances im-
pact on the surge front heights. Regarding the free surge downstream the surge front, smaller
OL Distances of 0.5 and 1 [m] are smoother than others.
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Figure 5.16: Surge travelling with different overlapping distances at 20 [s]
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Approaching Froude number

A hydraulic jump can be only initiated when the Froude number Fr of the incoming flow is
larger than 1. This Fr is also known as the prejump Fr before the hydraulic jump. Table 5.2
classifies roughly the water jump into five types based on the incoming flow Froude number.
An insignificant disturbance of the water surface is originated by the prejump Fr ranges
from 1 to 1.7. A standing or undulating wave is thus developed. When the Fr > 1.7, the
hydraulic jump is triggered. A weak jump is characteristics by a series of small rollers and
no free surface undulation with an increasing incoming Fr. When the Fr keeps increasing
and is greater than 2.5, an unstable oscillating jump is formed. If the incoming flow has a
big Fr > 4.9, a steady hydraulic jump is constructed with no displacement. This section
focuses on the upstream moving surge therefore the prejump Fr between 1 and 4.5 will be
covered.

Prejump Fr Descriptive characteristics of jump

1.0 - 1.7 Standing or undulating wave

1.7 - 2.5 Weak jump (series of small rollers)

2.5 - 4.5 Oscillating jump

4.5 - 9.0 Stable clearly defined well-balanced jump

> 9.0 Clearly defined, turbulent, strong jump

Table 5.2: Hydraulic jump characteristics (Goris (2006))

The prejump Fr expresses the Froude number right before the upstream jump toe. Under
the circumstances of a moving jump, the relative prejump Fr should be replaced as the
criterion, assuming the observer is moving with the jump. In following sub-tests, an instant
relative Frrel is recomputed using flow information at T = 20 [s]. In this way, the original
set-up case introduced previously in this section has a 1.98 prejump Frrel followed a weak
jump.

Three sub-cases are conducted here with relative Froude numbers of 1.41, 1.98 and 3.24
in each instance. This sensitive study focus on a general moving jump behaviors, the 2D
sub-solver results denoted as OL 2D3D-2D are displayed in the overlapping region as a sim-
plification.

When replacing the fully closed wall at the outlet by a partially opened sluice gate, upstream-
travelling undulating waves (Fr = 1.41) generated by three models are shown in figure 5.17.
The first wave crest at T = 10 [s] in 3D result is as twice as the incoming depth and sequential
waves have smaller wave height. The wave amplitude decreases as it propagates upstream.
Such wave is also called the wave jump (Chen (2015a)). Such bell shape wave with is not
formed by the 2D model, instead, a flattened wave surface is produced.

The OL 2D3D-2D model just represents the undular wave in a coupled manner that bell
shape wave is formed in Ω3D and it tends to flatten as it transfer towards Ω2D. Obvi-
ous unexpected disturbances can be hardly observed for the undular hydraulic jump at the
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overlapping region. The OL 2D3D-2D wave transfer through the overlapping region is quite
smooth. However, the OL 2D3D-2D sequential wave crest has a larger amplitude than the
leading crest, which differs from the 3D observations.
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Figure 5.17: Undular hydraulic jump time-history with Frrel = 1.04

Moving hydraulic jumps with higher prejump Frrel, for instance 1.98, are exhibited in the
following figure 5.18. This case was the one introduced previously as the surge transfer test.
A larger ratio between the flow depth before and after the jump can be noticed with a larger
Frrel. 3D and 2D results are in good agreement. Small disturbances are observed in the OL

2D3D-2D model.
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Figure 5.18: Weak hydraulic jump time-history with Frrel = 1.98

When further increases the Frrel, an oscillating hydraulic jump is triggered. Figure 5.19
reproduces oscillating jumps transfer (Frrel = 3.24). A larger amplitude disturbance occurs
by the OL 2D3D at T = 10 [s] leading to an overestimated wave height and a heavily delayed
wave front in the Ω2D. Such undesirable wavy disturbances gradually damp out and intend
to achieve the same wave level as the 3D and the 2D outputs.
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Figure 5.19: Oscillating hydraulic jump time-history

A series of moving hydraulic jump tests based on different Frrel has been simulated here.
With respect to these tests, all upstream-travelling hydraulic jumps are able to pass the
coupling region and to transfer upstream. Higher Frrel produces higher hydraulic jump depth
ratio and provokes stronger reflected waves. The wave front arriving time during T = 5 - 10
[s] retards more severely under the circumstance of a higher Frrel. These reflected waves and
arriving time delays are diminished as the surges travel upstream. In a word, the back wave
transfer over the overlapping region is sensitive to the Frrel.
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Maximum Courant number

Sensitive analysis on the maximum Courant number in the Ω3D, denoted as CFL in the
figures, is studied. Figure 5.20 compares the surge representation of the coupled simulations
at different time’s with different CFL numbers. It concludes that the Ω3D is more sensitive
with the CFL than the Ω2D. However, there is no evident influence with respect to the entire
surge transfer phase.
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Figure 5.20: Surge travelling at 5 - 20 [s] with different CFL numbers of coupled simulations

5.2.5. Surge transfer from Ω2D to Ω3D

The other configuration is built up for testing the surge transfer from the Ω2D to the Ω3D,
which means the surge is generated in the Ω2D and moves towards the Ω3D, leading to the
3D->2D coupling connection. Under this circumstance, the flow depth and the velocity are
prescribed at the Ω3D upstream boundary as the inlet inputs and a free outlet is set on the
Ω2D downstream boundary to develop the steady state flow. A zero discharge is imposed
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to the the Ω2D downstream boundary after reaching the steady state, the surge is therefore
generated.

The comparison focusing on the wave front shape at T = 20 [s] between the three mod-
els is exhibited in figure 5.21. The wave front shape between the OL 2D3D and the 3D are
fairly matched and the wave front positions among the three models are also in good agree-
ment.

Figure 5.21: Surge representation at 20 [s]

As illustrated in figure 5.22, similar to the 2D->3D coupling connection, the OL 2D3D results
behave in an analogous manner compared to the 2D and the 3D in the corresponding sub-
regions. At T = 6 - 8 [s], the Ω3D detects a subcritical flow condition and the back surge
is moving in the overlapping region. The reflected waves are also observed at the right
interface ans transfer upstream. As soon as the surge transfers through the overlapping
region, a milder wave front is developed by the 3D sub-solver that a wave damping effect
due to the skewed wave front is imposed from the Ω3D to the Ω2D via the overlapping
region. In the mean time the surge propagates upstream, the OL 2D3D wave front fits the
3D wave front better and discrepancies between the OL 2D3D and the 2D free surface fade
away.
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Figure 5.22: Surge travelling from 5 - 15 [s]



96 5.3. Downstream-travelling wave over a supercritical flow

5.2.6. Summary

This section mainly proves the ability of the proposed coupling method in upstream-travelling
surge simulations including sensitive studies on three uncertainties. This modelling was iden-
tified as an unsettled issue in Mintgen (2017) under the 2D->3D coupling connection, where
the back surge is blocked at the coupling interface in the Ω3D and the water level in the Ω3D

keeps ascending. With the overlapping coupling algorithm, this back surge can cross the
coupling common region and propagate upstream under both 2D->3D and 3D->2D coupling
connections.

However, in the 2D->3D coupling connection sub-case, reflected waves and heavy disturbances
are concocted which severely makes the OL 2D3D-3D results less reliable during the period
when surges transfer through the overlapping region. This undesired oscillation decades as
the prejump Frrel decreases. Viewed from another perspective, the OL 2D3D-2D results stay
smooth which could be used as the outcome on behalf of the overlapping region.

For practical purposes, a coupling model is usually applied where the Ω2D covers large scale
domains by showing a general flow behavior and relative significant properties of the local
flow should be embedded in the Ω3D. With respect to this, the transient phase of a surge
travelling through the coupling area is less interesting as long as the coupling results match
well in a global sense with the non-coupling models results.

5.3. Downstream-travelling wave over a supercritical
flow

As mentioned in the beginning of this chapter, shallow wave transport will be analysed in this
and the next sections by superposing a solitary wave on top of the steady state flow. For both
two scenarios, a flat bottom channel with 100 [m] length is established and the overlapping
distance of 3 [m] is chosen which lies between X = 50 - 53 [m], and the mesh resolution
is 0.1 [m]. Along with the solitary wave transport, the wave shape remains unchanged,
whereas the initial wave peak amplitude decreases and two waves with smaller peaks are
generated. According to the solitary wave properties, the wave travels at a constant speed
and the taller the wave the faster it travels. This wave is therefore ideal for validating the
solver performance. The solitary wave is generated using a Gaussian function, equation
(5.3.1)

hw = Ae−
1
2

(x−µ
σ

)2

(5.3.1)

where hw [m] is the wave height, A [m] is the wave peak, µ [m] is the position of the wave
center of the peak and the standard deviation term σ controls the wave length.

This section mainly tests the OL 2D3D performance for a wave travelling downstream in a
supcritical flow. The geometry is sketched in figure 5.23. Figure 5.23 outlines the simulations
set-up: the steady state supercritical flow is developed at the first place and the solitary wave



5. Validation tests 97

is then superposed upon the flow free surface. The undisturbed flow has a specific discharge
of 3.886 [m2 · s−1] and a flow depth of 0.72 [m] resulting in a supercritical flow with Fr =
2. Within the present set-up, the initial wave center is located at X = 40 [m], has the
wave peak of 0.2 [m] and σ = 2.5. The initial Gaussian wave stands just right upstream the
overlapping region in order to capture early wave movements through the overlapping region.
Both 2D->3D and 3D->2D coupling connections are conducted.

Gauss wave superimposed -> wave transfer

wave

Supercritical steady state flow

Flow direction

Free outlet

Free outlet

Flow direction

Figure 5.23: Downstream-travelling wave simulations set-up

The superposing shallow wave breaks into two smaller amplitude waves of which locally one
propagates upstream and the other one propagates downstream, named the receding wave
and the advancing wave respectively. As a matter of fact, the receding wave is overwhelmed
by the incoming supercritical flow resulting in globally downstream-travelling waves. In
general, the advancing wave has a higher wave peak and travels faster than the receding
wave.

5.3.1. Results of 2D->3D connection

Wave transfer process from the Ω2D to the Ω3D within the 2D->3D connection is shown in
the following figures together with the respective results of the 2D and the 3D simulations.
The initial wave stands in upstream of the overlapping area and intends to pass the coupling
region. From observations, the advancing wave travels at 8 [m · s−1], while the speed of the
receding wave is 2 [m · s−1]. Due to their different wave speeds, distance between their wave
center keeps increasing and a longer time is needed for the receding wave to transverse the
overlapping region.

