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a b s t r a c t 

The solidification of an undercooled liquid is physically unstable. The dominating instability modes are 

affected by both the evolving temperature field in the solid and liquid phases, and characteristics of 

the phase interface such as the curvature and the propagation velocity. To capture the instability mode, 

therefore both the temperature field and the interface have to be represented accurately in a numerical 

model of the phase-change process. In this work, we develop conservative interface exchange terms for 

a sharp-interface formulation of liquid-solid phase transition. Conservation at the interface is maintained 

by explicit formulation of interface fluxes into both solid and liquid phases. We propose a semi-implicit 

level-set formulation to evolve the phase interface. A new formulation for the interface surface in a cut 

cell is derived, which includes the Stefan condition. We achieve low numerical dissipation by an explicit 

third-order Runge-Kutta scheme for time discretization, and a novel WENO-like (Weighted Essentially 

Non-Oscillatory) interface-gradient reconstruction. This distinguishes our level-set based sharp-interface 

model from previous level-set based approaches, which rely on finite-difference based interface treat- 

ment, and thus do not ensure discrete conservation at the interface. The flux terms in our approach take 

into account surface-tension and kinetic effects on the interface temperature (Gibbs-Thomson relation). 

The Stefan condition provides a relation between interface fluxes of mass and energy, and the interface- 

propagation velocity. Computational efficiency is maintained by a multiresolution approach for local mesh 

adaptation, and an adaptive local time-stepping scheme. 

We present one- and two-dimensional simulation results for the growth of a planar solidification front 

and a single parabolic dendrite affected by surface tension. The results agree well with experimental and 

analytical reference data, showing that the model is capable to capture both stable (planar) and unsta- 

ble (dendritic-like) growth processes in the heat-diffusion dominated regime. The convergence order for 

successively finer meshes in the one-dimensional case is one for the interface location and the tempera- 

ture field, outperforming previously reported level-set based approaches. We present numerical data of a 

growing crystal with four-fold symmetry. Our results indicate that the artificial dissipation of the under- 

lying numerical scheme affects its capability to reproduce consistently physical tip-splitting instabilities. 

The proposed low-dissipation scheme is able to resolve such instabilities. Finally, we demonstrate the ca- 

pability of the method to simulate multiple growing crystals with anisotropic surface-tension and kinetic 

effects. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Under suitable conditions, liquids can be cooled down to a tem-

erature well below their solidification temperature. A disturbance

f the undercooled liquid initiates sudden solidification processes,

hich manifest themselves as dendrites. Dendrites have a highly

ranched, tree-like structure. Anisotropic growth is caused by in-
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homogeneities of the phase-change process in preferred crystal

growth directions. Small perturbations of the initial state of the

undercooled liquid or during the growth process may cause signif-

icant changes in the resulting crystalline structure [21] . Although

the dendritic growth process itself is inherently unstable, a steady-

state solution exists for the tip radius and the growth velocity,

which depend on both the material properties and the degree of

undercooling. The steady-state growth mechanism can be charac-

terized by diffusion or interface kinetics [46] . For the diffusion-

dominated regime, Langer and Müller-Krumbhaar [28–30,34] de-

rived an analytical stability theory, which extends the seminal

work of Ivantsov [20] . Their theory shows good agreement with

experimental results [9,46–48] in the diffusion-dominated regime,

but differs in the kinetics-dominated regime. Once tip radius and

tip growth velocities exceed their stability region, tip-splitting or

side-branching instabilities may occur that eventually lead again

to a stable configuration. 

The dendritic solidification process poses a Stefan problem at

the phase interface, i.e. an initial-boundary value problem with

moving boundary. Phase-interface dynamics are governed by the

local temperature field and a Dirichlet boundary condition for

the interface temperature considering local interface characteris-

tics, such as the curvature or the propagation velocity. There-

fore, an accurate representation of the topologically complex, time-

dependent solidification front in multiple dimensions is necessary

[11] . Various multiphase models have been applied to solve the

Stefan problem numerically, both for mesh-free [50–52] and mesh-

based discretization methods. For the mesh-based discretization,

approaches can be related to either front-tracking [13,23,41] or

front-capturing methods. Among the front-capturing methods,

phase-field [2,3,10,14,25,27,35,49,57] and level-set [5–7,11,26,45,54–

56] approaches are the most popular choices for representing the

solidification front [21] . In the phase-field approach, an additional

order parameter, the phase field variable, is introduced. This vari-

able indicates the physical state at the location of interest. The

phase interface is located in the transition region of this param-

eter, and the interface width is a model parameter. Hence, the in-

terface is artificially thickened so it can be resolved on the given

mesh. Phase-field models are therefore often classified as diffuse-

interface model. The accuracy of the simulation depends on the

thickness of the phase interface. Quantitatively accurate predic-

tions of the phase front therefore require sufficiently small numer-

ical grids, which may incur prohibitively high computational cost

[21] . 

This difficulty is alleviated by the level-set approach. It also em-

ploys an order parameter, the level set, which describes the signed

distance from the interface. The zero-level-set contour denotes the

interface location. The sharp-interface property of the level set

enables an accurate localization of the phase interface, and sim-

plifies the computation of local interface characteristics. An ap-

proach to couple the interface velocity with the interface curvature

was introduced by Osher and Sethian [37] . This work was a first

step towards simulating dendritic solidification with the level-set

method [44] . Chen et al. [6] extended this approach and proposed

a model to solve the Stefan problem, focusing on crystal growth.

They applied a finite difference approach to discretize the diffu-

sion equation in solid and liquid phases on a homogenoeous grid,

and used implicit time integration schemes. Their approach shows

good agreement with the analytical solution obtained from solv-

ability theory [26] . Higher-order stencils improved accuracy and

convergence rates [11] . Overall computational efficiency was im-

proved by a local mesh adaptation approach, which accounts for

the different length scales near the phase interface [5] . Their ap-

proach was applied to compute the solidification of binary al-

loys by Theillard et al. [56] . An extended level-set model was in-

troduced by Criscione et al. [7] , who employed a finite-volume
cheme using ghost cells to solve the temperature field. Good re-

ults were obtained for the simulation of both a stable, planar so-

idification front and the unstable growth of a single parabolic den-

rite. Ramanuj et al. [39] presented simulations of unstable solid-

fying systems based on a second-order level-set approach [38] .

hey showed the advantages of high-order spatial schemes and

xplicit time integration schemes for dendrite-growth simulations.

et, most previous works rely on implicit time integration schemes,

ntroducing comparably large numerical dissipation and therefore

equire higher spatial resolutions to resolve topologically complex

rystalline structures. In addition, non-conservative numerical in-

erface models may compromise physically correct interface evolu-

ion. 

