A Multi-Step Approach to Accelerate the Computation of Reachable
Sets for Road Vehicles

Moritz Klischat and Matthias Althoff

Abstract— We propose an approach for the fast computation
of reachable sets of road vehicles while considering dynamic
obstacles. The obtained reachable sets contain all possible
behaviors of vehicles and can be used for motion planning,
verification, and criticality assessment. The proposed approach
precomputes computationally expensive parts of the reacha-
bility analysis. Further, we partition the reachable set into
cells and construct a directed graph storing which cells are
reachable from which cells at preceding time steps. Using this
approach, considering obstacles reduces to deleting nodes from
the directed graph. Although this simple idea ensures an effi-
cient computation, the discretization can introduce considerable
over-approximations. Thus, the main novelty of this paper is to
reduce the over-approximations by intersecting reachable sets
propagated from multiple points in time. We demonstrate our
approach on a large range of scenarios for automated vehicles
showing a faster computation time compared to previous
approaches while providing the same level of accuracy.

I. INTRODUCTION

Reachability analysis is considered a powerful tool to
ensure safety for safety-critical applications such as self-
driving vehicles. Although reachability analysis is a well-
researched topic with continuous improvements in terms
of scalability and/or tightness [1]-[3], most approaches do
not consider time-varying forbidden regions originating from
static or dynamic obstacles.

However, reachable sets excluding forbidden regions are
especially useful for motion planning, e.g., for restricting the
search space to safe regions [4]. Also, the size of reachable
sets can be used to assess the criticality of traffic scenarios
for generating safety-critical test cases for motion planners
[5]. Another application of reachable sets is cooperative path
planning for multiple agents [6], [7] or the computation of
the time-to-react (TTR), i.e., the last point in time to avoid
a collision [8]. Most of the above-mentioned applications
are used in real time and require a fast computation. In this
paper, we propose a novel method that computes reachable
sets excluding forbidden regions more efficiently compared
to previous work.

A. Related Work

General approaches which are based on Hamilton—Jacobi—
Bellmann (HJB) equations are proposed in [9]-[11]. How-
ever, for real-time applications this method is computation-
ally too expensive. An early work computing reachable sets
for trajectory planning of vehicles is [12]. In [13], reachable
sets are computed offline for parametrized trajectories with

All authors are with the Technische Universitdt Miinchen, Fakultét fiir
Informatik, Lehrstuhl fiir Robotik und Echtzeitsysteme, Boltzmannstrafle 3,
85748, Garching, Germany. {moritz.klischat, [althoff} @tum.de

constant inputs. During run time, parameters of the collision-
free reachable sets are selected to determine the set of safe in-
puts for the subsequent trajectory optimization. The method
in [14] approximates the reachable set of automated vehicles
using HJB equations. However, the method is restricted to
rectangular obstacles and simple road configurations.

A related topic where obstacles are considered in reacha-
bility analysis is the computation of inevitable collision states
(ICS), which eventually lead to a collision irrespective of
the chosen input [15]. Works that compute ICS in dynamic
environments using reachability analysis can be found in [9],
[16], [17].

To emphasize that we are ultimately interested in reachable
sets avoiding forbidden region projected to the road surface,
we use the term drivable area henceforth. In our previous
work [18], we also computed the drivable area, but that
approach requires recomputing similar computations, which
unnecessarily consumes computational resources.

B. Contributions

We propose a novel method for the graph-based computa-
tion of the drivable area. A similar graph-based method was
used in [19]; however, the reachability was only approxi-
mated and not based on system dynamics. Although a spatio-
temporal decomposition of the state space for reachability
analysis was used, e.g., in [20]-[22], the novelty of our work
is that

it can limit the discretization error by considering mul-
tiple preceding time steps at every iteration;

o our algorithm can handle arbitrary obstacle shapes and
road networks;

e ICS can be considered less conservatively compared
with our previous work [18];

« we provide extensive testing and benchmarking on a
large number of traffic scenarios.

The rest of the paper is organized as follows. First, we
introduce the problem statement in Sec. [II before describing
the proposed method in Sec. which is divided into offline
and online computation. Finally, we evaluate our approach
in Sec. using multiple numerical examples and compare
it to related works.