As in figure 5.24, the OL 2D3D advancing wave passes the overlapping region smoothly and
lies in between the 2D and the 3D advancing waves. As the advancing wave moves away from
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the receding wave, a vibrating wave tail grows in the Ω3D driven by a non-shallow wave effect.
The original ratio of the flow depth to the wave length is 0.92 / 20 = 0.046, which is less
than 0.05. Based on the shallow water wave theory, this wave is classified into the shallow
water wave group. Shallow water wave speed only depends on the flow depth, therefore it
is a non-dispersive wave. As the original wave bifurcates, the ratio of the advancing wave
is recalculated by using its individual flow depth and wave length giving 0.88 / 15 = 0.057
at T = 2.5 [s], which is out of the shallow wave region. Frequency dispersion phenomenon
occurs at the advancing wave tail. This effect is not represented by the 2D shallow water
equations solver since no distortion shows up at the 2D advancing wave tail but appears in
the OL 2D3D-3D and the 3D advancing wave tails.
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Figure 5.24: Downstream wave travelling at T = 1 - 2.5 [s]
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Figure 5.25: Downstream wave travelling at T = 3 - 8 [s]
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The frequency dispersion is observed at the first time at T = 2.5 [s], where is located in
the overlapping region. Due to the dispersion, a smaller amplitude of trough is produced
by the OL 2D3D-3D and the 3D than the 2D in the overlapping region. This higher flow
depth at X = 53 [m] in the OL 2D3D-3D is assigned to the OL 2D3D-2D as the Ω2D outlet
boundary condition. Consequently, a higher wave tail at the right side of the receding wave
is further inherited from the dispersive wave effect at T = 3 [s] demonstrated in figure 5.25.
An overestimated wave peak is hence generated at T = 6 [s]. However, the left wave surface
of the OL 2D3D and the 2D are in good agreement.
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Figure 5.26: Wave travelling at T = 11 - 14 [s]

Figure 5.26 expresses the wave transfer further downstream in the Ω3D. Although from T =
11 - 14 [s] the OL 2D3D wave entirely locates in the Ω3D, a better fit between the OL 2D3D

and the 2D wave representations is obtained than the OL 2D3D and the 3D. Wave peaks and
two sides wave fronts are fairly overlapped between the OL 2D3D and the 2D and their ratio
of the flow depth to the wave length becomes 0.825 / 25=0.033 indicating a shallow water
wave. The 3D is still effected from the frequency dispersion resulting in a steeper wave face
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against the stream-wise direction and a higher wave peak.

5.3.2. Results of 3D->2D connection

The 3D->2D coupling connection results are briefly given in figure 5.27 at T = 1 - 14 [s].
Generally results from these models show similar waves representation as the 2D->3D coupling
connection results, the OL 2D3D wave is well matched with the 2D wave along the whole
simulation. Concerning the OL 2D3D, the advancing wave travels from the Ω3D to the Ω2D,
no dispersion is generated by the 2D sub-solver, thus no dispersion effect impacts on the OL

2D3D receding wave.

5.3.3. Summary

This case investigates the wave transfer downstream in supercritical flows over the overlap-
ping region for both types of coupling connections: 2D->3D and 3D->2D. The two coupling
conditions (2D->3D and 3D->2D) perform similarly for the advancing wave and differently
for the receding wave.

With both connection configurations, behaviors of the OL 2D3D advancing waves agree well
with results from the 2D and the 3D models even during the overlapping region transport
period. Frequency dispersion effects are observed at the advancing wave tails by the 3D

results and further impacts on the receding wave. When the wave is not fully within the
shallow regime, dispersion rises and the desired wave signal can be distorted. According to
the coupling algorithm, this oscillatory tail should be developed as well in the 3D sub-solver.

With the 2D->3D connection, the oscillatory behavior resulted from the frequency dispersion
occurs downstream of the overlapping region in the Ω3D. The Ω3D inlet inputs are adopted
from the 2D sub-solver with the shallow water wave behavoir. Combining the shallow water
wave information at the inlet patch of the Ω3D and the dispersion effect inside the Ω3D, an
inflated receding wave peak is thus formed (e.g. T = 5 - 8 [s] in figure 5.25). However, when
the Ω3D locates upstream of the the Ω2D (i.e. the 3D->2D connection), the distorted wave
information should occur downstream and cannot be generated by the 2D sub-solver in the
Ω2D, so that the receding wave passes the overlapping region without deformation.

After two waves cross the overlapping region, waves of the 2D and the OL 2D3D models match
again regardless of the connection type. Due to the supercritical characteristics, downstream-
travelling flow information is always controlled by upstream. With the 2D->3D connection,
no oscillatory surface is computed by the 2D sub-solver, a shallow water wave property flow
is therefore set as the input to the 3D sub-solver. As a result, the overestimated wave peak
in figure 5.25 is adjusted and eventually follows a shallow water wave behavior. With the
3D->2D connection, no disturbance is generated anyway and the downstream region is dom-
inated by the 2D sub-solver.

In conclusion, behaviors of shallow water wave transfer in supercritical flows are dominated
by the upstream input values. In general, the OL 2D3D complies more with the 2D than the
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Figure 5.27: Wave travelling from T = 1 - 14 [s]
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3D . The frequency dispersion generated by the 3D solver is vanished after a while in the OL

2D3D.

5.4. Upstream-travelling linear wave transfer over a
subcritical flow

Shallow water wave transfer in subcritical flows possesses distinct characteristic other than in
supercritical flows. The wave of origin will still generate two small waves and the advancing
wave travels downstream, however, the receding wave travels upstream. The upstream-
travelling wave is mainly dominated by downstream. An upstream-travelling wave transfer
over a subcritical flow is practised to further validate the coupling method.

In subcritical flows set-up usually requires the discharge at upstream and the flow depth at
downstream as boundary conditions. Nevertheless, to reach the steady state subcritical flow
over a flat bottom channel by the 3D model, the VOF indicator α1 should be prescribed at
the outlet, which leads to numerical instabilities as mentioned in chapter 4. The same case
set-up made by Mintgen (2017) is thus adopted by adding an overfall is added at the end
of the channel. In such way, numerical instabilities and disturbances caused by downstream
boundary conditions can be avoided. The geometry and set-up of this case is therefore
represented in figure 5.28: the entire channel is 80 [m] including a 5 [m] overfall, the channel
height is 3 [m] as well as the overfall depth, and the bottom slope is 0.001. The overlapping
region is allocated at X = 20 - 23 [m].

Gauss wave superimposed -> wave transfer

wave

Subcritical steady state flow

Flow direction

Free outlet

Free outlet

Flow direction

Figure 5.28: Upstream-travelling wave simulations set-up

With the help of the applying an overfall at the downstream of the channel, the set-up for
prescribed flow depths at outlet boundary are not demanded any more. In the 2D simulation,
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a specific discharge of 2.49 [m3 · s−1] is given at the inlet and the Strickler coefficient of 52.3
is used in the whole domain, resulting in the inlet flow depth of 1.1 [m]. The relevant veloc-
ity distribution and the VOF indicator α1 are therefore determined for the inlet boundary
conditions specification in the 3D simulation.

Parameters for wave generation are A = 0.4 [m], µ = 30 [m] and σ = 2.5 in this case, using
equation (5.3.1). Higher flow depth is generated in subcritical flows resulting in higher ratio
1.4 / 20 = 0.07, which is not in the fully shallow regime. Frequency dispersion is expected
in this case.

5.4.1. Results of 2D->3D connection

The transport of the superposing wave under the 2D->3D connection during the first 4 [s] is
demonstrated in figures 5.29.
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Figure 5.29: OL 2D3D depth averaged velocity at T = 1 - 4 [s]
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The resulting advancing and the receding waves travel in an opposite direction with the
identical wave shape and their distance keeps increasing. Two waves of OL 2D3D are fully lo-
cated in the Ω3D and a very good agreement with the 3D waves, whereas wave fronts steepen
by two 2D waves. It’s worth mentioning that the OL 2D3D receding wave front toe overlaps
the corresponding 2D result marked in the red circle at T = 4 [s], which means the OL 2D3D

receding wave front partially steepens at this moment. This effect further impacts on the OL

2D3D receding wave travelling exhibited in figures 5.30 and 5.32.

At T = 5 - 8 [s] in figure 5.30, the three waves were travelling through the overlapping
region, where the OL 2D3D-2D and the OL 2D3D-3D perform fairly different in the overlapping
region. The OL 2D3D-2D wave remains the bell shape and is situated between the 2D and
the 3D waves. However, an reflected wave is generated in the OL 2D3D-3D and is moving
downstream, which is due to the mismatching of flow quantities (flow depth and velocity)
at the 2D-3D interface.
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Figure 5.30: Wave travelling at T = 5 - 8 [s]
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At T = 5 [s] as exhibited in figure 5.30, as a result of the steepen wave front feature computed
by the 2D solver, the 3D receding wave peak locates downstream the overlapping region and
the 2D receding wave peak locates inside the overlapping region. The 3D wave height in
the overlapping region is thus lower than the 2D. In the meantime, a smaller stream-wise
discharge is represented by the 2D in the overlapping region referring to figure 5.31. The
higher flow depth and the smaller discharge of the 2D wave in the overlapping region imply
a slower transport velocity of the 2D receding wave front. In the coupled model, the slower
velocities from the 2D sub-solver results pass to the left overlapping interface and act on
the OL 2D3D-3D. An reflected wave in OL 2D3D-3D is formed as a consequence of the wave
velocity differences.

Discrepancies of flow quantities between the 2D and the 3D enlarge from the wave front toe
to the wave peak and then drop along the wave back. The discrepancy crest occurs at T =
6 - 7 [s], where the 2D wave peak is leaving the overlapping region while the 3D wave peak is
entering the overlapping region. The amplitude of reflected wave is hence mitigating after
T = 7 [s].
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Figure 5.31: Discharge at T = 5 - 7 [s]

At a later time illustrated in figure 5.32, the OL 2D3D wave back positions in the middle of
the 2D and the 3D waves and the OL 2D3D wave front steepens as it is governed by the 2D

sub-solver. The reflected wave created by the OL 2D3D-3D still remains and moves towards
the outlet slowly. The oscillation amplitude of the reflected wave is not more pronounced
over time.
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Figure 5.32: Wave travelling at T = 9 - 12 [s]

5.4.2. Results of 3D->2D connection

Again the 3D->2D coupling connection is conducted. Like already introduced in chapter 4,
a slightly different boundary condition is implemented with the 3D->2D coupling connection
in subcrtical flows. On the Ω3D interface (Γ3D), the Neumann condition is employed to the
VOF indicator α1 whereas the Dirichlet condition is specified for the pressure term pd by
applying the hydrostatic pressure. The water level thus adjusts spontaneously to the corre-
sponding OL 2D3D-2D water level.

The Dirichlet condition implemented in the overlapping coupling algorithm not only fixes
the desired value at the boundary (φΓ) but also to the inner cells adjacent to the boundary
(φΩ∪) (referring to figures 4.16 and 4.18), where φ stands for the physical quantity. However,
when the Neumann condition is applied, the inner cell value is not necessarily consistent with
the boundary value. In other words, the 3D velocity at the Γ3D (u3D

Γ3D
) definitely equals to
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the 3D velocity at the inner cell Ω∪3D (u3D
Ω∪3D

), while the VOF indicator α1 not. More specif-

ically in this case, u3D
Ω∪3D

= u3D
Γ3D

=
hu2D

Ω∪3D

h2D
Ω∪3D

and the prescribed 3D pressure term fixes the

water level at the Γ3D so that h3D
Γ3D

= h2D
Ω∪3D

. Due to the fact that h3D
Ω∪3D

6= h3D
Γ3D

, the mass
conservation is only guaranteed at the Γ3D but not the Ω∪3D. As a result of the subcritical
flow condition, the flow depth information transfers upstream and the non-conserved mass
will be eventually corrected after a certain time steps.

