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Abstract— Virtual testing plays an important role in the
validation and verification of automated vehicles. State-of-the-
art approaches first generate a huge amount of test scenarios
through simulations or test drives, which are later filtered
to obtain relevant scenarios for a given set of specifications.
However, only few works exist on synthesizing scenarios directly
from specifications. In this work, we present an optimization-
based approach to synthesize scenarios only from formal
specifications and a given map. To concretize the specifications,
we formulate predicates, which are subsequently converted to a
mixed-integer quadratic optimization problem. We demonstrate
how our method can generate scenarios for maps featuring
merging lanes and intersections given a variety of specifications.

I. INTRODUCTION

Proving the safety of automated vehicles is still a major
challenge due to the variety of situations that can be possibly
encountered in the real world. To cope with this variety, vir-
tual testing is essential in the development phase. Especially
in industry, virtual testing is oftentimes still based on data
recorded from real test drives or variations of itﬂ Not only is
this expensive and time-consuming, but also the availability
of large datasets to suppliers or public research institutions
is limited.

In scenario-based testing, automated vehicles are virtually
subjected to short sequences of traffic data, i.e., scenarios,
which are representative of real-world traffic. For the verifi-
cation of automated vehicles, test engineers are additionally
interested in 1) using scenarios to test the software against
selected requirements and 2) a large variety of traffic scenar-
ios where some are only rarely found in datasets recorded
from real test drives.

Requirements can include formal specifications of a sce-
nario, i.e., the behavior of surrounding vehicles. These
specifications can also be utilized to set a large variety of
scenarios in order to create a diverse test suite. In this paper,
we present an optimization-based algorithm that synthesizes
concrete scenarios that fulfill a given formal specification.

A. Related Work

A commonly-used method to generate test scenarios is the
parametrization of scenarios and combinations of all possible
values within defined parameter range@. In particular, for
complex scenarios with many parameters, the exploding
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number of parameter combinations quickly results in an
unmanageable computational effort. At the same time, many
parameter combinations might be unrealizable.

Approaches focusing on parameterizing and modifying
trajectories from real traffic data are presented, e.g., in [1],
[2]. The derived variations of a given scenario still resemble
the high-level characteristics of the original data. While
these approaches consider only one scenario at a time, the
stochastic properties of the traffic behavior from an entire
database of scenarios can be considered when sampling new
scenarios from a Bayesian network whose parameters are
learned from that database [3]. This method has been further
extended from highways to complex intersections in [4].
With the application of importance sampling, scenarios with
interesting, rarely occurring behavior can be generated more
efficiently [5], [6].

In verification, software components are typically tested
against their functional requirements in scenarios defined by
formal specifications. Works on falsification aim at falsifying
planning algorithms of automated vehicles against a given
logic formula, e.g., formulated in signal temporal logic (STL)
[7], [8]. However, these works do not answer the question
of how to ensure that the behavior of surrounding vehicles
conforms to assumptions the test specification is based on.

While the above approaches for scenario generation can
be used to easily generate a large number of scenarios, they
cannot explicitly consider specifications for the scenarios.
Instead, classification techniques, e.g. [9], [10], would have
to be applied subsequently to find scenarios that conform
with a desired specification. This process is proposed in
[11], [12]. However, these data-driven approaches require
large amounts of data to find scenarios that conform with
a specification. In particular, for rarely occurring specifica-
tions, the required amount of scenarios, and correspondingly
the computational effort, increases disproportionately [11].
A more efficient approach is to generate scenarios directly
from specifications. The resulting amount of scenarios scales
only linearly with respect to the number of specifications.

In [13], specifications of scenarios are first derived from
police reports on crashes using natural language processing
from which waypoints connected by trajectory planners are
generated. While this is demonstrated for scenarios with two
vehicles, it remains unclear how the motion of more vehicles
could be coordinated reliably. In the context of search-
based scenario generation [14], the implicit conformance
with a specification can be obtained through dedicated cost
functions [15]. With these functions, the search is directed
to regions in the space of scenario parameters where the
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specification is fulfilled.

Another representation of specifications is given by on-
tologies, which can also be generated automatically [16].
Highway scenario descriptions conforming with such ontolo-
gies are generated in [17] and combinatorial test generation
from ontologies focusing on road infrastructure is proposed
in [18].

