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Abstract

This dissertation is concerned with permutation entropy in its application as a signal
parameter for quantitative analysis of the electroencephalogram (EEG). Permutation
entropy is a complexity measure from the field of non-linear systems theory. It is based on
the idea of quantising the phase space of an embedded time series my means of so-called
ordinal patterns. The present work focusses on two aspects: the algorithmically efficient
extraction of ordinal patterns from arbitrary time series, as well as the interpretability of
permutation entropy in the context of EEG analysis.

The fundamental problem of computing ordinal patterns stems from the fact that their
number increases with the factorial of the embedding dimension used. The algorithms
presented here significantly reduce the runtime of ordinal analysis methods, and also
extend the maximum embedding dimension practically available by an order of magnitude.

The question on the meaning of permutation entropy in EEG is answered empirically
by the identification of characteristic regularities in the probability distributions of
ordinal patterns in EEG. Those results bridge the gap between permutation entropy
and the Fourier transform, and thus establish an immediate relation with the classical
methodology of spectral EEG analysis.

The discussion of those topics is prepended with a description of the mathematical
foundations, as well as an outline on the relations between ordinal time series analysis
and non-linear systems theory as whole.
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Zusammenfassung

Diese Dissertation befasst sich mit der Permutationsentropie in ihrer Anwendung als
Signalparameter für die quantitative Analyse des Elektroenzephalogramms (EEG). Die
Permutationsentropie ist ein Komplexitätsmaß aus der nichtlinearen Systemtheorie. Sie
beruht auf der Idee, den Phasenraum einer eingebetteten Zeitreihe mit Hilfe so genannter
ordinaler Muster zu diskretisieren. In vorliegender Arbeit stehen diesbezüglich zwei
Aspekte im Vordergrund: die algorithmisch effiziente Gewinnung von ordinalen Mustern
aus allgemeinen Zeitreihen, sowie die Interpretierbarkeit der Permutationsentropie im
Kontext der EEG-Analyse.

Das grundsätzliche Problem bei der Berechnung ordinaler Muster besteht darin, dass
deren Anzahl mit der Fakultät der verwendeten Einbettungsdimension anwächst. Die hier
vorgestellten Algorithmen verkürzen die Laufzeit ordinaler Analyseverfahren deutlich
und erhöhen zudem die in der Praxis maximal nutzbare Einbettungsdimension um eine
Größenordnung.

Die Frage nach der Bedeutung der Permutationsentropie des EEG wird durch den
Nachweis charakteristischer Regelmäßigkeiten in den Wahrscheinlichkeitsverteilungen
der ordinalen Muster des EEG empirisch beantwortet. Diese Ergebnisse erlauben einen
Brückenschlag zwischen Permutationsentropie und Fouriertransformation und stellen
somit einen unmittelbaren Bezug zur klassischen Methodik der spektralen EEG-Analyse
her.

Der Behandlung dieser Themen sind eine Beschreibung der mathematischen Grundlagen,
sowie eine Einordnung der ordinalen Zeitreihenanalyse in den Gesamtzusammenhang der
nichtlinearen Systemtheorie vorangestellt.
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1 Introduction

When the article Permutation Entropy: A Natural Complexity Measure for Time Series [1]
by Christoph Bandt and Bernd Pompe appeared in 2002, it established a novel perspective
on time series: instead of considering absolute amplitudes, one focusses exclusively on
the rank associations between adjacent values. Those are called the ordinal patterns of
the time series. The approach is conceptually similar to the rank correlation coefficients
used in non-parametric statistics—where, for instance, the Spearman correlation between
a pair of observables is the Pearson correlation between their respective ordinal ranks [2].

In their original publication, Bandt and Pompe anticipated that permutation entropy
would become particularly relevant for the analysis of “heart and brain data” [1]. About
two years later, Yinhe Cao and colleagues reported on having successfully detected
epileptic seizures in the electroencephalogram (EEG) by means of permutation entropy [3],
which renders those authors the first to propose an EEG-related application of this
complexity measure. More articles on using permutation entropy for the analysis of
seizure EEG followed over the years [4–13].

Sleep research is another field that took strong interest in permutation entropy as an
EEG parameter: Gu Li, Yingle Fan, and Quan Pang were apparently the first to use it
for automatic sleep scoring [14], and subsequent publications on sleep-related changes
of permutation entropy in EEG include [10, 12, 15–19]. Apart from that, permutation
entropy has also been applied to EEG in the contexts of coma [20–23], Alzheimer’s
disease [24, 25], aging and cognitive decline [26, 27], stroke [28–30], stress [31–33], and in
various other clinical and experimental settings [34–41].

Judging by the number of articles published, however, the area where permutation
entropy made the biggest impact as an EEG parameter is: monitoring the “depth” of
general anaesthesia. Almost simultaneously, three articles on this specific application were
published in 2008 [42–44], and have likely inspired some of the studies that followed [45–
75]. The following example may help substantiate the relevance of permutation entropy
for EEG analysis, and for the monitoring of general anaesthesia, in particular.
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1 Introduction

Example 1. General anaesthesia is commonly induced by intravenous administration of
an hypnotic drug (like propofol, for instance). The patient to be anaesthetised usually
stops responding to verbal command within seconds after the injection, and this loss of
responsiveness (LoR) is a clinical sign that anaesthesia has successfully been induced [76].

For the purpose of clinical trials, the LoR can be assessed systematically by repeatedly
instructing the subject to squeeze the investigator’s hand [58]. Data recorded during the
induction can then be put in temporal relation with the LoR. An exemplary epoch of EEG,
as well as its corresponding permutation entropy values, are depicted in Figure 1.1.
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Figure 1.1 An epoch of EEG as recorded from a patient undergoing induction of general
anaesthesia via propofol injection. Electrode locations were Fp1–Cz (see Figure 6.1), and data
were sampled at 200 Hz. Permutation entropy (PeEn, order m = 3, time lag τ = 1, normalised,
see Chapter 4) was computed on maximally-overlapping signal windows of 10 s length. Its
values suggest a monotonous transition from the wakeful to the anaesthetised state, and perfect
discrimination between the two.

Despite the fact that permutation entropy demonstrates high performance in various
EEG classification tasks, the question why this method actually yields such favourable
results has apparently not been raised. But does a method proposed as a complexity
measure for time series necessarily measure complexity in all kinds of time series? And if
so, can we stop at that point, or do we have to ask further questions about the nature of
this complexity?
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From this author’s perspective, the sheer number of reports on permutation entropy in
quantitative EEG analysis provided sufficient reason to set out and study the internals of
this measure: after all, anything learned about a single EEG parameter can be something
learned about EEG as a whole, and possibly about the underlying neural processes.

This endeavour yielded new insights into the relations between ordinal patterns and the
EEG [77], as well as efficient algorithms for ordinal time series analysis in general [78].
Those results are described in the dissertation at hand, and the author here seizes the
opportunity to discuss some aspects in more depth, and to provide a careful introduction
to the theoretical underpinnings. The work is organised in the following way:

• Chapter 2 introduces the mathematical preliminaries used throughout the thesis.
Those include ideas from the fields of combinatorics, probability theory, as well as
information theory.

• Chapter 3 provides an overview of dynamical systems theory, delay embeddings, and
entropic complexity measures, which constitute the theoretical basis of permutation
entropy and related parameters.

• Chapter 4 explains the notion of ordinal patterns in detail, and establishes a useful
means of notation. The chapter continues with a description of how ordinal patterns
relate to stochastic processes and time series, and how probability distributions of
ordinal patterns can be characterised by means of permutation entropy, as well as
symbolic transfer entropy.

• Chapter 5 focusses on the computational problem of turning time series into ordinal
pattern sequences. A numerical encoding scheme for ordinal patterns is proposed,
and three different algorithms for their efficient extraction from time series are
discussed. Strengths and weaknesses of those algorithms are derived, and further
substantiated by benchmark results.

• Chapter 6 gives a short introduction to quantitative electroencephalography, and
demonstrates that permutation entropy can be simplified substantially without
compromising its suitability as an EEG signal parameter. Implications are discussed
in detail, and yield a direct relation between permutation entropy and the power
spectrum of the EEG.

• Chapter 7 summarises the ideas and results presented, draws some conclusions on
using ordinal patterns for EEG analysis, and provides an outlook on possible future
investigations.
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2 Mathematical Preliminaries

The study of real-world time series is often an interdisciplinary endeavour, and electroen-
cephalography is a particularly good example: physicians, biologists, neuroscientists, and
psychologists, but also mathematicians, physicists, engineers, and computer scientists
work together in this field. Any such collaboration depends on communication, and
communication requires a language that is both concise and mutually understood. In
this vein, a detailed overview of the mathematical concepts that enable the present
communication is given in the following.

2.1 Iversonian Brackets

Throughout this work, we shall utilise a highly convenient, if slightly uncommon nota-
tional convention called the Iversonian bracket. It originated from a book by Kenneth
Iverson [79], wherein the author stipulated that relational expressions take on numerical
values: 1 if the expression holds true, and 0 otherwise. For instance, (23 < 42) = 1,
whereas (255 < −1) = 0. Donald Knuth extended the scope of this notation from order
relations to logical expressions in general. He further suggested to use square brackets
for reasons of clarity, and coined the term Iversonian bracket notation [80]. In terms of
computer science, Iversonian bracketing represents a data type conversion from Boolean
to integer. For a given logical expression L, it holds that

[L] =

0, if L is false,

1, if L is true.
(2.1)

This notational convention is very useful when counting elements to which a certain
logical condition applies. For example, the number of positive elements in a finite time
series {x1, x2, . . . , xN} can compactly be written as ∑N

t=1 [xt > 0].
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2 Mathematical Preliminaries

2.2 Combinatorics

As its name immediately implies, permutation entropy builds upon basic principles
from the field of combinatorics. Especially the algorithmic work presented in Chapter 5
depends on some less commonly known combinatorial concepts. All of those aspects are
therefore summarised in the following.

2.2.1 Totally Ordered Sets

A totally ordered set X is a collection of pairwise distinct elements, endowed with a binary
relation ≺, such that the following properties [81] hold for any elements x1, x2, x3 ∈ X:

• If x1 ≺ x2, then x1 6= x2 (strictness).
• If x1 ≺ x2 and x2 ≺ x3, then x1 ≺ x3 (transitivity).
• If x1 6= x2, then x1 ≺ x2 or x2 ≺ x1 (completeness).

For instance, the natural numbers N, the integers Z, as well as the real numbers R are
totally ordered by the binary relation <. Conversely, the relation 6 does not establish a
total order in any of those sets because it violates the strictness requirement.

2.2.2 Permutations

A permutation is a bijective function σ : S → S on an arbitrary set S. Permutations thus
reflect the process of rearranging a collection of pairwise distinct objects. A total of m!
different permutation functions exist for any set of |S| = m elements, whereby

m! =
m∏
k=1

k = m · (m− 1) · (m− 2) · · · · · 2 · 1 (2.2)

is the factorial of m, and represents the number of possible sorting orders that exist for a
set of m elements. A permutation function on a set S = {s1, s2, . . . , sm} can be written
explicitly using the two-row matrix notation in terms of

σ =
 s1 s2 · · · sm

σ(s1) σ(s2) · · · σ(sm)

 . (2.3)
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Therein, each column represents a particular relation of the form si 7→ σ(si), so intuitively,
the overall matrix serves the purpose of a lookup table. However, if the set S is endowed
with a natural order, the upper row of the matrix does not provide any new information,
and can therefore be omitted. For instance, the permutation

σ =
1 2 3 4 5

4 1 3 2 5

 = (4, 1, 3, 2, 5)

remains unambiguous when not mentioning the order of the first five natural numbers.
Depending on context, both forms of notation will be used for the scope of this writing,
that is,

σ =
 s1 · · · sm

σ(s1) · · · σ(sm)

 =
(
σ(s1), . . . , σ(sm)

)
. (2.4)

2.2.3 The Factorial Number System

The factorial number system is a specific realisation of a mixed-radix positional numeral
system, which in turn is a class of numeral systems studied by Georg Cantor [82]. Recall
that in a standard positional numeral system to some base b ∈ N (like the ubiquitous
decimal system to the base b = 10), any non-negative integer n ∈ N0 is representable by
a distinct numeral, that is, by a string of digits of the form dN . . . d2d1d0, for which it
holds that

n =
N∑
i=0

di · bi, where di ∈ N0 and di < b. (2.5)

In comparison with standard numeral systems, the base/radix of a mixed-radix numeral
system is not a constant factor, but a function i 7→ b(i) of the digit position i. Specifically,
for base functions b : N0 → N0, any non-negative integer n ∈ N0 can be written as a
unique mixed-radix numeral dN . . . d2d1d0, which represents the value

n =
N∑
i=0

(
di

i∏
j=0

b(j)
)
, where di ∈ N0 and di < b(i+ 1). (2.6)

Within this framework, the factorial number system is the mixed-radix numeral system
to the base function b(i) = i. Its corresponding strings of digits of the form dN . . . d2d1d0

are called factoradic numerals, and are to be interpreted as in

n =
N∑
i=0

di (i!), where di ∈ N0 and di < i+ 1. (2.7)
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Frequently, those numerals are subscripted with an “!” where ambiguity would otherwise
arise.

Example 2. The five-digit factoradic numeral 23110! represents the natural number
23110! = 2 · 4! + 3 · 3! + 1 · 2! + 1 · 1! + 0 · 0! = 69. By way of further illustration,
the factoradic numerals corresponding to the non-negative integers n ∈ {0, 1, . . . , 23} are

0! = 0,
10! = 1,

100! = 2,
110! = 3,
200! = 4,
210! = 5,

1000! = 6,
1010! = 7,
1100! = 8,
1110! = 9,
1200! = 10,
1210! = 11,

2000! = 12,
2010! = 13,
2100! = 14,
2110! = 15,
2200! = 16,
2210! = 17,

3000! = 18,
3010! = 19,
3100! = 20,
3110! = 21,
3200! = 22,
3210! = 23.

2.3 Probability Theory

Besides being based on combinatorics, permutation entropy also depends on probability
theory. This is partly due to the fact that time series are often modelled as realisations of
stochastic processes, so time series analysis as a whole is deeply grounded in probability
theory, and permutation entropy is no exception in this regard. Moreover, any variant of
entropy is of course a probabilistic concept, so the overview of information theory given
in Section 2.4 builds on those foundations as well. A basic recapitulation of probability
theory is therefore provided in the following.

2.3.1 Power Sets

The power set P(S) of a set S is the set of all possible subsets of S, including the empty
set ∅, as well as S itself. For example, let S = {1, 2, 3}, then

P(S) =
{
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

}
.

For a set of |S| = m elements, its power set P(S) contains a total of

| P(S)| =
m∑
k=0

(
m

k

)
= 2m (2.8)

elements (= subsets), which follows directly from the binomial theorem [83].

8



2.3 Probability Theory

2.3.2 Sigma-Algebras

A σ-algebra Σ on a set S is a family of sets over S (that is, a set of subsets of S) for
which certain conditions hold. In particular,

S ∈ Σ, (2.9a)
E ∈ Σ =⇒ (S \ E) ∈ Σ, (2.9b)

(E1 ∈ S) ∧ (E2 ∈ S) ∧ · · · ∧ (En ∈ S) =⇒ (E1 ∪ E2 ∪ · · · ∪ En) ∈ S. (2.9c)

We therefore say that Σ is closed under complements, and closed under countable unions.
Moreover, it holds that ∅ ∈ Σ, because ∅ = S \ S.

It is easily confirmed that the power set P(S) is a possible σ-algebra on the set S. Other
examples for σ-algebras, and some reasons for their relevance in probability theory, will
be given in the next subsection.

2.3.3 Probability Spaces

A probability space is a triple (Ω,Σ,Pr), and is used to mathematically model a random
experiment. In particular, Ω is the sample set, and contains all possible outcomes of the
random experiment. For instance, if rolling a six-faced die is modelled, the sample set
will usually be defined as Ω = {1, 2, 3, 4, 5, 6}.

The set Σ is a σ-algebra on the sample set Ω, and contains the events of the experiment.
One could, for example, use Σ =

{
∅, {1, 3, 5}, {2, 4, 6},Ω

}
to define the events “an even

number of pips appeared” and “an odd number of pips appeared” in a die-roll experiment.
By definition, Σ will always contain the sets ∅ and Ω. Those are called the impossible
event and the certain event. Also note that any single outcome from Ω can be an
individual event in Σ, and is called an elementary event.

Finally, the symbol Pr: Σ→ [0, 1] ⊂ R denotes a function that assigns to each event in Σ
a probability between zero and one, and is thus called a probability measure. In accordance
with the definition of σ-algebras, the probability measure Pr has the fundamental property
that, for any event E ∈ Σ,

Pr(E) + Pr(Ω \ E) = 1. (2.10)
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Consequently, it holds that Pr(Ω) = 1, whereas Pr(∅) = 0. Moreover, the same property
also implies that

Pr(E1 ∪ E2) = Pr(E1) + Pr(E2) if E1 ∩ E2 = ∅. (2.11)

Intuitively, if the events E1 and E2 are mutually exclusive, then the probability that
either E1 or E2 will happen is the sum of their individual probabilities.

2.3.4 Discrete Random Variables

A discrete random variable is a function X : Ω → X that maps the set of possible
outcomes Ω of a random experiment onto a finite set of values X . The latter is called the
support set of the random variable. In case of a die-roll experiment, for instance, one can
define a random variable X on the support set X = {1, 2, . . . , 6}. For each roll of the
die, X will then take on a distinct value x ∈ X that reflects the number of pips shown.
In this context, x is called a realisation of the random variable X.

Depending on the nature of the underlying experiment, X will take on each of its possible
values x ∈ X at a certain probability. These probabilities are given by the probability
mass function

fX : X → [0, 1] ⊂ R,

x 7→ Pr(X = x).
(2.12)

Keeping with the die-roll example, and further assuming that a fair die is used, it holds
that fX(x) = 1/6 for all x ∈ X .

A random experiment may involve not only one, but a collection of random variables
{X1, . . . , Xm} with their respective support sets {X1, . . . ,Xm}, and the results of those
random variables may be interdependent. Such interrelations can be modelled by a joint
probability mass function

fX1,...,Xm : X1 × · · · × Xm → [0, 1] ⊂ R,

(x1, . . . , xm) 7→ Pr(X1 = x1, . . . , Xm = xm).
(2.13)

This function provides the probability that, for the same instance of a random experiment,
the variable X1 takes on the value x1, the variable X2 takes on the value x2, and so forth
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2.3 Probability Theory

for all of the m random variables involved, and all of the outcomes those variables may
yield.

If the joint probability mass of a set of m random variables is known, the joint probability
mass of any subset of those random variables can be obtained by summation. For instance,
if probabilities in terms of fX,Y,Z are given, it holds that

fY,Z(y, z) =
∑
x∈X

fX,Y,Z(x, y, z). (2.14)

This also includes the marginal probability mass fXi of any single random variable Xi,
which can be derived by successively summing up the m-dimensional joint probability
mass function fX1,...,Xm along m − 1 of its dimensions. Notice that a pair of random
variables X and Y are called identically distributed if fX = fY holds for their marginal
probability masses.

As stated earlier, joint probabilities are used to model dependencies between random
variables. In this regard, consider that a pair of random variables X and Y are called
independent if fX,Y = fX · fY holds, that is, if the probability of simultaneously ob-
serving X and Y in some particular states is fully determined by their respective marginal
probability masses. In general, though, the outcome of Y may influence the outcome
of X, such that fX,Y 6= fX · fY , but rather fX,Y = fX|Y · fY . In this constellation, the
function

fX|Y : X × Y → [0, 1] ⊂ R,

(x, y) 7→ Pr(X = x | Y = y),
(2.15)

is called the conditional probability mass function of X given Y , which represents the
probability of receiving the outcome X = x, provided that the outcome Y = y is already
known. The inverse relation fY |X , that is, the dependence of Y on X, can be modelled
analogously because, quite intuitively, it holds that

fX|Y · fY = fX,Y = fY |X · fX . (2.16)

This interrelation is widely known as Bayes’ Theorem. In the general case, that is, for
a set {X1, X2, . . . , Xm} of m random variables, conditional probability masses for more
than two variables, like fX1,X2,X3|X4 or fX1,X2|X3,X4 , can be derived in the same manner.
Any such function stems from an m-dimensional joint probability mass fX1,...,Xm , which
fully defines the interrelations between the m discrete random variables.
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2.3.5 Discrete Stochastic Processes

A stochastic process is a set of random variables {Xt}t∈T endowed with an index set T
that establishes a notion of sequentiality among those variables. We will here be looking
at discrete stochastic processes exclusively, that is, the random variables will have finite
support sets, and the indices t ∈ T will relate to equidistantly spaced discrete points in
time. Without loss of generality, let us assume T = N for the rest of this section, such
that

{Xt}t∈N = {X1, X2, . . . , XN} with N →∞. (2.17)

What makes a set of time-aligned random variables a discrete stochastic process is that
all random variables draw their respective outcomes from the same finite support set X ,
and are governed by a joint probability mass function

fX1,...,XN : XN → [0, 1],
(x1, . . . , xN) 7→ Pr(X1 = x1, . . . , XN = xN).

(2.18)

As described in Section 2.3.4, this function fully determines all probabilistic relations
among the N random variables of the stochastic process.

A particularly important class of stochastic processes are the so-called stationary processes.
In a nutshell, a discrete stochastic process is called (strictly) stationary if and only if its
joint probability mass function is invariant to time shifts, that is, if

fX1+τ ,...,XN+τ = fX1,...,XN , for τ ∈ Z, N →∞. (2.19)

Stationarity is a very powerful property, and has important implications for time series
analysis. In general, when sampling from some stochastic process {Xt}, each random
variable can be observed exactly once, because Xt is unknown for all times preceding t,
takes on a value xt ∈ X at time t, and then maintains this value forever. In other words,
a random variable Xt has exactly one realisation xt throughout all of space and time.
Therefore, after having sampled the realisation Xt = xt, we cannot draw any conclusions
on the probability mass function fXt of that random variable—apart from the humble
observation that fXt(xt) 6= 0, of course.

Conversely, if the process {Xt} is known to be stationary in the sense of Equation (2.19),
it holds that fXi = fXj for any i ∈ N and j ∈ N, and all random variables in {Xt} are
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thus identically distributed. Their marginal probability mass function,

fX = fX1 = fX2 = · · · = fXN for N →∞,

can then be estimated from a sequence of realisations sampled over time, that is, from
a time series {xt1 , xt2 , . . . , xtN}, where ti ∈ N for all i ∈ {1, 2, . . . , N}. More specifically,
the limit

∀x ∈ X : fX(x) = lim
N→∞

1
N

N∑
i=1

[xti = x] (2.20)

represents the probability Pr(Xt = x) of finding the stationary process {Xt} in a particular
state x of its support set X , for any arbitrary observation time t.

Joint probability mass functions, as in fXt,Xt+τ ,Xt+2τ , can be estimated analogously, that
is, by counting tuples of occurrences. Notice that the absolute time index t is insignificant
here: for a stationary process, any joint probability mass function is fully determined by
the temporal distance between the random variables involved.

2.3.6 Other Forms of Notation

While it is formally correct to write probability mass functions as in Equation (2.18), this
notation becomes quite cumbersome for more involved relations. Where no ambiguity
can arise, it is therefore common practice to use the notation p(xt1 , . . . , xtN ) instead,
whereby

p(xt1 , . . . , xtN ) = fXt1 ,...,XtN (xt1 , . . . , xtN ) = Pr(Xt1 = xt1 , . . . , XtN = xtN ). (2.21)

This shorthand is especially useful in the context of stationary processes, which are
invariant to time shifts anyway (see Section 2.3.5).

A similar notational convention can be used for joint and conditional probabilities. Given
two discrete stochastic processes {Xt} and {Yt}, we will thus write

p(xt1 | yt2) = p(xt1 , yt2)
p(yt2) (2.22)

for the probability fXt1 |Yt2 (xt1 , yt2) = Pr(Xt1 = xt1 | Yt2 = yt2) of finding the variable Xt1

in state xt1 ∈ X at time t1, if it is known that Yt2 takes on yt2 ∈ Y at time t2.
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For marginal probabilities, there is another useful means of notation. Given the probability
mass fXt(x) of a random variable Xt on the support set X = {x1, x2, . . . , xN}, a time-
dependent vector of |X | = N elements,

p(t) =
(
fXt(x1) fXt(x2) · · · fXt(xN)

)T
, (2.23)

can be constructed, and is referred to as a stochastic vector, or probability vector. Due to
the properties of probability mass functions, it holds that

• p(t) > 0, that is, the vector is non-negative, which in turn means that each of its
elements is non-negative [84], and

• ‖p(t)‖1 = 1, that is, the sum over all elements of p(t) equals 1.

Stationary processes are characterised by a single, time-independent probability vector,
which can be written as a constant p instead.

2.3.7 Markov Chains

A discrete stochastic process {Xt}, with t ∈ Z, is called a Markov chain if it holds that

p(xt | xt−1) = p(xt | xt−1, xt−2, xt−3, . . .), (2.24)

which is hence known as the Markov property [84]. In other words, the state xt of
a Markov chain is no less predictable from the preceding state xt−1 alone than it is
predictable from the entire past of the process. Notice that the Markov property does in
no way imply that the state xt be independent from the earlier states {xt−2, xt−3, . . .}.
Much rather, xt depends on xt−1, which depends on xt−2, which in turn depends on xt−3,
and so forth, giving rise to the notion of a chain indeed. By contrast with other discrete
stochastic processes, though, the decisive history of a Markov chain can be accumulated
in a single state. For this reason, Markov chains may be called memoryless.

The probabilistic properties of a Markov chain with the state space X = {x1, x2, . . . , xm}
can be described by an m×m transition matrix

P =


p1,1 p1,2 · · · p1,m

p2,1 p2,2 · · · p2,m
... ... . . . ...

pm,1 pm,2 · · · pm,m

 . (2.25)

14



2.3 Probability Theory

If the transition matrix P is time-invariant, which we assume throughout this writing, the
Markov chain is called homogeneous. The matrix element pi,j = Pr(Xt = xj | Xt−1 = xi)
represents the probability that the Markov chain will transition from state xi to state
xj in a single step. The rows of the matrix P are transposed probability vectors in the
sense of Equation (2.23), so each row sums up to 1. This is consistent with intuition,
because at each time step, we know with absolute certainty that one out of the m possible
transitions from xi to xj will happen. Given that probability vectors do not contain
negative elements, it also follows that P > 0, which means that transition matrices are
non-negative [84].

Using its transition matrix P, the time-dependent evolution of a Markov chain can be
expressed by the recursion

p(t+ 1) = PTp(t), for all t ∈ Z, (2.26)

whereby p(t) represents the marginal probability mass of the process at time t. For each
iteration, the transition matrix P thus redistributes the probabilities p(t) of finding the
Markov chain in a particular state. Just like other stochastic processes, Markov chains
can be stationary in the sense of Equation (2.19). As has been described in Section 2.3.5,
stationarity implies that the probability vector p is time-invariant. It therefore holds
for any stationary Markov chain that p = PTp, such that the probability vector p is an
eigenvector with eigenvalue λ = 1 of the transposed transition matrix PT.

Example 3. Let {Xt}, with t ∈ N, be a Markov chain on the state space X = {x1, x2, x3},
and governed by the transition matrix

P =


0.6 0.2 0.2
0.1 0.5 0.4
0.3 0.3 0.4

 .

