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Abstract—In this article, we generate a regional mapping of
space-borne carbon dioxide (CO2) concentration through a data
fusion approach, including emission estimates and Land Use
and Land Cover (LULC) information. NASA’s Orbiting Carbon
Observatory-2 (OCO-2) satellite measures the column-averaged
CO2 dry air mole fraction (XCO2) as contiguous parallelogram
footprints. A major hindrance of this data set, specifically with
its Level-2 observations, is missing footprints at certain time
instants and the sparse sampling density in time. This article
aims to generate Level-3 XCO2 maps on a regional scale for
different locations worldwide through spatial interpolation of
the OCO-2 retrievals. To deal with the sparse OCO-2 sampling,
the cokriging-based spatial interpolation methods are suitable,
which models auxiliary densely-sampled variables to predict the
primary variable. In this article, a cokriging-based approach is
applied using auxiliary emission data sets and the principles
of the semantic kriging (SemK) method. Two global high-
resolution emission data sets, the Open-source Data Inventory
for Anthropogenic CO2 (ODIAC) and the Emissions Database
for Global Atmospheric Research (EDGAR), are used here. The
ontology-based semantic analysis of the SemK method quantifies
the interrelationships of LULC classes for analyzing the local
XCO2 pattern. Validations have been carried out in different
regions worldwide, where the OCO-2 and the Total Carbon
Column Observing Network (TCCON) measurements coexist. It
is observed that the modeling of auxiliary emission data sets
enhances the prediction accuracy of XCO2. This article is one of
the initial attempts to generate Level-3 XCO2 mapping of OCO-2
through a data fusion approach using emission data sets.

Index Terms—Emissions Database for Global Atmospheric Re-
search (EDGAR), interpolation, land use and land cover (LULC),
Orbiting Carbon Observatory-2 (OCO-2), Open-source Data
Inventory for Anthropogenic CO2 (ODIAC), semantic kriging
(SemK), column-averaged CO2 dry air mole fractions (XCO2).

I. INTRODUCTION

ATMOSPHERIC carbon dioxide (CO2) is a greenhouse
gas (GHG) that affects climate change most significantly.
A number of satellites were launched in the last few years
that were dedicated to GHG observations. Examples include,
NASA’s Orbiting Carbon Observatory-2 (OCO-2) [1], [2], Ex-
ploratory Satellite for Atmospheric CO2 (TanSat) [3], Japanese
Greenhouse gases Observing SATellite (GOSAT) [4], and
Environmental Satellite (ENVISAT) [5]. The OCO-2 measures
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the column-averaged CO2 dry air mole fractions (XCO2) in
the atmosphere as contiguous parallelogram footprints, each
having area up to about 3 km2. The XCO2 measurements are
obtained using a number of retrieval algorithms, for example,
NASA Atmospheric CO2 Observations from Space (ACOS)
algorithm [6]. However, these are Level-2 retrievals and ir-
regular in space as well as in time. Fig. 1 shows the OCO-2
Lite Version 9r XCO2 measurements on October 14, 2017.
A portion of a measurement swath near Córdoba, Argentina,
is magnified where the parallelogram footprints are visible
and the corresponding swath width (approximaely 10.3 km
[7]) is shown. One footprint is further magnified to show
its maximum dimension. The center of the parallelogram is
the representative center point of the sounding footprint. The
XCO2 values of these one-day retrievals are categorized into
five classes (shown in different colors), and the measurement
unit is parts per million (ppm, 10−6). It is evident from the
figure that, on a single day, a huge portion of the Earth’s
surface remains unmeasured, and this problem eventually
propagates in its time-series measurements as well.

Fig. 1: XCO2 measurements by OCO-2 on October 14, 2017.

This incomplete sampling of atmospheric CO2 prevents us
from understanding the global carbon cycle, the mechanisms to
control its spatial and temporal variability, the distributions of
carbon emission and uptake, and so on. Apart from the satel-
lite remote sensing of CO2, several high-resolution globally
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gridded emission inventories are available, which represents
the anthropogenic emissions from different activities. For
example, the Open-source Data Inventory for Anthropogenic
CO2 (ODIAC) is one such popular emission data product. It
is based on the latest country FFCO2 estimates (20002015)
made by the Carbon Dioxide Information Analysis Center
(CDIAC) at the Oak Ridge National Lab (ORNL), USA,
by fuel type (solid, liquid, gas, cement manufacturing, gas
flaring, domestic/international shipping, aviation, and marine
bunkers) [8]. Currently, it provides monthly emission data
from 2000 to 2017. According to Oda et al. [8], this data
can be considered for the modeling of remotely sensed XCO2

data from the OCO-2 satellite for understanding the carbon
cycle science. Similarly, another comprehensive database of
anthropogenic GHG emissions is the Emissions Database for
Global Atmospheric Research (EDGAR) [9]. It provides time-
series fossil CO2 emission estimates from 1970 to 2012,
including anthropogenic emissions from fossil fuel combustion
and production, as well as from industrial processes (cement,
steel, liming, urea, and ammonia production, or consumption).
These emissions are calculated with a bottomup approach
using international statistics for the activity data (such as
fuel consumption or crops) and Intergovernmental Panel on
Climate Change (IPCC) (2006) values for the emission factors.
The uncertainty for the global annual anthropogenic CO2

emission estimate ranges from 9% to +9% [10]. However,
the uncertainties of the GHG inventory vary from nation
to nation and are much higher. For example, the estimated
uncertainties (2σ) reported for CO2eq in China, India, and
Brazil are 11.3%, 17.2%, and 28.3%, respectively, in 2012
[10]. In the subnational scale, the uncertainty is even higher
[11]. Considering these emissions to be the major contributing
factors to the expansion of CO2 in the atmosphere, this article
aims to predict the missing XCO2 concentrations of OCO-2 by
contemplating the emission estimates of ODIAC or EDGAR as
the auxiliary information into the prediction process. The 2017
ODIAC estimates (monthwise) and 2012 EDGAR estimates
are used in this article. There is a temporal misalignment
of the EDGAR emission data set with the 2017 OCO-2
measurements considered in the empirical study. According to
[12], global GHG emissions are dominated by the fossil CO2

share and steadily increased in the period between 1970 and
2012. Then, the global CO2 emissions show a slowdown trend
and were stalled for the third year in a row with no further
increment of the total CO2 in 2016. Therefore, the EDGAR
emission estimate from 2012 can be used as a valid data set for
this article. Since, here we try to differentiate between the high
and low-emission zones through the emission estimates of a
local region, the temporal stability assumption of this auxiliary
data should not affect the performance of this approach. The
empirical results also justify this assumption in Section V.

To address the drawback of the incomplete OCO-2 mea-
surements stated earlier, spatial prediction, more specifically
spatial interpolation, is one of the obvious choices reported in
the literature. In contrast to the deterministic spatial prediction
methods, the geostatistical interpolation methods or kriging
are reported to be more accurate. Among the geostatistical
interpolation methods, the variants of kriging, for example,

simple kriging (SK) [13], ordinary kriging (OK) [14], universal
kriging (UK) [15], spatial block kriging (BK) [16], fixed
rank kriging (FRK) [17], [18], ordinary cokriging (OCK)
[19], and spatio-temporal kriging (STK) [20] are popular
spatial and spatiotemporal methods to generate a Level-3
mapping from the satellite-based Level-2 retrievals and other
related applications. Among other nongeostatistical interpo-
lation methods, inverse distance weighting (IDW), nearest
neighbor (NN), thin-plate spline (TPS), and trend surface
analysis (TSA) are a few popular methods [21]]. Many studies
have reported that the terrestrial land use and land cover
(LULC) change have a profound impact on the increase of
atmospheric CO2. For example, Houghton [22] and Houghton
and Goodale [23] have stated that the changes in LULC,
such as cropland expansion, resulted in the release of 156
Pg of carbon to the atmosphere during the period between
1850 and 1990. They reported this amount to be half of
the carbon released from the combustion of fossil fuels over
the same period. Hwang and Um [24] have presented an
interesting study to find the causal relationship between LULC
and carbon emissions using OCO-2’s XCO2 data. They have
reported that the LULC classes representing the development
activities generally exhibit higher mean XCO2 compared with
the nonanthropogenic LULC types. Therefore, the terrestrial
LULC distribution is significant information to be modeled
for the mapping of XCO2 alongside the emission estimates.
For this article, the underlying terrestrial distribution of LULC
and their influences on the local XCO2 pattern have to be
quantified so that it can be used in any cokriging framework.
Here, we have used the semantic modeling component of
the semantic-kriging-(SemK)-based interpolation method [25].
This semantic modeling adopts an ontology-based approach to
quantify the terrestrial LULC classes for analyzing different
environmental variables [26], [27]. This quantified LULC,
along with the auxiliary emission data sets, is inserted into
a traditional cokriging [19] process. This approach is referred
to as cokriging with semantic analysis of LULC (SemCK)
[28]. The broader objectives are as follows.