In this work, we develop a conservative interface-interaction

ethod for a sharp-interface formulation of liquid-solid phase

ransition of pure liquids. Conservation at the interface is main-

ained by explicit formulation of interface fluxes into both solid

nd liquid phases. We propose a semi-implicit level-set formula-

ion to evolve the phase interface. A new formulation for the inter-

ace surface in a cut cell is derived, which includes the Stefan con-

ition. We achieve low numerical dissipation by an explicit third-

rder Runge-Kutta scheme for time discretization [12,16] , and a

ovel WENO-like (Weighted Essentially Non-Oscillatory) interface-

radient reconstruction [22] . This distinguishes our level-set based

harp-interface model from previously published level-set based

pproaches, which rely on finite-difference based interface treat-

ent and may violate discrete conservation at the interface. The

ux terms in our approach take into account surface-tension and

inetic effects on the interface temperature (Gibbs-Thomson re-

ation), including anisotropic behavior. The Stefan condition pro-

ides a relation between interface fluxes of mass and energy, and

he interface-propagation velocity. The sharp-interface property is

nsured by extrapolating fluid states across the interface for the

ingle-phase reconstruction of the cell-face fluxes near the inter-

ace [8] . Computational efficiency is improved by dynamic mesh

daptation with respect to the evolving interface and temperature

eld using the multiresolution approach of Harten [17] . We em-

loy an adaptive local time-stepping scheme for efficient and ro-

ust time integration [24] . 

The structure of the paper is the following: in section 2 , we de-

cribe the sharp-interface method for modeling solid-liquid phase-

ransition problems. The new conservative interface-interaction ap-

roach for liquid-solid phase transition is given in section 3 , to-

ether with the employed level-set method. Section 4 provides

ne- and two-dimensional numerical example simulations for sta-

le and unstable phase-change processes. We conclude the work

n section 5 . 

. Sharp-interface method for liquid-solid phase transition 

The governing equations for the phase-change problem can be

ritten as 

∂U 

∂t 
= ∇ · F k , (1)

here U = ( ρ, ρcT ) T is the state vector of mass and energy, and

 k = (0 , k ∇T ) T represents heat conduction. Here, ρ is the density,

 the specific heat capacity, T the temperature, and k the thermal

onductivity. We solve eq. (1) separately for the solid and liquid

ubdomain, and assume the specific heat capacity c and the ther-

al conductivity k to be constant in each subdomain. The con-

ection in the liquid phase is suppressed in order to focus on the

hase-change model. 

Eq. (1) needs to be completed by a set of interface conditions

o fully describe the Stefan problem. We assume that the temper-

ture field is continuous across the interface. The temperature at
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Fig. 1. Schematic finite volume discretization of the domain � on a Cartesian quadratic grid. 
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he interface T � is prescribed as Dirichlet boundary condition, and

ollows from the Gibbs-Thomson relation 

 � = T m 

− γ T m 

ρL 
κ − εu || u �|| (2)

ncluding surface tension and kinetic effects. Here, T m 

is the melt-

ng temperature of the material, γ the surface tension coefficient,

 the latent heat, κ the interface curvature, εu the kinetic coeffi-

ient, and u � the interface velocity vector. Unless noted otherwise,

e assume isotropic surface tension and kinetic coefficients. The

tefan condition represents the balance of local heat fluxes and the

atent heat released by phase change and yields 

˙ m [ L + ( T � − T m 

) ( c l − c s ) ] = ρ ‖ u � ‖ [ L + ( T � − T m 

) ( c l − c s ) ] 

= ( k s ∇ T s − k l ∇ T l ) · n �. (3) 

ere, ˙ m is the mass rate of solidifying liquid, ∇ n T 	 = ∇T 
	

· n � is

he interface-normal temperature gradient of the solid ( 	 = s ) and

iquid ( 	 = l) phases, and n � is the interface-normal vector, which

oints from the solid to the liquid phase. 

The governing equations (1) are discretized by a finite-volume

pproach in the domain �, which is divided into two subdomains

l and �s by a time-evolving interface �. Fig. 1 shows a sketch of

he two subdomains with a sharp interface. We integrate eq. (1) in

ach computational cell S ij of each subdomain �	 and apply Gauß’

heorem to obtain 

t (n +1) ∫ 
t (n ) 

d t 

∫ 
S i j ∩ �	

d S i j 

∂U 

∂t 
= 

t (n +1) ∫ 
t (n ) 

d t 

∫ 
∂(S i j ∩ �	) 

d S i j F k · n (4)
here dS i j = 
x 1 
x 2 denotes the cell volume in two dimensions,

 i j ∩ �	 each cell volume of phase 	, ∂(S i j ∩ �	) the cell face,

nd n the surface normal of this cell face. We replace S i j ∩ �	 by

 ij αij , where αij is the time-dependent volume fraction of phase 	,

ith 0 ≤ αij ≤ 1. The cell face ∂(S i j ∩ �	) can be approximated

y the cell-face apertures A , 0 ≤ A ≤ 1, and the segment of the

nterface � inside this cell, 
�ij . Eq. (4) is then rewritten for a

ingle forward-time integration step of phase 	 as 

(n +1) 
i, j 

U 

(n +1) 
i, j 

= α(n ) 
i, j 

U 

(n ) 
i, j 

+ 


t 


x 1 
(A 

(n ) 
i −1 / 2 , j 

F (n ) 
k i −1 / 2 , j 

− A 

(n ) 
i +1 / 2 , j 

F (n ) 
k i +1 / 2 , j 

) 

+ 


t 


x 2 
(A 

(n ) 
i, j−1 / 2 

F (n ) 
k i, j−1 / 2 

− A 

(n ) 
i, j+1 / 2 

F (n ) 
k i, j+1 / 2 

) 

+ 


t 


x 1 
x 2 
X 

(n,n +1) 
S i, j 

(
�i, j ) (5) 

here 
t denotes the timestep size, U i,j the cell-averaged state

ector of the considered phase in cell ( i, j ), and F k i, j 
the fluxes in

r out of this cell. The term X S , i,j describes the mass and energy

xchange across the interface for the phase-change process. It van-

shes if a cell is not a cut cell. We follow the approach of Hu et al.