As shown in figure 5.33, the three receding wave fronts get in the overlapping region at T
= 4 [s]. Until this moment, the OL 2D3D-2D waves stand in the Ω2D and behave exactly in
2D manners that the black dashed line overlaps the blue line. The OL 2D3D-3D wave front is
lightly distorted when it enters the overlapping region and stays in between the 2D and 3D

wave fronts. No frequency dispersion appears as long as the coupled waves are dominated
by the 2D sub-solver.
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Figure 5.33: Wave travelling at T = 2 - 4 [s]

From T = 6 [s] onwards, a straight drop or lift of the flow depth can be observed by
the OL 2D3D-3D at the right overlapping interface implied in figure 5.34, which is caused
by a combination of the Neumann condition for the flow depth term and the Dirichlet
condition for the velocity term in the 3D sub-solver. Another discontinuity occurs at the
left overlapping interface (Γ2D), where the OL 2D3D-2D receives the 3D sub-solver’s results.
These discontinuities are diminished over time. The shape of the OL 2D3D turns to the
bell shape as it locates in the Ω3D. There is no oscillatory wave tail of the OL 2D3D in the
Ω2D.
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Figure 5.34: Wave travelling at T = 6 - 12 [s]

5.4.3. Summary

The upstream-travelling wave performance passing through the overlapping region in the
subcritical flow is introduced by this case. Comparing to the previous test case, two main
differences are presented that one is in the geometry and the other one is in the coupled
algorithm. A challenge of this case is to establish consistent steady state of subcritical flows
by the three models. The first modification is made by adding an overfall at the end of the
channel in order to prevent numerical instabilities at the downstream boundary. The second
change takes place at the Γ3D using the Neumann condition for α1 and the Dirichlet con-
dition for pd. This special treatment shall be employed in the subcritical flow with 3D->2D

connection as explained in section 4.4.

Under both coupling connections, the coupled waves always position in between the two
non-coupled solutions. Approximately the same as the previous test case, the OL 2D3D ad-
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vancing waves perfectly match the corresponding pure solver’s performance.

With the 2D->3D connection, the frequency dispersion occurs in the Ω3D at T = 4 [s] but not
heavily affects the receding wave since the receding wave enters the overlapping region and
is governed by the 2D sub-solver from now on. The oscillatory tail illustrated in figure 5.32
is mainly caused by the flow quantities mismatching at two overlapping interfaces during
the wave transient period. This occasioned oscillatory tail is more pronounced than the
frequency dispersion effect of the 3D simulation. After the receding wave passes through the
overlapping region, the wave crest rises to the level of the 2D wave crest.

With the 3D->2D connection, no frequency dispersion effect is detected in the Ω2D, therefore
a smooth wave tail is represented downstream of the receding wave. When the wave enters
the overlapping region, a strong overshoot appears in the OL 2D3D-3D and a considerable
undershoot occurs in the OL 2D3D-2D. These discontinuities are occasioned by the change in
flow dynamics (Mintgen (2017)).

5.5. Conclusions

This chapter conducts three cases with respect to demonstrate the overlapping coupling al-
gorithm properties. With exchanging flow quantities between cells value not the faces’, a
stronger coupling of two systems is conducted. This strong explicit coupling algorithm forces
every information to transfer from one region to the other. The first case, the upstream-
travelling surge, is also applied by other coupling methods described in chapter 4.

The three flow scenarios simulate three wave propagation phenomena in plane channels,
where a steeper channel slope of 0.005 is employed in supercritical flows development and
a milder channel slope of 0.001 is used in subcritical flows development. The overlapping
region locating X = 50 - 53 [m] is taken in the three cases as a standard set-up. Surge
transfer with higher flow velocities requires higher mesh resolution, hence the moving surge
case utilise a finer grid spacing of 0.05 [m] and the wave transportation cases build a coarser
mesh with the grid spacing of 0.1 [m]. Both 2D->3D and 3D->2D coupling connections are
constructed.

These cases mainly test the information transfer in different directions of a sudden or gradual
change in flows. In upstream-travelling surge case, the change of flow information transfer
due to a shock flow condition change can be detected by the explicit exchange flow properties
in the overlapping area. The 3D simulations reproduce well the shock surge shape and the
velocities, while steepened smooth wave fronts and wavy wave surfaces are presented by the
2D results. With this respect, the coupled results give an overall consistent outcome where
the wave forms an accurate shape in the Ω3D; and it steepens in Ω2D. However, the OL

2D3D causes disturbances during the surge transfer through the overlapping region phase,
this effect is further analysed by a sequence of sensitive studies. The investigation of sen-
sitive study reports that the OL 2D3D simulations are not apparently influenced in terms of
the maximum Courant number. Making the overlapping region smaller gives smaller distur-
bances. The most important uncertainty evidently affecting the OL 2D3D is the flow property.
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The stronger variation occurs in the flow, the more violent disturbance is engendered during
the overlapping region transfer phase. Nevertheless, disturbances are introduced during the
wave transition through the overlapping region and are weakened as wave propagates. In
Gaussian wave transportation scenarios, similar observations are obtained but the smoother
transfer processes are reproduced since the change in flow properties are rather small.

In conclusion, a feasibility study of the overlapping coupling algorithm is validated by demon-
strating a preserved flow behaviors in both the shape and the amplitude of the coupled wave.
The present coupling gives stable and accurate results for steady cases. Disturbances are
produced in some extreme flow conditions as the wave shapes and characteristics are so dif-
ferent between 2D and 3D. An improved simulation can be obtained by shrinking the overlap
region to at least two grids in each direction. For future coupling algorithm improvement
in wave transport problems, a numerical scheme that brings the 2D wave closer to the 3D
would be of great interests.



6. Numerical Modelling of the
Bore-Structure Interaction

From a practical perspective, hydraulic processes modelling in natural disasters, such as
floods, hurricanes and tsunamis, become critical of the overlapping coupling algorithm.
These natural disasters typically crop up in one regional area and dramatically influence
the surrounding geometry. The present algorithm developed in this work more accurately
models extreme hydrodynamic events than the pure 2D Shallow Water solver and requires
less computational time with comparable accuracy to the pure 3D RANS solver. The 3D
sub-solver governs the demanding vertical dimension regions and the 2D sub-solver com-
prises the shallow water regions.

This chapter conducts numerical simulations on an extreme hydrodynamic scenario: tsunami
bore - structure interactions. The scenario was initially built up in an experimental program
by the University of Ottawa and the Canadian Hydraulic Center (CHC) of the Natural Re-
search Council (NRC) of Canada. We replicate the experiment numerically to analyze and
quantify the overlapping coupling algorithm performance of tsunami-induced bore genera-
tion and extreme hydrodynamic forces on structure. Numerical results will be compared
with experimental measurements.

Motivation of extreme hydrodynamic events modelling will be shortly introduced in section
6.1. Experimental and numerical set-up will be detailed in sections 6.2 and 6.3. Results will
be demonstrated and discussed in sections 6.4 and 6.5. Summary will be given in section
6.6.

6.1. Motivation

Many cities are situated on shorelines and are thus vulnerable to flooding, especially in in-
undation high risky areas. Tsunami inundation and river flooding have physical processes
in common. A tsunami is one of the deadliest and most economically damaging natural
disasters in the world. The last decade witnessed several devastating tsunamis, particularly
in the Pacific Ocean whose bordering seas are the most severely affected. For example, the
2004 Indian Ocean tsunami caused 230,000 deaths and significant economic losses, while in
2011 a tsunami killed nearly 20,000 people and caused 360 bn. US dollars in total damage
in northeastern Japan. Due to such events, more and more research is being devoted to
tsunamis.

A tsunami is a series of waves triggered by the displacement of a large mass of water (e.g.
earthquakes, volcanic eruptions and other underwater explosions). Such waves are less harm-

112



6. Numerical Modelling of the Bore-Structure Interaction 113

ful when they are far from the shoreline. They travel in the form of long waves characterized
by fairly low wave heights and long wave lengths, which make them difficult to detect off-
shore. When they approach inland, sea floor elevation increases and water depth decreases
leading to a growing wave height of the tsunami waves. In the wave shoaling process, the
incoming tsunami waves are transformed into the tsunami-induced bores, also known as hy-
draulic bores.

Destructive effects of tsunami-induced bore can be divided into three segments: (1) the
onshore run-up behavoir of tsunami bore inundates coastal communities with high speed;
(2) bore-structure interaction forces destroy objects in bores’ path; (3) debris from dam-
aged infrastructures transported by the bore further cause considerable deaths and injuries.
Accordingly, damages can be attributed to: (1) flooding; (2) Structural destroy, scour and
slope / foundation failure; (3) second structural damage, fire spread by floating debris and
combustible liquids. Each of these effects, alone or in combination brings sever damage.

To mitigate tsunami impact, building tsunami-resilient structures, with intention to trip
over the bore and make it break, is the main protection against tsunami. The complexity
of the bore-structure interaction arouses awareness of coastal engineers. Investigations on
tsunami-like hydraulic bores impacting structures will significantly help in tsunami-resilient
structures design.

6.2. Case description

To identify tsunami-induced effects on structures, the University of Ottawa and the Canadian
Hydraulic Center (CHC) of the Natural Research Council (NRC) of Canada have conducted
comprehensive experiments to determine the forces structures are exposed to by turbulent
bores (Palermo et al. (2012)). Their experimental program will be compared with numerical
simulated results from the new coupling algorithm, the overlapping coupling method.

The experiment reproduced tsunami-induced bores by subjecting a solid structure to dam
break flows in a flat rectangular open channel flume. Two square glass windows inserted
on the flume side enable the visualisation of the bore-structure interaction. Such flows can
produce the desired tsunami bores (Chanson (2005)). The dam break phenomenon resulting
from the instantaneous collapse of a dam, is generated by a sudden opening of the swinging
gate which releases the stored water. A square hollow structural cylinder made by acrylic
sheets established downstream from the swinging gate triggers the hydraulic bore. Thirteen
wave gauges distributed in the flume measure water depths over time, five of which were
mounted on the structural element. These gauges were used to record the bore depth-time
histories along the flume and around the cylinder. In addition, a six degree-of-free (6 DOF)
high-frequency dynamometer (MC6 Series) bolted to the flume floor to record hydraulic-
induced forces imposed on the structure.
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Figure 6.1: Computational domain with 13 wave gauges location

The physical experiment flume was reconstructed based on a U-turn shape high discharge
flume at the CHC by adding a swinging hinged gate 5.6 [m] downstream of the upstream
end. The impounding water is kept in the U-turn zone, which is divided by a 3.28 [m] long
stainless steel-constructed flume, to generate the dam break flow. A sluice gate was placed
at the downstream end of the flume and combined with a vertical drain, which functioned
as the water level controller to regulate the water level during the re-zeroing of the water
level gauges. The structural element was then installed 4.92 [m] further downstream of the
swinging gate, where the tsunami bore is fully developed and the glass windows are located.
To simulate a tsunami, this set-up was also applied to the numerical model in figure 6.1 as
well as the wave gauges. Apart from the sluice gate, a free outlet boundary condition is
incorporated in the numerical simulations. The entire flume is 13.17 [m] long and 1.4 [m]
high. Due to the U-turn shape reservoir, the upstream boundary of the flume is about twice
as wide the downstream boundary; consequently, the inlet patch width is 2.7 [m] and the
outlet patch width is 1.32 [m]. The downstream structure has a 0.305 × 0.305 [m2] cross
section and a height of 1 [m]. Three impounding water depths (him) of 550 [mm], 850 [mm]
and 1150 [mm] were tested to provide a better understanding of the impact of hydraulic
bores on the square structure. For convenience, the location of the model center is denoted
as WG 0. As illustrated in figure 6.1, one wave gauge was placed in the reservoir, seven
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wave gauges distributed along the dry area and the remaining five were installed on the face
of the structure perpendicular to the bottom. Wave gauge location coordinates are given in
table 6.1.