Also assume that the Markov chain is known to be in state X1 = x2 at time t = 1, such
that its initial probability vector is p(1) =

(
0 1 0

)T
. By iterating Equation (2.26), we

can obtain

p(2) = PTp(1) =


0.6 0.1 0.3
0.2 0.5 0.3
0.2 0.4 0.4




0
1
0

 =
(
0.1 0.5 0.4

)T
,

15



2 Mathematical Preliminaries

and subsequently,

p(3) =
(
0.2300 0.3900 0.3800

)T
,

p(4) =
(
0.2910 0.3550 0.3540

)T
,

p(5) =
(
0.3163 0.3419 0.3418

)T
,

...

p(9) =
(
0.3332 0.3334 0.3334

)T
,

p(10) =
(
0.3333 0.3334 0.3334

)T
,

p(11) =
(
0.3333 0.3333 0.3333

)T
,

p(12) =
(
0.3333 0.3333 0.3333

)T
,

...

for any time step t ∈ N.

Consistent with the above, the matrix PT has three eigenvalues λ1 = 1, λ2 = 0.4, λ3 = 0.1,
and it holds for the eigenvector x1 associated with λ1 that

x1

‖x1‖1
= p =

(
1/3 1/3 1/3

)T
,

which is the stationary distribution the stochastic process converges to. Figure 2.1 depicts
a state diagram for the Markov chain considered in this example.

x1

x2x3

0.10.3

0.4

0.20.2

0.3

0.6

0.50.4

Figure 2.1 State diagram for a Markov chain with support set X = {x1, x2, x3}, and transition
probabilities as given in Example 3.
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2.4 Information Theory

Claude Shannon is considered the creator of information theory. To this day, his
famous article series A Mathematical Theory of Communication [85, 86] constitutes
the mathematical basis of virtually any communication technology our professional and
private lives have grown to rely upon. The recurring theme in information theory is
entropy, a statistic on the irregularity of a probability distribution. Under certain model
assumptions, irregularity is equivalent to information content, which explains the pivotal
role of entropy in information theory. While independently derived, the measure is
mathematically identical with the concept of entropy as used in statistical mechanics.
Legend has it that John von Neumann first spotted this similarity, and thus suggested to
Shannon [87]:

You should call it entropy, for two reasons. In the first place your uncertainty
function has been used in statistical mechanics under that name, so it already
has a name. In the second place, and more important, no one knows what
entropy really is, so in a debate you will always have the advantage.

Nowadays also referred to as Shannon entropy, the measure has a multitude of applications
in research, among them, quantitative data analysis. In particular, various methods in
EEG analysis depend on entropy-based parameters. The present section provides an
overview of aspects in information theory that are relevant for this scope of application.

2.4.1 Shannon Entropy

Let X be a random variable, drawing from the finite support set X = {x1, x2, . . . , xm} as
governed by the probability mass function fX . Then, its Shannon entropy [85] is defined
as

H(X) =
m∑
i=1

fX(xi) log 1
fX(xi)

= −
m∑
i=1

p(xi) log p(xi). (2.27)

The rationale is that each possible outcome xi ∈ X of the random variable X carries an
information content of − log p(xi), so the more unlikely a particular outcome is, the more
information it contains. Shannon entropy thus quantifies the average uncertainty about
the value that X will take on once its underlying random experiment is carried out.
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Theoretically, any impossible outcome of X contains an infinite amount of information,
as is reflected by the limit

lim
pi→0
− log(pi) = +∞.

Still, impossible outcomes do never actually appear, so their average contribution to
entropy is

lim
pi→0
−pi log(pi) = 0. (2.28)

By convention, this limit is taken for any p(xi) = 0 to enable steady continuation of
singularities. Thus, the measure is well-defined for any probability mass function.

For instance, if the given experiment has only one possible outcome, such that p(xi) = 1,
while p(xj) = 0 for all xj ∈ X \ {xi}, there is no uncertainty, and Shannon entropy
H(X) = 0. By contrast, the uncertainty about the outcome of X is maximal if all
possible results are equally likely, that is, if p(xi) = |X |−1 for all xi ∈ X . This yields
the result H(X) = log |X |, which is the maximum entropy a discrete random variable
with |X | states can have. In the range between those two extremes, any pairwise change
that renders a given probability distribution “more uniform” will be accompanied by an
increase in entropy [85]. This essential property will be exploited in Chapter 6.

Shannon entropy is not restricted to random variables, but can be used as a statistic on
any probability mass function—like the marginal probability distribution of a discrete
stationary process, for instance. Therefore, we will frequently use the notation

H(p) = −
m∑
i=1

pi log(pi), with p =
(
p1 p2 · · · pm

)T
, (2.29)

where p is a probability vector in terms of Equation 2.23.

Notice that the base of the logarithm can be selected arbitrarily, as it merely determines
the unit of measure. Usually, either the binary or the decadic logarithm is chosen, and
their corresponding unit names are shannon and hartley, respectively. In particular,
log2 2 = 1 Sh, while log10 10 = 1 Hart. Hartleys are also named bans, while shannons are
nowadays ubiquitously referred to as bits. Throughout this work, we will be using the
binary logarithm function exclusively.
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2.4.2 Joint Entropy

Following the same principles as for the univariate case, the joint entropy of a pair of
random variablesX and Y , with images X and Y and joint probability mass function fX,Y ,
is defined as

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y), (2.30)

and for a set of N random variables {X1, . . . , XN}, this generalises into

H(X1, . . . , XN) = −
∑
x1∈X1

· · ·
∑

xN∈XN
p(x1, . . . , xN) log p(x1, . . . , xN). (2.31)

Joint entropy thus provides the average uncertainty about the result of a random
experiment involving more than one random variable.

It is easy to see that joint entropy is symmetrical, that is, H(X, Y ) = H(Y,X). Moreover,
it holds that [85]

H(X, Y ) 6 H(X) + H(Y ), (2.32)

whereby equality applies if and only if the random variables X and Y are independent.
This is fully in line with intuition. Firstly, the joint uncertainty about a pair of outcomes
cannot exceed the uncertainties about the individual outcomes. Moreover, if two outcomes
are correlated, then knowing one of them will necessarily resolve some of the uncertainty
about the other.

2.4.3 Conditional Entropy

In a similar manner, the remaining uncertainty about a random variable X, provided that
the outcome of another variable Y is already known, can be modelled as the conditional
entropy

H(X | Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x | y) =
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y)
p(y) . (2.33)

Notice that the averaging has to be performed by weighting the per-symbol information
content with p(x, y), although the automatisms of human pattern-matching may at first
glance suggest to multiply with p(x | y) instead.

19



2 Mathematical Preliminaries

Conditional entropy has a set of interesting properties [85]. First and foremost, it holds
that

H(X | Y ) = H(X, Y )− H(Y ). (2.34)

which further implies that H(X | Y ) = H(X) if and only if the random variables X
and Y are independent. Conversely, it holds that H(X | Y ) = 0 in cases where knowing
the outcome of Y fully determines X. Moreover, it follows that conditional entropy is
asymmetric in general, because

H(X, Y ) = H(X | Y ) + H(Y ) = H(Y | X) + H(X). (2.35)

2.4.4 Transfer Entropy

Transfer entropy is a relatively recent addition to the framework of information theory.
Introduced by Thomas Schreiber in 2000 [88], it is a measure of directional information
exchange among a pair of random processes. We here limit our considerations to transfer
entropy between discrete-time processes on finite state spaces. Given two such processes
{Xt}t∈Z and {Yt}t∈Z on the respective state spaces X and Y , transfer entropy from {Xt}
to {Yt} is defined as [88, 89]

TX→Y =
∑

p(yt+1,y(r)
t ,x(s)

t ) log p(yt+1 | y(r)
t ,x(s)

t )
p(yt+1 | y(r)

t )
. (2.36)

Therein, the (implicitly threefold) summation iterates all yt+1 ∈ Y, all y(r)
t ∈ Yr, and

all x(s)
t ∈ X s. The vectors y(r)

t and x(s)
t are realisations of the delay vectors of random

variables X(s)
t = (Xt, Xt−1, . . . , Xt−s+1) and Y(r)

t = (Yt, Yt−1, . . . , Yt−r+1).

In accordance with Wiener’s causality principle, transfer entropy builds upon the following
reasoning: if the process {Xt} does not transfer any information to the process {Yt},
then the future of {Yt} is no more uncertain in the light of its own past than it would be
if also the past of {Xt} were known. Expressed in terms of entropies, this means that

H(Yt+1 | Y(r)
t ) = H(Yt+1 | Y(r)

t ,X(s)
t ), (2.37)

which Schreiber called a “generalized Markov property” [88]. From this perspective, the
dimensions r and s model the amount of memory of the process {Yt}.
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Transfer entropy is designed to quantify the deviation from this Markovian property,
that is,

TX→Y = H(Yt+1 | Y(r)
t ) − H(Yt+1 | Y(r)

t ,X(s)
t ), (2.38)

which is arithmetically identical with the explicit formulation in terms of Equation (2.36),
but arguably more helpful in understanding Schreiber’s connectivity measure. Clearly,
transfer entropy takes on its minimum value TX→Y = 0 if

H(Yt+1 | Y(r)
t ,X(s)

t ) = H(Yt+1 | Y(r)
t ),

that is, if X(s)
t does not provide any additional information on the outcome of Yt+1 at all.

In turn, transfer entropy takes on its maximum value TX→Y = H(Yt+1 | Y(r)
t ) for

H(Yt+1 | Y(r)
t ,X(s)

t ) = 0,

that is, if X(s)
t completely disambiguates the outcome of Yt+1. Therefore, transfer entropy

can be normalised to the value range [0, 1] by means of dividing by H(Yt+1 | Y(r)
t ).

Finally, transfer entropy is asymmetric under an exchange of its arguments, that is, it
generally holds that TX→Y 6= TY→X . Hence, there is a source process, a target process,
and a notion of directionality.
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Permutation entropy originated from dynamical systems theory, the mathematical and
physical discipline that—very generally speaking—studies system behaviour over time.
Dynamical systems theory is a broad subject, as well as a deep one, so even a half-decent
overview would be well beyond the scope of the present work. That being said, the next
chapter merely outlines those basic concepts of the theory that constitute the foundations
of permutation entropy, and thus, of ordinal time series analysis in general.

For a more profound introduction to this field, the reader is recommended the classic
journal article Ergodic theory of chaos and strange attractors by Jean-Pierre Eckmann
and David Ruelle [90], as well as the textbook Nonlinear Time Series Analysis by Holger
Kantz and Thomas Schreiber [91]. Readers with a neuroscientific background may also
find the two-part article series Is there chaos in the brain? by Philippe Faure and Henri
Korn [92, 93] insightful.

3.1 Dynamical Systems

Virtually any abstract or physical entity that has a time-dependent state can be interpreted
as a dynamical system. This state is the collection of parameters that unambiguously
describe the system at any fixed (though otherwise arbitrary) instant of time. In terms of
mathematics, those state parameters provide the basis vectors that span the phase space
of the system: for a dynamical system with m state variables, its state at time t can be
modelled as a point in m-dimensional Euclidean space, that is, as a vector x(t) ∈ Rm.

Besides the dimensionality of its phase space, a dynamical system is characterised by the
value progression of its state over time. This is governed by a so-called evolution rule. In
particular, for a system with deterministic dynamics, its state x(t) at time t is a function
of the preceding states {x(τ) | τ < t} exclusively. Figuratively speaking, the future of a
deterministic dynamical system is unambiguous in the light of its own past. By contrast,
systems that lack this property are called random dynamical systems [94].
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In its most general form, a deterministic dynamical system can have an infinite amount
of memory, that is, its state x(t) at time t may possibly be a function of all preceding
states [95]. However, for systems commonly regarded as deterministic, a single state
vector x(t0) at a particular instant t0 fully determines the system’s behaviour at each
and every other point in time. Under this condition, the evolution rule is effectively a
function of the form

f : Rm+2 → Rm

x(t0), t0, t 7→ x(t).
(3.1)

Thus, if a state x(t0) and its absolute observation time t0 are known, the system’s state
x(t) at any other time t is predetermined. Another simplification over the general case is
the following: while the state of a dynamical system is of course expected to change over
time, the underlying evolution rule can often be assumed as time-invariant, which means
that

∀(t0, t1) ∈ R2 : x(t0) = x(t1) =⇒ x(t0 + t) = x(t1 + t). (3.2)

The behaviour of the dynamical system is then fully determined by an initial state
x(0) ∈ Rm obtained at an arbitrary moment in time—which is commonly referred to
as t = 0 for reasons of simplicity. In this important special case, the structure of the
evolution rule simplifies to

f : Rm+1 → Rm

x(0), t 7→ x(t),
(3.3)

and the dynamical system is called time-invariant.

The series RLC resonator described by the circuit diagram in Figure 3.1 is a basic example
of a deterministic time-invariant system. Its state is comprised of two variables: the
voltage across the capacitor uC , and the current through the inductor iL. According
to Kirchhoff’s circuit laws, the evolution rule of this system is given by a pair of linear
homogeneous differential equations with constant coefficients, namely

u′C(t) = 1
C
iL(t), (3.4a)

i′L(t) = − 1
L
uC(t)− R

L
iL(t). (3.4b)
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R

L

CuC

iL

Figure 3.1 Series RLC circuit.

Consistently, the circuit is called a second-order linear time-invariant (LTI) system. Such
systems are well-understood and possess closed-form solutions [96]. Specifically, the
above evolution rule can be rewritten as a second-order differential equation,

u′′C(t) + 2αu′C(t) + ω2
0uC(t) = 0,

which describes a damped harmonic oscillator with attenuation α = R/2L and resonance
frequency ω0 = 1/

√
LC. Let us limit this example to an underdamped configuration,

where α < ω0. In this case, the evolution rule has the closed-form solution

uC(t) = u0 e
−αt cos(

√
α2 + ω2

0 t+ ϕ0), (3.5a)

iL(t) = Cu′C(t). (3.5b)

The system hence oscillates at the angular frequency ωd =
√
α2 + ω2

0. Note that the
nature of the dynamics is virtually invariant to the initial state vector x(0), which merely
determines the constant coefficients u0 and ϕ0 in the above solution.

3.1.1 Fixed-Point Attractors

Given a dynamical system with up to three state variables, its phase portrait often proves
insightful. It depicts a set of trajectories for different initial state vectors, and each such
trajectory is a graph of the time-dependent relations between the system’s state variables.
Figure 3.2 displays an exemplary phase portrait for the underdamped series RLC circuit
discussed in the previous section.
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Figure 3.2 Phase portrait of an underdamped series RLC resonator, simulated for the circuit
parameters R = 100 Ω, L = 100 mH, C = 1 µF, and three different initial states. Notice that
the general nature of the dynamics is unaffected by the choice of the initial state.

This phase portrait is easily interpreted physically. In an RLC circuit, both the capacitor
C and the inductor L store electrical energy, which figuratively swings back and forth
between the two, giving rise to the oscillations shown in Figure 3.2. The energy is
transported by an alternating electrical current flowing through all three devices R, L
and C. With each oscillation, a fraction of the overall energy is dissipated as heat in
the resistor R, and hence eliminated from the system. The damped harmonic oscillator
therefore approaches the stable state

lim
t→∞

x(t) =
(
0 V 0 A

)T
,

where all electrical energy has been dissipated, and the dynamics come to a halt. This
behaviour is invariant with respect to the initial state x(0), which merely scales and
rotates the respective trajectory, but neither affects its shape, nor its point of convergence.
In terms of dynamical systems theory, such a point of convergence is called a fixed-point
attractor.

3.1.2 Periodic Attractors

For dynamical systems that follow non-linear evolution rules, attractors are not limited
to fixed points, but may express various other geometrical shapes [90]. As an example,
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consider the Van der Pol Oscillator [97], which is a system governed by the second-order
non-linear differential equation

x′′(t) + µ
(
x2(t)− 1

)
x′(t) + x(t) = 0, (3.6a)

or equivalently, by the two-dimensional differential equation system

x′(t) = y(t), (3.6b)
y′(t) = µ

(
1− x2(t)

)
y(t)− x(t). (3.6c)

These equations describe a damped oscillator with a non-linear and state-dependent
attenuation µ

(
x2(t)− 1

)
. Most decisively, the attenuation takes on negative values for

|x(t)| < 1, thus actively repelling the trajectory from the origin of the phase space. While
no closed-form solution exists for the Van der Pol Oscillator, a phase portrait as the one
depicted in Figure 3.3 can be obtained by numerical integration of Equation System (3.6).
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Figure 3.3 Phase portrait of the Van der Pol Oscillator for µ = 3.

Its phase portrait reveals the characteristic attractor of the system: for any µ > 0,
and for any initial state other than the zero vector, the dynamics of the Van der Pol
Oscillator converge towards a closed curve called a limit cycle. By contrast with fixed-
point attractors, which are self-bijective under the evolution rule, limit cycles are periodic,
that is, their dynamics do not stall in one discrete state, but follow the shape of the
attractor in a repetitive manner.
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3.1.3 Strange Attractors

Some dynamical systems, while still being perfectly deterministic, are extremely sensitive
to deviations of their initial conditions, rendering long-term predictions practically
impossible. The Lorenz system is a coursebook example of this phenomenon. It was
named after meteorologist Edward Lorenz, who in his famous 1963 article [98] discussed
a non-linear model of atmospheric convection given by the differential equation system

x′(t) = σy(t)− σx(t), (3.7a)
y′(t) = ρx(t)− x(t)z(t)− y(t), (3.7b)
z′(t) = x(t)y(t)− βz(t). (3.7c)

Using σ = 10, β = 8/3, and ρ = 28 as per the original publication, numerical integration
yields the system’s phase portrait as shown in Figure 3.4. It reveals an attractor so
unusual in shape that David Ruelle and Floris Takens later coined the term strange
attractor for any such non-trivial structure [99].
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Figure 3.4 (a) The phase portrait of the Lorenz system (σ = 10, β = 8/3, ρ = 28) is dominated
by a strange attractor. (b) This attractor expresses chaotic behaviour, that is, minor changes
to the initial conditions result in fundamentally differing trajectories.

The Lorenz attractor depicted in Figure 3.4 is highly sensitive to state deviations. Even
state vectors located infinitesimally close to one another will diverge exponentially, even-
tually resulting in vastly differing trajectories. Such unpredictable, yet fully deterministic
dynamics are called chaotic, and the overall phenomenon is referred to as chaos [100].
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3.2 Delay Embeddings

So far, we have outlined that a time-invariant deterministic dynamical system is fully
defined by its initial state x(0) ∈ Rm and by its evolution rule, which is a function of the
form

f : Rm+1 → Rm

x(0), t 7→ x(t).
(3.8)

We implicitly assumed that the system’s evolution rule was available as a set of differential
equations, and also took for granted that all state variables be known and individually
observable, such that the system can be solved for any instant in time—either analytically,
or by numerical integration.

Hardly any of these assumptions hold true when studying real-world dynamical systems.
Much rather, the number of state variables will often be unknown, and even if not, the
overall state will in general not be fully observable. In turn, a predefined evolution rule
will neither be available, of course. Notwithstanding, any dynamical system will likely
express some kind of observable dynamic properties—be it spacial location, temperature,
emission of sound, radiation of light, electrical voltage fluctuation, or some other parameter
repeatedly observable as time goes by.

Using merely one such measurable signal s(t), it is theoretically possible to reconstruct
the m-dimensional attractor of an unknown dynamical system—provided that such an
attractor exists. In all brevity, this can be done in the following way: assuming that
the dynamics of an unknown system are governed by an m-dimensional attractor, one
obtains a so-called delay embedding of this attractor by constructing a delay vector

s(t) =
(
s(t) s(t− τ) s(t− 2τ) · · · s(t− 2mτ)

)T ∈ R2m+1 (3.9)

of (at least) 2m + 1 dimensions from the measured signal s(t). For reasons yet to be
discussed, it then holds that each point visited by s(t) ∈ R2m+1 corresponds to exactly one
point on the m-dimensional attractor, and vice versa. Due to this one-to-one relationship,
any state change of the system is reflected by a change in s(t). For example, a sequence
of recurring values in s(t) necessarily implies a recurring progression of system states.
Thus, an appropriate delay embedding provides a hook into the internal structure of a
dynamical system.
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Apparently, the delay embedding technique was first described in a publication by Packard
and colleagues [101]. However, the authors also reference their private communication
with David Ruelle on this matter. In any case, the foundations for the approach
were provided by the Whitney Embedding Theorem [102], which states that “a generic
smooth map F from a d-dimensional smooth compact manifold M to R2d+1 is actually
a diffeomorphism on M”—as has been summarised by Tim Sauer and colleagues [103].
In terms of mathematical topology, a diffeomorphism is a map F : A → B, such that
distinct points in A cannot coincide in B. In dynamical systems theory, such a map F is
called an embedding.

The other important theorem for the delay embedding technique is known as the Takens
Embedding Theorem [104]. In simple words, the theorem assures that instead of observing
2m+ 1 different signals in parallel, it is sufficient to use 2m+ 1 delayed versions of the
exact same univariate signal to obtain an embedding of an m-dimensional attractor. This
directly leads to the delay vectors described by Equation (3.9).

To give an example, the topology of the Lorenz attractor discussed in Section 3.1.3 can
be reconstructed in three-dimensional Euclidean space by using delayed versions of the
y-component of its system state. The result of doing so is visualised in Figure 3.5.
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Figure 3.5 (a) The phase portrait of the Lorenz system in terms of Equation System (3.7),
simulated for σ = 10, β = 8/3, ρ = 28. (b) Reconstruction of the phase portrait, using three
delayed versions of the y-component, and the time lag τ = 0.1.

30



3.3 Entropy as a Complexity Measure

3.3 Entropy as a Complexity Measure

As opposed to its meaning in everyday language, the term “chaos” in the sense of
dynamical systems theory does not imply randomness. Quite the contrary, chaos strictly
excludes any dependence on chance, and chaotic systems rigorously follow deterministic
rules. For a long time, however, observations of what eventually turned out to be
complex determinism had been misinterpreted as being of stochastic origin [92]. This
is hardly surprising, of course: when studying a chaotic system, one and the same
experiment, repeated under allegedly identical conditions, may yield fundamentally
differing results for each repetition. To be able to distinguish deterministic chaos from
randomness, a particular set of analysis tools has therefore been developed over time. By
design, such measures are invariant to the chaotic bifurcations induced by varying initial
conditions, but rather assess the extent to which a given system behaves in a chaotic
manner. The most common among those so-called complexity measures are: Lyapunov
exponents, entropies, and fractal dimensions [90, 92]. These three types of parameter
are of great importance to dynamical systems theory, and have remarkable properties
and interrelations [105]. For the purpose of this writing, we will focus on entropy-based
complexity measures exclusively.

3.3.1 Entropy in Dynamical Systems

Entropy can be understood as a statistic quantifying the degree of uniformity of a
discrete probability distribution p. In particular, H(p) takes on its maximum for an
actual uniform distribution, whereas H(p) = 0 if all but one of the probabilities in p are
zero. See Section 2.4 for a more thorough description.

In dynamical systems theory, entropy is used to quantify the irregularity of dynamical
processes, including (but not limited to) deterministic dynamics. In short, the approach
is as follows: given a dynamical system with state vector x(t) ∈M , its phase space M is
partitioned into m disjoint subspaces, such that

M = P1 ∪ P2 ∪ · · · ∪ Pm. (3.10)

For this partition, an m-dimensional probability vector p can then be defined, wherein
for each i ∈ {1, 2, . . . ,m}, its value pi = Pr(x(t) ∈ Pi) represents the probability that
the system takes on a state x(t) residing in the subspace Pi. The entropy H(p) then
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quantifies the time-averaged degree of uniformity at which the dynamical system revisits
the different partitions Pi of its phase space M .

Needless to say, the nature of the partition P1 ∪ P2 ∪ · · · ∪ Pm plays a crucial role. For
m→∞, that is, when using an infinitely fine quantisation of the phase space, the above
approach eventually leads to the Kolmogorov-Sinai-Entropy, which is of special interest
for abstract dynamical systems theory [90]. For finite m, on the other hand, the set
of subspaces {P1, P2, . . . , Pm} itself can be understood as the discrete phase space of
another dynamical system, which then gives rise to the notion of symbolic dynamics.

3.3.2 Ordinal Complexity

Permutation entropy, as well as ordinal time series analysis in general, is closely related
to symbolic dynamics, that is, it is based on quantising the phase space of a dynamical
system. Recall that under practical conditions, we usually have to rely on delay-embedded
sequences of measurement values as a proxy into the unknown dynamics of the system
under study (see Section 3.2). In this empirical setting, careful data preprocessing and
parameter tweaking are inevitable if one expects to receive meaningful results [106].

Against the same backdrop, Bandt and Pompe argued that finding an adequate partition
for a reconstructed phase space poses intricate problems, and may be bound to fail
under real-world conditions [1]. In the same article, the authors therefore demanded
that “the symbol sequence must come naturally from the [time series], without further
model assumptions”, and proposed a novel partitioning technique that would meet this
requirement. In essence, they suggested to map each delay vector of the embedded time
series onto a discrete symbol representing the order relations among the elements of that
vector. Those symbols are called ordinal patterns, and they will be discussed in a lot
more detail in the following chapters.

For the time being, suffice it to say that a total of m! different ordinal patterns exist for
m-dimensional embedding vectors, because a tuple of m elements can be rearranged in no
more than m! different ways. The so-called ordinal transformation [107] thus partitions
an m-dimensional phase-space reconstruction into m! disjoint subspaces. It does not
require any model assumptions apart from the dimension m and the time lag τ used for
embedding the time series.
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As outlined in Section 3.3.1, the resulting subspaces can be understood as the discrete
states of a symbolic dynamics, which can then be further analysed. For this purpose,
Bandt and Pompe suggested various entropy-based measures that can be obtained from a
finite sequence of ordinal patterns. The simplest (and arguably, the most popular) among
those propositions is to compute the entropy of a marginal probability distribution of
ordinal patterns, estimated from the pattern sequence by counting occurrences. The
authors coined the term permutation entropy for this complexity measure.

Following the initial publication of 2002, numerous extensions of permutation entropy
have been devised, for instance, the methods proposed in [47, 108–110]. Other information-
theoretic measures have also been applied to ordinal pattern distributions, among them:
conditional entropy [111], mutual information [112], and transfer entropy [88, 113].
Moreover, recurrence plots [114] and various correlation functions [115] were transferred
to the ordinal pattern space [107]. On a more abstract level, ordinal patterns have been
tightly integrated into the general theory of symbolic dynamics. A thorough introduction
to such matters is provided in the book Permutation Complexity in Dynamical Systems
by José Amigó [116].
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This chapter is based on previously published work by the same author [77, 78].

The previous chapter summarised those aspects and intricacies of dynamical systems
theory that eventually led to the invention of permutation entropy, and its fundamental
building blocks: the ordinal patterns. We shall proceed by describing precisely what
those ordinal patterns are, how sequences of ordinal patterns relate to one another, and
how they can be utilised for the study of real-word data—after all, this is what ordinal
patterns have been invented for.

Being comparatively new, both the terminology and mathematical formulation used
in ordinal time series analysis may vary between authors. The following section thus
provides an overview of the key concepts underlying this framework, and introduces the
definitions, notations and nomenclature used throughout the present work.

4.1 Definition and Notation

Let (x1, x2, . . . , xm) ∈ Sm be an m-tuple of pairwise distinct elements from a totally
ordered set S, such that xi = xj if and only if i = j. The ordinal pattern of this tuple
is an abstract entity that describes how the tuple’s elements relate to one another in
terms of position and rank order. By way of illustration, the ordinal pattern of the tuple
(17, 7, 8) ∈ N3 is fully specified by the verbal description:

“There are three elements, the first is the greatest, the second is the least.” (4.1)

This same ordinal pattern also applies to any other tuple (x1, x2, x3) ∈ S3 for which the
order relations x2 < x3 < x1 hold. By contrast, each of the six possible permutations
of the elements {x1, x2, x3} yields a different ordinal pattern. Consequently, any given
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4 Ordinal Patterns

m-tuple of pairwise distinct elements (x1, x2, . . . , xm) ∈ Sm has exactly one out of m!
different ordinal patterns. This interrelation can be described by a surjective map

op: Sm → Ωm = {π1, π2, . . . , πm!}, (4.2)

wherein the tuple length m ∈ {2, 3, . . .} is called the embedding dimension or order of
the set of ordinal patterns Ωm.