19] , and formulate the exchange terms as conservative interface

uxes. The fluxes also model the interface conditions (2) and (3) .

ll terms on the right hand side are calculated at time t ( n ) , except

or the interface exchange term X S , i,j , which is further detailed in

he following section 3 . 
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In this work, cell-face heat fluxes are reconstructed by a

second-order central difference scheme. Low-dissipation time in-

tegration is achieved by a strongly stable third-order Runge-Kutta

scheme 

u 

(1) = u 

(n ) + 
t L (u 

(n ) ) 

u 

(2) = 

3 

4 

u 

(n ) + 

1 

4 

u 

(1) + 

1 

4 


t L (u 

(1) ) (6)

u 

(n +1) = 

1 

3 

u 

(n ) + 

2 

3 

u 

(2) + 

2 

3 


t L (u 

(2) ) 

[12,16] . The maximum admissible timestep size is determined from

a CFL-type stability criterion considering the propagation speed of

the phase interface and heat diffusion in both phases 


t = CFL · min 

(

x 

| u �| , 
3 

14 

( 
x ) 
2 ρc 

k 

)
. (7)

In all examples we use CFL = 0 . 5 . Advancing the flow field by this

timestep size may lead to an unstable fluid state in cells with small

volume fraction α. Therefore, we apply a mixing procedure in cells

with α < 0.5 to maintain numerical stability [19] . 

Resolution of all scales of dendritic solidification on a homoge-

neous mesh is computationally expensive. Several orders of mag-

nitude lie between the wavelength of the dominating instability

modes of a growing dendrite and the size of the dendrite itself

[56] . Therefore, spatial adaptation techniques are necessary to ef-

ficiently solve dendritic solidification problems numerically. We

apply a block-structured wavelet-based multiresolution approach

based on the work of Harten [17] to adapt the mesh to the pro-

gressing solidification front and the evolving temperature field

[15,18,42] . The procedure is in detail described in Hoppe et al.

[18] . In the multiresolution approach, the cell-averaged solution

is represented by cell-averaged data on a coarse grid and a se-

ries of values on successively finer refinement levels. In this tree-

based structure, the two basic operations to communicate data be-

tween successive refinement levels are projection and prediction.

The projection operation is applied to obtain data on a refinement

level l from level l + 1 . Cell-averaged data on level l + 1 can be in-

terpolated from level l using the prediction operation. Projection

and prediction operations are local and consistent, but not com-

mutative, i.e: 

• Applying first the prediction operation to obtain data on level

l + 1 from level l , and afterwards again the projection operation

results in exactly the same solution on level l . 
• Applying first the projection operation to obtain data on level l

from level l + 1 , and interpolating afterwards the data on level

l + 1 from level l using the prediction operation results in an

error for data on level l + 1 . 

This motivates the definition of the so-called details d , which

are the deviation of the predicted solution to the exact solution.

The exact solution on the finest level can be replaced by a hier-

archical data structure, which contains the exact solution on the

coarsest level and the details of all successively finer levels. For

implicit mesh adaptation, details are only considered when they

are larger than a pre-defined level-dependent threshold 

ε l = ε ref · e ( −D ·(l−l max ) ) , (8)

where l max denotes the maximum level to which the mesh can be

refined, D the number of dimensions, and εref the admissible rel-

ative error on level l . If the details are sufficiently small, further

grid refinement does not lead to significantly better results than

interpolation from a coarser grid. In our simulations, we refine the

mesh based on the local error of the energy field. In addition, the

phase interface is enforced to be always on the finest level [15] .

We apply dyadic refinement, where each cell can be refined into
 

D smaller cells. The reference error is set to ε ref = 0 . 01 for a re-

nement between the finest level and the next coarser one. Effi-

ient time integration is obtained by applying a local time-stepping

pproach, where each refinement level is advanced with its level-

ependent timestep size [36] . The method is described in detail in

aiser et al. [24] . It allows for adapting the timestep size after each

ull Runge-Kutta cycle on the finest refinement level based on the

FL stability criterion (7) . 

. Conservative interface-interaction model for liquid-solid 

hase transition 

.1. Conservative interface-exchange terms 

The level-set function φ represents the phase interface as

he zero-crossing of a multi-dimensional continuous function φ
ith > 

 ∈ �s → φ(x ) < 0 , 

x ∈ �l → φ(x ) > 0 , and 

x ∈ � → φ(x ) = 0 . 

he absolute value of φ describes the normal distance of the cell

enter x to the interface �, which leads to the signed-distance

roperty |∇φ| = 1 . 

We develop conservative interface-exchange terms to model the

hase-change process. We model mass and energy exchange across

he interface, and for now suppress exchange of momentum. The

nterface fluxes for the solid phase are 

 S s = ( − ˙ m 
�, − ˙ m c s T �
� + k s ( ∇T s · n �) 
�) 
T 
, (9)

nd for the liquid phase 

 S l = ( ˙ m 
�, ˙ m c l T �
� + k l ( ∇T l · n �) 
�) 
T 
. (10)

he first term of the energy exchange describes the material trans-

ort through the interface, and the second term the heat flux into

ach material due to the Stefan condition (3) . The interface tem-

erature T � is obtained from the Gibbs-Thomson relation eq. (2) . If

inetic effects are taken into account, the interface temperature is

omputed using the interface velocity at time t ( n ) [11] . 