WG 0 WG 1 WG 2 WG 3 WG 4 WG 5 WG 6

X [m] 10.52 4.35 8.37 9.52 9.52 10.52 10.52

Y [m] 0.66 0.66 0.66 0.88 0.44 0.88 0.44

WG 7 WG 8 WG 9 WG 10 WG 11 WG 12 WG 13

X [m] 11.52 11.52 10.3675 10.3675 10.52 10.6725 10.6725

Y [m] 0.88 0.44 0.66 0.805 0.815 0.805 0.66

Table 6.1: Wave gauge location coordinates

6.3. Numerical set-up

Detailed simulation of the forward and backward wave fronts requires 3D models taking into
account vertical fluid accelerations. In order to examine the impact of hydraulic bores on
structures, the fully 3D Navier-Stokes solutions are demanded near the square structure.
In the coupling simulation the Ω3D ranges from 7 to 13 [m] in the stream-wise direction
is selected and thus splits the computational domain into three sub-regions, leading to a
2D->3D->2D coupling connection. The structure is therefore completely embedded in the
Ω3D. The overlapping distance is 1 [m] long on both sides of the Ω3D as shown in figure 6.2.
Again, the present model is simulated using the pure 2D solver - shallowFoam, the pure 3D

solver - interFoam and the OL 2D3D solver - shallowInterFoamOL.

We determined the mesh resolution in line with Douglas and Nistor (2014), who reproduced
numerical investigations on experiments mentioned before using the 3D OpenFOAM solver
- interFoam. They conducted a sensitive study on mesh resolution and concluded that suf-
ficient details (e.g. the splash at initial impact) in the column region can be produced when
the single cell dimension is smaller than 2× 2× 2 [cm3]. Applying such a fine mesh resolution
requires a huge computational cost in the pure 3D and the OL 2D3D models. Unfortunately,
the coupled model has not been yet parallel computing functioned, so a coarser mesh resolu-
tion of 4 × 4 [cm2] in horizontal directions was selected. For the 3D mesh, the vertical grid
spacing remained as 2 [cm]. The purpose of this case therefore is mainly to compare the OL

2D3D and the 3D behavors in the structure region.
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Figure 6.2: Domain decomposition in the coupling simulations

Initial impounding water him is prescribed in the upstream reservoir region and no other
water source is supplied. In the remaining channel section a dry bed condition is applied.
The initial status of the simulation is given in figure 6.3.

top view side view

Figure 6.3: Initial status of the water in numerical set-up

All parameters used in computations are given in table 6.2. The time step ∆t is automati-
cally adjusted according to a prescribed maximum local Courant number CFLmax 0.5. The
Strickler coefficient for the 2D domain is 25 [m1/3 · s−1] and the sand roughness for the 3D
domain is 0.001 [m]. The dam break problem is characterized by three-dimensional aspects.
Based on 2D Shallow Water equations assumptions, vertical velocities and accelerations are
negligible. No driven force in the vertical direction is presented in the 2D model to commence
the first motion immediately after the dam break. If we initialize the channel with a zero
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discharge in the 2D model, the flow will remain in the reservoir and not flow into the channel.
The 2D model is therefore initialised with a small discharge of 0.01 [m2 · s−1] over the channel.

Parameters Values

∆X = ∆Y [m] 0.04

∆Z3D [m] 0.02

∆t [s] CFLmax = 0.5

him [m] 0.55 / 0.85 / 1.15

Is 0

kst [m1/3 · s−1] 25

ks [m] 0.001

hu2D [m2 · s−1] 0.01

Table 6.2: Numerical parameters

6.4. him = 850 [mm]

The numerical model was firstly validated using him = 850 [mm] by a flow profile comparison
with the experimentally monitored results in the absence of the structural model. A dam
break induced hydraulic bore was developed. After that, the model was introduced to
generate a tidal bore moving upstream. The flow characteristics of the bore depth time-
history, flow profile were then analysed.

6.4.1. With no square structure

Figure 6.4: Free surface representation at T = 1 [s] with him = 850 [mm]

A screen shot of the free surface at T = 1 [s] by 3D is reproduced in figure 6.4. The
impounding water is released by opening the swinging gate and rushes downstream. Free
surfaces recorded by four wave gauges (see figure 6.5) placed along the flume to represent
the dam break flow propagation process. WG 1 was placed in the reservoir to adjust the
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initial impounding water height, WG 2 was about 3 [m] behind the swinging gate to capture
the near dam break flow profile, WG 3 was around 1 [m] further downstream from the WG
2 to measure the flow feature before the structural location and WG 0 was situated at the
structural model central. Accordingly, for the coupling simulation three wave gauges are in
Ω3D, whereas the WG 1 is located in the upstream Ω2D.

Figure 6.5: Set-up without structural model in the flume with locations of four waves gauges

At an early stage of the simulation, the impounding water front begins to collapse due to
gravity and propagates downstream as displayed in figure 6.6. Comparison of the initial water
block deformation, under gravity at T = 0.1 [s], with three numerical models is pictured in
the left figure 6.6. The 3D water front propagates with advancing toe and declining top,
while the 2D result remains unchanged. 2D solver has difficulties in accurately modelling
the bore immediately after the gate opening since high free surface gradients are present
in the dam failure, while the vertical acceleration is ignored by the 2D solver. At 1 [s],
the figure on the right, the 2D front runs to X = 9 [m] and the 3D front position is close
to X = 10 [m], indicating a greater wave celerity computed by the 3D solver than the 2D

solution.
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Figure 6.6: Free surface along the flume at T = 0.1 and 1 [s] with him = 850 [mm]

During the dam collapse, the OL 2D3D profile completely overlaps the 2D outcome in Ω2D
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(i.e. X = 0 - 7 [m]) and converges to the 3D in Ω3D (i.e. X = 7 - 10 [m]). A steeper flow
front (i.e. X = 3 - 6 [m]) forces a higher flow velocity of the OL 2D3D as an input to Ω3D,
thus the OL 2D3D runs further than the 3D results.

A free surface comparison at different times after the dam failure between experimental
(refer to Al-Faesly et al. (2012)) and numerical results for several wave gauges with no square
structure in the channel is shown in figure 6.7. WG 1 was placed upstream the swinging
gate in order to record the depth change in the reservoir. During the first half second of
the motion, water surface levels observed with the RANS model at WG 1 are lower than
those predicted by the shallow water equations. As mentioned above, these discrepancies are
mainly due to different initial accelerations, resulting in a time lag in the 2D flow. The 3D

model is in general agreement with the experimental data reproducing real behaviors. The
3D flows rush out of the swinging gate faster than the measurement, which can be attributed
to the fact that gate opening in real time is not instantaneous.
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Figure 6.7: Bore depth time series at different WG with him = 850 [mm]
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WG 2, WG 3 and WG 0 are situated downstream of the dam break site in Ω3D, where similar
behaviors are represented by the OL 2D3D and 3D models. The bore depth time-history pro-
file, at the structure location (WG0) for instance, starts with a sharp steep slope and then
the slope moderates as the bore depth increases until it reaches the maximum, which is 30
- 40% of the impounding water depth. The steady state is attained after a slight reduction
of the maximum bore depth. The aforementioned slight delay in the measurement further
affects subsequent wave gauges (e.g. WG 1, WG 2, WG 0). As the flow propagates down-
stream, the time lag between the experimental and numerical, in terms of the front arriving
time, becomes greater. Steady state flow depths computed by 3D models (i.e. OL 2D3D and
3D) are marginally overestimated at WG 2, well matched at WG 3 and underestimated at
WG 0, compared to the experimental results. A rather stable bore depth of 350 [mm] is
reached at each wave gauge by the 2D solutions.

A general agreement appears to exist between the experimental and the numerical bore
depth time-history profile. 3D model reproduces more accurate bore depth representations
than a 2D simulation if we take the measurement as evidence. The performance of the OL

2D3D model coincides with the fact that free surfaces at WG 1 fit well with the 2D model
and the approximately identical depth profile with the 3D model is computed at the rest
four wave gauges. In conclusion, the present numerical model set-up performs steady and
accurately.

6.4.2. With the square structure

After calibrating the model set-up, we reran the three models, introducing the square struc-
ture at the designated position, where the structure center is situated at X = 10.52 [m] in
the span-wise middle of the flume. Non-slip conditions were prescribed at the body surfaces.

T = 1 [s] T = 2 [s]

T = 4 [s] T = 5 [s]

T = 10 [s] T = 15 [s]

Figure 6.8: Global view of free surface screen shot with him = 850 [mm] by the 3D model
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Figure 6.8 represents a global view of free surfaces modelled by the 3D at different time
stamps. At T = 1 [s], a dam break flow profile is generated, and its front approaches the
square structure. The maximum water level in the reservoir stays the same. One second
later, the flow front hit the structure creating a strong turbulent jump as well as a mass
of splashed water drops around the model. The resulting turbulent jump at the front face
of the structure runs back against the incoming flow at T = 4 and 5 [s]. At a later point
in time, the back wave transfers continuously upstream, while its energy and amplitude
gradually decay. At T = 15 [s], the water level in the reservoir apparently falls off and the
flow condition tends to become steady where the upstream flow of the structure is subcriti-
cal, the flow at the model is critical and the flow in downstream of the model is supercritical.

The flow behavior around the structural model during the hydraulic bore impact is detailed
in figures 6.9 and 6.10. Before the bore hits the obstacle, the stream-wise velocity dominates.
The incoming flow front touches the model at 1.2 [s] and climbs up the model at T = 1.3
[s]. At T = 1.6 s, the initial run-up tongue reaches its peak elevation and begins to collapse
onto the incoming flow due to the gravity at T = 1.8 [s]. The bypassing model flow runs
downstream with small turbulent side waves. From T = 2.1 - 2.4 [s], a huge wave is generated
and the surface roller forms a steep front. The cylinder is high enough that there is no vertical
flow across the top of the cylinder.

T = 1.2 [s]

T = 1.3 [s]

T = 1.6 [s]

Figure 6.9: Local view of free surface screen shot at T = 1.2 - 1.6 [s] with him = 850 [mm] by the
3D model
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T = 1.8 [s]

T = 2.1 [s]

T = 2.2 [s]

T = 2.4 [s]

Figure 6.10: Local view of free surface screen shot at T = 1.8 - 2.4 [s] with him = 850 [mm] by the
3D model

Free surface screen shots above are obtained from the pure 3D model. We compare the bore
travelling process together by the three models. The process of dam break induced bores
transferring through the overlapping region is displayed in figure 6.11. The overlapping
region is marked in grey (X = 7 - 8 [m]), and results from both 2D and 3D sub-solvers in the
coupled model are illustrated in the overlapping region. Similar behaviors can be observed
as the results from non-structure presence simulations (see figure 6.6). The coupled bore
front always stays between the two non-coupled bore fronts and it passes the overlapping
region smoothly.
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Figure 6.11: Water depths during passage of the dam break flow over the overlapping region with
him = 850 [mm]

The upstream-travelling wave is engendered by the bore-structure interaction. From figure
6.12, the wave amplitude decreases and the wave front becomes smooth as it moves upstream.
The 2D wave is far advanced than the coupled and the 3D model in upstream direction. The
coupled wave shape gets transformed from a 3D-like wave into a 2D-like wave during the
period shown in figure 6.12. In the meanwhile, the coupled wave front proceeds faster when
it enters the 2D sub-region. Disturbances occur in the coupled model at T = 9.5 - 10 [s] and
diminish at T = 10.5 - 11 [s].
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Figure 6.12: Bore-structure interaction induced jump transfer through the overlapping region at
T = 8.5 - 11 [s] with him = 850 [mm]
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Comparison between the experiments and the simulations are made around the model. Five
peculiar wave gauges are installed along the model surfaces, of which two gauges are placed
at the front faces, another two are attached on the back faces, and one gauges is established
at the left side face of the model. As illustrated in figure 6.13, the face center of each three
faces is equipped with one gauge, moreover, the edge of the front and the back faces is
additionally settled one gauges. In this area, the coupling simulation is governed by the 3D
sub-solver.

