CommonRoad Drivability Checker: Simplifying the
Development and Validation of Motion Planning Algorithms

Christian Pek, Vitaliy Rusinov, Stefanie Manzinger, Murat Can Uste, and Matthias Althoff

Abstract— Collision avoidance, kinematic feasibility, and
road-compliance must be validated to ensure the drivability
of planned motions for autonomous vehicles. Although these
tasks are highly repetitive, computationally efficient toolboxes
are still unavailable. The CommonRoad Drivability Checker—
an open-source toolbox—unifies these mentioned checks. It is
compatible with the CommonRoad benchmark suite, which
additionally facilitates the development of motion planners.
Our toolbox drastically reduces the effort of developing and
validating motion planning algorithms. Numerical experiments
show that our toolbox is real-time capable and can be used in
real test vehicles.

I. INTRODUCTION

The development and validation of motion planning al-
gorithms for autonomous vehicles are challenging because
planners should safely operate in any traffic scenario. From
2010 to 2019, the research community published over 25,000
publicationsﬂ to solve the motion planning problem. In
general, the proposed planners share a common and safety-
relevant goal: generated motions must be drivable.

To ensure drivability (see Fig.[I), generated motions must
be 1) collision-free, 2) respect the road boundaries, and 3)
be feasible regarding a given vehicle model. Although these
checks are repetitive and essential to each motion planning
framework, there are still very few open-source libraries
available for autonomous vehicles.

We expect that the availability of a drivability checker
simplifies the development process and improves the quality
of motion planning algorithms. Researchers could focus on
the novel aspects of their planners while relying on a tested
base of general-purpose operations for motion planning.
Because our checker is open-source, it can be audited and
improved by anyone to create a computationally efficient
and trustworthy library. Similar software projects, such as
the Kinematics and Dynamics Library (KDL) [1] and the
computer vision library OpenCV [2], have demonstrated that
software quality and safety of robotic systems increase when
using community-based libraries.

A. Related work

One of the design goals of our toolbox is the applicability
to a vast majority of motion planning approaches. Thus, in
the following paragraphs, we briefly review how existing
planning approaches ensure drivability.

All authors are with the Department of Informatics, Technical University
of Munich, 85748 Garching, Germany. christian.pek@tum.de,
geS56cugltum.de, stefanie.manzinger@tum.de,
can.ueste@tum.de, althoff@tum.de

IScopus search query TITLE-ABS-KEY ("vehicle” AND ”planning”) on
04. May 2020.

Ta

T3
©)

.

ego vehicle T1 road works

Fig. 1: Ensuring the drivability of planned motions is challenging. To ensure
that trajectories are drivable, motion planners must ensure that planned
trajectories do not leave the road (see trajectory 77), do not collide with
obstacles (see trajectory 72), and do not violate vehicle dynamics (see
trajectory 7a). Here, only trajectory 73 is drivable.

a) Collision checking: Checking whether the occu-
pancy of the autonomous vehicle, denoted as ego vehicle
from here on, intersects with other obstacles is computa-
tionally expensive [3]-[7]. To decrease computation effort,
the occupancies of obstacles and the ego vehicle are often
enclosed by simple set representations [8]. For instance, one
of the most common representations are convex polyhedrons
[9], e.g., rectangles [10], for which the Separating Axis
Theorem [11] can be used to detect pairwise collisions.
Circles (and ellipsoids) are yet another way to enclose
occupancies of obstacles [12], [13] or the ego vehicle [14],
[15]. A set of geometric shapes can also tightly enclose
complex occupied regions in the environment [16]-[18]. By
enlarging occupancies of obstacles, we can consider bounded
position uncertainties related to the sensing and predicting of
other traffic participants.

The efficiency of collision checking for large numbers
of shapes can be improved by incorporating accelerators
such as hierarchies of enclosures [19], [20] (see Fig. E])
These hierarchies are used to over-approximate obstacles
with simpler shapes to quickly identify candidate obstacles
that might collide with the ego vehicle. Only for collision
candidates, the more elaborate set representations are used
for collision checking.

Our library supports many popular geometrical shapes
and implements state-of-the-art hierarchical representations
to speed-up collision checking. It can be easily integrated in
many planning approaches and used to validate if a planned
trajectory is indeed collision-free.

b) Road-compliance checking: The ego vehicle must
stay within the road network, i.e., it shall not occupy
walkways and bike lanes. We refer to this as road compli-
ance. The verification of road compliance is implemented

enclosing
shapes

obstacles

ego
vehicle 2 3

—

Fig. 2: Example of a boundary volume hierarchy. Obstacles are enclosed by
simple shapes to identify candidate obstacles for the collision check with
the ego vehicle. From step 1 to step 3, the algorithm uses oriented bounding
boxes to identify the candidate obstacles.

differently depending on the utilized trajectory planning
technique. Discrete trajectory planning techniques, such as
rapidly exploring random trees (RRTs) [21], probabilistic
roadmaps [22], or motion primitives [23], [24], usually
verify road compliance using collision checks. Therefore,
the space outside of the road network can be modeled as
static obstacles for collision detection with the ego vehicle.
Continuous trajectory planning techniques often incorporate
road boundaries as constraints, e.g., by limiting the maximum
and minimum allowed lateral deviation from a reference path
[15], [25]-[28]. These constraints are usually represented
in curvilinear or lane-based coordinate systems [29] and
typically assume that roads have a constant width. However,
this assumption is generally invalid for many road networks.