• Spatial interpolation of sparse Level-2 XCO2 measure-
ments of OCO-2 to create a Level-3 mapping at a
particular time instance in a local region.

• Semantically quantifying the auxiliary variable LULC
alongside the emission estimates from ODIAC or
EDGAR for the primary variable (XCO2 from OCO-2).

• Validations by comparing the traditional baseline alter-
native with respect to its extensions with LULC and
emission data.

• Comparison of the prediction results with the external To-
tal Carbon Column Observing Network (TCCON) data.

The rest of this article is organized as follows. Section
II presents the recent works on creating a Level-3 XCO2

map from the satellite measurements. Section III describes
the SemCK approach focusing on the LULC quantification
process of the SemK method. In Section IV, different data sets
considered in this article and the specifications of the empirical
study have been presented. Section V presents the interpolation
results of XCO2 and other analytical results. Discussions to
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understand the XCO2 mapping application and the SemCK
approach are presented in Section VI. Finally, the conclusions
are presented in Section VII, including some future prospects.

II. RELATED WORKS

The literature has been reported on different applications of
the XCO2 data from the OCO-2 satellite. Zammit-Mangion
et al. [17] have indicated that the gap-filled Level-3 XCO2

product can be used for validating the OCO-2 retrievals
against ground-based measurements or atmospheric transport
model output. A few attempts have been made to gener-
ate a comprehensive Level-3 mapping of XCO2 from the
partially sampled Level-2 retrievals of the OCO-2 satellite.
Article [17] is one such recent work that is reported on
generating full coverage satellite Level-3 mapping from the
Level-2 product of OCO-2. Zammit-Mangion et al. [17] have
developed a spatiotemporal statistical modeling framework of
FRK to obtain the global predictions of XCO2 with Version
7r and Version 8r data of OCO-2. They have validated the
prediction framework with TCCON data [29] and found that
the Version 8r performs better than the Version 7r. Chevallier
et al. [30] have attempted to generate a global continuous
map of XCO2 at daily and monthly temporal resolutions. They
have considered a Bayesian Kalman filter (KF) developed on a
model of persistence and compared the KF daily-mean XCO2

maps with TCCON data. Hammerling et al. [31] have adopted
a statistical mapping approach for creating a full coverage of
the atmospheric CO2 that is synthetically generated from the
PCTM/GEOS-4/CASA-GFED model. They have reported that
the overall uncertainty in terms of root-mean-square prediction
error (RMSPE) ranges from 0.20 to 0.63 ppm. The prediction
accuracy varies with the temporal averaging window (1-day,
4-day, 16-day, and so on) and season (such as January, April,
July, and September). The highest and lowest RMPSEs are
observed with the combination of one-day averaging window
in July and 16-day window in September, respectively.

From the application perspective, similar attempts have been
reported to generate a Level-3 XCO2 mapping with other
satellite data as well. Zeng et al. [32] have implemented a
spacetime kriging with a moving flexible kriging neighborhood
for the ACOS-GOSAT XCO2 data set. They have validated the
prediction results in three ways: through a cross-validation
approach, in comparison with TCCON data, and with the
model-based simulated data from both CarbonTracker CT2013
[33] and GEOS-Chem [34]. Tadić et al. [16] have proposed
a flexible moving window BK method to generate a Level-
3 continuous map of satellite data and applied this method
for two data sets: the XCO2 from the GOSAT satellite and
the solar-induced fluorescence (SIF) from the Global Ozone
Monitoring Experiment-2 (GOME-2) instrument [35]. Jing
et al. [14] have proposed a new data fusion technique to
generate a global distribution of XCO2 by fusing GOSAT and
SCIAMACHY CO2 measurements. The OK-based interpola-
tion method applied to this data fusion approach has increased
the spatial coverage up to approximately 20% compared with
a single data set. Wang et al. [36] have also proposed a method
for fusing SCIAMACHY and GOSAT XCO2 measurements.

This amalgamation approach has increased the global spatial
coverage of XCO2 by 41.3% on a daily and 47.7% on
a monthly temporal scale, relative to the measurements of
GOSAT. Compared with SCIAMACHY, this article reports
even higher spatial coverage. Similarly, Watanabe et al. [37]
and Liu et al. [38] have applied kriging interpolation methods
to generate a Level-3 spatial distribution of GOSAT XCO2.
Nguyen et al. [39] have proposed a method for fusing the
vertical profiles of XCO2 from OCO-2 and GOSAT. The
modified spatial random effects model, applied on the CO2

profiles, has reduced the mean squared error of data fusion in
comparison with the TCCON measurements.

From the methodology perspective, the abovementioned
literature on the XCO2 mapping has used different predic-
tion algorithms. The OK-based interpolation approach is a
basic, univariate, minimum variance, linear, unbiased mapping
method. The SK assumes the mean of the random field to
be known and constant over the study region (SR). The UK
approach is a variant of OK, which analyzes the local trend
within a predefined search window around the prediction
point as a continuous and smoothly varying function of the
sampled locations [13]. The BK method can extend any basic
kriging method (such as OK and UK) and uses the average
expected value over a segment/surface/volume around the
prediction point. The point-to-point covariance of the basic
kriging is replaced by the point-to-block covariance [13]. The
FRK makes the kriging interpolation process efficient to deal
with a very large sample size. The reduced complexity in
the prediction and error computation process in the FRK is
achieved by the choice of covariance function to offer an
efficient way to compute the kriging equations [18], [17]. The
spacetime kriging [20], [40] method is a variant of the basic
spatial interpolation process to include the time component.
It decomposes the random function into a deterministic trend
component (representing the spatial trend and the temporal
trend) and a residual component (representing a stationary
spacetime error process). Similarly, the cokriging extension of
the basic kriging modifies the baseline method for multivariate
analysis [41] to intake multiple variables as input when the
prediction variable is sparsely sampled [13], [19].

The assessment of satellite-derived XCO2 measurements
and the CO2 emission estimates for each other has been
found in different applications, for example, to determine the
impact of regional fossil fuel emissions on global XCO2 fields
[42], estimate the fire CO2 emission by using XCO2 [43],
determine CO2 emissions from megacities by using XCO2

through inverse modeling approach [44] or from the individ-
ual middle to large-sized coal power plants through plume
model simulations [45], and observe the anthropogenic CO2

emission by deriving CO2 anomalies through deseasonalizing
and detrending XCO2 measurements [46]. This article is one
of the initial attempts for modeling the emission inventories
as auxiliary variables to generate a mapping surface of space-
borne XCO2 measurements of OCO-2.

III. METHODOLOGY

From the literature, it is evident that the geostatistical
interpolators, mainly different variants of kriging, are the most



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 4

widely used techniques for creating a complete mapping from
sparsely sampled data. However, variety exists depending on
several factors, such as accuracy-complexity tradeoff, smooth-
ing factor of the predictor, available observed/sampled loca-
tions, and type of auxiliary information. Here, we have used
a cokriging approach that intakes quantified LULC and the
emission estimates as the covariates. Our previously proposed
SemK-based interpolation method [25], [47] has two compo-
nents: the quantification of LULC classes for the environmen-
tal variables that are inherently influenced by or dependent on
the terrestrial LULC dynamics through semantic modeling,
and the updating of the traditional Euclidean-distance-based
dependences with this semantic modeling. The kriging is often
regarded as a “smooth” interpolator that is detrimental to the
prediction outcome. The SemK models the LULC to deal
with the underlying terrestrial distribution. It aims to reduce
the mean absolute error (MAE) and root-mean-square error
(RMSE) [25]. Besides LULC, this article attempts to input
auxiliary emission estimates to predict the primary variable
XCO2. It uses the first component of SemK, i.e., the semantic
modeling of the LULC classes, and then, this quantified LULC
is input to a traditional cokriging framework along with the
emission estimates. This approach weights all the covariates
equally. The basics of the kriging method, semantic modeling
of LULC, cokriging method, and the approach to input the
quantified LULC to a cokriging framework are presented in
Sections III-A–III-D.