WG9

WG11

WG12

WG13

WG10

Figure 6.13: Locations of wave gauges at the structural model

The time-history bore depths among these methods at WG 9 and 10 in figure 6.14 imply
an overall good accordance. The maximum bore depth occurs at WG 9 placed on the front
face center of the model and a tiny bit lower bore peak is observed at its neighbouring
gauge WG 10. The hydraulic bore peak recoded at WG 9 from the measurement, the OL

2D3D and the 3D are 870, 840 and 910 [mm] in each instance, where the OL 2D3D slightly
underestimates the peak while the 3D overestimates it with the same order of magnitude. The
2D solver however has difficulties in capturing the abrupt increase in bore depth resulting
in a rather smooth wave peak. Comparatively good match of the hydraulic bore peaks
between the measurement data and the two simulated results (i.e. the OL 2D3D and the
3D) revealing a better shock wave representation in the three dimensional solver. The bore
peak arriving time of the measurement and the simulations are in a consistency manner
as demonstrated in figure 6.7 at WG 0 in the no model present case, where the OL 2D3D

and the 3D bores are ahead of the 2D and the measurement. Due to this time-lead in the
OL 2D3D and the 3D, their upstream moving waves transfer further from the cylinder and
more drained flow are generated, therefore a shallower bore depth than the measurement is
represented in the time-history series after 8 [s]. Similar behaviors are observed at WG 10,
whereas the 2D reproduces even severe underestimated bore depth during the bore impact
phase.
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Figure 6.14: Bore depth time series at WG 9 and 10 with him = 850 [mm]

Right after the impact of the bore front on the obstacle, the vertical velocity becomes more
pronounced and the water level springs up around the model front. When the potential
energy of the flow reaches the peak, the wave peak breaks that partial flows travel upstream
and the other part passes around the cylinder. When estimating the bore depth on the
side face, recorded at WG 11, a considerable overestimated flows are observed by numerical
solutions exhibited in figure 6.15.

 0

 200

 400

 600

 800

 1000

 0  2  4  6  8  10  12

B
o
re

 d
e
p
th

 [
m

m
]

Time [s]

WG 11

Al-Faesly et al. (2012)
2D
3D

OL 2D3D

Figure 6.15: Bore depth time series at WG 11 with him = 850 [mm]

This can be explained by the inadequate mesh resolution in span-wise direction that the flow
separation at the model’s side is not represented in the simulation. To accurately produce
the splash at initial impact, the aforementioned necessary minimum grid spacing is 2 [cm].
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It was recommended by Douglas and Nistor (2014) that a substantial improvement of the
results can be obtained when further refining the mesh around the column region. With
this perspective, a mesh refined 3D model is conducted following the Douglas and Nistor
(2014) mesh structure, where the grid spacing varies from 1 - 2 [cm]. Screen shots of the
VOF indicator α1 representing the flow depth in figure 6.16 at T = 1.9 [s] indicate notable
difference flow behaviors in span-wise. In the refined mesh case, the span-wise velocity plays
a prominent role in flow separation at the trailing edges of the cylinder. In the original case,
the flow remains attached to cylinder side faces and only separate at the back of the cylinder.
The refined 3D results fit the physical model well except the capture of the bore peak at 5.5
[s]. The mesh resolution is still not fine enough on this regards.

Regardless of the bad match between the measurement and the coarse meshing simulations
at T = 2 - 5.5 [s], the OL 2D3D outcome stays in between the 2D and the original 3D and
more close to the 3D.

Original T = 1.9 [s] Refined T = 1.9 [s]
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Figure 6.16: Local view of free surface screen shot with him = 850 [mm]

The influence from the aforementioned insufficient fine mesh emerge also to wave gauges at
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back side of the column. WG 12 locates at the edge of the back face where is close to the
side face, an obvious run-up ahead of the experimentally controlled one is observed by the
coarse grid simulations and a better fit is obtained from the refined 3D model. Comparing
to the WG 12, the WG 13 lies in the center of the back face which stays further to the
side face than the WG 12, the overvalued volume of the early arrived bore from the coarse
grid models reduces. From 4 [s] onward, the OL 2D3D and the 3D fit the measurement well.
Strong oscillations are shown by the 2D.
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Figure 6.17: Bore depth time series at WG 12 and 13 with him = 850 [mm]

6.4.3. Force

Tsunami-induced forces on structure contribute crucial effects of tsunamis. The numeri-
cal and experimental base shear force time histories induced on the structure is discussed
here. To estimate tsunami-induced forces in tsunami-resilient structures design, formulations
published in FEMA P-646, the Guidelines for Design of Structures for Vertical Evacuation
from Tsunamis by Federal Emergency Management Agency (2019), are referred in this study.

Forces exerted on a structure resulting from the interaction of a hydraulic bore are asso-
ciated with three stages in bore depth during the bore-structure interactions respectively:
(1) the first splash-up of the incoming bore onto the front face of the structure, (2) the
initial run-up flow begins to rebound onto the incoming flow, and (3) the break bore flows
around the structure. A typical time-history of such forces is thus characterised by three
force components: (1) the impulsive force, (2) the run-up force and (3) the hydrodynamic
force.

• The impulsive or impact force occurs when the leading edge of the bore reaches the
solid structure as the initial impingement, followed by the splash-up in the water
level. Such force behaves different in dry- and wet-bed conditions. In laboratory scale
bore-structure interactions, the impact of impulsive force in dry-bed conditions is less
significant than in wet-bed conditions. The maximum ”overshoot” in force observed in
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wet-bed conditions is as much as 1.5 times the hydrodynamic force (Federal Emergency
Management Agency (2019)). As a result, such force may lead to sever damage to
structures.

• Another increase in force formulates the run-up or transient hydrodynamic force. Due
to the bore flow accumulation in front of the structure, the force magnitude keeps
growing with a relatively smooth gradient. The run-up force duration is longer than
the impulsive force’s.

• The hydrodynamic force is acted at the centroid of the wetted surface, which means
the force is applied to the entire structure if the bore flows around the structural body.
This force functions as the drag force combining the lateral force and the friction force.

Calculation of hydrodynamic forces on near-shore structures using equation (6.4.1) proposed
by Yeh (2006):

Fd =
1

2
ρsCDB(hu2)max (6.4.1)

where Fd [N] is the hydrodynamic force, ρs [kg · m−3] is the fluid density, CD is the drag
coefficient, B [m] is the width of the structure in the plane perpendicular to the flow direc-
tion, h [m] is the flow depth, and u [m · s−1] is the flow velocity at the location of the structure.

The maximum momentum flux term (hu2)max is not necessarily a function of the maximum
flow velocity and the maximum bore depth ((hu2)max 6= hmaxu

2
max). Estimation of this

term can be performed using a simplified formula given by FEMA P-646 based on Yeh
(2007):

(hu2)max = gR2(0.125− 0.235
z

R
+ 0.11(

z

R
)2) (6.4.2)

where g [m2 · s−1] is the gravity acceleration, R [m] is the maximum inundation depth at the
site and z [m] is the bottom elevation of the structure.

To well anticipate R, uncertainty inherent of experiments in terms of the tsunami run-up
level, the splash-up of tsunami bore impact and possible flow retention in the structure
should be taken into account. Preliminary predicted maximum inundation depth R∗ at the
location of the model without the structure ( i.e. at WG 0) is determined by physical /
numerical modelling. According to FEMA P-646, R can be therefore evaluated as 30%
higher than R∗, see equation (6.4.3).

R = 1.3R∗ (6.4.3)

In OpenFOAM, a 3D model introduces rigid objects in specifying the object surfaces as a
wall boundary, while in a 2D model the objects are represented by prescribing their surface
elevations, so that no extra boundary is generated.

In our bore-structure interaction numerical simulations, the structure is introduced by spec-
ifying a rigid object in the OL 2D3D and the 3D models. The object surfaces are set as a wall
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boundary that forces imposed on the front face of the structure can be directly computed
as a solution output for this boundary patch. Nevertheless, in our 2D model, no additional
boundary is created and the structure is represented as a part of the channel bottom where
the bottom elevation Z is prescribed to 1. In this way, forces on the structure for 2D model
can not be calculated by the model itself. We use equations (6.4.1) - (6.4.3) to estimate the 2D
forces. Parameters for numerical forces determination are fixed that the density of tsunami
flow, a mixture of sediment and seawater, ρs sets as 1200 [kg ·m−3] and the drag coefficient
CD is 2.0 for rectangular structure (Federal Emergency Management Agency (2019)). The
experimental forces were recorded by the dynamometer.

Comparison of numerical and experimental forces acted on the structure in the direction of
the flow is displayed in figure 6.18. 2D model in general reproduces much oscillating and
underestimated hydrodynamic forces with a rather flat tendency. These could be attributed
to the incapability of a 2D model in bore-structure interaction modelling and improper force
parameters estimation. 2D bahavoir in terms of the force will not be discussed here. Overall,
simulated forces from the OL 2D3D and 3D models and the measured forces follow the trend
of the aforementioned typical force time-series features. The 3D curve exhibits the smoothest
force profile, whereas several bulges in the OL 2D3D curve are resulted from the impact of
2D model.

The first impact, the impulsive force, coincides with the sharp increase in the bore depth (see
figure 6.14) as the bore front touches the structure front face. Compared to the measured
data, gradients of the impulsive force in numerical models are rather gradual. The magnitude
of this force (e.g. the maximum impulsive force is 306 [N] at T = 1.7 [s]) is accurately
reproduced by the numerical model. During T = 2 - 5 [s], the run-up force dominates as the
bore depth increases at the structure front face. The overall maximum force is produced at
T = 4.7 [s], where the measured force reaches 630 [N] and the computed forces are 535 [N].
The OpenFOAM numerical models predict the force with an underestimation, which was
also observed by Sarjamee et al. (2017). Subsequently, the force decreases due to a pressure
drop on the front face of the structure since the entrapped air is expanded and compressed
(Bullock et al. (2007)). The peak hydrodynamic force does not exceed the peak run-up force
resulting from lots of energy being reflected upstream.
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Figure 6.18: Force time series at the front surface of the structure with impounding depth of 850
[mm]

The gradual gradient in impulsive force and the underestimation in run-up force are at-
tributed to a not fine enough mesh resolution and the approximation of the eddy viscosity and
wall shear stress. The maximum run-up force accounts for the maximum force imposed on the
structural element. Additionally, Al-Faesly et al. (2012) reported that parameters proposed
by FEMA P-646 lead to hydrodynamic forces underestimation.

6.5. Comparison together

Same set-up with different impounding water him of 550 and 1150 [mm] are further tested in
both with and without structure presence. Comparison of the OL 2D3D bore depth and force
time-history profiles by the three initial impounding water (i.e. 550, 850 and 1150 [mm])
will be discuss in this section to find a common regulation.

Bore depth time series of 3D and OL 2D3D numerical results are compared at two wave gauges,
WG 0 and WG 9, shown in figure 6.19. On the left displays the bore depth time-history
profile at the structure location with absence of the structure. Larger value of the imposed
him induce higher estimation in bore depth and earlier inundation in time at WG 0. The bore
depth runs up to the maximum with distinct slopes, where the highest impounding water
leads to the steepest gradient and vice-versa. Consequently, the bore rises faster to the top
point under a larger amount of impounding water. The bore peak of him = 550 [mm] case is
200 [mm] and remains constant, the bore depth of him = 850 [mm] case increases until nearly
300 [mm] and decrease slowly thereafter, the bore depth of him = 1150 [mm] case reaches its
maximum of 400 [mm] and drops faster than the bore resulted from 850 [mm] impoundment.
It can be concluded that the bore peak is approximately 35% of the impounding water depth.
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Figure 6.19: Bore depth time series at WG 0 and 9 with three him

The bore depth in front of the structure are demonstrated on the right in figure 6.19. The
bore-structure induced bore peak is more or less identical to its initial impounding water
depth. After the first peak, another smaller peak is produced.