II. DEFINITIONS AND PROBLEM STATEMENT

Let the dynamics of a model M be given by @(t) =
f(z(t), u(t) with inputs u(t) € U bounded by the input
set U C R™. A solution originating from the initial state

mailto:moritz.klischat@tum.de
mailto:althoff@tum.de

xg € R™ is

t
x(t;u(-), o) = o —|—/ fz(r),u(r))dr, (D
to
where x(t;u(-),z9) € R™ and u(-) denotes an input trajec-
tory in contrast to points in time ¢. Because we often require
the projection of states to the two-dimensional position do-
main, we define the projection operator proj(z) : R" — R2.
From the perspective of the vehicle, the possible future
occupancy of obstacles and regions outside of the road
surface are a set of forbidden states F(t) C R? dependent
on time ¢t. The anticipated reachable set is defined as the
set of reachable states starting from an initial state zy while
avoiding a set of forbidden states F(¢) during time interval
t € [to, t] [18]:

xo) | xo € Ap,

o)) & F(7)}-
2

The time-dependent reachable set is computed iteratively
for time increments At € RT. Hence, we denote a set at
time t; by a subscript k. At each point in time ¢ = k - At
with k£ € N, we denote the reachable set by

re%ch()(o,u, F(t)) = {z(t; ul(-),

V1 € [to,th]Z U(T) eu, prOj(SC(T;u('),

Rk+1 = I‘?aCh(Rk,u,J:(t)), RO = Xo. (3)
k41

When no exclusion of forbidden sets is considered (F (t) =

?) we write D e.g., ’Rk Since an exact solution of the
drivable area proj(Ry) cannot be computed for the general
case [23], we compute it over-approximately. Moreover, we
model road vehicles by a point-mass model M, because it
abstracts any high-fidelity model M for a road vehicle whose
dynamics are bounded by the friction circle 2 $C + x <a?

max

[12]:
Ee(t) 0100 x¢(t) 00
Ze(t) 0000 I (1) Lo <u<(t)>
in(t)] L0001 || z(t) 00] \uy(®)
i (1) 0000/ \it) 01
“4)
u(t) €U, U:{u\ungu%gafnax}.)

This abstraction guarantees that the drivable area of the high-
fidelity model proj(R}7) is always a subset of the abstracted
model proj(Ry*), i.e., proj(RM) C proj(Ry*).

feasible trajectory z(t;u(-), zo)

ego vehicle - obstacle

zo drivable area proj(R) F(t)

Fig. 1: The drivable area for a complete prediction horizon that represents
the set of all feasible trajectories for the ego vehicle.

III. CONCEPT OF OFFLINE AND ONLINE COMPUTATION

We divide the computation of the drivable area into two
parts: offline and online. During the offline computation,
the drivable area is computed without forbidden sets F(t),
which are only known during online execution. The result is
partitioned using a uniform grid of disjoint axis-aligned cells
in the position domain

Ne
cf) = [e0,@0] cr2, el 2 proj(Re), ()
=0

where the index i refers to the i'" cell. We define a directed
graph as a tuple § = (V E) where nodes v,; € V
correspond to the cells C of the drivable area and edges
(Vk,i,Vk41,;) € E express that a trajectory from one cell to
another cell exists.

Thus, forbidden sets can be excluded during the online
computation by deleting occupied nodes and their outgoing
edges from the graph as illustrated in Fig. [J] Since only the
position domain in R? is discretized, the number of nodes
only scales quadratically with the number of segments in
each dimension. We compensate over-approximations from
the discretization by adding edges between nodes spanning
multiple time steps, as explained in Sec. [[lI-C|

proj(ﬁk) proj(?AZkJrl) Graph
T
" AN
AN 1/ EEn B
¢ k ES .
e Eo
ty te+1
(a) Offline
proj(Re+1)
//’_.\
proj(Ry) a ™\
o AN F \
—\ 1 = O
\ ¢ X0
L - ®
¢
(b) Online

Fig. 2: (a) Offline computation of reachable cells Cj1 at t;4q which is
encoded in a graph. (b) Online: deleting nodes (represented in dark gray)
that correspond to cells which intersect with forbidden sets F(tx) or do
not have a predecessor.

A. Offline Reachability Analysis
The offline computation consists of two steps:

1) Propagation of the reachable set Rk to obtam RkJrl

2) Discretization of the reachable set Rk+1 to ©k+1 and

construction of the graph.