In previous work, the area of the interface segment in a cut-cell

� is computed from cut-cell apertures [19,31] . For ˙ m = ρ|| u �|| ,
he interface segment moves within the cut-cell by a distance

t || u �||. The linearized volume-fraction change is 
t 
�|| u �||.

owever, this formulation potentially violates conservation for

ulti-dimensional problems, see Fig. 2 . The linearized volume-

raction change differs from the correct volume-fraction change for

he given case. Therefore, we propose a new way for determining

� based on a semi-implicit level-set approach (see section 3.2 ).

irst, we compute the time derivative of the liquid volume fraction

˙ from level-set fields φ( n ) and φ(n +1) 

˙ = 

∂α

∂t 
≈ α(φ(n +1) ) − α(φ(n ) ) 


t 
. (11)

t is thus possible to reformulate the mass exchange across the in-

erface in terms of ˙ α as ˙ m 
� = ρ ˙ αV c , where V c denotes the cell

olume. Second, we formulate the energy conservation in a single

ut cell based on the Stefan condition, eq. (3) , 

˙ Q ˙ α = 

˙ Q λ

˙ αρV c [ L + ( T � − T m 

) ( c l − c s ) ] = ( k s ∇ T s − k l ∇ T l ) · n �
�

here ˙ Q ˙ α denotes the heat released in the phase-change process,

nd 

˙ Q λ the released heat into both solid and liquid phases due to

eat conduction. The interface area 
� follows from 

� = 

˙ αρV c 

[
L + 

(
T �i, j 

− T m 

)
( c l − c s ) 

]
( k s ∇ T s − k ∇ T ) · n �

= 

˙ αV c 

‖ u � ‖ 

(12)

l l 
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Fig. 2. Schematic of the volume-fraction change in a single cell during an Euler step. The included volume-fraction change is shown in blue. Fig. (a): change for the linearized 

approach. Fig. (b): the new semi-implict level-set approach, which correctly predicts the entire volume-fraction change. 
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hus, the interface-exchange terms eqs. (9) and (10) can be written

s 

 S s = ( −ρs ˙ αV c , − ρs ˙ αV c c s T � + k s ( ∇T s · n �) 
�) 
T 
, (13) 

 S l = ( ρl ˙ αV c , ρl ˙ αV c c l T � + k l ( ∇T l · n �) 
�) 
T 
. (14) 

e compare our approach with the linearized formulation in

ection 4.3 . 

The overall accuracy and stability of the method are sensitive to

he evaluation of the interface-normal temperature gradient [7] . A

ommon method provided in previous work is to reconstruct the

emperature at one or multiple points in a fixed normal distance

o the interface. The interface-normal temperature gradient then

s computed by a finite-difference scheme [7,32,40] . Through ex-

ensive numerical tests we found that a directional splitting ap-

roach with weighting of local interface-normal temperature gra-

ients based on third-order WENO smoothness indicators [22] pro-

ides the best approximation of ∇ n T in terms of efficiency and

ccuracy, see Fig. 3 . Filled dots mark cells which are considered

or computing the interface-normal temperature gradient. First, we

ompute the interface temperature gradient in each cell for each

irection with a finite difference stencil 

∂T 

∂x 1 

∣∣∣∣
i + l, j 

= 

∣∣∣∣
∣∣∣∣ T i + l, j − T �

| φi, j | + l 
x 

∣∣∣∣
∣∣∣∣sgn (n �,x 1 ) , 

∂T 

∂x 2 

∣∣∣∣
i, j+ l 

= 

∣∣∣∣
∣∣∣∣ T i, j+ l − T �

| φi, j | + l 
x 

∣∣∣∣
∣∣∣∣sgn (n �,x 2 ) (15) 

ith l ∈ {1, 2, 3}, the sign function sgn() and n �,x i 
the compo-

ent of the interface-vector in x i -direction. We weight the cell-

ise interface gradients based on the smoothness indicators of the

hird-order WENO scheme to obtain the overall interface-normal

emperature gradient in the cut-cell (i,j) in each spatial direction

 T / ∂ x 1 , ∂ T / ∂ x 2 . These are then projected onto the normal direction

 n T = n �,x 1 

∂T 

∂x 1 
+ n �,x 2 

∂T 

∂x 2 
. (16)

imilar to Criscione et al. [7] , the interface-normal temperature

radient finally is averaged within all direct neighbor cells. This

rocedure decreases spurious oscillations of the interface-normal

emperature gradient. 
.2. Level-set evolution 

The level-set field φ is evolved in time by an advection equation

∂φ

∂t 
+ u � · ∇φ = 0 . (17)

The level-set advection equation is solved for cut cells using the

nterface velocity u � , which is computed from the Stefan condition

 eq. (3) ) following 

 u � ‖ = 

k s ∇ n T s − k l ∇ n T l 
ρ[ L + ( T � − T m 

) ( c l − c s ) ] 
. (18) 

on-cut cells are evolved using an interface velocity ˜ u � extrapo-

ated from adjacent cut cells, which is determined from the steady-

tate solution of the extrapolation equation 

∂ ̃  u �

∂τ
+ n � · ∇ ̃  u � = 0 . (19)

he level-set field is evolved with the phase states at time t ( n ) be-

ore advecting the fluid field. Thus, the solid and liquid phases can

e updated afterwards from time t ( n ) to t (n +1) using the interface

ocations φ( n ) and φ(n +1) , e.g. when computing ˙ α in eq. (11) . We

ave found that this type of operator splitting improves mass con-

ervation of the overall level-set scheme, see section 4.3 for a nu-

erical example. 

The numerical solution of the level-set advection does not

aintain the signed-distance property |∇φ| = 1 . Therefore, the re-

nitialization equation 

∂φ

∂τ
+ sign (φ0 ) ( |∇φ| − 1 ) = 0 (20) 

s iterated in pseudo time τ to steady state to restore the signed-

istance property after each timestep [53] . Here, φ0 is the level-

et field prior the re-initialization step. Note that we also re-

nitialize cut cells to maintain the signed-distance property. The

e-intialization of cells cut by the interface generally may affect the

verall conservation of the level-set scheme by shifting the loca-

ion of the zero-level-set [43] . This issue is, however, not relevant

or the developed scheme, as the incorporation of the reinitial-

zed level-set fields at t ( n ) and t (n +1) within the interface-exchange

erms ensures local conservation, see section 3.1 . 