Bore-induced forces by three impoundments are compared in figure 6.20. Similar tendency
can be observed as in the bore depth in terms of the magnitude, the interact time and the
number of peaks. Impulsive loads in him = 550 to 1150 [mm] cases ranges from 85 - 55%
of the later run-up forces. In the smaller impounding water situation, the impulsive force
accounts for a larger proportion.
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Figure 6.20: Force time series at front surface with three him

From figures 6.19 to 6.20, the 3D and OL 2D3D results fit quite well in overall. Disturbances
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in the OL 2D3D model are observed when the structure is introduced and their magnitude
increases as the impounding water depth increases.

6.6. Conclusion

This chapter performs a series of numerical investigation of the tsunami-like bores and the
bore-structure interactions over dry flume bed. A dam collapse process is used to gener-
ate tsunami-like hydraulic bores and the structure with a square cross-section is introduced
downstream of the flume to model the impact of bore-structure interaction. Numerical mod-
els of purely 2D, 3D and OL 2D3D are established to demonstrate capabilities of the applied
models by comparing time-histories of bore depths and hydrodynamic forces exerted on the
structure with the physical experiments conducted at the NRC-CHC in Ottawa, Canada. To
save computational expense, a relatively coarse mesh resolution, for instance 0.04 × 0.04 ×
0.02 [m3] in x-, y- z-directions of 3D model, is applied in numerical models. Three different
impounding water are prescribed to simulate dam break process, each case is tested with
and without the downstream structure yielding 6 sub-cases in total.

Tsunami-like bores propagating over a dry channel bed without the downstream structure
are first reproduced with three stored water depths. The initial impounding water depth
contributes to bore depth developing the most. The more impounding water, the faster
velocity in the bore front and the higher bore depth at the structure location. When the
solid square structure is introduced, relationship between the impounding water and the
bore depth remains the same with different bore behaviors. The bore is rebounded by the
front face of the structure, they splash-up to their top points and collapse to flow against
and around the structure.

Tsunami bore propagation and tsunami-induced forces cannot be accurately simulated by the
2D Shallow Water model in the dam failure and the structure regions, especially at the struc-
ture edge (e.g. WG 10 and 12). The bore depth and force time history profiles of 2D model are
severely fluctuating in bore-structure simulations. Prediction by the 3D RANS model and the
overlapping 2D-3D coupled model show reasonable accuracy and a general good agreement
with the measurements. The 3D model presents smooth bore depth and force time history
profiles and disturbances appear in the OL 2D3D model.



7. Development of a workflow for 2D-3D
coupled flood simulations

With aim of building an integral multi-scale flood simulations framework, a fully developed
workflow is described in this chapter. To make the most advantages of the present coupled
solver in a complex flood scenario, for intense an urban flood, purely 2D simulations are
recommended to compute prior to coupled simulations. With the help of the 2D results,
users may get a general view of the whole problem in a short time and define problematic
regions as 3D domains for the coupled simulation later on.

Workflow of urban 
flood simulations

2D simulation

3D domains definition

coupled simulation

Workflow of a 
single simulation 

Pre-processing

Problem solving

Post-processing

Mesh generation

Results visualization

Initial & Boundary 
conditions setting up

Data treatment

Equations solving

Figure 7.1: 2D-3D coupled flood simulations framework

Figure 7.1 outlines the framework of urban flood simulations where the flood simulation
workflow is defined on the left side and every single CFD simulation workflow is demonstrated

134
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on the right side including necessary tasks of pre-processing, problem solving and post-
processing. Chapter 4 mainly discussed the problem solving part by implementing a new
coupling algorithm. Apart from equations solving, mesh generation, initial and boundary
conditions setting up, data treatment and results visualization are remaining to establish.
To complete the workflow, terms bounded by an orange dashed line in figure 7.1 specifically
for coupled simulations will be detailed in this chapter.

7.1. Mesh generation

Mesh generation is the groundwork which plays an significant role in CFD simulations. How
to build suitable mesh for practical utilization is indispensable. A complete workflow in mesh
generation is introduced here along with special treatment in coupling meshes creation.

Currently, only cases with regular bottom have been tested; where coupling meshes are
created by using blockMesh, a default mesh generation utility supplied with OpenFOAM.
On the interest of realistic geometry creation, snappyHexMesh can be used on based of the
blockMesh generated background mesh to create complex body-fitted 3D meshes (more de-
tails refer to appendix C). In the process of mesh generation, 3D meshes can directly obtained
from snappyHexMesh since snappyHexMesh is originally designed for 3D mesh creation. Due
to the special structure in 2D mesh, another mesh manipulation function, extrudeMesh, is
applicable which extrudes the given mesh from existing patch with the specified layers. 2D
meshes can therefore be achieved by executing extrudeMesh on the body-fitted 3D meshes
from the top patch to the bottom patch with only one layer in between.

As a consequence of the coupling algorithm used in this work, the 2D and the 3D mesh must
be matched at the overlapping area in horizontal directions. Fully body-fitted girds in 3D
region can hardly match to the 2D region under influence of snapping mesh to the surface
step in snappyHexMesh. For this reason, the castellated surface representation mesh for 3D
regions has been chosen.

Steps in mesh generation flowchart exclusively for the coupled solver are exhibited in figure
7.2, where a circle represents the input file(s), a rectangle is the resulting mesh produced
from the previous execution. Executable utilities are marked in the grey color of which texts
with a underline is an OpenFOAM command. In general, blockMesh provides a background
mesh which covers the whole geometry; by means of snappyHexMesh, a 3D body-fitted
mesh is thereby generated as the base mesh for 2D and 3D regions creation; mesh for
purely 2D simulations can be obtained by extruding the base mesh from 3D to 2D and
sub-meshes for 2D region in the coupled simulation are reached by removing all 3D regions
from the resulting 2D mesh; similarly, 3D sub-meshes are extracted from the base mesh in
the predefined 3D regions. Simply by means of combing the 2D mesh and the castellated
3D mesh does not results the proper mesh which is compatible with the coupled solver. In
order to get a proper coupling mesh for the coupled solver, two additional special care are
required which are highlighted in blue dashed line boxes and are elaborated in the following
subsections.
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Background Mesh

Body-fitted 3D Mesh

Extruded 2D Mesh

2D Regions Sub-mesh

3D Regions Sub-mesh

Re-regulated 3D Mesh 

Boundary type adjustment

blockMeshDict

blockMesh

snappyHexMesh

extrudeMesh setSet && subsetMesh

STL format file

2D-3D Coupling Mesh

2D Regions Extraction

setSet && subsetMesh
3D Regions Extraction Mesh Re-regulation

Figure 7.2: Mesh generation flowchart

7.1.1. Mesh re-regulation and adaptation for 3D
mesh

When applying snappyHexMesh to generate body-fitted 3D mesh (only using the castellated
mesh), unwanted cells are removed and new boundaries are formed. The process of 3D re-
gions sub-mesh creation is listed as follows:

• (1) Generate the background mesh.

• (2) Introduce the geometry input data (e.g. the STL file).

• (3) Define unwanted cells following the surface feature.

• (4) Remove these cells.

• (5) Define 3D sub-region.

• (6) Extract 3D sub-mesh.
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(1) Background mesh with 
original bottom boundary

(2) Geometry information 
introduction

(3) Remove cells definition

(4) Body-fitted mesh with 
new bottom boundary

(5) 3D sub-region definition (6) 3D sub-mesh with 
new bottom boundary

Should not 
belong to 
the bottom

Figure 7.3: Process of 3D sub-mesh creation with ill-posed bottom boundary

However, this could cause ill-defined bottom boundary problems. For example we create a
3D sub-mesh with the given STL file (marked in green dotted line) shown in figure 7.3, steps
(1) - (4) are general processes by the snappyHexMesh and the bottom boundary is marked as
bold black line. After the body-fitted treatment, the new bottom boundary is no longer flat.
If we define our 3D sub-region marked as blue, a face from the previous bottom boundary
highlighted by the red circle becomes a lateral boundary face, which should be identified
as a member of the coupled interface. This face is now considered as a bottom element.
Consequently, a false wall is built in the simulation and the coupled model fails to run. In
view of this, all 3D sub-meshes should be checked and re-regulated the boundary patches if
necessary to match the correct interface needs.

A mesh re-regulation method is introduced to establish proper meshes for the coupled solver.
The mesh re-regulation treatment is dedicated to finding out all ill-posed faces ID at the first
place and regrouping them into the correct boundary patches. Accordingly, these ill-posed
faces are taken out from the bottom boundary patch.
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A list of ill-posed faces ID

Find all faces belonging to the 3D interface (f1,f2,…,f8)

Find all cells belonging to those faces (c1,c2,…,c8)

Find the lowest face of the cell (f_lowest)

Check if this face belongs to the bottom patch

Find the cell (c0) that contains the „lowest face“ 
(f_lowest) but not contains the ill-posed face (f1)

Write out the ill-posed face ID (f1)

Get the new lowest face (f _́lowest) of the current
lowest cell (c0)

If yes If no

Use mesh manipulation tool (setSet && creatPatch) to regroup
the boundary pacthes

Figure 7.4: Mesh re-regulation flowchart

For better understanding the method, the flowchart in figure 7.4 is explained with labels
from an elaborated example illustrated in figure 7.5. Without the mesh re-regulation, the
2D-3D interface boundary is marked as the red line and the ill-posed face is marked as the
grey line in figure 7.5. The mesh re-regulation :

1. finds all faces on this interface boundary, denoted as f1 to f8;

2. finds the corresponding cells which belonging to these faces, denoted as c1 to c8;

3. find the lowest face of all these cells, demoted as f_lowest;

4. check whether the lowest face f_lowest belongs to the bottom patch;

5. if it is not a bottom face, find the other cell which contains the f_lowest, denoted as
c0;

6. find the lowest face of c0, denoted as f’_lowest, and the lateral face on the c0 aligned
with f1 to f8, denoted as f0, and repeat step 4;

7. if it is the lowest face, quit the if-loop and regroup the ill-posed faces ID (e.g. f0) by
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using two OpenFOAM mesh manipulation tools: setSet and createPatch

where, all ill-posed faces ID are stored in setSet and createPatch modifies the patch
components by deleting these ill-posed faces from the bottom boundary and add them to
the Γ3D boundary.

c0

2D
3D f8

f7

f6

f5

f4

f3

f2

f1

c8

c7

c6

c5

c4

c3

c2

c1

f_lowest

Ill-posed face ID: f1

f0

f _́lowest

2D-3D interface
New sides-boundary

Figure 7.5: Mesh re-regulation process example

7.1.2. Boundary type adjustment

An entire mesh is represented by the defined computing domain embedded with boundary
patches. Only standard boundary types that already defined in OpenFOAM can be formu-
lated by performing OpenFOAM mesh utilities. As a developed solver, the coupled solver
requires a customised boundary type allowing coupling regions to match and to communi-
cate. As a consequence, boundary types setting up for coupling areas shall be adjusted.

A python script is implemented to update boundary types for coupling regions.

7.2. Initial and boundary conditions setting
up

Initial and boundary conditions in most cases are mainly prescribed by setFields-utility
that values for the target scalar or vector field are set without programming. Relevant
setFields-utilities are:

• setFields: set values on a selected set of cells or boundary faces via a simple prede-
fined dictionary.
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• funkySetFields: set values for cell centers on selected internal field depending on an
user defined expression.

• funkySetBoundary: set values for faces centers on selected boundary depending on an
user defined expression.

Nevertheless, an irregular list of values, e.g. real terrain data, is difficult to obtain by either
a easy definition or writing expressions. Bottom data extraction of a realistic terrain for 2D
meshes and set them to the 2D solver are studied.