A. Overview of Kriging-based Interpolation
The estimation equation of an univariate interpolation

method, such as SK and OK, is given in (1) [13]. Here,
Ẑ(x0) is the unmeasured primary variable (XCO2) value at
the prediction point x0, Z(xi) is the measured XCO2 value
at the ith sampled location xi, wi is the impact of/assigned
weight to the xi, W is the wi vector, N is the number of
sampled locations in the search window, µ is the constant
stationary mean, and µ(x0) is the local mean of the sample
points within the search window. Each xi is defined on a
geographical domain x ⊂ R2

Ẑ(x0)− µ =

N∑
i=1

wi[Z(xi)− µ(x0)] (1)

Variants of the abovementioned equation are found for dif-
ferent kriging methods based on the weight vector evaluation
process. For example, the customized estimation equation for
SK is presented in (2), where µ(x0) in (1) is replaced by µ,
which is the constant mean over the SR [13]

Ẑ(x0) =

N∑
i=1

wiZ(xi) +
[
1−

N∑
i=1

wi

]
µ (2)

The OK is similar to SK but replaces µ in (1) with a local

mean µ(x0), which leads to the condition
N∑
i=1

wi = 1.

B. Semantic Modeling of LULC in SemK
The SemK aims to extend the traditional spatial interpola-

tion process, such as SK and OK, with auxiliary terrestrial

LULC information for more accurate prediction. The basic
352 SemK, reported in [25], is presented as an extension of a
widely used spatial interpolation method OK [13]. However,
the baseline method is not fixed. Depending on the applica-
tion requirement, any univariate interpolation method can be
modified with the LULC quantification process of SemK. In
SemK, the terrestrial distribution of LULC is assumed to be the
semantic knowledge of the locations such that the equidistant
sampled locations, being represented by two different LULC
classes, would have different impacts on the prediction point.
For quantifying this qualitative property of the terrain, an
ontology hierarchy is constructed with all possible LULC
classes of the SR, for example, as shown in Fig. 2. It is
constructed by following a similar classification proposed in
[48]. As the ontology is exhaustive for the whole SR, each
of the locations (xi or x0) should correspond to one leaf
LULC class of the hierarchy. Therefore, proper reasoning of
every representative pair of leaf concepts in this hierarchy can
quantify the amount of semantic associations between every
pair of locations, both sampled and unsampled. Two metrics,
proposed by the SemK, to model this association are semantic
similarity (SS) and spatial importance (SI). The SS is the
measure of the hierarchy-structural association, and the SI is
the correlation between the representative measured samples
of every pair of LULC classes.

Fig. 2: A LULC ontology.

1) Semantic Similarity: The SS metric considers the ontol-
ogy hierarchy layout [49], [50] and is modelled by following
the modified context resemblance method [25]. The SS score
between the pth and qth LULC classes is represented as SSpq

and is modeled in (3). Here, Countpq is the count of the
common LULCs in the paths of pth and qth LULCs in the
hierarchy, starting from level 0 concept LULC. Similarly, the
|LCp| and |LCq| are the total LULC counts in the respective
paths of pith and qth LULCs

SSpq =
1

2

(
Countpq
|LCp|

+
Countpq
|LCq|

)
(3)

2) Spatial Importance: The SI metric considers the ontol-
ogy hierarchy layout as well as the measurements from the SR
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[51]. As it deals with the measured XCO2 value of the sampled
locations, the SI score for a pair of LULCs is different across
the SRs. Mathematically, this metric is evaluated by assessing
the Pearson’s correlation coefficient between the representative
measurements of two LULCs with respect to the primary
prediction variable XCO2. The SI score between two sampled
locations or their representative LULC classes, LCp and LCq ,
is denoted as SIpq and is given in (4). Here, Z(LCpq ) refers
to the XCO2 value of the qth sample point represented by the
LULC class LCp, and Z(LCp) refers to the average of the
XCO2 value over k sample points taken from the same LULC
type LCp.

SIpq =

k∑
m=1

(Z(LCpm)− Z(LCp))(Z(LCqm)− Z(LCq))√
k∑

m=1

(Z(LCpm)− Z(LCp))2
k∑

m=1

(Z(LCqm)− Z(LCq))2

(4)

For M number of LULC classes, both SS and SI metrics
are evaluated for each pair of LULC classes. This results in
two [M ×M ] symmetric matrices, denoted as [SS]pq [M×M ]

and [SI]pq [M×M ]. These semantic scores together modify the
traditional baseline kriging process, followed by modeling the
weight vector WSemK [25]. The uniqueness of SemK lies in the
process of modeling LULC through SS and SI metrics, which
is the first component of SemK. However, the second com-
ponent, i.e., the traditional covariance modification process,
may vary depending on the application requirements. In this
article, the first component is used to quantify the LULC for
the primary variable XCO2, and for the second component,
we have used a traditional cokriging framework where the
quantified LULC is input as a covariate.

C. Motivating Example

The working principle of the SemK method [25] is de-
scribed here with a motivating example [52], in comparison to
a traditional kriging method OK [53]. For the ease of under-
standing, the covariance matrix modification in this example
is carried out as presented in [25], in contrast to the cokriging
principle considered in this article (refer to Section III-D). A
SR with nine pixels is considered in Fig. 3(a) where pixel no.
5, represented with a , is a missing pixel and its XCO2 value
is required to be predicted from the eight surrounding pixels
(pixels: ). All these sampled locations are√
2 unit apart from the missing location 5. The measured

XCO2s (in ppm) at these surrounding locations are specified in
Fig. 3(b), which forms the Z vector as Z = [410 395 404 401
406 403 398 400]. These are assumed XCO2 values which
are not similar to a real life scenario in terms of statistical
properties, such as distribution, range, autocorrelation, and
others.

We assume that the number of LULC classes in the terrain
is five, say, Town/cities: , Waterbodies: , Wastelands: ,
Agriculture: , and Grassland: . All of these classes belong
to the same level-1 of the ontology, except Town/cities in
level-2 (refer to Fig. 2). Therefore, the SS score for any pair
of LULC classes, among , is the same and that is
(1/2+1/2)/2 = 0.5. For class , the SS of the other distinct

(a) (b) (c)

Fig. 3: Motivating example scenario of SemK. (a) SR with 9
pixels. (b) XCO2 values. (c) Correlation (SI) scores.

LULC classes is: (1/2+1/3)/2 = 0.417. However, their pair-
wise correlations (SI) are different for every pair and example
scores are specified in Fig. 3(c). Ideally it should be calculated
from the sampled locations considered, as described in Section
III-B2.