1) Propagation: Since the vehicle model in (@) is lin-
ear, the superposition principle can be applied: The reach-
able set R, is obtained by adding the homogeneous solu-
tion z(tg;u=0,20#0) resulting from the initial state
and the inhomogeneous solution x(tx;u#0,xo=0). Since

U is a constant set, the set of inhomogeneous solutions
reachy, (0,U, () can be computed offline for an initial state
located at the origin 0. For further derivation let us introduce
the Minkowski sum of a singelton ¢ and aset) as a®) =
{a+y |y € V}. During online execution, the reachable sets
for an arbitrary initial state xy are obtained as

refach(ato,u, 0) = re?ch(xo, 0,0) @re?ch(O,M, 0. @

R x(tx;0,20) : online 7@2“ : offline

Since no forbidden set is excluded during the offline com-
putation, the propagation step

9", = reach(RY™, U, 0) (8)
tr41

can be computed with standard tools for reachability analy-
sis; a non-exhaustive list is given by Flow* [24], SpaceEx
[25], C2E2 [26], JuliaReach [27], and CORA [28].

2) Discretization of ﬁk+1 and Construction of the Graph:
For creatmg the graph G, we first partition the reachable
set szﬁl into disjoint subsets Bkj-u using the cells in the
position domain (6) to compute the Cartesian product

. 7 i 7 *() 7 *(l)
VieT: B,(c) =CcW x [ﬂc,(c)g,xkg] X [x,g)n,xkn]

T={i| Ry NCO 20} ©
~() (0

The intervals [m %)C’ Ty, C] and [1’ P T n] bound the velocities

of the reachable set Rz{h for the i*® cell. To obtain a
discretized representation of a reachable set, we introduce
the discretization operator:

Ny

D3 = diser(RY) = | BY 2 Ry, (10)
i=0
which analogously yields ©;, = discr(Ry). An edge
(Vk,is Viy1,;) is added to G if
reach() U, 0) N Bk+1 # 0. (11)
th+1

For efficient implementation, we represent the edges by
adjacency matrices P,f“ € RI*%+1 with ¢ being the
number of cells at the respective time. Each element p;; of
P,f“ is a Boolean value

U,0)NBY, #10

12
otherwise. (12)

1 if reachtHl(B,(j),
Pji = 0

The adjacency matrices P,f“ are the main result of the
offline computation and can be stored compactly as sparse
matrices.

B. Online Computations

The objective of the online computation is to exclude
forbidden sets F; from the drivable area. Therefore, at
every iteration step the drivable area is propagated and cells
intersecting with F} are excluded.

Algorithm 1 Offline Reachability Analysis
Require: input set U
I: for k=0 ton do
2 Rk+1 — reachtkﬂ(’Rk,Z/l)
3: Dy d1scr(Rk+1) > see
4 {vi,v;} < REACHABLECELLS(®}, D 11)
> see (TI)
5. Pt e CONSTRUCTGRAPH({(B,(C BI D
> see
end for
7: return Py D,

F*.'\

1) Propagation: To propagate the drivable area using the
adjacency matrices P,f“, we introduce the Boolean vector
ri € {0,1}7 that denotes for each cell whether it is part of
the drivable area:

Tl(:‘) _ { 1 if (Jc(tk;O,mo) @C,(Ci)) N proj(Dg) # 0
0

otherwise.
(13)
Using (12), we write the graph-based propagation as

Pres1 = By (14)

2) Discretization of Obstacles: To exclude Fjy; from
the Boolean representation 741, we discretize Fjy1. As
commonly done in motion planning, we consider the shape
of the ego vehicle by dilating the occupied space of ob-
stacles with a disk of radius p that under-approximates the
shape of the ego vehicle [29]. The under-approximation is
required to consistently over-approximate the drivable area
when excluding Fj41. The resulting occupied space Fj 1 is
represented analogously to r; by the occupancy vector oy
with elements

(%) { 1 if z(tx; 0, 20) @C,(CZ;)H C Frt1
k+1 — O

15
otherwise (13

Fir41 1s typically not connected and thus, occupancies from
multiple obstacles need to be discretized individually. For
efficiency, the discretization of an obstacle is only conducted
if it intersects with the bounding box of the drivable area.
From (T3] and (T3] follows that the exclusion of the occupied
states is equivalent to

