
Stability of the Full Spectrum Nonlinear Fourier
Transform

Benedikt Leible, Daniel Plabst, Norbert Hanik
Technical University of Munich, Theresienstr. 90, 80333 Munich, Germany

e-mail: benedikt.leible@tum.de

ABSTRACT
With the seemingly inevitable ”capacity crunch” for state-of-the-art fiber optical systems, alternatives

to wavelength-division-multiplexing are widely discussed in the community. Recently, modulation schemes
based on the nonlinear Fourier transform have been proposed, where the transmit signal is generated by
modulating both the continuous and discrete nonlinear spectrum. This full spectrum nonlinear Fourier
transform algorithm and its inverse are investigated and existing methods are extended to modulation
of the entire nonlinear spectrum.
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1. INTRODUCTION

In state-of-the-art high data-rate optical transmission systems, the achievable rates for high input-
powers are limited, due to interactions caused by the Kerr-nonlinearity of optical fibers [1]. With the
ever increasing demand for higher data rates, solutions must be provided for the estimated increase
of data rates in the future. The capacity of the optical fiber channel is still an open problem and
raises the question, if the Kerr-nonlinearity limit in the high input power regime is inherent to the
transmission medium or if it could be overcome by a departure from state-of-the-art linear transmission
schemes. This question leads to a variety of research trying to increase the spectral efficiency of fiber-
optic communication systems using new approaches for modulation. Many publications present nonlinear
frequency division multiplexing (NFDM) systems as a promising candidate for such a change [2], [3].

The nonlinear Fourier transform (NFT) transforms a time domain signal to the nonlinear Fourier
domain. This is beneficial for transmission over an ideal fiber-optic channel, as the signal components
propagate independently for each nonlinear frequency in the nonlinear Fourier domain. Numerical sta-
bility of NFT algorithms is still an ongoing problem in NFDM systems, especially if the entire nonlinear
spectrum is used for data-transmission. Numerical instabilities restrict the usable range of the modulated
parameters and thus the choice of transmission pulses for the respective NFDM systems.

In this paper, we give a short overview of the NFT, including a full spectrum implementation of the
NFT algorithm and its inverse. An optimized full spectrum NFT based on [4] is presented and compared
to a state-of-the-art search-based method in a back-to-back scenario.

2. THE NONLINEAR FOURIER TRANSFORM
The NFT is a transform, that represents a time domain signal by its corresponding continuous and

discrete nonlinear Fourier spectrum. The NFT is derived for a loss-less, and noise-less fiber-optic channel
governed by the nonlinear Schrödinger equation (NLSE). The normalized NLSE, derived in [3], is used
throughout this publication:

𝜕𝑞(𝑡, 𝑧)
𝜕𝑧

= j𝜕2𝑞(𝑡, 𝑧)
𝜕𝑡2 + j2|𝑞(𝑡, 𝑧)|2𝑞(𝑡, 𝑧), (1)

where j is the imaginary unit and 𝑞(𝑡, 𝑧), 𝑡 and 𝑧 are the normalized signal, normalized time and normalized
propagation distance, respectively.

The NFT generates the nonlinear Fourier spectrum of a time domain signal, supported on the nonlinear
frequencies 𝜆 ∈ ℂ. The spectrum is commonly divided into two parts, the continuous and discrete
spectrum, depending on the subset of 𝜆, which they are supported on. The continuous spectrum is
supported only on real-valued nonlinear frequencies and the discrete spectrum is defined only for a finite
number of 𝐾 complex nonlinear frequencies with a positive imaginary part (𝜆𝑘 ∈ ℂ+), which are called
discrete eigenvalues.
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The nonlinear spectra read

𝑞c(𝜆) = 𝑏(𝜆)
𝑎(𝜆)

, 𝜆 ∈ ℝ; 𝑞d(𝜆𝑘) = 𝑏(𝜆𝑘)
𝑎′(𝜆𝑘)

, with 𝑎′(𝜆) = d𝑎(𝜆)
d𝜆

, (2)

where 𝑞c(𝜆) and 𝑞d(𝜆𝑘) denote the continuous and discrete spectrum, respectively, and 𝑎(𝜆) and 𝑏(𝜆) are
called the nonlinear Fourier coefficients. Details on the calculation of the nonlinear Fourier coefficients
and further information on the NFT can be found in [3].