A formal representation of specifications is provided by
temporal logic. In [19], [20], control problems for linear sys-
tems subjected to linear temporal logic (LTL) specifications
are solved using mixed-integer formulations.

Lately, two scenario description languages and respective
scenario generators have been developed, which focus on
a realistic visualization of the environment for vision-based
algorithms [21], [22]. Another high-level description of traf-
fic scenarios is presented in [9]; so-called traffic patterns
describe the traffic flow at intersections, and an algorithm to
match scenarios to the patterns is presented.

For the formalization of specifications with a focus on mo-
tion planning, a specification language based on constraints
is proposed [23]. Valid parameter ranges that satisfy the
specifications can be obtained using SAT solvers [24].

In summary, existing works do not provide methods to
efficiently generate concrete scenarios from complex speci-
fications in terms of the road network or the coordination of
motion of surrounding vehicles.

B. Overview and Contributions

In this work, we present an optimization-based method
to synthesize traffic scenarios that conform to a scenario
specification. Our specification language is formally defined
in Section [[II We extend a high-level description similar to
[9] by a detailed formal description of spatio-temporal rela-
tions of vehicles. The main part of our work is subsequently
presented in Section where we use for the first time
a framework based on mixed-integer quadratic optimization
(MIQP) that enables the generation of concrete trajectories
satisfying a scenario specification. To consider the specifica-
tion in the optimization, we formulate them as mixed-integer
convex constraints. In Section we demonstrate how our
approach can be used to efficiently generate diverse traffic
scenarios by applying it to a large set of specifications. The
following are the main contributions of our work:

o We present a general scenario specification suited for

complex road network topologies.

o Our approach is the first based on MIQP for synthe-
sizing concrete traffic scenarios that explicitly consider
formal specifications.

o By including a feasibility check for specifications, our
scenarios are guaranteed to be executable.

The advantage of our optimization-based scenario synthe-
sis is that it does not rely on recorded or simulated data
and we can generate scenarios based on a road network
and an abstract specification only. Furthermore, it opens the
possibility of incorporating additional objectives, such as
criticality measures, into the cost function to obtain scenarios
with desired properties.

II. SCENARIO SPECIFICATION

In this work, we use discretized time t;, = kAt with time
steps At and k as the time index. To simplify the notation,
we denote the time-step sequence (k,k+1,...,k) by [k, k].
We generate traffic scenarios, which are defined by vehicles
V; following trajectories z;(k) € R™, k € [0, h], where i €
{1,...,nyen} refers to the index of the vehicle, and h € N
represents the considered time horizon.

Subsequently, we introduce a two-level scenario speci-
fication consisting of route patterns and scene sequences.
The route patterns are defined in Section and scene
sequences in Section [[I-C]

A. Route Patterns

Before introducing the route patterns, let us define road
networks consisting of lanelets [25].

Definition 1 (Lanelet): A lanelet L;; with an identifier id
is composed of right and left borders defined by polylines
and attributes describing its spatial relations to other lanelets:
successors, predecessors, adjacent_right, and adjacent_left.[]

merging intersecting
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Fig. 1: Example of relations between lanelets.

A lanelet is said to be adjacent_right to a lanelet L, when its
left lanelet border intersects with L across its entire length.
Compared to the original work [25], we additionally use
the relations merging, diverging, and intersecting. Merging
(diverging) lanelets share the same successors (predecessors).
Intersecting lanelets comprise all pairs of lanelets where the
borders intersect and no adjacency or merging relation can
be found. Fig. [I| shows an example of these relations.

To further structure the lanelet network, we introduce
lanelet sections C;, combining lanelets that are coupled lat-
erally through the relations adjacent_left and adjacent_right,
as illustrated in Fig.[2] The ID of such a section is denoted by
i. € N. For convenience, we denote the IDs of the lanelets
by tuples id = (i, %;), where i; € N enumerates the lanelets
of a section in the lateral direction from right to left. Using
lanelet sections, we define routes in the lanelet network.

Definition 2 (Route): A route R, with route index k is
defined as a tuple of connected lanelet sections. g

For instance, the route of vehicle V; in Fig. [2| is given
by Ro = (Cop,C1). The trajectory of each vehicle V; can
be mapped to a route. For this mapping, we introduce the
operator route(V;), which maps a vehicle to a route R,.
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Fig. 2: Example of lanelet sections and lane-based coordinate systems..