Our library supports different methods to check whether
trajectories are road-compliant based on collision checks and
polygon enclosures. Thus, our methods can be used when
planning trajectories with discrete approaches, but also to
verify trajectories that are planned by continuous methods
under simplified road geometry constraints.

¢) Feasibility checking: Trajectories must be feasible
regarding a vehicle model. In general, only feasible tra-
jectories can be tracked with adequate performance by
vehicle controllers [30], [31]. Depending on the planning
approach, we distinguish between three different stages at
which feasibility checks are performed: before, during, and
after planning.

Before planning: Discrete planning approaches, e.g., using
motion primitives [24], perform the feasibility check before
planning. Based on a forward simulation of a given vehicle
model, trajectory segments are precomputed. These segments
are concatenated online to generate feasible trajectories.
Because these segments are generated offline, complex and
computationally expensive vehicle models can be applied.

During planning: To avoid large precomputed databases,
many discrete planning approaches, e.g., RRTs [21], perform
the feasibility check online for a given (often simple) vehicle
model. They sample states or inputs and check if the resulting
trajectories comply with the vehicle model [32], [33].

Continuous planning techniques incorporate the vehicle
model as an additional constraint in the optimization. Nev-
ertheless, many optimization-based planners can only incor-
porate simple vehicle models for computational efficiency.

Thus, performing the feasibility check during planning leads
to a trade-off between computational efficiency and accuracy
of the vehicle model.

After planning: Other discrete planning approaches, e.g.,
state lattices [34]-[36], first generate a set of intended
trajectories by sampling various goal states. However, the
resulting trajectories are usually computed without consid-
ering a vehicle model, e.g., by generating polynomials or
splines. Therefore, the feasibility of each trajectory must be
checked afterwards by using simulation.

Our feasibility module provides functionalities to check
whether trajectories comply with a given vehicle model
before, during, or after planning, and thus, supports vari-
ous motion planners. Moreover, interfaces enable users to
integrate their own models easily.

B. Contributions

This paper presents a novel toolbox for the development
and validation of motion planning algorithms for autonomous
vehicles. Specifically, the CommonRoad Drivability Checker

1) provides computationally efficient and reliant tech-
niques to verify whether given trajectories are
collision-free, respect road boundaries, and are dynam-
ically feasible;

2) is open-source and can be used, modified, and reviewed
by anyone;

3) offers easy-to-use Python and C++ interfaces and tu-
torials for quickly getting started;

4) works out-of-the-box with all scenarios from the Com-
monRoad benchmark suite [37].

C. Overview of the toolbox

The CommonRoad Drivability Checker
(commonroad_dc) consists of three core modules to
test drivability. The following paragraphs briefly summarize
the core functionality of each module.

a) collision: The collision checker module checks
whether given geometric objects (e.g., rectangles or triangles)
collide with each other. Based on the geometric represen-
tation, we provide a computationally efficient method to
represent complex traffic scenarios for collision checking.

b) boundary: The road boundary module determines
the road compliance of a given trajectory by either verify-
ing whether the ego vehicle is still fully enclosed in the
road network or performing collision checks with obstacles
that model the boundary of the road network. Our module
provides different methods (triangulation and the creation of
oriented rectangles) to generate road boundary obstacles.

c) feasibility: The dynamics module builds on
top of the vehicle models provided by CommonRoad. It de-
termines the feasibility of a given trajectory by reconstructing
the inputs to the corresponding (nonlinear) vehicle model.
Trajectories are feasible if the obtained inputs respect the
constraints of the vehicle model, e.g., limited steering rate.

\
\
|

/

lanelet (road)

ANt O
\‘ “4— lanelets] lanelet (rail)
\ ‘ 4 f M road vehicle
right bound | \ 0 tram
(- \‘ W cgo vehicle
v N .
left bound \) driving
e o "iii ¥ girection
e N —] e
Y ﬁ‘.ll __g._‘_i-L- _<Z
= II' g i —
S 5=z~‘§//¢l!,‘f B AN | e
e = [——
VA —=—
=S =%
W
Dd? W

Fig. 3: Lanelets for the CommonRoad scenario DEU_Muc-1_1_T-1. Figure
taken from [37].