Literature knows various means of notating the order relations reflected by a particular
ordinal pattern πi ∈ Ωm. Compare, for instance, the conventions used in [1, 107, 115,
116]. As their common denominator, those representations all stem from the duality
between ordinal patterns and permutations, and their majority are variations of merely
two complementary forms of notation. Both will be discussed in the following.

4.1.1 The Permutation Representation

Given an m-tuple (x1, x2, . . . , xm) ∈ Sm of pairwise distinct elements from a totally
ordered set S, its ordinal pattern op(x1, x2, . . . , xm) ∈ Ωm can be represented by a unique
permutation function σ : N→ N on the tuple indices, such that

op
(
xσ(1), xσ(2), . . . , xσ(m)

)
= πref ∈ Ωm,

where πref is some predefined reference pattern. Although this reference pattern could in
principle be selected arbitrarily, the ordinal pattern described by “there are m elements,
all sorted in ascending order” constitutes a natural choice because it reflects the total
order of the set S. Using this particular πref, the ordinal pattern op(x1, x2, . . . , xm) can
be expressed by the permutation function

σ : N→ N, such that xσ(1) < xσ(2) < · · · < xσ(m). (4.3)

For instance, the ordinal pattern of the tuple (21, 55, 89, 34, 13) ∈ N5 is representable by
the permutation

σ =
1 2 3 4 5

5 1 4 2 3

 = (5, 1, 4, 2, 3).

For sake of simplicity, permutations describing ordinal patterns are sometimes written as
plain numerals, yielding the compact notation 51423 for the above example. Although
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4.1 Definition and Notation

this shorthand notation becomes ambiguous for orders m > 10, it is still useful because
such high-dimensional patterns are rarely written out in practice.

Apart from the minor detail that Bandt and Pompe used zero-based indexing (and would
have written 40312 instead of 51423), the permutation representation is the notation
proposed in their original article [1]. Conceptually similar conventions can be found in
publications by other authors, for instance in [107, 116]. Nevertheless, a different formal
representation of ordinal patterns shall be used throughout the present work.

4.1.2 The Rank Representation

As described in the previous section, the ordinal pattern of anm-tuple of distinct elements
(x1, x2, . . . , xm) ∈ Sm can be represented by means of the specific permutation function σ
for which it holds that xσ(1) < xσ(2) < · · · < xσ(m). Due to the fact that permutation
functions are self-bijective (and thus invertible), the same ordinal pattern can also be
denoted by the inverse permutation function

σ−1 : N→ N, such that σ−1(i) < σ−1(j) ⇐⇒ xi < xj. (4.4)

Thus, the ordinal pattern of the aforementioned tuple (21, 55, 89, 34, 13) ∈ N5 can
alternatively be referred to by either

σ =
1 2 3 4 5

5 1 4 2 3

 , or σ−1 =
1 2 3 4 5

2 4 5 3 1

 .
From the condition given in Equation (4.4), it follows immediately that

ρi = σ−1(i) = 1 +
m∑
j=1

[xi > xj] ∀i ∈ {1, 2, . . . ,m} (4.5)

denotes the ordinal rank of the element xi within the tuple (x1, x2, . . . , xm). Thus, any
given pattern op(x1, x2, . . . , xm) can be represented by anm-tuple of ranks (ρ1, ρ2, . . . , ρm),
whereby the greatest element in (x1, x2, . . . , xm) is assigned the rank m, the second-
greatest is given the rank m − 1, and so forth for all m elements. The resulting map
(x1, x2, . . . , xm) 7→ (ρ1, ρ2, . . . , ρm) is reminiscent of the rankings used in statistics such
as Spearman’s rank correlation coefficient [2].
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In analogy with the permutation representation, a simplified notation suffices to denote
ordinal patterns of order m < 10 by their ranks, yielding (2, 4, 5, 3, 1) = 24531 for
example. To avoid ambiguity, numerals denoting ordinal patterns in rank representation
will be set in boldface for the scope of this work. At this point, an example may proof
insightful.

Example 4. For any tuple (x1, x2, x3, x4) ∈ S4 of pairwise distinct elements from a
totally ordered set S, its ordinal pattern of order m = 4 is one out of the m! = 24
patterns in Ω4 = {1234,1243,1324,1342,1423,1432, . . . ,4321}. Figure 4.1 displays
the shapes of those ordinal patterns, and their representations in terms of permutations
and ranks.

1234
1234

1243
1243

1324
1324

1423
1342

1342
1423

1432
1432

2134
2134

2143
2143

3124
2314

4123
2341

3142
2413

4123
2431

2314
3124

2413
3142

3214
3214

4213
3241

3412
3412

4312
3421

2341
4123

2431
4132

3241
4213

4231
4231

3421
4312

4321
4321

Figure 4.1 The principle shapes of the m! = 24 ordinal patterns of order m = 4, labelled by
their permutation representation (regular type) and rank representation (boldface).

Bandt himself regards the rank representation as the “most intuitive way to denote these
patterns” [115], and apparently prefers it over the permutation representation in his
more recent publications, for example in [16, 115, 117]. With regard to being intuitive,
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notice that any given tuple of ranks (ρ1, ρ2, . . . , ρm) can be interpreted as a sequence of
amplitudes, and that those amplitudes immediately reveal the structure of the underlying
ordinal pattern (see Figure 4.1).

Apart from this subjective increase in clarity as compared to the permutation representa-
tion, the rank representation also enables a very convenient definition of ordinal patterns.
This definition will be derived and discussed in the following.

4.1.3 A Practical Definition of Ordinal Patterns

So far, we required that all m elements of (x1, x2, . . . , xm) ∈ Sm be pairwise distinct,
such that no ties (that is, xi = xj for i 6= j) can occur. Under this prerequisite, both the
permutation representation in terms of Equation (4.3), as well as the rank representation
given by Equation (4.4) are unambiguous, and the ordinal pattern op(x1, x2, . . . , xm) is
hence well-defined.

For practical applications, it is desirable to overcome the limitation on pairwise distinct
elements, such that arbitrary input data can be analysed. To that end, a common approach
is to stipulate ρi < ρj for any pair of values xi = xj if their order of appearance is i < j,
and vice versa. Using this convention, any arbitrary m-tuple (x1, x2, . . . , xm) ∈ Sm from
a totally ordered set S has a well-defined ordinal pattern. As a somewhat extreme
example, it then holds that op(42, 42, 42, 42, 42) = 12345, for instance.

Depending on the amplitude distribution of the input data, it may in some cases be
required to use a more sophisticated technique of resolving tied values [118]. However,
tied ranks are very rare in electrophysiological recordings (and in many other kinds of
data sampled from value-continuous sources at high amplitude resolution). Therefore,
the aforementioned approach is sufficient for the scope of the present work. Adopting
this simple convention, we arrive at the following definition of the ordinal pattern.

Definition 1. For any given m-tuple (x1, x2, . . . , xm) ∈ Sm from a totally ordered set S,
its ordinal pattern πi ∈ Ωm = {π1, π2, . . . , πm!} of order m is the unique m-tuple of ranks
(ρ1, ρ2, . . . , ρm) ∈ {1, 2, . . . ,m}m, such that

∀i, j ∈ {1, 2, . . . ,m} : ρi < ρj ⇐⇒
(
xi < xj ∨ (xi = xj ∧ i < j)

)
. (4.6)
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4 Ordinal Patterns

Notice that by the above definition, any given πi ∈ Ωm does not only represent an ordinal
pattern, but rather is the ordinal pattern itself. To motivate this extension, consider the
following. Let πi = (ρ1, ρ2, . . . , ρm) = op(x1, x2, . . . , xm) be the ordinal pattern of some
m-tuple (x1, x2, . . . , xm) ∈ Sm. Then, under Definition 1, the rather curious expression

op(πi) = op(ρ1, ρ2, . . . , ρm)

is actually well-defined: it is the ordinal pattern of the ordinal pattern πi, which is
nothing but the ordinal pattern of an m-tuple of pairwise distinct integers. It is easily
confirmed that op(πi) = πi for all πi ∈ Ωm, which implies that the function op = op ◦ op
is an idempotence—the ordinal pattern of another ordinal pattern is that other ordinal
pattern. Thus, we can understand the ordinal transformation op: Sm → Nm as a form
of non-linear vector quantisation.

4.2 Sequences of Ordinal Patterns

The fundamental idea proposed by Bandt and Pompe [1] is to transform a time series {xt}
with time indices t ∈ {1, 2, . . .} into a sequence of discrete ordinal patterns {πt} prior
to any further processing. As described in Section 3.3.2, this approach builds upon the
delay embeddings used in dynamical systems theory: after having selected a pattern
order m ∈ {2, 3, . . .}, and a time lag τ ∈ {1, 2, . . .}, one obtains the sequence

{πt} with πt = op(xt, xt+τ , . . . , xt+(m−1)τ ), (4.7)

that is, the ordinal patterns of the (time-reversed) delay vectors of the time series {xt}.
This transformation combines phase-space reconstruction by means of delay embedding
with a non-linear form of vector quantisation. The latter partitions an m-dimensional
space into m! disjoint subspaces. Some authors call the pattern order m the embedding
dimension of the ordinal pattern, thereby explicitly referencing the system-theoretic
origins of the ordinal approach.

4.2.1 Partitioning the Euclidean Space

Let us consider in more detail how the ordinal transform partitions the Euclidean
space Rm. The most simple case is for the order m = 2, where there are merely 2! = 2
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different ordinal patterns. According to Definition 1, it then holds that

op(xt, xt+τ ) =

12, for xt 6 xt+τ ,

21, for xt > xt+τ .

Thus, for patterns of order m = 2, the diagonal line xt = xt+τ partitions the Euclidean
plane R2 into two disjoint subspaces.

For the order m = 3, a total of 3! = 6 ordinal patterns exist, and those relate to disjoint
subspaces of the R3. More specifically, it holds that

op(xt, xt+τ , xt+2τ ) =



123, for xt 6 xt+τ and xt 6 xt+2τ and xt+τ 6 xt+2τ ,

132, for xt 6 xt+τ and xt 6 xt+2τ and xt+τ > xt+2τ ,

213, for xt > xt+τ and xt 6 xt+2τ and xt+τ 6 xt+2τ ,

231, for xt 6 xt+τ and xt > xt+2τ and xt+τ > xt+2τ ,

312, for xt > xt+τ and xt > xt+2τ and xt+τ 6 xt+2τ ,

321, for xt > xt+τ and xt > xt+2τ and xt+τ > xt+2τ .

The three-dimensional space is hence partitioned by three planes, which are given by
the equations xt = xt+τ , xt = xt+2τ , and xt+τ = xt+2τ . Those planes all intersect in a
common line, which is the space diagonal xt = xt+τ = xt+2τ . Consequently, the R3 is
partitioned into six disjoint wedges. Each has an opening angle of π/3, and all share
the aforementioned space diagonal as their edge. The resulting partition is visualised in
Figure 4.2.

312

213123

132

213 321

xt = xt+τ

xt = xt+2τ xt+τ = xt+2τ

Figure 4.2 For patterns of orderm = 3, three planes partition the R3 into six disjoint subspaces.
Those planes intersect in the common line xt = xt+τ = xt+2τ . The projection angle has been
chosen such that this diagonal is perpendicular to the drawing canvas.
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The general case is in analogy with the above: for patterns op(xt, xt+τ , . . . , xt+(m−1)τ ) of
order m, there are

(
m
2

)
distinct equalities of the form xt+iτ = xt+jτ , with i 6= j. Each of

these equalities parametrises a hyperplane in m− 1 dimensions, and those hyperplanes
partitions the Rm into m! disjoint subspaces, each relating to a particular ordinal pattern.

4.2.2 Beyond Delay Embeddings and Phase Spaces

For the scope of the present writing, we take the liberty to slightly deviate from the system-
theoretic origins of ordinal time series analysis. Notice that according to Definition 1, not
only delay vectors, but any given m-tuple (x1, x2, . . . , xm) ∈ Sm from a totally ordered
set S has a distinct ordinal pattern. Of course, those m-tuples can be delay vectors in
the Rm, but they do not necessarily have to be. In principle, an ordinal pattern can be
attributed to any tuple of sortable elements. This somewhat broader perspective will
prove advantageous in the following, and especially in Chapter 6.

Against the same backdrop, notice that positive multiples of τ are used as time shifts
in Equation (4.7), such that xt is the earliest element with an influence on the ordinal
pattern πt. Although in obvious contrast with the more commonplace delay vectors
of Equation (3.9), this convention makes a lot of practical sense: the original time
series {xt}, its corresponding sequence of ordinal patterns {πt}, as well as the m elements
xt, xt+τ , . . . , xt+(m−1)τ underlying a particular ordinal pattern πt all start at the same
time index t. Moreover, all time indices consistently increase from left to right. These
interrelations are graphically summarised in Figure 4.3.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

4

2

5

1

3
π8 = 42513

t

x
t

Figure 4.3 Extracting an ordinal pattern of order m = 5 from some random time series, using
the time lag τ = 2. The time index of the element x8 (the earliest element with an influence on
the ordinal pattern) determines the time index of the ordinal pattern, that is, π8.
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A peculiarity to keep in mind is that under these conventions, the pattern πt is not causal
with regard to its time index t, but depends on the future of the time series. When
analysing data, this has to be compensated for by introducing a delay somewhere in the
overall processing chain. Nevertheless, this author believes that doing so is less error-prone
than maintaining consistency among multiple offsets and directions of indexing.

4.2.3 Ordinal Processes

As described in Section 2.3.5, any time series {xt} can be understood as a particular
realisation of some stochastic process {Xt}. In doing so, each value xt is interpreted as
the result of a random experiment, and this experiment is in turn modelled by a random
variable Xt. Now, if any time series {xt} can be seen as a realisation of some stochastic
process {Xt}, it makes sense to postulate that the sequence of ordinal patterns {πt},
where

πt = op(xt, xt+τ , . . . , xt+(m−1)τ ),

originates from an underlying stochastic process as well. In particular, this process {Πt}
is time-discrete, and its state space is the set of ordinal patterns Ωm. Keller, Sinn and
Emonds coined the term ordinal process for this concept [107]. For the scope of this
writing, the collection of random variables {Πt} will be called an ordinal process of
order m with time lag τ , thereby explicitly referencing the parameters that govern the
map Xt 7→ Πt.

The most decisive property of an ordinal process of order m > 2 is that its random
variables can never be independent. Observe that for any time t, the m-dimensional
delay vectors

(xt, xt+τ , . . . , xt+(m−1)τ ) and (xt+τ , xt+2τ , . . . , xt+mτ )

overlap in m− 1 out of m values. Consequently, with Πt = πt already fixed, an ordinal
process cannot draw πt+τ from its full state space Ωm, but merely from a subset of
cardinality m! /(m − 1)! = m. Keller and colleagues regard this property as the very
definition [107] of ordinal processes, by contrast with any other process drawing from the
state space Ωm.

As already mentioned, ordinal processes of order m = 2 constitute an exception in this
regard, because (xt, xt+τ ) and (xt+τ , xt+2τ ) overlap in merely one value, such that their
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ordinal patterns have disjoint order relations. Thus, each of the patterns Ω2 = {12,21}
can be succeeded by either 12 or 21, and consistently, it holds that 2! = 2.

4.2.4 Ordinal Markov Chains

For the time lag τ = 1, any ordinal process {Πt} is a Markov chain (see Section 2.3.7).
Because of the inter-pattern dependencies described in the previous section, its corres-
ponding transition matrix T is sparse, containing no more than m positive entries per
row. Assuming m = 3, for instance, the matrix cannot be less sparse than

T =



123 132 213 231 312 321

123 p1,1 p1,2 0 p1,4 0 0
132 0 0 p2,3 0 p2,5 p2,6

213 p3,1 p3,2 0 p3,4 0 0
231 0 0 p4,3 0 p4,5 p4,6

312 p5,1 p5,2 0 p5,4 0 0
321 0 0 p6,3 0 p6,5 p6,6


.

In the general case of τ > 1, an ordinal process behaves like τ such Markov chains
interleaved. By way of further illustration, a state diagram for the order m = 3 (and
necessarily, the time lag τ = 1) is depicted in Figure 4.4.

4.3 Permutation Entropy

The current chapter so far described what ordinal patterns are, how they can be notated,
and how they are related with dynamical systems, time series and stochastic processes.
With these underpinnings in place, let us now shift the focus onto the actual purpose of
transforming time series into ordinal patterns.

Recall that the seminal publication for the subject is called Permutation Entropy: A
Natural Complexity Measure for Time Series [1]. In a nutshell, Bandt and Pompe therein
proposed to map a given time series onto a sequence of discrete symbols, to then estimate
the probability of each of those symbols by counting occurrences, and finally, to calculate
the entropy of the resulting probability mass function. This value is called permutation
entropy, and serves as a proxy for the complexity of the time series.
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123 321

132 213

312 231

Figure 4.4 State diagram for an ordinal process of order m = 3 and time lag τ = 1, which
can be interpreted as a first-order Markov chain. Its transition probabilities depend on the
underlying process, and some can be zero. However, no other transitions than the ones depicted
are possible, because consecutive patterns overlap in two out of three values.

The approach just summarised is exactly the well-known method of estimating entropy by
coarse-graining the reconstructed phase-space of a dynamical system (see Section 3.3.1).
What sets the measure apart from other entropy-based analysis techniques is only the
specific partitioning used. In particular, Bandt and Pompe proposed to turn a finite
time series {x1, x2, . . . , xN} into a sequence of symbols {π1, π2, . . . , πN−m+1}, where each
πt = op(xt, xt+1, . . . , xt+m−1) is (now called) an ordinal pattern of order m in the sense
of Definition 1. As has been discussed in Section 4.2.1, this transformation embeds the
time series in an m-dimensional Euclidean space, and subsequently partitions that space
into m! disjoint subspaces.

While originally defined for the time lag τ = 1 only, permutation entropy was soon
extended to allow for arbitrary non-negative integer lags τ > 1. See [3], for instance,
which appeared about two years after the initial publication. Adopting this extension as
seems to be common practice, permutation entropy of order m and time lag τ can be
obtained from a given finite time series {x1, x2, . . . , xN} of N elements by computing the
entropy (see Section 2.4.1)

H(p̃) = −
m!∑
i=1

p̃i log p̃i (4.8)
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of the probability vector p̃ =
(
p̃1 p̃2 · · · p̃m!

)T
. The latter is estimated from the time

series by counting ordinal pattern occurrences, that is, by obtaining

p̃i = 1
N − (m− 1)τ

N−(m−1)τ∑
t=1

[
op(xt, xt+τ , . . . , xt+(m−1)τ ) = πi

]
(4.9)

for all i ∈ {1, 2, . . . ,m!}, and thus, for all ordinal patterns πi ∈ Ωm = {π1, π2, . . . , πm!}.

4.3.1 Empirical Permutation Entropy

While permutation entropy was initially proposed as a practical technique for time series
analysis, it has subsequently been integrated more thoroughly into the theory of symbolic
dynamics. Under this change of perspective, any sequence of ordinal patterns can be
understood as some realisation of an abstract ordinal process (see Section 4.2.3). In turn,
permutation entropy then has to be attributed to the ordinal process as a whole, instead
of merely a single time series arising from it [107, 116].

As is the case for any other discrete random process, the statistical behaviour of an
ordinal process {Πt} is generally governed by a joint probability mass function of the
form

fΠ1,Π2,...,ΠN : (Ωm)N → [0, 1],
(π1, π2, . . . , πN) 7→ Pr(Π1 = π1,Π2 = π2, . . . ,ΠN = πN)

for N →∞.

Moreover, if the ordinal process is stationary, then a marginal probability mass function

fΠt : Ωm → [0, 1],
πt 7→ Pr(Πt = πt)

does also exists (see Section 2.3.5), and in turn, the probability vector

p =
(
p1 p2 · · · pm!

)T
, where pi = fΠt(πi) = Pr(Πt = πi),

is well-defined. The permutation entropy of the ordinal process is then the entropy H(p)
of this marginal probability distribution. By contrast, when computing the permutation
entropy of a time series {x1, x2, . . . , xN}, one effectively obtains an estimate p̃ of the
marginal probability distribution p of the underlying ordinal process, and the resulting
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entropy H(p̃) is therefore more adequately called empirical permutation entropy [107]
within this framework.

Throughout the present writing, we will mostly be concerned with empirical permutation
entropy, that is, with the entropy of a sequence of ordinal patterns as derived from time
series data. In the following, the empirical nature of the approach will therefore only be
mentioned if ambiguity may otherwise arise.

4.3.2 Properties of Permutation Entropy

Permutation entropy of order m and any time lag τ > 1 is the entropy H(p) of a discrete
probability distribution

p =
(
p1 p2 · · · pm!

)T

of m! ordinal patterns. In accordance with the general properties of entropy described in
Section 2.4, it thus holds for the value range of permutation entropy that

min
(
H(p)

)
= 0, (4.10a)

max
(
H(p)

)
= logm!. (4.10b)

In particular, permutation entropy is zero if and only if the time series expresses merely one
ordinal pattern repeatedly, as is the case for any monotonously increasing or decreasing
sequence of values. Conversely, it takes on its maximum if the m ordinal patterns are
uniformly distributed, such that pi = 1/m! for all i ∈ {1, 2, . . . ,m!}. This holds true
for sequences of white noise—where all values of the time series are uncorrelated with
one another, and will hence express any possible sequence of order relations at equal
probability [116]. Consequently, normalisation in terms of

h(p) = 1
logm! H(p), such that 0 6 h(p) 6 1 (4.11)

can be applied, and makes sense when qualitatively comparing entropies of different
orders. Moreover, permutation entropy is invariant with regard to the absolute scaling,
as well as the amplitude offset of the time series {xt}, because it holds for the underlying
ordinal patterns that

op(x1, x2, . . . , xm) = op(cx1 + d, cx2 + d, . . . , cxm + d) for any (c, d) ∈ R2.
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4.4 Symbolic Transfer Entropy

As already mentioned in Section 3.3.2, not only Shannon entropy [85], but also other
information-theoretic measures have been applied to distributions of ordinal patterns.
For the scope of this writing, we limit the discussion to one that seems to be of particular
relevance for the study of electroencephalographic recordings: symbolic transfer entropy,
proposed by Matthäus Staniek and Klaus Lehnertz [113] in 2008, is the transfer entropy
between two ordinal processes. It hence relates to transfer entropy in the same way that
permutation entropy relates to Shannon entropy.

4.4.1 Neuroscientific Purpose

Because transfer entropy is designed to quantify directional information flow between
pairs of random processes (see Section 2.4.4), it constitutes a powerful tool for detecting
causal interactions within/between physiological neural networks [119]. Applying transfer
entropy to measured time series is computationally challenging, though [89, 120, 121].
Quantisation by means of the ordinal transformation reduces the computational load
considerably (see the beginning of Chapter 5), and may possibly improve the robustness
against certain kinds of signal distortion (although one could argue that the transformation
itself causes strong non-linear distortion).

Symbolic transfer entropy has been used for neuroscientific purposes from day one,
that is, starting with the original publication, wherein Staniek and Lehnertz applied
their measure to electroencephalographic recordings during epileptic seizures [113]. The
recurring theme in the many investigations that followed is the dynamic formation and
elimination of functional connectivity between brain regions [20, 53, 65, 122–140]. Among
those publications, this doctoral candidate co-authored, and/or contributed to the studies
described in [20, 53, 65, 127].

4.4.2 Mathematical Formalism

Symbolic transfer entropy was originally [113] formulated for two ordinal processes
{X̂t}t∈Z and {Ŷt}t∈Z, a common time lag τ , and a shared state space Ωm, according to

TX̂→Ŷ =
∑

p(ŷt+δ, ŷt, x̂t) log p(ŷt+δ | ŷt, x̂t)
p(ŷt+δ | ŷt)

. (4.12)
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In comparison to transfer entropy as given by Equation (2.36), Staniek and Lehnertz
limited their measure to the causality between the state Ŷt+δ of the target process, and
merely one pair of previous states, X̂t and Ŷt, of the source and target processes—each
observed not one, but δ time steps earlier. In a subsequent publication [126], Henning
Dickten and Klaus Lehnertz generalised the original formulation of symbolic transfer
entropy. Now more explicitly accounting for possible delays in the interactions, they
proposed the modification

TX̂→Ŷ =
∑

p(ŷt, ŷt−δy , x̂t−δx) log p(ŷt | ŷt−δy , x̂t−δx)
p(ŷt | ŷt−δy)

. (4.13)

Michael Wibral and colleagues critically reflected on causality in measures of delayed
information transfer [141]. Their considerations render the separate delay parameters δx
and δy particularly plausible, if not essential.

As already hinted at, a possibility of further generalisation that immediately follows from
the original definition of transfer entropy [88] is

TX̂→Ŷ =
∑

p(ŷt, ŷ(r)
t−δy , x̂

(s)
t−δx) log

p(ŷt | ŷ(r)
t−δy , x̂

(s)
t−δx)

p(ŷt | ŷ(r)
t−δy)

, (4.14)

that is, a version considering vectors of preceding states Ŷ(r)
t−δy and X̂(s)

t−δx instead of
single instances thereof. Staniek mentioned this possibility in his dissertation [142], but
excluded it from the scope of the thesis. To the best of this author’s knowledge, the
extension has so far not been investigated further, so its significance for data analysis is
unclear. In any case, its efficient estimation from time series constitutes an interesting
computational problem. The results to be presented in the following Chapter 5 may be a
first step into that direction.
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This chapter is based on previously published work by the same author [78].

Besides its conceptual simplicity and its robustness against certain forms of measurement
noise, computational efficiency is likely one of the most-cited advantages of ordinal time
series analysis [1, 3, 47, 108–111, 113, 114, 118, 126, 143–147]. However, this well-
acclaimed run-time behaviour is not a specific property of ordinal time series analysis,
but constitutes a feature of discrete dynamics in general. By matter of principle, coarse-
graining the phase space of a dynamical system can radically reduce the computational
cost of its analysis, because quantisation turns continuous probability densities into
discrete probability masses. A very concise example (intentionally unrelated to ordinal
patterns) can be found in [89], wherein Andreas Kaiser and Thomas Schreiber address
the intricacies of estimating transfer entropy from continuously-valued time series, as
compared to the far simpler discrete case.

Before the computational benefits of symbolisation can take any effect in ordinal analysis,
the (usually real-valued) input data need to be converted into sequences of discrete
ordinal patterns. Somewhat paradoxically, extracting ordinal patterns from time series is
computationally a lot heavier than literature commonly suggests. Determining a single
ordinal pattern of order m requires a total of (m2−m)/2 pairwise comparisons, resulting
in a run-time complexity of O(m2). In other words, “the computation time increases
rapidly with m”—as has been pointed out by Matthäus Staniek and Klaus Lehnertz [148],
the creators of symbolic transfer entropy [113]. In a similar context, Amigó stated that
“there is no substitute for substantial computational effort when [the order m] becomes
sufficiently large”, and further conjectured that working with ordinal patterns beyond
approximately m = 12 may likely be “computationally unfeasible” [116].

Apart from its run-time complexity, another closely related issue is the spatial complexity
of ordinal analysis. Given that a total of m! different ordinal patterns of order m exist
(see Section 4.1), their memory footprint scales at a super-exponential rate of O(m!).
Therefore, one central question is how ordinal patterns should best be represented in the
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5 Encoding Ordinal Patterns

digital domain, and another crucial aspect is the amount of extra memory required for
obtaining that representation.