There are five different pair-wise Euclidean distances among
the sampled locations: 1,

√
2, 2,

√
5, and

√
8. According

to the OK method, the semivariances (γ) at these Euclidean
distances are evaluated as follows: γ(1) = 28.75, γ(

√
2) =

28.75, γ(2) = 12, γ(
√
5) = 19, and γ(

√
8) = 25.25. After

fitting the experimental semivariogram, let the sill of the OK
is 22.88, and the covariances (cov) are evaluated as follows:
cov(1) = 12.59, cov(

√
2) = 10.65, cov(2) = 9.02, cov(

√
5)

= 8.61, and cov(
√
8) = 7.92. Assuming the weight vector

of the OK method (WOK) is simply defined as C−1D (C is
the traditional covariance matrix given as [cov(xi, xj)]N×N =
[cov(Distanceij)]N×N and the D is the traditional distance
matrix given as [cov(x0, xi)]N×1 = [cov(Distance0i)]N×1; i,
j ∈ (1, 2, · · · , N)), the WOK is evaluated as: [0.1875 0.0625
0.1875 0.0625 0.0625 0.1875 0.0625 0.1875]T . The XCO2

value at is evaluated by the OK as
∑

WOK · Z = 403.19.
However, being in the same distance, two pairs of sampled

locations can be represented by different LULC pairs. Thus,
according to the study region in Fig. 3(a), there are different
cases of semantic semivariances [25]. Assuming that the
Euclidean-distance-based covariance scores of OK are directly
updated by the semantic metrics of the SemK, its spatio-
semantic covariances are evaluated as follows: cov(1, )
= (cov(1) · (SS · SI) ) = (12.59 · (0.417 · 0.4)) = 2.10,
cov(1, ) = 1.26, cov(

√
2, ) = 4.26, cov(2, ) = 1.80,

cov(
√
5, ) = 0.86, cov(

√
8, ) = 1.98, and so on. From

these covariances, the weight vector of the SemK (WSemK)
is evaluated in the same process as the OK method and is
given as: [0.1343 0.1158 0.1309 0.1522 0.1336 0.1304 0.0507
0.1521]T . Then, the XCO2 value at is evaluated by the
SemK as

∑
WSemK · Z = 402.53. In this article, the semantic

modeling principle of SemK through SS and SI scores is
directly used to quantify the LULC classes and then input
to a cokriging framework, as described in Section III-D.

D. Cokriging with Semantic Modeling of LULC (SemCK)

The cokriging-based interpolation method assumes that the
primary variable (Z1) can be estimated with the help of other
(V −1) auxiliary variables (Z2, Z3, ..., ZV ) which exhibit some
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correlation with the primary variable Z1. The multivariate
cokriging estimator is given as follows [13]:

Ẑ1(x0)− µ1 =

N1∑
i1=1

wi1 [Z1(xi1)− µ1(xi1)]+

V∑
j=2

Nj∑
ij=1

wij [Zj(xij )− µj(xij )] (5)

where µ1 is the stationary mean of the primary variable,
Z1(xi1) is the measured value of the primary variable at the
sampled location xi1 and wi1 is the assigned weight to it,
N1 is the total number of sample points, µ1(xi1) is the local
mean of the sampled locations within the search window, (V-
1) is the number of secondary variables, Nj is the number
sampled locations (xij ) of the jth secondary variable within
the search window and µj(xij ) local mean of these locations,
Zj(xij ) is the measured value of the jth secondary variable
at the sampled location xij , and wij is the assigned weight
considering the jth secondary variable [13].

The weight vector of the cokriging estimator can be evalu-
ated through the covariance and the cross-covariance matrices
which should be positive definite. These matrices are modeled
through the distance (h)-based semivariogram (γii(h)) and the
cross-variogram (γij(h)), defined in (6) and (7) [13], [54].
Here, Zi(xm) and Zi(xm+h) are the measured values of the
variable Zi at the location xm and the sample points that are
in lag distance h with respect to xm, that is, (xm+h), and L
is the total pair of samples within the spatial lag h.

γii(h) =

L∑
m=1

[Zi(xm)− Zi(xm + h)]2

2L
(6)

γij(h) =

L∑
m=1

[Zi(xm)− Zi(xm + h)][Zj(xm)− Zj(xm + h)]

2L
(7)

Now, the covariance analysis of the SemCK approach also
intake the semantic scores of the representative LULCs of
each pair of sample points (xp, xp + h). According to the
SemK method [25], the quantified semantic score between
two LULC types, LCp (for example, urban area) and LCq

(for example, waterbody), is given as SISpq = (SSpq · SIpq).
In this article, the SI metric is only used as the SS metric
does not give much extra information (as all the LULC classes
belong to the same ontology level). The SI metric should be
mapped to a positive range before analysis to avoid negative
correlation scores. This scaling range may vary across the
SRs and the number of available LULC classes. Now, taking
the LULC class with the highest primary variable estimate
as the reference (urban area in our case), the Z value of the
other LULC classes (LCq) are normalized as ZLCq = SISpq ,
where LCp is the reference LULC class. Therefore, in the
SemCK process, the semivariogram considering the LULC
dataset (γLC(h)) and the cross-variogram (γi-LC(h)) scores
that consider LULC as one of the covariates are given in (8)
and (9), where ZLC(xm) and ZLC(xm+h) are the SIS scores
of the representative LULCs of the sampled locations (xm)

and (xm + h), respectively.

γLC(h) =
1

2L

L∑
m=1

[ZLC(xm)− ZLC(xm + h)]2 (8)

γi-LC(h) =
1

2L

L∑
m=1

[Zi(xm)− Zi(xm + h)]

[ZLC(xm)− ZLC(xm + h)] (9)

The semivariances are plotted against distance to derive
the covariance and cross-covariance scores in the respective
matrices. Finally, these matrices are used by the cokriging
process to evaluate the weight vector and predict the missing
XCO2 values.

IV. EMPIRICAL DATA & SPECIFICATIONS

This section presents the details of the empirical study to
validate the SemCK interpolation approach for the prediction
of missing XCO2 footprints. The specifications of the datasets
and the details of the study regions are described here.

A. Datasets

In this article, we are amalgamating various data sets for
a multivariate interpolation scenario. The primary variable is
the XCO2 data from the OCO-2 satellite. Furthermore, three
secondary data sets are ESACCI land cover data, the ODIAC
data, and the EDGAR data for the emission estimates. Though
there is a temporal misalignment of the auxiliary data sets
(EDGAR and LULC) with respect to the primary OCO-2 data
of the year 2017, the assumption of the temporal stability of
the emissions estimates and LULC makes their assessment
valid for this article.

1) OCO-2 Lite Level-2 Version 9r Data: The OCO-2
satellite data [1], [55], [56] are obtained through different
observation modes, namely, Nadir, Glint, and Target. These
modes vary in terms of sensitivity and accuracy of the obser-
vations with respect to measurement geometries. The OCO-2
satellite repeats its operation in 16-day cycles. A typical daily
Level-2 product is likely to output about 10 000 retrievals
worldwide [57], over up to eight different footprints in a swath,
observed in 0.333 s, and with a maximum area of 1.29 km
× 2.25 km each [45] (refer to Fig. 1). This Level-2 data
are provided in hierarchical data format (HDF or NetCDF),
along with latitude, longitude, altitude, and time as the implicit
variables of the retrieval. In this article, we have chosen the
OCO-2 Lite Level-2 version 9r data [58] of the year 2017 for
different regions. Eight SRs are considered for the comparison
study. However, for the qualitative performance analysis with
the predicted mapping images, two SRs, Lamont, USA, with
Nadir and Orléans, France, with Glint XCO2 samples [59]
are chosen to prove the efficacy of the proposed approach for
both the observation modes. For the comparison study with
TCCON measurements [29], different days are chosen for
different SRs, such that OCO-2 and TCCON measurements
coexist within a time window and a predefined distance [17].
For example, Fig. 4 depicts the OCO-2 samples in the SR
Lamont, USA, which coexists with the corresponding TCCON
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measurements, conforming to the aforementioned criteria. The
OCO-2’s XCO2 retrievals of a single day are shown in Fig. 1.
The OCO-2 science team also provides an interpolated Level-
3 product from everyday retrievals, which aims to map XCO2

with 1 ppm accuracy over the Earth’s surface in bins with
the resolution of 1◦ × 1◦ in latitude and longitude [56]. It is
created using the simple averaging method, which is unable
to predict outside the OCO-2 swath if the averaging pixel size
is relatively small.

Fig. 4: Details of the SR: Lamont, USA, including the location
of the TCCON station, distributions of OCO-2 (Nadir) samples
(the center point of each footprint), ODIAC (October 2017),
EDGAR (2012), and LULC distributions.