D. Outline of the paper

The rest of this paper is organized as follows: Sec.
introduces the necessary mathematical definitions and mod-
els. Subsequently, we present our solutions for collision,
road-compliance, and feasibility checking in Sec. [V}
We demonstrate the benefits of the CommonRoad Driv-
ability Checker in Sec. with example scenarios from
the CommonRoad benchmark suite. The paper finishes with
conclusions in Sec. [VIIl

II. PRELIMINARIES

Let us introduce the state space X C R™ as the possible
set of states x and & C R™ as the set of admissible control
inputs u of the ego vehicle whose motion is governed by the
differential equation

@(t) = f(x(t),u(t)). (1

Without loss of generality, we assume that the initial time is
to = 0, and we adhere to the notation u([to, ¢5]) to describe
an input trajectory for the time interval [to,ts],t0 < tp.
Furthermore, X (¢; z(to), u([to, t4])) denotes the solution of
(1) at time ¢ € [to, ¢5] subject to the initial state x(to) = x¢
and the input trajectory u([to,?;]). We assume that state
trajectories z([to, 5]) are provided to our toolbox.

We use the following operations between two sets A7
and A5: X} U X5 denotes the union of sets, X7 N Xs is the
intersection of sets, and X1\ Xy := {z1 |21 € X1 Az1 € Ao}
denotes the set difference. Moreover, the notation Xl[: =
R™\ X; denotes the complement of a set A;.

Lanes are represented as lanelets [38], which are “atomic,
interconnected, and drivable road segments” [37] (see Fig. E[)
Lanelets are defined by their left and right bounds that are
modeled as polylines (po,...,pi,...),7 € N,p; € R2. We
form polygons L£; by connecting the left and right bounds
of each lanelet j € {1,..., Nanes}>» where Njanes describes
the number of lanelets in the road network. The set D =
Ujet,.... Manee} £i C R? describes the drivable lanes for the
autonomous vehicle.

oriented bounding box obb(x1, z2)

occ(xq)

occ(z2)

Fig. 4: Oriented bounding box hull around the occupancies occ(z1) and
occ(za).

Next, we formalize the occupancy of traffic participants.
The operator occ(z) : X — P(R?), where P(R?) is the
power set of R2, relates the state vector x of a traffic
participant to the set of points occupied by it. Given a set X,
we define occ(X) := {occ(z) | x € X'}. We use the operator
obb(z1,z2) to construct an oriented bounding box around
the occupancies corresponding to the states z; and xo as
illustrated in Fig. [

The occupancy set of all (static and dynamic) obstacles at
a given point in time is denoted by O(t) C R2. For the time
interval [ty, to], we define O([t1, t2]) = U, <,<4, O(t). For
dynamic obstacles, we assume the existence of a prediction
that accounts for the future positions of those obstacles over
time.

III. COMPUTATIONALLY EFFICIENT COLLISION
DETECTION

Our collision checker library builds upon existing libraries,
e.g., FCL [39] and Box2D [40], and supports various col-
lision queries, e.g., binary collision checks or finding all
colliding obstacles. In contrast to the existing libraries, we
have adapted our library to the domain of autonomous
vehicles, i.e., we use specialized structures for representing
time-variant traffic scenarios. The interface of our library is
designed modularly so that new functionalities can be easily
integrated, e.g., from other open-source libraries.

Our collision checker supports intersection tests between
basic geometric primitives, such as axis-aligned rectangles,
oriented rectangles, triangles, circles, and polygons. Poly-
gons can be non-convex; therefore, we triangulate the interior
of polygons and use the resulting mesh for collision detec-
tion. Moreover, shape primitives can be grouped into shape-
groups. Alongside static obstacles, the collision checker also
provides the functionality to consider time-variant obstacles.

It becomes impractical to perform brute-force collision
checks [5] as the number of obstacles grows. To reduce the
number of checks, the collision checker and shape-groups
process collision queries by filtering candidate obstacles
for faster collision detection. Our library supports various
accelerators (see [5] for a general overview of accelerator
structures); in our evaluations (see Sec. , dynamic AABB
trees (using the implementation from Box2D) and uniform
grids (our implementation) performed the best.

In general, planned trajectories are considered collision-
free if the ego vehicle does not collide with any (static or

dynamic) obstacle. Given the occupancy set of all obstacles
O, we formally define collision-free trajectories as:

Definition 1 (Collision-free Trajectory)
A state trajectory x([to, th]) is collision-free with respect to
a set of obstacles O if Vt € [to,tp] : occ(z(t)) N O(t) = 0.

As stated in Def. [I] trajectories must be collision-free for
all continuous times ¢. Thus, collision avoidance also must
be ensured between two subsequent states z; = x(¢) and
29 = x(ta2) with t; < t5. However, only collision checks in
discretized time are currently available. We therefore provide
the functionality for time-variant objects, i.e., obstacles and
the ego vehicle, to construct an oriented bounding box around
the occupancies for two consecutive time steps using the
operator obb(z1,z2) (see Fig.).

IV. ENSURING ROAD-COMPLIANCE

The ego vehicle is not allowed to leave the drivable road
network D. To ensure that trajectories do not violate this
rule, we define road-compliant trajectories.