Similarly to the interface velocity extrapolation from the inter-

ace to the adjacent bulk cells, the fluid states are extrapolated

cross the interface to define a “ghost” fluid within the opposing

hase [8] . These ghost-fluid states allow for the single-phase re-

onstruction of the cell-face fluxes near the interface. This main-

ains the sharp-interface property of the method. 
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Fig. 3. Schematic of the relevant cells for the computation of the interface-normal temperature gradient. Filled dots mark cell centers which are used to reconstruct the 

interface-normal temperature gradient. 

Fig. 4. Schematic of the narrow-band approach: shown are the interface (blue), cut cells (dark gray), narrow-band cells (light gray), and bulk cells (white). The solid phase 

is on the left side of the interface ( φ < 0), the liquid phase on the right side ( φ > 0). 
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We introduce a narrow band around the interface to further im-

prove the overall efficiency of our method. The narrow-band con-

cept is shown in Fig. 4 . Three cell types are distinguished: 

1. Cut cells: cells that are cut by the interface. 

2. Narrow-band cells: cells which are in the vicinity of the inter-

face. The width of the narrow band depends on the applied

spatial and temporal discretization schemes. As example, a nar-

row band with a width of four cells is shown in the figure. 

3. Bulk cells: cells that are far away from in the interface. 

All previously mentioned level-set operations (advection, reini-

tialization, interface velocity and ghost cell extrapolation) are only

performed in cut cells and narrow-band cells. All bulk cells are set

to a constant level-set value depending on whether they contain
iquid ( φ+ ) or solid ( φ−) states. This approach limits costly level-set

elated operations to only a fraction of the domain, thus improv-

ng overall performance, without adversely affecting the accuracy

f the method. 

The Gibbs-Thomson relation given in eq. (2) includes the inter-

ace temperature as function of the interface curvature. The cur-

ature is the divergence of the interface-normal vector κ = ∇ · n �,

hich is numerically obtained from n � = ∇ φ/ |∇ φ| . The curvature

s evaluated at the cell center by 

= ∇ · ∇φ

|∇φ| , (21)

sing a third-order WENO scheme. Finally, the interface curvature

s subjected to a subcell correction step depending on spatial di-
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Table 1 

Material parameters for the one-dimensional Stefan problem: water at 

243.15K and ice at 263.15K. 

ρ [kg/m 

3 ] c [J/(kg K)] k [W/(m K)] L [kJ/kg] T m [K] 

water 1000 4864.0 0.4829 333.6 273.15 

ice 1000 2030.0 2.319 

m

κ
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Fig. 5. Temperature profiles of the 1D Stefan problem at various instants for an 

effective resolution of 512 cells: analytical solution (—) and numerical results (sym- 

bols). 

Fig. 6. Interface location for the one-dimensional Stefan problem for different res- 

olutions: analytical solution (—) and numerical results (symbols). 
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ensionality D 

� = 

(D − 1) κ

D − 1 − φκ
(22) 

o take into account the distance between the cell center and the

nterface [33] . 

. Numerical results 

.1. Growth of a planar solidification front (Stefan problem) 

The classical Stefan problem describes the non-stationary

rowth of a planar solidification front, and is solved to investi-

ate the accuracy of the model for non-stationary problems. We

imulate the propagation of an ice front in undercooled water, as

roposed by Rauschenberger et al. [40] . In a domain of length

.5 mm, the phase interface is initially located at x �, 0 = 0 and

ropagates into the semi-infinite liquid subdomain x �( t ) > x �,0 .

oth phases are initially at constant temperatures of T s = 263 . 15 K

solid) and T l = 243 . 15 K (liquid). Material parameters are provided

n Table 1 . We prescribe a constant temperature T w 

= T s = 263 . 15 K

t the wall, and use a zero-gradient boundary condition to rep-

esent a semi-infinite liquid subdomain. The domain size is chosen

ufficiently large to prevent spurious effects from the far-field zero-

radient boundary condition on the ice-layer growth. 

The numerical solution of the temperature field is compared to

he analytical solution given by Carslaw & Jaeger [4] 

 < x < x �(t) , t > 0 : T (x, t) = T w 

+ (T m 

− T w 

) 
erf 

(
x −x �, 0 

2 
√ 

αs t 

)
erf (β) 

x > x �(t) , t > 0 : T (x, t) = T ∞ 

+ (T m 

− T ∞ 

) 
erfc 

(
x −x �, 0 

2 
√ 

αl t 

)
erfc ( ̃  αβ) 

(23) 

ith 

√ 

π = 

St s 

erfc ( β) 
e ( −β2 ) + 

St l 
˜ α erfc ( ̃  α β) 

e ( − ˜ α2 β2 ) (24) 

nd the ratio of the thermal conductivities ˜ α = 

√ 

αs /αl . The Stefan

umber St denotes the ratio of sensible heat to latent heat and is

omputed following 

t s = 

c s (T m 

− T w 

) 

L 
, St l = 

c l (T m 

− T ∞ 

) 

L 
. 

q. (24) yields β = 0 . 2685 for the described case. The interface lo-

ation at time t is given by 

 �(t) = x �, 0 + 2 β
√ 

αs t , (25)

nd the interface velocity is 

 �(t) = 

dx �(t) 

dt 
= β

√ 

αs 

t 
. (26)

he simulations are initialized with the analytical solution for the

emperature field from eq. (23) at t = 0 . 01 , and a corresponding

evel-set field with the interface located at x �(t = 0 . 01) from eq.

25) . 

A temporal series of simulated temperature profiles is shown in

ig. 5 , together with the corresponding analytical solutions. The ef-

ective resolution for this case is 512 cells in the entire domain. The
greement with the reference is good at all time instants. Steep

emperature gradients in both phases diminish over time, as solid

nd liquid phases absorb the latent heat released by the solidifying

ndercooled liquid. Therefore, the propagation of the phase inter-

ace slows down. 