Definition 3 (Route Pattern): A route pattern of a scenario
is the union of the routes of all vehicles in the scenario:
Mveh
Troute = U route(V;). |
i=1
With these patterns, a scenario can be described on an
abstract level. Fig. [3] shows an example of two different route
patterns for the same intersection.

(@ (b)
Fig. 3: Examples of two route patterns at an intersection, vehicles are colored
based on their assigned routes.

B. Lane-based Coordinate Systems

Henceforth, we consider trajectories in lane-based coor-
dinate systems that are aligned to a reference path. The
reference path is represented by a polyline and constructed
for each route R,; € Tioute by concatenating the center lines
of consecutive lanelets from each section of the route. Since
every vehicle is assigned to a route, every vehicle is also
assigned to a lane-based coordinate system. The longitudinal
state of a vehicle V; in the coordinate system of route(V;)
is given by zs; = [si, $;, §;], where s; is the longitudinal
position, and the lateral state is given by zq; = [d;, di, dl]
with d; being the lateral position (see Fig. [2). We define a
projection operator lon;(z) to project a Cartesian coordinate
to a longitudinal position of route(V;).

For two vehicles V; and Vj, our specification can involve
the longitudinal distance between these vehicles from pos-
sibly different coordinate systems. As in our previous work
[26], we couple the coordinates s; and s; of a pair of vehicles
by computing a common reference point Z,ct ;; at the first
intersection of their reference paths. We introduce auxiliary
coordinates §; = s; —lon;(xyef,i;) and §; = s;—lon;(Tyef,i5)
relative to the reference point. Using these coordinates, we
define the operator dist(V;, V;) := 3; — 3; for computing the
longitudinal distance between V; and V. As shown in Fig. EL
this distance is also defined for vehicles before their lanelets
merge.
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(a) Before merging. (b) After merging.
Fig. 4: Coupling of lane-based coordinate systems of two vehicles V;, V;
using x,ef,;; for computing the distance dist(V;, V) = 5; — §;.

C. Scene Specification

To further specify the behavior of vehicles, we introduce
predicates. We focus on essential predicates that can already
express a large variety of traffic scenarios. Nevertheless, any
other predicate that can be formulated as a mixed-integer
convex constraint in the MIQP, as in Section [III, can be
modeled as well. The predicates are introduced as follows:

Definition 4 (onLanelet): Let a set of lanelets £ (i, [4;,%])
be defined by the section ID i. and a sequence of lateral IDs
[i), 21]. Computing the longitudinal bounds of all lanelets
in L(ic, [i},%]) in the coordinate system of a vehicle V;
yields the interval [ﬁﬁ(ic,[[zl,i]])’gﬁ(ic,[[il,i]])] and the lateral
bounds at a longitudinal position s; within that interval are
determined as [dc(im[[z'lﬁl]])(si)’aﬁ(ic,[[zlﬁlﬂ)(Si)]' Then the
predicate onLanelet is defined as

onLanelet(V;, i, i}, 11]) <=
SLielih]) S 5i S SL(ie [iy )
e i) (51) < di S dpi, gy 7y (80)-0

Note, that our definition of onLanelet(V;,ic, [4,4]) con-
siders the center of the vehicle and not the whole occupancy
of the vehicle. By specifying multiple lanelets, we make lane
changes possible.

Definition 5 (isBehind): If V; and V; are specified to move
on the same lanelet or on merging, diverging, or succeeding
lanelets, we define that vehicle V; is behind vehicle V; with
a safety margin r € R™ through the predicate

isBehind(V;, V;) < dist(V;, V) > r. (1)
(]

For a vehicle, which is specified to move on a lanelet
L; intersecting with another lanelet L;, we use additional
predicates to specify the crossing behavior. For formulating
these predicates, the conflicting area of both vehicles needs
to be defined first. To maximize the flexibility for generating
scenarios, we aim at computing a small conflicting area.
Hence, we use the intersecting area of both lanelets to avoid
collisions. When traffic rules should be considered, one could
alternatively use stop lines at intersections.