Definition 2 (Road-compliant Trajectory)
A state trajectory z([to, th]) complies to the road network if
Yt € [to,tn] : occ(z(t)) C D.

It should be noted that the check in Def. 2] is equivalent
to oce(z) N D = @ (see Fig. . Our toolbox implements
methods for both checks, which are explained subsequently.

A. Occupancy inclusion

The occupancy inclusion approach (see Fig. [Sa) checks
whether the occupancy of the ego vehicle along the trajec-
tory z([to,ts]) is always enclosed in D. We perform the
occupancy inclusion check for the two states z; and zo
by computing the set difference between obb(xy,x2) and
D, i.e., obb(x1,13) C D & obb(zy,22) \ D = 0. To
increase computational efficiency, we partition D into smaller
subsets D; = DN G;, j € N, using a uniform rectangular
grid with cells G; (see Fig. [6a). Using collision detection,
we identify candidate subsets D; by determining grid cells
G; intersecting obb(z1,z2). Let ¢; € N;i € {0,1,2,...},
denote the indices of the candidate subsets. We then perform
the check obb(z1, z2)\D = (iteratively as &1 := &\ De,,
where £ = obb(z1,z3). As soon as we detect &1 = 0,
we abort our algorithm and return that the trajectory respects
the road boundaries.

DL
e
D
¥ | |
occ(z) occ(z)

(b) Collision check occ(z) N

(a) Occupancy inclusion check
Db = .

occ(z) C D.

Fig. 5: The two general approaches to check road-compliance are comple-
mentary to each other: occ(z) C D < occ(z) N DE = 0.

The occupancy inclusion approach works well in many
scenarios with simple road geometries. However, for com-
plex road networks, the polygons D, are represented by large
numbers of vertices, increasing computation times.

B. Road-boundary collision check

In the road-boundary obstacles approach, we exploit the
fact that obb(x1, x2) is road-compliant if the ego vehicle is
not located outside of the road network, i.e., obb(x1,22) N
Db = 0. Since DE is usually unbounded, we compute a finite
approximation of DE, which often requires checking whether
a trajectory leaves D and enters the finite approximation of
DL, Otherwise, trajectories starting in DC but outside of our
finite approximation could be classified as road-compliant.
However, the assumption that the initial state of the trajectory
to be verified is road-compliant is valid for most applications.

We approximate Dt by obstacles of simple shapes for
efficient collision checks [41]. Moreover, the number of
collision checks should be small. To achieve both goals, we
approximate DL with triangles or oriented rectangles, which
we describe in the following paragraphs.

a) Triangulation: We represent DL by a set Dy, of
triangles (see boundary obstacles in Fig. [6b) using Delaunay
triangulation [42]. Since some road networks might have
roads with complex geometries, triangulations could result
in a large number of thin triangles or floating-point errors.
We counteract both issues by resampling the lanelet polygons
and removing unnecessary vertices by applying the Douglas-
Peucker reduction algorithm [43]. Furthermore, we enforce
a minimal angle for each triangle (i.e., all angles within a
created triangle must be equal or larger than the minimum
angle) in the triangulation process to reduce the number
of thin triangles. We do not fill Dt completely but use a
bounding box over-approximating the bounded set D instead.
Using the presented collision checker (see Sec. [I), we
efficiently determine whether obb(z1, z2) collides with the
set Dy, of triangles.

Fig. [6b] shows an example of a given state z. Even
though we added countermeasures, some scenarios might
still require the creation of a large number of triangles (see
triangulation result in Fig. [6b). Therefore, we developed
another road-compliance approach as described in the fol-
lowing paragraph.

b) Oriented rectangles: In contrast to triangulation, this
method creates a set D, of oriented rectangles that separates
D and its complement PC. To compute D,,, we first compute
the union of all lanelets £; in the road network and then
extract the inner and outer contours of the resulting polygon.
Afterwards, we create an oriented rectangle (see Fig.
for each line segment of the inner and outer contours. The
oriented rectangles symmetrically overapproximate each line
segment (see dashed line in Fig. [6c). In this way, we can
reduce the false positive rate at road forks and merges. The
width w of each box is set to a small user-defined value, e.g.,
we use w = 1 x 107° to reduce the rate of false positives.
Fig.|6c|shows an example of the road-compliance check with
boundary obstacles.

lane polygons L; D=U;Li

ommemm
T]

_Jl_f—v//p
1 S A

occ(x) G

(a) Occupancy inclusion.

vertices triangulation result Dy,

(b) Boundary collision check with triangles.

oriented rectangles]w
Dre

l I
=
|

oce(x) oce(x)

(c) Boundary collision check with rectangles.

Fig. 6: ZAM_Over-1_1:2018b. Road-compliance checks.

C. Comparison of methods

The occupancy inclusion approach (see Sec. does
not require users to create additional boundary obstacles for
each map before the road compliance check. However, for
maps with complex road geometries, this approach might
require higher computation times. The oriented rectangles
approach (see Sec. achieves the best computational
performance in our experiments (see Sec. [VI). However, it
under-approximates the drivable space of the road network
and thus could result in false-positives in contrast to the
accurate results of the occupancy inclusion and triangulation
approaches.