The temporal evolution of the interface location is shown in

ig. 6 for successively finer meshes. The numerical results repli-

ate the square-root behavior of the moving solidification front

n time. The accuracy of the solution improves for successively

ner meshes. Error plots are given in Fig. 7 for the interface lo-

ation (left) and the temperature field (right) at t = 0 . 5 , for effec-

ive mesh resolutions between 64 and 4096 cells. The temperature-

eld error is given as L ∞ 

norm, and as L 1 norm following 

 1 = 

1 

V 

∑ 

n 

|| T n,exact − T n,sim 

|| 
T n,exact 

dV n , (27) 

ith T n,exact being obtained from the analytical solution eq. (23) .

he global convergence order of the scheme is one for both the in-

erface location and the temperature field, which is higher than for

reviously published level-set based approaches [40] , underlining

he advantages of applying high-order low-dissipation schemes. 
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Fig. 7. Fig. (a): error of the interface location x � at t = 0 . 5 . Fig. (b): error of the temperature field (right) at t = 0 . 5 . Given are reference convergence orders (dashed line) 

and simulation results (symbols). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Material properties of ice and water at 273.15K [40] . 

ρ k c L γ

[kg m 

−3 ] [W (m K) −1 ] [J (kg K) −1 ] [kJ kg −1 ] [kg s −2 ] 

Ice 1000.0 2.216 2103.0 333.0 0.028 

Water 1000.0 0.5624 4218.0 
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4.2. Growth of a parabolic dendrite 

The growth of a parabolic dendrite has been investigated ana-

lytically, experimentally, and numerically in the past. Based on the

work of Ivantsov [20] , Langer and Müller-Krumbhaar developed a

stability theory for the growth of a single dendrite [28,29,34] . They

derived a universal solution to compute the tip radius and veloc-

ity of a parabolic dendrite. First, the Péclet number of the growth

process 

P e = 

r t 

l 
(28)

is introduced, which describes the ratio of the tip radius r t (i.e. the

length scale of the growing dendrite) to the range of the diffusion

field l given by 

l = 

2 α

u �
. (29)

Here, α denotes the thermal diffusivity of the melt and u � is the

interface velocity at the tip of the dendrite. For dendritic growth

cases, Pe < 0.1 is usually valid. According to Langer et al. [29] , the

Stefan number and the Péclet number are related by 

St ≈ P e exp P e E 1 (P e ) (30)

if the dendrite is of parabolic shape, rotationally symmetric, and

isothermal. Here, E 1 describes the exponential integral. 

A second non-dimensional parameter 

σ = 

ld c 

r 2 t 

(31)

can be formulated, which relates the capillary length scale 

d c = 

γ cT m 

ρL 2 
(32)

to the diffusion length l and the tip radius r t . The parameter σ
plays a crucial role in the stability analysis of dendritic growth.

Depending on the number of dimensions D , Müller-Krumbhaar &

Langer [34] derived that only solutions which satisfy 

σ ∗ = 

{
0 . 020 ± 0 . 007 D = 2 

0 . 025 ± 0 . 007 D = 3 

(33)

are stable. Here, σ = σ ∗ is the operating point of dendritic growth.

The tip radius and velocity for a given undercooling and mate-

rial parameters are obtained as follows. First, eq. (30) is solved to
btain the Péclet number. Then, the formula for the growth veloc-

ty 

 = σP e 2 = 

d c u �

2 α
(34)

s employed to compute the tip velocity and, eventually, the tip

adius is found from eq. (28) . 

In the following, we compare the simulation results with

oth the analytical solution of the theory of Langer and Müller-

rumbhaar and experimental results [9,48] at various undercool-

ngs 
T . We prescribe a single dendrite of tip length l D with the

arametric function 

 (s ) = s (35)

 (s ) = − s 2 

r t 
+ l D , (36)

 ∈ [0 , 
√ 

r t l D / 2] . We choose l D = 3 r t , and an initial tip-radius which

s half the tip radius expected from theory. We simulate only half a

endrite in a domain of size [20 r t × 40 r t ], utilizing the symmetry

f the problem, see Fig. 8 for the initial interface location together

ith a sketch of the multiresolution block structure. Each phase is

nitialized at constant temperature, the ice subdomain with T s = T m 

nd the undercooled water subdomain with T l = T m 

− 
T . Material

arameters for water and ice at 273.15K are given in Table 2 . The

omain is chosen big enough to eliminate boundary effects. We re-

olve the domain with 256 × 512 cells. All far-field boundary con-

itions are assumed to be adiabatic. 

Fig. 9 shows the transient tip velocity for an undercooling of

T = 10 K for various refinement levels ( Fig. 9 (a)), and the tem-

erature field in the growing crystal ( Fig. 9 (b)). The discontinu-

us temperature field at initialization leads to an overestimation

f the tip velocity at early times, and the dendrite grows rapidly.

he energy released by the solidifying melt results in a flattening
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Fig. 8. Schematic of the simulation domain for the two-dimensional dendritic 

growth case, including the multiresolution block structure. The solidification front 

is shown in red. Note that the dendrite is not drawn to scale. 
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Table 3 

Relative error of the presented results to the analytical solution. 


T [ K ] 1 2 5 8 10 15 20 

error ( u � ) [%] 11.6 12.8 16.0 10.2 9.0 9.7 10.3 

 

v  

p  

r  

a  

d  

d  

r  

b  

w  

s  

o  

i  

a  

F  

p  

a  

i  

s  

l  

d  

t  

p  

a  

l

4

 

s  

p

x

y

F

f the temperature gradient in both phases, and the tip velocity

ecreases. Note that the cell spacing only affects the early stages

f the growth for t < 200 ns. Once a smooth temperature field has

eveloped in the near field of the dendrite, the temporal evolution

verlaps for different mesh sizes. Curvature effects on the interface

emperature result in a heterogeneous temperature distribution in

he parabolic dendrite (see Fig. 9 (b)). The minimum temperature

ccurs at the dendrite tip, which is where the interface velocity

eaches its maximum. 
ig. 9. Fig. (a): temporal evolution of the tip velocity for 
T = 10 K for various grid resolu
Based on these results, we performed multiple simulations with