2) ESA CCI LULC Data: We have chosen the 2015 global
land cover map from the European Space Agency (ESA)
Climate Change Initiative (CCI) project [60]. The resolution
of this data is 0.002778◦. Each pixel value (in the range
between 0 and 220) corresponds to a land cover class that
is defined based on the UN Land Cover Classification System
(LCCS). For a simplified analysis, we have generalized the
available LULC classes into seven classes, as given in Table
I. In the ontology hierarchy, these classes are mapped as
follows:cropland as ‘agriculture’, natural vegetation as ‘grass-
land’, urban area as ‘built-up’, bare area as ‘wastelands’,
waterbodies as ‘waterbodies’, and Permanent snow and ice
as ‘snow-cover’ (refer to Fig. 2). This article has used a
scaled LULC map that is created according to the LULC
quantification process (refer to Section III-III-D). For the
correlation analysis in SI metric, both LULC and XCO2 are
scaled in the same resolution of 1 km.

3) ODIAC Emission Inventory: The ODIAC inventory [8],
[61] is a global monthly emission data set consisting of CO2

emission estimates from fossil fuel combustion, cement pro-
duction, gas flaring, domestic/international shipping, aviation,
and marine bunkers. It also considers multiple spatial emission
proxies by fuel type, such as nighttime light data, specific to
gas flaring and ship/aircraft fleet tracks and includes monthly

TABLE I. RECLASSIFICATION OF ESA CCI LULC PROD-
UCT

Pixel value of ESA CCI LULC data LULC type
0 No data

10, 11, 12, 20, 30, 40 Crop land
50, 60, 61, 62, 70, 71, 72, 80, 81, 82,

100 ,110, 120, 121, 122, 130, 140,
150, 151, 152, 153, 160, 170, 180

Natural
vegetation

190 Urban area
200, 201, 202 Bare area

210 Waterbodies
220 Permanent

snow and ice

and interannual emission variations as well. The ODIAC2018
[61] version is used here, which is available for the years from
2000 to 2017. Between the available GeoTIFF and NetCDF
formats, we have chosen the former with a resolution of 1
km × 1 km and in the unit of ton C/cell (monthly total). The
weekly/diurnal emissions can also be modeled by multiplying
the TIMES temporal scaling factors with monthly emission
fields [8], [62]. For this article, we have chosen the data from
January 2017 to December 2017 (varies with respect to the
SRs) to consider the same month as of OCO-2 data. The global
emission data for October 2017 are presented in Fig. 5. The
statistical measures of this global data are reported. For better
visualization, a region near Mark Twain National Forest, USA,
is magnified. The local emission estimates for that region and
the corresponding statistical measures are also reported.

Fig. 5: ODIAC’s emission data for October 2017.

4) EDGAR Emission Inventory: The EDGAR emission
database [63] provides the annual CO2 emission data from
fossil fuel combustion and industrial processes, excluding
short-cycle biomass burning, large-scale biomass burning, and
carbon emissions/removals from land-use, land-use change,
and forestry. It provides annual emission data for other GHGs
as well, such as methane (CH4), nitrous oxide (N2O), from
1970 to 2012. We have chosen the latest 2012 data of version
EDGAR v4.3.2 (v432 CO2 excl short-cycle org C 201) in
NetCDF format with resolution of 0.1◦ × 0.1◦ in latitude and
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longitude, and the emission estimates given in kg CO2/m2/s.
The EDGAR emission is calculated using a bottomup ap-
proach, and it scales the activity data based on international
annual statistics with the best-available emission factors. It
further considers different proxies, such as road transportation
and population, to downscale the data to a finer spatial
resolution [10].

5) TCCON Data: For performance analysis of the SemCK
approach, the TCCON measurements are chosen as an external
validation resource to compare with the interpolated OCO-
2 data. The TCCON [64] is a ground-based network of the
Fourier transform spectrometers recording the direct solar
spectra in the near-infrared spectral region. Currently, there
are 26 active TCCON stations (operational sites) and five
future sites spread over the world [65]. Apart from the precise
column-averaged abundances of CO2, other GHGs, such as
CH4, N2O, carbon monoxide (CO), and water (H2O), are also
retrieved from the spectra and reported by TCCON. Here, we
have used GGG2014 version of TCCON data [64], available
in NetCDF format [66]. Eight TCCON stations [67]–[74] and
their surrounding locations in the land region of different
continents are chosen for this article (details are given in
Section IV-B). In each of the SRs, the OCO-2 and the TCCON
measurements should ideally coexist approximately within a
distance and time window. For comparison, we have chosen
the temporally nearest TCCON measurement with respect to
the OCO-2 measurement time, usually in the early afternoon
local time. In this article, the maximum spatial and temporal
distance considered are 78 km and 11 min, respectively, with
an exception in the SR Saga, Japan, having the temporally
nearest measurement almost 1 h before.

B. Study Regions

The SemK-based LULC quantification process can be ap-
plied everywhere on the Earth’s surface. However, for a
homogeneous surface, such as ocean or desert, the SemK
eventually converges to its baseline kriging method [47], as the
semantic scores are same for every pair of locations. Therefore,
this semantic modeling process of SemK is only suitable for
the land regions with heterogeneous LULC distribution. We
have carried out the interpolation process in eight SRs world-
wide, in different continents with heterogeneous population
densities and LULC distributions. Keeping in mind that the
interpolation accuracy of the SemCK approach is supposed to
be compared with the TCCON measurements, one of the basic
criteria of choosing SRs is to check for the available OCO-2
measurements around the TCCON stations on different days
[67]–[75]. The details of the chosen SRs, the corresponding
TCCON locations, and the days (YYYYMMDD) of prediction
are specified in Table II [76]. Furthermore, the XCO2 is highly
dependent on the wind properties (speed and direction) and
the boundary layer height. These atmospheric dynamics are
assumed to be constant in this article. Therefore, for com-
parison, both the OCO-2 and TCCON measurements should
coexist almost at the same time.

All the SRs are chosen as the rectangular regions where the
OCO-2 measurements are spread as a tilted swath. We have

TABLE II. DETAILS OF THE SRs (TCCON LOCATION
AND THE CHOSEN DATE)

SR Location Date
Caltech, USA 34.13623N,

118.126897W
20170508

Garmisch, Germany 47.476N, 11.063E 20170311
Jet Propulsion Lab

(JPL), NASA, USA∗
34.202N, 118.175W 20171218

Karlsruhe, Germany 49.1002N, 8.4385E 20170421
Lamont, USA 36.604N, 97.486W 20171013

Lauder, New Zealand 45.038S, 169.684E 20170123
Saga, Japan∗∗ 33.240962N,

130.288239E
20171010

Tsukuba, Japan 36.0513N,
140.1215E

20170322

∗non-functioning after May 2018
∗∗ unlike the other stations, here the nearest measurement
is almost one hour apart

chosen SRs of different sizes, varying numbers of samples,
different distances between OCO-2 swath and TCCON loca-
tion, and so on. For example, the distributions of the OCO-2
measurements in the SR: Lamont, USA, i.e., the approximate
location of the corresponding TCCON station (red pushpin,
labeled as “Lamont TCCON Station”), are shown in Fig. 4. A
magnified view of the XCO2 swath (showing the center points
of the footprint) is shown in the upper-left box where some
missing footprints are visible within the swath, alongside the
wide unmeasured region outside the swath. The interpolation
is carried out for the whole rectangular SR. In the figure,
corresponding auxiliary data sets, that is, the emissions of
ODIAC, EDGAR, and LULC distribution within the SR are
also shown. The considered OCO-2 samples sometimes need
preprocessing as the range of the measurement is unrealistic.
In this article, the SRs: Lamont, USA, are chosen for reporting
the predicted mapping images with Nadir XCO2 samples,
comparing the performances of different approaches within an
SR. For the rest of the SRs, the numeric prediction results by
different approaches and their comparison studies are reported.

V. RESULTS

Before carrying out the actual interpolation in the chosen
SRs, the correlation between the primary variable XCO2

with the auxiliary emission estimates should be checked. For
example, in Lamont, USA, the high-valued XCO2 samples are
mainly located near to the emission hotspots. Otherwise, the
auxiliary variables may not be suitable for this article.