V. FEASIBILITY CHECKING

The ego vehicle can only be precisely controlled if the
vehicle model is respected during planning. Vehicle models
range from simple models, such as the point-mass model, to
complex models, such as a multi-body model [37, Sec. III].

Definition 3 (Feasible Trajectory)

A state trajectory is feasible with respect to a vehicle model
@ if Ju([to, tn])Vt € [to,tn] = x(t;z(to), u([to. tn])) €
X Au(t) € U.

Our toolbox provides functions to simulate vehicle models
and to check whether a given state trajectory is feasible.
It currently supports the point-mass, kinematic single track,
single track, and multi-body models. However, users can
easily add their own vehicle models through pre-defined
interfaces.

Let us determine the input w that steers the autonomous
vehicle from a state vector x(¢1) at time-step ¢1 to a new state
x(t2) with t1 < to. We assume that the input wu(t) is kept
constant for a single time step and construct a constrained
two-point boundary value problem:

arginin J(:E(tz), X(t2;z(t1), u)),

s.t.ox(te; 2(t1),u) € X, u €U,

2)

where J is a user-defined cost function. It should be noted
that the optimization problem in (2) forms a sequential least
squares quadratic program (SLSQP). Even though @) is in
general non-convex, we achieve highly accurate and robust
results in our experiments with the Python package SciPy
and the algorithm presented in [44]. Our toolbox provides
a cost function J that penalizes the position and orientation

errors between the optimized and provided states. We accept
the solution w if the computed error J is below a certain
(user-defined) threshold e,.y.

Only if we can compute a series of inputs that al-
lows us to closely match the given state trajectory, we
accept the trajectory, ie., Vi € {0,...,N, — 1}
J(@(tiv1), X(tis1; (), 4i)) < €max, Where u; is the op-
timized input between states x(t;) and x(t;y1), and Nj
is the number of inputs to reconstruct the state trajectory.
Otherwise, we reject the given trajectory.

VI. NUMERICAL EXPERIMENTS

The presented approaches are integrated into
the CommonRoad Drivability Checker available at
https://CommonRoad.in.tum.de. It serves as a core
component of the CommonRoad benchmark system
and is used to evaluate the correctness of submitted
solutions. We have created multiple tutorials that help users
to quickly get an overview of the main functionalities. To the
best of the authors’ knowledge, there is a lack of available
toolboxes with a similar set of features to benchmark our
toolbox. Therefore, we highlight the advantages on example
scenarios from the CommonRoad scenario database. The
presented computation times have been obtained on a single
core on a machine with an Intel Xeon Gold 6136 3.00 GHz
processor and 128 GB of DDR4 2666 MHz memory.

A. Collision checks

We evaluate our collision checker on 79 different scenar-
ios from the CommonRoad benchmark suite. For that, we
generate 1000 trajectories for each scenario using a discrete
motion planner involving motion primitives. The trajectories
consist of 20 states and have a time discretization (e.g., 0.2s)
as specified in the corresponding CommonRoad scenario.
Fig. [1] illustrates some of the generated trajectories for an
example highway scenario. We measure the time to check all
of the 1000 trajectories for collisions. Over all scenarios, the
collision check for 1000 trajectories takes 8.9 ms on average
with a standard deviation of 2.3 ms. Tab. [shows individual
computation times for selected scenarios. Since our toolbox
implements state-of-the-art accelerator structures, we can
significantly reduce the required number of checks. In this
evaluation, we make use of AABB trees from the library
Box2D.

https://commonroad.in.tum.de

dynamic obstacles

Y

|~ e ———]

generated trajectories

TABLE II: Results (average and standard deviation denoted as @ and o,
respectively) of checking 1000 generated trajectories for road compliance.

initial state

Fig. 7: Collision checking example for generated trajectories in the Com-
monRoad scenario USA_US101-21_1_T-1.

TABLE I: Selected results of checking 1000 generated trajectories (each 20
time steps) for collisions in scenarios with different numbers of dynamic
obstacles.

Scenario Obs. Comp. Time
RUS_Bicycle-1.2_T-1 10 10.8 ms
USA_Peach-2_1_T-1 16 5.7ms
USA_US101-21_1.T-1 30 6.5 ms
CHN_Sha-13_2_T-1 31 6.5 ms

USA Lanker-2_11_T-1 55 9.4ms

USA Lanker-2_12.T-1 83 9.1ms

B. Road-compliance checks

To benchmark road compliance checks, we use the scenar-
ios and generated trajectories from our previous experiment
(see Sec. [VI-A). Tab. [summarizes the results of the
road compliance checks. To identify candidate objects, e.g.,
relevant lanelets and oriented rectangles, we use a uniform
grid (see Sec. [[-A). In our experiments, the oriented rectangle
approach achieves the best computation times, which is on
average two times faster compared to using triangulation
and ten times faster compared to using occupancy inclusion.
Fig. [§ illustrates the generated shapes for each of the
presented methods in a complex intersection scenario. The
number of generated geometric shapes significantly differs
among the approaches. On average, our checker has to create
4 times more rectangles and 16 times more triangles than
shapes for the occupancy inclusion approach.