Representing a time domain signal 𝑞(𝑡, 𝑧) in the nonlinear Fourier domain results in a simple input-
output relationship when the signal propagates over an ideal fiber-optic channel, as the nonlinear fre-
quencies 𝜆 do not change during propagation and the spectral amplitudes 𝑞c(𝜆) and 𝑞d(𝜆𝑘) propagate
independently for each nonlinear frequency 𝜆, according to the multiplicative relations [3],

𝑞c(𝜆, 𝑧)
𝑞c(𝜆, 0)

= e4j𝜆2𝑧, 𝑞d(𝜆𝑘, 𝑧)
𝑞d(𝜆𝑘, 0)

= e4j𝜆2
𝑘𝑧. (3)

3. JOINT NONLINEAR SPECTRUM MODULATION
For the inverse nonlinear Fourier transform (INFT) of either purely continuous or purely discrete

nonlinear spectra, several algorithms are already well known [5], [6] and results for the joint INFT were
recently published in [7] and [8]. Figure 1 schematically shows the joint INFT, where both nonlinear
spectra are modulated. First the continuous part 𝑞c(𝜆) is used to generate a time domain seed pulse
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Fig. 1: Block diagram of joint spectrum modulation (based on [8])

𝑞seed(𝑡), containing only continuous spectral components. This can be achieved by any of the known
algorithms for the purely continuous INFT [3], [6]. Even though, no direct modifications of the continuous
INFT algorithms are necessary for the algorithm in Figure 1, it needs to be considered that the continuous
spectrum of a pulse changes according to [5],

𝑞c(𝜆; 𝜆0) = 𝜆 − 𝜆∗
0

𝜆 − 𝜆0
𝑞c(𝜆), (4)

when a discrete eigenvalue 𝜆0 is added to the time domain pulse 𝑞seed(𝑡). To this end, we pre-distort the
continuous spectrum by using the inverse relationship of (4) for all 𝐾 discrete eigenvalues, i.e., ∀𝜆𝑘 and
𝑘 ∈ {1, … , 𝐾}, as depicted in the upper branch of Figure 1.

The time domain signal 𝑞seed(𝑡) is used as an initial solution, to which discrete eigenvalues are added
by the subsequent Darboux transform (DT). For the discrete spectral amplitudes a relation similar to
equation (4) exists [5]. To avoid using a pre-distortion similar to the one used for the continuous spectrum,
instead of the corresponding spectral amplitudes 𝑞d(𝜆𝑘), discrete b-values 𝑏(𝜆𝑘) are directly modulated,
because they are not affected by subsequent modification steps.

The DT is used to iteratively add eigenvalues 𝜆𝑘 and their corresponding nonlinear coefficients 𝑏(𝜆𝑘)
to the discrete spectrum of 𝑞seed(𝑡) [3], [5]. To facilitate this, the Jost solutions of the Zakharov-Shabat
(ZS) system v(𝑡, 𝜆𝑘) have to be computed for the boundary conditions given in [3]. In theory this can be
done by using any numerical integration method, but to mitigate numerical issues the forward-backward
method [8] is used.

After the Jost solutions are computed for 𝑞seed(𝑡) the DT can be used to add the discrete nonlinear
spectrum to the pulse, finally generating the transmission pulse 𝑞(𝑡) containing the modulated continuous
and discrete nonlinear spectra.

4. EIGENVALUE REMOVAL NFT
To increase the reliability at the detection side, a recently presented modification of the NFT is used

[4]. The algorithm iteratively detects discrete eigenvalues and removes them from the received pulse.
While in [4] the algorithm was only used for a purely discrete spectrum, i.e., solitonic pulses, it can also
be used to aid in the retrieval of both spectra.
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Fig. 2: Block diagram of one eigenvalue removal step.

The steps for removing one eigenvalue are depicted in Figure 2. Initially a search in 𝑞(𝑡) for the discrete
eigenvalue 𝜆̂ with the smallest imaginary part is run. Subsequently the eigenvalue is removed by using
[4]

̂𝑞(𝑡) = 𝑞(𝑡) + 2j(𝜆̂∗ − 𝜆̂)𝑣∗
2(𝑡, 𝜆̂)𝑣1(𝑡, 𝜆̂)

|𝑣1(𝑡, 𝜆̂)|2 + |𝑣2(𝑡, 𝜆̂)|2
, (5)

where 𝑞(𝑡) and ̂𝑞(𝑡) are the time domain pulses before and after the removal of 𝜆̂, respectively. The
Jost solutions v(𝑡, 𝜆̂) = [𝑣1(𝑡, 𝜆̂), 𝑣2(𝑡, 𝜆̂)] have to be obtained beforehand from 𝑞(𝑡), which can be done
similarly to the process explained in Section 3. For successful removal, it is necessary to have a fairly
good estimate for 𝜆̂. If the estimate deviates too much from the true value, an additional eigenvalue is
added to the pulse. The energy of the resulting pulse ̂𝑞(𝑡) can be used to monitor the success of every
removal step.