Against this backdrop, and motivated by the semantic gap between “high efficiency”
and downright “infeasibility”, the following chapter will elaborate on the computational
pitfalls and algorithmic possibilities of encoding ordinal patterns.

5.1 Requirements and Pitfalls

We defined ordinal patterns as m-tuples of ranks (ρ1, ρ2, . . . , ρm) ∈ Ωm ⊂ Nm, and
thereby also established an easily interpretable means of notation (see Section 4.1.3).
Human interpretability is, however, not a primary concern when storing data in computer
memory. Different requirements then prevail, and render the rank representation rather
cumbersome. Before we present an encoding more suitable for the digital domain, let us
look at these requirements.

Assume that we want to store an ordinal pattern (ρ1, ρ2, . . . , ρm) of order m in the main
memory of a computer. The naïve solution (for any m < 256) would then be to use an
array of m consecutive bytes, each holding a particular rank ρi. However, this approach
is disadvantageous in several respects, the most prominent being the following.

• While there are m! distinct ordinal patterns of order m, a block of m bytes can take
on 256m different states. Due to m!� 256m for small m, the memory footprint of
the above encoding is far from optimal in terms of memory utilisation.

• Testing a pair of ordinal patterns for equality requires up to m byte-wise comparisons,
which is particularly detrimental to the run-time of operations like sorting and
searching.

• Counting distinct pattern occurrences in a sequence of ordinal patterns (say, for
probability estimation) requires an associative array that provides a map from each
possible tuple of ranks to its respective counter variable.

Clearly, all of the shortcomings listed above can be overcome by encoding the set of
ordinal patterns Ωm = {π1, π2, . . . , πm!} using non-negative integers {0, 1, . . . ,m! − 1},
that is, by establishing a bijective map

enc : Ωm → N0,

πi 7→ i− 1.
(5.1)
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Such a map could readily be implemented in software by means of a lookup table.
Unfortunately, encoding a pattern would then require up to m! iterations of that table,
with each iteration involving up to m integer comparisons. Admittedly, replacing the
lookup table by a more sophisticated data structure may mitigate performance issues to
some extent. However, an arguably more elegant closed-form solution exists that directly
maps any m-tuple of values (x1, x2, . . . , xm) ∈ Xm onto its ordinal pattern in numerical
representation. The approach is a straightforward extension of the classical Lehmer code.

5.2 The Lehmer Code

Named in appreciation of Derrick Lehmer, the Lehmer code assigns a unique non-negative
integer i ∈ {0, 1, . . . ,m!−1} to each permutation of a set of m elements. The foundations
of this mathematical problem had already been studied in the 19th century [149], and
Lehmer incorporated them into his work on algorithms for combinatorial computing,
published as Teaching Combinatorial Tricks to a Computer [150].

The basic idea is that a permutation is the result of successively drawing pairwise distinct
elements from a set X without replacement, such that with each draw, the number of
possible choices decreases by one. To take advantage thereof, the m elements of X are
first enumerated according to their natural order, and starting from zero. (If X does not
have a natural order, an arbitrary total order can be assigned instead.) This yields the
sorted sequence

(a0, a1, . . . , am−1) = (ai)m−1
i=0 with ai ∈ X.

The first element ar1 to be selected from X can then be referred to by the index r1. In
the next step, a concordantly sorted, but independently numbered sequence

(b0, b1, . . . , bm−2) = (bi)m−2
i=0 with bi ∈ X \ {ar1}

is created from the m − 1 remaining elements of X, and the second element br2 to be
drawn is indexed by r2. One continues in the same manner for the remaining m − 2
elements. At its termination, the procedure yields an m-tuple of indices

(r1, r2, . . . , rm) ∈ Rm with Rm = {(ri)mi=1 | 0 6 ri 6 m− i}. (5.2)
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Obviously, there are |Rm| = m! different tuples (r1, r2, . . . , rm) of length m, and those
tuples correspond to the m! possible permutations of X in a one-to-one manner. Before
we go on, an example may proof insightful.

Example 5. Given the permutation σ = (5, 2, 8, 13, 1, 3, 21), its representation in terms
of Equation (5.2) is obtained by the seven iterations outlined in Table 5.1, which yields
the tuple (3, 1, 2, 2, 0, 0, 0) ∈ R7. Trivially, the last iteration results in rm = 0 for any
number of elements m, and for any permutation σ. It can therefore be omitted in practice.

Table 5.1 Mapping the permutation σ = (5, 2, 8, 13, 1, 3, 21) onto (3, 1, 2, 2, 0, 0, 0) ∈ R7.

Iteration Selection Ranks
i ri 0 1 2 3 4 5 6

1 3 1 2 3 5 8 13 21
2 1 1 2 3 8 13 21
3 2 1 3 8 13 21
4 2 1 3 13 21
5 0 1 3 21
6 0 3 21
7 0 21

Example 5 illustrates an important property of this encoding: each ri represents the
number of elements in X that are smaller than xri and have not yet been drawn. More
formally, it holds for each iteration i that

ri =
∣∣∣{xk ∈ X \ {xr1 , . . . , xri} | xk < xri

}∣∣∣. (5.3)

In terms of contemporary combinatorics [81], the indices ri are called the right inversion
counts to the permutation σ. In the same diction, a pair of elements i and j is an
inversion if i < j and σ(i) > σ(j). More specifically, this constellation is named a left
inversion for j, and a right inversion for i. The right inversion counts to a permutation σ
of m elements are therefore the trivial rm = 0 for the rightmost position, and

ri =
m∑

j=i+1
[σ(i) > σ(j)] for all 1 6 i 6 m− 1. (5.4)

The big advantage of this encoding shows if we interpret (r1, r2, . . . , rm) as the digits
of a factoradic numeral (see Section 2.2.3), which is the final step of the Lehmer code.
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Because of ri 6 m− i for all ri in (r1, r2, . . . , rm), any possible string of digits r1r2 . . . rm

is a valid factoradic numeral in terms of Equation (2.7), and its numeric value is

n =
m∑
i=1

ri (m− i)! =
m−1∑
i=1

ri (m− i)! .

In conjunction with Equation (5.4), the Lehmer code for a permutation σ of m elements
can thus be calculated as

n =
m−1∑
i=1

(
(m− i)!

m∑
j=i+1

[σ(i) > σ(j)]
)
. (5.5)

5.3 Lehmer-Encoding Ordinal Patterns

According to Definition 1, an ordinal pattern (ρ1, ρ2, . . . , ρm) ∈ Ωm is nothing but an
m-tuple of ranks, and thus, a distinct permutation of the natural numbers {1, 2, . . . ,m}.
Consequently, the Lehmer code can be used to map the ordinal patterns in Ωm onto
the non-negative integers {0, 1, . . . ,m! − 1} in a one-to-one manner. This enables a
closed-form realisation

enc : Ωm → N0,

(ρ1, ρ2, . . . , ρm) 7→
m−1∑
i=1

(
(m− i)!

m∑
j=i+1

[ρi > ρj]
) (5.6)

of the enc-function so far only implicitly defined by Equation (5.1).

Now recall from Definition 1 that the ordinal pattern (ρ1, ρ2, . . . , ρm) ∈ Ωm of an m-tuple
(x1, x2, . . . , xm) ∈ Xm is defined such that

ρi < ρj ⇐⇒
(
xi < xj ∨ (xi = xj ∧ i < j)

)
.

Given that i < j universally holds in Equation (5.6), the composition sym = enc ◦ op
can therefore be written as

sym: Xm → N0,

(x1, x2, . . . , xm) 7→
m−1∑
i=1

(
(m− i)!

m∑
j=i+1

[xi > xj]
)
.

(5.7)
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This function directly maps any given m-tuple (x1, x2, . . . , xm) ∈ Xm onto the numerical
representation enc(πi) ∈ {0, 1, . . .m!−1} of its respective ordinal pattern. From a certain
point of view, this is enabled by the idempotence of the op-function (see Section 4.1),
which implies that (x1, x2, . . . , xm) and (ρ1, ρ2, . . . , ρm) have the same ordinal pattern,
and therefore, identical inversion counts.

A property worth pointing out is that, figuratively speaking, the Lehmer code preserves
the lexicographic sorting order of the permutations it encodes [150]. Transferred to the
scope of the present application, this circumstance provides for a very natural enumeration
of ordinal patterns: tuples of ranks, tuples of inversion counts, as well as the resulting
numerical codes are all consistently sorted. The reader may find Example 6 instructive
in this respect.

Example 6. Consider the m! = 24 ordinal patterns (ρ1, ρ2, ρ3, ρ4) ∈ Ω4 of order m = 4.
Each of them has a distinct tuple of right inversion counts (r1, r2, r3). Its corresponding
numerical representation n is obtained by interpreting (r1, r2, r3) as the digits of a facto-
radic numeral, in particular, n = 6r1 + 2r2 + r3. As shown in Table 5.2, the tuples of
ranks, tuples of inversion counts, and numerical codes all obey the same lexicographic
sorting order.

Table 5.2 The ranks (ρ1, ρ2, ρ3, ρ4), right inversion counts (r1, r2, r3), and numerical codes n
for the m! = 24 ordinal patterns of order m = 4.

Ranks Inv. Code
ρ1 ρ2 ρ3 ρ4 r1 r2 r3 n

1 2 3 4 0 0 0 0
1 2 4 3 0 0 1 1
1 3 2 4 0 1 0 2
1 3 4 2 0 1 1 3
1 4 2 3 0 2 0 4
1 4 3 2 0 2 1 5
2 1 3 4 1 0 0 6
2 1 4 3 1 0 1 7
2 3 1 4 1 1 0 8
2 3 4 1 1 1 1 9
2 4 1 3 1 2 0 10
2 4 3 1 1 2 1 11

Ranks Inv. Code
ρ1 ρ2 ρ3 ρ4 r1 r2 r3 n

3 1 2 4 2 0 0 12
3 1 4 2 2 0 1 13
3 2 1 4 2 1 0 14
3 2 4 1 2 1 1 15
3 4 1 2 2 2 0 16
3 4 2 1 2 2 1 17
4 1 2 3 3 0 0 18
4 1 3 2 3 0 1 19
4 2 1 3 3 1 0 20
4 2 3 1 3 1 1 21
4 3 1 2 3 2 0 22
4 3 2 1 3 2 1 23
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With a view to software implementation, Equation (5.7) still provides opportunity for
optimisation. In the current form, the factorial (m − i)! needs to be re-evaluated for
each iteration of the outer sum. In general, computing a (non-trivial) factorial requires
a sequence of multiplications, but due to the specific structure of Equation (5.7), these
multiplications are here avoidable in their entirety. Taking advantage of the fundamental
recurrence relation k! = k(k − 1)! , the value of sym(x1, x2, . . . , xm) can be computed
recursively by initialising n0 = 0, and successively iterating

ni = (m− i)(ni−1 + ri) with ri =
m∑

j=i+1
[xi > xj] . (5.8)

The recursion terminates after iteration i = m−1, and yields nm−1 = sym(x1, x2, . . . , xm)
as the result. The arithmetical equivalence with Equation (5.7) can be proven by
mathematical induction, and is also evident from the following example.

Example 7. Let (r1, r2, . . . , r6) ∈ R6 denote the right inversion counts to the ordinal
pattern of a given tuple (x1, x2, . . . , x6). According to Equation (5.7), the numerical
representation of this ordinal pattern of order m = 6 is obtained by computing

sym(x1, x2, . . . , x6) = 5 · 4 · 3 · 2 · r1

+ 4 · 3 · 2 · r2

+ 3 · 2 · r3

+ 2 · r4

+ r5.

Iterating the recurrence relation given by Equation (5.8) for the same right inversion
counts (r1, r2, . . . , r6) and the same pattern order m = 6, we obtain

n5 = sym(x1, x2, . . . , x6) =
((

(r1 · 5 + r2) · 4 + r3
)
· 3 + r4

)
· 2 + r5.

Not only are both solutions arithmetically identical, but the recursive approach also
requires considerably fewer multiplications—quod erat illustrandum.

The above reflections on Lehmer-encoding ordinal patterns can be summarised by means
of a short piece of pseudocode. The following Algorithm 1 thus constitutes the essence
of the ideas discussed so far: a remarkably simple algorithm for extracting and storing
ordinal patterns in computer memory.
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Algorithm 1. Given an m-tuple (x1, x2, . . . , xm) ∈ Xm of elements from a totally ordered
set X, a distinct numerical representation n ∈ {0, 1, . . . ,m!− 1} of its ordinal pattern of
order m can be obtained as outlined by the following pseudocode.

1 function encode_pattern
2 input
3 (x1, x2, . . . , xm) ∈ Xm with m ∈ {2, 3, . . .}
4 output
5 n ∈ {0, 1, . . . ,m!− 1}
6 begin
7 n← 0
8 for i← 1 to m− 1 do
9 for j ← i+ 1 to m do

10 n← n+ [xi > xj ]
11 end
12 n← (m− i)n
13 end
14 return n
15 end.

5.4 The Keller-Sinn-Emonds Code

Keller, Sinn, and Emonds [107] had already proposed a numerical encoding scheme for
ordinal patterns in 2007. Their encoding is quite similar to the approach here derived
from the Lehmer code, because inversion counts are used in either case. Formal deduction
and notational preferences let aside, both solutions merely differ in the way that tuples
of inversion counts (r1, r2, . . . , rm) are mapped onto scalar integers. In the notation of
the present manuscript, Keller and colleagues suggested to use the map

sym∗ : Xm → N0,

(x1, x2, . . . , xm) 7→
m−1∑
i=1

(
m!

(m− i+ 1)!

m∑
j=i+1

[xi > xj]
)
.

(5.9)

As opposed to the factoradic numerals r1r2 . . . rm underlying Equation (5.7), the Keller-
Sinn-Emonds code is effectively based on the reversed numerals rm . . . r2r1, which are
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interpreted as strings of digits dN . . . d2d1d0 in the mixed-radix positional numeral system
(see Section 2.2.3) given by

n =
N∑
i=0

(
di

i∏
j=0

b(j)
)

to the base b(j) =
 1 for j = 0,
N − j + 2 for 1 6 j 6 N.

Clearly, the encoding proposed by Keller, Sinn, and Emonds serves the same purpose as
the Lehmer-based approach described above, and also meets the general requirements
of Section 5.1 equally well. That being said, a minor drawback of their solution is that
factorial functions and integer division operations are required to evaluate Equation (5.9).
Those operations are computationally expensive. As suggested in [145], the issue can be
mitigated by computing the coefficients

wi = m!
(m− i+ 1)! for i ∈ {1, 2, . . . ,m− 1}

in advance, and looking them up during the actual encoding. The approach then requires
just as many (or few) multiplications as the Lehmer encoding given by Equation (5.7).
Still, the latter does not depend on lookup tables, and arguably yields a more natural
enumeration of the ordinal patterns (see Table 5.2). For those reasons, the Lehmer code
will be used exclusively throughout the present work.

5.5 Algorithms for Encoding Time Series

As already discussed in Chapter 4, any form of ordinal time series analysis requires
that sequences of elements from a totally ordered set X (usually, the real numbers R)
be converted into sequences of ordinal patterns. Given a finite time series {xt}, with
xt ∈ X and t ∈ {1, 2, . . . , N}, we select a pattern order m > 2 and time lag τ > 1, and
subsequently obtain {πt}, where

πt = op(xt, xt+τ , . . . , xt+(m−1)τ ) for all t ∈ {1, 2, . . . , N − (m− 1)τ}. (5.10)

In doing so, we assign to each ordinal pattern πt the time index t of the leftmost of its
underlying tuple elements. Consequently, the last (m − 1)τ indices of the finite time
series {xt} do not reference any ordinal pattern, and the resulting pattern sequence {πt}
thus comprises of N − (m− 1)τ elements.
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To perform this transformation in software, the encoding approach as described by
Algorithm 1 can be applied. Moreover, when encoding not one, but a sequence of ordinal
patterns, the intrinsic structure of ordinal processes (see Section 4.2.3) enables some
optimisations that are advantageous in terms of computational efficiency. Three such
algorithms for transforming time series into sequences of ordinal patterns will be discussed
in the following.

5.5.1 The Plain Algorithm

Recall from Section 5.3 that Algorithm 1 maps any given m-tuple (x1, x2, . . . , xm) ∈ Xm

of elements from a totally ordered set X onto a non-negative integer n ∈ {0, 1, . . . ,m!−1},
such that the value

n = enc(op(x1, x2, . . . , xm)) = sym(x1, x2, . . . , xm)

unambiguously identifies the ordinal pattern op(x1, x2, . . . , xm) = (ρ1, ρ2, . . . , ρm) ∈ Ωm.
This encoding strategy is easily expanded, so as to turn an entire time series {xt} into
numerical representations {nt} of its ordinal pattern sequence {πt}, whereby

nt = enc(πt) = sym(xt, xt+τ , . . . , xt+(m−1)τ ) ∀t ∈ {1, 2, . . . , N − (m− 1)τ}. (5.11)

This straightforward extension of Algorithm 1 merely requires an additional loop and
proper indexing. It results in the following algorithm.

Algorithm 2 (Plain Algorithm). To transform a finite time series {xt} of elements
from a totally ordered set X into a sequence of non-negative integers {nt}, select a pattern
order m > 2 and a time lag τ > 1. Then proceed according to the following pseudocode.

1 function encode_sequence
2 input
3 m ∈ N with m > 2
4 τ ∈ N with τ > 1
5 {xt} with xt ∈ X and t ∈ {1, 2, . . . , N}
6 output
7 {nt} with nt ∈ {0, 1, . . . ,m!− 1} and t ∈ {1, 2, . . . , N − (m− 1)τ}
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8 begin
9 for t← 1 to N − (m− 1)τ do

10 nt ← encode_pattern(xt, xt+τ , . . . , xt+(m−1)τ )
11 end
12 end.

The value nt ∈ {0, 1, . . . ,m!−1} then uniquely identifies the ordinal pattern πt of order m,
extracted from the time series {xt} at time index t using the time lag τ . The function
encode_pattern is specified in Algorithm 1.

5.5.2 The Overlap Algorithm

The plain algorithm (Algorithm 2) still contains some redundant operations, and does
therefore not scale too well with the pattern order m. This aspect can be targeted
by further optimisation. Bandt and Pompe had already hinted at this possibility in
their seminal publication on ordinal patterns, suggesting there was “an extremely fast
algorithm where each pair of values need to be compared only once” [1]. Keller, Sinn,
and Emonds elaborated further on this matter, demonstrating that the overlap property
of ordinal processes (see Section 4.2.3) can be exploited computationally [107]. The
algorithm described in the following builds upon the same basic idea, but additionally
uses the recursive Lehmer encoding discussed in Section 5.3.

Written out in its entirety, the plain algorithm (Algorithm 2) converts a time series {xt},
indexed by t ∈ {1, 2, . . . , N}, into a sequence of non-negative integers {nt}, such that

nt =
m−1∑
i=1

(
(m− i)!

m∑
j=i+1

[
xt+(i−1)τ > xt+(j−1)τ

])
∀t ∈ {1, 2, . . . , N − (m− 1)τ}. (5.12)

As derived in Section 5.3, each evaluation of the inner sum of Equation (5.12) yields one
of the m− 1 non-trivial right inversion counts to the ordinal pattern πt. The encoding
can hence be reformulated in terms of

nt =
m−1∑
i=1

(m− i)! · rt, i where rt, i =
m∑

j=i+1

[
xt+(i−1)τ > xt+(j−1)τ

]
. (5.13)

Now recall that due to the properties of ordinal processes discussed in Section 4.2.3, any
two ordinal patterns πt−τ and πt at a distance equalling the time lag τ share all but one
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of their underlying time series values. Consequently, the inversion counts to the patterns
πt−τ and πt are strongly interrelated as well. In particular, it is easily confirmed that

nt =
m−1∑
i=1

(m− i)! · rt, i where rt, i =
[
xt+(i−1)τ > xt+(m−1)τ

]
+ rt−τ, i+1. (5.14)

This recurrence relation is highly advantageous in computational terms. Let us assume
that in the overall process of encoding a time series {xt}, the inversion counts to the
pattern πt−τ have just been determined. If those are kept in memory for τ more iterations,
then encoding the pattern πt merely requires m − 1 additional comparisons. In turn,
each such comparison yields one of the inversion counts to the pattern πt, which can
then be reused to efficiently encode πt+τ another τ time steps ahead.

Merely the first τ ordinal patterns {π1, π2, . . . , πτ} require additional consideration,
because obviously, none of them has a neighbour located τ time steps earlier. While
{π1−τ , π2−τ , . . . , π0} are hence undefined, all but the leftmost of their respective inversion
counts still formally exist. More precisely,

Rinit =


r1−τ, 2 r1−τ, 3 · · · r1−τ,m−1

r2−τ, 2 r2−τ, 3 · · · r2−τ,m−1
... ... . . . ...
r0, 2 r0, 3 · · · r0,m−1

 (5.15)

are all well-defined, and suffice to calculate {n1, n2, . . . , nτ} in terms of Equation (5.14).

The procedure of encoding a time series thus comprises of two stages: first obtain the
initial inversion counts Rinit, then iterate Equation (5.14) for all t, starting from t = 1.
Each such iteration yields an encoded pattern nt, as well as a corresponding set of
inversion counts. The latter are temporarily buffered in memory, reused τ iterations
later, and then become obsolete. The entire process is summarised in the following
Algorithm 3.

Algorithm 3 (Overlap Algorithm). To transform a finite time series {xt} of elements
xt ∈ X into a sequence of non-negative integers {nt} representing the ordinal patterns
{πt} of the time series, select a pattern order m > 2 and time lag τ > 1. Then proceed
as follows.
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1 function encode_sequence
2 input
3 {xt} with xt ∈ X and t ∈ {1, 2, . . . , N}
4 m ∈ N with m > 2
5 τ ∈ N with τ > 1
6 output
7 {nt} with nt ∈ {0, 1, . . . ,m!− 1} and t ∈ {1, 2, . . . , N − (m− 1)τ}
8 locals
9 {ri, j} with i ∈ {1, 2, . . . , τ} and j ∈ {1, 2, . . . ,m}

10 begin
11 ri, j ← 0 for all i ∈ {1, 2, . . . , τ} and all j ∈ {1, 2, . . . ,m}
12

13 /* Obtain initial right inversion counts Rinit */
14 for t← 1 to τ do
15 for i← 1 to m− 2 do
16 for j ← i+ 1 to m− 1 do
17 rt, i+1 ← rt, i+1 +

[
xt+(i−1)τ > xt+(j−1)τ

]
18 end
19 end
20 end
21

22 /* Extract and encode ordinal patterns */
23 i← 1
24 for t← 1 to N − (m− 1)τ do
25 for j ← 1 to m− 1 do
26 ri, j ← ri, j+1 +

[
xt+(j−1)τ > xt+(m−1)τ

]
27 nt ← (m− j)(nt + ri, j)
28 end
29 i← (i mod τ) + 1 /* Increment circular buffer index */
30 end
31 end.

Notice that readability is favoured over efficiency in the above pseudocode description
of the overlap algorithm. That is to say, a smaller buffer {ri, j} with i ∈ {1, . . . , τ} and
j ∈ {2, . . . ,m−1} will suffice for an actual implementation, because the recurrence relation
does not depend on ri, 1 at all, whereas ri,m = 0 always. Also, the modulo operation used
for circular buffer indexing may impose a considerable run-time penalty. Both of these
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aspects are addressed in the reference implementation of the above Algorithm 3, which
is provided in the supplements of [78].

5.5.3 The Lookup Algorithm

The overlap algorithm (Algorithm 3) is based on the fact that any two ordinal patterns
πt−τ and πt overlap in all but one of their underlying time series values. Utilising the
same interrelation, Valentina Unakafova and Karsten Keller proposed [145] a different
encoding strategy that, by contrast with Algorithm 3, does not depend on buffering
inversion counts. Their approach is compellingly simple: as described in Section 4.2.3, an
ordinal pattern πt−τ of order m can only have m different succeeding patterns πt at τ time
steps distance. Consequently, if the ordinal pattern πt−τ = op(xt−τ , xt, . . . , xt+(m−2)τ ) is
known in advance, then the value of the expression

ρt,m = m−
m−1∑
i=1

[
xt+(i−1)τ > xt+(m−1)τ

]
(5.16)

uniquely determines the pattern πt = op(xt, xt+τ , . . . , xt+(m−1)τ ). In connection with
Definition 1, the decisive variable ρt,m ∈ {1, 2, . . . ,m} is easily identified as the rightmost
rank of the ordinal pattern πt = (ρt, 1, ρt, 2, . . . , ρt,m). As is visualised in Figure 5.1, each
value that ρt,m can take on represents one of the m different ordinal patterns πt that
may possibly follow after a particular pattern πt−τ .

ρt, 4 = 1

ρt, 4 = 2

ρt, 4 = 3

ρt, 4 = 4

xt−τ xt xt+τ xt+2τ xt+3τ

xt−τ xt xt+τ xt+2τ xt+3τ

πt−τ

πt

Figure 5.1 Assume pattern order m = 4, without loss of generality. For any fixed ordinal
pattern πt−τ , its succeeding pattern πt = (ρt, 1, ρt, 2, ρt, 3, ρt, 4) at τ time steps distance has
merely one degree of freedom: its rightmost rank ρt, 4.
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These considerations essentially imply that a surjective map (πt−τ , ρt,m) 7→ πt exists for
any pattern order m and time lag τ . Likewise, there has to be a well-defined surjection

N0 × N→ N0,

(nt−τ , ρt,m) 7→ nt
(5.17)

for ordinal patterns represented numerically. Notice that the particular encoding function
enc : Ωm → N0 in terms of Equation (5.1) does not make a difference here—as long
as it is bijective, such that each ordinal pattern is assigned a unique numerical label.
In their original publication [145], Unakafova and Keller used the encoding given by
Equation (5.9).

To implement Equation (5.17), the authors rely on a lookup table holding m!×m entries,
in particular

Lm =


L1, 1 · · · L1,m
... . . . ...

Lm!, 1 · · · Lm!,m

 , (5.18a)

such that
nt = Li, j for i = nt−τ + 1 and j = ρt, n. (5.18b)

Encoding a time series {xt}, with t ∈ {1, 2, . . . , N}, is then a matter of computing
the numerical codes {n1, n2, . . . , nτ} for the first τ patterns by direct evaluation, and
subsequently iterating Equation (5.17) to obtain all remaining symbols. The following
Algorithm 4 describes the process in full detail.

Algorithm 4 (Lookup Algorithm). To transform a finite time series {xt} into a
sequence of non-negative integers {nt} representing its ordinal patterns, select a pattern
order m > 2 and time lag τ > 1. Also prepare a lookup table {Li, j} according to
Equation (5.18) that matches the encode_pattern function to be used. Then proceed as
follows.

1 function encode_sequence
2 input
3 {xt} with xt ∈ X and t ∈ {1, 2, . . . , N}
4 m ∈ N with m > 2
5 τ ∈ N with τ > 1
6 output
7 {nt} with nt ∈ {0, 1, . . . ,m!− 1} and t ∈ {1, 2, . . . , N − (m− 1)τ}
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8 locals
9 {Li, j} with Li, j ∈ {0, 1, . . . ,m!− 1} and i ∈ {1, 2, . . . ,m!} and j ∈ {1, 2, . . . ,m}

10 begin
11 {Li, j} ← load_lookup_table(m)
12

13 /* Encode first τ ordinal patterns */
14 for t← 1 to τ do
15 nt ← encode_pattern(xt, xt+τ , . . . , xt+(m−1)τ )
16 end
17

18 /* Encode all remaining patterns */
19 for t← τ + 1 to N − (m− 1)τ do
24 row ← nt−τ + 1
20 col ← 1
21 for i← 1 to m− 1 do
22 col← col +

[
xt+(i−1)τ > xt+(m−1)τ

]
23 end
25 nt ← Lrow, col

26 end
27 end.