C. Feasibility checks

To test our implementation, we created 1.000 input tra-
jectories by randomly sampling different inputs for the
supported vehicle models. We tested our approach for all
vehicle models, but for brevity, we only present the results for
the kinematic single-track model (inputs are steering angle
velocity and acceleration). To validate our feasibility check
(2), we generate state trajectories by the forward simulation
of the kinematic single-track model using known inputs.
Fig. [9] shows an example trajectory and the state trajectory
that was obtained using our toolbox (denoted as traced in
Fig. [0). On average, the feasibility check takes 1.95ms per
trajectory on our hardware (see Tab. [ITI).

Furthermore, we have evaluated the implementation of
our feasibility check with trajectories (and different vehicle
models) that were submitted to the CommonRoad benchmark
system. Fig. [I0a] shows the result of an intersection scenario.
Although the intended trajectory of the ego vehicle might
look feasible, our toolbox detects that the acceleration con-

Data Inclusion Triangles Rectangles
@ time for checking 86.6 ms 18.8 ms 8.1ms

o time for checking 39.0ms 10.6 ms 1.8 ms

@ no. of created shapes 31.5 517.0 149.2

o no. of created shapes 60.0 665.6 205.0

@ time for creation 17.5ms 82.2ms 3.5ms

o time for for creation 64.6 ms 193.4ms 18.3ms

TABLE III: Results for checking the feasibility of randomly created trajec-
tories. The tests were repeated with 1000 trajectories.

Description Value
Maximum error e 2x 1072
Precision goal solver 1x107°

Maximum iterations 100
Mean computation time 1.95ms
Standard deviation 0.06 ms

straints must be violated to reach the desired position. Our
toolbox automatically returns the feasible part of the trajec-
tory so that users can debug their planner. Fig. [T0b] shows
the reconstructed acceleration for the example trajectory and
the maximum acceleration constraint for the chosen vehicle
model.

VII. CONCLUSIONS

We presented the CommonRoad Drivability Checker—an
open-source toolbox to check the drivability of trajectories
for autonomous vehicles in real-time. Our collision checking
module supports many geometric shapes and implements ad-
vanced algorithms to quickly determine candidate objects for
collision detection. The road-compliance module provides
users with three different methods, which obtain accurate
results and can be adjusted to the considered road geometries.
Lastly, our feasibility module offers the possibility to check
whether trajectories are feasible for a certain vehicle model.
This model can be chosen from a library of implemented
models, or the user can implement it. Since our toolbox is
fully compatible with the CommonRoad benchmark suite,
users can use a large set of realistic traffic scenarios.

ACKNOWLEDGMENTS

The authors gratefully acknowledge partial financial sup-
port by the project justITSELF funded by the European
Research Council (ERC) under grant agreement No817629,
the project ColnCiDE within the priority program Coop-
erative Interacting Automobiles funded by the Deutsche
Forschungsgemeinschaft (German Research Foundation) un-
der grant agreement AL 1185/4-1, and the project interACT
within the EU Horizon 2020 program under grant agreement
No 723395.

J/

error [m)]

[2]
[3]

[5]
[6]

[7]

s A7

W

§—ov.'——""—v~—s:‘:

N7=e—
— s e

(a) Original scenario. (b) Polygons (N1 = 88).

e

= =
Wi)

(c) Triangles (Niyi = 3862). (d) Rectangles (Nrec = 1326).

[\ S

Fig. 8: Created geometric shapes in the different road-compliance checks for the CommonRoad scenario DEU_Muc-1_1_T-1.

5 -

E)

2 91 —e— Original

—>— Traced
_5) T T T T
0 10 20 30
pz [m]
(a) Position.
0 -
g
£
= 21 o Original
4 —>— Traced
0 5 10 15 20
time step k
(b) Orientation.
0.02 4
X J
X
Ems
0.01 i x max
X X
0.00 1. X X XXX XXXXXXX XXXXX

0 5 10 15 20
time step k

(c) Error in long. position.

Fig. 9: Feasibility check of an example trajectory with positions.

REFERENCES

R. Smits, “KDL: Kinematics and Dynamics Library,” http://www.
orocos.org/kdl.

G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

P. Jiménez, F. Thomas, and C. Torras, Robot Motion Planning and
Control. Springer, 1998, ch. Collision Detection Algorithms for
Motion Planning, pp. 305-343.

G. Tanzmeister, M. Friedl, D. Wollherr, and M. Buss, “Efficient
evaluation of collisions and costs on grid maps for autonomous vehicle
motion planning,” IEEE Transactions on Intelligent Transportation
Systems, vol. 15, no. 5, pp. 2249-2260, 2014.