After removal of an eigenvalue, the time-domain support of the pulse is truncated, since it can be
assumed that the pulse-width decreased if the time duration of 𝑞seed(𝑡) is smaller than the duration of 𝑞(𝑡).
The truncated pulse ̂𝑞tr(𝑡) is then used as an input for the next eigenvalue removal step. The truncation
of the time-domain support of the pulse results in an improvement of the numerical estimation error,
which is beneficial for the next eigenvalue search [4, P. 3]. Furthermore, the computational complexity is
reduced for the following searches, as the number of samples has effectively been reduced.

Eigenvalues resulting in time domain pulse contributions with high amplitude and small time duration,
focus most of the energy of the pulse at its center. Thus, if the signal parts corresponding to the continuous
spectrum are broader in time, they are subjected to larger truncations if the energy contribution of the
continuous spectral part is smaller than the contribution of the discrete spectral part. Thus, a minimal
duration 𝑇c is introduced to guard the continuous part of the spectrum. The steps depicted in Figure 2
are repeated until all eigenvalues are found and removed. The resulting impulse should now only contain
the continuous spectrum and can be detected with any standard NFT. Note that by successful removal
of an eigenvalue, the continuous spectrum is altered according to the inverse of (4), which has to be taken
into account.

5. SIMULATION RESULTS
Simulations testing the INFT/NFT configuration in a back-to-back setup are conducted for symbols

with 𝑁 = 210 samples. The symbols are generated from their respective nonlinear Fourier spectra using
the algorithm from Section 3. The continuous nonlinear spectrum consists of a single channel with a root
raised cosine (RRC) shape and amplitude 𝐴 in frequency domain, which is modulated by a random symbol
drawn from a unit power PSK constellation, with uniform independently and identically distributed (iid)
phase 𝜙 ∈ [0, 2𝜋).

The nonlinear Fourier coefficient 𝑏(𝜆𝑘) for the two discrete eigenvalues 𝜆1 = j𝜅, 𝜆2 = j2𝜅 is modulated,
and the parameter 𝜅 is varied during simulations. The values for 𝑏(𝜆𝑘) are also randomly drawn from a
phase shift keying (PSK) constellation with unit power and uniform iid phase 𝜙 ∈ [0, 2𝜋).

The continuous INFT is implemented by the discrete layer peeling (DLP) method [6]. The trapezoidal
forward-backward method [5], using a search based scheme for the discrete part, is used as a state-of-the-
art NFT for comparison with the eigenvalue removal method described in Section 4. For each data point
𝑁r = 2048 pulses are generated by the INFT and detected by the two NFTs. The results are depicted in
3. As it can be seen in Fig. 3a the factor 𝛿e = NMSEr

NMSEs
between the normalized mean square error (NMSE)

of the eigenvalue removal method NMSEr and the NMSE of the search based method NMSEs is nearly
constant over all tested value pairs. Hence both methods before equally well for the continuous spectrum,
whereas the proposed method is cheaper from a computational complexity point of view. For the discrete
eigenvalues and the modulated b-values in Figures 3b and 3c, it can be seen that the detection error can
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Fig. 3: Comparison of detection algorithms for 𝐾 = 2 eigenvalues 𝛿e.

be reduced by a factor of nearly 40% for discrete eigenvalues with larger imaginary parts. The change to
a constant slope d𝛿e/d𝜅 in Fig. 3c for larger 𝜅 can probably be attributed to the fixed truncation guard
interval 𝑇c. Finally the factor 𝛿t, by which the computation time is reduced using the removal method
instead of the search based NFT, is given in 3d. Again, for larger values of 𝜅, the time for computation
can be reduced by nearly 50%, saturating for larger 𝜅, presumably due to the same reasons as for the
slope d𝛿e/d𝜅.

6. CONCLUSION
One major issue regarding NFDM based fiber-optic systems are algorithms with high computational

complexity, exhibiting numerical instabilities when the modulated parameters exceed a certain range of
values. To mitigate this effect and reduce the complexity of the algorithms in the receiver for modulation
of the entire nonlinear spectrum, an eigenvalue removal NFT was implemented. In a simulation it was
shown that this NFT performs better than state of the art search based alternatives for the majority
of the tested parameters. There are many directions for future research: is could be studied if the
observations regarding Fig. 3 are also visible for higher-order modulation schemes or a larger amount of
discrete eigenvalues. Furthermore, it would be interesting to see how the discussed algorithms perform
in a practical transmission scenario.
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