5.6 Implementation and Run-Time Performance

How an abstract algorithm is translated into actual software can make a big difference
for its run-time efficiency: poor code will easily ruin the most sophisticated algorithm,
whereas considerate implementation often turns a simplistic approach into a valuable
piece of software. Taking into account application-dependent requirements and platform-
specific peculiarities is essential in this regard. Generally speaking, there is rarely a
singular solution to a multi-faceted problem.

In a similar context, Donald Knuth once wrote that “premature optimization is the
root of all evil” [151]. That is to say that in software engineering, simplicity should
be sacrificed for run-time performance only where the improvement is substantial to
the application. Arguably, this principle applies to scientific programming in particular,
where readable code may support the communication of analysis techniques and facilitate
the reproducibility of research results—including one’s own results from a few years ago.
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With this in mind, three encoding algorithms of varying complexity have been presented
in the previous section. Each of them comes with strengths and weaknesses, and raises
different implementational challenges. The following section is intended to guide the reader
in selecting and implementing the most appropriate algorithm for a particular analysis task
and software platform. Regarding the latter, NumPy/Python [152], GNU Octave [153],
MATLAB (The Mathworks, Natick, MA, USA), and the C programming language will
be considered.

5.6.1 Asymptotic Computational Complexities

The computational complexities of the plain, overlap, and lookup algorithm differ con-
siderably in dependence of the pattern order m. This can be assessed by counting the
number of basic operations the algorithms have to perform to encode a single ordinal
pattern. Those operation counts, as obtained from the pseudocode listings of Section 5.5,
are provided in Table 5.3.

Table 5.3 Number of operations required to encode a single ordinal pattern of order m, using
either the plain algorithm (Algorithm 2), the overlap algorithm (Algorithm 3), or the lookup
algorithm (Algorithm 4). Early initialisation operations have not been considered.

Algorithm Add Multiply Compare Increment Assign Modulo

plain m2 + 3m− 2
2 m− 1 m2 − 1 m2 +m− 2

2
m2 + 3m

2 0

overlap 9m− 8 6m− 6 2m− 2 m 2m 1

lookup 6m− 3 2m− 1 2m− 2 m− 1 m+ 3 0

It follows from those operation counts that the plain algorithm, performing a total of

Cplain(m) = 5m2 + 9m− 8
2

basic operations per pattern of order m, has an asymptotic computational complexity
of O(m2). By contrast, the overlap and lookup algorithms both scale linearly with the
pattern order: their total operation counts per pattern are

Coverlap(m) = 20m− 15 and Clookup(m) = 12m− 4,
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so their asymptotic complexities both are O(m). The above also confirms that, for any
finite pattern order m > 2, the lookup algorithm avoids some of the computations that
the overlap algorithm has to perform—which is the very purpose of using a lookup table
in the first place. Theoretical computational complexity thus decreases from the plain
algorithm to the overlap algorithm, and again from the overlap algorithm to the lookup
algorithm.

In practice, however, computational complexity alone does not suffice to determine the
run-time performance of an algorithm, which also depends on such aspects as memory
utilisation, the execution environment, and the actual implementation. The rest of this
chapter therefore focusses on the practical aspects of turning each of the three encoding
algorithms into workable software.

5.6.2 Memory Alignment

The algorithms here considered represent the ordinal patterns Ωm = {π1, π2, . . . , πm!}
of order m by distinct integers {0, 1, . . . ,m! − 1}, thereby providing a bijective map
πi 7→ i− 1 as stipulated by the enc-function of Equation (5.1). The resulting symbols are
highly memory-efficient, theoretically requiring a mere log2m! bit per pattern. Notice
that log2m! is the entropy of a uniform distribution of m! elements, and thus, the
maximum entropy an ordinal pattern distribution of order m can possibly attain. Let
aside data compression techniques, no other numerical encoding can therefore be more
compact (as is assured by Shannon’s source coding theorem [85, 86]).

In practice, it makes sense to align ordinal patterns to byte boundaries, which can be
accomplished by dedicating an integer power of 2 (but at least 8) bits to each ordinal
pattern, such that the resulting bit width per pattern is

wb = 2k > log2m! where k ∈ {3, 4, . . . }. (5.19)

Any digital processing unit equipped with 64-bit integer registers will thus handle ordinal
patterns of order m 6 20 natively, that is, at hardware efficiency. For reference, Table 5.4
lists the maximum pattern orders that fit the primitive data types available on standard
computer systems. Although ordinal patterns and their numerical representations are
intrinsically integral, this table also references two IEEE 754 floating point formats [154,
155]. Those were included because computation environments like NumPy/Python,
GNU Octave, and MATLAB use the binary64 floating point data format by default.
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Table 5.4 Maximum pattern orders representable by standard numerical data types.

Data Type Significant Bits Maximum Order
wb m

uint8 8 5
uint16 16 8
uint32 32 12
uint64 64 20

binary32 (single) 24 10
binary64 (double) 53 18

Previously known as double [154], this format features an effective mantissa length of
53 bit [155], and can therefore represent a total of 253 distinct non-negative values at
integer precision [156]. Whenever this limit is exceeded, mantissa truncation will silently
cause unexpected results (like the erroneous 253 = 253 + 1), and distinct patterns will
falsely be labelled as identical. When working with patterns of order m > 18 in such
computation environments, this bug-inviting peculiarity must be kept in mind.

Independent of the software platform used, ordinal patterns of order m > 20 require some
additional thought. This is because current general-purpose processors do not provide
native support for integers wider than 64 bits, so each pattern of order m > 20 has to
be stored as an array of integers, and all arithmetical and logical operations need to be
emulated in software. Those matters will be further discussed in Section 5.6.8.

5.6.3 Compilation versus Interpretation

Without any doubt, high-level programming languages like Python and MATLAB are
essential tools in scientific computing. Featuring expressive syntaxes, and providing
turnkey solutions for a plethora of analysis tasks, numerical scripting languages can
considerably reduce the time researchers have to spend turning ideas into code.

Instead of being translated into machine instructions beforehand, such languages are
usually interpreted or just-in-time compiled at run-time. By matter of principle, this
paradigm of execution imposes a certain overhead: each line of code needs to be tokenised,
parsed, error-checked, and finally mapped onto a sequence of function calls or (virtual)
machine instructions. Where this overhead is detrimental, developers of numerical com-
putation frameworks switch to compiled programming languages, and merely implement
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a thin wrapper in the targeted scripting language. Among many other functions, the
fast Fourier transform (FFT) provided by your preferred numerical analysis software is
almost certainly implemented like that.

To investigate whether ordinal pattern encoding can benefit from this approach, the
plain, overlap, and lookup algorithms (Algorithms 2, 3, and 4) were implemented
and benchmarked in MATLAB and NumPy/Python, but also in the C programming
language. The latter was chosen as the compiled programming language because of its
tight integration with most numerical computation environments, and its widespread
support on virtually any hardware platform.

5.6.4 Run-Time Test Environment

All performance testing was done on a conventional x86-64 laptop computer, equipped
with an Intel Core i7-5600U processor (Intel Corporation, Santa Clara, CA, USA) and
8 GB of random access memory (RAM). An Arch Linux distribution of the GNU/Linux
operating system was used, running the default kernel (linux, 5.2.arch2-1), and
C standard library (glibc, 2.29-3). Pre-built binary packages of GNU Octave (octave,
5.1.0-4), Python 3 (python, 3.7.3-1), NumPy (python-numpy, 1.16.4-1), and FFTW
(fftw, 3.3.8-1), as well as their respective dependencies were installed from the official
repositories of the distributor. The Linux version of the proprietary MATLAB 2018b
release (9.5.0.1049112 Update 3) was used. Source code written in the C programming
language was compiled using the GNU Compiler Collection (gcc, 8.3.0-2), whereby
the parameters -march=x86-64 -mtune=generic -O3 were selected to allow for heavy
compiler optimisation, while not relying on any model-specific features of the targeted
processor.

5.6.5 Test Signal Generation

Based on the fact that ordinal patterns of any order are uniformly distributed in white
noise [116], sequences of independent and uniformly distributed pseudo-random numbers
were used for testing the performance of the algorithms. This choice ascertains that all
ordinal pattern transitions (see Figure 4.4) appear at the same relative frequency, such
that each possible path of execution is taken equally often.
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To maintain reproducible test signals across all software environments, the xorshift
random number generator by George Marsaglia [157] was used, with a word size of 32 bits
and the standard shift parameters (13, 17, 5). In this configuration, xorshifting will
produce a pseudo-random sequence of period length 232−1, with all elements drawn from
{1, 2, . . . , 232 − 1}. In other words, Marsaglia’s random number generator then yields a
pseudo-random permutation of the non-negative integers 0 < i < 232. Normalisation of
those random numbers (as in zero-mean or unit-variance) was omitted, considering that
ordinal patterns are invariant to order-preserving transformations anyway [1]. However,
the integer-valued test signals were stored in binary64 floating point representation, as
this is the expected input format in ordinal time series analysis.

Additionally, to test for possible dependencies between the run-time of the algorithms
and the ordinal complexity of the input signal, low-pass filtered (and thus, self-correlated)
noise of various bandwidths was also incorporated into the test procedure. As can be
observed in Figure 5.2, band-limiting white noise is a simple yet effective way of obtaining
test signals with gradually decreasing pattern diversity—and thus, decreasing ordinal
complexity.
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Figure 5.2 Relative frequencies of the 720 ordinal patterns of order m = 6 for uniform white
noise (bw = 1.0π), and for noise band-limited to different fractions of the Nyquist frequency.
Time series of N = 3.6 · 106 samples length were used for the simulation. For each plot, the
pattern counts were sorted in descending order to facilitate visualisation.

For reasons of simplicity, filtering was performed by zeroing bins in the Discrete Fourier
Transform (DFT) of the full-bandwidth signal. To obtain numerically identical results
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across different execution platform, the free and open-source software library FFTW3 [158]
was used for all DFT computations.

5.6.6 Implementing the Plain Algorithm

The plain algorithm (Algorithm 2) is definitely the most simple among the three encoding
strategies considered here. Because the algorithm makes no effort to avoid redundant
operations, it may at first glance seem generally inferior to the more sophisticated overlap
and lookup algorithms (Algorithms 3 and 4). Quite the contrary, the plain algorithm may
actually be preferable when numerical scripting languages like GNU Octave, MATLAB
or NumPy/Python are used to encode ordinal patterns. The reason is that, by contrast
with the recursive Algorithms 3 and 4, the plain algorithm allows for vectorisation.

Compared to pre-compiled languages like C, scripting languages are relatively slow at
iterating loops (see Section 5.6.3). This limitation clearly manifests if the plain algorithm
is implemented in a straightforward manner, which then requires three levels of nested
loops. See the encode_plain functions in the supplementary files encode_plain.m and
ordpat.py, as well as the ordpat_encode_plain function in ordpat.c, respectively. As
shown in Table 5.5, their run-time efficiency varies by orders of magnitude across different
execution environments.

Table 5.5 Computation time (median of 20 trials) for turning 3.6 · 105 samples of uniform
white noise into a sequence of ordinal patterns of order m, using the time lag τ = 1. Straight-
forward iterative implementations of the plain algorithm (Algorithm 2) were tested in various
computation environments.

Order Computation Time (ms)
m GNU Octave NumPy/Python MATLAB C

2 7.9 · 103 2.4 · 103 1.1 · 101 7.8 · 10−1

3 2.0 · 104 5.7 · 103 2.2 · 101 1.6 · 100

4 3.6 · 104 1.0 · 104 3.5 · 101 2.8 · 100

5 5.6 · 104 1.5 · 104 5.5 · 101 4.3 · 100

6 8.1 · 104 2.1 · 104 8.5 · 101 6.0 · 100

7 1.1 · 105 2.9 · 104 1.2 · 102 8.0 · 100

8 1.4 · 105 3.7 · 104 1.6 · 102 1.0 · 101

9 1.8 · 105 4.6 · 104 2.0 · 102 1.3 · 101

72



5.6 Implementation and Run-Time Performance

Those differences are due to the iterative nature of the plain algorithm, which forces the
Octave and Python language interpreters to translate the same sequence of instructions
over and over again, for each and every loop iteration. Consistently, the MATLAB
just-in-time compiler performs better, but is in turn outperformed by the machine code
of the fully-optimising C compiler.

To mitigate the performance penalty inherent to numerical scripting languages, a pro-
gramming technique known as vectorisation can be applied in many cases. In a nutshell,
vectorisation is about avoiding element-wise operations in favour of high-level instructions
acting on blocks of data, like vectors (hence the name), matrices, and tensors. Vectorising
the plain algorithm is a bit tricky, but the performance gain is well worth the effort. The
approach is best explained by means of a practical example. MATLAB code will be used
in the following, but the concepts translate to other programming environments as well.

Recall from Equation (5.7) that the map

(x1, x2, . . . , xm) 7→
m−1∑
i=1

(
(m− i)!

m∑
j=i+1

[xi > xj]
)

(5.20)

is the basis of the plain algorithm, and yields the ordinal pattern of the m-tuple
(x1, x2, . . . , xm) in its numerical representation. Now consider that, for any fixed pattern
order m, the result of this function can be rewritten without relying on summation signs.
Assuming the order m = 5, for example, the mathematical expression

24 ·
(

[x1 > x2] + [x1 > x3] + [x1 > x4] + [x1 > x5]
)

+ 6 ·
(

[x2 > x3] + [x2 > x4] + [x2 > x5]
)

+ 2 ·
(

[x3 > x4] + [x3 > x5]
)

+ 1 ·
(

[x4 > x5]
)

is admittedly more tedious, but arithmetically equivalent to the more compact formulation
in Equation (5.20). The point here is that this expression can directly be translated into
a single MATLAB instruction, namely

24 * ( (x1 > x2) + (x1 > x3) + (x1 > x4) + (x1 > x5) ) ...
+ 6 * ( (x2 > x3) + (x2 > x4) + (x2 > x5) ) ...
+ 2 * ( (x3 > x4) + (x3 > x5) ) ...
+ 1 * ( (x4 > x5) );
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Let us assume that the time series to be analysed is represented by a N × 1 vector input
on the MATLAB workspace. Obviously, if we initialise the variables

x1 = input(1);
x2 = input(2);
x3 = input(3);
x4 = input(4);
x5 = input(5);

and call the above instruction, we obtain the ordinal pattern of the vector input(1:5)
in its numerical representation. The underlying optimisation technique is called loop
unrolling. Furthermore, consider that in numerical scripting languages, most basic
operations are not limited to scalar values, but can in principle handle arrays of arbitrary
dimension as their operands. If we thus set x1, . . . , x5 to the delay vectors

x1 = input(1:end-4);
x2 = input(2:end-3);
x3 = input(3:end-2);
x4 = input(4:end-1);
x5 = input(5:end-0);

instead, we can obtain from input its full sequence of ordinal patterns of order m = 5
and lag τ = 1 by calling a single MATLAB instruction. Arbitrary time lags τ > 1 can in
turn be realised by using the generalised delay vectors

x1 = input(1 + 0*lag : end - 4*lag);
x2 = input(1 + 1*lag : end - 3*lag);
x3 = input(1 + 2*lag : end - 2*lag);
x4 = input(1 + 3*lag : end - 1*lag);
x5 = input(1 + 4*lag : end - 0*lag);

in conjunction with the exact same MATLAB expression. As a side note, the operation
is also applicable to multidimensional data structures like matrices and tensors, such
that multivariate time series can as well be encoded by means of a single invocation.

The downside of this approach is that each pattern order m requires a dedicated piece
of code. When working with small pattern orders, manual implementation is still
perfectly feasible and even yields comprehensible code—as is demonstrated by the
symbolise.m function provided in the supplements of [77]. For higher pattern orders,
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though, another convenient feature offered by many scripting languages should rather
be utilised. GNU Octave, MATLAB and NumPy/Python all support self-modifying
code, which is source code that can modify its own sequence of instructions at run-time.
This is possible because scripts are translated during program execution anyway, so new
strings of characters can easily be injected into the instruction queue of the language
interpreter. Supporting languages provide built-in functions like eval or exec for this
purpose, which take a string as their input argument and hand it over to the execution
engine for evaluation. Such language facilities can neatly be utilised to obtain an efficient,
universal implementation of the plain algorithm: one just has to write a function that
dynamically creates the appropriately vectorised code for a given pattern order m and
time lag τ , and subsequently executes it. Consider the functions encode_vectorised in
the supplementary files encode_vectorised.m and ordpat.py for reference. As can be
seen from Table 5.6, this form of optimisation yields a tremendous increase in run-time
efficiency.

Table 5.6 Computation time (median of 20 trials) for turning 3.6 · 105 samples of uniform
white noise into a sequence of ordinal patterns of order m, using the time lag τ = 1. Vectorised
implementations of the plain algorithm (Algorithm 2) were tested in various computation
environments. The results of Table 5.5 were replicated for ease of comparison.

Order Computation Time (ms)
m GNU Octave NumPy/Python MATLAB C

loops vectors loops vectors loops vectors loops

2 7.9 · 103 1.5 · 100 2.4 · 103 7.9 · 10−1 1.1 · 101 3.8 · 100 7.8 · 10−1

3 2.0 · 104 6.5 · 100 5.7 · 103 1.3 · 100 2.2 · 101 9.0 · 100 1.6 · 100

4 3.6 · 104 1.4 · 101 1.0 · 104 2.0 · 100 3.5 · 101 1.2 · 101 2.8 · 100

5 5.6 · 104 2.0 · 101 1.5 · 104 2.9 · 100 5.5 · 101 1.5 · 101 4.3 · 100

6 8.1 · 104 3.3 · 101 2.1 · 104 5.3 · 100 8.5 · 101 1.8 · 101 6.0 · 100

7 1.1 · 105 4.2 · 101 2.9 · 104 6.8 · 100 1.2 · 102 2.3 · 101 8.0 · 100

8 1.4 · 105 5.7 · 101 3.7 · 104 8.5 · 100 1.6 · 102 2.7 · 101 1.0 · 101

9 1.8 · 105 6.8 · 101 4.6 · 104 1.3 · 101 2.0 · 102 3.2 · 101 1.3 · 101

For any of the numerical computation environments considered, using a vectorised version
of the plain algorithm allows for encoding millions of ordinal patterns in milliseconds,
without having to rely on pre-compiled external libraries. Most noteworthy, the vectorised
NumPy/Python implementation actually outperformed the pre-compiled C code in the
majority of cases. This hints at the amount of sophistication put into the development
of the free and open-source NumPy/Python framework.
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5.6.7 Implementing the Overlap Algorithm

The prerequisite for vectorising an algorithm is that all input data be available in
advance, such that they can be passed to the software in parallel. Therefore, and by
contrast with the plain algorithm considered above, recursive solutions like the overlap
algorithm (Algorithm 3) cannot be fully vectorised, but inevitably require some sort of
iteration. Due to the reasons given in Section 5.6.6, implementing the overlap algorithm
in a numerical scripting language thus defeats its very purpose, which is the efficient
evaluation of Equation (5.12). This can be demonstrated by benchmarking a MATLAB
implementation of the overlap algorithm against a vectorised implementation of the plain
algorithm (Algorithm 2), written in the same programming language. While the overlap
algorithm should be superior in theory (see Section 5.6.1), a vectorised implementation of
the plain algorithm may actually be faster under practical conditions, as can be observed
in Figure 5.3. Reference code for both implementations is provided in the supplementary
files encode_overlap.m and encode_vectorised.m.
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Figure 5.3 Computation time (median of 20 trials) for transforming 3.6 ·105 samples of uniform
white noise into a sequence of ordinal patterns of order m. The lag was set to a constant τ = 1,
and the MATLAB functions encode_vectorised and encode_overlap from the supplementary
files encode_vectorised.m and encode_overlap.m were used for the simulation.

To benefit from the overlap algorithm in terms of efficiency, it is therefore highly advisable
to use a compiled programming language instead. In the following, we shall exclusively
be concerned with implementing the overlap algorithm in the C programming language.
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Assuming 64-bit integer support on the targeted platform, the pseudocode of Algorithm 3
can directly be translated into C code for any pattern order m 6 20. Admittedly, a
few minor tweaks are still possible, but those are easily understood from the reference
implementation, that is, from the ordpat_encode_overlap function in the supplementary
file ordpat.c. Typical run-time performances achieved by C implementations of the
plain versus the overlap algorithm are depicted in Figure 5.4.
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Figure 5.4 Computation time (median of 20 trials) taken for transforming 3.6 · 105 samples
of uniform white noise into a sequence of ordinal patterns of order m. The time lag was set
to τ = 1, and the C functions ordpat_encode_plain and ordpat_encode_overlap from the
supplementary file ordpat.c were used for the simulation. In line with theoretical expectation
(see Section 5.6.1), the run-time complexity of the plain algorithm is O(m2), whereas the overlap
algorithm scales at O(m). Notice that for m = 2, there is no advantage over the plain algorithm:
all order relations are then disjoint, such that no overlap can be exploited (see Section 4.2.3).

5.6.8 The Overlap Algorithm for High Pattern Orders

The aforementioned limitation to orders m 6 20 is due to the relation 20! < 264 < 21!,
which implies that ordinal patterns beyond m = 20 cannot be enumerated using 64-bit
unsigned integers (see Section 5.6.2). Reconsidering the pseudocode of the overlap
algorithm (Algorithm 3), however, it is easily confirmed that this constraint only affects
the instruction

nt ← (m− j)(nt + ri, j) (5.21)

in line 27 of the listing. Specifically, if the variable nt is limited to 64 bits of accuracy, it
will eventually overflow for m > 20.
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Fortunately, it merely takes (1) an arbitrary-precision integer representation for the
variable nt, (2) a function that adds a non-negative integer to nt, and (3) a function that
multiplies nt with a non-negative integer to overcome this upper boundary. And although
books have been written about arbitrary precision arithmetic [159, 160], a straightforward
approach will fully satisfy the requirements of the present application. Let us therefore
work through the above list one step at a time. Throughout the following, we shall
assume 64-bit integer support on the target architecture.

Arbitrary-Precision Unsigned Integers

The maximum space required to store the numerical representation of an ordinal pattern
πi of order m amounts to log2m! bits, because enc(πi) ∈ {0, 1, . . . ,m!− 1} for πi ∈ Ωm.
It is advantageous to keep the bit width constant across all patterns of a given order, and
moreover, to allocate an integer multiple of the machine word size per pattern. Doing
so avoids dynamic memory reallocation, and allows for iterating pattern sequences at
a constant memory stride. Storing the numerical code n = enc(πi) of a single ordinal
pattern πi ∈ Ωm then requires an array of d = dlog2(m!)/64e unsigned 64-bit integers

(ν1, ν2, . . . , νd) ∈ {0, 1, . . . , 264 − 1}d, such that n =
d∑
i=1

νi · 264(i−1). (5.22)

Given a sequence of N patterns of order m, its in-memory representation is then an array
comprised of d×N unsigned 64-bit integer values, and each ordinal pattern is stored as
a block of d consecutive integers. The resulting memory alignment is also visualised in
Figure 5.5.

πt−4 πt−3 πt−2 πt−1 πt πt+1 πt+2 πt+3 πt+4

ν1 ν2 ν3 νd

Figure 5.5 The numerical code n = enc(πt) of an ordinal pattern πt of order m can be
represented in memory by d consecutive 64-bit unsigned integers (ν1, ν2, . . . , νd), with their
values set as described by Equation (5.22). The tuple length d is determined by the pattern
order m, whereby it holds that d = dlog2(m!)/64e. Sequences of N ordinal patterns are stored
by concatenation, which results in the patterns being aligned to 8d byte boundaries.

78



5.6 Implementation and Run-Time Performance

The Arbitrary-Precision Addition Operation

One part of the compound operation given by Equation (5.21) is an addition of the form

n← n+ r, (5.23)

where n is the arbitrary-precision variable used to accumulate the numerical code of the
ordinal pattern. Thus, it has to be stored by means of a tuple of 64-bit unsigned integers
(ν1, ν2, . . . , νd) as described by Equation 5.22. By contrast, the variable r represents a
right inversion count in terms of Equation (5.4), so it holds that r ∈ {0, 1, . . . ,m− 1},
and one 64-bit unsigned integer variable is more than enough to store any practically
relevant value of r. (Actually, 64 bits of memory are wildly overdimensioned in this
context. Still, this bit width is required to implement arbitrary-precision multiplication,
as will be described later on.)

Notice that the sum n+ r is directly written back to the variable n, and thus overwrites
the previous value. Consequently, the addition operation can be implemented to act
in-place on the operand n, or more specifically, on the block of memory (ν1, ν2, . . . , νd).
From a strictly theoretical point of view, the following sequence of instructions will have
the desired effect:

ν1 ← (ν1 + r) mod 264,

r ←
⌊
(ν1 + r)/264

⌋
,

ν2 ← (ν2 + r) mod 264,

r ←
⌊
(ν2 + r)/264

⌋
,

ν3 ← (ν3 + r) mod 264,

r ←
⌊
(ν3 + r)/264

⌋
,

...
νd ← (νd + r) mod 264,

r ←
⌊
(νd + r)/264

⌋
.

The above instructions basically reflect a “schoolbook” addition-with-carry, although
performed in a numerical system to the base 264 instead of the decimal system. Modulo
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operations are required to limit the νi ∈ {0, 1, . . . , 264 − 1} to their allowed value range,
whereas floored divisions are used to obtain the respective carry values.

While this approach is formally correct, the situation is a lot different in practice, because
any commonly used processing unit with 64-bit integer registers will truncate the result
of νi + r to its least significant 64 bits, that is, the processor will effectively calculate
(νi + r) mod 264 in any case. Carry values can therefore not be obtained by evaluating
expressions of the form

⌊
(νi+r)/264

⌋
, because the intermediate result νi+r is unavailable.

Thus, a different approach is required to calculate the carry values. In this respect,
notice that due to νi ∈ {0, 1, . . . , 264 − 1} and r ∈ {0, 1, . . . , 264 − 1}, it holds that
0 6 νi + r 6 265 − 2. Consequently,

max
(⌊

(νi + r)/264
⌋)

=
⌊
(265 − 2)/264

⌋
=
⌊
2− 2−63

⌋
= 1,

min
(⌊

(νi + r)/264
⌋)

= 0,

from which it follows that

∀(νi, r) ∈ {0, 1, . . . , 264 − 1}2 :
⌊
(νi + r)/264

⌋
∈ {0, 1}.

In other words, the carry of any possible addition νi + r can be represented by a single
bit, which is usually called the carry flag. Clearly, it further holds for this carry flag that

bcarry =
⌊
(νi + r)/264

⌋
=
[
νi + r > 264

]
. (5.24)

Thus, the result of νi + r will either be smaller than 264 (and therefore fit into a single
64-bit unsigned integer), or it will “wrap around” exactly one time under the modulo
operation, such that

νi ← (νi + r) mod 264 =

νi + r, if bcarry = 0,

νi + r − 264, if bcarry = 1.

Because it holds that νi + r > r, whereas νi + r− 264 < r, the carry flag can be obtained
by computing

bcarry =
[
(νi + r) mod 264 < r

]
, (5.25)

which, compared to the expressions given in Equation (5.24), does not require the full
numerical value of νi + r, but works with merely its 64 least significant bits.
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On that basis, a computationally feasible version of the arbitrary-precision addition
operation can be formulated in terms of the following sequence of instructions:

ν1 ← (ν1 + r) mod 264,

r ← [ν1 < r] ,

ν2 ← (ν2 + r) mod 264,

r ← [ν2 < r] ,

ν3 ← (ν3 + r) mod 264,

r ← [ν3 < r] ,
...