C. Ericson, Real-Time Collision Detection, ser. Morgan Kaufmann
series in interactive 3D technology. Morgan Kaufmann, 2005.

A. Rizaldi, S. Sontges, and M. Althoff, “On time-memory trade-
off for collision detection,” in Proc. of the IEEE Intelligent Vehicles
Symposium, 2015, pp. 1173-1180.

B. C. Heinrich, D. Fassbender, and H.-J. Wuensche, “Faster collision

—e— Original
—— Traced

(a) Scenario with trajectory.

10.0
N
\w Amax
El 7.5 A ax
3
5.0 A
T T T T T
1 2 3 4
time step k

(b) Reconstructed acceleration.

Fig. 10: Result of the feasibility check for a planned trajectory in the
CommonRoad scenario USA _Lanker-1_2_T-1-2018b. (a) The scenario and
the planned and traced trajectory of the ego vehicle. (b) The reconstructed
acceleration ay, for different time steps k of the trajectory. The transition
to the fourth time step is infeasible, since the maximum acceleration must
be violated to reach the target position (see closeup in a).

checks for car-like robot motion planning,” in Proc. of the IEEE Int.
Conf. on Intelligent Robots and Systems, 2018, pp. 7533-7538.
[8] S. Thrun, Exploring Artificial Intelligence in the New Millennium.
Morgan Kaufmann, 2002, ch. Robotic Mapping: A Survey, pp. 1-35.
[9]1 B. Griinbaum, Convex Polytopes, S. Axler, F. W. Gehring, and K. A.
Ribet, Eds. Springer, 2003.
[10] D. Ferguson, M. Darms, C. Urmson, and S. Kolski, “Detection, pre-
diction, and avoidance of dynamic obstacles in urban environments,”
in Proc. of the IEEE Intelligent Vehicles Symposium, 2008, pp. 1149—
1154.
[11] S. Gottschalk, M. C. Lin, and D. Manocha, “OBBTree: A hierarchical
structure for rapid interference detection,” in Proc. of the Annual Conf.
on Computer Graphics and Interactive Techniques, 1996, pp. 171-180.
[12] J. Ziegler and C. Stiller, “Fast collision checking for intelligent vehicle
motion planning,” in Proc. of the IEEE Intelligent Vehicles Symposium,
2010, pp. 518-522.
[13] Y.-K. Choi, W. Wang, Y. Liu, and M.-S. Kim, “Continuous colli-

http://www.orocos.org/kdl
http://www.orocos.org/kdl

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

sion detection for two moving elliptic disks,” IEEE Transactions on
Robotics, vol. 22, no. 2, pp. 213-224, 2006.

B. Gutjahr, C. Pek, L. Groll, and M. Werling, “Efficient trajectory
optimization for vehicles using quadratic programming,” at - Automa-
tisierungstechnik, vol. 64, no. 10, pp. 786-794, 2016.

C. Pek and M. Althoff, “Computationally efficient fail-safe trajectory
planning for self-driving vehicles using convex optimization,” in Proc.
of the IEEE Int. Conf. on Intelligent Transportation Systems, 2018, pp.
1447-1454.

B. Vanholme, D. Gruyer, B. Lusetti, S. Glaser, and S. Mammar,
“Highly automated driving on highways based on legal safety,” IEEE
Transactions on Intelligent Transportation Systems, vol. 14, no. 1, pp.
333-347, 2013.

T. Weiherer, S. Bouzouraa, and U. Hofmann, “An interval based
representation of occupancy information for driver assistance systems,”
in Proc. of the Int. Conf. on Intelligent Transportation Systems, 2013,
pp. 21 - 27.

M. Althoff and J. M. Dolan, “Online verification of automated road
vehicles using reachability analysis,” IEEE Transactions on Robotics,
vol. 30, no. 4, pp. 903-918, 2014.

J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and K. Zikan,
“Efficient collision detection using bounding volume hierarchies of k-
DOPs,” IEEE Transactions on Visualization and Computer Graphics,
vol. 4, no. 1, pp. 21-36, 1998.

B. Martinez-Salvador, A. P. del Pobil, and M. Pérez-Francisco, “A
hierarchy of detail for fast collision detection,” in Proc. of the IEEE
Int. Conf. on Intelligent Robots and Systems, 2000, pp. 745 — 750.
S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
in Proc. of the IEEE Int. Conf. on Robotics and Automation, 1999,
pp. 473 — 479.

L. E. Kavraki, M. N. Kolountzakis, and J.-C. Latombe, “Analysis
of probabilistic roadmaps for path planning,” IEEE Transactions on
Robotics and Automation, vol. 14, no. 1, pp. 166-171, 1998.

E. Frazzoli, M. A. Dahleh, and E. Feron, “Maneuver-based motion
planning for nonlinear systems with symmetries,” IEEE Transactions
on Robotics, vol. 21, no. 6, pp. 1077-1091, 2005.