7.2.1. Surface interpolation of terrain data for 2D
simulations

As introduced in appendix C, the 2D mesh in OpenFOAM is a pseudo 2D mesh. The mesh
only follows the geometry in the horizontal dimensions (x- and y- directions) and is always
flat with a constant thickness in the vertical dimension (z-direction). Most of the numerical
simulations read the geometry information through the mesh, such as the dimension of the
simulation domain, the objects inside the domain and the bottom elevation. Unfortunately,
no information in z-direction is available in the OpenFOAM 2D mesh. For this reason, an-
other parameter Z is introduced in shallowFoam to represent Zbi in equation (2.2.23).

We can easily assign regular bottom level values to 2D cell centers by using mesh manipu-
lation tools in OpenFOAM (e.g. setFields, funkySetField (Greenshilds and Ltd, 2015)).
For cases that include river flow over a realistic terrain a problem arises since the elevation is
usually not uniform and varies a lot throughout the domain. Usually, the data that describes
a 3D realistic terrain is initially an unstructured set of X Y Z points which are obtained
using 3D aerial laser scanning methods, e.g. the unstructured set of points is firstly used to
construct a bottom geometry in a STL format using triangulation methods. Besides using
them for geometry creation, they are useful for creating interpolation surfaces, which could
be used to describe the completely realistic terrain geometry.

As exhibited in figure 7.2, a 2D mesh was created from available triangulated data (STL) us-
ing the OpenFOAM meshing utility snappyHexMesh. Since bottom elevation data is required
to solve the SWE it was necessary to store it in the cell centres. This procedure was success-
fully completed using surface interpolation with radial basis functions.

Surface interpolation method

An interpolated surface could be made based on a set of unstructured points that describe a
real terrain. For this case we use radial basis functions to approximate the surface of a real
terrain. Creating an interpolated surface allows us to extract the elevation level for every
X and Y coordinate of the mesh cell centre. Radial basis functions were used to obtain
elevation in realistic surfaces. Radial basis interpolation in equation 7.2.1 describes a simple
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variant of the radial basis interpolation method.

ze =
n∑
k=1

λkφ(rk) + b (7.2.1)

where ze [m] is the estimated bottom elevation for the surface grid point, rk [m] is the dis-
tance from the unstructured grid point to the input data, λk is the mapping coefficient and
b [m] is the bias value. λk and b are estimated from the unstructured data points.

The function of distance or the radial basis function could be defined as a wide variety of
different spline functions and in this case, the radial basis function φ(r) is defined as a thin
plate spline (a special polyharmonic spline) function 7.2.2. The thin plate spline function
minimizes the bending energy which balances the tradeoff between the accuracy to the data
and the smoothness to the interpolated values.

φ(r) = r2log(r) (7.2.2)

To apply the method of surface interpolation with radial basis functions, a set of unordered
X Y Z points that describe a geometry need to be used to create a surface interpolation
function. In order to use the created surface interpolation function that is based on the
original geometry, the extracted cell centres Xc and Yc of the 2D mesh need to be evaluated.
The output of this process is the corresponding elevation Zc for every Xc and Yc.

Cell center points extraction method is tested by the 2D model on a flooding simulation
case that has a realistic terrain. The case simulated the Malpasset river dam break which
was experimentally and numerically studied in (Alcrudo and Gil, 1999), (Valiani et al.,
2002) and (Hervouet and Petitjean, 1999). Our numerical analysis showed good agreement
with provided experimental data. More details of the test case can be found in Zeng et al.
(2018).

7.3. Conclusions

A complete workflow for the coupled model includes (1) mesh generation, (2) initial and
boundary conditions setting up, (3) equation solving, (4) data treatment and (5) results
visualization. This chapter mainly tackle the challenges in realistic geometry simulations for
(1) mesh generation and (2) initial and boundary conditions setting up steps. Step (3) equa-
tion solving has been elaborated in chapter 4. Steps (4) data treatment and (5) results visu-
alization are strongly dependent on user’s need. The most common and easiest way is to use
post-processing functions or tools provided by OpenFOAM.
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The main interests in improving an 2D-3D coupling algorithm for free surface flows have
been investigated in this research. This coupled model could be used as an efficient numeri-
cal tool in hydrodynamic events assessment, which provides insight in fluid flow phenomena
and guidelines for civil and structural protection.

The coupling algorithm improvement in this work was based on a characteristics-based cou-
pling algorithm proposed by (Mintgen, 2017), which combined the 2D Shallow Water solver
shallowFoam and the 3D RANS solver interFoam in the OpenFOAM framework. A trans-
fer of information between 2D and 3D solvers has been implemented via the exchange of
boundary conditions at the interface between 2D and 3D sub-meshes. Within the coupling
algorithm implementation, a non-overlapped mesh where the 2D and the 3D sub-meshes
perfectly matched in horizontal directions is necessary. The direction of information transfer
from one sub-region to another depends on the flow characteristics: the flow condition and
the flow direction. In this characteristics-based coupling algorithm, the interface receives
information by means of the Neumann condition and transfer the information by Dirichlet
condition. However, a shortcoming of this coupled solver was that the coupling algorithm
cannot detect an upstream-travelling hydraulic jump in the supercritical region, which is
caused by a zero-gradient condition of flow depth at the interface of this region. This block-
ing of hydraulic jump result in non-physical simulation results in some particular cases e.g.
upstream-travelling hydraulic jump over the incoming supercritical flow.

To overcome the hydraulic jump blocking problem, several ad-hoc modifications of the
characteristics-based coupling algorithm have been tested in order to transfer the down-
stream hydraulic jump information correctly over the interface: (1) apply the Dirichlet
condition for all flow features on the interface from both sides regardless the flow conditions;
(2) add a discontinuous wave corrector (hydraulic jumps can induce discontinuous waves and
the wave celerity is no longer equals

√
gh) in Fr calculation to redetermine the flow condi-

tion; (3) set up a hydraulic jump detector to sense whether an upstream-travelling hydraulic
jump is approaching to the interface, if an approaching hydraulic jump is detected, then
we apply the Dirichlet condition on the upstream interface and the Neumann condition on
the downstream interface. Upstream-travelling surge test cases were simulated by the above
coupling algorithms. With the ad-hoc modifications (1) and (2), the resulting surge was
still blocked at the interface. The third ad-hoc modification of introducing a hydraulic jump
detector was able to transfer the upstream-travelling surge through the interface, however,
the surge behaved unrealistic after passing through the interface.

Therefore, the improved 2D-3D coupling algorithm has been developed to solve the draw-
back mentioned above. A simplified overlapping method has been implemented using just
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one Schwarz iteration and cell-to cell overlapping. Instead of using common faces, data map-
ping between 2D and 3D sub-regions is applied by means of the overlapped cells. Within
every time step of simulation, the following procedures are performed sequentially: (1) the
Ω2D is solved, (2) from the cells located in the overlapping regions and adjoin to the Γ3D,
the 2D results are mapped to the Γ3D, (3) the Γ3D passes the received values into the adja-
cent 3D cells, (4) the Ω3D is solved with the updated information from the Ω2D, (5) the 3D
results then update the Ω2D in an analogous manner. Grid sizes of 2D and 3D sum-meshes
in overlapping regions shall be also matched in horizontal directions. Data transfer between
connected regions is achieved via a set of cells with identical horizontal dimension, thus no
interpolation is required.

The overlapping method has proved to work in the same upstream-travelling surge test
where the upward transfer surge passes the coupling region with an overall good accuracy
compared to the pure 3D model, but disturbances appear in the overlapping region in the
process of surge transferring the overlapping region. Sensitive studies of this case indicates
that when we shrink the overlapping region, the disturbances become smaller accordingly.
Solitary waves transport in supercritical and subcritical flows have further demonstrated the
ability of the new coupling algorithm. Wave transfer in these cases are smooth and no flow
condition change occurs. As a consequence, smoother transfer processes over the overlapping
region are reproduced in contrast to the surge transfer case. The bore-structure interaction
has been comprehensively studied and compared with the experiments. Good agreement
with the measurement data and the 3D simulations around the structure located area have
been obtained by the new method.

Finally, a workflow for running the new coupled model has been developed which is appli-
cable in realistic applications. The workflow consists of mesh generation, simulation set-up,
call the solver and the visualization.

Open points for future work are subdivided into the four major points and are proposed as
follows:

Improvement of 2D solver Disturbances can be observed when the wave shapes and char-
acteristics differ extensively between 2D and 3D models. A better fit could be reached by im-
proving the 2D model that brings the 2D wave closer to the 3D.

High performance computations Unfortunately, the new coupling algorithm is not able
to run in parallel yet. An efficient prediction of flood events requires the use of High-
Performance Computing (HPC). Enabling the ability of the new solver for parallel running
is the next task beyond doubt. Moreover, the speed-up will not be linearly increased after
the number of processor reaches the critical point. The major influencing factor on speed-up
is the communication and synchronization overhead between processors. More precisely, im-
provement of effectiveness of communication needs to be tackled.

User interface development The current workflow was written in the bash and python
scripts. To make the whole process more user friendly and conveniently, a nice user interface
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shall be developed that users can import the geometry data and set relevant coefficients in
mesh creation, solving and post-processing calculations. More specifically, the automatic
mesh generator could be a worthy point that provides an interactive mesh refinement where
complex flow features are likely to occur.

Real world applications In this research, real world applications are not tested. It would
be very interesting to see the overlapping coupled solver performance for realistic simula-
tions.
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Appendix A.

Type of Shallow Water Equations

A.1. Unsteady 2D SWE

The fully Shallow Water equations system is a nonlinear second-order PDE. In our study,
we consider an incompressible and inviscid fluid. The bottom friction is treated as a body
force. Thus the SWE turns into a nonlinear first-order PDE, which can be written in the
following form in the case of two space dimensions:

∂U

∂t
+ A

∂U

∂x
+ B

∂U

∂y
= F (A.1.1)

with

U = (u, v, h)T

F = (Fx, Fy, 0)T

A =

 u 0 g
0 u 0
h 0 u

 , B =

 v 0 0
0 v g
0 h v


Equations (2.2.22) are the unsteady 2D-SWE. Here we have 3 independent variables which
makes it is complicated to solve. A simple way is to solve it on the x − t plane and y − t
plane respectively.

For the x− t plane,

∂U
∂t

+ A∂U
∂x

= F, C = A.

|C− λI| =

∣∣∣∣∣∣
u− λ 0 g

0 u− λ 0
h 0 u− λ

∣∣∣∣∣∣ = 0

upon expansion, resulting in

(u− λ)3 − c2(u− λ) = (u− λ)[(u− λ)2 − c2] = 0
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154 A.2. Steady 2D SWE

with c =
√
gh

We get 3 distinct real eigenvalues, which means that the system is hyperbolic.

λ1 = u, λ2,3 = u± c

The same holds for the y − t plane. Hence the system of equation (A.1.1) is hyper-
bolic.

A.2. Steady 2D SWE

Equations (A.1.1) reduces to equation (A.2.1) if we consider the steady case, which means
that time-derivative term vanishes. The problem is now a quasi-linear system of partial differ-
ential equations of the first order in two independent variables.

A
∂U

∂x
+ B

∂U

∂y
= F (A.2.1)

The equation above can transform to:

∂U

∂x
+ C

∂U

∂y
= F (A.2.2)

with

C = A−1B

NOTE If A is an invertible matrix, then |A| = u(u2 − c2) 6= 0. Thus u 6= 0 and u2 − c2 6=
0.