νd ← (νd + r) mod 264,

r ← [νd < r] .

In practice, the iteration of those instructions can be terminated as soon as r ← 0. For
instance, if ν1 + r < 264, no carry is required and the values (ν2, . . . , νd) do not have
to be touched at all. In summary, the arbitrary-precision addition operation can be
implemented as described by Algorithm 5.

Algorithm 5. The pseudocode below adds a 64-bit unsigned integer r to a multi-precision
unsigned integer n. The latter is to be represented by an array of 64-bit unsigned integers
(ν1, ν2, . . . , νd), such that n = ∑d

i=1 νi ·264(i−1). The result of the addition is stored in-place,
that is, n ← n + r when the function returns. For reasons of run-time efficiency, no
boundary checks are performed, so the caller has to make sure that n+ r < 264.

1 function add_mp
2 input
3 n ≡ (ν1, ν2, . . . , νd) ∈ {0, 1, . . . , 264 − 1}d with d ∈ {1, 2, . . .}
4 r ∈ {0, 1, . . . , 264 − 1}
5 begin
6 i← 1
7 while r 6= 0 do
9 νi ← (νi + r) mod 264 /* Exploit implicit truncation */

10 r ← [νi < r] /* Check if carry required */
11 i ← i+ 1
12 end
13 end.
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The Arbitrary-Precision Multiplication Operation

Besides the addition operation of Algorithm 5, an arbitrary-precision multiplication
function is also required to evaluate the expression nt ← (m − j)(nt + ri, j) given by
Equation (5.21). The structure of this multiplication operation is

n← c · n, (5.26)

where n is the arbitrary-precision variable storing the numerical code of the ordinal
pattern. For the second operand, c ∈ {1, 2, . . . ,m− 1} holds true, as can be seen from
the pseudocode of Algorithm 3. In analogy with the addition operation already discussed
earlier, n will be stored in memory as a tuple of 64-bit unsigned integers (ν1, ν2, . . . , νd)
in terms of Equation (5.22), that is

n =
d∑
i=1

νi · 264(i−1).

The multiplication operation will be designed to act in-place on this block of memory.
For reasons provided in the following, the second operand shall be restricted to the value
range c ∈ {1, 2, . . . , 232 − 1}, such that it can be represented by a single 32-bit unsigned
integer variable. This choice allows for a maximum pattern order of m = 232, which—as
of this writing—does not pose a limitation in practice.

With the operands c and (ν1, ν2, . . . , νd) defined as described above, the overall task then
is to implement a map

(ν1, ν2, . . . , νd) 7→ (ν ′1, ν ′2, . . . , ν ′d) ∈ {0, 1, . . . , 264 − 1}d,

such that
d∑
i=1

ν ′i · 264(i−1) =
d∑
i=1

cνi · 264(i−1) = cn.

Notice that the obvious ν ′i = cνi is not a solution here, because it violates the constraint
that ν ′i < 264.

At this point, let us recall a fundamental property of any binary multiplication operation:
for an unsigned integer u1 of d1 bits width, and another such variable u2 that is d2 bits
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wide, it holds that the width of their product u1 ·u2 does not exceed d1 + d2 bits, because

max(u1) ·max(u2) = (2d1 − 1)(2d2 − 1) < 2d1+d2 − 1.

In the present context, this means that the overall arbitrary-precision multiplication has
to be constructed from sums of products of (at most) 32-bit wide unsigned integers, such
that the result of each intermediate multiplication is guaranteed to fit into 64 bits of
memory. In a first step, let us therefore split each of the 64-bit variables νi into a pair of
32-bit halfwords

νi,high =
⌊
νi/232

⌋
,

νi,low = νi mod 232,
such that νi = νi,high · 232 + νi,low.

The overall arithmetic value of the product cn can then be rewritten as

cn =
d∑
i=1

(
cνi,high · 232 + cνi,low

)
· 264(i−1).

Notice that both cνi,high and cνi,low are guaranteed to fit into 64 bits of memory space,
and are thus computable using 64-bit integer arithmetic. However, cνi,high has to be
shifted by 32 bits to the right, so it is not aligned to a 64-bit boundary. To resolve this,
cνi,high has to be split into a pair of 32-bit halfwords once more, which yields

cνi,high =
⌊
cνi,high/232

⌋
· 232 + (cνi,high) mod 232,

and therefore allows for expressing the overall computation as

cn =
d∑
i=1

(⌊
cνi,high/232

⌋
︸ ︷︷ ︸

< 232

·264 +
(
(cνi,high) mod 232

)
· 232︸ ︷︷ ︸

< 264

+ cνi,low︸ ︷︷ ︸
< 264

)
· 264(i−1). (5.27)

All three summands in the above equation can then be computed using 64-bit integer
arithmetic, and each is aligned to a 64-bit boundary. In particular, bcνi,high/232c does
not have to be multiplied by 264, but can simply be shifted up in memory by one 64-bit
word. Based on this formulation, the arbitrary-precision multiplication can be performed
as given by the following algorithm.
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Algorithm 6. The pseudocode below multiplies a 32-bit unsigned integer c with a multi-
precision unsigned integer n, which is to be represented as an array of 64-bit unsigned
integers (ν1, ν2, . . . , νd), such that n = ∑d

i=1 νi · 264(i−1). The result is stored in-place, that
is, n← cn when the function returns. For reasons of run-time efficiency, no boundary
checks are performed, so the caller has to make sure that cn < 264d. The auxiliary
function add_mp is specified by Algorithm 5.

1 function multiply_mp
2 input
3 (ν1, ν2, . . . , νd) ∈ {0, 1, . . . , 264 − 1}d with d ∈ {1, 2, . . .}
4 c ∈ {0, 1, . . . , 232 − 1}
5 begin
6 νd← (c · νd) mod 264

7 i ← d− 1
8 while i 6= 0 do
9 w ← c · ⌊νi/232⌋

10 νi ← c · (νi mod 232)
11 wl ← (w mod 232) · 232

12 wh ←
⌊
w/232⌋

13 add_mp
(
(νi, . . . , νd), wl

)
14 add_mp

(
(νi+1, . . . , νd), wh

)
15 i← i− 1
16 end
17 end.

Some further remarks on this algorithm may be in order. Firstly, notice that (ν1, ν2, . . . , νd)
is iterated in reverse order, starting with the most significant word νd, and descending to
the least significant ν1. This is of crucial importance, because the add_mp functions in lines
13 and 14 overwrite (νi, . . . , νd), but do not change (ν1, . . . , νi−1). Furthermore, consider
that many of the arithmetic operations in the above pseudocode can easily (and efficiently)
be implemented using bitwise operations. In particular, for any x ∈ {0, 1, . . . , 264 − 1},

bx/232c ≡ shift x by 32 bits to the left,
(x mod 232) · 232 ≡ shift x by 32 bits to the right,
x mod 232 ≡ bitwise AND of x and 232 − 1,
x mod 264 ≡ truncate x to least significant 64 bits.

Of course, the latter is implicitly performed after any 64-bit integer arithmetic operation.
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The Arbitrary-Precision Overlap Algorithm

Utilising the arbitrary-precision facilities derived in the above, the overlap algorithm can
easily be extended to support pattern orders up to m = 232. To that end, the instruction

nt ← (m− j)(nt + ri, j)

in line 27 of Algorithm 3 is replaced by

(ν1, ν2, . . . , νd)← add_mp
(
(ν1, ν2, . . . , νd), ri, j

)
,

(ν1, ν2, . . . , νd)← multiply_mp
(
(ν1, ν2, . . . , νd),m− j

)
.

(5.28)

The functions add_mp and multiply_mp are described by Algorithm 5 and 6, respectively,
whereas the d-tuple (ν1, ν2, . . . , νd) is the numerical code nt of the ordinal pattern,
mapped to the arbitrary-precision representation given by Equation (5.22). For reference,
see the functions add_mp and multiply_mp, as well as the resulting multi-precision
implementation of the overlap algorithm called ordpat_encode_overlap_mp (all to be
found in the supplementary file ordpat.c). The performance of the arbitrary-precision
approach as compared to the standard implementation is depicted in Figure 5.6 for the
range of pattern orders supported by both variants.
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Figure 5.6 Computation time (median of 20 trials) for transforming 3.6 · 105 samples of
uniformly distributed white noise into ordinal patterns of order m, using the time lag τ = 1.
The C functions ordpat_encode_overlap and ordpat_encode_overlap_mp from the supple-
mentary file ordpat.c were used for the simulation. The arbitrary-precision arithmetic used in
the ordpat_encode_overlap_mp function increases the overall run-time complexity, and the
timing is less stable than for strictly hardware-based arithmetic operations.
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As is to be expected, arbitrary-precision arithmetic introduces a certain performance
penalty. Nevertheless, the extension enables the computation of ordinal patterns beyond
the order m = 20, and it does so at reasonable speed. In this respect, Figure 5.7 visualises
the run-time behaviour of the ordpat_encode_overlap_mp function for a wide range of
pattern orders m.
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Figure 5.7 Computation time (median of 20 trials) for transforming 3.6 · 105 samples of
uniformly distributed white noise into ordinal patterns of order m. The time lag was set
to τ = 1, and the function ordpat_encode_overlap_mp from the supplementary file ordpat.c

was used for the simulation. The memory required per pattern is growing with m in a stepwise
manner, increasing by one 64-bit word at each vertical grid line. The computational cost in turn
rises linearly with the number of memory words to be iterated for each pattern, which shows
as distinct jumps in the graph. Independent of that, the run-time complexity also increases
linearly with the pattern order m as such. Both effects combined explain the parabolic envelope
of the curve depicted.

As can be seen from Figures 5.6 and 5.7, some of the run-time efficiency of the overlap
algorithm has to be traded off when allowing for pattern orders m > 20, which require
multi-precision (and thus, multi-iteration) integer arithmetic. And although the overall
computational complexity then scales with O(m2), the absolute run-time of the approach
is still acceptable: encoding a one-hour sequence of data sampled at 100 Hz will take less
than one second of processing time for orders as high as m = 100, where an inconceivable
number of 100! ≈ 9.3 · 10157 distinct ordinal patterns do formally exist.
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5.6.9 Implementing the Lookup Algorithm

In the original publication on the lookup algorithm (Algorithm 4), Unakafova and
Keller proposed a MATLAB script as the reference implementation, and used this
piece of code for performance benchmarks [145]. In analogy with the overlap algorithm
(Algorithm 3), however, the lookup algorithm cannot be fully vectorised due to its
recursive nature. In terms of run-time efficiency, numerical scripting languages are
therefore at a considerable disadvantage compared to compiled programming languages.
Due to this reason, and to enable meaningful comparison with the overlap algorithm,
the lookup algorithm was here re-implemented in the C programming language (see
the ordpat_encode_lookup function provided in the supplementary ordpat.c file). For
the sake of completeness, native implementations for numerical scripting languages are
still provided in the supplements, but are merely meant to allow the reader a quick
confirmation of the aforementioned performance drop.

Theoretically speaking, the lookup algorithm is computationally more efficient than the
overlap algorithm: for each and every pattern πi to be encoded, the overlap algorithm
has to calculate an integer representation n = enc(πi) ∈ {0, 1, . . . ,m!− 1} from a tuple
of inversion counts (r1, r2, . . . , rm), whereas the lookup algorithm can fetch the result
of this operation from memory. By matter of principle, this reduces the number of
computational operations to be executed per ordinal pattern (see Table 5.3).

In practice, however, the overall run-time of a piece of software is not exclusively
determined by the number of operations it performs, but also depends on its memory
requirements and its memory access patterns. In this regard, and as described in
Section 5.5.3, Algorithm 4 requires a lookup table of m! × m elements, each holding
the numerical representation of a particular ordinal pattern of order m. Thus, the size
of the lookup table increases rapidly with the pattern order: conservatively assuming
log2m! bits of storage space per pattern, the table size exceeds a gigabyte for m = 11,
and occupies more than five terabytes of memory for the order m = 14. Consequently,
memory latency quickly becomes prohibitive as the pattern order increases. Unakafova
and Keller therefore stated that the applicability of their algorithm be limited to the
pattern orders most commonly used [145], and provided precomputed lookup tables for
m ∈ {2, 3, . . . , 9}.

Nevertheless, the principal problem of execution delays due to memory access times
still persists for those lower pattern orders. In cases where the lookup table is too large
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to entirely reside in the processor’s internal cache, the overall run-time efficiency of
Algorithm 4 strongly depends on the nature of the input data. Time series of high
ordinal complexity will then result in frequent cache misses. In other words, if the time
series contains many different ordinal patterns, the processor will frequently have to
reload different parts of the lookup table from main memory into cache, which stalls
the processor and thus slows down the encoding process. This circumstance can be
demonstrated by feeding low-pass filtered noise of increasing bandwidth (see Section 5.6.5)
to the lookup algorithm, which yields results as presented in Figure 5.8.
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Figure 5.8 Computation time (median of 20 trials) for transforming 3.6 ·105 samples of uniform
white noise, low-pass filtered to various relative bandwidths bw, into sequences of ordinal patterns
of order m. The time lag was set to τ = 1, and the function ordpat_encode_lookup from the
supplementary file ordpat.c was used for the simulation. The time required for loading lookup
tables from mass storage into main memory was not taken into account. The computation
time increases not only with the pattern order m, but (for the most part) with the ordinal
complexity of the input signal. (Also notice that filtering to bw = 0.0 results in an all-zero
input signal, whereas bw = 1.0 results in white noise.)

It is therefore hard to draw a general conclusion on the run-time efficiency of the lookup
algorithm. Suffice it to say that, for input data of low ordinal complexity, the lookup
algorithm may outperform the overlap algorithm, as can be substantiated by using an
all-zero time series as the test signal. In this idealised case, the algorithm will look up
the exact same ordinal pattern again and again, and will therefore not run into cache
contention issues. This is demonstrated in Figure 5.9.
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Figure 5.9 Computation time (median of 20 trials) for transforming 3.6 · 105 samples of data
into sequences of ordinal patterns of order m. Either zeroes or uniform white noise were used
as input data. The time lag was set to τ = 1, and the functions ordpat_encode_lookup and
ordpat_encode_overlap from the supplementary file ordpat.c were used for the simulation.
The time required for loading lookup tables from mass storage into main memory was not taken
into account. For an all-zero input signal, no cache contention occurs, and the lookup algorithm
can outperform the overlap algorithm as the pattern order m (and thus, the computational
workload for the overlap algorithm) increases.

Figure 5.9 also shows that the performance of the overlap algorithm is independent from
the input data. It remains stable for both extreme cases: sequences of zeroes, as well as
white noise. The benchmarks also convey the impression that the overlap algorithm may
be at an advantage for m ∈ {2, 3, 4} and any type of input signal. A possible explanation
could be that addressing and accessing the lookup table in cache still imposes some
constant delay, causing the processor’s execution pipeline to stall for those pattern orders
with the lowest computational workload. Considering that under the above conditions
both algorithms achieve a data throughput of more than 1 GB per second, this effect was
not studied any further, though. In practice, loading input data from mass storage will
likely take a lot longer than the actual processing times seen here.

5.6.10 Sequence Length and Time Lag

In the simulations presented so far, signals of a fixed N = 3.6 · 105 samples length have
been processed, using the constant time lag τ = 1 throughout. A remaining question
therefore is how the plain, overlap and lookup algorithms (Algorithms 2, 3 and 4) scale
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with regard to the length N of the input sequence and the time lag τ under practical
conditions. Fortunately, those aspects are qualitatively identical for all three algorithms,
and their run-time behaviour is consistent with theoretical expectation: apart from the
additional τ steps required to initialise the overlap and lookup algorithms, each of the
algorithms is repeated once per ordinal pattern to be encoded, so doubling the amount
of input data will coarsely double the computational effort. Additionally, the data to be
encoded are iterated in a linear manner. Therefore, neither inordinate cache misses nor
incorrect branch prediction should pose a problem in theory. Simulation confirms that
the run-time of all three algorithms scales linearly with the sequence length, as can be
observed in Figure 5.10.
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Figure 5.10 Computation time (median of 20 trials) for transforming N samples of uniform
white noise into a sequence of ordinal patterns of order m = 5, using the time lag τ = 1. The
functions ordpat_encode_plain, ordpat_encode_overlap and ordpat_encode_lookup from
the supplementary file ordpat.c were tested. The time required for loading lookup table data
from mass storage into main memory was not taken into account. The order m = 5 was selected
so as to operate the ordpat_encode_lookup function at its sweet spot with regard to cache
utilisation. In good approximation, the computation time then increases linearly with the
sequence length N for all three algorithms.

The relation between the time lag τ and the overall run-time is even simpler. With respect
to computational effort, the time lag should not make any difference at all, because for
all three algorithms, the value of τ is predominantly used to calculate memory addresses,
where its absolute value cannot influence the computational workload. On the other
hand, τ determines the stride of the (otherwise linear) memory access pattern. Therefore,
increasing the time lag could theoretically be detrimental to the cache performance.
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Under test conditions, however, the choice of τ had no noticeable influence on run-time
efficiency—consider the measurements depicted in Figure 5.11.
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Figure 5.11 Computation time (median of 20 trials) for transforming 3.6·105 samples of uniform
white noise into a sequence of ordinal patterns of order m = 5, using increasing time lags τ .
The functions ordpat_encode_plain, ordpat_encode_overlap and ordpat_encode_lookup

from the supplementary file ordpat.c were tested. The time required for loading lookup table
data from mass storage into main memory was not taken into account. The order m = 5 was
selected so as to operate the ordpat_encode_lookup function at its sweet spot with regard to
cache utilisation. The simulations did not reveal any noticeable dependency between the time
lag τ and the computation time.

5.7 Summary

The three algorithms discussed in this chapter all extract ordinal patterns from a given
time series, and encode them in a computationally advantageous way, such that the
patterns {π1, π2, . . . , πm!} of order m are compactly represented by the set of non-negative
integers {0, 1, . . . ,m!− 1} in a one-to-one manner. The theoretical foundations for this
encoding were adopted from the Lehmer code [150], a classical approach in computational
combinatorics (also see Section 5.2). From a theoretical perspective, the plain algorithm
(Algorithm 2) has the highest computational complexity, followed by the overlap algorithm
(Algorithm 3), and in turn followed by the lookup algorithm (Algorithm 4), which is the
least computationally complex among the three (see Section 5.6.1). In practice, however,
the algorithms presented are complementary with regard to their scope of application,
and each can be worth considering.
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Being fully vectorisable, the plain algorithm (Algorithm 2) is a particularly good choice
for computational environments like MATLAB, GNU Octave or NumPy/Python, and its
efficiency will likely suffice most standard applications of ordinal pattern analysis (see
Table 5.6).

By contrast, the overlap algorithm (Algorithm 3) constitutes a general-purpose solution,
providing high data throughput over a wide range of pattern orders m, while only
requiring a small amount of extra memory. To achieve suitable run-time performance, it
needs to be implemented in a compiled programming language, though. This is not an
actual limitation in practice, because virtually any high-level scripting language can link
against pre-compiled library functions. Under this paradigm of execution, the overlap
algorithm clearly outperforms the plain algorithm. Implementing the overlap algorithm
in the C programming language is straightforward, and provides plenty of opportunity
for platform-specific optimisation: as demonstrated in Section 5.6.8, arbitrary-precision
arithmetic can easily be incorporated to enable pattern orders m > 20, and (although not
considered here) single-instruction-multiple-data (SIMD) processing could be employed
to further boost the run-time performance on supporting architectures. With regard
to real-time applications running on specialised embedded systems, it may be worth
mentioning that the algorithm does not depend on floating-point arithmetic, and merely
uses a few extra bytes of working memory on top of its input/output buffers.

As with the overlap algorithm, the lookup algorithm (Algorithm 4) should ideally be
implemented in a compiled programming language to maximise its performance. By
matter of principle, it has a narrower scope of application, though. Depending on a
lookup table of m!×m elements, its memory requirements currently limit the algorithm
to pattern orders m ∈ {2, 3, . . . , 10}. For the same reason, its run-time performance
varies with the nature of the input data (see Figure 5.8). When analysing time series of
comparatively low ordinal complexity, the lookup algorithm may outperform the overlap
algorithm. On the other hand, time series of higher ordinal complexity will result in
frequent cache misses, and may lead to a substantial drop in the overall run-time. Thus,
if performance is critically important, both algorithms should be tested for the particular
kind of data to be analysed.
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6 Permutation Entropy of the Electroencephalogram
This chapter is based on previously published work by the same author [77].

6.1 Electroencephalography

Electroencephalography is the act of recording an electroencephalogram (EEG), which in
turn is a collection of voltage signal traces originating from the neuroelectrical activity
of the brain. The amplitudes of those signals are quite subtle, residing in the range of
maximally a few hundred microvolts [161]. EEG is technically assessed by positioning
electrodes in various locations of the subject’s scalp (see Figure 6.1), and measuring the
electrical voltage undulations of those electrodes over time.

Nasion

Inion

Fp1 Fp2

F7
F3 Fz F4

F8

C3 Cz C4

P3 Pz P4

O1 O2

T3

T5

T4

T6

A1 A2

Figure 6.1 EEG electrode locations as defined by the Ten Twenty Electrode System of the
International Federation [162], more commonly referred to as the 10–20 System. Abbreviations
used are: frontal pole (Fp), frontal (F), central (C), parietal (P), occipital (O), and auricular (A).
Electrodes on the right (left) hemisphere are assigned even (odd) numbers, electrodes on the
middle line are suffixed with the letter “z” (= zero).
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Differential amplifiers with high-impedance inputs and an appropriate amount of gain
are used for this purpose. In the vast majority of cases, the amplified signals are then
equidistantly sampled to transfer them to the digital domain. At this point, the data
can conveniently be visualised, stored, and analysed. An exemplary multi-channel EEG
recording is depicted in Figure 6.2.
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C3–P3
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C4–A1

40
µV

2000 ms

Figure 6.2 Multi-channel EEG recording. Each trace represents the voltage between a pair of
electrodes (also see Figure 6.1). Data from the CAP Sleep Database [163], further described in
Section 6.5.1, were used to create this figure.

Human EEG was for the first time recorded in the 1920s by Hans Berger [164], a German
psychiatrist and strong believer in the existence of telepathy [165], who laid the grounds
for electroencephalography in his well-known article Über das Elektrenkephalogramm des
Menschen [166]. In particular, Berger found that a human subject, when lying still with
eyes closed, would express rhythmical oscillations of approximately 10 Hz in the occipital
EEG. He further found that those pronounced oscillations, later referred to by some as
the “Berger rhythm” [167], would be replaced by electrical activity of higher frequency
and lower amplitude as soon as the subject opened their eyes.
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To this day, different EEG signals are most commonly distinguished by their predominant
frequency content. Consistent with the conventions suggested by Berger, who called the
aforementioned 10 Hz oscillations alpha waves and the higher-frequency oscillations beta
waves, other frequency bands have later been assigned Greek letters of their own. This
eventually lead to an arbitrary, but widely agreed upon separation of the EEG frequency
spectrum in terms of delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz),
and gamma (> 30 Hz) activity [168].

The electrogenesis of the EEG—which tries to explain how physiological processes in
different brain regions contribute to the generation of various forms of scalp electrical
potentials—is a neuroscientific research field in its own right. Among other publications,
the textbooks Electric Fields of the Brain: The Neurophysics of EEG by Paul Nunez
and Ramesh Srinivasan [161], as well as Rhythms of the Brain by György Buzsáki [168]
provide valuable insights on this field of study.

In the present work, EEG will be considered from a drastically more abstract perspective.
In this regard, consider that the human brain can be seen as an extremely complex
dynamical system with unknown dynamics, and endowed with a phase space of unob-
servable structure and dimensionality (see Chapter 3). In other words, the brain can
be modelled as a black box in terms of systems theory. Based on this assumption, the
EEG may be understood as a very low-dimensional projection of the underlying brain
dynamics, and thus provides a window into those dynamics: for sure, the EEG will not
reflect all the state transitions occurring in the brain, but on the other hand, any change
in the EEG implies that its underlying dynamical system has progressed to some different
state (also see Chapter 3). Being non-invasive, painless, cost-effective, and rather easily
performed, this interrelation renders the EEG a very powerful tool.

6.1.1 Quantitative EEG Analysis

Electroencephalography is widely used in research and medical diagnostics. Regardless of
its broad spectrum of applications, a common denominator of working with EEG is the
assessment of motifs/patterns/features in the signals, and to relate them to observations
from other modalities—the subject’s behaviour, for instance. The ultimate purpose of
EEG analysis is the inference on cortical state changes, and such analyses are either
performed by visual inspection, or supported by computer-based parameter extraction.
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The latter is also called quantitative EEG analysis, and the general approach is usually
as follows. Assume an EEG recording containing a total of k differential voltage traces
(“channels”), all synchronously digitised at a constant rate of fS samples per second, and
over a recording duration of d seconds. Those data constitute a multivariate time series
{x1,x2, . . . ,xN}, where N = bdfSc, and

∀t ∈ {1, 2, . . . , N} : xt =
(
xt,1 xt,2 · · · xt,k

)T
(6.1)

contains the voltage samples for all k channels at time index t.

Now, as a prerequisite for any meaningful analysis, pseudo-stationarity has to be assumed.
In other words, the signal properties of the EEG are allowed (and often expected) to
change over time, but are also required to remain reasonably stable within short time
intervals ∆d. The rationale is that an analysis window of ∆d seconds duration can then
be chosen, and the overall sequence of N data points can be segmented into overlapping
subsequences, each containing w = b∆dfSc consecutive vectors {xt,xt+1, . . . ,xt+w−1},
whereby t ∈ {1, 2, . . . , N − w + 1}.

Based on this segmentation, a function of the form f(xt,xt+1, . . . ,xt+w−1) can be applied
to the data for each time index t ∈ {1, 2, . . . , N − w + 1}, which yields a new time series

{y1,y2, . . . ,yN−w+1}, where yt = f(xt,xt+1, . . . ,xt+w−1). (6.2)

Figuratively speaking, an analysis window of w samples length is moved along the EEG,
and thus, the approach is often called the sliding-window technique (with maximum
overlap, in the present case). The individual sequences of EEG resulting from this
segmentation are also called EEG epochs. If the function f is chosen so as to represent
a meaningful signal property, then each vector yt provides some information on the
particular EEG epoch located in the time interval between t and t + w − 1. With
regard to finding such meaningful signal properties, consider again that the EEG is
a very low-dimensional projection of the underlying cerebral processes, and that its
relation with higher cortical functions is not fully understood. Consequently, most
techniques of quantitative EEG analysis are intrinsically empirical. Be it the traditional
frequency band-related measures or more recent additions to the set of analysis tools: the
mechanistic background of the vast majority of EEG parameters is not entirely known.
In this inherently probabilistic framework, any given signal property that correlates with
behavioural observations constitutes a parameter worth considering for EEG analysis.
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6.2 Permutation Entropy as an EEG Parameter

One quantity that is receiving increasing attention in the field of quantitative EEG
analysis is permutation entropy. It has been successfully used for EEG analyses in
sleep scoring, general anaesthesia monitoring and research on disorders of the central
nervous system, most notably epilepsy. Comprehensive overviews regarding its manifold
applications have been given in Chapter 1, and can also be found in the review articles [144,
146]. Also, new applications of permutation entropy in EEG processing, and especially
ways of extending the method are constantly reported on: for instance, “weighted” [108],
“multiscale” [47], “multivariate multi-scale” [109], and “amplitude-aware” [110] variants
of permutation entropy have so far been proposed. As literature suggests, the quantity
may well be relevant to any research field that benefits from a widely accepted measure
of the complexity of EEG.