Tht1 = Pyl A "0p41

with logical operators — and A being performed element-
wise. Thus, we can write the propagation of the reachable
set and exclusion of forbidden sets as

D41 = diser (rteach(CDk,u, @)) \ diser (F (tg+1)),

k41
Do =z, (16)
which using (I4) simplifies to

Thtl = (P,f"’lnk) A 70k 41 - (17)

k=1 — A
k=2 -’Dk
k=3 B =

R

Fig. 3: One-dimensional example for the intersection of multiple propagated
sets to reduce the discretization error of ©3. For d = 0, only cells at
subsequent time steps are connected in the graph; for d = 1, edges from
k =1 to k = 3 are also considered and only those cells with an edge to
k = 1 are reachable at k = 3. The undiscretized drivable area R is shown
for comparison.

C. Compensating Discretization Errors with Multiple Prop-
agations

When propagating the drivable area proj(®Dy), the dis-
cretization accumulates as shown in Fig. 3] After multi-
ple time steps, these errors quickly lead to an undesir-
ably over-approximated drivable area. Furthermore, we over-
approximate the velocities so that we only have to discretize
the position domain.

To counteract the discretization errors, we add edges
between cells of the drivable area that span multiple time
steps. Using these edges, drivable areas from multiple pre-
ceding points in time are propagated up to time t;y; and
the resulting sets are intersected. Since the edges spanning
multiple time steps are also computed offline using the same
principle as in Sec. [[II-A] the discretization error is only
added once, instead of aggregating the discretization errors
from every intermediate time step as illustrated in Fig. 3]

Let us first formalize the multi-step approach using the
set-based representation. We define the refined reachable set
resulting from propagations from d points in time t;, [€
{k —d,...,k} to time step t;41 as

k
ﬂ discr (rgaeh(@l, U, @))) \ discr(F(tg+1)),
I=k—d ’““

Dy, = (

50 = Zg- (18)

. =0 . . .
Since D, is always among the intersected sets in l|

§Z+1 C Dpyq is true for any d > 0 showing that
multiple propagations obviously provide tighter results. The
propagation steps discr(reach;, +1(5?,?1,@))) can also be
computed offline and represented by propagation matrices
Pl’“rl using the same approach as in Sec. Thus, we can
write the multi-step online propagation from (I8) in matrix
notation as

k
i = (/\ sz+171> A 0k41 - (19)

l=k—d

Since (T9) can be implemented efficiently, the runtime is
mainly dominated by the discretization of obstacles; even

multiple propagations do not impact run time considerably,
as shown in Sec. [Vl

D. Exclusion of Inevitable Collision States

By utilizing the graph, we can efficiently exclude ICS
from the previously computed drivable area. Even though
the principle was formulated before in [18], it becomes
especially effective when combined with our approach that
uses a fine discretization of the whole drivable area. When
no path in the graph G from a cell C,(j) to a cell at the
final time step exists, all states in C,(:) eventually lead to
a collision. Thus, we exclude these cells from the drivable
area by iterating backward from the final set 7 and deleting
nodes with no reachable set at a preceding time step. Using
the propagation matrices and the multi-step propagation as
in (T9), this is computed at each time step as

k+d

d ;T =d
Tp—1= (/\ Py Kz) AN70k—1, Tp =T,
I=k

(20)

where the transpose of the propagation matrix follows from
its definition in (I2). The complete forward-backward algo-
rithm of the online reachability analysis is summarized in
Algorithm [2]

Algorithm 2 Online Reachability Analysis

Require: graph represented by propagation matrices P,f“,
forbidden set F(t), number of time steps h, and number
d of considered time steps for propagation
1: for k=0 to h do

2: x(tr;,0,20) < HOMOGENEOUSSOLUTION(z()
3: Ok+1 — OCCUPANCYGRID(Fg+1, Cr41,
2(ty;,0,20)) > see
4 7., < PROPAGATE(PF™ {ri_g, ... 7}, 0t1)
> see (19)
5: end for
6: Ty ?z
7. for k =h to 1 do
8 r{ , < EXCULDEICS(P} ,,r{) > see (20)
9: end for

10: return {r{ | k € {0,...,h}}

IV. EVALUATION

We evaluate our approach using recorded traffic from the
CommonRoad benchmark suiteE| [30] and use [31] to create
obstacles representing road boundaries to detect leaving the
road. Further, we compare our results with those of [18]
using identical parameters for all scenarios as listed in
Table[ll Both methods are implemented in Python using C++
for computationally expensive operations. The computation
times were measured on a laptop with an Intel 17-8650U
1.90 GHz processor and 16 GB of RAM.