D. HeB3, M. Althoff, and T. Sattel, “Formal verification of maneuver
automata for parameterized motion primitives,” in Proc. of the IEEE
Int. Conf. on Intelligent Robots and Systems, 2014, pp. 1474-1481.
J. Ziegler, P. Bender, T. Dang, and C. Stiller, “Trajectory planning for
Bertha — A local, continuous method,” in Proc. of the IEEE Intelligent
Vehicles Symposium, 2014, pp. 450-457.

B. Gutjahr, L. Groll, and M. Werling, “Lateral vehicle trajectory
optimization using constrained linear time-varying MPC,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 18, no. 6, pp. 1586—
1595, 2017.

J. Nilsson, M. Brénnstrom, J. Fredriksson, and E. Coelingh, “Longi-
tudinal and lateral control for automated yielding maneuvers,” IEEE
Transactions on Intelligent Transportation Systems, vol. 17, no. 5, pp.
1404-1414, 2016.

W. Zhan, J. Chen, C.-Y. Chan, C. Liu, and M. Tomizuka, “Spatially-
partitioned environmental representation and planning architecture for
on-road autonomous driving,” in Proc. of the IEEE Intelligent Vehicles
Symposium, 2017, pp. 632-639.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]
[41]

[42]

[43]

[44]

E. Héry, S. Masi, P. Xu, and P. Bonnifait, “Map-based curvilinear
coordinates for autonomous vehicles,” in Proc. of the IEEE Int. Conf.
on Intelligent Transportation Systems, 2017, pp. 1-7.

B. Paden, M. Cédp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A
survey of motion planning and control techniques for self-driving
urban vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 1,
no. 1, pp. 33-55, 2016.

D. Gonzilez, J. Pérez, V. Milanés, and F. Nashashibi, “A review of mo-
tion planning techniques for automated vehicles,” IEEE Transactions
on Intelligent Transportation Systems, vol. 17, no. 4, pp. 1135-1145,
2016.

M. Pivtoraiko and A. Kelly, “Kinodynamic motion planning with state
lattice motion primitives,” in Proc. of the IEEE Int. Conf. on Intelligent
Robots and Systems, 2011, pp. 2172-2179.

S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
Int. Journal of Robotics Research, vol. 20, no. 5, pp. 378400, 2001.
M. Werling, S. Kammel, J. Ziegler, and L. Groll, “Optimal trajectories
for time-critical street scenarios using discretized terminal manifolds,”
The Int. Journal of Robotics Research, vol. 31, no. 3, pp. 346-359,
2012.

F. von Hundelshausen, M. Himmelsbach, F. Hecker, A. Mueller, and
H.-J. Wuensche, “Driving with tentacles: Integral structures for sensing
and motion,” Int. Journal of Field Robotics, vol. 25, no. 9, pp. 640—
673, Sep. 2008.

J. Ziegler and C. Stiller, “Spatiotemporal state lattices for fast trajec-
tory planning in dynamic on-road driving scenarios,” in Proc. of the
IEEE Int. Conf. on Intelligent Robots and Systems, 2009, pp. 1879—
1884.

M. Althoff, M. Koschi, and S. Manzinger, “CommonRoad: Compos-
able benchmarks for motion planning on roads,” in Proc. of the IEEE
Intelligent Vehicles Symposium, 2017, pp. 719-726.

P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map repre-
sentation for autonomous driving,” in Proc. of the IEEE Intelligent
Vehicles Symposium, 2014, pp. 420-425.

J. Pan, S. Chitta, and D. Manocha, “FCL: A general purpose library
for collision and proximity queries,” in Proc. of the IEEE Int. Conf.
on Robotics and Automation, 2012, pp. 3859-3866.

E. Catto, “Box2D: A 2D physics engine for games,” https://box2d.org.
A. Zhu, S. Manzinger, and M. Althoff, “Evaluating location compli-
ance approaches for automated road vehicles,” in Proc. of the IEEE
Intelligent Vehicles Symposium, 2018, pp. 642-649.

J. R. Shewchuk, “Triangle: Engineering a 2D quality mesh generator
and Delaunay triangulator,” in Applied Computational Geometry:
Towards Geometric Engineering, ser. Lecture Notes in Computer
Science, M. C. Lin and D. Manocha, Eds. Springer-Verlag, 1996,
vol. 1148, pp. 203-222.

D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of
the number of points required to represent a digitized line or its
caricature,” Cartographica, vol. 10, no. 2, pp. 112-122, 1973.

D. Kraft, “A software package for sequential quadratic programming,”
Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt fiir
Luft- und Raumfahrt, 1988.

https://box2d.org

	Introduction
	Related work
	Contributions
	Overview of the toolbox
	Outline of the paper

	Preliminaries
	Computationally Efficient Collision Detection
	Ensuring Road-Compliance
	Occupancy inclusion
	Road-boundary collision check
	Comparison of methods

	Feasibility Checking
	Numerical Experiments
	Collision checks
	Road-compliance checks
	Feasibility checks

	Conclusions
	References