A−1 = A∗

|A|

Then

|C− λI| =

∣∣∣∣∣∣
uv

u2−c2 − λ −
c2

u2−c2 − gv
u2−c2

0 v
u
− λ g

u

− hv
u2−c2

hu
u2−c2

uv
u2−c2 − λ

∣∣∣∣∣∣ = 0

upon expansion, resulting in

( v
u
− λ)(u2 − c2)[λ2(u2 − c2)− 2λuv + v2 − c2] = 0

We get 3 eigenvalues:
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λ1 = u, λ2,3 = uv±c
√
u2+v2−c2

u2−c2

According to the definition, the equation (A.2.1) is hyperbolic if is has three distinct real
eigenvalues (u2 + v2 − c2 > 0); is parabolic if it has less then three distinct real eigen-
values (u2 + v2 − c2 = 0); and is elliptic if it has complex eigenvalue (u2 + v2 − c2 <
0).



Appendix B.

OpenFOAM directory structure

All simulated applications are required to have three compulsory directories: 0, constant
and system. Computing fields data for the 0-timestamp including boundary conditions are
stored and specified in 0, constant contains geometry information as well as constant prop-
erties such as the fluid density and the gravity acceleration; and system provides stipulated
solution techniques and general controls of running time and recording time. Additional
directories can be generated by OpenFOAM utilities.

B.1. interFoam simulation structure

interFoam
0

cosntant

system

alpha1  // VOF indicator
U         // Velocity

omega // Turbulent frequency

nut      // Turbulent viscosity

pd       // Dynamic pressure

polyMesh

trasportProperties

controlDict

fvSchemes

fvSolution

k         // Turbulent kinetic energy

g
turbulenceProperties
RASProperties

// Mesh information

Figure B.1.1: interFoam structure tree with k − ω SST turbulence model

As shown in figure B.1.1, in directory 0 all necessary computing fields are prescribed with
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initial and boundary conditions, of which alpha1 is the free surface indicator function, U is
the velocity, pd stands for the dynamic pressure calculated via equation (3.4.2) and turbulent
parameters i.e. omega, k and nut if k − ω SST turbulence model is applied. The constant
settings are defined under constant directory such as the mesh information stored under
constant/polyMesh, the chosen turbulence model and the constant physical properties for
the application concerned. A system directory is requisite for setting parameters associ-
ated with the solution procedure itself. To fulfil a stability criterion, the PISO algorithm
requires a small CFL which has to be no larger than one. Thus a maxCo is needed and all
other run control parameters e.g. start/end time, time step and so on are set under sys-

tem/controlDict. Discretisation schemes and the equation solvers are determined under
system/fvSchemes and system/fvSolution respectively.

B.2. shallowFoam simulation structure

shallowFoam
0

cosntant

system

H     // Flow depth
HU   // Specific discahrge

kst   // Strickelr coefficient
nut   // Turbulent viscosity

S     // Bottom elevation

polyMesh

trasportProperties

controlDict

fvSchemes

fvSolution

// Mesh information

Figure B.2.1: shallowFoam structure tree

Similar directory tree of shallowFoam cases exhibited in figure B.2.1 displays the different
requirement from interFoam cases. In accordance with the governing equations, five simu-
lation fields: H, HU, S, kst, nut stands for flow depth, specific discharge, bottom elevation,
Strickler value, turbulent viscosity respectively are indispensable for setting up a shallow-

Foam case. There is no more turbulent properties file in constant because only eddy viscosity
model is covered as the 2D turbulent model.

In OpenFOAM the mesh are always have three dimensions. In shallowFoam cases the
vertical direction mesh are not taken into account that a uniform height of 1 [m] in z -
direction is obligatory. That is the reason why the bottom elevation field S is introduced to



158 B.3. shallowInterFoamOL simulation structure

represent the bottom geometry. Boundary conditions for all fields in z -direction are set to
the empty boundary condition.

B.3. shallowInterFoamOL simulation
structure

shallowInterFoam
0

cosntant

system

alpha1, U, pd, omega, k, nut  

polyMesh

controlDict

fvSchemes, fvSolution

g, turbulenceProperties, RASProperties, trasportProperties

region2d

region3d

H, HU, S, kst, nut  

region2d

region3d

polyMesh
trasportProperties

region2d

region3d
fvSchemes, fvSolution

regionProperties

Figure B.3.1: shallowInterFoam structure tree

As a coalition of interFoam and shallowFoam, every single essential file for setting up
the corresponding case is also blended in shallowInterFoam case directory tree. In ac-
cordance with the sub solver, elements belongs to the 2D solver are getting to the re-

gion2d sub-directory and for which affiliated with the 3D solver are under the region3d

sub-directory. Apart from that, regionProperties is in need of specifying the sub-regions
name.



Appendix C.

OpenFOAM Mesh Strucutre

As an integral part of the numerical solution, a mesh is a set of points or cells that each
point or cell represents an individual solution of the equation and when combined for the
whole network, results in a solution for the entire domain. In another words, a mesh is
a discretization of a domain existing in one, two or three dimensions. On basis of FVM,
OpenFOAM is designed originally for solving 3D problems so that the definition of a mesh
a group of arbitrary polyhedral cells in three dimensions.

The general mesh structure in OpenFOAM is known as polyMesh, that for each cell can
have an infinite number of faces and no limit on the number of edges applies on each face.
This type of mesh is usually called unstructured mesh that offers a wide freedom in mesh
generation when dealing with a complex geometry problem.

The default mesh generator in OpenFOAM is blockMesh, which is mostly used in simple
geometry cases and it can create a regular rectangular mesh domain without many effort.
When creating a mesh with complex geometry, another mesh manipulation tool in Open-
FOAM, snappyHexMesh, is applied. The snappyHexMesh utility generates body-fitted 3D
meshes by approximately adjusting the background mesh (i.e. the background mesh gener-
ated by blockMesh) to the object surface and shifting the resulting hex or split-hex mesh to
the surface. Within execution of snappyHexMesh, the mesh refine the appointed region, ap-
proximately re-adapt to the surface and morphing the resulting split-hex mesh to the surface.
Additional step is possible to shrink back the resulting mesh and insert cell layers. Mesh
generation procedures for a half sphere hollow in a cubic domain are exhibited in figure C.0.1.

a: Background
mesh

b: Castellated
mesh

c: Smooth surface
mesh

d: Add layers mesh

Figure C.0.1: 3D mesh generation for a half sphere hollow in a cubic domain
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160 C.1. 3D solver mesh

The background mesh in figure C.0.1 a is obtained by blockMesh and the rests in figure C.0.1
are produced by snappyHexMesh. The requirements and the technique of snappyHexMesh is
shown as follows:

1. Background mesh generation (blockMesh).

2. Surface data files (in STL or OBJ format) of the target geometry supply.

3. Mesh refinement and splitting at feature edges and surfaces on basis of the background
mesh (snappyHexMesh).

4. Cells removal of which lies out of the specific region (snappyHexMesh).

5. Snapping the resulting mesh to better fit the surface (snappyHexMesh).

6. Adding additional layers of hexahedral cells aligned to the boundary surface (snappyHexMesh).

The following sections will take the same geometry, a culvert, as an example for mesh repre-
sentation in different dimensions, more specifically for 3D and 2D mesh generation.

C.1. 3D solver mesh

The side view of the 3D mesh in figure C.1.1 demonstrates explicitly the outline of the
geometry, a culvert in this example. Multiple layers of cells are constructed in all direc-
tions of which the boundary faces define the geometry information, e.g. bottom eleva-
tion.

Figure C.1.1: Side view of 3D mesh representation
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C.2. 1D/2D solver mesh

The same case will be illustrated in a different way of mesh structure when a lower dimension
solver applies. The 2D mesh used in OpenFOAM still has three dimensions in formal but only
depicts the geometry in two dimensions denoting the third dimension contains no geometry
information. Comparing to the 3D mesh side view of the culvert in figure C.1.1, figure C.2.1
has an absolute flat bottom with only one layer in the vertical direction. It implies that the
bottom elevation data of the case is missing in mesh representation. Since no message is
carried in the vertical direction, only one cell is required along this direction and the boundary
conditions for those, which are perpendicular to the vertical direction, are set as an empty
boundary. Analogically, if 1D solver applies, two dimensions in the mesh have one layer of
cells and the connecting boundary condition are empty.

Figure C.2.1: Side view of 2D mesh representation



Appendix D.

Wave celerity derivation

The wave speed relative to the flow velocity vw is called wave celerity. The absolute wave
velocity is v ± c, with positive sign for wave travelling downstream, and the negative sign is
used for wave travelling upstream.

We assume that before discontinuous wave arrives, the flow in an open channel to be steady.
The positive wave propagate downstream with a surge height ζ. The flow attributes before
and after the wave arrives are shown in the following Table D.0.1

before (cross-section 1− 1) after (cross-section 2− 2)

flow rate Q1 Q2

flow depth h1 h2

water width B1 B2

cross-section area A1 A2

flow velocity v1 v2

pressure force P1 P2

Table D.0.1: Flow attributes before and after wave arrive

Here we only consider the upstream-travelling wave. As shown in figure D.0.1 on the left,
the flow velocities in upstream and downstream cross-sections point downstream, while the
wave velocity towards upstream. Neglecting the viscosity, this problem can be treated as the
flow stays in a moving coordinate system with a constant wave speed vw. Then the relative
flow velocity becomes v1 + vw and v2 + vw, respectively on the right of the figure. The surge
height ζ = h2 − h1.

D.1. Continuity equation for discontinuous
wave

Applying the continuity principle for cross-section 1−1 and 2−2:

(v1 + vw)A1 = (v2 + vw)A2 (D.1.1)
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1

1

2

2

𝑣1 𝑣2

𝑣w

𝐴1, 𝐵1 𝐴2, 𝐵2

𝜁

a: absolute coordinate system

1

1

2

2

𝑣1 − 𝑣w 𝑣2 − 𝑣w𝐴1, 𝐵1 𝐴2, 𝐵2

𝜁

b: reletive coordinate system

Figure D.0.1: Flow problem coordinate systems

Rearranging gives:

v1A1 − v2A2 = Q1 −Q2 = ∆Q = vw(A2 − A1) (D.1.2)

D.2. Momentum equation

1

1

2

2

𝑣1 − 𝑣w 𝑣2 − 𝑣w

𝐴1 𝐴2

𝜁

𝑃1 𝑃2

Figure D.2.1: Pressure difference

The same, applying the relative flow momentum equation for cross-section 1− 1 and 2− 2
by neglecting body force, only pressure force works:

P1 − P2 = ρ[Q2(v2 + vw)−Q1(v1 + vw)] (D.2.1)
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Substituting Q1 and Q2:

P1 − P2 = ρ[A2(v2 + vw)(v2 − v1)] (D.2.2)

Hydrostatic pressure distribution in cross-section 1−1 and 2−2:

P2 − P1 = ρg(hc2A2 − hc1A1) (D.2.3)

with hc2 and hc1 are the centroid depth of h2 and h1 respectively.

D.3. Wave celerity for uniform rectangular
channel

For a uniform rectangular channel: B1 = B2, hc1 = 1
2
h1, hc2 = 1

2
h2, A1 = h1B1, A2 = h2B2.

Equation (D.2.3) can be written as:

P2 − P1 =
1

2
ρg
A2

h2

ζ(h1 + h2) (D.3.1)

Putting Equation (D.2.2) and Equation (D.3.1) together:

ρ[A2(v2 + vw)(v2 − v1)] = −1

2
ρg
A2

h2

ζ(h1 + h2) (D.3.2)

v1 can be reformulated from equation (D.1.1):

v1 =
(vw − v2)ζ

h1

(D.3.3)

Substituting equation (D.3.3) in equation (D.3.2):

h2(v2 + vw)2

h1

=
g

2
(h1 + h2) (D.3.4)

Rearranging gives the wave speed:

vw + v2 =

√
g(h1 + h2)h1

2h2

(D.3.5)

Hence wave celerity:

vw =

√
g(h1 + h2)h1

2h2

(D.3.6)
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