Uhttps://commonroad.in.tum.de/

https://commonroad.in.tum.de/

TABLE I: Parameters used in the evaluation.

Parameter Value
maximal acceleration amax 5.0 m/ s2
cell size dx¢,dry, 0.5 m
number of time steps d {0, 1, 7}
time step At 0.1s
radius p 1.25m

A. Computation Time

To compare the online computation time with the
polytope-based approach in [18], we compute the drivable
area for 339 scenarios from the CommonRoad benchmark
suite. In this comparison, d = 7 time steps are propagated
simultaneously. Fig. [] shows the median and the ranges
of the computation times over the number of computed
time steps. The proposed algorithm requires 0.037s for 34
time steps as the median computation time, compared with
0.170s with the polytope-based approach. In particular, for
longer time horizons and larger drivable areas, our method
outperforms the polytope-based approach. The maximum
computation time is also lower with 0.25s compared with
0.34s.

=
g o 10° !
g :
= 41072
g 3
S E
E 103
2 = presented method 3 10
g bounds = polytope-based]

L 1 1 1 1 | 10° 4

0 5 10 15 20 25 30

time step k

Fig. 4: Median computation times and min/max computation times depend-
ing on time steps k compared to polytope-based computation [18].

B. Scenario A

To illustrate the accuracy of our approach, we present
results for two out of the considered 339 scenarios. The
first scenario is an intersection from the NGSIM Lankershim
Datasef] which can be found under ID USA Lanker-1_1_T-
1 in the CommonRoad benchmark suite. In Fig. [3] the
evolution of the drivable area is depicted at different points in
time and for a different number of additionally considered
time steps d (see (I9)). Thus, it shows that incorporating
multiple time steps during the propagation has a noticeable
effect even for d = 1, which is especially evident in the upper
right region that is cut off by other vehicles. Comparing
the results in Fig. [f] with those obtained by the algorithm
from [18], it suggests that our computed area is slightly less
over-approximative, which results from the box constraint
for the input set I/ over-approximating the friction circle in
[18]; in contrast, we directly use the friction circle in (E[)
Nevertheless, there are regions where our approach is more

Zhttps://www.fhwa.dot.gov/publications/research/operations/07029/

over-approximative, which indicates that our method over-
approximates the velocity in these regions more.

Fig. 5: Scenario A: Effect of multiple propagations for different numbers
of involved preceding time steps d at (a) t = 2.4 s and (b) t = 3.4 s.

C. Scenario B

The second scenario is a highway scenario from the US
101 databasdﬂ which can be found under ID USA_US101-
27_1_.T-1 in CommonRoad. The ego vehicle has an initial
velocity of 13.88m/s. As in Scenario A, the effect of d is
shown in Fig. [7] and the comparison to [18] is shown in
Fig. @] At ¢t = 2.4s a smaller over-approximation can be
observed due to the constraint of the friction circle that is
only considered by our method. In contrast, the drivable area
from our approach is larger at ¢ = 3.4s in the upper right
region since we tend to over-approximate the velocity.

D. Discussion

Online computation can be divided into discretization (T3)
and propagation (17). The discretization is the dominating
part, which contributes 56 % of the overall run-time on
average. In the worst case, when every obstacle needs to be
discretized once every time step due to an intersection with
the bounding box of the drivable area (see Sec. [II-B.2),
the complexity for the discretization is linear with respect
to the number of obstacles n,. In contrast, the computation
time for the propagation in (I9) does not depend on the
number of obstacles, but only linearly on the number of
nodes, the number of edges for every node and the number
of considered time steps d.

3https://www.fhwa.dot.gov/publications/research/operations/07030/

https://www.fhwa.dot.gov/publications/research/operations/07029/index.cfm
https://www.fhwa.dot.gov/publications/research/operations/07030/

[presented method
I polytope-based

(b)
Fig. 6: Scenario A: Comparison of the approach with d = 7 to results from
[18] at (a) t = 2.4 s and (b) t = 3.4 s.

== I |

(b)

Fig. 7: Scenario B: Effect of multiple propagations for different numbers of
involved preceding time steps d at (a) t = 2.4 s and (b) t = 3.4 s.