To determine the intersecting area of two lanelets L;
and L; in lane-based coordinates, we first compute the
intersecting points &, (L;, L;) € R? with z € {1,...,4}
of the lanelet borders through a sweep-line algorithm [27].
After computing the longitudinal coordinates s¢ ,(L;, L;) of



each point &.(L;, L;), we can determine the longitudinal

interval [s¢%,57%] that bounds all s¢ .(L;, L;) as illustrated

in Fig. 5} Using this interval, we divide the lanelet L; into
three sections and introduce the corresponding predicates
below. These predicates are also illustrated in Fig. [5]

Definition 6 (Conflict Area Predicates): The position of a
vehicle V; on a lanelet intersecting with the lanelet of another
vehicle V; is evaluated by the predicates
beforeCA(V;,V;) <= s; < §f? -,
inCA(V;,Vj) &= si5 —r <5 <55+,
behindCA(V;, V) <= s; > 505 + 7

using a safety margin r > [;/2 with [; being the length of
V. O

® s¢.(Li, L)
o ﬁz(Lia Lj)

B inca

Fig. 5: Construction of longitudinal bounds [§§av,§fa}.} of the conflict

area for vehicle V; crossing the lanelet of V. Flinher}nore, the intervals
corresponding to each intersection predicate of V; are shown.

behindCA

To further structure the specification, we divide the set of
predicates into scenes as illustrated for an example shown in
Fig. [

Definition 7 (Scene Sequence): We define a scene S; by
the tuple (P, k;), which encodes the set P; of predicates
that hold true starting at the switching time k; € [0, ] until
the switching time of the subsequent scene S;41. Thus the
complete scenario is specified by the sequence of ngy. scenes

Tee = (S0, S,y Snae)- O
So with ko =0 Sy with k, = 10 Sy with k, = 25
(0,1) 203 (0,1) 22 (0,1) =23 o
0o M MW 0o TR mmm 00 o
Po: isBehind(Vp, Vi)  Pi: isBehind(Vp, V4) P»: isBehind(V5, V)

onLanelet(V},0,0)
onLanelet(V},0,0)
onLanelet(V5,0,1)

isBehind(V5, V)
onLanelet(V),0, (0,1))
onLanelet(V7,0,0)
onLanelet(V5,0,1)

onLanelet(V},0,1)
onLanelet(V;,0,0)
onLanelet(V5,0,1)

Fig. 6: Example of a lane-change maneuver defined by three scenes.

Instead of specifying the exact switching times, it is more
convenient to set lower and upper bounds for the duration
0; of each scene, ie., hpmin < 0 < hmax> Amax € N,
VI € [0, nsc]). This also reduces the number of specifications,
because scenarios with the same predicates P;, but different

switching times z; can be described by the same speci-
fication. The exact duration is determined in the scenario
synthesis presented in the next section.

Our definition of a scene can be considered as a formalized
version of the frequently-used definition in [28]. When
creating the specification, collision-free scenarios can be
specified by respecting simple rules. For instance, collisions
on intersections are avoided when the specification satisfies

Vi, j,1: 1 # jA—(inCA(V;, V;) € Py AinCA(V;, Vi) € Py)
V =(inCA(V;, V;) A inCA(V;, V;)).  (2)

Test cases for automated vehicles can be formulated using
our specification by including an ego vehicle in the specifi-
cation and finally deleting it from the synthesized scenario.

III. SYNTHESIS OF TRAJECTORIES THROUGH
OPTIMIZATION

To synthesize concrete trajectories that comply with a
given scenario template, we formulate a mixed logical dy-
namical (MLD) system and generate a combined MIQP
whose solution yields the trajectories for all vehicles. As
commonly done in motion planning for road vehicles, we
solve the longitudinal and lateral planning problems sepa-
rately [29].

Similar approaches are proposed for the control of general
MLD systems [30], cooperative planning of trajectories [31]—
[33] or for trajectory planning of lane changes for single
vehicles [34]. Unlike in previous work, our optimization
problem combines planning of longitudinal and lateral mo-
tion for multiple vehicles while handling intersections.

A. Representation of Switching Times

Initially, the switching times k; of each scene are unknown
and need to be determined as part of the optimization prob-
lem. To facilitate formulating the optimization problem, we
encode each k; through a binary vector 3; € {0,1}", Vi €
[0, nsc] that switches at k;,

0, k<k
k:
Bilk) {1, k>k.