Next, the spatial interpolation process is carried out using
OCO-2’s XCO2 data with and without emission estimates
and LULC for the comparison study. In this article, four
different kriging approaches have been applied in each of
the SRs: the traditional SK without emission and LULC (the
SK is considered as the baseline univariate kriging method
for all the cokriging approaches), SemCK with LULC as
a covariate (without considering emission as an auxiliary
variable), SemCK with ODIAC and LULC, and SemCK with
EDGAR and LULC as the auxiliary variables. In addition,
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SR Predicted by I.
Natural Neighbor

Predicted by II.
SK without LULC

and emission

Predicted by III.
SemCK with

LULC as covariate

Predicted by IV.
SemCK with

LULC & ODIAC
as covariates

Predicted by V.
SemCK with

LULC & EDGAR
as covariates

Legend
(predicted
XCO2 in

ppm)
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n MAE: 0.464 MAE: 0.365 MAE: 0.358 MAE: 0.312 MAE: 0.315

RMSE: 0.558 RMSE: 0.443 RMSE: 0.435 RMSE: 0.386 RMSE: 0.397
PSNR: 57.236 PSNR: 59.246 PSNR: 59.400 PSNR: 60.442 PSNR: 60.193

Experimental details: Kriging semivariogram type: stable; samples’ base distribution: Student’s t; maximum neigh-
boring points: 5; minimum neighboring points: 2; mapping image resolution: 1 km2 (for SK, SemCK with LULC,
and SemCK with ODIAC and LULC), 0.1◦× 0.1◦ in latitude and longitude (for SemCK with EDGAR and LULC)

Fig. 6: Comparison study with the predicted mapping images in the SR: Lamont, USA (Nadir observations).

we have used the natural neighbor method for the comparison
study. The quantitative comparisons are carried out considering
five different aspects.

• Intra-SR Comparison Study With OCO-2 Measurements:
We assume that some of the OCO-2 samples are missing
from the swath, which are predicted by different ap-
proaches and then compared with the measured XCO2,
followed by reporting the error measures MAE, RMSE,
and peak signal-to-noise ratio (PSNR).

• Intra-SR Comparison Study With TCCON Measurements:
We report the performance of all the approaches using
RMSE and PSNR in the same SR by comparing the
prediction with the TCCON measurement (mostly outside
the OCO-2 swath).

• Inter-SR Comparison Study With OCO-2 Measurements:
We show the comparison among all the SRs in terms
of RMSE considering the OCO-2 swath and also give
an insight on how the RMSEs vary across different SRs
with respect to the autocorrelation measure of the XCO2

samples.
• Inter-SR Comparison Study With TCCON Measurements:

We compare the predicted values reported by different
methods with the corresponding TCCON measurements
using RMSE in all the SRs.

• Intra-SR Comparison Study With Glint OCO-2 Measure-
ments: Since the aforementioned approach A reports the
predicted mapping images with Nadir XCO2 samples,
another mapping image comparison with Glint XCO2

samples in the SR: Orléans, France is presented. It
is reported with the same experimental specifications
adopted for approach A.

The abovementioned three error measures, i.e., MAE,
RMSE, and PSNR, are popular and standard in the literature
of spatial interpolation. They are mathematically expressed in
(10) - (12). The ZZ(xi), Ẑ(xi), MAX , and N represent the
measured value of the ith XCO2 sample, predicted value of
the same, maximum value of the XCO2 samples in the OCO-2

swath, and the total number of validation samples in the swath,
respectively. The MAE is an estimation of the prediction “bias’
but does not report the variance of the prediction approach,
whereas the RMSE represents the prediction variance using
the sum of the squared bias and is commonly referred to as a
“gold standard” to analyze the prediction performance [17]. As
MAE and RMSE are error measures, the lower their values, the
better the model. On the other hand, a higher PSNR indicates
a better prediction model and vice versa. It is important to
estimate PSNR for the local kriging processes. PSNR is highly
used when a subset of observations are used in prediction [17].
Thus, it is required to check whether the SemCK with emission
and LULC reports better PSNR compared with others [17].
The three error measures are defined in (10) - (12)

MAEXCO2
=
∑N

i=1 |Ẑ(xi)− Z(xi)|
N

ppm (10)

RMSEXCO2
=

√∑N
i=1[Ẑ(xi)− Z(xi)]2

N
ppm (11)

PSNRXCO2
= 20 log10

(
MAX

RMSE

)
dB (12)

A. Intra-SR Comparison Study with OCO-2 Measurements

In the Lamont, USA, the number of XCO2 samples in the
OCO-2 swath is 464. For the performance analysis within
the swath, approximately one-tenth, that is, 46 sample points
spread all over the swath are first discarded during the
interpolation process, and then, their predicted values are
compared with the corresponding measured value by each
of the interpolation approaches. Here, the five prediction
approaches are: I. natural neighbor; II. SK without emission
and LULC; III. SemCK with LULC only; IV. SemCK with
ODIAC and LULC; and V. SemCK with EDGAR and LULC.
The predicted mapping images along with the experimental
details of the interpolation processes are presented in Fig. 6.
For visual comparison with corresponding input data sets, the
resolution of the gridded images is approximately 0.1◦ × 0.1◦
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in latitude and longitude for the approach V and e averaged
approximately in the 1 km × 1 km for the rest (refer to Fig. 4).
However, for the numeric comparison and error estimation, all
the predicted surfaces are averaged approximately in the 1 km
× 1 km resolution. Different semivariogram types are modeled
across the SRs based on the distributions of the primary
and auxiliary data sets. The maximum and the minimum
neighboring points of the interpolation process, the major
range, and so on may vary with respect to the SR, prediction
approach, and so on.

Fig. 6 presents the predicted mapping images by different
interpolation approaches in the SR: Lamont, USA. It helps us
to visually analyze the efficacy of the SemCK approach. The
extent of the prediction layer is set to the range of the whole
SR so that it can predict outside the swath. The first column
of the table presents the prediction by the natural neighbor
method. However, it must be observed that even if the extent of
the SR is defined outside the OCO-2 swath, this method is not
suitable to produce the predicted mapping for the whole SR, as
the pixel size is 1 km2. Being variants of the kriging method,
the rest of the approaches are capable of producing the whole
predicted surface outside the swath. In the predicted surface
reported by II and III, average behavioral patterns are observed
outside the OCO-2 swath. The approaches IIIV consider
the covariates as LULC, ODIAC and LULC, EDGAR, and
LULC, respectively.While approach III introduces the LULC-
based terrestrial heterogeneity in the predicted surface, the
approaches IV and V can identify the high-emission pixels
from the corresponding emission data sets. Both IV and V
report some high XCO2 pixels outside the OCO-2 swath.
These pixels mostly spatially coincide with the high-emission
pixels reported by ODIAC or EDGAR (refer to Fig. 4). The
main advantages of the SemCK-based approaches are stated
as follows.

• it is capable of mapping the XCO2 surface for the whole
SR (refer to Fig. 6).

• In addition, it is capable of identifying the high-emission
pixels or emission hotspots outside the OCO-2 swath,
which are likely to report high XCO2.

• the LULC-based terrestrial heterogeneity introduces the
variations of XCO2 among different LULC classes in the
predicted surface.

To quantitatively compare the results of different ap-
proaches, three standard error measures are reported in Fig.
6 for the SR: Lamont, USA. As described in the experimental
details (refer to Section V-A), approximately one-tenth of the
sample points that are discarded during the interpolation are
considered during this comparison. It is observed from the
figure that approach IV, SemCK with ODIAC and LULC,
followed by approach V, SemCK with EDGAR and LULC,
report the least MAE and RMSE. The approach SemCK with
LULC reports the third least error measures. The univariate
kriging approach, followed by the natural neighbor method,
which has not intake any covariate information, produces
the highest error in prediction. For the PSNR, approach
IV followed by approach V reports higher measures. The
SemCK approach with emission and LULC data introduces

the underlying heterogeneity of the terrain to the prediction
process and, consequently, enhances the prediction accuracy.

B. Intra-SR Comparison Study with TCCON Measurements

As mentioned earlier, TCCON is a ground-based network
of GHG measurements. For each of the chosen SRs, only
one TCCON measurement station/location is available. We
have chosen the entire OCO-2 swath for this interpolation
approach. Table III reports the error measures RMSE and
PSNR (for single location comparison, the MAE is the same
as the RMSE) by comparing the TCCON station’s measured
value with the predicted ones by different approaches. It must
be noted that the natural neighbor method is unable to predict
values outside the OCO-2 swath for 1 km2 grid and cannot
be compared with the TCCON measurements. For the other
approaches, the reported RMSEs show that the SemCK with
ODIAC and LULC yields the least RMSE and the highest
PSNR, followed by SemCK with EDGAR and LULC. Thus,
SemCK approaches also perform better outside the OCO-2
swath in the SR: Lamont, USA.