arious undercoolings to compare our model with analytical, ex-

erimental, and numerical reference data. Note that the interface

adius r t decreases with increasing undercooling 
T . Therefore, we

dapt the cell size to maintain a constant resolution per tip ra-

ius for all investigated cases. The strong initial temperature gra-

ient results in a high interface velocity, so that the crystal grows

apidly. To assure that the crystal does not grow beyond its sta-

ility limit due to the initial transient, we initialize the dendrite

ith a tip radius smaller than what is predicted from the analtical

olution r t, 0 < r t,LM−K . Once a smooth temperature field has devel-

ped, the tip curvature decreases. We evaluate the interface veloc-

ty once the tip radius is equal to the radius of the theory of Langer

nd Müller-Krumbhaar r t,LM−K [40] . Our results are presented in

ig. 10 , together with the analytical solution [29] and previously

ublished experimental [9,48] and numerical [7,40] data. The devi-

tion to the analytical solution for each undercooling is presented

n Table 3 . The results of our model lie within the experimental

catter, and numerical errors are similar to previously published

evel-set based models [7,40] . For 
T > 10 K, experimental results

eviate from analytically and numerically determined tip veloci-

ies. This deviation can be attributed to kinetic effects [48] , which

lay an increasingly important role for such large undercoolings,

nd are neither included in the simulation models nor in the ana-

ytical model. 

.3. Growth of a crystal with four-fold symmetry 

Juric and Tryggvason [23] proposed a test problem for the un-

table growth of a crystal with four-fold symmetry. The initial

hase interface is given by the parametric function 

 (s ) = x c + ( R 0 + R s cos (8 π s ) ) cos (2 π s ) (37) 

 (s ) = y c + ( R 0 + R s cos (8 π s ) ) sin (2 π s ) (38) 
tions and the analytical solution. Fig. (b): temperature field in the growing dendrite. 
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Fig. 10. Tip velocity as function of the undercooling 
T from the presented numer- 

ical simulations, numerical reference data [7,40] , experimental reference data [9,48] , 

and analytical results [29] . Present numerical results are marked with filled sym- 

bols, open symbols denote reference data from literature, and the solid and dashed 

lines give the analytical results together with the variance 
σ . 
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with s ∈ [0, 1], R 0 = 0 . 1 , R s = 0 . 02 , and x c = y c = 2 in a domain

of size [0, 4] × [0, 4] with periodic boundary conditions. We

use constant material parameters for the densities ρl = ρs = ρ = 1 ,

the specific heat capacities c l = c s = c = 1 , the thermal conductiv-

ities k l = k s = k = 1 , and the latent heat L = 1 . The melting tem-

perature is set to T m 

= 1 , and the initial temperature field in the

solid ( T s = T m 

) and liquid ( T l = 0 . 5 ) phase is constant. The surface-

tension coefficient and the kinetic coefficient are set to γ = 0 . 002

and εu = 0 . 002 , respectively [23] . 

The Stefan number of this problem is 

St = 

c(T m 

− T l ) 

L 
= 0 . 5 = X s (t → ∞ ) 

and indicates that at equilibrium, half of the domain is solidified,

while the other half remains in a liquid state at melting temper-

ature. The temporal evolution of the solid volume fraction X s and

of the mass m normalized with the initial mass m 0 are given in

Fig. 11 for effective grid resolutions of 256, 320, 384, 448, and

512 cells per spatial direction. For the coarsest resolution, we find

an overprediction of the steady-state solid volume fraction, but

with increasing resolution this overshoot vanishes. The temporal

behavior converges for increasing mesh refinement, too. At steady

state, the solid and the liquid mass each account for approximately

one half of the total mass, as expected for this setup. The total

mass ( Fig. 11 (b)) remains constant during the simulated time, con-

firming the conservation property of our method. For comparison,

Fig. 12 shows the relative local deviation of the simulated density

field ρsim 

to the exact solution ρ = 1 for an effective resolution of

256 cells per spatial direction at t = 0 . 4 with the linearized ap-

proach, Fig. 12 (a), and the semi-implicit scheme proposed here,

Fig. 12 (b). The linearized scheme exhibits large density errors in

cut cells where the main direction of the crystal growth deviates

from the main grid axes, see e.g. the area between two neighbour-

ing fingers, Fig. 12 (a). For the present scheme, the density errors

vanish, Fig. 12 (b)). 
Fig. 13 shows the isolines of the evolving solid-liquid interface

or the previously mentioned grid resolutions. The time interval

etween isolines is 
t = 0 . 05 . The initial four protrusions develop

ach into a single dendrite. The tip-splitting instability occurs at

ach of these protrusions. In previous studies, the onset of this in-

tability was reported at t ≈ 0.3 (e.g. [32,55] ). Our low-dissipation

imulations indicate that the numerical dissipation of the under-

ying numerical discretization scheme is critical for observing the

rst occurrence of tip-splitting, which in our case is at t = 0 . 15 .

his underlines the advantageous effect of low-dissipative spatial

nd temporal discretization schemes on the occurrence of interfa-

ial instabilities, as already mentioned by Gibou et al. [11] . Such

igh-order methods benefit from their low intrinsic numerical dif-

usion which does not prevail over the physical instability mecha-

ism. With increasing refinement, the secondary dendrites flatten,

nd the onset of additional tip-splitting instabilities is observed,

ee the results in Fig. 13 for resolutions above 384 cells. To the au-

hors’ knowledge, this kind of instability has not been reported for

umerical simulations of this test case in previous literature. 

The temperature field at t = 0 . 6 and t = 1 is given in Fig. 14 .

he anisotropic growth behavior is a consequence of the non-

niform temperature distribution in the solid and liquid phases,

ee t = 0 . 6 . Between two neighboring fingers, the liquid temper-

ture is close to the melting temperature, leading to a low growth

elocity. Near the tips of the crystal, the liquid is still undercooled.

n combination with the lower interface temperature at the tips,

hich follows from the Gibbs-Thomson relation for curved inter-

aces ( eq. (2) ), this results in a local increase of the growth ve-

ocity. At t = 1 , the temperature is approximately homogeneous in

olid and liquid phases. This results in small interface temperature

radients, thus the crystal ceases to grow. 