The temporal order of scenes is ensured through the linear
constraints

Bo(0) =1 (3)
Vk € [1, ],V € [0,n5c —1]:  Bi(k) < Bigr (k).

For constraining the duration §; of each scene, we need to
determine whether a scene is active, i.e., whether k; < k <
k;, . For convenience, we denote this by auxiliary binary
variables a; € {0, 1}" (see Fig. [7| for an example):

k) — k), 0<1<ng
Vk € [0,h]: ay(k) = Bu(k) = Brsa(k), 0<l<n
ﬁl(k)a I = nge
Hence, the durations are bounded through
h
VE € [0,h]):  humin < > (k) < hmax. (@)
k=0



k=0 k5 =2 ky =5
Bo(k) 1 1 1 1 1 1 1
Bk) 0 0 1 1 1 1 1
Bok) O 0O 0 O 0 1 1
ak) "1 1. 0 0 0 0 0
ar(k) 0 1 1 1 0 o
axk) 0 0 0 0 0 ‘1 1

Fig. 7: Example for binary variables 3;(k) and o (k) with three scenes.

B. System Dynamics

We now define the linear system dynamics for the longitu-
dinal (denoted by subset s) and lateral motions (denoted by
subset d) of all vehicles using the state matrices Ay, Ay €
RP-P and the input matrices B, By € RP-? by

zs(k + 1) = Agzg(k) + Bsug(k). ®)
The lateral motion is defined by
za(k +1) = Aqza(k) + Baua(k). (6)

The state vector x5 comprises the concatenated states of all
vehicles s = [2]},...,2] 17 and the input vector is
given by the jerk of all vehicles to obtain continuous accel-
eration: us = [§1,..., 5,17 and uq = [d1,- -, dnow, )’
In combination with the binary variables (;(k) we obtain an
MLD system.

C. Converting Predicates to Mixed-Integer Constraints

To consider the specification Tg. in the MIQP motion plan-
ning problem, it needs to be written as mixed-integer linear
inequality constraints. The formulation of such constraints
from predicates for temporal logic has been shown, e.g., for
STL [35], [36].

Since our predicates are intentionally formulated as linear
inequality constraints, see Definitions [4] to [6] we make use
of the big-M method [37] to only activate them during
their corresponding scene, i.e., when «;(k) = 1. In this
well-known method for mixed-integer programming, a term
involving a vector M € R, which has sufficiently large
values and is of correct dimensions, is added to a linear
inequality constraint to control its activation. In our case,
adding the binary term M (1 — ay(k)) to a constraint as in
(7). ensures that a constraint is always fulfilled if a; (k) = 0.

We convert each predicate of each scene S;, | €

{0,...,ns} separately and finally combine all constraints
to two inequalities in the required big-M form
9,(xs, k) > ¢, (k) — M(1 — o (k)) Q)

Gi(ws, k) < e (k) + M(1 - ay(k))

for lower and upper bounds ¢; (k), ¢;(k) € R™rred using linear
functions g, (zs, k), g;(zs, k).

To give an example, we can directly write (I) of
isBehind(V;, V;) as a constraint using the big-M method:

5i(k) = k) > o ~M-a(k). @)

gl(zs’k) & (k)

D. Longitudinal Optimization Problem

We solve an optimization problem for a user-defined
convex cost function Js(zs,us,w), which can incorporate
terms for desired properties, such as efficiency or criticality.
An example is given later for the evaluation in Section
By introducing weights w € R” for selected terms, we can
utilize the cost functions for parameterizing the scenarios
in order to obtain variations of the scenario. The complete
optimization problem is given by

h
> Julws(k), us(k), w) 9)
k=0

arg min
z5(0),us

subjected to dynamic constraints, Vk € [0, h]:

zs(k + 1) = Aszs(k) + Bsus(k)

Us, min S us(k) § us,max

(10)

xs,min S xs(k) S xs,maX7
predicate constraints, VI € {0,...,ny}, Vk € [0, h]:

g,(xs, k) < c(k) + M(1 —ay(k)) (1)

gl(xSﬂ k) > E(k) - M(l - al(k))7
and logical constraints from (3) and (d):