TABLE III. COMPARISON STUDY WITH TCCON MEA-
SUREMENTS (RMSE AND PSNR) IN THE SR: LAMONT,
USA

Error Prediction approach
measure I II III IV V
RMSE — 0.290 0.278 0.031 0.200
PSNR — 62.921 63.301 82.439 66.156

C. Inter-SR Comparison Study with OCO-2 Measurements

In this comparison, the error measure RMSE is reported
in Table V using the comparison approach A, i.e., Intra-SR
Comparison Study with OCO-2 Measurements, but across
the eight SRs. The prediction has been carried out for these
regions separately, with suitable kriging assumptions, such as
sample’s base distribution, semivariogram type, and maximum
and minimum neighboring samples. According to Table V, the
highest errors reported in all the SRs are either produced by
approach I, natural neighbor or by approach II, SK without
emission and LULC. The rest of the approaches produce
lesser RMSE. The least RMSE is always reported by either
approach V or by approach IV, excluding approach I as it
has limited possibility to predict outside the swath. Therefore,
the inclusion of emission and LULC information in the cok-
riging process enhances the prediction accuracy in general.
Regression analysis is carried out considering the validation
samples from all the SRs, and the corresponding coefficient
of determination (R2) values are reported in Table IV. The
overall uncertainties in prediction reported by the approaches
IV and V are 1.127 and 1.080 ppm, respectively.

However, it must be noted from Table V that the range of
RMSEs reported by five prediction approaches varies across
different SRs. This occurs due to the heterogeneity present in
the underlying terrain, which varies across the SRs. Conse-
quently, the autocorrelation in the OCO-2 swath also varies in
different SRs. The spatial autocorrelation among the OCO-2
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samples can be calculated using a popular and well-established
metric in spatial statistics, Moran’s I [77], ranging in [1, 1].
This measure is important to check how the heterogeneous
distribution of the samples affects the accuracy of the SemCK
results. A positive spatial autocorrelation measure indicates
that similar values of XCO2 occur near one another and vice
versa. The Moran’s I measure of the OCO-2 samples chosen
for the validation is also specified in Table V. An analytical
study is reported in Fig. 7 to understand how the autocorrela-
tion of the OCO-2 samples influences the prediction accuracy.
In the graph, the X-axis represents the Moran’s I value for
each SR, and the Y-axis represents the corresponding RMSE
in that SR. The trend lines are fit considering the RMSEs of
each of the prediction approaches. The generic behavior of the
exponential fits shows that the error in prediction decays with
the increment of the autocorrelation in the OCO-2 samples.
Approach V has generally reported lower average RMSE with
respect to its baseline alternative (approach II) across the SRs.

TABLE IV. COMPARISON STUDY WITH OCO-2 MEA-
SUREMENTS (R2) IN ALL THE EIGHT SRs

Prediction approach
R2 I II III IV V

0.861 0.878 0.895 0.898 0.906

TABLE V. COMPARISON STUDY WITH OCO-2 MEA-
SUREMENTS (RMSE) IN EIGHT DIFFERENT SRs AND
THEIR MORAN’s I MEASURE

SR Moran’s RMSE (ppm)
I I II III IV V

Caltech 0.559 0.694 0.548 0.478 0.476 0.454
Garmisch 0.419 2.154 1.454 1.430 1.426 1.422

JPL 0.688 0.669 0.942 0.867 0.863 0.828
Karlsruhe 0.179 1.110 0.960 0.852 0.794 0.614
Lamont 0.200 0.558 0.443 0.435 0.386 0.397
Lauder 0.073 2.148 2.217 2.183 2.172 2.142
Saga 0.163 1.082 0.906 0.885 0.876 0.708

Tsukuba 0.061 1.066 1.140 0.655 0.642 0.644

Fig. 7: Analysis of RMSE with respect to the autocorrelation
of the OCO-2 swath (validation samples) across the SRs.

D. Inter-SR Comparison Study with TCCON Measurements

Table VI presents a comparison with different prediction
approaches in eight SRs with respect to the TCCON mea-
surements. Similar to Lamont, USA (refer to Table III), the
approaches considering auxiliary emission data have produced
less error compared with the traditional approaches for other
SRs as well. As the SemCK approaches are sensitive to the
high-emission pixels or the emission hotspots, the range of the
RMSE varies across the SRs. For example, the highest emis-
sion pixel around the TCCON station Tsukuba, Japan, spatially
coincides with both ODIAC and EDGAR. The approaches IV
and V also behave similarly in this SR, producing similar
RMSE, that is, RMSETsukuba

IV = 1.673 and RMSETsukuba
V =

1.680. However, for the SR: Saga, Japan, the highest emis-
sion pixels reported in ODIAC and EDGAR do not exactly
coincide. The RMSE reported by approaches IV and V also
vary. Therefore, apart from the methodological differences in
ODIAC and EDGAR, the results reported by these two ap-
proaches may also differ if the emission pixels do not spatially
coincide in these two data sets. From the perspective of the
prediction approach, the SemCK with emission and LULC
is likely to estimate better in and around the high-emission
pixels. It also indicates that this approach performs better and
is particularly suitable for the prediction in and around urban
areas due to high anthropogenic emission activities compared
with other LULC types.

TABLE VI. COMPARISON STUDY WITH THE TCCON
MEASUREMENTS (RMSE) IN EIGHT DIFFERENT SRs

SR RMSE (ppm)
I II III IV V

Caltech — 0.660 0.529 0.335 0.321
Garmisch — 0.544 0.329 0.126 0.124

JPL — 0.850 0.125 0.088 0.028
Karlsruhe — 0.365 0.142 0.080 0.058
Lamont — 0.290 0.278 0.031 0.200
Lauder — 0.471 0.325 0.237 0.013
Saga — 2.091 1.076 0.956 0.357

Tsukuba — 1.918 1.710 1.673 1.680

E. Intra-SR Comparison Study with Glint OCO-2 Measure-
ments

As mentioned earlier, the qualitative performance evaluation
in comparison approach A is carried out with the Nadir XCO2

samples. However, this approach is applicable to the Glint
XCO2 samples as well. For the performance analysis with
the Glint XCO2 samples [59], the XCO2 observations are
chosen around the Orléans TCCON station on March 16,
2017. Fig. 8 shows the SR details, including the Orléans
TCCON station’s location, the OCO-2 sample distribution,
ODIAC, EDGAR, and LULC distribution. The number of
OCO-2 samples in this swath is 547, and we have adopted a
similar approach as the SR: Lamont, USA, to split the available
OCO-2 samples into the prediction/validation segments. The
prediction is carried out with the similar experimental details,
as specified in Section V-A, and the predicted mapping images
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with these Glint XCO2 samples are reported for five interpola-
tion approaches. Fig. 9 presents these mapping images with the
corresponding numeric error measures. It is observed from the
pictorial and the numeric results that the SemCK approaches
with emission estimates and LULC generate more realistic
prediction surfaces compared with its baseline alternative for
the Glint XCO2 samples as well. In these approaches, the
qualitative mapping images can capture the high-emission
pixels, and they are assigned higher XCO2 values compared
with the traditional approach.

Fig. 8: Details of the SR: Orléans, France, including the
location of the TCCON station, distributions of Glint XCO2

samples, ODIAC (March 2017), EDGAR (2012), and LULC
distributions.