Considering the great interest taken in permutation entropy, and given its virtually
universal applicability in EEG analysis, a particular set of questions is surprisingly
seldom addressed, though: What are the dynamic signal characteristics of EEG that
permutation entropy responds to? Can the order m and time lag τ be selected on a
phenomenological basis? And finally, how should the abstract notion of complexity be
interpreted in EEG?

From a strictly outcome-oriented perspective, those may be minor issues. Nevertheless,
a careful examination of permutation entropy in EEG might foster our general under-
standing of this class of electrophysiological signals. The present chapter takes a step
in this direction, pioneering the following approach: instead of extending permutation
entropy, try to simplify it without compromising its suitability for EEG analysis, and if
successful, examine whether the result can more easily be interpreted than the initial
chaos-theoretic complexity measure.

Credit for inspiring this idea is due to Bandt [16], who recently questioned the usage of
terms like “complexity”, “chaos” and “disorder” in the EEG context and suggested that
the permutation entropy of an epoch of EEG is equivalent to its distance from white
noise—a simplification that immediately increases interpretability. In the following, we
shall advance on this strategy, systematically deriving an intuitive explanation for the
behaviour of permutation entropy in EEG.
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6.2.1 Estimating Permutation Entropy from EEG

Consistent with Section 6.1.1, the usual approach of using permutation entropy as a
quantitative EEG parameter is the following. Let {x1,x2, . . . ,xN} denote a k-channel
EEG recording, comprised of N samples per channel. Then, for any suitable window
length w, a sliding-window analysis in terms of Equation (6.2) yields the general result

{y1,y2, . . . ,yN−w+1}, where yt = f(xt,xt+1, . . . ,xt+w−1).

In case of permutation entropy, the function f has to be defined to return a k-dimensional
vector

yt =
(
yt,1 yt,2 · · · yt,k

)T
,

where each element yt,i contains the (empirical) permutation entropy of the particular
EEG epoch {xt,i, xt+1,i, . . . , xt+w−1,i}. Given that permutation entropy is a univariate
measure, let us drop the channel index i, and focus on a single EEG trace with signal
windows in terms of {xt, xt+1, . . . , xt+w−1}. (This is of course without loss of generality,
but results in a simpler formalism.)

From each such segment, permutation entropy is obtained as has been described in
Section 4.3. For a given order m and time lag τ , the EEG samples {xt, xt+1, . . . , xt+w−1}
are first transformed into a sequence of ordinal patterns, then a probability vector

pt =
(
pt,1 pt,2 · · · pt,m!

)T

in terms of Equation (4.9) is estimated by counting the occurrences of each ordinal
pattern πi ∈ Ωm. Finally, the entropy yt = H(pt) as given by Equation (4.8) is computed.

By applying this procedure to all the overlapping segments of the EEG trace, a time
series {y1, y2, . . . , yN−w+1} of permutation entropy values is obtained. This sequence
reportedly (see [144, 146]) yields interesting correlations with behavioural observations:
also see the introductory example given in Chapter 1.

6.3 The Dynamics of Permutation Entropy

Being an abstract complexity measure, the absolute value of permutation entropy obtained
from a single epoch of EEG is quite insignificant. Much rather, the measure becomes
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relevant for EEG analysis when entropies are compared across multiple EEG epochs,
which is the purpose of the aforementioned sliding-window approach. Considerable
contrast in value can then be observed, and be correlated with behavioural observations
as is common practice. Let us call those decisive inter-epoch fluctuations the dynamics
of permutation entropy. Their relation with the signal characteristics of EEG shall be
further studied in the following. To that end, let us consider some generic properties of
entropy, and derive implications for the dynamics of permutation entropy from those.

6.3.1 Probability Reallocation

In accordance with Section 6.2.1, let {yt} be a sequence of permutation entropy values,
obtained from a trace of EEG samples {xt} using the pattern order m, the time lag τ ,
and a sliding window of length w with maximum overlap. Clearly, each of the entropy
values yt then relates to a probability vector

pt =
(
pt,1 pt,2 · · · pt,m!

)T
, such that yt = H(pt).

Further recall that, depending on the pattern order m and time lag τ , an analysis window
of w samples length effectively spans a total of

ŵ = w − (m− 1)τ (6.3)

ordinal patterns, and that the probability estimate pt is based on counting pattern
occurrences. In other words, when computing yt, the vector ŵpt is obtained from the
pattern sequence, and subsequently divided by ŵ to receive the probability vector pt,
with ‖p‖1 = 1.

Now observe that any pair of neighbouring probability vectors pt and pt+1 are either
identical, or differ in exactly two elements, whereby

pt+1,i = pt,i ±
1
ŵ

and pt+1,j = pt,j ∓
1
ŵ
. (6.4)

This is due to the fact that between the calculations of yt = H(pt) and yt+1 = H(pt+1),
the analysis window is moved forward by one sample. Effectively, the leftmost ordinal
pattern πt is removed from the probability distribution pt, and the new rightmost ordinal
pattern πt+ŵ takes its place in the “updated” distribution pt+1. It therefore holds that
pt = pt+1 if πt = πt+ŵ, while otherwise, the relations given by Equation (6.4) apply.

99



6 Permutation Entropy of the Electroencephalogram

Consequently, the dynamics of permutation entropy (that is, the value progression of
the time series {yt}) are governed in their entirety by a sequence of pairwise probability
reallocations.

6.3.2 Probability Balance Coefficients

To understand how a probability reallocation in terms of Equation (6.4) affects the value
of permutation entropy, a universal property of entropy can be utilised. To that end,
consider that any pair of probabilities (pi, pj) from some probability vector p contributes
a fraction

pi log 1
pi

+ pj log 1
pj

to the overall entropy H(p). Defining the shorthand pij = pi + pj, and introducing the
notion of probability balance coefficients in terms of

βij =

pi/pij, for pij > 0,

1/2, for pij = 0,
such that βij = 1/2 ⇐⇒ pi = pj, (6.5)

this contribution can be rewritten as a bivariate function

H∆(pij, βij) = pi log 1
pi

+ pj log 1
pj

= pi log 1
pij

+ pi log 1
βij

+ pj log 1
pij

+ pj log 1
βji

= pij

(
log 1

pij
+ βij log 1

βij
+ (1− βij) log 1

1− βij

)
= pij

(
log 1

pij
+ Hb(βij)

)
,

(6.6)

wherein Hb denotes the binary entropy function

Hb(βij) = βij log 1
βij

+ (1− βij) log 1
1− βij

= βij log 1
βij

+ βji log 1
βji
. (6.7)

For any constant pij, the function H∆(pij, βij) is an affine transformation of Hb(βij).
Therefore, the behaviour of Hb(βij) fully determines how any probability redistribution
among pi and pj affects the overall entropy value H(p). As shown in Figure 6.3, Hb(βij)
is a concave function, and is symmetrical around its maximum at βij = 1/2.

100



6.3 The Dynamics of Permutation Entropy

0 0.25 0.5 0.75 1

0

0.2

0.4

0.6

0.8

1

βij

H
b(
β

ij
)

Figure 6.3 The binary entropy function of Equation (6.6), plotted using the binary logarithm.

Consequently, if the summed probability pij = pi + pj is reallocated such that pi and pj
approach their average, then βij approaches 1/2 and the entropy increases. The same
principle applies to any pair of probabilities drifting apart, where the entropy hence
decreases. Two well-known corner cases of this property are that Shannon entropy is
maximal for the uniform distribution, while it is zero if all but one pi are zero [85].

For a probability distribution p of n elements, a quadratic matrix of n2 different balance
coefficients 

β11 · · · β1n
... . . . ...
βn1 · · · βnn

 (6.8)

can in principal be created. However, it is sufficient to consider the entries above its
main diagonal, namely the subset

B = {βij | 1 6 i < j 6 n} , such that |B| =
(
n

2

)
= n2 + n

2 , (6.9)

because the remaining coefficients, βij with i > j, are easily obtained via the symmetry
relation βji = 1− βij. This also applies to the balance coefficients on the main diagonal,
where i = j, and therefore, βij = βji = 1/2.
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In conjunction with the relation ‖p‖1 = 1, the coefficients βij ∈ B constitute a system of
|B|+ 1 linear equations in the probabilities p. Its augmented system matrix is



1 1 1 1 · · · 1 1
β12 − 1 β12 0 0 · · · 0 0
β13 − 1 0 β13 0 · · · 0 0
β14 − 1 0 0 β14 · · · 0 0

... ... ... ... . . . ... ...
0 0 0 0 · · · βn−1, n 0


, (6.10)

and Gaussian elimination confirms that the system is overdetermined but consistent.
This means that any discrete probability distribution p is unambiguously representable
by a set of balance coefficients βij ∈ B, and in turn, that the entropy value H(p) can be
determined from those balance coefficients.

Permutation entropy of order m is the entropy H(p) of an m!-dimensional probability
vector p, and consequently, its dynamics can be studied by analysing variations within a
collection of probability balances βij ∈ B, where |B| = (m!)(m! + 1)/2.

6.4 Complexity and Pseudo-Complexity

When used for EEG analysis, permutation entropy depends on a set of parameters and
surrounding conditions. Besides the pattern order m and the time lag τ , also the sampling
rate fs, the window length w, as well as any filters applied to the EEG signals may affect
the results. Those are a lot of parameters to decide upon, especially when considering the
empirical nature of ordinal EEG analysis. Existing guidelines on parameter selection are
essentially based on computational or statistical feasibility concerns [146], and are rather
not motivated by (electro-)physiological considerations. Therefore, any parametrisation
of permutation entropy reported suitable for EEG analysis must be regarded as the result
of extensive experimentation.

With that in mind, it is remarkable that independent groups have successfully used the
six ordinal patterns of order m = 3 for EEG encoding [169]. Most likely by experimental
optimisation, investigators ended up using the lowest-possible order that still accounts for
more than just the patterns “the signal increases” (12) versus “the signal decreases” (21).
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Paradoxically, if six ordinal patterns suffice, most of what makes permutation entropy a
complexity measure can apparently be omitted.

Accepting this immanent contradiction, one may raise the following questions: can the
number of ordinal patterns be even further reduced without impairing the dynamics
of permutation entropy in EEG? And if so, do the remaining patterns permit a more
tangible interpretation of this analysis technique?

6.4.1 A New Class of Ordinal Patterns?

Regarding those questions, variegating the pattern order m will obviously not permit
any further investigation. A finer-grained approach is necessary, and shall therefore be
described in the following. It is based on the hypothetical idea that any pair of ordinal
patterns may be the redundant bifurcation of a less specialised, yet more decisive kind
of motif. By way of illustration, let us define an augmented class of ordinal patterns
of order m = 3. For any tuple of pairwise distinct values (x1, x2, x3), our extra-ordinal
patterns shall not only describe how its elements relate to one another, but additionally
encode the value of the Boolean expression

(xhi − xmid) > (xmid − xlo). (6.11)

Figuratively, we assess if the centroid of a pattern lies above or below its equatorial axis,
and consistently, we shall call the respective pattern either top-heavy or bottom-heavy.
The principle is visualised in Figure 6.4.

123t 123b 132t 132b 213t 213b

321t 321b 312t 312b 231t 231b

Figure 6.4 The twelve extra-ordinal patterns of order m = 3. Highlighted samples render
patterns either top-heavy (t) or bottom-heavy (b). Each pattern pair πt

i and πb
i descends from

a common ordinal pattern πi.
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As an example, the tuple (23, 11, 14) features the bottom-heavy pattern 312b, while the
tuple (28, 6, 17) maps onto a top-heavy 312t. Both are derivates of the same conventional
ordinal pattern 312, though, and it holds for their probabilities that p312 = p312t + p312b.
More generally speaking, a pair of extra-ordinal patterns πt

i and πb
i exists for each ordinal

pattern πi, and their probabilities relate to each other as in

pi = pti + pbi. (6.12)

In practice, calculating the hypothetical extra-ordinary permutation entropy differs only
marginally from the standard approach: probability distribution estimates for 2 ·m! = 12
distinct patterns have to be obtained.

6.4.2 Pseudo-Complexity in Ordinal Pattern Analysis

Apart from nomenclature, extra-ordinary permutation entropy is a reasonable extension
in theory. Using conventional permutation entropy of order m = 3, we implicitly agree
to distinguish two upward-peak patterns (132 and 231) as well as two downward-peak
patterns (213 and 312), so by implication, the additional distinction between top-
heavy and bottom-heavy patterns is equally justified: both kinds of partitions stem
from the same principle, and the degree of granularity that better matches the signal
characteristics of EEG is not evident—because ultimately, the relations between EEG
and ordinal patterns are not understood.

Understood are, however, the basic properties of entropy. According to Equation (6.6),
and in conjunction with Equation (6.12), it holds for any pair of extra-ordinal patterns
πt
i and πb

i that their summed contribution to the extra-ordinary permutation entropy is

H∆(pi, βi) = pti log 1
pti

+ pbi log 1
pbi

= pi Hb(βi) + pi log 1
pi
, (6.13)

where βi is the probability balance coefficient βi = pti/(pti + pbi) = pti/pi. By estimating
the variance of a particular βi in a suitably large collection of EEG epochs, the impact
of the corresponding pattern pair πt

i and πb
i on overall entropy can be quantified. As an

example as intuitive as unlikely, imagine that the variance of some balance coefficient
βi is found to be zero, such that βi and Hb(βi) remain constant for any epoch of EEG.
Equation (6.13) then implies that πt

i and πb
i can merely contribute to the dynamics

(= value changes) of entropy via the sum of their probabilities, which is the probability
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pi of the conventional ordinal pattern πi. In this case, the distinction between πt
i and πb

i

is redundant in the first place: without impairing the dynamics, the respective patterns
πt
i and πb

i can be merged into their common ancestor, the traditional ordinal pattern πi.

More realistically, any balance coefficient will likely feature some variance. Nevertheless,
by estimating the variances of all the coefficients βij ∈ B given by Equation (6.9), the
corresponding pattern pairs can be ranked by their relative contribution to the overall
dynamics. In this way, one can separate decisive pattern pairs from redundant ones, and
tell apart the complexity of the data from the pseudo-complexity of the method.

Admittedly, if the lengths of the EEG epochs analysed suffice for accurate probability
estimation, it is not necessarily detrimental to use more ordinal patterns than the
underlying signal characteristics demand for. However, doing so conveys the impression
of a more intricate phenomenon than there might actually be, and could hence promote
the misinterpretation of analysis results.

6.5 The Entropy of Peaks

The principle outlined above is immediately transferable to actual permutation entropy.
As a starting point, let us consider the pattern order m = 3, and the time lag τ = 1.
Extensions for higher orders and time lags will be discussed later on. Because six different
ordinal patterns of order m = 3 exists, their probability distribution is of the form

p =
(
p123 p132 p213 p231 p312 p321

)T
, (6.14)

and their corresponding balance coefficients are

β123/123 β123/132 β123/213 β123/231 β123/312 β123/321

β132/123 β132/132 β132/213 β132/231 β132/312 β132/321

β213/123 β213/132 β213/213 β213/231 β213/312 β213/321

β231/123 β231/132 β231/213 β231/231 β231/312 β231/321

β312/123 β312/132 β312/213 β312/231 β312/312 β312/321

β321/123 β321/132 β321/213 β321/231 β321/312 β321/321


. (6.15)

As discussed in Section 6.3.2, it suffices to consider the matrix entries above the main
diagonal, that is, the coefficients βij with 1 6 i < j 6 6. Those 15 elements shall be

105



6 Permutation Entropy of the Electroencephalogram

aggregated in a vector of balance coefficients

β =
(
β123/132 β123/213 β123/231 · · · β231/312 β231/321 β312/321

)T
. (6.16)

For reasons of simplicity, linear indexing (that is, the notation βi with 1 6 i 6 15) will
henceforth be used as an alternative means of notation when referring to the individual
elements of the vector β.

6.5.1 An Open-Source, Open-Data Approach

The statistics of balance coefficients in EEG have to be assessed empirically, that is, from
a suitably large collection of data. The analyses presented here were carried out on the
CAP Sleep Database [163], a set of 108 polysomnographic recordings conducted at the
Ospedale Maggiore di Parma, and kindly dedicated to the public domain. Sleep EEG
is particularly suitable for the task at hand, because permutation entropy reportedly
varies for different stages of natural sleep [15, 16], and polysomnographic recordings
usually encompass hours of contiguous data per subject. Moreover, a multitude of
pathologies justify polysomnographic clarification, which increases the heterogeneity of
the data—another plus for the present use case.

To aid reproducibility, using a dataset available to all of the scientific community was
considered obligatory. The choice for the CAP Sleep Database was motivated by Bandt’s
recent publication on using ordinal patterns for sleep stage classification [16]. The dataset
is hosted by PhysioNet [170], and provided free of charge. Once again in the interest of
reproducible science [153], the free and open-source numerical computation environment
GNU Octave 4.2 was utilised for data analysis. The code is provided in the supplements
of [77], and was tested compatible with MATLAB, versions 2015b and above.

6.5.2 EEG Segmentation and Processing

The CAP Sleep Database is a collection of 108 files in European Data Format (EDF) [171].
Four of them (brux1.edf, n13.edf, n14.edf, and narco3.edf) had to be rejected due
to apparent inconsistencies in their file headers. From the remaining polysomnograms, all
channels containing EEG were selected, and converted to a sampling rate of fS = 200 Hz.
No additional preprocessing, nor any artefact correction were applied. The resampled
EEG traces were split into non-overlapping epochs of 20 s duration, that is, into sequences
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of w = 4000 samples each. To avoid inadvertent biasing of the pattern distributions,
epochs containing ties (triples of values violating the constraint x1 6= x2 6= x3) were
discarded. The procedure yielded a total of Ncap = 1.6 · 106 signal segments, that is,
more than one year of single-channel EEG data.

Using the order m = 3 and time lag τ = 1, the epochs were then mapped onto sequences
of ordinal patterns. From each of the resulting pattern sequences, a probability vector

pi =
(
p123i p132i p213i p231i p312i p321i

)T
(6.17)

was estimated, and permutation entropy was subsequently calculated. All entropy values
were divided by log 3! for normalisation. As is to be expected, the sleep EEG data feature
a wide range of permutation entropy values. Their non-trivial distribution is depicted in
Figure 6.5.
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Figure 6.5 Kernel density estimate (Gaussian, σ = 5 · 10−3) for the Ncap = 1.6 · 106 normalised
permutation entropy values (order m = 3, time lag τ = 1) obtained from the CAP Sleep
Database.

6.5.3 Principle Components of the Probability Balances

Furthermore, a vector of balance coefficients βi as per Equation (6.16) was computed for
each ordinal pattern distribution pi. For notational purposes, let us concatenate these
vectors into a Ncap × 15 data matrix

B =
(
β1 β2 . . . βNcap

)T
. (6.18)
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Interpreting each vector βi (each row in B) as one point in a 15-dimensional feature
space, principle component analysis (PCA) was then carried out on the data matrix.
PCA constitutes a perfect match for the problem at hand, given that balance coefficients
shall be ranked by their contribution to the variance of the data matrix B.

Let us notate PCA in terms of computing the set of eigenpairs

{
(λi,wi) | 1 6 i 6 15

}
(6.19)

to the 15× 15 covariance matrix ΣB of the data matrix B. The eigenvectors wi then
represent the loading vectors of the PCA, and map B onto its principle components

zi = Bwi. (6.20)

Each principle component zi is thus a linear combination of the balance coefficients βi,
and explains a fraction of the variance in the dataset B. More specifically, it holds that
λi = Var(zi), and it is therefore common practice to enumerated the principle components
according to λ1 > λ2 > . . . > λ15, such that z1 contributes most to the variance in B.

For the actual CAP dataset, PCA revealed that

1
λ0

4∑
i=1

λi > 0.999, where λ0 =
15∑
i=1

λi.

With more than 99.9% of the variance in B being due to z1, z2, z3, and z4 (see Table 6.1),
all further considerations were limited to those four principal components. Their kernel
density estimates, depicted in Figure 6.6, are highly instructive.

Table 6.1 Eigenvalues and explained variations of the first four principle components, and
their Spearman correlation coefficients with permutation entropy (PeEn).

Component Eigenvalue Explained Variation Spearman Correlation
zi λi λi/λ0 ρ(PeEn, zi)

z1 5.0 · 10−2 94.4% 0.99996
z2 1.5 · 10−3 2.8% −0.006
z3 1.2 · 10−3 2.2% −0.008
z4 2.5 · 10−4 0.5% 0.02
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Figure 6.6 Kernel density estimates (Gaussian, σ = 1 · 10−2) for the first four principle
components z1, z2, z3 and z4 of the data matrix B.

Notice that the density of z1 resembles the distribution of permutation entropy values
depicted in Figure 6.5, suggesting some correlation between the two. By contrast, the
density estimates of z2, z3 and z4 seem to be normally distributed around zero, that is,
they appear to be random noise.

Testing for correlation between the permutation entropy values and the principle com-
ponents z1, z2, z3, and z4, respectively, Spearman correlation coefficients as reported
in Table 6.1 were obtained. Consistent with Figures 6.5 and 6.6, the first principle
component z1 is almost perfectly correlated with permutation entropy, while z2, z3, and
z4 clearly contain uncorrelated noise. Moreover, z1 alone explains more than 94% of the
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variance in B. It is therefore safe to assume that the dynamics of permutation entropy
are exclusively driven by the component z1.

6.5.4 Eliminating Pseudo-Complexity

The nature of the first principle component’s loading vector w1 is the pivotal result of
the current chapter. In accordence with the data given in Table 6.2, it holds in very good
approximation that

z1

w1,1
= βTw1

w1,1
u



β123/132

β123/213

β123/231

β123/312

β132/321

β213/321

β231/321

β312/321



T

1
1
1
1
−1
−1
−1
−1



=



β123/132

β123/213

β123/231

β123/312

β321/132

β321/213

β321/231

β321/312



T

1
1
1
1
1
1
1
1



. (6.21)

The above is a bubble of pseudo-complexity bursting: while the analysis was designed
to isolate some pattern pairs that are irrelevant for permutation entropy in EEG,
Equation (6.21) implies that all of the probability balances among the pairs

Ω† =
{

(123,321), (132,213), (132,231), (132,312),

(213,231), (213,312), (231,312)
} (6.22)

contribute virtually nothing to the variance in z1, and are thus negligible in good
approximation. Those are the balances between any two patterns containing a peak,
as well as the balance β123/321 between the monotonously rising and the monotonously
falling pattern.

Furthermore, estimating the mean, median and mode of each balance coefficient from
data matrix B, results as presented in Table 6.2 were obtained. In particular, it holds
true for all pattern pairs in Ω† that

E[βi] u Md[βi] u Mo[βi] u 1/2, (6.23)
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Table 6.2 The principle component z1 = βTw1 is a (trivially simple) linear combination of a
subset of balance coefficients. Moreover, all balance coefficients not included in z1 (listed in the
lower part of the table) appear to be symmetrically distributed around 1/2.

Index Balance Coeff. Weight Mean Median Mode
i βi w1,i w1,i/w1,1 E[βi] Md[βi] Mo[βi]

1 β123/132 −0.353 1.000 0.8588 0.8842 0.9000
2 β123/213 −0.354 1.002 0.8586 0.8842 0.9000
3 β123/231 −0.353 0.999 0.8588 0.8842 0.9000
4 β123/312 −0.352 0.997 0.8590 0.8842 0.9000
9 β132/321 0.354 −1.003 0.1415 0.1157 0.0909
12 β213/321 0.355 −1.005 0.1417 0.1158 0.0909
14 β231/321 0.354 −1.002 0.1414 0.1158 0.1111
15 β312/321 0.353 −1.000 0.1412 0.1158 0.0909

5 β123/321 0.002 −0.005 0.5004 0.5004 0.5000
6 β132/213 −0.001 0.003 0.4997 0.5000 0.5000
7 β132/231 0.001 −0.001 0.5001 0.5000 0.5000
8 β132/312 0.001 −0.004 0.5004 0.5000 0.5000
10 β213/231 0.001 −0.004 0.5004 0.5000 0.5000
11 β213/312 0.002 −0.007 0.5007 0.5008 0.5000
13 β231/312 0.001 −0.003 0.5003 0.5000 0.5000

which strongly suggests that their respective balance coefficients are symmetrically
distributed around 1/2. Under this premise, and in conjunction with the definition as
per Equation (6.5), the relations

E[p123] u E[p321], as well as E[p132] u E[p213] u E[p231] u E[p312] (6.24)

follow immediately. Moreover, and again due to the linear combination of Equation (6.21),
the balance coefficients for the pattern pairs

Ω? =
{

(123,132), (123,213), (123,231), (123,312),

(321,132), (321,213), (321,231), (321,312)
} (6.25)

contribute almost equally to the variance in B. Those are all of the possible balances
between a peak pattern and a monotonous pattern. Introducing the peak probability p̂
in terms of

p̂ = p132 + p213 + p231 + p312, and 1− p̂ = p123 + p321, (6.26)
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and using the relations given by Equation (6.24), each of these balance coefficients can
be approximated by

β? = (1− p̂)/2
(1− p̂)/2 + p̂/4 = 2 (p̂− 1)

p̂− 2 ,

and the linear combination of Equation (6.21) be reduced to the expression

z1

w1,1
u 8β? = 16(p̂− 1)

p̂− 2 . (6.27)

Let us assume that equality holds in the above relation, such that all variance within
the decisive principle component z1 is exclusively induced by the peak probability p̂.
Without compromising the dynamics of permutation entropy, all four peak patterns 132,
213, 231 and 312 can then be merged into just one ordinal pattern—the peak pattern.
Likewise, the monotonous patterns 123 and 321 can be unified, yielding a single edge
pattern. On this basis, permutation entropy of order m = 3 and time lag τ = 1 can be
replaced by a much simpler entropy of peaks function

H(p̂) = p̂ log 4
p̂

+ (1− p̂) log 2
1− p̂ = Hb(p̂) + p̂ log 2 + log 2. (6.28)

This function is concave, and has its maximum at p̂ = 2/3, where pi = 1/6 for all
i ∈ {1, 2, . . . , 6}, which is consistent with permutation entropy being maximal for a
uniform distribution of ordinal patterns. The graph of H(p̂) is depicted in Figure 6.7.
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Figure 6.7 The entropy of peaks function H(p̂) as given by Equation (6.28), divided by log 3!
for normalisation. The maximum is taken on for p̂ = 2/3, where H(p̂) = 1.
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For verification purposes, the entropy of peaks H(p̂) was calculated for all of the EEG
epochs obtained from the CAP Sleep Database. Using the same overall approach as
described in Section 6.5.2 for conventional permutation entropy, another sequence of
Ncap = 1.6 · 106 entropy values was obtained. Direct comparison yielded a Pearson
correlation coefficient of r = 0.99998, and a mean relative error of η = 0.03% between
permutation entropy and the entropy of peaks.

In summary, the ordinal patterns of order m = 3 obtained from the CAP Sleep Database
can be replaced by binary symbols that encode the disjoint properties “three consecutive
values form a peak” and “three consecutive values form an edge”.

6.6 Linearising Permutation Entropy

The previous sections justify the working hypothesis that, in EEG analysis, permutation
entropy of orderm = 3 may behave as a univariate function of the peak probability p̂. The
latter can be estimated from an epoch of w EEG samples {x1, x2, . . . , xw} by computing

p̂ = ŵ

w
with ŵ =

w−1∑
k=2

∣∣∣[xk − xk−1 > 0]− [xk+1 − xk > 0]
∣∣∣. (6.29)

In the following, let us look in more detail at the properties of those decisive signal peaks.