Bo(0) =1

Vk € [0, h], VL € [0, nse — 1]: Bi(k) < Bry1(k),
h

vk € [[Oa h]] hmin S Zal(k) S hmax-

k=0

12)

E. Lateral Motion

After solving the longitudinal motion problem, we can
compute the lateral trajectory of each vehicle. Since the
switching times can be obtained from the previously com-
puted G;(k), the active predicates at every time k are known.
Hence, only a quadratic program without binary variables
needs to be solved. At the longitudinal positions s(k), the
lateral lanelet bounds [d; (s(k)), dr(s(k))] specified through
onLanelet are extracted. Furthermore, the lateral reference
path d.et(k) € R is computed. The trajectory is obtained by
solving

h
arg min Z Ja(za(k),ua(k), dres(k), w) (13)

wa()  k=p
subjected to dynamic constraints, Vk € [0, h]:

zq(k+ 1) = Aaza(k) + Baua(k)
ud,min(k) S ’U,(k) S Ud,max(k)
xd,min(k) S $d(l€) S xd,max(k)

and lane constraints, Vk € [0, h]:

dp(s(k)) < za(k) < dp(s(k)).



F. Feasibility Checking

Formulating the scenario synthesis as an MIQP problem
enables us to check the satisfiability of a specification by the
given system dynamics through checking the feasibility of
the MIQP problem. For more insights into the cause of a
possible infeasibility, the feasibility check can be performed
in two steps:

1) The logical checking of the specifications 7. detects
a contradiction in the specifications in each scene:
We introduce the feasible set Dpreq C Rt Mpred.t x
{0,1}"m=¢, denoting the mixed-integer set fulfilling
predicate constraints (IT)) and binary constraints (12))
of the longitudinal problem (9). An empty set Dpreq
implies the contradiction of at least two specifications.

2) The satisfiability of the specification by the given
system dynamics can be checked by additionally con-
sidering the dynamic constraints in (I0) for the MIQP
feasibility check. This problem can be solved by a
branch and bound algorithm and the decidability of this
problem has been proven already in [19] for general
MLD systems.

IV. EVALUATION

In this section, we demonstrate our approach by means of
two maps: Map A features two merging lanes on a highway
and map B shows an urban T-intersection. To test our
approach with a large variety of specifications, we generate
them through an exhaustive search, as described in Sec-
tion For the system matrices Ag and Aq, we use triple
integrators for each vehicle and as cost functions we choose
Js(zs(k), us(k), w) = 25(k)T Qss(k) +us(k)T Reus(k) and
Jd({Ed(k’), ud(k),w) = {Ed(k’)Tle'd(k) + ud(k)TRdud(k)
to obtain efficient motions. Table [I| lists the chosen parame-
ters of our algorithm.

Our code is written in Python, and the optimization prob-
lems are solved using the solver Gurob The computation
times are measured on a system with an Intel i7-8650U
1.90 GHz processor. We uploaded all generated scenarios
to our websiteE] with IDs ZAM_Zip and ZAM . _Tjunction.
A selection of scenarios can also be found in the video
attachment at https://mediatum.ub.tum.de/1537464,

TABLE I: Parameters of our algorithm used for both the maps.

Parameter Value

At [s] 0.25

th [s] map A: 8.5, map B: 15.0
thmin [S} 1.5

Qs min [Mm/s?] -7.0

As,max [m/s2] 3.0

|@max| [m/s?] -7.0

Qs,Qa diag([5,1,1])

Rs, Rq 0.5

Zhttp://www.gurobi.com
3https://commonroad.in.tum.de/scenarios

A. Generation of Specifications

To generate a large number of specifications, we use
a simple exhaustive search. A more distinct automation
of formulating specifications is a subject of future work,
and the utilized approach satisfies mainly the purpose of
evaluating our synthesis approach. To generate specifications
of the scenes, we manually define an initial scene, which
is subsequently evolved through an exhaustive tree search,
until a defined number of scenes is reached. For map A,
we evolve a given scene to the next scene by letting up to
two vehicles either change to the adjacent lanelet or to the
succeeding lanelet. When switching lanes or merging into
one lane, we add nodes in the search tree for each possible
order of vehicles in the target lane. For map B, we let one
vehicle switch to the following intersection predicate in the
order (beforeCA(V;,V;), inCA(V;, V;), behindCA(V;, V;)).
To avoid collisions in the conflict area, we additionally
disregard all the specifications that violate the condition in
@]). Furthermore, we only consider specifications, wherein at
least three vehicles cross the intersection.