VI. DISCUSSION

In this section, few assumptions, restrictions, and the pos-
sible solution approaches to be implemented in the future are
discussed. This could be helpful to understand the application
of the mapping of space-borne XCO2, the SemCK with
covariates approach, for generating a global XCO2 mapping,
etc. As mentioned earlier, a general restriction of the semantic
modeling or the LULC quantification process of the SemK
method is its applicability over the land region. If it is applied
over a homogeneous surface in terms of LULC distribution
(for example, ocean, desert, permanent snow, and ice) and/or
emission inventory, the LULC quantification process will not
provide any extra information, and the multivariate approach
considering emission and LULC as covariates will be reporting
the similar results as that of the baseline kriging method.
Therefore, for applying this approach worldwide to create
a global Level-3 XCO2 mapping, the homogeneous surfaces
should be taken care of differently. For example, this approach
should be extended with a different weighting strategy to
differentiate between the waterbodies in the land region and
the ocean. Here, the proper scaling of the LULC data using
semantic metrics is also important, which may vary across

the SRs. In the future, a strategy should be defined to apply
uniformly optimal scaling for the global mapping of XCO2,
which leads to the analysis of scaling-accuracy tradeoff.

Furthermore, the Level-3 XCO2 mapping reported in this
article is representative in a local region for 16 days, as mostly
a single OCO-2 swath is available for a particular location in a
16-day cycle. In the SR: Lamont, USA, the local interpolation
is carried out considering a region of size 94 × 135 km2

approximately (geodesic distance). However, on a single day,
the distance between two OCO-2 swaths can be more than
2500 km. Therefore, to create a global map, considering a
temporal averaging window is a better choice compared with
choosing a single-day measurement. The existing literature has
reported the Level-3 maps using different averaging window
(for example, 1-day, 4-day, 16-day in [31] and 1-day and 16-
day in [17]). The spatiotemporal extension of the SemCK
approach can be used for the temporal prediction of XCO2

[78].
For creating a global XCO2 mapping, another important

factor, besides the accuracy requirement, is the computational
overhead of the kriging process. The number of samples asso-
ciated with the global measurement is very high, which further
increases with the chosen averaging window. For example,
a 1-day OCO-2 measurement on October 14, 2017, consists
of 232265 samples, whereas a 16-day measurement window
(October 115, 2017) consists of 1916359 measurement sam-
ples. Furthermore, the univariate kriging methods, such as SK
and OK, require O(N3) computations to generate the weight
vector for a single point from its covariance matrices, as it
involves matrix inversion and multiplication operations (N is
the sample size) [79]. However, the multivariate approaches,
such as SemCK with emission and LULC, having (M1) auxil-
iary variables as input, require O((N ·M)3) computations [80].
Therefore, the computational resource requirement is very high
for any multivariate kriging approaches. In this scenario, this
approach can adopt the computationally intelligent equations
of the efficient kriging methods, such as FRK, to speed up the
process of global XCO2 mapping [17].

A major assumption of this article is the static environment
in terms of atmospheric transport through the wind. As the
static Level-3 XCO2 mapping, generated by this approach, is
representative for 16 days, we have assumed that the wind
directions are constantly changing in a 16-day time window,
and the pairs of opposite wind directions are annulling the
effects of each other in terms of the atmospheric transport
of the particles. However, incorporation of this atmospheric
dynamics is needed for the mapping of XCO2. A possible
solution is presented here [81]. In this approach, the stochastic
time-inverted Lagrangian transport (STILT) model for analyz-
ing the atmospheric transport will be considered [82], [83].
It is a Lagrangian particle dispersion model (LPDM) [84]
to derive the upstream influence region for the atmospheric
measurement locations. Given a receptor point, this method
can model the sensitivity of the atmospheric tracer mixing
ratio with respect to upstream surface fluxes. It has wide ap-
plications in the modeling of GHGs and other trace gases, and
can be coupled with the emission inventories and biospheric
flux models to understand their local carbon budgets [82]. To
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Fig. 9: Comparison study with the predicted mapping images in the SR: Orléans, France (Glint observations).

estimate the XCO2 at the unsampled locations considering the
effect of atmospheric transport, emission particles are moved
backward in time from the receptor point (prediction location)
to simulate possible trajectories from their upstream locations.
The simulation will generate a footprint (sensitivity) map,
representing the upstream area that influences the air arriving
at the receptor point considering the other pixels for the whole
SR. According to [82], the footprint maps can be combined
with the emission data of the same region to get a prior map
of XCO2. This prior XCO2 map will be considered as another
input to the multivariate cokriging framework that will intake
the influence of atmospheric transport. The overall idea is
presented as a block diagram in Fig. 10.

Fig. 10: Modified SemCK approach with STILT model.

Finally, it must be noted that the accuracy of this approach,
or any spatial interpolation method in general, depends on the
SR, selected validation samples, and their measurement un-
certainty. Different validation samples may produce different
results for the interpolation approaches. An optimal selection
strategy of the validation samples should be implemented
in the future. Furthermore, if the measurement is highly
uncertain, the prediction error could be high outside the OCO-
2 swath. However, if the uncertainty of most of the samples
in the whole swath is high, the comparison approach A,
that is, the cross-validation within the OCO-2 swath may
not give higher prediction error. Therefore, the performance
of the interpolation approaches should be validated against
more external ground-based measurements outside the OCO-
2 swath. In the future, we are considering the validation of

the prediction surfaces with COCCON data [85] alongside the
TCCON, as it is a growing network providing accurate column
measurements. In addition, using city column networks, we
will be able to validate the urban-rural differences in the
prediction surface [86], [87], [88].

VII. CONCLUSIONS

This article presents a novel data fusion approach to create
a complete mapping of XCO2 of the OCO-2 satellite. It is
one of the initial attempts to map the XCO2 swath of OCO-
2 for the regional scale considering two emission inventories,
ODIAC and EDGAR, separately as the auxiliary data. A multi-
variate spatial interpolation approach is applied, which intakes
the semantically quantified LULC and emission estimates as
covariates. Following the principle of the SemK method, this
approach models the underlying LULC-based heterogeneity in
the terrain, and along with the ODIAC or EDGAR emission
data, predicts the missing XCO2 concentrations. Validation
has been carried out in different locations worldwide, where
the OCO-2 measurements and TCCON measurements coexist
within a spatial and temporal window. The performances of
these approaches (SemCK with ODIAC and LULC, SemCK-
with EDGAR and LULC) have been compared with the tradi-
tional univariate SK and SemCK with LULC approaches that
do not consider the emission estimate as an auxiliary variable.
It is observed that the prediction errors reported by the SemCK
with emission and LULC together are lower in the considered
SRs compared with the two baseline alternatives. The SemCK
with ODIAC and LULC, and SemCK with EDGAR and
LULC report 12.81% and 18.31% accuracy enhancements (in
terms of RMSE), respectively, compared with the univariate
SK method across the eight SRs. Furthermore, the SemCK
approaches with LULC and emissions can predict the high-
emission pixels or the emission hotspots that are outside the
OCO-2 swath. The accuracies reported by these approaches
vary with different factors, such as heterogeneity of the LULC
distribution, the autocorrelation among the OCO-2 samples,
and the distance from the nearest high-emission pixels, etc.
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Regarding the effectiveness of this approach, the choice of
the auxiliary emission data sets is also important. From the em-
pirical studies, the emission data set EDGAR has been found
to produce slightly better results (except the SRs: Lamont,
USA, and Tsukuba, Japan) for the cross-validation with OCO-
2 measurements (refer to Table V). For the validation with
external TCCON measurements, which is a more pragmatic
approach compared with the basic cross-validation approach,
many of the results are comparable between SemCK with
ODIAC and EDGAR, and neither of the data sets is shown
to be superior across all the SRs. The reason could be the
methodological differences between ODIAC and EDGAR.
Therefore, for local mapping in a single SR, more case studies
are needed to conclude the advantage of one emission data
set over the other in terms of accuracy. Another approach
could be to combine different emission data sets together.
For creating the global Level-3 XCO2 mapping, it is desirable
to consider emission estimates with fine spatial and temporal
resolutions, and having a high degree of correlation with the
XCO2 samples.

As future prospects, atmospheric transport should be mod-
eled by this approach to map the XCO2 because it has a
significant influence on the atmospheric CO2 concentrations.
This multivariate approach can be applied worldwide to gen-
erate a global mapping of XCO2. This product would be
useful for understanding the global carbon cycle and different
climatological studies involving atmospheric CO2, validating
the Level-3 OCO-2 measurements against ground-based mea-
surements or atmospheric transport model output and vice
versa.
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