The limiting factor for our approach is the required
memory for storing the offline computed matrices P,f“ in
Sec. [[lI-A] However, for 34 time steps the resulting file still
has a reasonable size of 173 MB and takes 134 minutes to
compute using the tool CORA [28].

V. CONCLUSIONS

We present a method for the fast computation of driv-
able areas considering dynamic obstacles. In hundreds of
scenarios, we show that our method results in a faster
computation time compared with our previous approach
while providing a comparable accuracy due to our multi-
step approach. Compared to related work [12]-[14], our

[l presented method
. polytope-based

(®)

Fig. 8: Scenario B: Comparison of the approach with d = 7 to results from
[18] at (a) t = 2.4 s and (b) t = 3.4 s.

method can compute the drivable area more efficiently and
is also able to handle more complex traffic situations and
road layouts. The resulting graph from our method can be
used subsequently by a trajectory planner for extracting a
driving corridor efficiently or finding an initial solution with
graph-based methods.

ACKNOWLEDGMENTS

The authors gratefully acknowledge financial support by
the Central Innovation Programme of the German Federal
Government under grant ZF4086007BZS.

REFERENCES

[1] A. Girard, “Reachability of uncertain linear systems using zonotopes,”
in Hybrid Systems: Computation and Control, 2005, pp. 291-305.

[2] Z. Han and B. H. Krogh, “Reachability analysis of nonlinear systems
using trajectory piecewise linearized models,” in Proc. of the American
Control Conference, 2006, pp. 1505-1510.

[3] M. Althoff, O. Stursberg, and M. Buss, “Reachability analysis of
nonlinear systems with uncertain parameters using conservative lin-
earization,” in Proc. of the 47th IEEE Conference on Decision and
Control, 2008, pp. 4042-4048.

[4] S. Dixit, U. Montanaro, S. Fallah, M. Dianati, D. Oxtoby, T. Mizutani,
and A. Mouzakitis, “Trajectory planning for autonomous high-speed
overtaking using MPC with terminal set constraints,” in Proc. of the
IEEE Int. Conf. on Intelligent Transportation Systems, 2018, pp. 1061-
1068.

[5S] M. Klischat and M. Althoff, “Generating critical test scenarios for
automated vehicles with evolutionary algorithms,” in Proc. of the IEEE
Intelligent Vehicles Symposium, 2019, pp. 2352-2358.

[6] M. Chen, J. F. Fisac, S. Sastry, and C. J. Tomlin, “Safe sequential
path planning of multi-vehicle systems via double-obstacle Hamilton-
Jacobi-Isaacs variational inequality,” in Proc. of the European Control
Conference, 2015, pp. 3304-3309.

[7] S. Manzinger and M. Althoff, “Tactical decision making for coopera-
tive vehicles using reachable sets,” in Proc. of the IEEE Int. Conf. on
Intelligent Transportation Systems, 2018.

[8] S. Sontges, M. Koschi, and M. Althoff, “Worst-case analysis of the
time-to-react using reachable sets,” in Proc. of the IEEE Intelligent
Vehicles Symposium, 2018, pp. 1891-1897.

[9] J. F. Fisac, M. Chen, C. J. Tomlin, and S. S. Sastry, “Reach-avoid
problems with time-varying dynamics, targets and constraints,” in
Proc. of the Int. Conf. on Hybrid Systems: Computation and Control,
2015, pp. 11-20.

[10] K. Margellos and J. Lygeros, “Hamilton-Jacobi formulation for reach-
avoid problems with an application to air traffic management,” in Proc.
of the American Control Conference, 2010, pp. 3045-3050.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

O. Bokanowski, N. Forcadel, and H. Zidani, “Reachability and mini-
mal times for state constrained nonlinear problems without any con-
trollability assumption,” STIAM Journal on Control and Optimization,
vol. 48, no. 7, pp. 4292-4316, Jan. 2010.

C. Schmidt, F. Oechsle, and W. Branz, “Research on trajectory
planning in emergency situations with multiple objects,” in Proc. of
the IEEE Intelligent Transportation Systems Conference, 2006, pp.
988-992.

S. Kousik, S. Vaskov, M. Johnson-Roberson, and R. Vasudevan, “Safe
trajectory synthesis for autonomous driving in unforeseen environ-
ments,” in Proc. of the ASME Dynamic Systems and Control Conf.,
Art. No. VO01T44A005, 2017.