B. Map A: Merging Lanes

The highway map features a road with merging lanes as
depicted in Fig. [§] According to our definition, this map
contains one route and accordingly one lane-based coordinate
system. As depicted in Table [lI} the initial scene S consists
of two vehicles driving behind each other on each lane.
Using the previously introduced approach for generating
four scenes, we obtain 120 specifications in total for which
we subsequently synthesize scenarios using our presented
approach.

TABLE II: Specification of a scene sequence for Map A.

Vehicle V;
Scene Predicates Vo, 1% Vo \%}
g onLanelet(V;,ic, %) Vo.l,1 Vi, 1,1 Vo,1,0 V3,1,0
9 isBehind(V;, Vj) Vo, Vi - V2, V3 -
g onLanelet(V;,ic, ;) Vo,1,{0,1} Vi,1,1  V2,1,0 V3,10
! isBehind(V;, Vj) VoV - Vo,Vz V3, Vo
s onLanelet(Vj,ic,%;) Vp,0,0 Vi, 1,1 Ve, 1,0 V3,00
2 isBehind(V;, Vj) - Vi, Vs Va,V3 -
g onLanelet(V;,ic, %) Vp,0,0 V1,0,1 V2,0,0  V3,0,0
3 isBehind(V;, Vj) Vo, V1 Vi,Vs Va,Vi V3, Vo

Out of all specifications, 71 scenarios can be generated,
taking on average 0.21s. For the remaining specifications,
the satisfiability checking failed. These specifications mainly
contained overtaking maneuvers, which could not be com-
pleted in the prescribed time horizon ¢j,. In Table [[I we show
an exemplary specification and Fig. [8| depicts three frames
of the synthesized scenario.

C. Map B: Intersection

We use a T-intersection (Map B) to demonstrate
intersection-related predicates. To obtain complex scenarios,
we generate specifications for three routes that each intersect
with the two other routes, as depicted in Fig. [0] In the
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(i, 11): lanelet IDs

TABLE III: Specification of a scene sequence for Map B.

(1LO) (L1) v, Vi 0,00 (0, Vehicle V;
II | == Predicates Vo Vi Va Vs Vi Vs
-V2 -V3 —= 5, Onkanelet(Viie,ir) V.30 V230 1200 V500 ViSO V550
(a) t = 0.5s, scene S isBehind(V;, Vj) Vo, Vi - Vo, V3 - Vi, Vs -
onLanelet(V;,ic,4;) V0.3.0 V1,30 V2,00 V3,00 V450 V52,1
S1 isBehind(V;, V;) Vo, Vi - Va, V3 - Vi, Vs -
Va i Vs Vo conflict area predicate - - - - - before
—% onLanelet(V;,ic,i;) Vo,I,1 Vi1l V5,00 V340 V450 Vs21
Sy isBehind(Vj, Vj) Vo, Vi - Va, V3 - Vi, Vs -
(b) t = 5.75s, scene Sa conflict area predicate - before before - in
onLanelet(V;,ic,4;) Vo.l.l Vi,ILI V5,00 V340 Vi21 V52,1
Va Vi V3 Vo S5 isBehind(V;, VJ) Vo, V1 - Vo, Vs - Vi, Vs -
— conflict area predicate before in - before before behind
|_—- — .
OnLanelet(V;_’,ic,il) Vo,I,1  Vi,1,1 V5,00 V3,40 V42,1 Vs,2,1
(c) t = 8.5s, scene S3 Sy iSB;.hiI,ld('Vi»chl) N ‘;0% i Va,Va o - \;41; Vs . o .
Fig. 8: Synthesized scenario for Map A at different times ¢. contlict area precicate etore 1 _ 1 clore bemm
onLanelet(V;,ic,7;) Vo,1,1 Vi,1,1 V040 V3,40 Vy2,1 V5,21
S5 isBehind(V;, V;) Vo, Vi Va2, V3 - Vi, Vs -
conflict area predicate before behind before behind before behind
initial configuration Sy, we place two vehicles on the lanelets
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