6.6.1 Signal Peaks and Spectral Bandwidth

In mathematical terms, a peak is a local extremum. Any real-valued, twice differentiable
function s has a peak at tk if it holds that s′(tk) = 0 and s′′(tk) 6= 0. In other words, a
peak in s is a zero crossing in its first derivative s′. Now, consider a real-valued function s,
periodic in T = 1/f0, and band-limited to frequencies including Nf0, such that

s(t) =
N∑
k=0

ak sin (2πkf0t+ φk), with ak ∈ R, and φk ∈ R. (6.30)

Its first derivative is again a real-valued function, periodic in T and band-limited to Nf0,
namely

s′(t) =
N∑
k=0

2πakkf0 cos (2πkf0t+ φk) =
N∑
k=0

bk sin (2πkf0t+ ϑk). (6.31)
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Being the N -th partial sum of a Fourier series, the function can be alternatively be
written using complex exponentials,

s′(t) =
N∑

k=−N
ck e

j2πkf0t, with j =
√
−1, and ck ∈ C. (6.32)

This expression constitutes a trigonometric polynomial of order N , and therefore has
exactly 2N roots per period [172]. As for any real-valued polynomial, its zeroes

Z = {tk | s′(tk) = 0, k ∈ {1, 2, . . . , 2N}} (6.33)

are not necessarily distinct, and are either real or occur in complex conjugate pairs.
Therein, let us focus on the subset of zero crossings exclusively, which is

Zø = {tk ∈ R | s′′(tk) 6= 0} ⊆ Z. (6.34)

With Zø being a subset of Z, it obviously holds that |Zø| 6 2N . Moreover, the number of
peaks ŵ in the function s equals the number of zero crossings |Zø| in its first derivative s′.
It therefore holds that

ŵ = |Zø| 6
2fmax

f0
with fmax = Nf0. (6.35)

Sampling one full cycle of the function s at a sampling rate of fS = wf0, a sequence of
w values {x1, x2, . . . , xw} is obtained. Its maximum number of peaks can be expressed as

ŵ 6
2wfmax

fS
with fmax 6

fs

2 . (6.36)

Consequently, it holds for the peak probability p̂ that

p̂ = ŵ

w
6

2fmax

fS
. (6.37)

From a practical point of view, this relation is not limited to periodic signals. To assess
fmax in any signal segment, Fourier transform needs to be applied, which by definition
constitutes a periodic continuation of the analysis window. Thus, the inequality given by
Equation (6.37) provides an upper bound on the number of peaks in any band-limited
signal.
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This bound may be naïvely conservative, but it is easily derived and sufficient to draw the
following conclusion: given that the entropy of peaks function H(p̂) of Equation (6.28)
increases monotonically on the interval 0 6 p̂ 6 2/3, it follows from Equation (6.37) that
permutation entropy of order m = 3 is monotonic with p̂ for EEG epochs band-limited
such that

fmax 6
fs

3 . (6.38)

As stated earlier, the absolute value of permutation entropy obtained from a single EEG
epoch is insignificant. It is the contrast in value across distinct epochs, its dynamics, that
renders permutation entropy a valuable tool for EEG analysis. However, this contrast
persists for any parameter that grows monotonically with permutation entropy. Therefore,
the following constitutes an astounding, yet sensible proposition: for an epoch of EEG,
digitised at a sampling rate of fS, and band-limited such that fmax 6 fS/3, permutation
entropy of order m = 3 and time lag τ = 1 can be substituted by the peak probability p̂,
that is, by the number of peaks per unit time.

6.6.2 Counting Zigzags in EEG

Further EEG analyses were performed to test the aforementioned proposition under
real-world conditions. To rule out possible peculiarities of the CAP Sleep Database or
sleep EEG in general, the data corpus was expanded with a set of EEG signals from a
different clinical setting.

The CHB-MIT Scalp EEG Database is a collection of EEG recordings obtained from
paediatric patients suffering from epileptic seizures [173]. Acquired at Boston Children’s
Hospital, the data were generously put into the public domain and are available from
PhysioNet [170]. In analogy with the procedure described in Section 6.5.2, a total of
Nmit = 4.1 · 106 EEG epochs of 20 s duration were obtained from this dataset—another
two and a half years of single-channel EEG data. For each of those epochs, permutation
entropy of order m = 3 and time lag τ = 1 was computed. In addition, an estimate
of the peak probability p̂ as per Equation (6.29) was obtained from every EEG epoch
of the CAP and CHB-MIT datasets. Spearman correlation coefficients between peak
probabilities and permutation entropies were then computed for the subsets of EEG
epochs with p̂ 6 2/3, the subsets of EEG epochs with p̂ > 2/3, as well as the respective
data sets in their entirety. The results of those analyses are provided in Table 6.3.
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Table 6.3 Spearman correlation coefficients between permutation entropy and peak probability,
for EEG epochs obtained from the CAP Sleep Database and the CHB-MIT Scalp EEG Database.
Quantities subscripted “low” and “high” correspond to results obtained from those subsets of
signal epochs for which p̂ 6 2/3 or p̂ > 2/3 respectively hold.

Data Set Number of Epochs Spearman Correlation
N Nlow Nhigh ρ(PeEn, p̂) ρlow(PeEn, p̂) ρhigh(PeEn, p̂)

CAP 1.6 · 106 1.6 · 106 6.0 · 102 0.99998 0.99998 −0.923
CHB-MIT 4.1 · 106 4.0 · 106 1.1 · 105 0.99937 0.99993 −0.963

The results given in Table 6.3 clearly support the conjecture that permutation entropy
of order m = 3 and time lag τ = 1 increases monotonically with the peak probability
for p̂ 6 2/3. Moreover, the correlation is inverted for peak probabilities exceeding this
boundary. Both results are fully in line with the function graph of Figure 6.7. When
testing on the full set of peak probabilities, strong positive correlation is maintained,
because the epochs for which p̂ > 2/3 holds are too seldom to make a difference. This
directly relates to the bandwidth constraint of Equation (6.38), which implies that for
the chosen sampling rate of fS = 200 Hz, the peak probability cannot increase beyond
p̂ = 2/3 for EEG band-limited to frequencies below fmax u 66.7 Hz.

Not only is the bandwidth fmax 6 fS/3 seldom exceeded in the datasets considered
here, but the same presumably holds true for the majority of EEG in general: sampling
rates below 100 Hz are quite uncommon for EEG, while spectral content above 30 Hz
is often regarded as insignificant, and thus suppressed using low-pass filters. Moreover,
an investigator actually interested in “gamma-band activity” will choose a considerably
higher sampling rate. It is therefore likely that the decrease in permutation entropy for
peak probabilities p̂ > 2/3 is not a part of the actual effect, but a rarely observed flaw in
the analysis technique.

In essence, utilising permutation entropy of order m = 3 and time lag τ = 1 for EEG
analysis appears to be an involved way of counting zigzags in the signal.
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6.7 Permutation Entropy as a Spectral Estimator

While counting signal peaks may seem a trivial procedure at first glance, a profound
mathematical theory actually supports this approach to signal analysis. It was formulated
by Benjamin Kedem in the 1980s, and is centred around the notion of higher order
crossings. Only a humble outline of this framework (limited to aspects that aid the
interpretation of permutation entropy in EEG analysis) will here be provided.

For a large-scale, yet low-threshold introduction to the theory, the reader is referred to Ke-
dem’s comprehensive article Spectral Analysis and Discrimination by Zero-Crossings [174],
which also served as the primary source for the section to follow.

6.7.1 Zero Crossings and the Dominant Frequency Principle

Signal analysis by means of higher order crossings is a generalisation of the commonly
known zero crossing rate, a classic method for fundamental frequency estimation [175].
Self-descriptively, the zero crossing rate zø of a signal is its average number of x-axis
intercepts per unit time. It is obtained from a discrete sequence of samples {x1, x2, . . . , xw}
by computing

zø = 1
w − 1

w∑
k=2

∣∣∣[xk > 0]− [xk−1 > 0]
∣∣∣. (6.39)

Kedem refined the meaning of this quantity, demonstrating that the zero crossing rate of
a discrete-time signal constitutes an approximation of the centroid of its power spectrum

cSxx = 1
mSxx

∫ ∞
0

fSxx(f)df, where mSxx =
∫ ∞

0
Sxx(f)df. (6.40)

Here, Sxx denotes the power spectral density of the signal, and mSxx is its (single-sided)
spectral mass. Intuitively, if Sxx contains a predominant frequency fc, the spectral
centroid cSxx will gravitate towards this particular frequency, and the more Sxx(fc)
outweighs the rest of the spectrum, the shorter the distance between cSxx and fc will be.
Kedem termed this the dominant frequency principle, and further deduced that

cSxx u
zø

2 . (6.41)

A mathematical proof for this interrelation was given in [174], and further supported by
an example quite similar to the following Example 8.
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Example 8. Consider the time-continuous sinusoidal signal s(t) = A sin(2πfct + ϕ),
which has the power spectral density

Sxx(f) =

A
2/4, for f = ±fc,

0, otherwise.

Because fc is the only frequency in the spectrum, it is obviously the dominant frequency.
Calculating the spectral centroid of the signal by means of Equation (6.40), we see that
cSxx = fc holds. Hence, this is a showcase for the dominant frequency principle.

Just as comprehensible, the relation zø = 2fc = 2cSxx also applies, because any sinusoidal
signal has exactly two zero crossings per cycle.

6.7.2 Higher Order Crossings

In the framework of higher order crossings, the peak probability p̂ in terms of Equa-
tion (6.29) is closely related to the zero crossing rate zø.

Let {x1, x2, . . . , xw} be a sequence of values, sampled from a continuous-time signal s(t)
at discrete time steps t ∈ {1/fS, 2/fS, . . . , w/fS}. Estimating the peak probability p̂ of
this sequence as per Equation (6.29) is equivalent to obtaining the zero crossing rate zø

of the difference sequence {∇x2, ∇x3, . . . , ∇xw}, whereby the difference operator ∇ is
defined such that

∇xk = xk − xk−1 = s
(
k/fS

)
− s

(
(k − 1)/fS

)
. (6.42)

In terms of Kedem’s theory, the generalised zero crossings obtained by recursively applying
the ∇-operator k times in a row are called: higher order crossings of the Dk+1 type. Thus,
actual zero crossings are higher order crossings of the D1 type, while local extrema (that
is, the peak patterns 132, 213, 231, and 312) are of type D2.

Kedem’s approach is highly convenient in that the ∇-operator represents a linear time-
invariant system with the power transfer function

|H(f)|2 = |(1− e−j2πf/fS)|2 = 2− 2 cos(2πf/fS). (6.43)

It thus acts as a high-pass filter with a frequency response as depicted in Figure 6.8.
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Figure 6.8 Power transfer function |H(f)|2 of the ∇-operator.

Intuitively, the filter compresses the spectral mass, shifting the spectral centroid further
to the right with each recurrent application of the ∇-operator.

6.7.3 The Spectral Estimation Hypothesis

In summary, the chain of results that explains the dynamics of permutation entropy in
EEG for pattern order m = 3 and time lag τ = 1 is the following:

1. Due to their specific distribution in EEG, it may suffice to distinguish not six, but
merely two kinds of ordinal patterns, namely the peaks {132,213,231,312}, and
the edges {123,321}, with their respective probabilities p̂ and 1− p̂.

2. For EEG epochs with p̂ 6 2/3, permutation entropy increases monotonously with the
peak probability p̂, and both can therefore be used interchangeably in comparative
analyses.

3. The peak probability p̂ is the zero crossing rate zø of a high-pass filtered version of
the signal, whereas the zero crossing rate zø of a signal is an estimate of its power
spectral centroid.

On that basis, it is a rational conjecture that applying permutation entropy of order
m = 3 and time lag τ = 1 to EEG epochs with a peak probability p̂ 6 2/3 effectively
means high-pass filtering the signal according to Equation (6.43), and estimating the
centroid of the resulting weighted power spectrum. Both steps are standard procedures
of linear signal processing, possibly rendering this EEG parameter a spectral estimator
in disguise.
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6.8 Higher Pattern Orders and Time Lags

Up to this point, all considerations and propositions on the behaviour of permutation
entropy in EEG were limited to the pattern order m = 3 and time lag τ = 1. Regarding
the latter, a general discussion was postponed for reasons of simplicity only, and will be
presented in Section 6.8.2. Conversely, formulating a universal interpretation for patterns
of orders m > 3 is a subject still under investigation—and hopefully one to be reported
on in the future. For the time being, the reader is invited to consider the following
preliminary results.

6.8.1 Prospects for Patterns of Higher Order

While an ordinal pattern of order m = 3 is either a peak or an edge, there is no such
simple duality for higher pattern orders. In the general case, a single pattern of order m
can contain up to m− 2 peaks, however, the peaks of consecutive ordinal patterns may
overlap. Moreover, the marginal probability relation of Equation (6.24) does not translate
to the “sub-patterns” of order m = 3 that form a pattern of higher order: conditional
probabilities have to be considered instead.

Despite such intricacies, the principle behaviour of permutation entropy does apparently
not change when increasing the order m within statistically reasonable limits. Calculating
permutation entropy of orders m ∈ {3, 4, 5} for the EEG epochs obtained from the CAP
and CHB-MIT datasets (see Sections 6.5.1 and 6.6.2), results as depicted in Figure 6.9
were obtained. In particular, the strong monotonic correlation between permutation
entropy and the peak probability p̂ is maintained for higher pattern orders. This hints at
a possible generalisation of our spectral estimation conjecture.

6.8.2 Sampling, Resampling and Aliasing

In comparison to higher pattern orders m, the interpretation of arbitrary time lags τ is
straightforward. Under the premise of permutation entropy acting as a spectral estimator
in EEG analysis, the principles of linear systems theory fully apply. Using a time lag τ > 1
is then a means of downsampling (and thus, of band limiting), but may also result in a
violation of the Nyquist–Shannon sampling theorem. Let us substantiate.
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Figure 6.9 Normalised permutation entropy (PeEn) of orders m ∈ {3, 4, 5}, plotted over the
peak probability p̂. Solid curves represent the median. Where graphically resolvable, inner
shaded bands correspond to the 25th–75th, outer shaded bands to the 5th–95th percentiles.
Peak probabilities occurring less than 100 times were discarded and missing values linearly
interpolated. A moving average filter of bandwidth 2.5 · 10−3 was applied for data smoothing.

The Nyquist–Shannon sampling theorem [176] states that any time-discrete representation
of an analogue signal is implicitly band limited to frequencies below and including half
its sampling rate fS. Due to this fundamental constraint of digital signal processing,
an analogue low-pass filter is commonly applied during signal acquisition. This filter
prevents distortions known as aliasing, that is, spectral content beyond the Nyquist
frequency fny = fS/2 folding back into the usable frequency range as in

f 7→ fS

2 −
∣∣∣(f mod fS)− fS

2
∣∣∣, where f > 0. (6.44)

As displayed in Figure 6.10, this function describes a triangle waveform with its extrema
at multiples of fS/2.
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Figure 6.10 The aliasing relation as specified by Equation (6.44). Any spectral content
exceeding the Nyquist rate fny = fS/2 is periodically folded back into the representable
frequency range.

The same constraint applies to sampling rate conversion in the digital domain. Correctly
reducing the sampling rate fS of a digital signal by a factor k therefore involves two steps:
limit the bandwidth to fS/2k, then omit all but every k-th sample. If the band limiting
is skipped, downsampling is prone to aliasing, because any spectral content exceeding
fS/2k is incompatible with the targeted sampling rate fS/k, and folds back into the
representable frequency range, corrupting the resulting signal.

6.8.3 The Time Lag as a Downsampling Factor

According to Section 6.2.1, the usual approach of estimating pattern distributions from
time series is as follows. Given a finite time series {x1, x2, . . . , xN} of N elements, its
ordinal pattern πt of order m and time lag τ at time index t is fully determined by the
m-tuple (xt, xt+τ , xt+2τ , . . . , xt+(m−1)τ ). To estimate the ordinal pattern distribution of
the time series, the sequence {πt} is obtained for all t ∈ {1, 2, . . . , N − (m− 1)τ}, and
the relative number of occurrences of each πi ∈ Ωm is then counted.

For time lags τ > 1, consider an alternative, yet entirely equivalent estimation algorithm:
first, partition the time series {x1, x2, . . . , xN} into τ sub-sequences of the form

∀λ ∈ {1, 2, . . . , τ} : {xλ, xλ+τ , xλ+2τ , . . . , xλ+kτ}, with k =
⌊
N − λ
τ

⌋
+ 1. (6.45)

Next, estimate from each sub-sequence its ordinal pattern distribution pλ, now using the
time lag τ ? = 1. The ordinal pattern distribution p of the initial sequence can then be
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obtained by cumulation, that is

p =
τ∑

λ=1
pλ = p1 + p2 + · · ·+ pτ . (6.46)

Observe that generating a sub-sequence as per Equation (6.45) is identical to down-
sampling the time series {x1, x2, . . . , xN} by a factor τ , whereby the index λ merely
specifies which sample to keep per block of τ consecutive samples.

This circumstance is both the explanation and the fundamental problem of using τ > 1
for pattern encoding. We implicitly, but no less effectively, downsample the signal without
any anti-aliasing measures taken. Inevitably, all spectral content exceeding fS/2τ folds
back into the representable frequency range. Therefore, calculating permutation entropy
for τ > 1 is equivalent to computing permutation entropy for the time lag τ ? = 1 from a
set of τ downsampled, but also non-linearly distorted versions of the actual signal.

Notice that this is not a conceptual flaw of permutation entropy. One has to keep in mind
that the quantity was developed as a complexity measure for time series. Working with
less generic data, additional constraints and requirements may arise. In particular, while
any digital signal can be described as a time series, not all time series are digital signals
in terms of linear systems theory: only if the requirements of the sampling theorem are
adhered to can a discrete sequence of voltage measurements be a valid representation of
analogue EEG.

6.8.4 Frequency Aliasing in Permutation Entropy

The aliasing introduced by using time lags τ > 1 can easily be observed by computing
the entropy of peaks H(p̂) as per Equation (6.28) from sinusoidal signals of varying
frequency fc 6 fS/2. In accordance with the frequency mapping of Equation (6.44), and
depending on the effective sampling rate fS/τ , the signal that is actually fed into the
estimator is a sinusoidal wave of frequency

f̃c = fS

2τ −
∣∣∣∣∣(fc mod fS

τ
)− fS

2τ

∣∣∣∣∣. (6.47)

Any sinusoidal signal has two peaks per cycle, so it further holds that p̂ = 2f̃c, and in
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conjunction with Equation (6.28), the relation

H(p̂) = H(2f̃c) = Hb(2f̃c) + 2f̃c log 2 + log 2 (6.48)

is obtained. Variegating the time lag τ , the periodic foldback effect manifests in the
graphs of this family of functions. This is depicted and further discussed in Figure 6.11.
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Figure 6.11 The entropy of peaks function H(p̂), calculated from a sine wave of increasing
frequency. For the time lag τ = 1, the function behaves as discussed for Figure 6.7. When
using a time lag τ > 1, aliasing is provoked for frequencies exceeding fS/2τ . Those frequencies
periodically fold back into the representable spectrum, which leads to the symmetries depicted.

The presented approach is based on the work of Erik Olofsen, Jamie Sleigh and Al-
bert Dahan. To experimentally investigate its dependence on frequency, the authors
calculated permutation entropy of order m = 3 and time lags τ ∈ {1, 2} for sinusoidal
signals of increasing frequency [44]. The here proposed spectral estimation conjecture
conclusively explains the authors’ observations—in particular, the “markedly different,
and more complex” [44] frequency dependence for τ = 2.
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6.8.5 Anti-Aliased Permutation Entropy

As demonstrated in the previous section, using time lags τ > 1 for EEG encoding may
cause unintended signal distortions. Nevertheless, a multitude of applications in EEG
analysis reportedly depend on such time lags [169]. In practice, the impact of aliasing
may be less detrimental than the graphs of Figure 6.11 suggest: EEG is anything but
sinusoidal, and while permutation entropy literally locks onto a single sine wave, the
discrepancy will be more subtle for actual EEG. Moreover, EEG is commonly oversampled,
and of course, fS � 2fmax mitigates the issue to some extent (see Section 6.6).

Nothing is lost by resolving a source of inaccuracy, though. This can easily be achieved
by means of sample rate conversion. Instead of using τ > 1, one would correctly convert
the EEG to a new sampling rate f ?S = fS/τ , and compute permutation entropy therefrom,
now choosing τ ? = 1 as the time lag. An apparent disadvantage of this approach is
that it reduces the number of ordinal patterns available for probability estimation by a
factor τ . However, the sampling theorem implicitly assures that a single rate-reduced
sequence suffices to fully describe the band-limited EEG (including its signal peaks), so
nothing is gained by counting each peak τ times in a row.

At least in the anti-aliased case, a very tangible interpretation of the time lag τ immedi-
ately follows. Permutation entropy effectively splits the single-sided frequency spectrum
of the EEG into τ spectral bands of equal width, then exclusively responds to the content
of the lowest band. Given our spectral estimation hypothesis, permutation entropy of
order m = 3 and time lag τ > 1 thus approximates the weighted power spectral centroid
of the EEG frequency band ranging from 0 to fS/2τ . For applications depending on
τ > 1, it may hence be worthwhile to further investigate the influence of anti-aliasing.
This could be a chance of concisely relating ordinal analysis techniques with classic
band-spectral methods of EEG analysis.

6.9 Summary

EEG has long become an indispensable tool in research and medical diagnostics, even
more so as the progress in digital technology has revolutionised our general approach
towards data—biomedical data being no exception.
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When performing EEG analysis, one has to keep in mind its predominantly probabilistic
nature: any signal property that statistically correlates with some behavioural observation
is a perfectly valid signal property, because ultimately, none of them is fully explainable
mechanistically. In an ongoing effort, investigators thus dedicate themselves to the
experimental identification of new parameters adaptable to EEG processing. But with
a plethora of different analysis techniques already proposed, the application of a more
sophisticated method does not necessarily yield additional information, because there
are only so many complementary signal characteristics. According to the results of the
current chapter,

• permutation entropy of order m = 3 and time lag τ = 1,
• the power spectral centroid of the signal’s first derivative, and
• Kedem’s higher order crossings of the D2 type

can all be used interchangeably in EEG analysis. It comes to no surprise that both the
spectral centroid [177, 178], as well as higher order crossings [179] have been reported as
suitable EEG parameters in their own rights. The property underlying all three of those
methods has been known and used for more than 50 years now: in 1964, Neil Burch and
colleagues reported on transferring the EEG analysis method of counting “baseline cross-
ing[s]” from analogue circuitry to a digital computer, and explicitly pointed out the
“well-known accentuation of the higher frequency component in the derivatives” [180].
Back then, the procedure was called period analysis.

On the other hand, it cannot be over-emphasized that EEG analysis is mostly driven by
experimentation, and this obviously includes the results presented in this chapter. What
applies for the CAP and CHB-MIT databases does not necessarily hold true for EEG in
general. Hence, the above results neither falsify the existence of ordinal complexity in
the EEG, nor its observability using permutation entropy. It merely demonstrates that
the permutation entropy of the EEG does not exclusively relate to this phenomenon.

Conclusively, the interrelations described extend the framework of ordinal pattern-based
EEG processing. For a given analysis task, concurrently computing both permutation
entropy and the peak probability p̂ provides a means of rejecting the null hypothesis of
permutation entropy acting as a spectral estimator. This may enable the investigator to
narrow down on cases that truly demand for complexity considerations, while otherwise
resorting to a simpler and more time-tested analysis technique. From that perspective,
the peak probability p̂ given by Equation (6.29) integrates seamlessly into the framework
of ordinal pattern analysis. A convenient side effect: if, for a particular analysis task,
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6.9 Summary

permutation entropy is found to be replaceable by the peak probability p̂, the issue of
selecting an appropriate pattern order m does not arise.

In closing, implementing the peak probability parameter in software is straightforward:

y = mean(abs(diff(diff(x) >= 0)));

suffices to make the parameter available in GNU Octave, MATLAB, or similar numerical
computation environments. An extended version, supporting sliding window analysis,
is provided by the zztop.m function in the supplements of [77]. While not extensively
optimised, its execution speed should meet the requirements of major analysis campaigns:
the main challenge in data analysis today is not computational feasibility, but the
interpretation of the manifold results obtainable.
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7 Conclusions

The research project described in this dissertation started with a very simple question:
Why does permutation entropy work as a signal parameter in quantitative EEG analysis?
Investigating this question yielded results that increase the interpretability of permutation
entropy in EEG, and the efficiency of ordinal time series analysis in general. To conclude
the present journey through ordinal pattern spaces, both aspects are briefly summarised
in the following.

7.1 Efficiency

To allow for studying permutation entropy in large EEG databases, fast algorithms for
turning time series into sequences of ordinal patterns have been developed, and are
described in Chapter 5. The algorithms utilise the classical Lehmer code to enumerate
ordinal patterns by consecutive non-negative integers, starting from zero. This encoding
can be performed at comparatively low computational cost, and the resulting compact
representation considerably simplifies working with ordinal patterns in the digital domain.
The algorithms described may improve the efficiency of virtually any analysis method
involving ordinal patterns—among them quantitative measures like permutation entropy
and symbolic transfer entropy, but also techniques like forbidden pattern identifica-
tion [116, 181]. One of the algorithms studied stands out in terms of scalability: its
run-time increases linearly with both pattern order and sequence length, while its memory
footprint is practically negligible. Those properties enable the study of high-dimensional
pattern spaces, and may allow for putting ideas into practice that had previously been
hindered by computational burden. To that end, a cross-platform software library has
been published as a supplement to [78]. It includes reference implementations for all of
the algorithmic variants considered here, and supports various programming languages
commonly used in scientific computing, namely NumPy/Python, GNU Octave, MATLAB,
as well as the C programming language. All source code is provided under the permissive
terms of a three-clause Berkeley Software Distribution (BSD) license.

129



7 Conclusions

7.2 Interpretability

Since the introduction of permutation entropy in 2002, its high performance as a signal
parameter for EEG classification has been demonstrated by many different studies [3–75].
While the contrasts observed are usually attributed to the varying complexity of the
EEG, the results of the present work allow for a different interpretation.

The empirical analyses reported in Chapter 6 suggest characteristic regularities in the
ordinal pattern distributions of the EEG. In all brevity, those regularities imply that for
oversampled EEG signals, permutation entropy increases monotonously with the relative
frequency of local extrema in the signal. In other words, the more peaks an epoch of
EEG contains, the higher its permutation entropy is. Counting the peaks of a signal is
equivalent to counting the zero crossings of its first derivative. In turn, the zero crossing
rate is known as an estimator of the spectral centroid of a signal. Consequently, the
findings discussed in Chapter 6 bridge the gap between permutation entropy and the
Fourier transform, and thus establish an immediate relation with classical EEG analysis
methods.

The above conjecture is based on empirical observations from a finite collection of EEG.
Future work should therefore consider both permutation entropy and the number of signal
peaks in parallel, and use the latter to assess the relevance of the first. In cases where
the behaviour of permutation entropy can actually be reproduced by counting signal
peaks, a very useful interpretation follows immediately. Consider that differentiating a
signal x(t) is the same as weighting its amplitude spectrum |X(f)| with 2πf . Also recall
that EEG amplitude spectra coarsely follow a power-law in terms of |X(f)| ∼ 1/fα,
whereby the exponent is usually close to α = 1 [168, 182]. Differentiating an EEG signal
thus compensates for the decay of its spectrum, and ultimately, the spectral centroid
of this “whitened” signal reflects the dominant signal frequency relative to the 1/f -like
background.

In conjunction with the many reports on the advantageous behaviour of permutation
entropy as an EEG parameter, the results of the present work confirm that deviations
from 1/f -like noise are highly significant for quantitative electroencephalography. Those
should definitely be further investigated in the future.
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