1. Xausa, R. Baier, O. Bokanowski, and M. Gerdts, “Computation of
avoidance regions for driver assistance systems by using a Hamilton-
Jacobi approach,” Art. No. OCA.2565, 2020.

A. Lawitzky, A. Nicklas, D. Wollherr, and M. Buss, “Determining
states of inevitable collision using reachability analysis,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2014, pp.
4142-4147.

J. Nilsson, J. Fredriksson, and A. C. E. Odblom, “Verification of
collision avoidance systems using reachability analysis,” Proc. of the
IFAC World Congress, pp. 10676-10681, 2014.

P. Falcone, M. Ali, and J. Sjoberg, “Predictive threat assessment via
reachability analysis and set invariance theory,” IEEE Transactions
on Intelligent Transportation Systems, vol. 12, no. 4, pp. 1352-1361,
2011.

S. Sontges and M. Althoff, “Computing the drivable area of au-
tonomous road vehicles in dynamic road scenes,” IEEE Transactions
on Intelligent Transportation Systems, vol. 19, no. 6, pp. 1855-1866,
2018.

M. Ono, G. Droge, H. Grip, O. Toupet, C. Scrapper, and A. Rahmani,
“Road-following formation control of autonomous ground vehicles,”
in Proc. of the IEEE Conference on Decision and Control, 2015, pp.
4714-4721.

J. Lunze, “A timed discrete-event abstraction of continuous-variable
systems,” International Journal of Control, vol. 72, no. 13, pp. 1147—
1164, 1999.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

M. Zamani, G. Pola, M. Mazo, and P. Tabuada, “Symbolic models
for nonlinear control systems without stability assumptions,” /IEEE
Transactions on Automatic Control, vol. 57, no. 7, pp. 1804-1809,
2012.

G. Frehse, “PHAVer: Algorithmic verification of hybrid systems past
HyTech.” in Hybrid Systems: Computation and Control, 2005, pp.
258-273.

A. Platzer and E. M. E. Clarke, “Formal verification of curved flight
collision avoidance maneuvers: A case study,” in Proc. of the 16th
International Symposium on Formal Methods, 2009, pp. 547-562.

X. Chen, S. Sankaranarayanan, and E. Abraham, “Flow* 1.2: More
effective to play with hybrid systems,” in ARCHI4-15. 1st and 2nd
International Workshop on Applied veRification for Continuous and
Hybrid Systems, vol. 34, 2015, pp. 152-159.

G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “SpaceEx: Scalable
verification of hybrid systems,” in Proc. of the 23rd International
Conference on Computer Aided Verification, 2011, pp. 379-395.

P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok, “C2E2: A
verification tool for stateflow models,” in Tools and Algorithms for the
Construction and Analysis of Systems, 2015, pp. 68-82.

S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and
C. Schilling, “Reach set approximation through decomposition with
low-dimensional sets and high-dimensional matrices,” in Proc. of the
21st International Conference on Hybrid Systems: Computation and
Control, 2018, pp. 41-50.

M. Althoff, “An introduction to CORA 2015,” in Proc. of the Workshop
on Applied Verification for Continuous and Hybrid Systems, 2015, p.
120151.

J.-C. Latombe, Robot Motion Planning. Norwell: Kluwer Academic
Publishers, 1991.

M. Althoff, M. Koschi, and S. Manzinger, “CommonRoad: Compos-
able benchmarks for motion planning on roads,” in Proc. of the IEEE
Intelligent Vehicles Symposium, 2017, pp. 719-726.

A. Zhu, S. Manzinger, and M. Althoff, “Evaluating Location Compli-
ance Approaches for Automated Road Vehicles,” in Proc. of the IEEE
Intelligent Vehicles Symposium, 2018, pp. 642-649.

	Introduction
	Related Work
	Contributions

	Definitions and Problem Statement
	Concept of Offline and Online Computation
	Offline Reachability Analysis
	Propagation
	Discretization of k+1 and Construction of the Graph

	Online Computations
	Propagation
	Discretization of Obstacles

	Compensating Discretization Errors with Multiple Propagations
	Exclusion of Inevitable Collision States

	Evaluation
	Computation Time
	Scenario A
	Scenario B
	Discussion

	Conclusions
	References