.4. Growth of multiple crystals with four-fold symmetry 

Finally, we simulate the growth of a complex multi-crystal

rowth configuration in an undercooled liquid to mimic a realis-

ic solidification microstructure. On a domain of size [0, 8] × [0,

], we initialize four spherical seeds with initial radius r = 0 . 2 . The

rbitrarily chosen seed centers are located at (1, 2), (2.5, 3.5), (4, 1),

nd (6, 2). The initial temperature is T l = 0 . 2 for the undercooled

iquid, and T s = T m 

= 1 in the solid seeds. We use constant material

arameters for the densities ρl = ρs = ρ = 1 , the specific heat ca-

acities c l = c s = c = 1 , the thermal conductivities k l = k s = k = 1 ,

he latent heat L = 1 , and the kinetic coefficient εu = 0 . 002 . For the

nisotropic surface tension, we use 

(�) = γ0 

{ 

1 + A s 

[ 
8 

3 

sin 

4 
(

1 

2 

m s (� − �0 ) 
)

− 1 

] } 

(39)

1] . Here, γ 0 describes the undisturbed surface tension coefficient,

 s the magnitude of anisotropy, � the angle between the interface

ormal and the x -axis, �0 the angle between the symmetry axis

f the crystal and the x -axis, and m s the symmetry mode of the

rystal. We choose γ0 = 0 . 002 , A s = 0 . 4 , �0 = 0 , and m s = 4 for a

rystal with four-fold symmetry. The maximum mesh resolution of

he adaptive grid is 1024 × 512 cells, and periodic boundary con-

itions are applied in x - and y -direction. 

Interface contour lines are given in Fig. 15 , with an equal time

pacing of 
t = 0 . 005 between isolines. The initial growth stages

re similar to the growth of a single nucleus in an undercooled

elt, since the growing crystals do not influence each other yet.

he four-fold anisotropy of the surface tension causes the crys-

al to grow along four main directions, similarly to the case pre-

ented in section 4.3 . Interfacial instabilities at the tip of each of

he protrusions result in the characteristic tip-splitting patterns.

t later stages, the growing crystals interact with each other and

lock each others growth, which results in the locally degenerated
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Fig. 11. Fig. (a): evolution of the solid volume fraction for successively finer meshes. Fig. (b): evolution of the total mass, the liquid mass, and the solid mass for various 

resolutions. The total mass for for the different resolutions is shown in black, the mass in the liquid phase in green, and the mass in the solid phase in blue. 

Fig. 12. Relative error of the density field at t = 0 . 4 . Fig (a): linearized approach. Fig. (b): semi-implicit approach. 
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f  

C  
ngers. This behavior is connected to inhomogeneities in the tem-

erature field, which is shown in Fig. 16 at t = 0 . 03 and t = 0 . 07 .

t t = 0 . 03 , temperature-field inhomogeneities are restricted to the

ear field of each single crystal, while their surrounding consists of

omogeneous undercooled liquid. Therefore, the shape of all four

rystals is comparable to that of a single-crystal growth case, and

ymmetric to the main growth directions. The ongoing heat release

uring phase transition results in a temperature increase in the

mbient undercooled liquid. At t = 0 . 07 , the liquid between crys-

als 1 and 2 has reached the melting temperature locally, and the
Fig. 14. The temperature field for an effective resolution of 512 cells in each spatial dir
rowth ceases. The low numerical dissipation of the model ensures

hat the liquid areas between the solid crystals are preserved, and

re not merged with each other. Between crystals 1 and 3, the fluid

s still undercooled, thus the crystals grow in this direction. 

. Conclusion and outlook 

We have presented a conservative interface-interaction method

or a sharp-interface formulation of liquid-solid phase transition.

onservation at the interface is maintained by explicit formula-
ection. The solidification front is shown in black. Fig. (a): t = 0 . 6 . Fig. (b): t = 1 . 0 
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Fig. 13. The solid-liquid interface for various grid resolutions. The time interval between isolines is 
t = 0 . 05 . 

Fig. 15. The solid-liquid interface for the growth of multiple cystals subjected to 

four-fold anisotropic surface tension. The time interval between two successive iso- 

lines is 
t = 0 . 005 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. The temperature field of the multi-crystal growth case. The solidification 

front is shown in black. Fig. (a): t = 0 . 03 . Fig (b): t = 0 . 07 . 

f  

a  

fi  

a  

i

tion of interface fluxes into both solid and liquid phases. A semi-

implicit level-set formulation is applied to evolve the phase inter-

face. A new formulation for the interface surface in a cut cell has

been derived, which includes the Stefan condition. The reconstruc-

tion of interface gradients based on third-order WENO smoothness

indicators [22] and an explicit third-order Runge-Kutta scheme for

time discretization [12,16] ensures low numerical dissipation. The

interface-interaction model takes into account surface-tension and

kinetic effects on the interface temperature (Gibbs-Thomson re-

lation), including anisotropic behavior. The Stefan condition pro-

vides a relation between interface fluxes of mass and energy, and

the interface-propagation velocity. The sharp-interface property is

ensured by extrapolating fluid states across the interface for the

single-phase reconstruction of the cell-face fluxes near the inter-
ace [8] . Computational efficiency is improved by dynamic mesh

daptation with respect to the evolving interface and temperature

eld using the multiresolution approach of Harten [17] , and an

daptive local time-stepping scheme for efficient and robust time

ntegration [24] . 
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We have validated the presented method with analytical solu-

ions for the one-dimensional Stefan problem and the growth of a

wo-dimensional parabolic dendrite. This shows that the model is

apable to capture both unstable (dendritic-like) and stable (pla-

ar) growth processes accurately. Numerical results of a growing

ingle crystal with four-fold symmetry and multiple crystals with

our-fold symmetry demonstrate the capabilities of the method to

odel crystal-growth problems with complex interfaces, and that

t recovers the tip-splitting instability correctly. Our results indicate

hat the numerical dissipation of the underlying numerical scheme

s critical for the prediction of tip-splitting instabilities. Our simu-

ation predicts an earlier onset of this instability than reported in

revious literature which is consistent with lower numerical dissi-

ation. The numerical examples presented here are limited to one

nd two dimensions, extension to three dimensions is subject of

ngoing work. 
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